1 /*
   2  * Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.SharedSecrets;
  29 import jdk.internal.module.IllegalAccessLogger;
  30 import jdk.internal.org.objectweb.asm.ClassReader;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.Reflection;
  33 import jdk.internal.vm.annotation.ForceInline;
  34 import sun.invoke.util.ValueConversions;
  35 import sun.invoke.util.VerifyAccess;
  36 import sun.invoke.util.Wrapper;
  37 import sun.reflect.misc.ReflectUtil;
  38 import sun.security.util.SecurityConstants;
  39 
  40 import java.lang.invoke.LambdaForm.BasicType;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Field;
  43 import java.lang.reflect.Member;
  44 import java.lang.reflect.Method;
  45 import java.lang.reflect.Modifier;
  46 import java.lang.reflect.ReflectPermission;
  47 import java.nio.ByteOrder;
  48 import java.security.AccessController;
  49 import java.security.PrivilegedAction;
  50 import java.security.ProtectionDomain;
  51 import java.util.ArrayList;
  52 import java.util.Arrays;
  53 import java.util.BitSet;
  54 import java.util.Iterator;
  55 import java.util.List;
  56 import java.util.Objects;
  57 import java.util.Set;
  58 import java.util.concurrent.ConcurrentHashMap;
  59 import java.util.stream.Collectors;
  60 import java.util.stream.Stream;
  61 
  62 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  63 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  64 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  65 import static java.lang.invoke.MethodType.methodType;
  66 
  67 /**
  68  * This class consists exclusively of static methods that operate on or return
  69  * method handles. They fall into several categories:
  70  * <ul>
  71  * <li>Lookup methods which help create method handles for methods and fields.
  72  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  73  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  74  * </ul>
  75  * A lookup, combinator, or factory method will fail and throw an
  76  * {@code IllegalArgumentException} if the created method handle's type
  77  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  78  *
  79  * @author John Rose, JSR 292 EG
  80  * @since 1.7
  81  */
  82 public class MethodHandles {
  83 
  84     private MethodHandles() { }  // do not instantiate
  85 
  86     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  87 
  88     // See IMPL_LOOKUP below.
  89 
  90     //// Method handle creation from ordinary methods.
  91 
  92     /**
  93      * Returns a {@link Lookup lookup object} with
  94      * full capabilities to emulate all supported bytecode behaviors of the caller.
  95      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  96      * Factory methods on the lookup object can create
  97      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  98      * for any member that the caller has access to via bytecodes,
  99      * including protected and private fields and methods.
 100      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 101      * Do not store it in place where untrusted code can access it.
 102      * <p>
 103      * This method is caller sensitive, which means that it may return different
 104      * values to different callers.
 105      * @return a lookup object for the caller of this method, with private access
 106      */
 107     @CallerSensitive
 108     @ForceInline // to ensure Reflection.getCallerClass optimization
 109     public static Lookup lookup() {
 110         return new Lookup(Reflection.getCallerClass());
 111     }
 112 
 113     /**
 114      * This reflected$lookup method is the alternate implementation of
 115      * the lookup method when being invoked by reflection.
 116      */
 117     @CallerSensitive
 118     private static Lookup reflected$lookup() {
 119         Class<?> caller = Reflection.getCallerClass();
 120         if (caller.getClassLoader() == null) {
 121             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 122         }
 123         return new Lookup(caller);
 124     }
 125 
 126     /**
 127      * Returns a {@link Lookup lookup object} which is trusted minimally.
 128      * The lookup has the {@code UNCONDITIONAL} mode.
 129      * It can only be used to create method handles to public members of
 130      * public classes in packages that are exported unconditionally.
 131      * <p>
 132      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 133      * of this lookup object will be {@link java.lang.Object}.
 134      *
 135      * @apiNote The use of Object is conventional, and because the lookup modes are
 136      * limited, there is no special access provided to the internals of Object, its package
 137      * or its module.  This public lookup object or other lookup object with
 138      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
 139      * is not used to determine the lookup context.
 140      *
 141      * <p style="font-size:smaller;">
 142      * <em>Discussion:</em>
 143      * The lookup class can be changed to any other class {@code C} using an expression of the form
 144      * {@link Lookup#in publicLookup().in(C.class)}.
 145      * A public lookup object is always subject to
 146      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 147      * Also, it cannot access
 148      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 149      * @return a lookup object which is trusted minimally
 150      *
 151      * @revised 9
 152      * @spec JPMS
 153      */
 154     public static Lookup publicLookup() {
 155         return Lookup.PUBLIC_LOOKUP;
 156     }
 157 
 158     /**
 159      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
 160      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc"> private access</a>.
 161      * The returned lookup object can provide access to classes in modules and packages,
 162      * and members of those classes, outside the normal rules of Java access control,
 163      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
 164      * <p>
 165      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
 166      * allowed to do deep reflection on module {@code M2} and package of the target class
 167      * if and only if all of the following conditions are {@code true}:
 168      * <ul>
 169      * <li>If there is a security manager, its {@code checkPermission} method is
 170      * called to check {@code ReflectPermission("suppressAccessChecks")} and
 171      * that must return normally.
 172      * <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
 173      * (This is because otherwise there would be no way to ensure the original lookup
 174      * creator was a member of any particular module, and so any subsequent checks
 175      * for readability and qualified exports would become ineffective.)
 176      * <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
 177      * (This is because an application intending to share intra-module access
 178      * using {@link Lookup#MODULE MODULE} alone will inadvertently also share
 179      * deep reflection to its own module.)
 180      * <li>The target class must be a proper class, not a primitive or array class.
 181      * (Thus, {@code M2} is well-defined.)
 182      * <li>If the caller module {@code M1} differs from
 183      * the target module {@code M2} then both of the following must be true:
 184      *   <ul>
 185      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
 186      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
 187      *         containing the target class to at least {@code M1}.</li>
 188      *   </ul>
 189      * </ul>
 190      * <p>
 191      * If any of the above checks is violated, this method fails with an
 192      * exception.
 193      * <p>
 194      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
 195      * returns a {@code Lookup} on {@code targetClass} with full capabilities and
 196      * {@code null} previous lookup class.
 197      * <p>
 198      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
 199      * returns a {@code Lookup} on {@code targetClass} that records
 200      * the lookup class of the caller as the new previous lookup class and
 201      * drops {@code MODULE} access from the full capabilities mode.
 202      *
 203      * @param targetClass the target class
 204      * @param caller the caller lookup object
 205      * @return a lookup object for the target class, with private access
 206      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or array class
 207      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 208      * @throws SecurityException if denied by the security manager
 209      * @throws IllegalAccessException if any of the other access checks specified above fails
 210      * @since 9
 211      * @spec JPMS
 212      * @see Lookup#dropLookupMode
 213      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
 214      */
 215     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
 216         SecurityManager sm = System.getSecurityManager();
 217         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 218         if (targetClass.isPrimitive())
 219             throw new IllegalArgumentException(targetClass + " is a primitive class");
 220         if (targetClass.isArray())
 221             throw new IllegalArgumentException(targetClass + " is an array class");
 222         // Ensure that we can reason accurately about private and module access.
 223         if ((caller.lookupModes() & Lookup.PRIVATE) == 0)
 224             throw new IllegalAccessException("caller does not have PRIVATE lookup mode");
 225         if ((caller.lookupModes() & Lookup.MODULE) == 0)
 226             throw new IllegalAccessException("caller does not have MODULE lookup mode");
 227 
 228         // previous lookup class is never set if it has MODULE access
 229         assert caller.previousLookupClass() == null;
 230 
 231         Class<?> callerClass = caller.lookupClass();
 232         Module callerModule = callerClass.getModule();  // M1
 233         Module targetModule = targetClass.getModule();  // M2
 234         Class<?> newPreviousClass = null;
 235         int newModes = Lookup.FULL_POWER_MODES;
 236 
 237         if (targetModule != callerModule) {
 238             if (!callerModule.canRead(targetModule))
 239                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 240             if (targetModule.isNamed()) {
 241                 String pn = targetClass.getPackageName();
 242                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
 243                 if (!targetModule.isOpen(pn, callerModule))
 244                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 245             }
 246 
 247             // M2 != M1, set previous lookup class to M1 and drop MODULE access
 248             newPreviousClass = callerClass;
 249             newModes &= ~Lookup.MODULE;
 250         }
 251 
 252         if (!callerModule.isNamed() && targetModule.isNamed()) {
 253             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 254             if (logger != null) {
 255                 logger.logIfOpenedForIllegalAccess(caller, targetClass);
 256             }
 257         }
 258         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
 259     }
 260 
 261     /**
 262      * Performs an unchecked "crack" of a
 263      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 264      * The result is as if the user had obtained a lookup object capable enough
 265      * to crack the target method handle, called
 266      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 267      * on the target to obtain its symbolic reference, and then called
 268      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 269      * to resolve the symbolic reference to a member.
 270      * <p>
 271      * If there is a security manager, its {@code checkPermission} method
 272      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 273      * @param <T> the desired type of the result, either {@link Member} or a subtype
 274      * @param target a direct method handle to crack into symbolic reference components
 275      * @param expected a class object representing the desired result type {@code T}
 276      * @return a reference to the method, constructor, or field object
 277      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 278      * @exception NullPointerException if either argument is {@code null}
 279      * @exception IllegalArgumentException if the target is not a direct method handle
 280      * @exception ClassCastException if the member is not of the expected type
 281      * @since 1.8
 282      */
 283     public static <T extends Member> T
 284     reflectAs(Class<T> expected, MethodHandle target) {
 285         SecurityManager smgr = System.getSecurityManager();
 286         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 287         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 288         return lookup.revealDirect(target).reflectAs(expected, lookup);
 289     }
 290     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 291     private static final java.security.Permission ACCESS_PERMISSION =
 292         new ReflectPermission("suppressAccessChecks");
 293 
 294     /**
 295      * A <em>lookup object</em> is a factory for creating method handles,
 296      * when the creation requires access checking.
 297      * Method handles do not perform
 298      * access checks when they are called, but rather when they are created.
 299      * Therefore, method handle access
 300      * restrictions must be enforced when a method handle is created.
 301      * The caller class against which those restrictions are enforced
 302      * is known as the {@linkplain #lookupClass() lookup class}.
 303      * <p>
 304      * A lookup class which needs to create method handles will call
 305      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 306      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 307      * determined, and securely stored in the {@code Lookup} object.
 308      * The lookup class (or its delegates) may then use factory methods
 309      * on the {@code Lookup} object to create method handles for access-checked members.
 310      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 311      * even private ones.
 312      *
 313      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
 314      * The factory methods on a {@code Lookup} object correspond to all major
 315      * use cases for methods, constructors, and fields.
 316      * Each method handle created by a factory method is the functional
 317      * equivalent of a particular <em>bytecode behavior</em>.
 318      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 319      * Here is a summary of the correspondence between these factory methods and
 320      * the behavior of the resulting method handles:
 321      * <table class="striped">
 322      * <caption style="display:none">lookup method behaviors</caption>
 323      * <thead>
 324      * <tr>
 325      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 326      *     <th scope="col">member</th>
 327      *     <th scope="col">bytecode behavior</th>
 328      * </tr>
 329      * </thead>
 330      * <tbody>
 331      * <tr>
 332      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 333      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 334      * </tr>
 335      * <tr>
 336      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 337      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
 338      * </tr>
 339      * <tr>
 340      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 341      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 342      * </tr>
 343      * <tr>
 344      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 345      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 346      * </tr>
 347      * <tr>
 348      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 349      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 350      * </tr>
 351      * <tr>
 352      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 353      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 354      * </tr>
 355      * <tr>
 356      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 357      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 358      * </tr>
 359      * <tr>
 360      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 361      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 362      * </tr>
 363      * <tr>
 364      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 365      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 366      * </tr>
 367      * <tr>
 368      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 369      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 370      * </tr>
 371      * <tr>
 372      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 373      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 374      * </tr>
 375      * <tr>
 376      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 377      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 378      * </tr>
 379      * <tr>
 380      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
 381      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 382      * </tr>
 383      * <tr>
 384      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 385      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 386      * </tr>
 387      * </tbody>
 388      * </table>
 389      *
 390      * Here, the type {@code C} is the class or interface being searched for a member,
 391      * documented as a parameter named {@code refc} in the lookup methods.
 392      * The method type {@code MT} is composed from the return type {@code T}
 393      * and the sequence of argument types {@code A*}.
 394      * The constructor also has a sequence of argument types {@code A*} and
 395      * is deemed to return the newly-created object of type {@code C}.
 396      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 397      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 398      * if it is present, it is always the leading argument to the method handle invocation.
 399      * (In the case of some {@code protected} members, {@code this} may be
 400      * restricted in type to the lookup class; see below.)
 401      * The name {@code arg} stands for all the other method handle arguments.
 402      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 403      * stands for a null reference if the accessed method or field is static,
 404      * and {@code this} otherwise.
 405      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 406      * for reflective objects corresponding to the given members declared in type {@code C}.
 407      * <p>
 408      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 409      * as if by {@code ldc CONSTANT_Class}.
 410      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 411      * <p>
 412      * In cases where the given member is of variable arity (i.e., a method or constructor)
 413      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 414      * In all other cases, the returned method handle will be of fixed arity.
 415      * <p style="font-size:smaller;">
 416      * <em>Discussion:</em>
 417      * The equivalence between looked-up method handles and underlying
 418      * class members and bytecode behaviors
 419      * can break down in a few ways:
 420      * <ul style="font-size:smaller;">
 421      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 422      * the lookup can still succeed, even when there is no equivalent
 423      * Java expression or bytecoded constant.
 424      * <li>Likewise, if {@code T} or {@code MT}
 425      * is not symbolically accessible from the lookup class's loader,
 426      * the lookup can still succeed.
 427      * For example, lookups for {@code MethodHandle.invokeExact} and
 428      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 429      * <li>If there is a security manager installed, it can forbid the lookup
 430      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 431      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 432      * constant is not subject to security manager checks.
 433      * <li>If the looked-up method has a
 434      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 435      * the method handle creation may fail with an
 436      * {@code IllegalArgumentException}, due to the method handle type having
 437      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 438      * </ul>
 439      *
 440      * <h2><a id="access"></a>Access checking</h2>
 441      * Access checks are applied in the factory methods of {@code Lookup},
 442      * when a method handle is created.
 443      * This is a key difference from the Core Reflection API, since
 444      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 445      * performs access checking against every caller, on every call.
 446      * <p>
 447      * All access checks start from a {@code Lookup} object, which
 448      * compares its recorded lookup class against all requests to
 449      * create method handles.
 450      * A single {@code Lookup} object can be used to create any number
 451      * of access-checked method handles, all checked against a single
 452      * lookup class.
 453      * <p>
 454      * A {@code Lookup} object can be shared with other trusted code,
 455      * such as a metaobject protocol.
 456      * A shared {@code Lookup} object delegates the capability
 457      * to create method handles on private members of the lookup class.
 458      * Even if privileged code uses the {@code Lookup} object,
 459      * the access checking is confined to the privileges of the
 460      * original lookup class.
 461      * <p>
 462      * A lookup can fail, because
 463      * the containing class is not accessible to the lookup class, or
 464      * because the desired class member is missing, or because the
 465      * desired class member is not accessible to the lookup class, or
 466      * because the lookup object is not trusted enough to access the member.
 467      * In the case of a field setter function on a {@code final} field,
 468      * finality enforcement is treated as a kind of access control,
 469      * and the lookup will fail, except in special cases of
 470      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
 471      * In any of these cases, a {@code ReflectiveOperationException} will be
 472      * thrown from the attempted lookup.  The exact class will be one of
 473      * the following:
 474      * <ul>
 475      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 476      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 477      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 478      * </ul>
 479      * <p>
 480      * In general, the conditions under which a method handle may be
 481      * looked up for a method {@code M} are no more restrictive than the conditions
 482      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 483      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 484      * a method handle lookup will generally raise a corresponding
 485      * checked exception, such as {@code NoSuchMethodException}.
 486      * And the effect of invoking the method handle resulting from the lookup
 487      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 488      * to executing the compiled, verified, and resolved call to {@code M}.
 489      * The same point is true of fields and constructors.
 490      * <p style="font-size:smaller;">
 491      * <em>Discussion:</em>
 492      * Access checks only apply to named and reflected methods,
 493      * constructors, and fields.
 494      * Other method handle creation methods, such as
 495      * {@link MethodHandle#asType MethodHandle.asType},
 496      * do not require any access checks, and are used
 497      * independently of any {@code Lookup} object.
 498      * <p>
 499      * If the desired member is {@code protected}, the usual JVM rules apply,
 500      * including the requirement that the lookup class must either be in the
 501      * same package as the desired member, or must inherit that member.
 502      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 503      * In addition, if the desired member is a non-static field or method
 504      * in a different package, the resulting method handle may only be applied
 505      * to objects of the lookup class or one of its subclasses.
 506      * This requirement is enforced by narrowing the type of the leading
 507      * {@code this} parameter from {@code C}
 508      * (which will necessarily be a superclass of the lookup class)
 509      * to the lookup class itself.
 510      * <p>
 511      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 512      * that the receiver argument must match both the resolved method <em>and</em>
 513      * the current class.  Again, this requirement is enforced by narrowing the
 514      * type of the leading parameter to the resulting method handle.
 515      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 516      * <p>
 517      * The JVM represents constructors and static initializer blocks as internal methods
 518      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 519      * The internal syntax of invocation instructions allows them to refer to such internal
 520      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 521      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 522      * <p>
 523      * If the relationship between nested types is expressed directly through the
 524      * {@code NestHost} and {@code NestMembers} attributes
 525      * (see the Java Virtual Machine Specification, sections 4.7.28 and 4.7.29),
 526      * then the associated {@code Lookup} object provides direct access to
 527      * the lookup class and all of its nestmates
 528      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 529      * Otherwise, access between nested classes is obtained by the Java compiler creating
 530      * a wrapper method to access a private method of another class in the same nest.
 531      * For example, a nested class {@code C.D}
 532      * can access private members within other related classes such as
 533      * {@code C}, {@code C.D.E}, or {@code C.B},
 534      * but the Java compiler may need to generate wrapper methods in
 535      * those related classes.  In such cases, a {@code Lookup} object on
 536      * {@code C.E} would be unable to access those private members.
 537      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 538      * which can transform a lookup on {@code C.E} into one on any of those other
 539      * classes, without special elevation of privilege.
 540      * <p>
 541      * The accesses permitted to a given lookup object may be limited,
 542      * according to its set of {@link #lookupModes lookupModes},
 543      * to a subset of members normally accessible to the lookup class.
 544      * For example, the {@link MethodHandles#publicLookup publicLookup}
 545      * method produces a lookup object which is only allowed to access
 546      * public members in public classes of exported packages.
 547      * The caller sensitive method {@link MethodHandles#lookup lookup}
 548      * produces a lookup object with full capabilities relative to
 549      * its caller class, to emulate all supported bytecode behaviors.
 550      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 551      * with fewer access modes than the original lookup object.
 552      *
 553      * <p style="font-size:smaller;">
 554      * <a id="privacc"></a>
 555      * <em>Discussion of private access:</em>
 556      * We say that a lookup has <em>private access</em>
 557      * if its {@linkplain #lookupModes lookup modes}
 558      * include the possibility of accessing {@code private} members
 559      * (which includes the private members of nestmates).
 560      * As documented in the relevant methods elsewhere,
 561      * only lookups with private access possess the following capabilities:
 562      * <ul style="font-size:smaller;">
 563      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 564      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 565      *     such as {@code Class.forName}
 566      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 567      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 568      *     for classes accessible to the lookup class
 569      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 570      *     within the same package member
 571      * </ul>
 572      * <p style="font-size:smaller;">
 573      * Each of these permissions is a consequence of the fact that a lookup object
 574      * with private access can be securely traced back to an originating class,
 575      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 576      * can be reliably determined and emulated by method handles.
 577      *
 578      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
 579      * When a lookup class in one module {@code M1} accesses a class in another module
 580      * {@code M2}, extra access checking is performed beyond the access mode bits.
 581      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
 582      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
 583      * and when the type is in a package of {@code M2} that is exported to
 584      * at least {@code M1}.
 585      * <p>
 586      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
 587      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
 588      * MethodHandles.privateLookupIn} methods.
 589      * Teleporting across modules will always record the original lookup class as
 590      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
 591      * and drops {@link Lookup#MODULE MODULE} access.
 592      * If the target class is in the same module as the lookup class {@code C},
 593      * then the target class becomes the new lookup class
 594      * and there is no change to the previous lookup class.
 595      * If the target class is in a different module from {@code M1} ({@code C}'s module),
 596      * {@code C} becomes the new previous lookup class
 597      * and the target class becomes the new lookup class.
 598      * In that case, if there was already a previous lookup class in {@code M0},
 599      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
 600      * drops all privileges.
 601      * For example,
 602      * <blockquote><pre>
 603      * {@code
 604      * Lookup lookup = MethodHandles.lookup();   // in class C
 605      * Lookup lookup2 = lookup.in(D.class);
 606      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
 607      * }</pre></blockquote>
 608      * <p>
 609      * The {@link #lookup()} factory method produces a {@code Lookup} object
 610      * with {@code null} previous lookup class.
 611      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
 612      * to class {@code D} without elevation of privileges.
 613      * If {@code C} and {@code D} are in the same module,
 614      * {@code lookup2} records {@code D} as the new lookup class and keeps the
 615      * same previous lookup class as the original {@code lookup}, or
 616      * {@code null} if not present.
 617      * <p>
 618      * When a {@code Lookup} teleports from a class
 619      * in one nest to another nest, {@code PRIVATE} access is dropped.
 620      * When a {@code Lookup} teleports from a class in one package to
 621      * another package, {@code PACKAGE} access is dropped.
 622      * When a {@code Lookup} teleports from a class in one module to another module,
 623      * {@code MODULE} access is dropped.
 624      * Teleporting across modules drops the ability to access non-exported classes
 625      * in both the module of the new lookup class and the module of the old lookup class
 626      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
 627      * A {@code Lookup} can teleport back and forth to a class in the module of
 628      * the lookup class and the module of the previous class lookup.
 629      * Teleporting across modules can only decrease access but cannot increase it.
 630      * Teleporting to some third module drops all accesses.
 631      * <p>
 632      * In the above example, if {@code C} and {@code D} are in different modules,
 633      * {@code lookup2} records {@code D} as its lookup class and
 634      * {@code C} as its previous lookup class and {@code lookup2} has only
 635      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
 636      * {@code C}'s module and {@code D}'s module.
 637      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
 638      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
 639      * class {@code D} is recorded as its previous lookup class.
 640      * <p>
 641      * Teleporting across modules restricts access to the public types that
 642      * both the lookup class and the previous lookup class can equally access
 643      * (see below).
 644      * <p>
 645      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
 646      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
 647      * and create a new {@code Lookup} with <a href="#privcc">private access</a>
 648      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
 649      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
 650      * to call {@code privateLookupIn}.
 651      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
 652      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
 653      * produces a new {@code Lookup} on {@code T} with full capabilities.
 654      * A {@code lookup} on {@code C} is also allowed
 655      * to do deep reflection on {@code T} in another module {@code M2} if
 656      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
 657      * the package containing {@code T} to at least {@code M1}.
 658      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
 659      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
 660      * The resulting {@code Lookup} can be used to do member lookup or teleport
 661      * to another lookup class by calling {@link #in Lookup::in}.  But
 662      * it cannot be used to obtain another private {@code Lookup} by calling
 663      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
 664      * because it has no {@code MODULE} access.
 665      *
 666      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
 667      *
 668      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
 669      * allows cross-module access. The access checking is performed with respect
 670      * to both the lookup class and the previous lookup class if present.
 671      * <p>
 672      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
 673      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
 674      * exported unconditionally}.
 675      * <p>
 676      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
 677      * the lookup with {@link #PUBLIC} mode can access all public types in modules
 678      * that are readable to {@code M1} and the type is in a package that is exported
 679      * at least to {@code M1}.
 680      * <p>
 681      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
 682      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
 683      * the intersection of all public types that are accessible to {@code M1}
 684      * with all public types that are accessible to {@code M0}. {@code M0}
 685      * reads {@code M1} and hence the set of accessible types includes:
 686      *
 687      * <table class="striped">
 688      * <caption style="display:none">
 689      * Public types in the following packages are accessible to the
 690      * lookup class and the previous lookup class.
 691      * </caption>
 692      * <thead>
 693      * <tr>
 694      * <th scope="col">Equally accessible types to {@code M0} and {@code M1}</th>
 695      * </tr>
 696      * </thead>
 697      * <tbody>
 698      * <tr>
 699      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M1}</th>
 700      * </tr>
 701      * <tr>
 702      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</th>
 703      * </tr>
 704      * <tr>
 705      * <th scope="row" style="text-align:left">unconditional-exported packages from a third module {@code M2}
 706      * if both {@code M0} and {@code M1} read {@code M2}</th>
 707      * </tr>
 708      * <tr>
 709      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M1} to {@code M0}</th>
 710      * </tr>
 711      * <tr>
 712      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M0} to {@code M1}
 713      * if {@code M1} reads {@code M0}</th>
 714      * </tr>
 715      * <tr>
 716      * <th scope="row" style="text-align:left">qualified-exported packages from a third module {@code M2} to
 717      * both {@code M0} and {@code M1} if both {@code M0} and {@code M1} read {@code M2}</th>
 718      * </tr>
 719      * </tbody>
 720      * </table>
 721      *
 722      * <h2><a id="access-modes"></a>Access modes</h2>
 723      *
 724      * The table below shows the access modes of a {@code Lookup} produced by
 725      * any of the following factory or transformation methods:
 726      * <ul>
 727      * <li>{@link #lookup() MethodHandles.lookup()}</li>
 728      * <li>{@link #publicLookup() MethodHandles.publicLookup()}</li>
 729      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn}</li>
 730      * <li>{@link Lookup#in}</li>
 731      * <li>{@link Lookup#dropLookupMode(int)}</li>
 732      * </ul>
 733      *
 734      * <table class="striped">
 735      * <caption style="display:none">
 736      * Access mode summary
 737      * </caption>
 738      * <thead>
 739      * <tr>
 740      * <th scope="col">Lookup object</th>
 741      * <th style="text-align:center">protected</th>
 742      * <th style="text-align:center">private</th>
 743      * <th style="text-align:center">package</th>
 744      * <th style="text-align:center">module</th>
 745      * <th style="text-align:center">public</th>
 746      * </tr>
 747      * </thead>
 748      * <tbody>
 749      * <tr>
 750      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
 751      * <td style="text-align:center">PRO</td>
 752      * <td style="text-align:center">PRI</td>
 753      * <td style="text-align:center">PAC</td>
 754      * <td style="text-align:center">MOD</td>
 755      * <td style="text-align:center">1R</td>
 756      * </tr>
 757      * <tr>
 758      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
 759      * <td></td>
 760      * <td></td>
 761      * <td style="text-align:center">PAC</td>
 762      * <td style="text-align:center">MOD</td>
 763      * <td style="text-align:center">1R</td>
 764      * </tr>
 765      * <tr>
 766      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
 767      * <td></td>
 768      * <td></td>
 769      * <td></td>
 770      * <td style="text-align:center">MOD</td>
 771      * <td style="text-align:center">1R</td>
 772      * </tr>
 773      * <tr>
 774      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
 775      * <td></td>
 776      * <td></td>
 777      * <td></td>
 778      * <td></td>
 779      * <td style="text-align:center">2R</td>
 780      * </tr>
 781      * <tr>
 782      * <td>{@code CL.in(D).in(C)} hop back to module</td>
 783      * <td></td>
 784      * <td></td>
 785      * <td></td>
 786      * <td></td>
 787      * <td style="text-align:center">2R</td>
 788      * </tr>
 789      * <tr>
 790      * <td>{@code PRI1 = privateLookupIn(C1,CL)}</td>
 791      * <td style="text-align:center">PRO</td>
 792      * <td style="text-align:center">PRI</td>
 793      * <td style="text-align:center">PAC</td>
 794      * <td style="text-align:center">MOD</td>
 795      * <td style="text-align:center">1R</td>
 796      * </tr>
 797      * <tr>
 798      * <td>{@code PRI1a = privateLookupIn(C,PRI1)}</td>
 799      * <td style="text-align:center">PRO</td>
 800      * <td style="text-align:center">PRI</td>
 801      * <td style="text-align:center">PAC</td>
 802      * <td style="text-align:center">MOD</td>
 803      * <td style="text-align:center">1R</td>
 804      * </tr>
 805      * <tr>
 806      * <td>{@code PRI1.in(C1)} same package</td>
 807      * <td></td>
 808      * <td></td>
 809      * <td style="text-align:center">PAC</td>
 810      * <td style="text-align:center">MOD</td>
 811      * <td style="text-align:center">1R</td>
 812      * </tr>
 813      * <tr>
 814      * <td>{@code PRI1.in(C1)} different package</td>
 815      * <td></td>
 816      * <td></td>
 817      * <td></td>
 818      * <td style="text-align:center">MOD</td>
 819      * <td style="text-align:center">1R</td>
 820      * </tr>
 821      * <tr>
 822      * <td>{@code PRI1.in(D)} different module</td>
 823      * <td></td>
 824      * <td></td>
 825      * <td></td>
 826      * <td></td>
 827      * <td style="text-align:center">2R</td>
 828      * </tr>
 829      * <tr>
 830      * <td>{@code PRI1.dropLookupMode(PROTECTED)}</td>
 831      * <td></td>
 832      * <td style="text-align:center">PRI</td>
 833      * <td style="text-align:center">PAC</td>
 834      * <td style="text-align:center">MOD</td>
 835      * <td style="text-align:center">1R</td>
 836      * </tr>
 837      * <tr>
 838      * <td>{@code PRI1.dropLookupMode(PRIVATE)}</td>
 839      * <td></td>
 840      * <td></td>
 841      * <td style="text-align:center">PAC</td>
 842      * <td style="text-align:center">MOD</td>
 843      * <td style="text-align:center">1R</td>
 844      * </tr>
 845      * <tr>
 846      * <td>{@code PRI1.dropLookupMode(PACKAGE)}</td>
 847      * <td></td>
 848      * <td></td>
 849      * <td></td>
 850      * <td style="text-align:center">MOD</td>
 851      * <td style="text-align:center">1R</td>
 852      * </tr>
 853      * <tr>
 854      * <td>{@code PRI1.dropLookupMode(MODULE)}</td>
 855      * <td></td>
 856      * <td></td>
 857      * <td></td>
 858      * <td></td>
 859      * <td style="text-align:center">1R</td>
 860      * </tr>
 861      * <tr>
 862      * <td>{@code PRI1.dropLookupMode(PUBLIC)}</td>
 863      * <td></td>
 864      * <td></td>
 865      * <td></td>
 866      * <td></td>
 867      * <td style="text-align:center">none</td>
 868      * <tr>
 869      * <td>{@code PRI2 = privateLookupIn(D,CL)}</td>
 870      * <td style="text-align:center">PRO</td>
 871      * <td style="text-align:center">PRI</td>
 872      * <td style="text-align:center">PAC</td>
 873      * <td></td>
 874      * <td style="text-align:center">2R</td>
 875      * </tr>
 876      * <tr>
 877      * <td>{@code privateLookupIn(D,PRI1)}</td>
 878      * <td style="text-align:center">PRO</td>
 879      * <td style="text-align:center">PRI</td>
 880      * <td style="text-align:center">PAC</td>
 881      * <td></td>
 882      * <td style="text-align:center">2R</td>
 883      * </tr>
 884      * <tr>
 885      * <td>{@code privateLookupIn(C,PRI2)} fails</td>
 886      * <td></td>
 887      * <td></td>
 888      * <td></td>
 889      * <td></td>
 890      * <td style="text-align:center">IAE</td>
 891      * </tr>
 892      * <tr>
 893      * <td>{@code PRI2.in(D2)} same package</td>
 894      * <td></td>
 895      * <td></td>
 896      * <td style="text-align:center">PAC</td>
 897      * <td></td>
 898      * <td style="text-align:center">2R</td>
 899      * </tr>
 900      * <tr>
 901      * <td>{@code PRI2.in(D2)} different package</td>
 902      * <td></td>
 903      * <td></td>
 904      * <td></td>
 905      * <td></td>
 906      * <td style="text-align:center">2R</td>
 907      * </tr>
 908      * <tr>
 909      * <td>{@code PRI2.in(C1)} hop back to module</td>
 910      * <td></td>
 911      * <td></td>
 912      * <td></td>
 913      * <td></td>
 914      * <td style="text-align:center">2R</td>
 915      * </tr>
 916      * <tr>
 917      * <td>{@code PRI2.in(E)} hop to third module</td>
 918      * <td></td>
 919      * <td></td>
 920      * <td></td>
 921      * <td></td>
 922      * <td style="text-align:center">none</td>
 923      * </tr>
 924      * <tr>
 925      * <td>{@code PRI2.dropLookupMode(PROTECTED)}</td>
 926      * <td></td>
 927      * <td style="text-align:center">PRI</td>
 928      * <td style="text-align:center">PAC</td>
 929      * <td></td>
 930      * <td style="text-align:center">2R</td>
 931      * </tr>
 932      * <tr>
 933      * <td>{@code PRI2.dropLookupMode(PRIVATE)}</td>
 934      * <td></td>
 935      * <td></td>
 936      * <td style="text-align:center">PAC</td>
 937      * <td></td>
 938      * <td style="text-align:center">2R</td>
 939      * </tr>
 940      * <tr>
 941      * <td>{@code PRI2.dropLookupMode(PACKAGE)}</td>
 942      * <td></td>
 943      * <td></td>
 944      * <td></td>
 945      * <td></td>
 946      * <td style="text-align:center">2R</td>
 947      * </tr>
 948      * <tr>
 949      * <td>{@code PRI2.dropLookupMode(MODULE)}</td>
 950      * <td></td>
 951      * <td></td>
 952      * <td></td>
 953      * <td></td>
 954      * <td style="text-align:center">2R</td>
 955      * </tr>
 956      * <tr>
 957      * <td>{@code PRI2.dropLookupMode(PUBLIC)}</td>
 958      * <td></td>
 959      * <td></td>
 960      * <td></td>
 961      * <td></td>
 962      * <td style="text-align:center">none</td>
 963      * </tr>
 964      * <tr>
 965      * <td>{@code CL.dropLookupMode(PROTECTED)}</td>
 966      * <td></td>
 967      * <td style="text-align:center">PRI</td>
 968      * <td style="text-align:center">PAC</td>
 969      * <td style="text-align:center">MOD</td>
 970      * <td style="text-align:center">1R</td>
 971      * </tr>
 972      * <tr>
 973      * <td>{@code CL.dropLookupMode(PRIVATE)}</td>
 974      * <td></td>
 975      * <td></td>
 976      * <td style="text-align:center">PAC</td>
 977      * <td style="text-align:center">MOD</td>
 978      * <td style="text-align:center">1R</td>
 979      * </tr>
 980      * <tr>
 981      * <td>{@code CL.dropLookupMode(PACKAGE)}</td>
 982      * <td></td>
 983      * <td></td>
 984      * <td></td>
 985      * <td style="text-align:center">MOD</td>
 986      * <td style="text-align:center">1R</td>
 987      * </tr>
 988      * <tr>
 989      * <td>{@code CL.dropLookupMode(MODULE)}</td>
 990      * <td></td>
 991      * <td></td>
 992      * <td></td>
 993      * <td></td>
 994      * <td style="text-align:center">1R</td>
 995      * </tr>
 996      * <tr>
 997      * <td>{@code CL.dropLookupMode(PUBLIC)}</td>
 998      * <td></td>
 999      * <td></td>
1000      * <td></td>
1001      * <td></td>
1002      * <td style="text-align:center">none</td>
1003      * </tr>
1004      * <tr>
1005      * <td>{@code PUB = publicLookup()}</td>
1006      * <td></td>
1007      * <td></td>
1008      * <td></td>
1009      * <td></td>
1010      * <td style="text-align:center">U</td>
1011      * </tr>
1012      * <tr>
1013      * <td>{@code PUB.in(D)} different module</td>
1014      * <td></td>
1015      * <td></td>
1016      * <td></td>
1017      * <td></td>
1018      * <td style="text-align:center">U</td>
1019      * </tr>
1020      * <tr>
1021      * <td>{@code PUB.in(D).in(E)} third module</td>
1022      * <td></td>
1023      * <td></td>
1024      * <td></td>
1025      * <td></td>
1026      * <td style="text-align:center">U</td>
1027      * </tr>
1028      * <tr>
1029      * <td>{@code PUB.dropLookupMode(UNCONDITIONAL)}</td>
1030      * <td></td>
1031      * <td></td>
1032      * <td></td>
1033      * <td></td>
1034      * <td style="text-align:center">none</td>
1035      * </tr>
1036      * <tr>
1037      * <td>{@code privateLookupIn(C1,PUB)} fails</td>
1038      * <td></td>
1039      * <td></td>
1040      * <td></td>
1041      * <td></td>
1042      * <td style="text-align:center">IAE</td>
1043      * </tr>
1044      * <tr>
1045      * <td>{@code ANY.in(X)}, for inaccessible <code>X</code></td>
1046      * <td></td>
1047      * <td></td>
1048      * <td></td>
1049      * <td></td>
1050      * <td style="text-align:center">none</td>
1051      * </tr>
1052      * </tbody>
1053      * </table>
1054      *
1055      * <p>
1056      * Notes:
1057      * <ul>
1058      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1059      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1060      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1061      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1062      * <li>{@code PRO} indicates {@link #PROTECTED} bit set,
1063      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1064      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1065      *     {@code MOD} indicates {@link #MODULE} bit set,
1066      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1067      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1068      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1069      * <li>Public access comes in three kinds:
1070      * <ul>
1071      * <li>unconditional ({@code U}): the lookup assumes readability.
1072      *     The lookup has {@code null} previous lookup class.
1073      * <li>one-module-reads ({@code 1R}): the module access checking is
1074      *     performed with respect to the lookup class.  The lookup has {@code null}
1075      *     previous lookup class.
1076      * <li>two-module-reads ({@code 2R}): the module access checking is
1077      *     performed with respect to the lookup class and the previous lookup class.
1078      *     The lookup has a non-null previous lookup class which is in a
1079      *     different module from the current lookup class.
1080      * </ul>
1081      * <li>Any attempt to reach a third module loses all access.</li>
1082      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1083      * all access modes are dropped.</li>
1084      * </ul>
1085      *
1086      * <h2><a id="secmgr"></a>Security manager interactions</h2>
1087      * Although bytecode instructions can only refer to classes in
1088      * a related class loader, this API can search for methods in any
1089      * class, as long as a reference to its {@code Class} object is
1090      * available.  Such cross-loader references are also possible with the
1091      * Core Reflection API, and are impossible to bytecode instructions
1092      * such as {@code invokestatic} or {@code getfield}.
1093      * There is a {@linkplain java.lang.SecurityManager security manager API}
1094      * to allow applications to check such cross-loader references.
1095      * These checks apply to both the {@code MethodHandles.Lookup} API
1096      * and the Core Reflection API
1097      * (as found on {@link java.lang.Class Class}).
1098      * <p>
1099      * If a security manager is present, member and class lookups are subject to
1100      * additional checks.
1101      * From one to three calls are made to the security manager.
1102      * Any of these calls can refuse access by throwing a
1103      * {@link java.lang.SecurityException SecurityException}.
1104      * Define {@code smgr} as the security manager,
1105      * {@code lookc} as the lookup class of the current lookup object,
1106      * {@code refc} as the containing class in which the member
1107      * is being sought, and {@code defc} as the class in which the
1108      * member is actually defined.
1109      * (If a class or other type is being accessed,
1110      * the {@code refc} and {@code defc} values are the class itself.)
1111      * The value {@code lookc} is defined as <em>not present</em>
1112      * if the current lookup object does not have
1113      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1114      * The calls are made according to the following rules:
1115      * <ul>
1116      * <li><b>Step 1:</b>
1117      *     If {@code lookc} is not present, or if its class loader is not
1118      *     the same as or an ancestor of the class loader of {@code refc},
1119      *     then {@link SecurityManager#checkPackageAccess
1120      *     smgr.checkPackageAccess(refcPkg)} is called,
1121      *     where {@code refcPkg} is the package of {@code refc}.
1122      * <li><b>Step 2a:</b>
1123      *     If the retrieved member is not public and
1124      *     {@code lookc} is not present, then
1125      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1126      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
1127      * <li><b>Step 2b:</b>
1128      *     If the retrieved class has a {@code null} class loader,
1129      *     and {@code lookc} is not present, then
1130      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1131      *     with {@code RuntimePermission("getClassLoader")} is called.
1132      * <li><b>Step 3:</b>
1133      *     If the retrieved member is not public,
1134      *     and if {@code lookc} is not present,
1135      *     and if {@code defc} and {@code refc} are different,
1136      *     then {@link SecurityManager#checkPackageAccess
1137      *     smgr.checkPackageAccess(defcPkg)} is called,
1138      *     where {@code defcPkg} is the package of {@code defc}.
1139      * </ul>
1140      * Security checks are performed after other access checks have passed.
1141      * Therefore, the above rules presuppose a member or class that is public,
1142      * or else that is being accessed from a lookup class that has
1143      * rights to access the member or class.
1144      *
1145      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1146      * A small number of Java methods have a special property called caller sensitivity.
1147      * A <em>caller-sensitive</em> method can behave differently depending on the
1148      * identity of its immediate caller.
1149      * <p>
1150      * If a method handle for a caller-sensitive method is requested,
1151      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1152      * but they take account of the lookup class in a special way.
1153      * The resulting method handle behaves as if it were called
1154      * from an instruction contained in the lookup class,
1155      * so that the caller-sensitive method detects the lookup class.
1156      * (By contrast, the invoker of the method handle is disregarded.)
1157      * Thus, in the case of caller-sensitive methods,
1158      * different lookup classes may give rise to
1159      * differently behaving method handles.
1160      * <p>
1161      * In cases where the lookup object is
1162      * {@link MethodHandles#publicLookup() publicLookup()},
1163      * or some other lookup object without
1164      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
1165      * the lookup class is disregarded.
1166      * In such cases, no caller-sensitive method handle can be created,
1167      * access is forbidden, and the lookup fails with an
1168      * {@code IllegalAccessException}.
1169      * <p style="font-size:smaller;">
1170      * <em>Discussion:</em>
1171      * For example, the caller-sensitive method
1172      * {@link java.lang.Class#forName(String) Class.forName(x)}
1173      * can return varying classes or throw varying exceptions,
1174      * depending on the class loader of the class that calls it.
1175      * A public lookup of {@code Class.forName} will fail, because
1176      * there is no reasonable way to determine its bytecode behavior.
1177      * <p style="font-size:smaller;">
1178      * If an application caches method handles for broad sharing,
1179      * it should use {@code publicLookup()} to create them.
1180      * If there is a lookup of {@code Class.forName}, it will fail,
1181      * and the application must take appropriate action in that case.
1182      * It may be that a later lookup, perhaps during the invocation of a
1183      * bootstrap method, can incorporate the specific identity
1184      * of the caller, making the method accessible.
1185      * <p style="font-size:smaller;">
1186      * The function {@code MethodHandles.lookup} is caller sensitive
1187      * so that there can be a secure foundation for lookups.
1188      * Nearly all other methods in the JSR 292 API rely on lookup
1189      * objects to check access requests.
1190      *
1191      * @revised 9
1192      */
1193     public static final
1194     class Lookup {
1195         /** The class on behalf of whom the lookup is being performed. */
1196         private final Class<?> lookupClass;
1197 
1198         /** previous lookup class */
1199         private final Class<?> prevLookupClass;
1200 
1201         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1202         private final int allowedModes;
1203 
1204         static {
1205             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1206         }
1207 
1208         /** A single-bit mask representing {@code public} access,
1209          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1210          *  The value, {@code 0x01}, happens to be the same as the value of the
1211          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1212          *  <p>
1213          *  A {@code Lookup} with this lookup mode performs cross-module access check
1214          *  with respect to the {@linkplain #lookupClass() lookup class} and
1215          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1216          */
1217         public static final int PUBLIC = Modifier.PUBLIC;
1218 
1219         /** A single-bit mask representing {@code private} access,
1220          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1221          *  The value, {@code 0x02}, happens to be the same as the value of the
1222          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1223          */
1224         public static final int PRIVATE = Modifier.PRIVATE;
1225 
1226         /** A single-bit mask representing {@code protected} access,
1227          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1228          *  The value, {@code 0x04}, happens to be the same as the value of the
1229          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1230          */
1231         public static final int PROTECTED = Modifier.PROTECTED;
1232 
1233         /** A single-bit mask representing {@code package} access (default access),
1234          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1235          *  The value is {@code 0x08}, which does not correspond meaningfully to
1236          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1237          */
1238         public static final int PACKAGE = Modifier.STATIC;
1239 
1240         /** A single-bit mask representing {@code module} access,
1241          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1242          *  The value is {@code 0x10}, which does not correspond meaningfully to
1243          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1244          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1245          *  with this lookup mode can access all public types in the module of the
1246          *  lookup class and public types in packages exported by other modules
1247          *  to the module of the lookup class.
1248          *  <p>
1249          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1250          *  previous lookup class} is always {@code null}.
1251          *
1252          *  @since 9
1253          *  @spec JPMS
1254          */
1255         public static final int MODULE = PACKAGE << 1;
1256 
1257         /** A single-bit mask representing {@code unconditional} access
1258          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1259          *  The value is {@code 0x20}, which does not correspond meaningfully to
1260          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1261          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1262          *  java.lang.Module#canRead(java.lang.Module) readability}.
1263          *  This lookup mode can access all public members of public types
1264          *  of all modules when the type is in a package that is {@link
1265          *  java.lang.Module#isExported(String) exported unconditionally}.
1266          *
1267          *  <p>
1268          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1269          *  previous lookup class} is always {@code null}.
1270          *
1271          *  @since 9
1272          *  @spec JPMS
1273          *  @see #publicLookup()
1274          */
1275         public static final int UNCONDITIONAL = PACKAGE << 2;
1276 
1277         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
1278         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
1279         private static final int TRUSTED   = -1;
1280 
1281         /*
1282          * Adjust PUBLIC => PUBLIC|MODULE|UNCONDITIONAL
1283          * Adjust 0 => PACKAGE
1284          */
1285         private static int fixmods(int mods) {
1286             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
1287             if (Modifier.isPublic(mods))
1288                 mods |= UNCONDITIONAL;
1289             return (mods != 0) ? mods : PACKAGE;
1290         }
1291 
1292         /** Tells which class is performing the lookup.  It is this class against
1293          *  which checks are performed for visibility and access permissions.
1294          *  <p>
1295          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1296          *  access checks are performed against both the lookup class and the previous lookup class.
1297          *  <p>
1298          *  The class implies a maximum level of access permission,
1299          *  but the permissions may be additionally limited by the bitmask
1300          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1301          *  can be accessed.
1302          *  @return the lookup class, on behalf of which this lookup object finds members
1303          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1304          */
1305         public Class<?> lookupClass() {
1306             return lookupClass;
1307         }
1308 
1309         /** Reports a lookup class in another module that this lookup object
1310          * was previously teleported from, or {@code null}.
1311          * <p>
1312          * A {@code Lookup} object produced by the factory methods, such as the
1313          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1314          * has {@code null} previous lookup class.
1315          * A {@code Lookup} object has a non-null previous lookup class
1316          * when this lookup was teleported from an old lookup class
1317          * in one module to a new lookup class in another module.
1318          *
1319          * @return the lookup class in another module that this lookup object was
1320          *         previously teleported from, or {@code null}
1321          * @since 14
1322          * @see #in(Class)
1323          * @see MethodHandles#privateLookupIn(Class, Lookup)
1324          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1325          */
1326         public Class<?> previousLookupClass() {
1327             return prevLookupClass;
1328         }
1329 
1330         // This is just for calling out to MethodHandleImpl.
1331         private Class<?> lookupClassOrNull() {
1332             if (allowedModes == TRUSTED) {
1333                 return null;
1334             }
1335             if (allowedModes == UNCONDITIONAL) {
1336                 // use Object as the caller to pass to VM doing resolution
1337                 return Object.class;
1338             }
1339             return lookupClass;
1340         }
1341 
1342         /** Tells which access-protection classes of members this lookup object can produce.
1343          *  The result is a bit-mask of the bits
1344          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1345          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1346          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1347          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1348          *  {@linkplain #MODULE MODULE (0x10)},
1349          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
1350          *  <p>
1351          *  A freshly-created lookup object
1352          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1353          *  all possible bits set, except {@code UNCONDITIONAL}.
1354          *  A lookup object on a new lookup class
1355          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1356          *  may have some mode bits set to zero.
1357          *  Mode bits can also be
1358          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1359          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1360          *  The purpose of this is to restrict access via the new lookup object,
1361          *  so that it can access only names which can be reached by the original
1362          *  lookup object, and also by the new lookup class.
1363          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1364          *  @see #in
1365          *  @see #dropLookupMode
1366          *
1367          *  @revised 9
1368          *  @spec JPMS
1369          */
1370         public int lookupModes() {
1371             return allowedModes & ALL_MODES;
1372         }
1373 
1374         /** Embody the current class (the lookupClass) as a lookup class
1375          * for method handle creation.
1376          * Must be called by from a method in this package,
1377          * which in turn is called by a method not in this package.
1378          */
1379         Lookup(Class<?> lookupClass) {
1380             this(lookupClass, null, FULL_POWER_MODES);
1381             // make sure we haven't accidentally picked up a privileged class:
1382             checkUnprivilegedlookupClass(lookupClass);
1383         }
1384 
1385         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1386             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1387                     && prevLookupClass.getModule() != lookupClass.getModule());
1388 
1389             this.lookupClass = lookupClass;
1390             this.prevLookupClass = prevLookupClass;
1391             this.allowedModes = allowedModes;
1392         }
1393 
1394         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1395             // make sure we haven't accidentally picked up a privileged class:
1396             checkUnprivilegedlookupClass(lookupClass);
1397             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1398         }
1399 
1400         /**
1401          * Creates a lookup on the specified new lookup class.
1402          * The resulting object will report the specified
1403          * class as its own {@link #lookupClass() lookupClass}.
1404          *
1405          * <p>
1406          * However, the resulting {@code Lookup} object is guaranteed
1407          * to have no more access capabilities than the original.
1408          * In particular, access capabilities can be lost as follows:<ul>
1409          * <li>If the new lookup class is in a different module from the old one,
1410          * i.e. {@link #MODULE MODULE} access is lost.
1411          * <li>If the new lookup class is in a different package
1412          * than the old one, protected and default (package) members will not be accessible,
1413          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1414          * <li>If the new lookup class is not within the same package member
1415          * as the old one, private members will not be accessible, and protected members
1416          * will not be accessible by virtue of inheritance,
1417          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1418          * (Protected members may continue to be accessible because of package sharing.)
1419          * <li>If the new lookup class is not
1420          * {@linkplain #accessClass(Class) accessible} to this lookup,
1421          * then no members, not even public members, will be accessible
1422          * i.e. all access modes are lost.
1423          * <li>If the new lookup class, the old lookup class and the previous lookup class
1424          * are all in different modules i.e. teleporting to a third module,
1425          * all access modes are lost.
1426          * </ul>
1427          * <p>
1428          * The new previous lookup class is chosen as follows:
1429          * <ul>
1430          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1431          * the new previous lookup class is {@code null}.
1432          * <li>If the new lookup class is in the same module as the old lookup class,
1433          * the new previous lookup class is the old previous lookup class.
1434          * <li>If the new lookup class is in a different module from the old lookup class,
1435          * the new previous lookup class is the the old lookup class.
1436          *</ul>
1437          * <p>
1438          * The resulting lookup's capabilities for loading classes
1439          * (used during {@link #findClass} invocations)
1440          * are determined by the lookup class' loader,
1441          * which may change due to this operation.
1442          * <p>
1443          * @param requestedLookupClass the desired lookup class for the new lookup object
1444          * @return a lookup object which reports the desired lookup class, or the same object
1445          * if there is no change
1446          * @throws NullPointerException if the argument is null
1447          *
1448          * @revised 9
1449          * @spec JPMS
1450          * @see #accessClass(Class)
1451          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1452          */
1453         public Lookup in(Class<?> requestedLookupClass) {
1454             Objects.requireNonNull(requestedLookupClass);
1455             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1456                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1457             if (requestedLookupClass == this.lookupClass)
1458                 return this;  // keep same capabilities
1459             int newModes = (allowedModes & FULL_POWER_MODES);
1460             Module fromModule = this.lookupClass.getModule();
1461             Module targetModule = requestedLookupClass.getModule();
1462             Class<?> plc = this.previousLookupClass();
1463             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1464                 assert plc == null;
1465                 newModes = UNCONDITIONAL;
1466             } else if (fromModule != targetModule) {
1467                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1468                     // allow hopping back and forth between fromModule and plc's module
1469                     // but not the third module
1470                     newModes = 0;
1471                 }
1472                 // drop MODULE access
1473                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1474                 // teleport from this lookup class
1475                 plc = this.lookupClass;
1476             }
1477             if ((newModes & PACKAGE) != 0
1478                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1479                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1480             }
1481             // Allow nestmate lookups to be created without special privilege:
1482             if ((newModes & PRIVATE) != 0
1483                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1484                 newModes &= ~(PRIVATE|PROTECTED);
1485             }
1486             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1487                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1488                 // The requested class it not accessible from the lookup class.
1489                 // No permissions.
1490                 newModes = 0;
1491             }
1492             return newLookup(requestedLookupClass, plc, newModes);
1493         }
1494 
1495         /**
1496          * Creates a lookup on the same lookup class which this lookup object
1497          * finds members, but with a lookup mode that has lost the given lookup mode.
1498          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1499          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
1500          * {@link #PROTECTED PROTECTED} is always
1501          * dropped and so the resulting lookup mode will never have this access capability.
1502          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
1503          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
1504          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
1505          * is dropped then the resulting lookup has no access. If {@code UNCONDITIONAL}
1506          * is dropped then the resulting lookup has no access.
1507          *
1508          * @apiNote
1509          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1510          * delegate non-public access within the package of the lookup class without
1511          * conferring private access.  A lookup with {@code MODULE} but not
1512          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1513          * the module of the lookup class without conferring package access.
1514          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1515          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1516          * to public classes accessible to both the module of the lookup class
1517          * and the module of the previous lookup class.
1518          *
1519          * @param modeToDrop the lookup mode to drop
1520          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1521          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1522          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
1523          * @see MethodHandles#privateLookupIn
1524          * @since 9
1525          */
1526         public Lookup dropLookupMode(int modeToDrop) {
1527             int oldModes = lookupModes();
1528             int newModes = oldModes & ~(modeToDrop | PROTECTED);
1529             switch (modeToDrop) {
1530                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1531                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1532                 case PACKAGE: newModes &= ~(PRIVATE); break;
1533                 case PROTECTED:
1534                 case PRIVATE:
1535                 case UNCONDITIONAL: break;
1536                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1537             }
1538             if (newModes == oldModes) return this;  // return self if no change
1539             return newLookup(lookupClass(), previousLookupClass(), newModes);
1540         }
1541 
1542         /**
1543          * Defines a class to the same class loader and in the same runtime package and
1544          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1545          * {@linkplain #lookupClass() lookup class}.
1546          *
1547          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1548          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1549          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1550          * that the lookup object was created by a caller in the runtime package (or derived
1551          * from a lookup originally created by suitably privileged code to a target class in
1552          * the runtime package). </p>
1553          *
1554          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1555          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1556          * same package as the lookup class. </p>
1557          *
1558          * <p> This method does not run the class initializer. The class initializer may
1559          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
1560          * Specification</em>. </p>
1561          *
1562          * <p> If there is a security manager, its {@code checkPermission} method is first called
1563          * to check {@code RuntimePermission("defineClass")}. </p>
1564          *
1565          * @param bytes the class bytes
1566          * @return the {@code Class} object for the class
1567          * @throws IllegalArgumentException the bytes are for a class in a different package
1568          * to the lookup class
1569          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1570          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
1571          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
1572          * @throws SecurityException if denied by the security manager
1573          * @throws NullPointerException if {@code bytes} is {@code null}
1574          * @since 9
1575          * @spec JPMS
1576          * @see Lookup#privateLookupIn
1577          * @see Lookup#dropLookupMode
1578          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1579          */
1580         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1581             SecurityManager sm = System.getSecurityManager();
1582             if (sm != null)
1583                 sm.checkPermission(new RuntimePermission("defineClass"));
1584             if ((lookupModes() & PACKAGE) == 0)
1585                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1586             assert (lookupModes() & (MODULE|PUBLIC)) != 0;
1587 
1588             // parse class bytes to get class name (in internal form)
1589             bytes = bytes.clone();
1590             String name;
1591             try {
1592                 ClassReader reader = new ClassReader(bytes);
1593                 name = reader.getClassName();
1594             } catch (RuntimeException e) {
1595                 // ASM exceptions are poorly specified
1596                 ClassFormatError cfe = new ClassFormatError();
1597                 cfe.initCause(e);
1598                 throw cfe;
1599             }
1600 
1601             // get package and class name in binary form
1602             String cn, pn;
1603             int index = name.lastIndexOf('/');
1604             if (index == -1) {
1605                 cn = name;
1606                 pn = "";
1607             } else {
1608                 cn = name.replace('/', '.');
1609                 pn = cn.substring(0, index);
1610             }
1611             if (!pn.equals(lookupClass.getPackageName())) {
1612                 throw new IllegalArgumentException("Class not in same package as lookup class");
1613             }
1614 
1615             // invoke the class loader's defineClass method
1616             ClassLoader loader = lookupClass.getClassLoader();
1617             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
1618             String source = "__Lookup_defineClass__";
1619             Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source);
1620             return clazz;
1621         }
1622 
1623         private ProtectionDomain lookupClassProtectionDomain() {
1624             ProtectionDomain pd = cachedProtectionDomain;
1625             if (pd == null) {
1626                 cachedProtectionDomain = pd = protectionDomain(lookupClass);
1627             }
1628             return pd;
1629         }
1630 
1631         private ProtectionDomain protectionDomain(Class<?> clazz) {
1632             PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain;
1633             return AccessController.doPrivileged(pa);
1634         }
1635 
1636         // cached protection domain
1637         private volatile ProtectionDomain cachedProtectionDomain;
1638 
1639 
1640         // Make sure outer class is initialized first.
1641         static { IMPL_NAMES.getClass(); }
1642 
1643         /** Package-private version of lookup which is trusted. */
1644         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
1645 
1646         /** Version of lookup which is trusted minimally.
1647          *  It can only be used to create method handles to publicly accessible
1648          *  members in packages that are exported unconditionally.
1649          */
1650         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
1651 
1652         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
1653             String name = lookupClass.getName();
1654             if (name.startsWith("java.lang.invoke."))
1655                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
1656         }
1657 
1658         /**
1659          * Displays the name of the class from which lookups are to be made.
1660          * followed with "/" and the name of the {@linkplain #previousLookupClass()
1661          * previous lookup class} if present.
1662          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1663          * If there are restrictions on the access permitted to this lookup,
1664          * this is indicated by adding a suffix to the class name, consisting
1665          * of a slash and a keyword.  The keyword represents the strongest
1666          * allowed access, and is chosen as follows:
1667          * <ul>
1668          * <li>If no access is allowed, the suffix is "/noaccess".
1669          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
1670          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1671          * <li>If only public and module access are allowed, the suffix is "/module".
1672          * <li>If public and package access are allowed, the suffix is "/package".
1673          * <li>If public, package, and private access are allowed, the suffix is "/private".
1674          * </ul>
1675          * If none of the above cases apply, it is the case that full access
1676          * (public, module, package, private, and protected) is allowed.
1677          * In this case, no suffix is added.
1678          * This is true only of an object obtained originally from
1679          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1680          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1681          * always have restricted access, and will display a suffix.
1682          * <p>
1683          * (It may seem strange that protected access should be
1684          * stronger than private access.  Viewed independently from
1685          * package access, protected access is the first to be lost,
1686          * because it requires a direct subclass relationship between
1687          * caller and callee.)
1688          * @see #in
1689          *
1690          * @revised 9
1691          * @spec JPMS
1692          */
1693         @Override
1694         public String toString() {
1695             String cname = lookupClass.getName();
1696             if (prevLookupClass != null)
1697                 cname += "/" + prevLookupClass.getName();
1698             switch (allowedModes) {
1699             case 0:  // no privileges
1700                 return cname + "/noaccess";
1701             case UNCONDITIONAL:
1702                 return cname + "/publicLookup";
1703             case PUBLIC:
1704                 return cname + "/public";
1705             case PUBLIC|MODULE:
1706                 return cname + "/module";
1707             case PUBLIC|PACKAGE:
1708             case PUBLIC|MODULE|PACKAGE:
1709                 return cname + "/package";
1710             case FULL_POWER_MODES & (~PROTECTED):
1711             case FULL_POWER_MODES & ~(PROTECTED|MODULE):
1712                     return cname + "/private";
1713             case FULL_POWER_MODES:
1714             case FULL_POWER_MODES & (~MODULE):
1715                 return cname;
1716             case TRUSTED:
1717                 return "/trusted";  // internal only; not exported
1718             default:  // Should not happen, but it's a bitfield...
1719                 cname = cname + "/" + Integer.toHexString(allowedModes);
1720                 assert(false) : cname;
1721                 return cname;
1722             }
1723         }
1724 
1725         /**
1726          * Produces a method handle for a static method.
1727          * The type of the method handle will be that of the method.
1728          * (Since static methods do not take receivers, there is no
1729          * additional receiver argument inserted into the method handle type,
1730          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1731          * The method and all its argument types must be accessible to the lookup object.
1732          * <p>
1733          * The returned method handle will have
1734          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1735          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1736          * <p>
1737          * If the returned method handle is invoked, the method's class will
1738          * be initialized, if it has not already been initialized.
1739          * <p><b>Example:</b>
1740          * <blockquote><pre>{@code
1741 import static java.lang.invoke.MethodHandles.*;
1742 import static java.lang.invoke.MethodType.*;
1743 ...
1744 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1745   "asList", methodType(List.class, Object[].class));
1746 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1747          * }</pre></blockquote>
1748          * @param refc the class from which the method is accessed
1749          * @param name the name of the method
1750          * @param type the type of the method
1751          * @return the desired method handle
1752          * @throws NoSuchMethodException if the method does not exist
1753          * @throws IllegalAccessException if access checking fails,
1754          *                                or if the method is not {@code static},
1755          *                                or if the method's variable arity modifier bit
1756          *                                is set and {@code asVarargsCollector} fails
1757          * @exception SecurityException if a security manager is present and it
1758          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1759          * @throws NullPointerException if any argument is null
1760          */
1761         public
1762         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1763             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1764             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
1765         }
1766 
1767         /**
1768          * Produces a method handle for a virtual method.
1769          * The type of the method handle will be that of the method,
1770          * with the receiver type (usually {@code refc}) prepended.
1771          * The method and all its argument types must be accessible to the lookup object.
1772          * <p>
1773          * When called, the handle will treat the first argument as a receiver
1774          * and, for non-private methods, dispatch on the receiver's type to determine which method
1775          * implementation to enter.
1776          * For private methods the named method in {@code refc} will be invoked on the receiver.
1777          * (The dispatching action is identical with that performed by an
1778          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1779          * <p>
1780          * The first argument will be of type {@code refc} if the lookup
1781          * class has full privileges to access the member.  Otherwise
1782          * the member must be {@code protected} and the first argument
1783          * will be restricted in type to the lookup class.
1784          * <p>
1785          * The returned method handle will have
1786          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1787          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1788          * <p>
1789          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1790          * instructions and method handles produced by {@code findVirtual},
1791          * if the class is {@code MethodHandle} and the name string is
1792          * {@code invokeExact} or {@code invoke}, the resulting
1793          * method handle is equivalent to one produced by
1794          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1795          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1796          * with the same {@code type} argument.
1797          * <p>
1798          * If the class is {@code VarHandle} and the name string corresponds to
1799          * the name of a signature-polymorphic access mode method, the resulting
1800          * method handle is equivalent to one produced by
1801          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1802          * the access mode corresponding to the name string and with the same
1803          * {@code type} arguments.
1804          * <p>
1805          * <b>Example:</b>
1806          * <blockquote><pre>{@code
1807 import static java.lang.invoke.MethodHandles.*;
1808 import static java.lang.invoke.MethodType.*;
1809 ...
1810 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1811   "concat", methodType(String.class, String.class));
1812 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1813   "hashCode", methodType(int.class));
1814 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1815   "hashCode", methodType(int.class));
1816 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1817 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1818 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1819 // interface method:
1820 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1821   "subSequence", methodType(CharSequence.class, int.class, int.class));
1822 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1823 // constructor "internal method" must be accessed differently:
1824 MethodType MT_newString = methodType(void.class); //()V for new String()
1825 try { assertEquals("impossible", lookup()
1826         .findVirtual(String.class, "<init>", MT_newString));
1827  } catch (NoSuchMethodException ex) { } // OK
1828 MethodHandle MH_newString = publicLookup()
1829   .findConstructor(String.class, MT_newString);
1830 assertEquals("", (String) MH_newString.invokeExact());
1831          * }</pre></blockquote>
1832          *
1833          * @param refc the class or interface from which the method is accessed
1834          * @param name the name of the method
1835          * @param type the type of the method, with the receiver argument omitted
1836          * @return the desired method handle
1837          * @throws NoSuchMethodException if the method does not exist
1838          * @throws IllegalAccessException if access checking fails,
1839          *                                or if the method is {@code static},
1840          *                                or if the method's variable arity modifier bit
1841          *                                is set and {@code asVarargsCollector} fails
1842          * @exception SecurityException if a security manager is present and it
1843          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1844          * @throws NullPointerException if any argument is null
1845          */
1846         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1847             if (refc == MethodHandle.class) {
1848                 MethodHandle mh = findVirtualForMH(name, type);
1849                 if (mh != null)  return mh;
1850             } else if (refc == VarHandle.class) {
1851                 MethodHandle mh = findVirtualForVH(name, type);
1852                 if (mh != null)  return mh;
1853             }
1854             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1855             MemberName method = resolveOrFail(refKind, refc, name, type);
1856             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1857         }
1858         private MethodHandle findVirtualForMH(String name, MethodType type) {
1859             // these names require special lookups because of the implicit MethodType argument
1860             if ("invoke".equals(name))
1861                 return invoker(type);
1862             if ("invokeExact".equals(name))
1863                 return exactInvoker(type);
1864             assert(!MemberName.isMethodHandleInvokeName(name));
1865             return null;
1866         }
1867         private MethodHandle findVirtualForVH(String name, MethodType type) {
1868             try {
1869                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1870             } catch (IllegalArgumentException e) {
1871                 return null;
1872             }
1873         }
1874 
1875         /**
1876          * Produces a method handle which creates an object and initializes it, using
1877          * the constructor of the specified type.
1878          * The parameter types of the method handle will be those of the constructor,
1879          * while the return type will be a reference to the constructor's class.
1880          * The constructor and all its argument types must be accessible to the lookup object.
1881          * <p>
1882          * The requested type must have a return type of {@code void}.
1883          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1884          * <p>
1885          * The returned method handle will have
1886          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1887          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1888          * <p>
1889          * If the returned method handle is invoked, the constructor's class will
1890          * be initialized, if it has not already been initialized.
1891          * <p><b>Example:</b>
1892          * <blockquote><pre>{@code
1893 import static java.lang.invoke.MethodHandles.*;
1894 import static java.lang.invoke.MethodType.*;
1895 ...
1896 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1897   ArrayList.class, methodType(void.class, Collection.class));
1898 Collection orig = Arrays.asList("x", "y");
1899 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1900 assert(orig != copy);
1901 assertEquals(orig, copy);
1902 // a variable-arity constructor:
1903 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1904   ProcessBuilder.class, methodType(void.class, String[].class));
1905 ProcessBuilder pb = (ProcessBuilder)
1906   MH_newProcessBuilder.invoke("x", "y", "z");
1907 assertEquals("[x, y, z]", pb.command().toString());
1908          * }</pre></blockquote>
1909          * @param refc the class or interface from which the method is accessed
1910          * @param type the type of the method, with the receiver argument omitted, and a void return type
1911          * @return the desired method handle
1912          * @throws NoSuchMethodException if the constructor does not exist
1913          * @throws IllegalAccessException if access checking fails
1914          *                                or if the method's variable arity modifier bit
1915          *                                is set and {@code asVarargsCollector} fails
1916          * @exception SecurityException if a security manager is present and it
1917          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1918          * @throws NullPointerException if any argument is null
1919          */
1920         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1921             if (refc.isArray()) {
1922                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1923             }
1924             String name = "<init>";
1925             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1926             return getDirectConstructor(refc, ctor);
1927         }
1928 
1929         /**
1930          * Looks up a class by name from the lookup context defined by this {@code Lookup} object.
1931          * This method attempts to locate, load, and link the class.  The static
1932          * initializer of the class is not run.
1933          * <p>
1934          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1935          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1936          * load the requested class, and then determines whether the class is accessible to this lookup object.
1937          * <p>
1938          * Note that this method throws errors related to loading and linking as
1939          * specified in Sections 12.2 and 12.3 of <em>The Java Language
1940          * Specification</em>.
1941          *
1942          * @param targetName the fully qualified name of the class to be looked up.
1943          * @return the requested class.
1944          * @exception SecurityException if a security manager is present and it
1945          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1946          * @throws LinkageError if the linkage fails
1947          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1948          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1949          * modes.
1950          * @exception SecurityException if a security manager is present and it
1951          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1952          *
1953          * @jls 12.2 Loading of Classes and Interfaces
1954          * @jls 12.3 Linking of Classes and Interfaces
1955          * @since 9
1956          */
1957         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1958             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1959             return accessClass(targetClass);
1960         }
1961 
1962         /**
1963          * Determines if a class can be accessed from the lookup context defined by
1964          * this {@code Lookup} object. The static initializer of the class is not run.
1965          * <p>
1966          * If the {@code targetClass} is in the same module as the lookup class,
1967          * the lookup class is {@code LC} in module {@code M1} and
1968          * the previous lookup class is in module {@code M0} or
1969          * {@code null} if not present,
1970          * {@code targetClass} is accessible if and only if one of the following is true:
1971          * <ul>
1972          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
1973          *     {@code LC} or other class in the same nest of {@code LC}.</li>
1974          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
1975          *     in the same runtime package of {@code LC}.</li>
1976          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
1977          *     a public type in {@code M1}.</li>
1978          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
1979          *     a public type in a package exported by {@code M1} to at least  {@code M0}
1980          *     if the previous lookup class is present; otherwise, {@code targetClass}
1981          *     is a public type in a package exported by {@code M1} unconditionally.</li>
1982          * </ul>
1983          *
1984          * <p>
1985          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
1986          * can access public types in all modules when the type is in a package
1987          * that is exported unconditionally.
1988          * <p>
1989          * Otherwise, the target class is in a different module from {@code lookupClass},
1990          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
1991          * is inaccessible.
1992          * <p>
1993          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
1994          * {@code M1} is the module containing {@code lookupClass} and
1995          * {@code M2} is the module containing {@code targetClass},
1996          * then {@code targetClass} is accessible if and only if
1997          * <ul>
1998          * <li>{@code M1} reads {@code M2}, and
1999          * <li>{@code targetClass} is public and in a package exported by
2000          *     {@code M2} at least to {@code M1}.
2001          * </ul>
2002          * <p>
2003          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2004          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2005          * containing the previous lookup class, then {@code targetClass} is accessible
2006          * if and only if one of the following is true:
2007          * <ul>
2008          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2009          *     {@linkplain Module#reads reads} {@code M0} and the type is
2010          *     in a package that is exported to at least {@code M1}.
2011          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2012          *     {@linkplain Module#reads reads} {@code M1} and the type is
2013          *     in a package that is exported to at least {@code M0}.
2014          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2015          *     and {@code M1} reads {@code M2} and the type is in a package
2016          *     that is exported to at least both {@code M0} and {@code M2}.
2017          * </ul>
2018          * <p>
2019          * Otherwise, {@code targetClass} is not accessible.
2020          *
2021          * @param targetClass the class to be access-checked
2022          * @return the class that has been access-checked
2023          * @throws IllegalAccessException if the class is not accessible from the lookup class
2024          * and previous lookup class, if present, using the allowed access modes.
2025          * @exception SecurityException if a security manager is present and it
2026          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2027          * @since 9
2028          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2029          */
2030         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
2031             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2032                 throw new MemberName(targetClass).makeAccessException("access violation", this);
2033             }
2034             checkSecurityManager(targetClass, null);
2035             return targetClass;
2036         }
2037 
2038         /**
2039          * Produces an early-bound method handle for a virtual method.
2040          * It will bypass checks for overriding methods on the receiver,
2041          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2042          * instruction from within the explicitly specified {@code specialCaller}.
2043          * The type of the method handle will be that of the method,
2044          * with a suitably restricted receiver type prepended.
2045          * (The receiver type will be {@code specialCaller} or a subtype.)
2046          * The method and all its argument types must be accessible
2047          * to the lookup object.
2048          * <p>
2049          * Before method resolution,
2050          * if the explicitly specified caller class is not identical with the
2051          * lookup class, or if this lookup object does not have
2052          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2053          * privileges, the access fails.
2054          * <p>
2055          * The returned method handle will have
2056          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2057          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2058          * <p style="font-size:smaller;">
2059          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
2060          * even though the {@code invokespecial} instruction can refer to them
2061          * in special circumstances.  Use {@link #findConstructor findConstructor}
2062          * to access instance initialization methods in a safe manner.)</em>
2063          * <p><b>Example:</b>
2064          * <blockquote><pre>{@code
2065 import static java.lang.invoke.MethodHandles.*;
2066 import static java.lang.invoke.MethodType.*;
2067 ...
2068 static class Listie extends ArrayList {
2069   public String toString() { return "[wee Listie]"; }
2070   static Lookup lookup() { return MethodHandles.lookup(); }
2071 }
2072 ...
2073 // no access to constructor via invokeSpecial:
2074 MethodHandle MH_newListie = Listie.lookup()
2075   .findConstructor(Listie.class, methodType(void.class));
2076 Listie l = (Listie) MH_newListie.invokeExact();
2077 try { assertEquals("impossible", Listie.lookup().findSpecial(
2078         Listie.class, "<init>", methodType(void.class), Listie.class));
2079  } catch (NoSuchMethodException ex) { } // OK
2080 // access to super and self methods via invokeSpecial:
2081 MethodHandle MH_super = Listie.lookup().findSpecial(
2082   ArrayList.class, "toString" , methodType(String.class), Listie.class);
2083 MethodHandle MH_this = Listie.lookup().findSpecial(
2084   Listie.class, "toString" , methodType(String.class), Listie.class);
2085 MethodHandle MH_duper = Listie.lookup().findSpecial(
2086   Object.class, "toString" , methodType(String.class), Listie.class);
2087 assertEquals("[]", (String) MH_super.invokeExact(l));
2088 assertEquals(""+l, (String) MH_this.invokeExact(l));
2089 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
2090 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
2091         String.class, "toString", methodType(String.class), Listie.class));
2092  } catch (IllegalAccessException ex) { } // OK
2093 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
2094 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
2095          * }</pre></blockquote>
2096          *
2097          * @param refc the class or interface from which the method is accessed
2098          * @param name the name of the method (which must not be "&lt;init&gt;")
2099          * @param type the type of the method, with the receiver argument omitted
2100          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
2101          * @return the desired method handle
2102          * @throws NoSuchMethodException if the method does not exist
2103          * @throws IllegalAccessException if access checking fails,
2104          *                                or if the method is {@code static},
2105          *                                or if the method's variable arity modifier bit
2106          *                                is set and {@code asVarargsCollector} fails
2107          * @exception SecurityException if a security manager is present and it
2108          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2109          * @throws NullPointerException if any argument is null
2110          */
2111         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
2112                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
2113             checkSpecialCaller(specialCaller, refc);
2114             Lookup specialLookup = this.in(specialCaller);
2115             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
2116             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
2117         }
2118 
2119         /**
2120          * Produces a method handle giving read access to a non-static field.
2121          * The type of the method handle will have a return type of the field's
2122          * value type.
2123          * The method handle's single argument will be the instance containing
2124          * the field.
2125          * Access checking is performed immediately on behalf of the lookup class.
2126          * @param refc the class or interface from which the method is accessed
2127          * @param name the field's name
2128          * @param type the field's type
2129          * @return a method handle which can load values from the field
2130          * @throws NoSuchFieldException if the field does not exist
2131          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2132          * @exception SecurityException if a security manager is present and it
2133          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2134          * @throws NullPointerException if any argument is null
2135          * @see #findVarHandle(Class, String, Class)
2136          */
2137         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2138             MemberName field = resolveOrFail(REF_getField, refc, name, type);
2139             return getDirectField(REF_getField, refc, field);
2140         }
2141 
2142         /**
2143          * Produces a method handle giving write access to a non-static field.
2144          * The type of the method handle will have a void return type.
2145          * The method handle will take two arguments, the instance containing
2146          * the field, and the value to be stored.
2147          * The second argument will be of the field's value type.
2148          * Access checking is performed immediately on behalf of the lookup class.
2149          * @param refc the class or interface from which the method is accessed
2150          * @param name the field's name
2151          * @param type the field's type
2152          * @return a method handle which can store values into the field
2153          * @throws NoSuchFieldException if the field does not exist
2154          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2155          *                                or {@code final}
2156          * @exception SecurityException if a security manager is present and it
2157          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2158          * @throws NullPointerException if any argument is null
2159          * @see #findVarHandle(Class, String, Class)
2160          */
2161         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2162             MemberName field = resolveOrFail(REF_putField, refc, name, type);
2163             return getDirectField(REF_putField, refc, field);
2164         }
2165 
2166         /**
2167          * Produces a VarHandle giving access to a non-static field {@code name}
2168          * of type {@code type} declared in a class of type {@code recv}.
2169          * The VarHandle's variable type is {@code type} and it has one
2170          * coordinate type, {@code recv}.
2171          * <p>
2172          * Access checking is performed immediately on behalf of the lookup
2173          * class.
2174          * <p>
2175          * Certain access modes of the returned VarHandle are unsupported under
2176          * the following conditions:
2177          * <ul>
2178          * <li>if the field is declared {@code final}, then the write, atomic
2179          *     update, numeric atomic update, and bitwise atomic update access
2180          *     modes are unsupported.
2181          * <li>if the field type is anything other than {@code byte},
2182          *     {@code short}, {@code char}, {@code int}, {@code long},
2183          *     {@code float}, or {@code double} then numeric atomic update
2184          *     access modes are unsupported.
2185          * <li>if the field type is anything other than {@code boolean},
2186          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2187          *     {@code long} then bitwise atomic update access modes are
2188          *     unsupported.
2189          * </ul>
2190          * <p>
2191          * If the field is declared {@code volatile} then the returned VarHandle
2192          * will override access to the field (effectively ignore the
2193          * {@code volatile} declaration) in accordance to its specified
2194          * access modes.
2195          * <p>
2196          * If the field type is {@code float} or {@code double} then numeric
2197          * and atomic update access modes compare values using their bitwise
2198          * representation (see {@link Float#floatToRawIntBits} and
2199          * {@link Double#doubleToRawLongBits}, respectively).
2200          * @apiNote
2201          * Bitwise comparison of {@code float} values or {@code double} values,
2202          * as performed by the numeric and atomic update access modes, differ
2203          * from the primitive {@code ==} operator and the {@link Float#equals}
2204          * and {@link Double#equals} methods, specifically with respect to
2205          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2206          * Care should be taken when performing a compare and set or a compare
2207          * and exchange operation with such values since the operation may
2208          * unexpectedly fail.
2209          * There are many possible NaN values that are considered to be
2210          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2211          * provided by Java can distinguish between them.  Operation failure can
2212          * occur if the expected or witness value is a NaN value and it is
2213          * transformed (perhaps in a platform specific manner) into another NaN
2214          * value, and thus has a different bitwise representation (see
2215          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2216          * details).
2217          * The values {@code -0.0} and {@code +0.0} have different bitwise
2218          * representations but are considered equal when using the primitive
2219          * {@code ==} operator.  Operation failure can occur if, for example, a
2220          * numeric algorithm computes an expected value to be say {@code -0.0}
2221          * and previously computed the witness value to be say {@code +0.0}.
2222          * @param recv the receiver class, of type {@code R}, that declares the
2223          * non-static field
2224          * @param name the field's name
2225          * @param type the field's type, of type {@code T}
2226          * @return a VarHandle giving access to non-static fields.
2227          * @throws NoSuchFieldException if the field does not exist
2228          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2229          * @exception SecurityException if a security manager is present and it
2230          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2231          * @throws NullPointerException if any argument is null
2232          * @since 9
2233          */
2234         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2235             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
2236             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
2237             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
2238         }
2239 
2240         /**
2241          * Produces a method handle giving read access to a static field.
2242          * The type of the method handle will have a return type of the field's
2243          * value type.
2244          * The method handle will take no arguments.
2245          * Access checking is performed immediately on behalf of the lookup class.
2246          * <p>
2247          * If the returned method handle is invoked, the field's class will
2248          * be initialized, if it has not already been initialized.
2249          * @param refc the class or interface from which the method is accessed
2250          * @param name the field's name
2251          * @param type the field's type
2252          * @return a method handle which can load values from the field
2253          * @throws NoSuchFieldException if the field does not exist
2254          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2255          * @exception SecurityException if a security manager is present and it
2256          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2257          * @throws NullPointerException if any argument is null
2258          */
2259         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2260             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
2261             return getDirectField(REF_getStatic, refc, field);
2262         }
2263 
2264         /**
2265          * Produces a method handle giving write access to a static field.
2266          * The type of the method handle will have a void return type.
2267          * The method handle will take a single
2268          * argument, of the field's value type, the value to be stored.
2269          * Access checking is performed immediately on behalf of the lookup class.
2270          * <p>
2271          * If the returned method handle is invoked, the field's class will
2272          * be initialized, if it has not already been initialized.
2273          * @param refc the class or interface from which the method is accessed
2274          * @param name the field's name
2275          * @param type the field's type
2276          * @return a method handle which can store values into the field
2277          * @throws NoSuchFieldException if the field does not exist
2278          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2279          *                                or is {@code final}
2280          * @exception SecurityException if a security manager is present and it
2281          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2282          * @throws NullPointerException if any argument is null
2283          */
2284         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2285             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
2286             return getDirectField(REF_putStatic, refc, field);
2287         }
2288 
2289         /**
2290          * Produces a VarHandle giving access to a static field {@code name} of
2291          * type {@code type} declared in a class of type {@code decl}.
2292          * The VarHandle's variable type is {@code type} and it has no
2293          * coordinate types.
2294          * <p>
2295          * Access checking is performed immediately on behalf of the lookup
2296          * class.
2297          * <p>
2298          * If the returned VarHandle is operated on, the declaring class will be
2299          * initialized, if it has not already been initialized.
2300          * <p>
2301          * Certain access modes of the returned VarHandle are unsupported under
2302          * the following conditions:
2303          * <ul>
2304          * <li>if the field is declared {@code final}, then the write, atomic
2305          *     update, numeric atomic update, and bitwise atomic update access
2306          *     modes are unsupported.
2307          * <li>if the field type is anything other than {@code byte},
2308          *     {@code short}, {@code char}, {@code int}, {@code long},
2309          *     {@code float}, or {@code double}, then numeric atomic update
2310          *     access modes are unsupported.
2311          * <li>if the field type is anything other than {@code boolean},
2312          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2313          *     {@code long} then bitwise atomic update access modes are
2314          *     unsupported.
2315          * </ul>
2316          * <p>
2317          * If the field is declared {@code volatile} then the returned VarHandle
2318          * will override access to the field (effectively ignore the
2319          * {@code volatile} declaration) in accordance to its specified
2320          * access modes.
2321          * <p>
2322          * If the field type is {@code float} or {@code double} then numeric
2323          * and atomic update access modes compare values using their bitwise
2324          * representation (see {@link Float#floatToRawIntBits} and
2325          * {@link Double#doubleToRawLongBits}, respectively).
2326          * @apiNote
2327          * Bitwise comparison of {@code float} values or {@code double} values,
2328          * as performed by the numeric and atomic update access modes, differ
2329          * from the primitive {@code ==} operator and the {@link Float#equals}
2330          * and {@link Double#equals} methods, specifically with respect to
2331          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2332          * Care should be taken when performing a compare and set or a compare
2333          * and exchange operation with such values since the operation may
2334          * unexpectedly fail.
2335          * There are many possible NaN values that are considered to be
2336          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2337          * provided by Java can distinguish between them.  Operation failure can
2338          * occur if the expected or witness value is a NaN value and it is
2339          * transformed (perhaps in a platform specific manner) into another NaN
2340          * value, and thus has a different bitwise representation (see
2341          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2342          * details).
2343          * The values {@code -0.0} and {@code +0.0} have different bitwise
2344          * representations but are considered equal when using the primitive
2345          * {@code ==} operator.  Operation failure can occur if, for example, a
2346          * numeric algorithm computes an expected value to be say {@code -0.0}
2347          * and previously computed the witness value to be say {@code +0.0}.
2348          * @param decl the class that declares the static field
2349          * @param name the field's name
2350          * @param type the field's type, of type {@code T}
2351          * @return a VarHandle giving access to a static field
2352          * @throws NoSuchFieldException if the field does not exist
2353          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2354          * @exception SecurityException if a security manager is present and it
2355          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2356          * @throws NullPointerException if any argument is null
2357          * @since 9
2358          */
2359         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2360             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
2361             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
2362             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
2363         }
2364 
2365         /**
2366          * Produces an early-bound method handle for a non-static method.
2367          * The receiver must have a supertype {@code defc} in which a method
2368          * of the given name and type is accessible to the lookup class.
2369          * The method and all its argument types must be accessible to the lookup object.
2370          * The type of the method handle will be that of the method,
2371          * without any insertion of an additional receiver parameter.
2372          * The given receiver will be bound into the method handle,
2373          * so that every call to the method handle will invoke the
2374          * requested method on the given receiver.
2375          * <p>
2376          * The returned method handle will have
2377          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2378          * the method's variable arity modifier bit ({@code 0x0080}) is set
2379          * <em>and</em> the trailing array argument is not the only argument.
2380          * (If the trailing array argument is the only argument,
2381          * the given receiver value will be bound to it.)
2382          * <p>
2383          * This is almost equivalent to the following code, with some differences noted below:
2384          * <blockquote><pre>{@code
2385 import static java.lang.invoke.MethodHandles.*;
2386 import static java.lang.invoke.MethodType.*;
2387 ...
2388 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
2389 MethodHandle mh1 = mh0.bindTo(receiver);
2390 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
2391 return mh1;
2392          * }</pre></blockquote>
2393          * where {@code defc} is either {@code receiver.getClass()} or a super
2394          * type of that class, in which the requested method is accessible
2395          * to the lookup class.
2396          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
2397          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
2398          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
2399          * the receiver is restricted by {@code findVirtual} to the lookup class.)
2400          * @param receiver the object from which the method is accessed
2401          * @param name the name of the method
2402          * @param type the type of the method, with the receiver argument omitted
2403          * @return the desired method handle
2404          * @throws NoSuchMethodException if the method does not exist
2405          * @throws IllegalAccessException if access checking fails
2406          *                                or if the method's variable arity modifier bit
2407          *                                is set and {@code asVarargsCollector} fails
2408          * @exception SecurityException if a security manager is present and it
2409          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2410          * @throws NullPointerException if any argument is null
2411          * @see MethodHandle#bindTo
2412          * @see #findVirtual
2413          */
2414         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2415             Class<? extends Object> refc = receiver.getClass(); // may get NPE
2416             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
2417             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method));
2418             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
2419                 throw new IllegalAccessException("The restricted defining class " +
2420                                                  mh.type().leadingReferenceParameter().getName() +
2421                                                  " is not assignable from receiver class " +
2422                                                  receiver.getClass().getName());
2423             }
2424             return mh.bindArgumentL(0, receiver).setVarargs(method);
2425         }
2426 
2427         /**
2428          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2429          * to <i>m</i>, if the lookup class has permission.
2430          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
2431          * If <i>m</i> is virtual, overriding is respected on every call.
2432          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
2433          * The type of the method handle will be that of the method,
2434          * with the receiver type prepended (but only if it is non-static).
2435          * If the method's {@code accessible} flag is not set,
2436          * access checking is performed immediately on behalf of the lookup class.
2437          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
2438          * <p>
2439          * The returned method handle will have
2440          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2441          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2442          * <p>
2443          * If <i>m</i> is static, and
2444          * if the returned method handle is invoked, the method's class will
2445          * be initialized, if it has not already been initialized.
2446          * @param m the reflected method
2447          * @return a method handle which can invoke the reflected method
2448          * @throws IllegalAccessException if access checking fails
2449          *                                or if the method's variable arity modifier bit
2450          *                                is set and {@code asVarargsCollector} fails
2451          * @throws NullPointerException if the argument is null
2452          */
2453         public MethodHandle unreflect(Method m) throws IllegalAccessException {
2454             if (m.getDeclaringClass() == MethodHandle.class) {
2455                 MethodHandle mh = unreflectForMH(m);
2456                 if (mh != null)  return mh;
2457             }
2458             if (m.getDeclaringClass() == VarHandle.class) {
2459                 MethodHandle mh = unreflectForVH(m);
2460                 if (mh != null)  return mh;
2461             }
2462             MemberName method = new MemberName(m);
2463             byte refKind = method.getReferenceKind();
2464             if (refKind == REF_invokeSpecial)
2465                 refKind = REF_invokeVirtual;
2466             assert(method.isMethod());
2467             @SuppressWarnings("deprecation")
2468             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
2469             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
2470         }
2471         private MethodHandle unreflectForMH(Method m) {
2472             // these names require special lookups because they throw UnsupportedOperationException
2473             if (MemberName.isMethodHandleInvokeName(m.getName()))
2474                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
2475             return null;
2476         }
2477         private MethodHandle unreflectForVH(Method m) {
2478             // these names require special lookups because they throw UnsupportedOperationException
2479             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
2480                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
2481             return null;
2482         }
2483 
2484         /**
2485          * Produces a method handle for a reflected method.
2486          * It will bypass checks for overriding methods on the receiver,
2487          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2488          * instruction from within the explicitly specified {@code specialCaller}.
2489          * The type of the method handle will be that of the method,
2490          * with a suitably restricted receiver type prepended.
2491          * (The receiver type will be {@code specialCaller} or a subtype.)
2492          * If the method's {@code accessible} flag is not set,
2493          * access checking is performed immediately on behalf of the lookup class,
2494          * as if {@code invokespecial} instruction were being linked.
2495          * <p>
2496          * Before method resolution,
2497          * if the explicitly specified caller class is not identical with the
2498          * lookup class, or if this lookup object does not have
2499          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2500          * privileges, the access fails.
2501          * <p>
2502          * The returned method handle will have
2503          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2504          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2505          * @param m the reflected method
2506          * @param specialCaller the class nominally calling the method
2507          * @return a method handle which can invoke the reflected method
2508          * @throws IllegalAccessException if access checking fails,
2509          *                                or if the method is {@code static},
2510          *                                or if the method's variable arity modifier bit
2511          *                                is set and {@code asVarargsCollector} fails
2512          * @throws NullPointerException if any argument is null
2513          */
2514         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
2515             checkSpecialCaller(specialCaller, m.getDeclaringClass());
2516             Lookup specialLookup = this.in(specialCaller);
2517             MemberName method = new MemberName(m, true);
2518             assert(method.isMethod());
2519             // ignore m.isAccessible:  this is a new kind of access
2520             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
2521         }
2522 
2523         /**
2524          * Produces a method handle for a reflected constructor.
2525          * The type of the method handle will be that of the constructor,
2526          * with the return type changed to the declaring class.
2527          * The method handle will perform a {@code newInstance} operation,
2528          * creating a new instance of the constructor's class on the
2529          * arguments passed to the method handle.
2530          * <p>
2531          * If the constructor's {@code accessible} flag is not set,
2532          * access checking is performed immediately on behalf of the lookup class.
2533          * <p>
2534          * The returned method handle will have
2535          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2536          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2537          * <p>
2538          * If the returned method handle is invoked, the constructor's class will
2539          * be initialized, if it has not already been initialized.
2540          * @param c the reflected constructor
2541          * @return a method handle which can invoke the reflected constructor
2542          * @throws IllegalAccessException if access checking fails
2543          *                                or if the method's variable arity modifier bit
2544          *                                is set and {@code asVarargsCollector} fails
2545          * @throws NullPointerException if the argument is null
2546          */
2547         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
2548             MemberName ctor = new MemberName(c);
2549             assert(ctor.isConstructor());
2550             @SuppressWarnings("deprecation")
2551             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
2552             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
2553         }
2554 
2555         /**
2556          * Produces a method handle giving read access to a reflected field.
2557          * The type of the method handle will have a return type of the field's
2558          * value type.
2559          * If the field is {@code static}, the method handle will take no arguments.
2560          * Otherwise, its single argument will be the instance containing
2561          * the field.
2562          * If the {@code Field} object's {@code accessible} flag is not set,
2563          * access checking is performed immediately on behalf of the lookup class.
2564          * <p>
2565          * If the field is static, and
2566          * if the returned method handle is invoked, the field's class will
2567          * be initialized, if it has not already been initialized.
2568          * @param f the reflected field
2569          * @return a method handle which can load values from the reflected field
2570          * @throws IllegalAccessException if access checking fails
2571          * @throws NullPointerException if the argument is null
2572          */
2573         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
2574             return unreflectField(f, false);
2575         }
2576 
2577         /**
2578          * Produces a method handle giving write access to a reflected field.
2579          * The type of the method handle will have a void return type.
2580          * If the field is {@code static}, the method handle will take a single
2581          * argument, of the field's value type, the value to be stored.
2582          * Otherwise, the two arguments will be the instance containing
2583          * the field, and the value to be stored.
2584          * If the {@code Field} object's {@code accessible} flag is not set,
2585          * access checking is performed immediately on behalf of the lookup class.
2586          * <p>
2587          * If the field is {@code final}, write access will not be
2588          * allowed and access checking will fail, except under certain
2589          * narrow circumstances documented for {@link Field#set Field.set}.
2590          * A method handle is returned only if a corresponding call to
2591          * the {@code Field} object's {@code set} method could return
2592          * normally.  In particular, fields which are both {@code static}
2593          * and {@code final} may never be set.
2594          * <p>
2595          * If the field is {@code static}, and
2596          * if the returned method handle is invoked, the field's class will
2597          * be initialized, if it has not already been initialized.
2598          * @param f the reflected field
2599          * @return a method handle which can store values into the reflected field
2600          * @throws IllegalAccessException if access checking fails,
2601          *         or if the field is {@code final} and write access
2602          *         is not enabled on the {@code Field} object
2603          * @throws NullPointerException if the argument is null
2604          */
2605         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
2606             return unreflectField(f, true);
2607         }
2608 
2609         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
2610             MemberName field = new MemberName(f, isSetter);
2611             if (isSetter && field.isStatic() && field.isFinal())
2612                 throw field.makeAccessException("static final field has no write access", this);
2613             assert(isSetter
2614                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
2615                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
2616             @SuppressWarnings("deprecation")
2617             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
2618             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
2619         }
2620 
2621         /**
2622          * Produces a VarHandle giving access to a reflected field {@code f}
2623          * of type {@code T} declared in a class of type {@code R}.
2624          * The VarHandle's variable type is {@code T}.
2625          * If the field is non-static the VarHandle has one coordinate type,
2626          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
2627          * coordinate types.
2628          * <p>
2629          * Access checking is performed immediately on behalf of the lookup
2630          * class, regardless of the value of the field's {@code accessible}
2631          * flag.
2632          * <p>
2633          * If the field is static, and if the returned VarHandle is operated
2634          * on, the field's declaring class will be initialized, if it has not
2635          * already been initialized.
2636          * <p>
2637          * Certain access modes of the returned VarHandle are unsupported under
2638          * the following conditions:
2639          * <ul>
2640          * <li>if the field is declared {@code final}, then the write, atomic
2641          *     update, numeric atomic update, and bitwise atomic update access
2642          *     modes are unsupported.
2643          * <li>if the field type is anything other than {@code byte},
2644          *     {@code short}, {@code char}, {@code int}, {@code long},
2645          *     {@code float}, or {@code double} then numeric atomic update
2646          *     access modes are unsupported.
2647          * <li>if the field type is anything other than {@code boolean},
2648          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2649          *     {@code long} then bitwise atomic update access modes are
2650          *     unsupported.
2651          * </ul>
2652          * <p>
2653          * If the field is declared {@code volatile} then the returned VarHandle
2654          * will override access to the field (effectively ignore the
2655          * {@code volatile} declaration) in accordance to its specified
2656          * access modes.
2657          * <p>
2658          * If the field type is {@code float} or {@code double} then numeric
2659          * and atomic update access modes compare values using their bitwise
2660          * representation (see {@link Float#floatToRawIntBits} and
2661          * {@link Double#doubleToRawLongBits}, respectively).
2662          * @apiNote
2663          * Bitwise comparison of {@code float} values or {@code double} values,
2664          * as performed by the numeric and atomic update access modes, differ
2665          * from the primitive {@code ==} operator and the {@link Float#equals}
2666          * and {@link Double#equals} methods, specifically with respect to
2667          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2668          * Care should be taken when performing a compare and set or a compare
2669          * and exchange operation with such values since the operation may
2670          * unexpectedly fail.
2671          * There are many possible NaN values that are considered to be
2672          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2673          * provided by Java can distinguish between them.  Operation failure can
2674          * occur if the expected or witness value is a NaN value and it is
2675          * transformed (perhaps in a platform specific manner) into another NaN
2676          * value, and thus has a different bitwise representation (see
2677          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2678          * details).
2679          * The values {@code -0.0} and {@code +0.0} have different bitwise
2680          * representations but are considered equal when using the primitive
2681          * {@code ==} operator.  Operation failure can occur if, for example, a
2682          * numeric algorithm computes an expected value to be say {@code -0.0}
2683          * and previously computed the witness value to be say {@code +0.0}.
2684          * @param f the reflected field, with a field of type {@code T}, and
2685          * a declaring class of type {@code R}
2686          * @return a VarHandle giving access to non-static fields or a static
2687          * field
2688          * @throws IllegalAccessException if access checking fails
2689          * @throws NullPointerException if the argument is null
2690          * @since 9
2691          */
2692         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
2693             MemberName getField = new MemberName(f, false);
2694             MemberName putField = new MemberName(f, true);
2695             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
2696                                                       f.getDeclaringClass(), getField, putField);
2697         }
2698 
2699         /**
2700          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2701          * created by this lookup object or a similar one.
2702          * Security and access checks are performed to ensure that this lookup object
2703          * is capable of reproducing the target method handle.
2704          * This means that the cracking may fail if target is a direct method handle
2705          * but was created by an unrelated lookup object.
2706          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
2707          * and was created by a lookup object for a different class.
2708          * @param target a direct method handle to crack into symbolic reference components
2709          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
2710          * @exception SecurityException if a security manager is present and it
2711          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2712          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
2713          * @exception NullPointerException if the target is {@code null}
2714          * @see MethodHandleInfo
2715          * @since 1.8
2716          */
2717         public MethodHandleInfo revealDirect(MethodHandle target) {
2718             MemberName member = target.internalMemberName();
2719             if (member == null || (!member.isResolved() &&
2720                                    !member.isMethodHandleInvoke() &&
2721                                    !member.isVarHandleMethodInvoke()))
2722                 throw newIllegalArgumentException("not a direct method handle");
2723             Class<?> defc = member.getDeclaringClass();
2724             byte refKind = member.getReferenceKind();
2725             assert(MethodHandleNatives.refKindIsValid(refKind));
2726             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
2727                 // Devirtualized method invocation is usually formally virtual.
2728                 // To avoid creating extra MemberName objects for this common case,
2729                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
2730                 refKind = REF_invokeVirtual;
2731             if (refKind == REF_invokeVirtual && defc.isInterface())
2732                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
2733                 refKind = REF_invokeInterface;
2734             // Check SM permissions and member access before cracking.
2735             try {
2736                 checkAccess(refKind, defc, member);
2737                 checkSecurityManager(defc, member);
2738             } catch (IllegalAccessException ex) {
2739                 throw new IllegalArgumentException(ex);
2740             }
2741             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2742                 Class<?> callerClass = target.internalCallerClass();
2743                 if (!hasPrivateAccess() || callerClass != lookupClass())
2744                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2745             }
2746             // Produce the handle to the results.
2747             return new InfoFromMemberName(this, member, refKind);
2748         }
2749 
2750         /// Helper methods, all package-private.
2751 
2752         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2753             checkSymbolicClass(refc);  // do this before attempting to resolve
2754             Objects.requireNonNull(name);
2755             Objects.requireNonNull(type);
2756             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2757                                             NoSuchFieldException.class);
2758         }
2759 
2760         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2761             checkSymbolicClass(refc);  // do this before attempting to resolve
2762             Objects.requireNonNull(name);
2763             Objects.requireNonNull(type);
2764             checkMethodName(refKind, name);  // NPE check on name
2765             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2766                                             NoSuchMethodException.class);
2767         }
2768 
2769         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2770             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2771             Objects.requireNonNull(member.getName());
2772             Objects.requireNonNull(member.getType());
2773             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2774                                             ReflectiveOperationException.class);
2775         }
2776 
2777         MemberName resolveOrNull(byte refKind, MemberName member) {
2778             // do this before attempting to resolve
2779             if (!isClassAccessible(member.getDeclaringClass())) {
2780                 return null;
2781             }
2782             Objects.requireNonNull(member.getName());
2783             Objects.requireNonNull(member.getType());
2784             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
2785         }
2786 
2787         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2788             if (!isClassAccessible(refc)) {
2789                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2790             }
2791         }
2792 
2793         boolean isClassAccessible(Class<?> refc) {
2794             Objects.requireNonNull(refc);
2795             Class<?> caller = lookupClassOrNull();
2796             return caller == null || VerifyAccess.isClassAccessible(refc, caller, prevLookupClass, allowedModes);
2797         }
2798 
2799         /** Check name for an illegal leading "&lt;" character. */
2800         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2801             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2802                 throw new NoSuchMethodException("illegal method name: "+name);
2803         }
2804 
2805 
2806         /**
2807          * Find my trustable caller class if m is a caller sensitive method.
2808          * If this lookup object has private access, then the caller class is the lookupClass.
2809          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2810          */
2811         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
2812             Class<?> callerClass = null;
2813             if (MethodHandleNatives.isCallerSensitive(m)) {
2814                 // Only lookups with private access are allowed to resolve caller-sensitive methods
2815                 if (hasPrivateAccess()) {
2816                     callerClass = lookupClass;
2817                 } else {
2818                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2819                 }
2820             }
2821             return callerClass;
2822         }
2823 
2824         /**
2825          * Returns {@code true} if this lookup has {@code PRIVATE} access.
2826          * @return {@code true} if this lookup has {@code PRIVATE} access.
2827          * @since 9
2828          */
2829         public boolean hasPrivateAccess() {
2830             return (allowedModes & PRIVATE) != 0;
2831         }
2832 
2833         /**
2834          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2835          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2836          * If this lookup object has private access, then the caller class is the lookupClass.
2837          */
2838         void checkSecurityManager(Class<?> refc, MemberName m) {
2839             SecurityManager smgr = System.getSecurityManager();
2840             if (smgr == null)  return;
2841             if (allowedModes == TRUSTED)  return;
2842 
2843             // Step 1:
2844             boolean fullPowerLookup = hasPrivateAccess();
2845             if (!fullPowerLookup ||
2846                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2847                 ReflectUtil.checkPackageAccess(refc);
2848             }
2849 
2850             if (m == null) {  // findClass or accessClass
2851                 // Step 2b:
2852                 if (!fullPowerLookup) {
2853                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2854                 }
2855                 return;
2856             }
2857 
2858             // Step 2a:
2859             if (m.isPublic()) return;
2860             if (!fullPowerLookup) {
2861                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2862             }
2863 
2864             // Step 3:
2865             Class<?> defc = m.getDeclaringClass();
2866             if (!fullPowerLookup && defc != refc) {
2867                 ReflectUtil.checkPackageAccess(defc);
2868             }
2869         }
2870 
2871         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2872             boolean wantStatic = (refKind == REF_invokeStatic);
2873             String message;
2874             if (m.isConstructor())
2875                 message = "expected a method, not a constructor";
2876             else if (!m.isMethod())
2877                 message = "expected a method";
2878             else if (wantStatic != m.isStatic())
2879                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2880             else
2881                 { checkAccess(refKind, refc, m); return; }
2882             throw m.makeAccessException(message, this);
2883         }
2884 
2885         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2886             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2887             String message;
2888             if (wantStatic != m.isStatic())
2889                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2890             else
2891                 { checkAccess(refKind, refc, m); return; }
2892             throw m.makeAccessException(message, this);
2893         }
2894 
2895         /** Check public/protected/private bits on the symbolic reference class and its member. */
2896         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2897             assert(m.referenceKindIsConsistentWith(refKind) &&
2898                    MethodHandleNatives.refKindIsValid(refKind) &&
2899                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2900             int allowedModes = this.allowedModes;
2901             if (allowedModes == TRUSTED)  return;
2902             int mods = m.getModifiers();
2903             if (Modifier.isProtected(mods) &&
2904                     refKind == REF_invokeVirtual &&
2905                     m.getDeclaringClass() == Object.class &&
2906                     m.getName().equals("clone") &&
2907                     refc.isArray()) {
2908                 // The JVM does this hack also.
2909                 // (See ClassVerifier::verify_invoke_instructions
2910                 // and LinkResolver::check_method_accessability.)
2911                 // Because the JVM does not allow separate methods on array types,
2912                 // there is no separate method for int[].clone.
2913                 // All arrays simply inherit Object.clone.
2914                 // But for access checking logic, we make Object.clone
2915                 // (normally protected) appear to be public.
2916                 // Later on, when the DirectMethodHandle is created,
2917                 // its leading argument will be restricted to the
2918                 // requested array type.
2919                 // N.B. The return type is not adjusted, because
2920                 // that is *not* the bytecode behavior.
2921                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2922             }
2923             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2924                 // cannot "new" a protected ctor in a different package
2925                 mods ^= Modifier.PROTECTED;
2926             }
2927             if (Modifier.isFinal(mods) &&
2928                     MethodHandleNatives.refKindIsSetter(refKind))
2929                 throw m.makeAccessException("unexpected set of a final field", this);
2930             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2931             if ((requestedModes & allowedModes) != 0) {
2932                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2933                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
2934                     return;
2935             } else {
2936                 // Protected members can also be checked as if they were package-private.
2937                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2938                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2939                     return;
2940             }
2941             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2942         }
2943 
2944         String accessFailedMessage(Class<?> refc, MemberName m) {
2945             Class<?> defc = m.getDeclaringClass();
2946             int mods = m.getModifiers();
2947             // check the class first:
2948             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2949                                (defc == refc ||
2950                                 Modifier.isPublic(refc.getModifiers())));
2951             if (!classOK && (allowedModes & PACKAGE) != 0) {
2952                 // ignore previous lookup class to check if default package access
2953                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
2954                            (defc == refc ||
2955                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
2956             }
2957             if (!classOK)
2958                 return "class is not public";
2959             if (Modifier.isPublic(mods))
2960                 return "access to public member failed";  // (how?, module not readable?)
2961             if (Modifier.isPrivate(mods))
2962                 return "member is private";
2963             if (Modifier.isProtected(mods))
2964                 return "member is protected";
2965             return "member is private to package";
2966         }
2967 
2968         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2969             int allowedModes = this.allowedModes;
2970             if (allowedModes == TRUSTED)  return;
2971             if (!hasPrivateAccess()
2972                 || (specialCaller != lookupClass()
2973                        // ensure non-abstract methods in superinterfaces can be special-invoked
2974                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
2975                 throw new MemberName(specialCaller).
2976                     makeAccessException("no private access for invokespecial", this);
2977         }
2978 
2979         private boolean restrictProtectedReceiver(MemberName method) {
2980             // The accessing class only has the right to use a protected member
2981             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2982             if (!method.isProtected() || method.isStatic()
2983                 || allowedModes == TRUSTED
2984                 || method.getDeclaringClass() == lookupClass()
2985                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
2986                 return false;
2987             return true;
2988         }
2989         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2990             assert(!method.isStatic());
2991             // receiver type of mh is too wide; narrow to caller
2992             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2993                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2994             }
2995             MethodType rawType = mh.type();
2996             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
2997             MethodType narrowType = rawType.changeParameterType(0, caller);
2998             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2999             assert(mh.viewAsTypeChecks(narrowType, true));
3000             return mh.copyWith(narrowType, mh.form);
3001         }
3002 
3003         /** Check access and get the requested method. */
3004         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3005             final boolean doRestrict    = true;
3006             final boolean checkSecurity = true;
3007             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
3008         }
3009         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
3010         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3011             final boolean doRestrict    = false;
3012             final boolean checkSecurity = true;
3013             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, boundCallerClass);
3014         }
3015         /** Check access and get the requested method, eliding security manager checks. */
3016         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3017             final boolean doRestrict    = true;
3018             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3019             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
3020         }
3021         /** Common code for all methods; do not call directly except from immediately above. */
3022         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
3023                                                    boolean checkSecurity,
3024                                                    boolean doRestrict, Class<?> boundCallerClass) throws IllegalAccessException {
3025 
3026             checkMethod(refKind, refc, method);
3027             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3028             if (checkSecurity)
3029                 checkSecurityManager(refc, method);
3030             assert(!method.isMethodHandleInvoke());
3031 
3032             if (refKind == REF_invokeSpecial &&
3033                 refc != lookupClass() &&
3034                 !refc.isInterface() &&
3035                 refc != lookupClass().getSuperclass() &&
3036                 refc.isAssignableFrom(lookupClass())) {
3037                 assert(!method.getName().equals("<init>"));  // not this code path
3038 
3039                 // Per JVMS 6.5, desc. of invokespecial instruction:
3040                 // If the method is in a superclass of the LC,
3041                 // and if our original search was above LC.super,
3042                 // repeat the search (symbolic lookup) from LC.super
3043                 // and continue with the direct superclass of that class,
3044                 // and so forth, until a match is found or no further superclasses exist.
3045                 // FIXME: MemberName.resolve should handle this instead.
3046                 Class<?> refcAsSuper = lookupClass();
3047                 MemberName m2;
3048                 do {
3049                     refcAsSuper = refcAsSuper.getSuperclass();
3050                     m2 = new MemberName(refcAsSuper,
3051                                         method.getName(),
3052                                         method.getMethodType(),
3053                                         REF_invokeSpecial);
3054                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
3055                 } while (m2 == null &&         // no method is found yet
3056                          refc != refcAsSuper); // search up to refc
3057                 if (m2 == null)  throw new InternalError(method.toString());
3058                 method = m2;
3059                 refc = refcAsSuper;
3060                 // redo basic checks
3061                 checkMethod(refKind, refc, method);
3062             }
3063 
3064             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
3065             MethodHandle mh = dmh;
3066             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
3067             if ((doRestrict && refKind == REF_invokeSpecial) ||
3068                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
3069                 mh = restrictReceiver(method, dmh, lookupClass());
3070             }
3071             mh = maybeBindCaller(method, mh, boundCallerClass);
3072             mh = mh.setVarargs(method);
3073             return mh;
3074         }
3075         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
3076                                              Class<?> boundCallerClass)
3077                                              throws IllegalAccessException {
3078             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
3079                 return mh;
3080             Class<?> hostClass = lookupClass;
3081             if (!hasPrivateAccess())  // caller must have private access
3082                 hostClass = boundCallerClass;  // boundCallerClass came from a security manager style stack walk
3083             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
3084             // Note: caller will apply varargs after this step happens.
3085             return cbmh;
3086         }
3087         /** Check access and get the requested field. */
3088         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3089             final boolean checkSecurity = true;
3090             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3091         }
3092         /** Check access and get the requested field, eliding security manager checks. */
3093         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3094             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3095             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3096         }
3097         /** Common code for all fields; do not call directly except from immediately above. */
3098         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
3099                                                   boolean checkSecurity) throws IllegalAccessException {
3100             checkField(refKind, refc, field);
3101             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3102             if (checkSecurity)
3103                 checkSecurityManager(refc, field);
3104             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
3105             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
3106                                     restrictProtectedReceiver(field));
3107             if (doRestrict)
3108                 return restrictReceiver(field, dmh, lookupClass());
3109             return dmh;
3110         }
3111         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
3112                                             Class<?> refc, MemberName getField, MemberName putField)
3113                 throws IllegalAccessException {
3114             final boolean checkSecurity = true;
3115             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3116         }
3117         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
3118                                                              Class<?> refc, MemberName getField, MemberName putField)
3119                 throws IllegalAccessException {
3120             final boolean checkSecurity = false;
3121             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3122         }
3123         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
3124                                                   Class<?> refc, MemberName getField, MemberName putField,
3125                                                   boolean checkSecurity) throws IllegalAccessException {
3126             assert getField.isStatic() == putField.isStatic();
3127             assert getField.isGetter() && putField.isSetter();
3128             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
3129             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
3130 
3131             checkField(getRefKind, refc, getField);
3132             if (checkSecurity)
3133                 checkSecurityManager(refc, getField);
3134 
3135             if (!putField.isFinal()) {
3136                 // A VarHandle does not support updates to final fields, any
3137                 // such VarHandle to a final field will be read-only and
3138                 // therefore the following write-based accessibility checks are
3139                 // only required for non-final fields
3140                 checkField(putRefKind, refc, putField);
3141                 if (checkSecurity)
3142                     checkSecurityManager(refc, putField);
3143             }
3144 
3145             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
3146                                   restrictProtectedReceiver(getField));
3147             if (doRestrict) {
3148                 assert !getField.isStatic();
3149                 // receiver type of VarHandle is too wide; narrow to caller
3150                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
3151                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
3152                 }
3153                 refc = lookupClass();
3154             }
3155             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
3156         }
3157         /** Check access and get the requested constructor. */
3158         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3159             final boolean checkSecurity = true;
3160             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3161         }
3162         /** Check access and get the requested constructor, eliding security manager checks. */
3163         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3164             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3165             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3166         }
3167         /** Common code for all constructors; do not call directly except from immediately above. */
3168         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
3169                                                   boolean checkSecurity) throws IllegalAccessException {
3170             assert(ctor.isConstructor());
3171             checkAccess(REF_newInvokeSpecial, refc, ctor);
3172             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3173             if (checkSecurity)
3174                 checkSecurityManager(refc, ctor);
3175             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3176             return DirectMethodHandle.make(ctor).setVarargs(ctor);
3177         }
3178 
3179         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
3180          */
3181         /*non-public*/
3182         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
3183             if (!(type instanceof Class || type instanceof MethodType))
3184                 throw new InternalError("unresolved MemberName");
3185             MemberName member = new MemberName(refKind, defc, name, type);
3186             MethodHandle mh = LOOKASIDE_TABLE.get(member);
3187             if (mh != null) {
3188                 checkSymbolicClass(defc);
3189                 return mh;
3190             }
3191             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
3192                 // Treat MethodHandle.invoke and invokeExact specially.
3193                 mh = findVirtualForMH(member.getName(), member.getMethodType());
3194                 if (mh != null) {
3195                     return mh;
3196                 }
3197             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
3198                 // Treat signature-polymorphic methods on VarHandle specially.
3199                 mh = findVirtualForVH(member.getName(), member.getMethodType());
3200                 if (mh != null) {
3201                     return mh;
3202                 }
3203             }
3204             MemberName resolved = resolveOrFail(refKind, member);
3205             mh = getDirectMethodForConstant(refKind, defc, resolved);
3206             if (mh instanceof DirectMethodHandle
3207                     && canBeCached(refKind, defc, resolved)) {
3208                 MemberName key = mh.internalMemberName();
3209                 if (key != null) {
3210                     key = key.asNormalOriginal();
3211                 }
3212                 if (member.equals(key)) {  // better safe than sorry
3213                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
3214                 }
3215             }
3216             return mh;
3217         }
3218         private
3219         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
3220             if (refKind == REF_invokeSpecial) {
3221                 return false;
3222             }
3223             if (!Modifier.isPublic(defc.getModifiers()) ||
3224                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
3225                     !member.isPublic() ||
3226                     member.isCallerSensitive()) {
3227                 return false;
3228             }
3229             ClassLoader loader = defc.getClassLoader();
3230             if (loader != null) {
3231                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
3232                 boolean found = false;
3233                 while (sysl != null) {
3234                     if (loader == sysl) { found = true; break; }
3235                     sysl = sysl.getParent();
3236                 }
3237                 if (!found) {
3238                     return false;
3239                 }
3240             }
3241             try {
3242                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
3243                     new MemberName(refKind, defc, member.getName(), member.getType()));
3244                 if (resolved2 == null) {
3245                     return false;
3246                 }
3247                 checkSecurityManager(defc, resolved2);
3248             } catch (SecurityException ex) {
3249                 return false;
3250             }
3251             return true;
3252         }
3253         private
3254         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
3255                 throws ReflectiveOperationException {
3256             if (MethodHandleNatives.refKindIsField(refKind)) {
3257                 return getDirectFieldNoSecurityManager(refKind, defc, member);
3258             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
3259                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
3260             } else if (refKind == REF_newInvokeSpecial) {
3261                 return getDirectConstructorNoSecurityManager(defc, member);
3262             }
3263             // oops
3264             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
3265         }
3266 
3267         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
3268     }
3269 
3270     /**
3271      * Produces a method handle constructing arrays of a desired type,
3272      * as if by the {@code anewarray} bytecode.
3273      * The return type of the method handle will be the array type.
3274      * The type of its sole argument will be {@code int}, which specifies the size of the array.
3275      *
3276      * <p> If the returned method handle is invoked with a negative
3277      * array size, a {@code NegativeArraySizeException} will be thrown.
3278      *
3279      * @param arrayClass an array type
3280      * @return a method handle which can create arrays of the given type
3281      * @throws NullPointerException if the argument is {@code null}
3282      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
3283      * @see java.lang.reflect.Array#newInstance(Class, int)
3284      * @jvms 6.5 {@code anewarray} Instruction
3285      * @since 9
3286      */
3287     public static
3288     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
3289         if (!arrayClass.isArray()) {
3290             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
3291         }
3292         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
3293                 bindTo(arrayClass.getComponentType());
3294         return ani.asType(ani.type().changeReturnType(arrayClass));
3295     }
3296 
3297     /**
3298      * Produces a method handle returning the length of an array,
3299      * as if by the {@code arraylength} bytecode.
3300      * The type of the method handle will have {@code int} as return type,
3301      * and its sole argument will be the array type.
3302      *
3303      * <p> If the returned method handle is invoked with a {@code null}
3304      * array reference, a {@code NullPointerException} will be thrown.
3305      *
3306      * @param arrayClass an array type
3307      * @return a method handle which can retrieve the length of an array of the given array type
3308      * @throws NullPointerException if the argument is {@code null}
3309      * @throws IllegalArgumentException if arrayClass is not an array type
3310      * @jvms 6.5 {@code arraylength} Instruction
3311      * @since 9
3312      */
3313     public static
3314     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
3315         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
3316     }
3317 
3318     /**
3319      * Produces a method handle giving read access to elements of an array,
3320      * as if by the {@code aaload} bytecode.
3321      * The type of the method handle will have a return type of the array's
3322      * element type.  Its first argument will be the array type,
3323      * and the second will be {@code int}.
3324      *
3325      * <p> When the returned method handle is invoked,
3326      * the array reference and array index are checked.
3327      * A {@code NullPointerException} will be thrown if the array reference
3328      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3329      * thrown if the index is negative or if it is greater than or equal to
3330      * the length of the array.
3331      *
3332      * @param arrayClass an array type
3333      * @return a method handle which can load values from the given array type
3334      * @throws NullPointerException if the argument is null
3335      * @throws  IllegalArgumentException if arrayClass is not an array type
3336      * @jvms 6.5 {@code aaload} Instruction
3337      */
3338     public static
3339     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
3340         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
3341     }
3342 
3343     /**
3344      * Produces a method handle giving write access to elements of an array,
3345      * as if by the {@code astore} bytecode.
3346      * The type of the method handle will have a void return type.
3347      * Its last argument will be the array's element type.
3348      * The first and second arguments will be the array type and int.
3349      *
3350      * <p> When the returned method handle is invoked,
3351      * the array reference and array index are checked.
3352      * A {@code NullPointerException} will be thrown if the array reference
3353      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3354      * thrown if the index is negative or if it is greater than or equal to
3355      * the length of the array.
3356      *
3357      * @param arrayClass the class of an array
3358      * @return a method handle which can store values into the array type
3359      * @throws NullPointerException if the argument is null
3360      * @throws IllegalArgumentException if arrayClass is not an array type
3361      * @jvms 6.5 {@code aastore} Instruction
3362      */
3363     public static
3364     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
3365         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
3366     }
3367 
3368     /**
3369      * Produces a VarHandle giving access to elements of an array of type
3370      * {@code arrayClass}.  The VarHandle's variable type is the component type
3371      * of {@code arrayClass} and the list of coordinate types is
3372      * {@code (arrayClass, int)}, where the {@code int} coordinate type
3373      * corresponds to an argument that is an index into an array.
3374      * <p>
3375      * Certain access modes of the returned VarHandle are unsupported under
3376      * the following conditions:
3377      * <ul>
3378      * <li>if the component type is anything other than {@code byte},
3379      *     {@code short}, {@code char}, {@code int}, {@code long},
3380      *     {@code float}, or {@code double} then numeric atomic update access
3381      *     modes are unsupported.
3382      * <li>if the field type is anything other than {@code boolean},
3383      *     {@code byte}, {@code short}, {@code char}, {@code int} or
3384      *     {@code long} then bitwise atomic update access modes are
3385      *     unsupported.
3386      * </ul>
3387      * <p>
3388      * If the component type is {@code float} or {@code double} then numeric
3389      * and atomic update access modes compare values using their bitwise
3390      * representation (see {@link Float#floatToRawIntBits} and
3391      * {@link Double#doubleToRawLongBits}, respectively).
3392      *
3393      * <p> When the returned {@code VarHandle} is invoked,
3394      * the array reference and array index are checked.
3395      * A {@code NullPointerException} will be thrown if the array reference
3396      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3397      * thrown if the index is negative or if it is greater than or equal to
3398      * the length of the array.
3399      *
3400      * @apiNote
3401      * Bitwise comparison of {@code float} values or {@code double} values,
3402      * as performed by the numeric and atomic update access modes, differ
3403      * from the primitive {@code ==} operator and the {@link Float#equals}
3404      * and {@link Double#equals} methods, specifically with respect to
3405      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3406      * Care should be taken when performing a compare and set or a compare
3407      * and exchange operation with such values since the operation may
3408      * unexpectedly fail.
3409      * There are many possible NaN values that are considered to be
3410      * {@code NaN} in Java, although no IEEE 754 floating-point operation
3411      * provided by Java can distinguish between them.  Operation failure can
3412      * occur if the expected or witness value is a NaN value and it is
3413      * transformed (perhaps in a platform specific manner) into another NaN
3414      * value, and thus has a different bitwise representation (see
3415      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3416      * details).
3417      * The values {@code -0.0} and {@code +0.0} have different bitwise
3418      * representations but are considered equal when using the primitive
3419      * {@code ==} operator.  Operation failure can occur if, for example, a
3420      * numeric algorithm computes an expected value to be say {@code -0.0}
3421      * and previously computed the witness value to be say {@code +0.0}.
3422      * @param arrayClass the class of an array, of type {@code T[]}
3423      * @return a VarHandle giving access to elements of an array
3424      * @throws NullPointerException if the arrayClass is null
3425      * @throws IllegalArgumentException if arrayClass is not an array type
3426      * @since 9
3427      */
3428     public static
3429     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
3430         return VarHandles.makeArrayElementHandle(arrayClass);
3431     }
3432 
3433     /**
3434      * Produces a VarHandle giving access to elements of a {@code byte[]} array
3435      * viewed as if it were a different primitive array type, such as
3436      * {@code int[]} or {@code long[]}.
3437      * The VarHandle's variable type is the component type of
3438      * {@code viewArrayClass} and the list of coordinate types is
3439      * {@code (byte[], int)}, where the {@code int} coordinate type
3440      * corresponds to an argument that is an index into a {@code byte[]} array.
3441      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
3442      * array, composing bytes to or from a value of the component type of
3443      * {@code viewArrayClass} according to the given endianness.
3444      * <p>
3445      * The supported component types (variables types) are {@code short},
3446      * {@code char}, {@code int}, {@code long}, {@code float} and
3447      * {@code double}.
3448      * <p>
3449      * Access of bytes at a given index will result in an
3450      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3451      * or greater than the {@code byte[]} array length minus the size (in bytes)
3452      * of {@code T}.
3453      * <p>
3454      * Access of bytes at an index may be aligned or misaligned for {@code T},
3455      * with respect to the underlying memory address, {@code A} say, associated
3456      * with the array and index.
3457      * If access is misaligned then access for anything other than the
3458      * {@code get} and {@code set} access modes will result in an
3459      * {@code IllegalStateException}.  In such cases atomic access is only
3460      * guaranteed with respect to the largest power of two that divides the GCD
3461      * of {@code A} and the size (in bytes) of {@code T}.
3462      * If access is aligned then following access modes are supported and are
3463      * guaranteed to support atomic access:
3464      * <ul>
3465      * <li>read write access modes for all {@code T}, with the exception of
3466      *     access modes {@code get} and {@code set} for {@code long} and
3467      *     {@code double} on 32-bit platforms.
3468      * <li>atomic update access modes for {@code int}, {@code long},
3469      *     {@code float} or {@code double}.
3470      *     (Future major platform releases of the JDK may support additional
3471      *     types for certain currently unsupported access modes.)
3472      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3473      *     (Future major platform releases of the JDK may support additional
3474      *     numeric types for certain currently unsupported access modes.)
3475      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3476      *     (Future major platform releases of the JDK may support additional
3477      *     numeric types for certain currently unsupported access modes.)
3478      * </ul>
3479      * <p>
3480      * Misaligned access, and therefore atomicity guarantees, may be determined
3481      * for {@code byte[]} arrays without operating on a specific array.  Given
3482      * an {@code index}, {@code T} and it's corresponding boxed type,
3483      * {@code T_BOX}, misalignment may be determined as follows:
3484      * <pre>{@code
3485      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3486      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
3487      *     alignmentOffset(0, sizeOfT);
3488      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
3489      * boolean isMisaligned = misalignedAtIndex != 0;
3490      * }</pre>
3491      * <p>
3492      * If the variable type is {@code float} or {@code double} then atomic
3493      * update access modes compare values using their bitwise representation
3494      * (see {@link Float#floatToRawIntBits} and
3495      * {@link Double#doubleToRawLongBits}, respectively).
3496      * @param viewArrayClass the view array class, with a component type of
3497      * type {@code T}
3498      * @param byteOrder the endianness of the view array elements, as
3499      * stored in the underlying {@code byte} array
3500      * @return a VarHandle giving access to elements of a {@code byte[]} array
3501      * viewed as if elements corresponding to the components type of the view
3502      * array class
3503      * @throws NullPointerException if viewArrayClass or byteOrder is null
3504      * @throws IllegalArgumentException if viewArrayClass is not an array type
3505      * @throws UnsupportedOperationException if the component type of
3506      * viewArrayClass is not supported as a variable type
3507      * @since 9
3508      */
3509     public static
3510     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
3511                                      ByteOrder byteOrder) throws IllegalArgumentException {
3512         Objects.requireNonNull(byteOrder);
3513         return VarHandles.byteArrayViewHandle(viewArrayClass,
3514                                               byteOrder == ByteOrder.BIG_ENDIAN);
3515     }
3516 
3517     /**
3518      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
3519      * viewed as if it were an array of elements of a different primitive
3520      * component type to that of {@code byte}, such as {@code int[]} or
3521      * {@code long[]}.
3522      * The VarHandle's variable type is the component type of
3523      * {@code viewArrayClass} and the list of coordinate types is
3524      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
3525      * corresponds to an argument that is an index into a {@code byte[]} array.
3526      * The returned VarHandle accesses bytes at an index in a
3527      * {@code ByteBuffer}, composing bytes to or from a value of the component
3528      * type of {@code viewArrayClass} according to the given endianness.
3529      * <p>
3530      * The supported component types (variables types) are {@code short},
3531      * {@code char}, {@code int}, {@code long}, {@code float} and
3532      * {@code double}.
3533      * <p>
3534      * Access will result in a {@code ReadOnlyBufferException} for anything
3535      * other than the read access modes if the {@code ByteBuffer} is read-only.
3536      * <p>
3537      * Access of bytes at a given index will result in an
3538      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3539      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
3540      * {@code T}.
3541      * <p>
3542      * Access of bytes at an index may be aligned or misaligned for {@code T},
3543      * with respect to the underlying memory address, {@code A} say, associated
3544      * with the {@code ByteBuffer} and index.
3545      * If access is misaligned then access for anything other than the
3546      * {@code get} and {@code set} access modes will result in an
3547      * {@code IllegalStateException}.  In such cases atomic access is only
3548      * guaranteed with respect to the largest power of two that divides the GCD
3549      * of {@code A} and the size (in bytes) of {@code T}.
3550      * If access is aligned then following access modes are supported and are
3551      * guaranteed to support atomic access:
3552      * <ul>
3553      * <li>read write access modes for all {@code T}, with the exception of
3554      *     access modes {@code get} and {@code set} for {@code long} and
3555      *     {@code double} on 32-bit platforms.
3556      * <li>atomic update access modes for {@code int}, {@code long},
3557      *     {@code float} or {@code double}.
3558      *     (Future major platform releases of the JDK may support additional
3559      *     types for certain currently unsupported access modes.)
3560      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3561      *     (Future major platform releases of the JDK may support additional
3562      *     numeric types for certain currently unsupported access modes.)
3563      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3564      *     (Future major platform releases of the JDK may support additional
3565      *     numeric types for certain currently unsupported access modes.)
3566      * </ul>
3567      * <p>
3568      * Misaligned access, and therefore atomicity guarantees, may be determined
3569      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
3570      * {@code index}, {@code T} and it's corresponding boxed type,
3571      * {@code T_BOX}, as follows:
3572      * <pre>{@code
3573      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3574      * ByteBuffer bb = ...
3575      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
3576      * boolean isMisaligned = misalignedAtIndex != 0;
3577      * }</pre>
3578      * <p>
3579      * If the variable type is {@code float} or {@code double} then atomic
3580      * update access modes compare values using their bitwise representation
3581      * (see {@link Float#floatToRawIntBits} and
3582      * {@link Double#doubleToRawLongBits}, respectively).
3583      * @param viewArrayClass the view array class, with a component type of
3584      * type {@code T}
3585      * @param byteOrder the endianness of the view array elements, as
3586      * stored in the underlying {@code ByteBuffer} (Note this overrides the
3587      * endianness of a {@code ByteBuffer})
3588      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
3589      * viewed as if elements corresponding to the components type of the view
3590      * array class
3591      * @throws NullPointerException if viewArrayClass or byteOrder is null
3592      * @throws IllegalArgumentException if viewArrayClass is not an array type
3593      * @throws UnsupportedOperationException if the component type of
3594      * viewArrayClass is not supported as a variable type
3595      * @since 9
3596      */
3597     public static
3598     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
3599                                       ByteOrder byteOrder) throws IllegalArgumentException {
3600         Objects.requireNonNull(byteOrder);
3601         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
3602                                                    byteOrder == ByteOrder.BIG_ENDIAN);
3603     }
3604 
3605 
3606     /// method handle invocation (reflective style)
3607 
3608     /**
3609      * Produces a method handle which will invoke any method handle of the
3610      * given {@code type}, with a given number of trailing arguments replaced by
3611      * a single trailing {@code Object[]} array.
3612      * The resulting invoker will be a method handle with the following
3613      * arguments:
3614      * <ul>
3615      * <li>a single {@code MethodHandle} target
3616      * <li>zero or more leading values (counted by {@code leadingArgCount})
3617      * <li>an {@code Object[]} array containing trailing arguments
3618      * </ul>
3619      * <p>
3620      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
3621      * the indicated {@code type}.
3622      * That is, if the target is exactly of the given {@code type}, it will behave
3623      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
3624      * is used to convert the target to the required {@code type}.
3625      * <p>
3626      * The type of the returned invoker will not be the given {@code type}, but rather
3627      * will have all parameters except the first {@code leadingArgCount}
3628      * replaced by a single array of type {@code Object[]}, which will be
3629      * the final parameter.
3630      * <p>
3631      * Before invoking its target, the invoker will spread the final array, apply
3632      * reference casts as necessary, and unbox and widen primitive arguments.
3633      * If, when the invoker is called, the supplied array argument does
3634      * not have the correct number of elements, the invoker will throw
3635      * an {@link IllegalArgumentException} instead of invoking the target.
3636      * <p>
3637      * This method is equivalent to the following code (though it may be more efficient):
3638      * <blockquote><pre>{@code
3639 MethodHandle invoker = MethodHandles.invoker(type);
3640 int spreadArgCount = type.parameterCount() - leadingArgCount;
3641 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
3642 return invoker;
3643      * }</pre></blockquote>
3644      * This method throws no reflective or security exceptions.
3645      * @param type the desired target type
3646      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
3647      * @return a method handle suitable for invoking any method handle of the given type
3648      * @throws NullPointerException if {@code type} is null
3649      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
3650      *                  the range from 0 to {@code type.parameterCount()} inclusive,
3651      *                  or if the resulting method handle's type would have
3652      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3653      */
3654     public static
3655     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
3656         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
3657             throw newIllegalArgumentException("bad argument count", leadingArgCount);
3658         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
3659         return type.invokers().spreadInvoker(leadingArgCount);
3660     }
3661 
3662     /**
3663      * Produces a special <em>invoker method handle</em> which can be used to
3664      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
3665      * The resulting invoker will have a type which is
3666      * exactly equal to the desired type, except that it will accept
3667      * an additional leading argument of type {@code MethodHandle}.
3668      * <p>
3669      * This method is equivalent to the following code (though it may be more efficient):
3670      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
3671      *
3672      * <p style="font-size:smaller;">
3673      * <em>Discussion:</em>
3674      * Invoker method handles can be useful when working with variable method handles
3675      * of unknown types.
3676      * For example, to emulate an {@code invokeExact} call to a variable method
3677      * handle {@code M}, extract its type {@code T},
3678      * look up the invoker method {@code X} for {@code T},
3679      * and call the invoker method, as {@code X.invoke(T, A...)}.
3680      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
3681      * is unknown.)
3682      * If spreading, collecting, or other argument transformations are required,
3683      * they can be applied once to the invoker {@code X} and reused on many {@code M}
3684      * method handle values, as long as they are compatible with the type of {@code X}.
3685      * <p style="font-size:smaller;">
3686      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3687      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3688      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3689      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3690      * <p>
3691      * This method throws no reflective or security exceptions.
3692      * @param type the desired target type
3693      * @return a method handle suitable for invoking any method handle of the given type
3694      * @throws IllegalArgumentException if the resulting method handle's type would have
3695      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3696      */
3697     public static
3698     MethodHandle exactInvoker(MethodType type) {
3699         return type.invokers().exactInvoker();
3700     }
3701 
3702     /**
3703      * Produces a special <em>invoker method handle</em> which can be used to
3704      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
3705      * The resulting invoker will have a type which is
3706      * exactly equal to the desired type, except that it will accept
3707      * an additional leading argument of type {@code MethodHandle}.
3708      * <p>
3709      * Before invoking its target, if the target differs from the expected type,
3710      * the invoker will apply reference casts as
3711      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
3712      * Similarly, the return value will be converted as necessary.
3713      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
3714      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
3715      * <p>
3716      * This method is equivalent to the following code (though it may be more efficient):
3717      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
3718      * <p style="font-size:smaller;">
3719      * <em>Discussion:</em>
3720      * A {@linkplain MethodType#genericMethodType general method type} is one which
3721      * mentions only {@code Object} arguments and return values.
3722      * An invoker for such a type is capable of calling any method handle
3723      * of the same arity as the general type.
3724      * <p style="font-size:smaller;">
3725      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3726      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3727      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3728      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3729      * <p>
3730      * This method throws no reflective or security exceptions.
3731      * @param type the desired target type
3732      * @return a method handle suitable for invoking any method handle convertible to the given type
3733      * @throws IllegalArgumentException if the resulting method handle's type would have
3734      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3735      */
3736     public static
3737     MethodHandle invoker(MethodType type) {
3738         return type.invokers().genericInvoker();
3739     }
3740 
3741     /**
3742      * Produces a special <em>invoker method handle</em> which can be used to
3743      * invoke a signature-polymorphic access mode method on any VarHandle whose
3744      * associated access mode type is compatible with the given type.
3745      * The resulting invoker will have a type which is exactly equal to the
3746      * desired given type, except that it will accept an additional leading
3747      * argument of type {@code VarHandle}.
3748      *
3749      * @param accessMode the VarHandle access mode
3750      * @param type the desired target type
3751      * @return a method handle suitable for invoking an access mode method of
3752      *         any VarHandle whose access mode type is of the given type.
3753      * @since 9
3754      */
3755     static public
3756     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3757         return type.invokers().varHandleMethodExactInvoker(accessMode);
3758     }
3759 
3760     /**
3761      * Produces a special <em>invoker method handle</em> which can be used to
3762      * invoke a signature-polymorphic access mode method on any VarHandle whose
3763      * associated access mode type is compatible with the given type.
3764      * The resulting invoker will have a type which is exactly equal to the
3765      * desired given type, except that it will accept an additional leading
3766      * argument of type {@code VarHandle}.
3767      * <p>
3768      * Before invoking its target, if the access mode type differs from the
3769      * desired given type, the invoker will apply reference casts as necessary
3770      * and box, unbox, or widen primitive values, as if by
3771      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
3772      * converted as necessary.
3773      * <p>
3774      * This method is equivalent to the following code (though it may be more
3775      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
3776      *
3777      * @param accessMode the VarHandle access mode
3778      * @param type the desired target type
3779      * @return a method handle suitable for invoking an access mode method of
3780      *         any VarHandle whose access mode type is convertible to the given
3781      *         type.
3782      * @since 9
3783      */
3784     static public
3785     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3786         return type.invokers().varHandleMethodInvoker(accessMode);
3787     }
3788 
3789     static /*non-public*/
3790     MethodHandle basicInvoker(MethodType type) {
3791         return type.invokers().basicInvoker();
3792     }
3793 
3794      /// method handle modification (creation from other method handles)
3795 
3796     /**
3797      * Produces a method handle which adapts the type of the
3798      * given method handle to a new type by pairwise argument and return type conversion.
3799      * The original type and new type must have the same number of arguments.
3800      * The resulting method handle is guaranteed to report a type
3801      * which is equal to the desired new type.
3802      * <p>
3803      * If the original type and new type are equal, returns target.
3804      * <p>
3805      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3806      * and some additional conversions are also applied if those conversions fail.
3807      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3808      * if possible, before or instead of any conversions done by {@code asType}:
3809      * <ul>
3810      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3811      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3812      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3813      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3814      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3815      *     (This treatment follows the usage of the bytecode verifier.)
3816      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3817      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3818      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3819      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3820      *     then a Java casting conversion (JLS 5.5) is applied.
3821      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3822      *     widening and/or narrowing.)
3823      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3824      *     conversion will be applied at runtime, possibly followed
3825      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3826      *     possibly followed by a conversion from byte to boolean by testing
3827      *     the low-order bit.
3828      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3829      *     and if the reference is null at runtime, a zero value is introduced.
3830      * </ul>
3831      * @param target the method handle to invoke after arguments are retyped
3832      * @param newType the expected type of the new method handle
3833      * @return a method handle which delegates to the target after performing
3834      *           any necessary argument conversions, and arranges for any
3835      *           necessary return value conversions
3836      * @throws NullPointerException if either argument is null
3837      * @throws WrongMethodTypeException if the conversion cannot be made
3838      * @see MethodHandle#asType
3839      */
3840     public static
3841     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3842         explicitCastArgumentsChecks(target, newType);
3843         // use the asTypeCache when possible:
3844         MethodType oldType = target.type();
3845         if (oldType == newType)  return target;
3846         if (oldType.explicitCastEquivalentToAsType(newType)) {
3847             return target.asFixedArity().asType(newType);
3848         }
3849         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3850     }
3851 
3852     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3853         if (target.type().parameterCount() != newType.parameterCount()) {
3854             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3855         }
3856     }
3857 
3858     /**
3859      * Produces a method handle which adapts the calling sequence of the
3860      * given method handle to a new type, by reordering the arguments.
3861      * The resulting method handle is guaranteed to report a type
3862      * which is equal to the desired new type.
3863      * <p>
3864      * The given array controls the reordering.
3865      * Call {@code #I} the number of incoming parameters (the value
3866      * {@code newType.parameterCount()}, and call {@code #O} the number
3867      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3868      * Then the length of the reordering array must be {@code #O},
3869      * and each element must be a non-negative number less than {@code #I}.
3870      * For every {@code N} less than {@code #O}, the {@code N}-th
3871      * outgoing argument will be taken from the {@code I}-th incoming
3872      * argument, where {@code I} is {@code reorder[N]}.
3873      * <p>
3874      * No argument or return value conversions are applied.
3875      * The type of each incoming argument, as determined by {@code newType},
3876      * must be identical to the type of the corresponding outgoing parameter
3877      * or parameters in the target method handle.
3878      * The return type of {@code newType} must be identical to the return
3879      * type of the original target.
3880      * <p>
3881      * The reordering array need not specify an actual permutation.
3882      * An incoming argument will be duplicated if its index appears
3883      * more than once in the array, and an incoming argument will be dropped
3884      * if its index does not appear in the array.
3885      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3886      * incoming arguments which are not mentioned in the reordering array
3887      * may be of any type, as determined only by {@code newType}.
3888      * <blockquote><pre>{@code
3889 import static java.lang.invoke.MethodHandles.*;
3890 import static java.lang.invoke.MethodType.*;
3891 ...
3892 MethodType intfn1 = methodType(int.class, int.class);
3893 MethodType intfn2 = methodType(int.class, int.class, int.class);
3894 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3895 assert(sub.type().equals(intfn2));
3896 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3897 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3898 assert((int)rsub.invokeExact(1, 100) == 99);
3899 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3900 assert(add.type().equals(intfn2));
3901 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3902 assert(twice.type().equals(intfn1));
3903 assert((int)twice.invokeExact(21) == 42);
3904      * }</pre></blockquote>
3905      * <p>
3906      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3907      * variable-arity method handle}, even if the original target method handle was.
3908      * @param target the method handle to invoke after arguments are reordered
3909      * @param newType the expected type of the new method handle
3910      * @param reorder an index array which controls the reordering
3911      * @return a method handle which delegates to the target after it
3912      *           drops unused arguments and moves and/or duplicates the other arguments
3913      * @throws NullPointerException if any argument is null
3914      * @throws IllegalArgumentException if the index array length is not equal to
3915      *                  the arity of the target, or if any index array element
3916      *                  not a valid index for a parameter of {@code newType},
3917      *                  or if two corresponding parameter types in
3918      *                  {@code target.type()} and {@code newType} are not identical,
3919      */
3920     public static
3921     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3922         reorder = reorder.clone();  // get a private copy
3923         MethodType oldType = target.type();
3924         permuteArgumentChecks(reorder, newType, oldType);
3925         // first detect dropped arguments and handle them separately
3926         int[] originalReorder = reorder;
3927         BoundMethodHandle result = target.rebind();
3928         LambdaForm form = result.form;
3929         int newArity = newType.parameterCount();
3930         // Normalize the reordering into a real permutation,
3931         // by removing duplicates and adding dropped elements.
3932         // This somewhat improves lambda form caching, as well
3933         // as simplifying the transform by breaking it up into steps.
3934         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3935             if (ddIdx > 0) {
3936                 // We found a duplicated entry at reorder[ddIdx].
3937                 // Example:  (x,y,z)->asList(x,y,z)
3938                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3939                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3940                 // The starred element corresponds to the argument
3941                 // deleted by the dupArgumentForm transform.
3942                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3943                 boolean killFirst = false;
3944                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3945                     // Set killFirst if the dup is larger than an intervening position.
3946                     // This will remove at least one inversion from the permutation.
3947                     if (dupVal > val) killFirst = true;
3948                 }
3949                 if (!killFirst) {
3950                     srcPos = dstPos;
3951                     dstPos = ddIdx;
3952                 }
3953                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3954                 assert (reorder[srcPos] == reorder[dstPos]);
3955                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3956                 // contract the reordering by removing the element at dstPos
3957                 int tailPos = dstPos + 1;
3958                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3959                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3960             } else {
3961                 int dropVal = ~ddIdx, insPos = 0;
3962                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3963                     // Find first element of reorder larger than dropVal.
3964                     // This is where we will insert the dropVal.
3965                     insPos += 1;
3966                 }
3967                 Class<?> ptype = newType.parameterType(dropVal);
3968                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3969                 oldType = oldType.insertParameterTypes(insPos, ptype);
3970                 // expand the reordering by inserting an element at insPos
3971                 int tailPos = insPos + 1;
3972                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3973                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3974                 reorder[insPos] = dropVal;
3975             }
3976             assert (permuteArgumentChecks(reorder, newType, oldType));
3977         }
3978         assert (reorder.length == newArity);  // a perfect permutation
3979         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3980         form = form.editor().permuteArgumentsForm(1, reorder);
3981         if (newType == result.type() && form == result.internalForm())
3982             return result;
3983         return result.copyWith(newType, form);
3984     }
3985 
3986     /**
3987      * Return an indication of any duplicate or omission in reorder.
3988      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3989      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3990      * Otherwise, return zero.
3991      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3992      */
3993     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3994         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3995         if (newArity < BIT_LIMIT) {
3996             long mask = 0;
3997             for (int i = 0; i < reorder.length; i++) {
3998                 int arg = reorder[i];
3999                 if (arg >= newArity) {
4000                     return reorder.length;
4001                 }
4002                 long bit = 1L << arg;
4003                 if ((mask & bit) != 0) {
4004                     return i;  // >0 indicates a dup
4005                 }
4006                 mask |= bit;
4007             }
4008             if (mask == (1L << newArity) - 1) {
4009                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
4010                 return 0;
4011             }
4012             // find first zero
4013             long zeroBit = Long.lowestOneBit(~mask);
4014             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
4015             assert(zeroPos <= newArity);
4016             if (zeroPos == newArity) {
4017                 return 0;
4018             }
4019             return ~zeroPos;
4020         } else {
4021             // same algorithm, different bit set
4022             BitSet mask = new BitSet(newArity);
4023             for (int i = 0; i < reorder.length; i++) {
4024                 int arg = reorder[i];
4025                 if (arg >= newArity) {
4026                     return reorder.length;
4027                 }
4028                 if (mask.get(arg)) {
4029                     return i;  // >0 indicates a dup
4030                 }
4031                 mask.set(arg);
4032             }
4033             int zeroPos = mask.nextClearBit(0);
4034             assert(zeroPos <= newArity);
4035             if (zeroPos == newArity) {
4036                 return 0;
4037             }
4038             return ~zeroPos;
4039         }
4040     }
4041 
4042     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
4043         if (newType.returnType() != oldType.returnType())
4044             throw newIllegalArgumentException("return types do not match",
4045                     oldType, newType);
4046         if (reorder.length == oldType.parameterCount()) {
4047             int limit = newType.parameterCount();
4048             boolean bad = false;
4049             for (int j = 0; j < reorder.length; j++) {
4050                 int i = reorder[j];
4051                 if (i < 0 || i >= limit) {
4052                     bad = true; break;
4053                 }
4054                 Class<?> src = newType.parameterType(i);
4055                 Class<?> dst = oldType.parameterType(j);
4056                 if (src != dst)
4057                     throw newIllegalArgumentException("parameter types do not match after reorder",
4058                             oldType, newType);
4059             }
4060             if (!bad)  return true;
4061         }
4062         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
4063     }
4064 
4065     /**
4066      * Produces a method handle of the requested return type which returns the given
4067      * constant value every time it is invoked.
4068      * <p>
4069      * Before the method handle is returned, the passed-in value is converted to the requested type.
4070      * If the requested type is primitive, widening primitive conversions are attempted,
4071      * else reference conversions are attempted.
4072      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
4073      * @param type the return type of the desired method handle
4074      * @param value the value to return
4075      * @return a method handle of the given return type and no arguments, which always returns the given value
4076      * @throws NullPointerException if the {@code type} argument is null
4077      * @throws ClassCastException if the value cannot be converted to the required return type
4078      * @throws IllegalArgumentException if the given type is {@code void.class}
4079      */
4080     public static
4081     MethodHandle constant(Class<?> type, Object value) {
4082         if (type.isPrimitive()) {
4083             if (type == void.class)
4084                 throw newIllegalArgumentException("void type");
4085             Wrapper w = Wrapper.forPrimitiveType(type);
4086             value = w.convert(value, type);
4087             if (w.zero().equals(value))
4088                 return zero(w, type);
4089             return insertArguments(identity(type), 0, value);
4090         } else {
4091             if (value == null)
4092                 return zero(Wrapper.OBJECT, type);
4093             return identity(type).bindTo(value);
4094         }
4095     }
4096 
4097     /**
4098      * Produces a method handle which returns its sole argument when invoked.
4099      * @param type the type of the sole parameter and return value of the desired method handle
4100      * @return a unary method handle which accepts and returns the given type
4101      * @throws NullPointerException if the argument is null
4102      * @throws IllegalArgumentException if the given type is {@code void.class}
4103      */
4104     public static
4105     MethodHandle identity(Class<?> type) {
4106         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
4107         int pos = btw.ordinal();
4108         MethodHandle ident = IDENTITY_MHS[pos];
4109         if (ident == null) {
4110             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
4111         }
4112         if (ident.type().returnType() == type)
4113             return ident;
4114         // something like identity(Foo.class); do not bother to intern these
4115         assert (btw == Wrapper.OBJECT);
4116         return makeIdentity(type);
4117     }
4118 
4119     /**
4120      * Produces a constant method handle of the requested return type which
4121      * returns the default value for that type every time it is invoked.
4122      * The resulting constant method handle will have no side effects.
4123      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
4124      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
4125      * since {@code explicitCastArguments} converts {@code null} to default values.
4126      * @param type the expected return type of the desired method handle
4127      * @return a constant method handle that takes no arguments
4128      *         and returns the default value of the given type (or void, if the type is void)
4129      * @throws NullPointerException if the argument is null
4130      * @see MethodHandles#constant
4131      * @see MethodHandles#empty
4132      * @see MethodHandles#explicitCastArguments
4133      * @since 9
4134      */
4135     public static MethodHandle zero(Class<?> type) {
4136         Objects.requireNonNull(type);
4137         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
4138     }
4139 
4140     private static MethodHandle identityOrVoid(Class<?> type) {
4141         return type == void.class ? zero(type) : identity(type);
4142     }
4143 
4144     /**
4145      * Produces a method handle of the requested type which ignores any arguments, does nothing,
4146      * and returns a suitable default depending on the return type.
4147      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
4148      * <p>The returned method handle is equivalent to
4149      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
4150      *
4151      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
4152      * {@code guardWithTest(pred, target, empty(target.type())}.
4153      * @param type the type of the desired method handle
4154      * @return a constant method handle of the given type, which returns a default value of the given return type
4155      * @throws NullPointerException if the argument is null
4156      * @see MethodHandles#zero
4157      * @see MethodHandles#constant
4158      * @since 9
4159      */
4160     public static  MethodHandle empty(MethodType type) {
4161         Objects.requireNonNull(type);
4162         return dropArguments(zero(type.returnType()), 0, type.parameterList());
4163     }
4164 
4165     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
4166     private static MethodHandle makeIdentity(Class<?> ptype) {
4167         MethodType mtype = methodType(ptype, ptype);
4168         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
4169         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
4170     }
4171 
4172     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
4173         int pos = btw.ordinal();
4174         MethodHandle zero = ZERO_MHS[pos];
4175         if (zero == null) {
4176             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
4177         }
4178         if (zero.type().returnType() == rtype)
4179             return zero;
4180         assert(btw == Wrapper.OBJECT);
4181         return makeZero(rtype);
4182     }
4183     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
4184     private static MethodHandle makeZero(Class<?> rtype) {
4185         MethodType mtype = methodType(rtype);
4186         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
4187         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
4188     }
4189 
4190     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
4191         // Simulate a CAS, to avoid racy duplication of results.
4192         MethodHandle prev = cache[pos];
4193         if (prev != null) return prev;
4194         return cache[pos] = value;
4195     }
4196 
4197     /**
4198      * Provides a target method handle with one or more <em>bound arguments</em>
4199      * in advance of the method handle's invocation.
4200      * The formal parameters to the target corresponding to the bound
4201      * arguments are called <em>bound parameters</em>.
4202      * Returns a new method handle which saves away the bound arguments.
4203      * When it is invoked, it receives arguments for any non-bound parameters,
4204      * binds the saved arguments to their corresponding parameters,
4205      * and calls the original target.
4206      * <p>
4207      * The type of the new method handle will drop the types for the bound
4208      * parameters from the original target type, since the new method handle
4209      * will no longer require those arguments to be supplied by its callers.
4210      * <p>
4211      * Each given argument object must match the corresponding bound parameter type.
4212      * If a bound parameter type is a primitive, the argument object
4213      * must be a wrapper, and will be unboxed to produce the primitive value.
4214      * <p>
4215      * The {@code pos} argument selects which parameters are to be bound.
4216      * It may range between zero and <i>N-L</i> (inclusively),
4217      * where <i>N</i> is the arity of the target method handle
4218      * and <i>L</i> is the length of the values array.
4219      * <p>
4220      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4221      * variable-arity method handle}, even if the original target method handle was.
4222      * @param target the method handle to invoke after the argument is inserted
4223      * @param pos where to insert the argument (zero for the first)
4224      * @param values the series of arguments to insert
4225      * @return a method handle which inserts an additional argument,
4226      *         before calling the original method handle
4227      * @throws NullPointerException if the target or the {@code values} array is null
4228      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
4229      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
4230      *         is the length of the values array.
4231      * @throws ClassCastException if an argument does not match the corresponding bound parameter
4232      *         type.
4233      * @see MethodHandle#bindTo
4234      */
4235     public static
4236     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
4237         int insCount = values.length;
4238         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
4239         if (insCount == 0)  return target;
4240         BoundMethodHandle result = target.rebind();
4241         for (int i = 0; i < insCount; i++) {
4242             Object value = values[i];
4243             Class<?> ptype = ptypes[pos+i];
4244             if (ptype.isPrimitive()) {
4245                 result = insertArgumentPrimitive(result, pos, ptype, value);
4246             } else {
4247                 value = ptype.cast(value);  // throw CCE if needed
4248                 result = result.bindArgumentL(pos, value);
4249             }
4250         }
4251         return result;
4252     }
4253 
4254     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
4255                                                              Class<?> ptype, Object value) {
4256         Wrapper w = Wrapper.forPrimitiveType(ptype);
4257         // perform unboxing and/or primitive conversion
4258         value = w.convert(value, ptype);
4259         switch (w) {
4260         case INT:     return result.bindArgumentI(pos, (int)value);
4261         case LONG:    return result.bindArgumentJ(pos, (long)value);
4262         case FLOAT:   return result.bindArgumentF(pos, (float)value);
4263         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
4264         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
4265         }
4266     }
4267 
4268     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
4269         MethodType oldType = target.type();
4270         int outargs = oldType.parameterCount();
4271         int inargs  = outargs - insCount;
4272         if (inargs < 0)
4273             throw newIllegalArgumentException("too many values to insert");
4274         if (pos < 0 || pos > inargs)
4275             throw newIllegalArgumentException("no argument type to append");
4276         return oldType.ptypes();
4277     }
4278 
4279     /**
4280      * Produces a method handle which will discard some dummy arguments
4281      * before calling some other specified <i>target</i> method handle.
4282      * The type of the new method handle will be the same as the target's type,
4283      * except it will also include the dummy argument types,
4284      * at some given position.
4285      * <p>
4286      * The {@code pos} argument may range between zero and <i>N</i>,
4287      * where <i>N</i> is the arity of the target.
4288      * If {@code pos} is zero, the dummy arguments will precede
4289      * the target's real arguments; if {@code pos} is <i>N</i>
4290      * they will come after.
4291      * <p>
4292      * <b>Example:</b>
4293      * <blockquote><pre>{@code
4294 import static java.lang.invoke.MethodHandles.*;
4295 import static java.lang.invoke.MethodType.*;
4296 ...
4297 MethodHandle cat = lookup().findVirtual(String.class,
4298   "concat", methodType(String.class, String.class));
4299 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4300 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
4301 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
4302 assertEquals(bigType, d0.type());
4303 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
4304      * }</pre></blockquote>
4305      * <p>
4306      * This method is also equivalent to the following code:
4307      * <blockquote><pre>
4308      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
4309      * </pre></blockquote>
4310      * @param target the method handle to invoke after the arguments are dropped
4311      * @param valueTypes the type(s) of the argument(s) to drop
4312      * @param pos position of first argument to drop (zero for the leftmost)
4313      * @return a method handle which drops arguments of the given types,
4314      *         before calling the original method handle
4315      * @throws NullPointerException if the target is null,
4316      *                              or if the {@code valueTypes} list or any of its elements is null
4317      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4318      *                  or if {@code pos} is negative or greater than the arity of the target,
4319      *                  or if the new method handle's type would have too many parameters
4320      */
4321     public static
4322     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4323         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
4324     }
4325 
4326     private static List<Class<?>> copyTypes(Object[] array) {
4327         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
4328     }
4329 
4330     private static
4331     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4332         MethodType oldType = target.type();  // get NPE
4333         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
4334         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
4335         if (dropped == 0)  return target;
4336         BoundMethodHandle result = target.rebind();
4337         LambdaForm lform = result.form;
4338         int insertFormArg = 1 + pos;
4339         for (Class<?> ptype : valueTypes) {
4340             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
4341         }
4342         result = result.copyWith(newType, lform);
4343         return result;
4344     }
4345 
4346     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
4347         int dropped = valueTypes.size();
4348         MethodType.checkSlotCount(dropped);
4349         int outargs = oldType.parameterCount();
4350         int inargs  = outargs + dropped;
4351         if (pos < 0 || pos > outargs)
4352             throw newIllegalArgumentException("no argument type to remove"
4353                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
4354                     );
4355         return dropped;
4356     }
4357 
4358     /**
4359      * Produces a method handle which will discard some dummy arguments
4360      * before calling some other specified <i>target</i> method handle.
4361      * The type of the new method handle will be the same as the target's type,
4362      * except it will also include the dummy argument types,
4363      * at some given position.
4364      * <p>
4365      * The {@code pos} argument may range between zero and <i>N</i>,
4366      * where <i>N</i> is the arity of the target.
4367      * If {@code pos} is zero, the dummy arguments will precede
4368      * the target's real arguments; if {@code pos} is <i>N</i>
4369      * they will come after.
4370      * @apiNote
4371      * <blockquote><pre>{@code
4372 import static java.lang.invoke.MethodHandles.*;
4373 import static java.lang.invoke.MethodType.*;
4374 ...
4375 MethodHandle cat = lookup().findVirtual(String.class,
4376   "concat", methodType(String.class, String.class));
4377 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4378 MethodHandle d0 = dropArguments(cat, 0, String.class);
4379 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
4380 MethodHandle d1 = dropArguments(cat, 1, String.class);
4381 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
4382 MethodHandle d2 = dropArguments(cat, 2, String.class);
4383 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
4384 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
4385 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
4386      * }</pre></blockquote>
4387      * <p>
4388      * This method is also equivalent to the following code:
4389      * <blockquote><pre>
4390      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
4391      * </pre></blockquote>
4392      * @param target the method handle to invoke after the arguments are dropped
4393      * @param valueTypes the type(s) of the argument(s) to drop
4394      * @param pos position of first argument to drop (zero for the leftmost)
4395      * @return a method handle which drops arguments of the given types,
4396      *         before calling the original method handle
4397      * @throws NullPointerException if the target is null,
4398      *                              or if the {@code valueTypes} array or any of its elements is null
4399      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4400      *                  or if {@code pos} is negative or greater than the arity of the target,
4401      *                  or if the new method handle's type would have
4402      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
4403      */
4404     public static
4405     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
4406         return dropArguments0(target, pos, copyTypes(valueTypes));
4407     }
4408 
4409     // private version which allows caller some freedom with error handling
4410     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
4411                                       boolean nullOnFailure) {
4412         newTypes = copyTypes(newTypes.toArray());
4413         List<Class<?>> oldTypes = target.type().parameterList();
4414         int match = oldTypes.size();
4415         if (skip != 0) {
4416             if (skip < 0 || skip > match) {
4417                 throw newIllegalArgumentException("illegal skip", skip, target);
4418             }
4419             oldTypes = oldTypes.subList(skip, match);
4420             match -= skip;
4421         }
4422         List<Class<?>> addTypes = newTypes;
4423         int add = addTypes.size();
4424         if (pos != 0) {
4425             if (pos < 0 || pos > add) {
4426                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
4427             }
4428             addTypes = addTypes.subList(pos, add);
4429             add -= pos;
4430             assert(addTypes.size() == add);
4431         }
4432         // Do not add types which already match the existing arguments.
4433         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
4434             if (nullOnFailure) {
4435                 return null;
4436             }
4437             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
4438         }
4439         addTypes = addTypes.subList(match, add);
4440         add -= match;
4441         assert(addTypes.size() == add);
4442         // newTypes:     (   P*[pos], M*[match], A*[add] )
4443         // target: ( S*[skip],        M*[match]  )
4444         MethodHandle adapter = target;
4445         if (add > 0) {
4446             adapter = dropArguments0(adapter, skip+ match, addTypes);
4447         }
4448         // adapter: (S*[skip],        M*[match], A*[add] )
4449         if (pos > 0) {
4450             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
4451         }
4452         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
4453         return adapter;
4454     }
4455 
4456     /**
4457      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
4458      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
4459      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
4460      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
4461      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
4462      * {@link #dropArguments(MethodHandle, int, Class[])}.
4463      * <p>
4464      * The resulting handle will have the same return type as the target handle.
4465      * <p>
4466      * In more formal terms, assume these two type lists:<ul>
4467      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
4468      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
4469      * {@code newTypes}.
4470      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
4471      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
4472      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
4473      * sub-list.
4474      * </ul>
4475      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
4476      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
4477      * {@link #dropArguments(MethodHandle, int, Class[])}.
4478      *
4479      * @apiNote
4480      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
4481      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
4482      * <blockquote><pre>{@code
4483 import static java.lang.invoke.MethodHandles.*;
4484 import static java.lang.invoke.MethodType.*;
4485 ...
4486 ...
4487 MethodHandle h0 = constant(boolean.class, true);
4488 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
4489 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
4490 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
4491 if (h1.type().parameterCount() < h2.type().parameterCount())
4492     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
4493 else
4494     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
4495 MethodHandle h3 = guardWithTest(h0, h1, h2);
4496 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
4497      * }</pre></blockquote>
4498      * @param target the method handle to adapt
4499      * @param skip number of targets parameters to disregard (they will be unchanged)
4500      * @param newTypes the list of types to match {@code target}'s parameter type list to
4501      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
4502      * @return a possibly adapted method handle
4503      * @throws NullPointerException if either argument is null
4504      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
4505      *         or if {@code skip} is negative or greater than the arity of the target,
4506      *         or if {@code pos} is negative or greater than the newTypes list size,
4507      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
4508      *         {@code pos}.
4509      * @since 9
4510      */
4511     public static
4512     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
4513         Objects.requireNonNull(target);
4514         Objects.requireNonNull(newTypes);
4515         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
4516     }
4517 
4518     /**
4519      * Adapts a target method handle by pre-processing
4520      * one or more of its arguments, each with its own unary filter function,
4521      * and then calling the target with each pre-processed argument
4522      * replaced by the result of its corresponding filter function.
4523      * <p>
4524      * The pre-processing is performed by one or more method handles,
4525      * specified in the elements of the {@code filters} array.
4526      * The first element of the filter array corresponds to the {@code pos}
4527      * argument of the target, and so on in sequence.
4528      * The filter functions are invoked in left to right order.
4529      * <p>
4530      * Null arguments in the array are treated as identity functions,
4531      * and the corresponding arguments left unchanged.
4532      * (If there are no non-null elements in the array, the original target is returned.)
4533      * Each filter is applied to the corresponding argument of the adapter.
4534      * <p>
4535      * If a filter {@code F} applies to the {@code N}th argument of
4536      * the target, then {@code F} must be a method handle which
4537      * takes exactly one argument.  The type of {@code F}'s sole argument
4538      * replaces the corresponding argument type of the target
4539      * in the resulting adapted method handle.
4540      * The return type of {@code F} must be identical to the corresponding
4541      * parameter type of the target.
4542      * <p>
4543      * It is an error if there are elements of {@code filters}
4544      * (null or not)
4545      * which do not correspond to argument positions in the target.
4546      * <p><b>Example:</b>
4547      * <blockquote><pre>{@code
4548 import static java.lang.invoke.MethodHandles.*;
4549 import static java.lang.invoke.MethodType.*;
4550 ...
4551 MethodHandle cat = lookup().findVirtual(String.class,
4552   "concat", methodType(String.class, String.class));
4553 MethodHandle upcase = lookup().findVirtual(String.class,
4554   "toUpperCase", methodType(String.class));
4555 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4556 MethodHandle f0 = filterArguments(cat, 0, upcase);
4557 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
4558 MethodHandle f1 = filterArguments(cat, 1, upcase);
4559 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
4560 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
4561 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
4562      * }</pre></blockquote>
4563      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4564      * denotes the return type of both the {@code target} and resulting adapter.
4565      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
4566      * of the parameters and arguments that precede and follow the filter position
4567      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
4568      * values of the filtered parameters and arguments; they also represent the
4569      * return types of the {@code filter[i]} handles. The latter accept arguments
4570      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
4571      * the resulting adapter.
4572      * <blockquote><pre>{@code
4573      * T target(P... p, A[i]... a[i], B... b);
4574      * A[i] filter[i](V[i]);
4575      * T adapter(P... p, V[i]... v[i], B... b) {
4576      *   return target(p..., filter[i](v[i])..., b...);
4577      * }
4578      * }</pre></blockquote>
4579      * <p>
4580      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4581      * variable-arity method handle}, even if the original target method handle was.
4582      *
4583      * @param target the method handle to invoke after arguments are filtered
4584      * @param pos the position of the first argument to filter
4585      * @param filters method handles to call initially on filtered arguments
4586      * @return method handle which incorporates the specified argument filtering logic
4587      * @throws NullPointerException if the target is null
4588      *                              or if the {@code filters} array is null
4589      * @throws IllegalArgumentException if a non-null element of {@code filters}
4590      *          does not match a corresponding argument type of target as described above,
4591      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
4592      *          or if the resulting method handle's type would have
4593      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4594      */
4595     public static
4596     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
4597         // In method types arguments start at index 0, while the LF
4598         // editor have the MH receiver at position 0 - adjust appropriately.
4599         final int MH_RECEIVER_OFFSET = 1;
4600         filterArgumentsCheckArity(target, pos, filters);
4601         MethodHandle adapter = target;
4602 
4603         // keep track of currently matched filters, as to optimize repeated filters
4604         int index = 0;
4605         int[] positions = new int[filters.length];
4606         MethodHandle filter = null;
4607 
4608         // process filters in reverse order so that the invocation of
4609         // the resulting adapter will invoke the filters in left-to-right order
4610         for (int i = filters.length - 1; i >= 0; --i) {
4611             MethodHandle newFilter = filters[i];
4612             if (newFilter == null) continue;  // ignore null elements of filters
4613 
4614             // flush changes on update
4615             if (filter != newFilter) {
4616                 if (filter != null) {
4617                     if (index > 1) {
4618                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4619                     } else {
4620                         adapter = filterArgument(adapter, positions[0] - 1, filter);
4621                     }
4622                 }
4623                 filter = newFilter;
4624                 index = 0;
4625             }
4626 
4627             filterArgumentChecks(target, pos + i, newFilter);
4628             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
4629         }
4630         if (index > 1) {
4631             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4632         } else if (index == 1) {
4633             adapter = filterArgument(adapter, positions[0] - 1, filter);
4634         }
4635         return adapter;
4636     }
4637 
4638     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
4639         MethodType targetType = adapter.type();
4640         MethodType filterType = filter.type();
4641         BoundMethodHandle result = adapter.rebind();
4642         Class<?> newParamType = filterType.parameterType(0);
4643 
4644         Class<?>[] ptypes = targetType.ptypes().clone();
4645         for (int pos : positions) {
4646             ptypes[pos - 1] = newParamType;
4647         }
4648         MethodType newType = MethodType.makeImpl(targetType.rtype(), ptypes, true);
4649 
4650         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
4651         return result.copyWithExtendL(newType, lform, filter);
4652     }
4653 
4654     /*non-public*/ static
4655     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
4656         filterArgumentChecks(target, pos, filter);
4657         MethodType targetType = target.type();
4658         MethodType filterType = filter.type();
4659         BoundMethodHandle result = target.rebind();
4660         Class<?> newParamType = filterType.parameterType(0);
4661         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
4662         MethodType newType = targetType.changeParameterType(pos, newParamType);
4663         result = result.copyWithExtendL(newType, lform, filter);
4664         return result;
4665     }
4666 
4667     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
4668         MethodType targetType = target.type();
4669         int maxPos = targetType.parameterCount();
4670         if (pos + filters.length > maxPos)
4671             throw newIllegalArgumentException("too many filters");
4672     }
4673 
4674     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4675         MethodType targetType = target.type();
4676         MethodType filterType = filter.type();
4677         if (filterType.parameterCount() != 1
4678             || filterType.returnType() != targetType.parameterType(pos))
4679             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4680     }
4681 
4682     /**
4683      * Adapts a target method handle by pre-processing
4684      * a sub-sequence of its arguments with a filter (another method handle).
4685      * The pre-processed arguments are replaced by the result (if any) of the
4686      * filter function.
4687      * The target is then called on the modified (usually shortened) argument list.
4688      * <p>
4689      * If the filter returns a value, the target must accept that value as
4690      * its argument in position {@code pos}, preceded and/or followed by
4691      * any arguments not passed to the filter.
4692      * If the filter returns void, the target must accept all arguments
4693      * not passed to the filter.
4694      * No arguments are reordered, and a result returned from the filter
4695      * replaces (in order) the whole subsequence of arguments originally
4696      * passed to the adapter.
4697      * <p>
4698      * The argument types (if any) of the filter
4699      * replace zero or one argument types of the target, at position {@code pos},
4700      * in the resulting adapted method handle.
4701      * The return type of the filter (if any) must be identical to the
4702      * argument type of the target at position {@code pos}, and that target argument
4703      * is supplied by the return value of the filter.
4704      * <p>
4705      * In all cases, {@code pos} must be greater than or equal to zero, and
4706      * {@code pos} must also be less than or equal to the target's arity.
4707      * <p><b>Example:</b>
4708      * <blockquote><pre>{@code
4709 import static java.lang.invoke.MethodHandles.*;
4710 import static java.lang.invoke.MethodType.*;
4711 ...
4712 MethodHandle deepToString = publicLookup()
4713   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
4714 
4715 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
4716 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
4717 
4718 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
4719 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
4720 
4721 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
4722 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
4723 assertEquals("[top, [up, down], strange]",
4724              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
4725 
4726 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
4727 assertEquals("[top, [up, down], [strange]]",
4728              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
4729 
4730 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
4731 assertEquals("[top, [[up, down, strange], charm], bottom]",
4732              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
4733      * }</pre></blockquote>
4734      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4735      * represents the return type of the {@code target} and resulting adapter.
4736      * {@code V}/{@code v} stand for the return type and value of the
4737      * {@code filter}, which are also found in the signature and arguments of
4738      * the {@code target}, respectively, unless {@code V} is {@code void}.
4739      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
4740      * and values preceding and following the collection position, {@code pos},
4741      * in the {@code target}'s signature. They also turn up in the resulting
4742      * adapter's signature and arguments, where they surround
4743      * {@code B}/{@code b}, which represent the parameter types and arguments
4744      * to the {@code filter} (if any).
4745      * <blockquote><pre>{@code
4746      * T target(A...,V,C...);
4747      * V filter(B...);
4748      * T adapter(A... a,B... b,C... c) {
4749      *   V v = filter(b...);
4750      *   return target(a...,v,c...);
4751      * }
4752      * // and if the filter has no arguments:
4753      * T target2(A...,V,C...);
4754      * V filter2();
4755      * T adapter2(A... a,C... c) {
4756      *   V v = filter2();
4757      *   return target2(a...,v,c...);
4758      * }
4759      * // and if the filter has a void return:
4760      * T target3(A...,C...);
4761      * void filter3(B...);
4762      * T adapter3(A... a,B... b,C... c) {
4763      *   filter3(b...);
4764      *   return target3(a...,c...);
4765      * }
4766      * }</pre></blockquote>
4767      * <p>
4768      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
4769      * one which first "folds" the affected arguments, and then drops them, in separate
4770      * steps as follows:
4771      * <blockquote><pre>{@code
4772      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
4773      * mh = MethodHandles.foldArguments(mh, coll); //step 1
4774      * }</pre></blockquote>
4775      * If the target method handle consumes no arguments besides than the result
4776      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
4777      * is equivalent to {@code filterReturnValue(coll, mh)}.
4778      * If the filter method handle {@code coll} consumes one argument and produces
4779      * a non-void result, then {@code collectArguments(mh, N, coll)}
4780      * is equivalent to {@code filterArguments(mh, N, coll)}.
4781      * Other equivalences are possible but would require argument permutation.
4782      * <p>
4783      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4784      * variable-arity method handle}, even if the original target method handle was.
4785      *
4786      * @param target the method handle to invoke after filtering the subsequence of arguments
4787      * @param pos the position of the first adapter argument to pass to the filter,
4788      *            and/or the target argument which receives the result of the filter
4789      * @param filter method handle to call on the subsequence of arguments
4790      * @return method handle which incorporates the specified argument subsequence filtering logic
4791      * @throws NullPointerException if either argument is null
4792      * @throws IllegalArgumentException if the return type of {@code filter}
4793      *          is non-void and is not the same as the {@code pos} argument of the target,
4794      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
4795      *          or if the resulting method handle's type would have
4796      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4797      * @see MethodHandles#foldArguments
4798      * @see MethodHandles#filterArguments
4799      * @see MethodHandles#filterReturnValue
4800      */
4801     public static
4802     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
4803         MethodType newType = collectArgumentsChecks(target, pos, filter);
4804         MethodType collectorType = filter.type();
4805         BoundMethodHandle result = target.rebind();
4806         LambdaForm lform;
4807         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
4808             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
4809             if (lform != null) {
4810                 return result.copyWith(newType, lform);
4811             }
4812         }
4813         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
4814         return result.copyWithExtendL(newType, lform, filter);
4815     }
4816 
4817     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4818         MethodType targetType = target.type();
4819         MethodType filterType = filter.type();
4820         Class<?> rtype = filterType.returnType();
4821         List<Class<?>> filterArgs = filterType.parameterList();
4822         if (rtype == void.class) {
4823             return targetType.insertParameterTypes(pos, filterArgs);
4824         }
4825         if (rtype != targetType.parameterType(pos)) {
4826             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4827         }
4828         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
4829     }
4830 
4831     /**
4832      * Adapts a target method handle by post-processing
4833      * its return value (if any) with a filter (another method handle).
4834      * The result of the filter is returned from the adapter.
4835      * <p>
4836      * If the target returns a value, the filter must accept that value as
4837      * its only argument.
4838      * If the target returns void, the filter must accept no arguments.
4839      * <p>
4840      * The return type of the filter
4841      * replaces the return type of the target
4842      * in the resulting adapted method handle.
4843      * The argument type of the filter (if any) must be identical to the
4844      * return type of the target.
4845      * <p><b>Example:</b>
4846      * <blockquote><pre>{@code
4847 import static java.lang.invoke.MethodHandles.*;
4848 import static java.lang.invoke.MethodType.*;
4849 ...
4850 MethodHandle cat = lookup().findVirtual(String.class,
4851   "concat", methodType(String.class, String.class));
4852 MethodHandle length = lookup().findVirtual(String.class,
4853   "length", methodType(int.class));
4854 System.out.println((String) cat.invokeExact("x", "y")); // xy
4855 MethodHandle f0 = filterReturnValue(cat, length);
4856 System.out.println((int) f0.invokeExact("x", "y")); // 2
4857      * }</pre></blockquote>
4858      * <p>Here is pseudocode for the resulting adapter. In the code,
4859      * {@code T}/{@code t} represent the result type and value of the
4860      * {@code target}; {@code V}, the result type of the {@code filter}; and
4861      * {@code A}/{@code a}, the types and values of the parameters and arguments
4862      * of the {@code target} as well as the resulting adapter.
4863      * <blockquote><pre>{@code
4864      * T target(A...);
4865      * V filter(T);
4866      * V adapter(A... a) {
4867      *   T t = target(a...);
4868      *   return filter(t);
4869      * }
4870      * // and if the target has a void return:
4871      * void target2(A...);
4872      * V filter2();
4873      * V adapter2(A... a) {
4874      *   target2(a...);
4875      *   return filter2();
4876      * }
4877      * // and if the filter has a void return:
4878      * T target3(A...);
4879      * void filter3(V);
4880      * void adapter3(A... a) {
4881      *   T t = target3(a...);
4882      *   filter3(t);
4883      * }
4884      * }</pre></blockquote>
4885      * <p>
4886      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4887      * variable-arity method handle}, even if the original target method handle was.
4888      * @param target the method handle to invoke before filtering the return value
4889      * @param filter method handle to call on the return value
4890      * @return method handle which incorporates the specified return value filtering logic
4891      * @throws NullPointerException if either argument is null
4892      * @throws IllegalArgumentException if the argument list of {@code filter}
4893      *          does not match the return type of target as described above
4894      */
4895     public static
4896     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4897         MethodType targetType = target.type();
4898         MethodType filterType = filter.type();
4899         filterReturnValueChecks(targetType, filterType);
4900         BoundMethodHandle result = target.rebind();
4901         BasicType rtype = BasicType.basicType(filterType.returnType());
4902         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4903         MethodType newType = targetType.changeReturnType(filterType.returnType());
4904         result = result.copyWithExtendL(newType, lform, filter);
4905         return result;
4906     }
4907 
4908     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4909         Class<?> rtype = targetType.returnType();
4910         int filterValues = filterType.parameterCount();
4911         if (filterValues == 0
4912                 ? (rtype != void.class)
4913                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4914             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4915     }
4916 
4917     /**
4918      * Adapts a target method handle by pre-processing
4919      * some of its arguments, and then calling the target with
4920      * the result of the pre-processing, inserted into the original
4921      * sequence of arguments.
4922      * <p>
4923      * The pre-processing is performed by {@code combiner}, a second method handle.
4924      * Of the arguments passed to the adapter, the first {@code N} arguments
4925      * are copied to the combiner, which is then called.
4926      * (Here, {@code N} is defined as the parameter count of the combiner.)
4927      * After this, control passes to the target, with any result
4928      * from the combiner inserted before the original {@code N} incoming
4929      * arguments.
4930      * <p>
4931      * If the combiner returns a value, the first parameter type of the target
4932      * must be identical with the return type of the combiner, and the next
4933      * {@code N} parameter types of the target must exactly match the parameters
4934      * of the combiner.
4935      * <p>
4936      * If the combiner has a void return, no result will be inserted,
4937      * and the first {@code N} parameter types of the target
4938      * must exactly match the parameters of the combiner.
4939      * <p>
4940      * The resulting adapter is the same type as the target, except that the
4941      * first parameter type is dropped,
4942      * if it corresponds to the result of the combiner.
4943      * <p>
4944      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4945      * that either the combiner or the target does not wish to receive.
4946      * If some of the incoming arguments are destined only for the combiner,
4947      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4948      * arguments will not need to be live on the stack on entry to the
4949      * target.)
4950      * <p><b>Example:</b>
4951      * <blockquote><pre>{@code
4952 import static java.lang.invoke.MethodHandles.*;
4953 import static java.lang.invoke.MethodType.*;
4954 ...
4955 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4956   "println", methodType(void.class, String.class))
4957     .bindTo(System.out);
4958 MethodHandle cat = lookup().findVirtual(String.class,
4959   "concat", methodType(String.class, String.class));
4960 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4961 MethodHandle catTrace = foldArguments(cat, trace);
4962 // also prints "boo":
4963 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4964      * }</pre></blockquote>
4965      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4966      * represents the result type of the {@code target} and resulting adapter.
4967      * {@code V}/{@code v} represent the type and value of the parameter and argument
4968      * of {@code target} that precedes the folding position; {@code V} also is
4969      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4970      * types and values of the {@code N} parameters and arguments at the folding
4971      * position. {@code B}/{@code b} represent the types and values of the
4972      * {@code target} parameters and arguments that follow the folded parameters
4973      * and arguments.
4974      * <blockquote><pre>{@code
4975      * // there are N arguments in A...
4976      * T target(V, A[N]..., B...);
4977      * V combiner(A...);
4978      * T adapter(A... a, B... b) {
4979      *   V v = combiner(a...);
4980      *   return target(v, a..., b...);
4981      * }
4982      * // and if the combiner has a void return:
4983      * T target2(A[N]..., B...);
4984      * void combiner2(A...);
4985      * T adapter2(A... a, B... b) {
4986      *   combiner2(a...);
4987      *   return target2(a..., b...);
4988      * }
4989      * }</pre></blockquote>
4990      * <p>
4991      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4992      * variable-arity method handle}, even if the original target method handle was.
4993      * @param target the method handle to invoke after arguments are combined
4994      * @param combiner method handle to call initially on the incoming arguments
4995      * @return method handle which incorporates the specified argument folding logic
4996      * @throws NullPointerException if either argument is null
4997      * @throws IllegalArgumentException if {@code combiner}'s return type
4998      *          is non-void and not the same as the first argument type of
4999      *          the target, or if the initial {@code N} argument types
5000      *          of the target
5001      *          (skipping one matching the {@code combiner}'s return type)
5002      *          are not identical with the argument types of {@code combiner}
5003      */
5004     public static
5005     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
5006         return foldArguments(target, 0, combiner);
5007     }
5008 
5009     /**
5010      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
5011      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
5012      * before the folded arguments.
5013      * <p>
5014      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
5015      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
5016      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
5017      * 0.
5018      *
5019      * @apiNote Example:
5020      * <blockquote><pre>{@code
5021     import static java.lang.invoke.MethodHandles.*;
5022     import static java.lang.invoke.MethodType.*;
5023     ...
5024     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5025     "println", methodType(void.class, String.class))
5026     .bindTo(System.out);
5027     MethodHandle cat = lookup().findVirtual(String.class,
5028     "concat", methodType(String.class, String.class));
5029     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5030     MethodHandle catTrace = foldArguments(cat, 1, trace);
5031     // also prints "jum":
5032     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5033      * }</pre></blockquote>
5034      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5035      * represents the result type of the {@code target} and resulting adapter.
5036      * {@code V}/{@code v} represent the type and value of the parameter and argument
5037      * of {@code target} that precedes the folding position; {@code V} also is
5038      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5039      * types and values of the {@code N} parameters and arguments at the folding
5040      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
5041      * and values of the {@code target} parameters and arguments that precede and
5042      * follow the folded parameters and arguments starting at {@code pos},
5043      * respectively.
5044      * <blockquote><pre>{@code
5045      * // there are N arguments in A...
5046      * T target(Z..., V, A[N]..., B...);
5047      * V combiner(A...);
5048      * T adapter(Z... z, A... a, B... b) {
5049      *   V v = combiner(a...);
5050      *   return target(z..., v, a..., b...);
5051      * }
5052      * // and if the combiner has a void return:
5053      * T target2(Z..., A[N]..., B...);
5054      * void combiner2(A...);
5055      * T adapter2(Z... z, A... a, B... b) {
5056      *   combiner2(a...);
5057      *   return target2(z..., a..., b...);
5058      * }
5059      * }</pre></blockquote>
5060      * <p>
5061      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5062      * variable-arity method handle}, even if the original target method handle was.
5063      *
5064      * @param target the method handle to invoke after arguments are combined
5065      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
5066      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5067      * @param combiner method handle to call initially on the incoming arguments
5068      * @return method handle which incorporates the specified argument folding logic
5069      * @throws NullPointerException if either argument is null
5070      * @throws IllegalArgumentException if either of the following two conditions holds:
5071      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5072      *              {@code pos} of the target signature;
5073      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
5074      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
5075      *
5076      * @see #foldArguments(MethodHandle, MethodHandle)
5077      * @since 9
5078      */
5079     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
5080         MethodType targetType = target.type();
5081         MethodType combinerType = combiner.type();
5082         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
5083         BoundMethodHandle result = target.rebind();
5084         boolean dropResult = rtype == void.class;
5085         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
5086         MethodType newType = targetType;
5087         if (!dropResult) {
5088             newType = newType.dropParameterTypes(pos, pos + 1);
5089         }
5090         result = result.copyWithExtendL(newType, lform, combiner);
5091         return result;
5092     }
5093 
5094     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
5095         int foldArgs   = combinerType.parameterCount();
5096         Class<?> rtype = combinerType.returnType();
5097         int foldVals = rtype == void.class ? 0 : 1;
5098         int afterInsertPos = foldPos + foldVals;
5099         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
5100         if (ok) {
5101             for (int i = 0; i < foldArgs; i++) {
5102                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
5103                     ok = false;
5104                     break;
5105                 }
5106             }
5107         }
5108         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
5109             ok = false;
5110         if (!ok)
5111             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5112         return rtype;
5113     }
5114 
5115     /**
5116      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
5117      * of the pre-processing replacing the argument at the given position.
5118      *
5119      * @param target the method handle to invoke after arguments are combined
5120      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5121      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5122      * @param combiner method handle to call initially on the incoming arguments
5123      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5124      * @return method handle which incorporates the specified argument folding logic
5125      * @throws NullPointerException if either argument is null
5126      * @throws IllegalArgumentException if either of the following two conditions holds:
5127      *          (1) {@code combiner}'s return type is not the same as the argument type at position
5128      *              {@code pos} of the target signature;
5129      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
5130      *              not identical with the argument types of {@code combiner}.
5131      */
5132     /*non-public*/ static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5133         return argumentsWithCombiner(true, target, position, combiner, argPositions);
5134     }
5135 
5136     /**
5137      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
5138      * the pre-processing inserted into the original sequence of arguments at the given position.
5139      *
5140      * @param target the method handle to invoke after arguments are combined
5141      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5142      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5143      * @param combiner method handle to call initially on the incoming arguments
5144      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5145      * @return method handle which incorporates the specified argument folding logic
5146      * @throws NullPointerException if either argument is null
5147      * @throws IllegalArgumentException if either of the following two conditions holds:
5148      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5149      *              {@code pos} of the target signature;
5150      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
5151      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
5152      *              with the argument types of {@code combiner}.
5153      */
5154     /*non-public*/ static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5155         return argumentsWithCombiner(false, target, position, combiner, argPositions);
5156     }
5157 
5158     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5159         MethodType targetType = target.type();
5160         MethodType combinerType = combiner.type();
5161         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
5162         BoundMethodHandle result = target.rebind();
5163 
5164         MethodType newType = targetType;
5165         LambdaForm lform;
5166         if (filter) {
5167             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
5168         } else {
5169             boolean dropResult = rtype == void.class;
5170             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
5171             if (!dropResult) {
5172                 newType = newType.dropParameterTypes(position, position + 1);
5173             }
5174         }
5175         result = result.copyWithExtendL(newType, lform, combiner);
5176         return result;
5177     }
5178 
5179     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
5180         int combinerArgs = combinerType.parameterCount();
5181         if (argPos.length != combinerArgs) {
5182             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
5183         }
5184         Class<?> rtype = combinerType.returnType();
5185 
5186         for (int i = 0; i < combinerArgs; i++) {
5187             int arg = argPos[i];
5188             if (arg < 0 || arg > targetType.parameterCount()) {
5189                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
5190             }
5191             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
5192                 throw newIllegalArgumentException("target argument type at position " + arg
5193                         + " must match combiner argument type at index " + i + ": " + targetType
5194                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
5195             }
5196         }
5197         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
5198             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5199         }
5200         return rtype;
5201     }
5202 
5203     /**
5204      * Makes a method handle which adapts a target method handle,
5205      * by guarding it with a test, a boolean-valued method handle.
5206      * If the guard fails, a fallback handle is called instead.
5207      * All three method handles must have the same corresponding
5208      * argument and return types, except that the return type
5209      * of the test must be boolean, and the test is allowed
5210      * to have fewer arguments than the other two method handles.
5211      * <p>
5212      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5213      * represents the uniform result type of the three involved handles;
5214      * {@code A}/{@code a}, the types and values of the {@code target}
5215      * parameters and arguments that are consumed by the {@code test}; and
5216      * {@code B}/{@code b}, those types and values of the {@code target}
5217      * parameters and arguments that are not consumed by the {@code test}.
5218      * <blockquote><pre>{@code
5219      * boolean test(A...);
5220      * T target(A...,B...);
5221      * T fallback(A...,B...);
5222      * T adapter(A... a,B... b) {
5223      *   if (test(a...))
5224      *     return target(a..., b...);
5225      *   else
5226      *     return fallback(a..., b...);
5227      * }
5228      * }</pre></blockquote>
5229      * Note that the test arguments ({@code a...} in the pseudocode) cannot
5230      * be modified by execution of the test, and so are passed unchanged
5231      * from the caller to the target or fallback as appropriate.
5232      * @param test method handle used for test, must return boolean
5233      * @param target method handle to call if test passes
5234      * @param fallback method handle to call if test fails
5235      * @return method handle which incorporates the specified if/then/else logic
5236      * @throws NullPointerException if any argument is null
5237      * @throws IllegalArgumentException if {@code test} does not return boolean,
5238      *          or if all three method types do not match (with the return
5239      *          type of {@code test} changed to match that of the target).
5240      */
5241     public static
5242     MethodHandle guardWithTest(MethodHandle test,
5243                                MethodHandle target,
5244                                MethodHandle fallback) {
5245         MethodType gtype = test.type();
5246         MethodType ttype = target.type();
5247         MethodType ftype = fallback.type();
5248         if (!ttype.equals(ftype))
5249             throw misMatchedTypes("target and fallback types", ttype, ftype);
5250         if (gtype.returnType() != boolean.class)
5251             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
5252         List<Class<?>> targs = ttype.parameterList();
5253         test = dropArgumentsToMatch(test, 0, targs, 0, true);
5254         if (test == null) {
5255             throw misMatchedTypes("target and test types", ttype, gtype);
5256         }
5257         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
5258     }
5259 
5260     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
5261         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
5262     }
5263 
5264     /**
5265      * Makes a method handle which adapts a target method handle,
5266      * by running it inside an exception handler.
5267      * If the target returns normally, the adapter returns that value.
5268      * If an exception matching the specified type is thrown, the fallback
5269      * handle is called instead on the exception, plus the original arguments.
5270      * <p>
5271      * The target and handler must have the same corresponding
5272      * argument and return types, except that handler may omit trailing arguments
5273      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
5274      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
5275      * <p>
5276      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5277      * represents the return type of the {@code target} and {@code handler},
5278      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
5279      * the types and values of arguments to the resulting handle consumed by
5280      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
5281      * resulting handle discarded by {@code handler}.
5282      * <blockquote><pre>{@code
5283      * T target(A..., B...);
5284      * T handler(ExType, A...);
5285      * T adapter(A... a, B... b) {
5286      *   try {
5287      *     return target(a..., b...);
5288      *   } catch (ExType ex) {
5289      *     return handler(ex, a...);
5290      *   }
5291      * }
5292      * }</pre></blockquote>
5293      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5294      * be modified by execution of the target, and so are passed unchanged
5295      * from the caller to the handler, if the handler is invoked.
5296      * <p>
5297      * The target and handler must return the same type, even if the handler
5298      * always throws.  (This might happen, for instance, because the handler
5299      * is simulating a {@code finally} clause).
5300      * To create such a throwing handler, compose the handler creation logic
5301      * with {@link #throwException throwException},
5302      * in order to create a method handle of the correct return type.
5303      * @param target method handle to call
5304      * @param exType the type of exception which the handler will catch
5305      * @param handler method handle to call if a matching exception is thrown
5306      * @return method handle which incorporates the specified try/catch logic
5307      * @throws NullPointerException if any argument is null
5308      * @throws IllegalArgumentException if {@code handler} does not accept
5309      *          the given exception type, or if the method handle types do
5310      *          not match in their return types and their
5311      *          corresponding parameters
5312      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
5313      */
5314     public static
5315     MethodHandle catchException(MethodHandle target,
5316                                 Class<? extends Throwable> exType,
5317                                 MethodHandle handler) {
5318         MethodType ttype = target.type();
5319         MethodType htype = handler.type();
5320         if (!Throwable.class.isAssignableFrom(exType))
5321             throw new ClassCastException(exType.getName());
5322         if (htype.parameterCount() < 1 ||
5323             !htype.parameterType(0).isAssignableFrom(exType))
5324             throw newIllegalArgumentException("handler does not accept exception type "+exType);
5325         if (htype.returnType() != ttype.returnType())
5326             throw misMatchedTypes("target and handler return types", ttype, htype);
5327         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
5328         if (handler == null) {
5329             throw misMatchedTypes("target and handler types", ttype, htype);
5330         }
5331         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
5332     }
5333 
5334     /**
5335      * Produces a method handle which will throw exceptions of the given {@code exType}.
5336      * The method handle will accept a single argument of {@code exType},
5337      * and immediately throw it as an exception.
5338      * The method type will nominally specify a return of {@code returnType}.
5339      * The return type may be anything convenient:  It doesn't matter to the
5340      * method handle's behavior, since it will never return normally.
5341      * @param returnType the return type of the desired method handle
5342      * @param exType the parameter type of the desired method handle
5343      * @return method handle which can throw the given exceptions
5344      * @throws NullPointerException if either argument is null
5345      */
5346     public static
5347     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
5348         if (!Throwable.class.isAssignableFrom(exType))
5349             throw new ClassCastException(exType.getName());
5350         return MethodHandleImpl.throwException(methodType(returnType, exType));
5351     }
5352 
5353     /**
5354      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
5355      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
5356      * delivers the loop's result, which is the return value of the resulting handle.
5357      * <p>
5358      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
5359      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
5360      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
5361      * terms of method handles, each clause will specify up to four independent actions:<ul>
5362      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
5363      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
5364      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
5365      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
5366      * </ul>
5367      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
5368      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
5369      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
5370      * <p>
5371      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
5372      * this case. See below for a detailed description.
5373      * <p>
5374      * <em>Parameters optional everywhere:</em>
5375      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
5376      * As an exception, the init functions cannot take any {@code v} parameters,
5377      * because those values are not yet computed when the init functions are executed.
5378      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
5379      * In fact, any clause function may take no arguments at all.
5380      * <p>
5381      * <em>Loop parameters:</em>
5382      * A clause function may take all the iteration variable values it is entitled to, in which case
5383      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
5384      * with their types and values notated as {@code (A...)} and {@code (a...)}.
5385      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
5386      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
5387      * init function is automatically a loop parameter {@code a}.)
5388      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
5389      * These loop parameters act as loop-invariant values visible across the whole loop.
5390      * <p>
5391      * <em>Parameters visible everywhere:</em>
5392      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
5393      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
5394      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
5395      * Most clause functions will not need all of this information, but they will be formally connected to it
5396      * as if by {@link #dropArguments}.
5397      * <a id="astar"></a>
5398      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
5399      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
5400      * In that notation, the general form of an init function parameter list
5401      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
5402      * <p>
5403      * <em>Checking clause structure:</em>
5404      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
5405      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
5406      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
5407      * met by the inputs to the loop combinator.
5408      * <p>
5409      * <em>Effectively identical sequences:</em>
5410      * <a id="effid"></a>
5411      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
5412      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
5413      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
5414      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
5415      * that longest list.
5416      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
5417      * and the same is true if more sequences of the form {@code (V... A*)} are added.
5418      * <p>
5419      * <em>Step 0: Determine clause structure.</em><ol type="a">
5420      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
5421      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
5422      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
5423      * four. Padding takes place by appending elements to the array.
5424      * <li>Clauses with all {@code null}s are disregarded.
5425      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
5426      * </ol>
5427      * <p>
5428      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
5429      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
5430      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
5431      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
5432      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
5433      * iteration variable type.
5434      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
5435      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
5436      * </ol>
5437      * <p>
5438      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
5439      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
5440      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
5441      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
5442      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
5443      * (These types will be checked in step 2, along with all the clause function types.)
5444      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
5445      * <li>All of the collected parameter lists must be effectively identical.
5446      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
5447      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
5448      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
5449      * the "internal parameter list".
5450      * </ul>
5451      * <p>
5452      * <em>Step 1C: Determine loop return type.</em><ol type="a">
5453      * <li>Examine fini function return types, disregarding omitted fini functions.
5454      * <li>If there are no fini functions, the loop return type is {@code void}.
5455      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
5456      * type.
5457      * </ol>
5458      * <p>
5459      * <em>Step 1D: Check other types.</em><ol type="a">
5460      * <li>There must be at least one non-omitted pred function.
5461      * <li>Every non-omitted pred function must have a {@code boolean} return type.
5462      * </ol>
5463      * <p>
5464      * <em>Step 2: Determine parameter lists.</em><ol type="a">
5465      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
5466      * <li>The parameter list for init functions will be adjusted to the external parameter list.
5467      * (Note that their parameter lists are already effectively identical to this list.)
5468      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
5469      * effectively identical to the internal parameter list {@code (V... A...)}.
5470      * </ol>
5471      * <p>
5472      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
5473      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
5474      * type.
5475      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
5476      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
5477      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
5478      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
5479      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
5480      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
5481      * loop return type.
5482      * </ol>
5483      * <p>
5484      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
5485      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
5486      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
5487      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
5488      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
5489      * pad out the end of the list.
5490      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
5491      * </ol>
5492      * <p>
5493      * <em>Final observations.</em><ol type="a">
5494      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
5495      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
5496      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
5497      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
5498      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
5499      * <li>Each pair of init and step functions agrees in their return type {@code V}.
5500      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
5501      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
5502      * </ol>
5503      * <p>
5504      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
5505      * <ul>
5506      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
5507      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
5508      * (Only one {@code Pn} has to be non-{@code null}.)
5509      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
5510      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
5511      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
5512      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
5513      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
5514      * the resulting loop handle's parameter types {@code (A...)}.
5515      * </ul>
5516      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
5517      * which is natural if most of the loop computation happens in the steps.  For some loops,
5518      * the burden of computation might be heaviest in the pred functions, and so the pred functions
5519      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
5520      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
5521      * where the init functions will need the extra parameters.  For such reasons, the rules for
5522      * determining these parameters are as symmetric as possible, across all clause parts.
5523      * In general, the loop parameters function as common invariant values across the whole
5524      * loop, while the iteration variables function as common variant values, or (if there is
5525      * no step function) as internal loop invariant temporaries.
5526      * <p>
5527      * <em>Loop execution.</em><ol type="a">
5528      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
5529      * every clause function. These locals are loop invariant.
5530      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
5531      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
5532      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
5533      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
5534      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
5535      * (in argument order).
5536      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
5537      * returns {@code false}.
5538      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
5539      * sequence {@code (v...)} of loop variables.
5540      * The updated value is immediately visible to all subsequent function calls.
5541      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
5542      * (of type {@code R}) is returned from the loop as a whole.
5543      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
5544      * except by throwing an exception.
5545      * </ol>
5546      * <p>
5547      * <em>Usage tips.</em>
5548      * <ul>
5549      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
5550      * sometimes a step function only needs to observe the current value of its own variable.
5551      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
5552      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
5553      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
5554      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
5555      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
5556      * <li>If some of the clause functions are virtual methods on an instance, the instance
5557      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
5558      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
5559      * will be the first iteration variable value, and it will be easy to use virtual
5560      * methods as clause parts, since all of them will take a leading instance reference matching that value.
5561      * </ul>
5562      * <p>
5563      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
5564      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
5565      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
5566      * <blockquote><pre>{@code
5567      * V... init...(A...);
5568      * boolean pred...(V..., A...);
5569      * V... step...(V..., A...);
5570      * R fini...(V..., A...);
5571      * R loop(A... a) {
5572      *   V... v... = init...(a...);
5573      *   for (;;) {
5574      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
5575      *       v = s(v..., a...);
5576      *       if (!p(v..., a...)) {
5577      *         return f(v..., a...);
5578      *       }
5579      *     }
5580      *   }
5581      * }
5582      * }</pre></blockquote>
5583      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
5584      * to their full length, even though individual clause functions may neglect to take them all.
5585      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
5586      *
5587      * @apiNote Example:
5588      * <blockquote><pre>{@code
5589      * // iterative implementation of the factorial function as a loop handle
5590      * static int one(int k) { return 1; }
5591      * static int inc(int i, int acc, int k) { return i + 1; }
5592      * static int mult(int i, int acc, int k) { return i * acc; }
5593      * static boolean pred(int i, int acc, int k) { return i < k; }
5594      * static int fin(int i, int acc, int k) { return acc; }
5595      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5596      * // null initializer for counter, should initialize to 0
5597      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5598      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5599      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5600      * assertEquals(120, loop.invoke(5));
5601      * }</pre></blockquote>
5602      * The same example, dropping arguments and using combinators:
5603      * <blockquote><pre>{@code
5604      * // simplified implementation of the factorial function as a loop handle
5605      * static int inc(int i) { return i + 1; } // drop acc, k
5606      * static int mult(int i, int acc) { return i * acc; } //drop k
5607      * static boolean cmp(int i, int k) { return i < k; }
5608      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
5609      * // null initializer for counter, should initialize to 0
5610      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5611      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
5612      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
5613      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5614      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5615      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5616      * assertEquals(720, loop.invoke(6));
5617      * }</pre></blockquote>
5618      * A similar example, using a helper object to hold a loop parameter:
5619      * <blockquote><pre>{@code
5620      * // instance-based implementation of the factorial function as a loop handle
5621      * static class FacLoop {
5622      *   final int k;
5623      *   FacLoop(int k) { this.k = k; }
5624      *   int inc(int i) { return i + 1; }
5625      *   int mult(int i, int acc) { return i * acc; }
5626      *   boolean pred(int i) { return i < k; }
5627      *   int fin(int i, int acc) { return acc; }
5628      * }
5629      * // assume MH_FacLoop is a handle to the constructor
5630      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5631      * // null initializer for counter, should initialize to 0
5632      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5633      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
5634      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5635      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5636      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
5637      * assertEquals(5040, loop.invoke(7));
5638      * }</pre></blockquote>
5639      *
5640      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
5641      *
5642      * @return a method handle embodying the looping behavior as defined by the arguments.
5643      *
5644      * @throws IllegalArgumentException in case any of the constraints described above is violated.
5645      *
5646      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
5647      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5648      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
5649      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
5650      * @since 9
5651      */
5652     public static MethodHandle loop(MethodHandle[]... clauses) {
5653         // Step 0: determine clause structure.
5654         loopChecks0(clauses);
5655 
5656         List<MethodHandle> init = new ArrayList<>();
5657         List<MethodHandle> step = new ArrayList<>();
5658         List<MethodHandle> pred = new ArrayList<>();
5659         List<MethodHandle> fini = new ArrayList<>();
5660 
5661         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
5662             init.add(clause[0]); // all clauses have at least length 1
5663             step.add(clause.length <= 1 ? null : clause[1]);
5664             pred.add(clause.length <= 2 ? null : clause[2]);
5665             fini.add(clause.length <= 3 ? null : clause[3]);
5666         });
5667 
5668         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
5669         final int nclauses = init.size();
5670 
5671         // Step 1A: determine iteration variables (V...).
5672         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
5673         for (int i = 0; i < nclauses; ++i) {
5674             MethodHandle in = init.get(i);
5675             MethodHandle st = step.get(i);
5676             if (in == null && st == null) {
5677                 iterationVariableTypes.add(void.class);
5678             } else if (in != null && st != null) {
5679                 loopChecks1a(i, in, st);
5680                 iterationVariableTypes.add(in.type().returnType());
5681             } else {
5682                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
5683             }
5684         }
5685         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
5686                 collect(Collectors.toList());
5687 
5688         // Step 1B: determine loop parameters (A...).
5689         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
5690         loopChecks1b(init, commonSuffix);
5691 
5692         // Step 1C: determine loop return type.
5693         // Step 1D: check other types.
5694         // local variable required here; see JDK-8223553
5695         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
5696                 .map(MethodType::returnType);
5697         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
5698         loopChecks1cd(pred, fini, loopReturnType);
5699 
5700         // Step 2: determine parameter lists.
5701         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
5702         commonParameterSequence.addAll(commonSuffix);
5703         loopChecks2(step, pred, fini, commonParameterSequence);
5704 
5705         // Step 3: fill in omitted functions.
5706         for (int i = 0; i < nclauses; ++i) {
5707             Class<?> t = iterationVariableTypes.get(i);
5708             if (init.get(i) == null) {
5709                 init.set(i, empty(methodType(t, commonSuffix)));
5710             }
5711             if (step.get(i) == null) {
5712                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
5713             }
5714             if (pred.get(i) == null) {
5715                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
5716             }
5717             if (fini.get(i) == null) {
5718                 fini.set(i, empty(methodType(t, commonParameterSequence)));
5719             }
5720         }
5721 
5722         // Step 4: fill in missing parameter types.
5723         // Also convert all handles to fixed-arity handles.
5724         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
5725         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
5726         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
5727         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
5728 
5729         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
5730                 allMatch(pl -> pl.equals(commonSuffix));
5731         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
5732                 allMatch(pl -> pl.equals(commonParameterSequence));
5733 
5734         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
5735     }
5736 
5737     private static void loopChecks0(MethodHandle[][] clauses) {
5738         if (clauses == null || clauses.length == 0) {
5739             throw newIllegalArgumentException("null or no clauses passed");
5740         }
5741         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
5742             throw newIllegalArgumentException("null clauses are not allowed");
5743         }
5744         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
5745             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
5746         }
5747     }
5748 
5749     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
5750         if (in.type().returnType() != st.type().returnType()) {
5751             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
5752                     st.type().returnType());
5753         }
5754     }
5755 
5756     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
5757         final List<Class<?>> empty = List.of();
5758         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
5759                 // take only those that can contribute to a common suffix because they are longer than the prefix
5760                         map(MethodHandle::type).
5761                         filter(t -> t.parameterCount() > skipSize).
5762                         map(MethodType::parameterList).
5763                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5764         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
5765     }
5766 
5767     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
5768         final List<Class<?>> empty = List.of();
5769         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5770     }
5771 
5772     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
5773         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
5774         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
5775         return longestParameterList(Arrays.asList(longest1, longest2));
5776     }
5777 
5778     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
5779         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
5780                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
5781             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
5782                     " (common suffix: " + commonSuffix + ")");
5783         }
5784     }
5785 
5786     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
5787         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5788                 anyMatch(t -> t != loopReturnType)) {
5789             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
5790                     loopReturnType + ")");
5791         }
5792 
5793         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
5794             throw newIllegalArgumentException("no predicate found", pred);
5795         }
5796         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5797                 anyMatch(t -> t != boolean.class)) {
5798             throw newIllegalArgumentException("predicates must have boolean return type", pred);
5799         }
5800     }
5801 
5802     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
5803         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
5804                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
5805             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
5806                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
5807         }
5808     }
5809 
5810     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
5811         return hs.stream().map(h -> {
5812             int pc = h.type().parameterCount();
5813             int tpsize = targetParams.size();
5814             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
5815         }).collect(Collectors.toList());
5816     }
5817 
5818     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
5819         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
5820     }
5821 
5822     /**
5823      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
5824      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5825      * <p>
5826      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5827      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
5828      * evaluates to {@code true}).
5829      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
5830      * <p>
5831      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5832      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5833      * and updated with the value returned from its invocation. The result of loop execution will be
5834      * the final value of the additional loop-local variable (if present).
5835      * <p>
5836      * The following rules hold for these argument handles:<ul>
5837      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5838      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5839      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5840      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5841      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5842      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5843      * It will constrain the parameter lists of the other loop parts.
5844      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5845      * list {@code (A...)} is called the <em>external parameter list</em>.
5846      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5847      * additional state variable of the loop.
5848      * The body must both accept and return a value of this type {@code V}.
5849      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5850      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5851      * <a href="MethodHandles.html#effid">effectively identical</a>
5852      * to the external parameter list {@code (A...)}.
5853      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5854      * {@linkplain #empty default value}.
5855      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5856      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5857      * effectively identical to the internal parameter list.
5858      * </ul>
5859      * <p>
5860      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5861      * <li>The loop handle's result type is the result type {@code V} of the body.
5862      * <li>The loop handle's parameter types are the types {@code (A...)},
5863      * from the external parameter list.
5864      * </ul>
5865      * <p>
5866      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5867      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5868      * passed to the loop.
5869      * <blockquote><pre>{@code
5870      * V init(A...);
5871      * boolean pred(V, A...);
5872      * V body(V, A...);
5873      * V whileLoop(A... a...) {
5874      *   V v = init(a...);
5875      *   while (pred(v, a...)) {
5876      *     v = body(v, a...);
5877      *   }
5878      *   return v;
5879      * }
5880      * }</pre></blockquote>
5881      *
5882      * @apiNote Example:
5883      * <blockquote><pre>{@code
5884      * // implement the zip function for lists as a loop handle
5885      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5886      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5887      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5888      *   zip.add(a.next());
5889      *   zip.add(b.next());
5890      *   return zip;
5891      * }
5892      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5893      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5894      * List<String> a = Arrays.asList("a", "b", "c", "d");
5895      * List<String> b = Arrays.asList("e", "f", "g", "h");
5896      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5897      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5898      * }</pre></blockquote>
5899      *
5900      *
5901      * @apiNote The implementation of this method can be expressed as follows:
5902      * <blockquote><pre>{@code
5903      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5904      *     MethodHandle fini = (body.type().returnType() == void.class
5905      *                         ? null : identity(body.type().returnType()));
5906      *     MethodHandle[]
5907      *         checkExit = { null, null, pred, fini },
5908      *         varBody   = { init, body };
5909      *     return loop(checkExit, varBody);
5910      * }
5911      * }</pre></blockquote>
5912      *
5913      * @param init optional initializer, providing the initial value of the loop variable.
5914      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5915      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5916      *             above for other constraints.
5917      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5918      *             See above for other constraints.
5919      *
5920      * @return a method handle implementing the {@code while} loop as described by the arguments.
5921      * @throws IllegalArgumentException if the rules for the arguments are violated.
5922      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5923      *
5924      * @see #loop(MethodHandle[][])
5925      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5926      * @since 9
5927      */
5928     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5929         whileLoopChecks(init, pred, body);
5930         MethodHandle fini = identityOrVoid(body.type().returnType());
5931         MethodHandle[] checkExit = { null, null, pred, fini };
5932         MethodHandle[] varBody = { init, body };
5933         return loop(checkExit, varBody);
5934     }
5935 
5936     /**
5937      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5938      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5939      * <p>
5940      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5941      * method will, in each iteration, first execute its body and then evaluate the predicate.
5942      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5943      * <p>
5944      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5945      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5946      * and updated with the value returned from its invocation. The result of loop execution will be
5947      * the final value of the additional loop-local variable (if present).
5948      * <p>
5949      * The following rules hold for these argument handles:<ul>
5950      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5951      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5952      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5953      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5954      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5955      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5956      * It will constrain the parameter lists of the other loop parts.
5957      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5958      * list {@code (A...)} is called the <em>external parameter list</em>.
5959      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5960      * additional state variable of the loop.
5961      * The body must both accept and return a value of this type {@code V}.
5962      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5963      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5964      * <a href="MethodHandles.html#effid">effectively identical</a>
5965      * to the external parameter list {@code (A...)}.
5966      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5967      * {@linkplain #empty default value}.
5968      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5969      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5970      * effectively identical to the internal parameter list.
5971      * </ul>
5972      * <p>
5973      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5974      * <li>The loop handle's result type is the result type {@code V} of the body.
5975      * <li>The loop handle's parameter types are the types {@code (A...)},
5976      * from the external parameter list.
5977      * </ul>
5978      * <p>
5979      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5980      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5981      * passed to the loop.
5982      * <blockquote><pre>{@code
5983      * V init(A...);
5984      * boolean pred(V, A...);
5985      * V body(V, A...);
5986      * V doWhileLoop(A... a...) {
5987      *   V v = init(a...);
5988      *   do {
5989      *     v = body(v, a...);
5990      *   } while (pred(v, a...));
5991      *   return v;
5992      * }
5993      * }</pre></blockquote>
5994      *
5995      * @apiNote Example:
5996      * <blockquote><pre>{@code
5997      * // int i = 0; while (i < limit) { ++i; } return i; => limit
5998      * static int zero(int limit) { return 0; }
5999      * static int step(int i, int limit) { return i + 1; }
6000      * static boolean pred(int i, int limit) { return i < limit; }
6001      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
6002      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
6003      * assertEquals(23, loop.invoke(23));
6004      * }</pre></blockquote>
6005      *
6006      *
6007      * @apiNote The implementation of this method can be expressed as follows:
6008      * <blockquote><pre>{@code
6009      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6010      *     MethodHandle fini = (body.type().returnType() == void.class
6011      *                         ? null : identity(body.type().returnType()));
6012      *     MethodHandle[] clause = { init, body, pred, fini };
6013      *     return loop(clause);
6014      * }
6015      * }</pre></blockquote>
6016      *
6017      * @param init optional initializer, providing the initial value of the loop variable.
6018      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6019      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6020      *             See above for other constraints.
6021      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6022      *             above for other constraints.
6023      *
6024      * @return a method handle implementing the {@code while} loop as described by the arguments.
6025      * @throws IllegalArgumentException if the rules for the arguments are violated.
6026      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6027      *
6028      * @see #loop(MethodHandle[][])
6029      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
6030      * @since 9
6031      */
6032     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6033         whileLoopChecks(init, pred, body);
6034         MethodHandle fini = identityOrVoid(body.type().returnType());
6035         MethodHandle[] clause = {init, body, pred, fini };
6036         return loop(clause);
6037     }
6038 
6039     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
6040         Objects.requireNonNull(pred);
6041         Objects.requireNonNull(body);
6042         MethodType bodyType = body.type();
6043         Class<?> returnType = bodyType.returnType();
6044         List<Class<?>> innerList = bodyType.parameterList();
6045         List<Class<?>> outerList = innerList;
6046         if (returnType == void.class) {
6047             // OK
6048         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
6049             // leading V argument missing => error
6050             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6051             throw misMatchedTypes("body function", bodyType, expected);
6052         } else {
6053             outerList = innerList.subList(1, innerList.size());
6054         }
6055         MethodType predType = pred.type();
6056         if (predType.returnType() != boolean.class ||
6057                 !predType.effectivelyIdenticalParameters(0, innerList)) {
6058             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
6059         }
6060         if (init != null) {
6061             MethodType initType = init.type();
6062             if (initType.returnType() != returnType ||
6063                     !initType.effectivelyIdenticalParameters(0, outerList)) {
6064                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6065             }
6066         }
6067     }
6068 
6069     /**
6070      * Constructs a loop that runs a given number of iterations.
6071      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6072      * <p>
6073      * The number of iterations is determined by the {@code iterations} handle evaluation result.
6074      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
6075      * It will be initialized to 0 and incremented by 1 in each iteration.
6076      * <p>
6077      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6078      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6079      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6080      * <p>
6081      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6082      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6083      * iteration variable.
6084      * The result of the loop handle execution will be the final {@code V} value of that variable
6085      * (or {@code void} if there is no {@code V} variable).
6086      * <p>
6087      * The following rules hold for the argument handles:<ul>
6088      * <li>The {@code iterations} handle must not be {@code null}, and must return
6089      * the type {@code int}, referred to here as {@code I} in parameter type lists.
6090      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6091      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6092      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6093      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6094      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6095      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6096      * of types called the <em>internal parameter list</em>.
6097      * It will constrain the parameter lists of the other loop parts.
6098      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6099      * with no additional {@code A} types, then the internal parameter list is extended by
6100      * the argument types {@code A...} of the {@code iterations} handle.
6101      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6102      * list {@code (A...)} is called the <em>external parameter list</em>.
6103      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6104      * additional state variable of the loop.
6105      * The body must both accept a leading parameter and return a value of this type {@code V}.
6106      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6107      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6108      * <a href="MethodHandles.html#effid">effectively identical</a>
6109      * to the external parameter list {@code (A...)}.
6110      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6111      * {@linkplain #empty default value}.
6112      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
6113      * effectively identical to the external parameter list {@code (A...)}.
6114      * </ul>
6115      * <p>
6116      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6117      * <li>The loop handle's result type is the result type {@code V} of the body.
6118      * <li>The loop handle's parameter types are the types {@code (A...)},
6119      * from the external parameter list.
6120      * </ul>
6121      * <p>
6122      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6123      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6124      * arguments passed to the loop.
6125      * <blockquote><pre>{@code
6126      * int iterations(A...);
6127      * V init(A...);
6128      * V body(V, int, A...);
6129      * V countedLoop(A... a...) {
6130      *   int end = iterations(a...);
6131      *   V v = init(a...);
6132      *   for (int i = 0; i < end; ++i) {
6133      *     v = body(v, i, a...);
6134      *   }
6135      *   return v;
6136      * }
6137      * }</pre></blockquote>
6138      *
6139      * @apiNote Example with a fully conformant body method:
6140      * <blockquote><pre>{@code
6141      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6142      * // => a variation on a well known theme
6143      * static String step(String v, int counter, String init) { return "na " + v; }
6144      * // assume MH_step is a handle to the method above
6145      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
6146      * MethodHandle start = MethodHandles.identity(String.class);
6147      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
6148      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
6149      * }</pre></blockquote>
6150      *
6151      * @apiNote Example with the simplest possible body method type,
6152      * and passing the number of iterations to the loop invocation:
6153      * <blockquote><pre>{@code
6154      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6155      * // => a variation on a well known theme
6156      * static String step(String v, int counter ) { return "na " + v; }
6157      * // assume MH_step is a handle to the method above
6158      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
6159      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
6160      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
6161      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
6162      * }</pre></blockquote>
6163      *
6164      * @apiNote Example that treats the number of iterations, string to append to, and string to append
6165      * as loop parameters:
6166      * <blockquote><pre>{@code
6167      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6168      * // => a variation on a well known theme
6169      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
6170      * // assume MH_step is a handle to the method above
6171      * MethodHandle count = MethodHandles.identity(int.class);
6172      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
6173      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
6174      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
6175      * }</pre></blockquote>
6176      *
6177      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
6178      * to enforce a loop type:
6179      * <blockquote><pre>{@code
6180      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6181      * // => a variation on a well known theme
6182      * static String step(String v, int counter, String pre) { return pre + " " + v; }
6183      * // assume MH_step is a handle to the method above
6184      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
6185      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
6186      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
6187      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
6188      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
6189      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
6190      * }</pre></blockquote>
6191      *
6192      * @apiNote The implementation of this method can be expressed as follows:
6193      * <blockquote><pre>{@code
6194      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6195      *     return countedLoop(empty(iterations.type()), iterations, init, body);
6196      * }
6197      * }</pre></blockquote>
6198      *
6199      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
6200      *                   result type must be {@code int}. See above for other constraints.
6201      * @param init optional initializer, providing the initial value of the loop variable.
6202      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6203      * @param body body of the loop, which may not be {@code null}.
6204      *             It controls the loop parameters and result type in the standard case (see above for details).
6205      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6206      *             and may accept any number of additional types.
6207      *             See above for other constraints.
6208      *
6209      * @return a method handle representing the loop.
6210      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
6211      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6212      *
6213      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
6214      * @since 9
6215      */
6216     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6217         return countedLoop(empty(iterations.type()), iterations, init, body);
6218     }
6219 
6220     /**
6221      * Constructs a loop that counts over a range of numbers.
6222      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6223      * <p>
6224      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
6225      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
6226      * values of the loop counter.
6227      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
6228      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
6229      * <p>
6230      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6231      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6232      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6233      * <p>
6234      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6235      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6236      * iteration variable.
6237      * The result of the loop handle execution will be the final {@code V} value of that variable
6238      * (or {@code void} if there is no {@code V} variable).
6239      * <p>
6240      * The following rules hold for the argument handles:<ul>
6241      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
6242      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
6243      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6244      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6245      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6246      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6247      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6248      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6249      * of types called the <em>internal parameter list</em>.
6250      * It will constrain the parameter lists of the other loop parts.
6251      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6252      * with no additional {@code A} types, then the internal parameter list is extended by
6253      * the argument types {@code A...} of the {@code end} handle.
6254      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6255      * list {@code (A...)} is called the <em>external parameter list</em>.
6256      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6257      * additional state variable of the loop.
6258      * The body must both accept a leading parameter and return a value of this type {@code V}.
6259      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6260      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6261      * <a href="MethodHandles.html#effid">effectively identical</a>
6262      * to the external parameter list {@code (A...)}.
6263      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6264      * {@linkplain #empty default value}.
6265      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
6266      * effectively identical to the external parameter list {@code (A...)}.
6267      * <li>Likewise, the parameter list of {@code end} must be effectively identical
6268      * to the external parameter list.
6269      * </ul>
6270      * <p>
6271      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6272      * <li>The loop handle's result type is the result type {@code V} of the body.
6273      * <li>The loop handle's parameter types are the types {@code (A...)},
6274      * from the external parameter list.
6275      * </ul>
6276      * <p>
6277      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6278      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6279      * arguments passed to the loop.
6280      * <blockquote><pre>{@code
6281      * int start(A...);
6282      * int end(A...);
6283      * V init(A...);
6284      * V body(V, int, A...);
6285      * V countedLoop(A... a...) {
6286      *   int e = end(a...);
6287      *   int s = start(a...);
6288      *   V v = init(a...);
6289      *   for (int i = s; i < e; ++i) {
6290      *     v = body(v, i, a...);
6291      *   }
6292      *   return v;
6293      * }
6294      * }</pre></blockquote>
6295      *
6296      * @apiNote The implementation of this method can be expressed as follows:
6297      * <blockquote><pre>{@code
6298      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6299      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
6300      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
6301      *     // the following semantics:
6302      *     // MH_increment: (int limit, int counter) -> counter + 1
6303      *     // MH_predicate: (int limit, int counter) -> counter < limit
6304      *     Class<?> counterType = start.type().returnType();  // int
6305      *     Class<?> returnType = body.type().returnType();
6306      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
6307      *     if (returnType != void.class) {  // ignore the V variable
6308      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6309      *         pred = dropArguments(pred, 1, returnType);  // ditto
6310      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
6311      *     }
6312      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
6313      *     MethodHandle[]
6314      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6315      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
6316      *         indexVar   = { start, incr };           // i = start(); i = i + 1
6317      *     return loop(loopLimit, bodyClause, indexVar);
6318      * }
6319      * }</pre></blockquote>
6320      *
6321      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
6322      *              See above for other constraints.
6323      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
6324      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
6325      * @param init optional initializer, providing the initial value of the loop variable.
6326      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6327      * @param body body of the loop, which may not be {@code null}.
6328      *             It controls the loop parameters and result type in the standard case (see above for details).
6329      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6330      *             and may accept any number of additional types.
6331      *             See above for other constraints.
6332      *
6333      * @return a method handle representing the loop.
6334      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
6335      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6336      *
6337      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
6338      * @since 9
6339      */
6340     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6341         countedLoopChecks(start, end, init, body);
6342         Class<?> counterType = start.type().returnType();  // int, but who's counting?
6343         Class<?> limitType   = end.type().returnType();    // yes, int again
6344         Class<?> returnType  = body.type().returnType();
6345         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
6346         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
6347         MethodHandle retv = null;
6348         if (returnType != void.class) {
6349             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6350             pred = dropArguments(pred, 1, returnType);  // ditto
6351             retv = dropArguments(identity(returnType), 0, counterType);
6352         }
6353         body = dropArguments(body, 0, counterType);  // ignore the limit variable
6354         MethodHandle[]
6355             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6356             bodyClause = { init, body },            // v = init(); v = body(v, i)
6357             indexVar   = { start, incr };           // i = start(); i = i + 1
6358         return loop(loopLimit, bodyClause, indexVar);
6359     }
6360 
6361     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6362         Objects.requireNonNull(start);
6363         Objects.requireNonNull(end);
6364         Objects.requireNonNull(body);
6365         Class<?> counterType = start.type().returnType();
6366         if (counterType != int.class) {
6367             MethodType expected = start.type().changeReturnType(int.class);
6368             throw misMatchedTypes("start function", start.type(), expected);
6369         } else if (end.type().returnType() != counterType) {
6370             MethodType expected = end.type().changeReturnType(counterType);
6371             throw misMatchedTypes("end function", end.type(), expected);
6372         }
6373         MethodType bodyType = body.type();
6374         Class<?> returnType = bodyType.returnType();
6375         List<Class<?>> innerList = bodyType.parameterList();
6376         // strip leading V value if present
6377         int vsize = (returnType == void.class ? 0 : 1);
6378         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
6379             // argument list has no "V" => error
6380             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6381             throw misMatchedTypes("body function", bodyType, expected);
6382         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
6383             // missing I type => error
6384             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
6385             throw misMatchedTypes("body function", bodyType, expected);
6386         }
6387         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
6388         if (outerList.isEmpty()) {
6389             // special case; take lists from end handle
6390             outerList = end.type().parameterList();
6391             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
6392         }
6393         MethodType expected = methodType(counterType, outerList);
6394         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
6395             throw misMatchedTypes("start parameter types", start.type(), expected);
6396         }
6397         if (end.type() != start.type() &&
6398             !end.type().effectivelyIdenticalParameters(0, outerList)) {
6399             throw misMatchedTypes("end parameter types", end.type(), expected);
6400         }
6401         if (init != null) {
6402             MethodType initType = init.type();
6403             if (initType.returnType() != returnType ||
6404                 !initType.effectivelyIdenticalParameters(0, outerList)) {
6405                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6406             }
6407         }
6408     }
6409 
6410     /**
6411      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
6412      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6413      * <p>
6414      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
6415      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
6416      * <p>
6417      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6418      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6419      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6420      * <p>
6421      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6422      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6423      * iteration variable.
6424      * The result of the loop handle execution will be the final {@code V} value of that variable
6425      * (or {@code void} if there is no {@code V} variable).
6426      * <p>
6427      * The following rules hold for the argument handles:<ul>
6428      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6429      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
6430      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6431      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
6432      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
6433      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
6434      * of types called the <em>internal parameter list</em>.
6435      * It will constrain the parameter lists of the other loop parts.
6436      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
6437      * with no additional {@code A} types, then the internal parameter list is extended by
6438      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
6439      * single type {@code Iterable} is added and constitutes the {@code A...} list.
6440      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
6441      * list {@code (A...)} is called the <em>external parameter list</em>.
6442      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6443      * additional state variable of the loop.
6444      * The body must both accept a leading parameter and return a value of this type {@code V}.
6445      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6446      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6447      * <a href="MethodHandles.html#effid">effectively identical</a>
6448      * to the external parameter list {@code (A...)}.
6449      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6450      * {@linkplain #empty default value}.
6451      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
6452      * type {@code java.util.Iterator} or a subtype thereof.
6453      * The iterator it produces when the loop is executed will be assumed
6454      * to yield values which can be converted to type {@code T}.
6455      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
6456      * effectively identical to the external parameter list {@code (A...)}.
6457      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
6458      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
6459      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
6460      * handle parameter is adjusted to accept the leading {@code A} type, as if by
6461      * the {@link MethodHandle#asType asType} conversion method.
6462      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
6463      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
6464      * </ul>
6465      * <p>
6466      * The type {@code T} may be either a primitive or reference.
6467      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
6468      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
6469      * as if by the {@link MethodHandle#asType asType} conversion method.
6470      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
6471      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
6472      * <p>
6473      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6474      * <li>The loop handle's result type is the result type {@code V} of the body.
6475      * <li>The loop handle's parameter types are the types {@code (A...)},
6476      * from the external parameter list.
6477      * </ul>
6478      * <p>
6479      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6480      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
6481      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
6482      * <blockquote><pre>{@code
6483      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
6484      * V init(A...);
6485      * V body(V,T,A...);
6486      * V iteratedLoop(A... a...) {
6487      *   Iterator<T> it = iterator(a...);
6488      *   V v = init(a...);
6489      *   while (it.hasNext()) {
6490      *     T t = it.next();
6491      *     v = body(v, t, a...);
6492      *   }
6493      *   return v;
6494      * }
6495      * }</pre></blockquote>
6496      *
6497      * @apiNote Example:
6498      * <blockquote><pre>{@code
6499      * // get an iterator from a list
6500      * static List<String> reverseStep(List<String> r, String e) {
6501      *   r.add(0, e);
6502      *   return r;
6503      * }
6504      * static List<String> newArrayList() { return new ArrayList<>(); }
6505      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
6506      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
6507      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
6508      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
6509      * assertEquals(reversedList, (List<String>) loop.invoke(list));
6510      * }</pre></blockquote>
6511      *
6512      * @apiNote The implementation of this method can be expressed approximately as follows:
6513      * <blockquote><pre>{@code
6514      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6515      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
6516      *     Class<?> returnType = body.type().returnType();
6517      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6518      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
6519      *     MethodHandle retv = null, step = body, startIter = iterator;
6520      *     if (returnType != void.class) {
6521      *         // the simple thing first:  in (I V A...), drop the I to get V
6522      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
6523      *         // body type signature (V T A...), internal loop types (I V A...)
6524      *         step = swapArguments(body, 0, 1);  // swap V <-> T
6525      *     }
6526      *     if (startIter == null)  startIter = MH_getIter;
6527      *     MethodHandle[]
6528      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
6529      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
6530      *     return loop(iterVar, bodyClause);
6531      * }
6532      * }</pre></blockquote>
6533      *
6534      * @param iterator an optional handle to return the iterator to start the loop.
6535      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
6536      *                 See above for other constraints.
6537      * @param init optional initializer, providing the initial value of the loop variable.
6538      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6539      * @param body body of the loop, which may not be {@code null}.
6540      *             It controls the loop parameters and result type in the standard case (see above for details).
6541      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
6542      *             and may accept any number of additional types.
6543      *             See above for other constraints.
6544      *
6545      * @return a method handle embodying the iteration loop functionality.
6546      * @throws NullPointerException if the {@code body} handle is {@code null}.
6547      * @throws IllegalArgumentException if any argument violates the above requirements.
6548      *
6549      * @since 9
6550      */
6551     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6552         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
6553         Class<?> returnType = body.type().returnType();
6554         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
6555         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
6556         MethodHandle startIter;
6557         MethodHandle nextVal;
6558         {
6559             MethodType iteratorType;
6560             if (iterator == null) {
6561                 // derive argument type from body, if available, else use Iterable
6562                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
6563                 iteratorType = startIter.type().changeParameterType(0, iterableType);
6564             } else {
6565                 // force return type to the internal iterator class
6566                 iteratorType = iterator.type().changeReturnType(Iterator.class);
6567                 startIter = iterator;
6568             }
6569             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6570             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
6571 
6572             // perform the asType transforms under an exception transformer, as per spec.:
6573             try {
6574                 startIter = startIter.asType(iteratorType);
6575                 nextVal = nextRaw.asType(nextValType);
6576             } catch (WrongMethodTypeException ex) {
6577                 throw new IllegalArgumentException(ex);
6578             }
6579         }
6580 
6581         MethodHandle retv = null, step = body;
6582         if (returnType != void.class) {
6583             // the simple thing first:  in (I V A...), drop the I to get V
6584             retv = dropArguments(identity(returnType), 0, Iterator.class);
6585             // body type signature (V T A...), internal loop types (I V A...)
6586             step = swapArguments(body, 0, 1);  // swap V <-> T
6587         }
6588 
6589         MethodHandle[]
6590             iterVar    = { startIter, null, hasNext, retv },
6591             bodyClause = { init, filterArgument(step, 0, nextVal) };
6592         return loop(iterVar, bodyClause);
6593     }
6594 
6595     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6596         Objects.requireNonNull(body);
6597         MethodType bodyType = body.type();
6598         Class<?> returnType = bodyType.returnType();
6599         List<Class<?>> internalParamList = bodyType.parameterList();
6600         // strip leading V value if present
6601         int vsize = (returnType == void.class ? 0 : 1);
6602         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
6603             // argument list has no "V" => error
6604             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6605             throw misMatchedTypes("body function", bodyType, expected);
6606         } else if (internalParamList.size() <= vsize) {
6607             // missing T type => error
6608             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
6609             throw misMatchedTypes("body function", bodyType, expected);
6610         }
6611         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
6612         Class<?> iterableType = null;
6613         if (iterator != null) {
6614             // special case; if the body handle only declares V and T then
6615             // the external parameter list is obtained from iterator handle
6616             if (externalParamList.isEmpty()) {
6617                 externalParamList = iterator.type().parameterList();
6618             }
6619             MethodType itype = iterator.type();
6620             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
6621                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
6622             }
6623             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
6624                 MethodType expected = methodType(itype.returnType(), externalParamList);
6625                 throw misMatchedTypes("iterator parameters", itype, expected);
6626             }
6627         } else {
6628             if (externalParamList.isEmpty()) {
6629                 // special case; if the iterator handle is null and the body handle
6630                 // only declares V and T then the external parameter list consists
6631                 // of Iterable
6632                 externalParamList = Arrays.asList(Iterable.class);
6633                 iterableType = Iterable.class;
6634             } else {
6635                 // special case; if the iterator handle is null and the external
6636                 // parameter list is not empty then the first parameter must be
6637                 // assignable to Iterable
6638                 iterableType = externalParamList.get(0);
6639                 if (!Iterable.class.isAssignableFrom(iterableType)) {
6640                     throw newIllegalArgumentException(
6641                             "inferred first loop argument must inherit from Iterable: " + iterableType);
6642                 }
6643             }
6644         }
6645         if (init != null) {
6646             MethodType initType = init.type();
6647             if (initType.returnType() != returnType ||
6648                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
6649                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
6650             }
6651         }
6652         return iterableType;  // help the caller a bit
6653     }
6654 
6655     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
6656         // there should be a better way to uncross my wires
6657         int arity = mh.type().parameterCount();
6658         int[] order = new int[arity];
6659         for (int k = 0; k < arity; k++)  order[k] = k;
6660         order[i] = j; order[j] = i;
6661         Class<?>[] types = mh.type().parameterArray();
6662         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
6663         MethodType swapType = methodType(mh.type().returnType(), types);
6664         return permuteArguments(mh, swapType, order);
6665     }
6666 
6667     /**
6668      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
6669      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
6670      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
6671      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
6672      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
6673      * {@code try-finally} handle.
6674      * <p>
6675      * The {@code cleanup} handle will be passed one or two additional leading arguments.
6676      * The first is the exception thrown during the
6677      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
6678      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
6679      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
6680      * The second argument is not present if the {@code target} handle has a {@code void} return type.
6681      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
6682      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
6683      * <p>
6684      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
6685      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
6686      * two extra leading parameters:<ul>
6687      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
6688      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
6689      * the result from the execution of the {@code target} handle.
6690      * This parameter is not present if the {@code target} returns {@code void}.
6691      * </ul>
6692      * <p>
6693      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
6694      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
6695      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
6696      * the cleanup.
6697      * <blockquote><pre>{@code
6698      * V target(A..., B...);
6699      * V cleanup(Throwable, V, A...);
6700      * V adapter(A... a, B... b) {
6701      *   V result = (zero value for V);
6702      *   Throwable throwable = null;
6703      *   try {
6704      *     result = target(a..., b...);
6705      *   } catch (Throwable t) {
6706      *     throwable = t;
6707      *     throw t;
6708      *   } finally {
6709      *     result = cleanup(throwable, result, a...);
6710      *   }
6711      *   return result;
6712      * }
6713      * }</pre></blockquote>
6714      * <p>
6715      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
6716      * be modified by execution of the target, and so are passed unchanged
6717      * from the caller to the cleanup, if it is invoked.
6718      * <p>
6719      * The target and cleanup must return the same type, even if the cleanup
6720      * always throws.
6721      * To create such a throwing cleanup, compose the cleanup logic
6722      * with {@link #throwException throwException},
6723      * in order to create a method handle of the correct return type.
6724      * <p>
6725      * Note that {@code tryFinally} never converts exceptions into normal returns.
6726      * In rare cases where exceptions must be converted in that way, first wrap
6727      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
6728      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
6729      * <p>
6730      * It is recommended that the first parameter type of {@code cleanup} be
6731      * declared {@code Throwable} rather than a narrower subtype.  This ensures
6732      * {@code cleanup} will always be invoked with whatever exception that
6733      * {@code target} throws.  Declaring a narrower type may result in a
6734      * {@code ClassCastException} being thrown by the {@code try-finally}
6735      * handle if the type of the exception thrown by {@code target} is not
6736      * assignable to the first parameter type of {@code cleanup}.  Note that
6737      * various exception types of {@code VirtualMachineError},
6738      * {@code LinkageError}, and {@code RuntimeException} can in principle be
6739      * thrown by almost any kind of Java code, and a finally clause that
6740      * catches (say) only {@code IOException} would mask any of the others
6741      * behind a {@code ClassCastException}.
6742      *
6743      * @param target the handle whose execution is to be wrapped in a {@code try} block.
6744      * @param cleanup the handle that is invoked in the finally block.
6745      *
6746      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
6747      * @throws NullPointerException if any argument is null
6748      * @throws IllegalArgumentException if {@code cleanup} does not accept
6749      *          the required leading arguments, or if the method handle types do
6750      *          not match in their return types and their
6751      *          corresponding trailing parameters
6752      *
6753      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
6754      * @since 9
6755      */
6756     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
6757         List<Class<?>> targetParamTypes = target.type().parameterList();
6758         Class<?> rtype = target.type().returnType();
6759 
6760         tryFinallyChecks(target, cleanup);
6761 
6762         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
6763         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6764         // target parameter list.
6765         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
6766 
6767         // Ensure that the intrinsic type checks the instance thrown by the
6768         // target against the first parameter of cleanup
6769         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
6770 
6771         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
6772         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
6773     }
6774 
6775     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
6776         Class<?> rtype = target.type().returnType();
6777         if (rtype != cleanup.type().returnType()) {
6778             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
6779         }
6780         MethodType cleanupType = cleanup.type();
6781         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
6782             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
6783         }
6784         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
6785             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
6786         }
6787         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6788         // target parameter list.
6789         int cleanupArgIndex = rtype == void.class ? 1 : 2;
6790         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
6791             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
6792                     cleanup.type(), target.type());
6793         }
6794     }
6795 
6796 }