1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  45 #include "gc/g1/g1GCPhaseTimes.hpp"
  46 #include "gc/g1/g1HeapSizingPolicy.hpp"
  47 #include "gc/g1/g1HeapTransition.hpp"
  48 #include "gc/g1/g1HeapVerifier.hpp"
  49 #include "gc/g1/g1HotCardCache.hpp"
  50 #include "gc/g1/g1InitLogger.hpp"
  51 #include "gc/g1/g1MemoryPool.hpp"
  52 #include "gc/g1/g1OopClosures.inline.hpp"
  53 #include "gc/g1/g1ParallelCleaning.hpp"
  54 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  55 #include "gc/g1/g1Policy.hpp"
  56 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  57 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  58 #include "gc/g1/g1RemSet.hpp"
  59 #include "gc/g1/g1RootClosures.hpp"
  60 #include "gc/g1/g1RootProcessor.hpp"
  61 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  62 #include "gc/g1/g1StringDedup.hpp"
  63 #include "gc/g1/g1ThreadLocalData.hpp"
  64 #include "gc/g1/g1Trace.hpp"
  65 #include "gc/g1/g1YCTypes.hpp"
  66 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  67 #include "gc/g1/g1VMOperations.hpp"
  68 #include "gc/g1/heapRegion.inline.hpp"
  69 #include "gc/g1/heapRegionRemSet.hpp"
  70 #include "gc/g1/heapRegionSet.inline.hpp"
  71 #include "gc/shared/concurrentGCBreakpoints.hpp"
  72 #include "gc/shared/gcBehaviours.hpp"
  73 #include "gc/shared/gcHeapSummary.hpp"
  74 #include "gc/shared/gcId.hpp"
  75 #include "gc/shared/gcLocker.hpp"
  76 #include "gc/shared/gcTimer.hpp"
  77 #include "gc/shared/gcTraceTime.inline.hpp"
  78 #include "gc/shared/generationSpec.hpp"
  79 #include "gc/shared/isGCActiveMark.hpp"
  80 #include "gc/shared/locationPrinter.inline.hpp"
  81 #include "gc/shared/oopStorageParState.hpp"
  82 #include "gc/shared/preservedMarks.inline.hpp"
  83 #include "gc/shared/suspendibleThreadSet.hpp"
  84 #include "gc/shared/referenceProcessor.inline.hpp"
  85 #include "gc/shared/taskTerminator.hpp"
  86 #include "gc/shared/taskqueue.inline.hpp"
  87 #include "gc/shared/weakProcessor.inline.hpp"
  88 #include "gc/shared/workerPolicy.hpp"
  89 #include "logging/log.hpp"
  90 #include "memory/allocation.hpp"
  91 #include "memory/iterator.hpp"
  92 #include "memory/resourceArea.hpp"
  93 #include "memory/universe.hpp"
  94 #include "oops/access.inline.hpp"
  95 #include "oops/compressedOops.inline.hpp"
  96 #include "oops/oop.inline.hpp"
  97 #include "runtime/atomic.hpp"
  98 #include "runtime/handles.inline.hpp"
  99 #include "runtime/init.hpp"
 100 #include "runtime/orderAccess.hpp"
 101 #include "runtime/threadSMR.hpp"
 102 #include "runtime/vmThread.hpp"
 103 #include "utilities/align.hpp"
 104 #include "utilities/autoRestore.hpp"
 105 #include "utilities/bitMap.inline.hpp"
 106 #include "utilities/globalDefinitions.hpp"
 107 #include "utilities/stack.inline.hpp"
 108 
 109 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 110 
 111 // INVARIANTS/NOTES
 112 //
 113 // All allocation activity covered by the G1CollectedHeap interface is
 114 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 115 // and allocate_new_tlab, which are the "entry" points to the
 116 // allocation code from the rest of the JVM.  (Note that this does not
 117 // apply to TLAB allocation, which is not part of this interface: it
 118 // is done by clients of this interface.)
 119 
 120 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 121  private:
 122   size_t _num_dirtied;
 123   G1CollectedHeap* _g1h;
 124   G1CardTable* _g1_ct;
 125 
 126   HeapRegion* region_for_card(CardValue* card_ptr) const {
 127     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 128   }
 129 
 130   bool will_become_free(HeapRegion* hr) const {
 131     // A region will be freed by free_collection_set if the region is in the
 132     // collection set and has not had an evacuation failure.
 133     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 134   }
 135 
 136  public:
 137   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 138     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 139 
 140   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 141     HeapRegion* hr = region_for_card(card_ptr);
 142 
 143     // Should only dirty cards in regions that won't be freed.
 144     if (!will_become_free(hr)) {
 145       *card_ptr = G1CardTable::dirty_card_val();
 146       _num_dirtied++;
 147     }
 148   }
 149 
 150   size_t num_dirtied()   const { return _num_dirtied; }
 151 };
 152 
 153 
 154 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 155   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 156 }
 157 
 158 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 159   // The from card cache is not the memory that is actually committed. So we cannot
 160   // take advantage of the zero_filled parameter.
 161   reset_from_card_cache(start_idx, num_regions);
 162 }
 163 
 164 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 165   Ticks start = Ticks::now();
 166   workers()->run_task(task, workers()->active_workers());
 167   return Ticks::now() - start;
 168 }
 169 
 170 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 171                                              MemRegion mr) {
 172   return new HeapRegion(hrs_index, bot(), mr);
 173 }
 174 
 175 // Private methods.
 176 
 177 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 178                                         HeapRegionType type,
 179                                         bool do_expand,
 180                                         uint node_index) {
 181   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 182          "the only time we use this to allocate a humongous region is "
 183          "when we are allocating a single humongous region");
 184 
 185   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 186 
 187   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 188     // Currently, only attempts to allocate GC alloc regions set
 189     // do_expand to true. So, we should only reach here during a
 190     // safepoint. If this assumption changes we might have to
 191     // reconsider the use of _expand_heap_after_alloc_failure.
 192     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 193 
 194     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 195                               word_size * HeapWordSize);
 196 
 197     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 198            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 199            word_size * HeapWordSize);
 200     if (expand_single_region(node_index)) {
 201       // Given that expand_single_region() succeeded in expanding the heap, and we
 202       // always expand the heap by an amount aligned to the heap
 203       // region size, the free list should in theory not be empty.
 204       // In either case allocate_free_region() will check for NULL.
 205       res = _hrm->allocate_free_region(type, node_index);
 206     } else {
 207       _expand_heap_after_alloc_failure = false;
 208     }
 209   }
 210   return res;
 211 }
 212 
 213 HeapWord*
 214 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 215                                                            uint num_regions,
 216                                                            size_t word_size) {
 217   assert(first_hr != NULL, "pre-condition");
 218   assert(is_humongous(word_size), "word_size should be humongous");
 219   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 220 
 221   // Index of last region in the series.
 222   uint first = first_hr->hrm_index();
 223   uint last = first + num_regions - 1;
 224 
 225   // We need to initialize the region(s) we just discovered. This is
 226   // a bit tricky given that it can happen concurrently with
 227   // refinement threads refining cards on these regions and
 228   // potentially wanting to refine the BOT as they are scanning
 229   // those cards (this can happen shortly after a cleanup; see CR
 230   // 6991377). So we have to set up the region(s) carefully and in
 231   // a specific order.
 232 
 233   // The word size sum of all the regions we will allocate.
 234   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 235   assert(word_size <= word_size_sum, "sanity");
 236 
 237   // The passed in hr will be the "starts humongous" region. The header
 238   // of the new object will be placed at the bottom of this region.
 239   HeapWord* new_obj = first_hr->bottom();
 240   // This will be the new top of the new object.
 241   HeapWord* obj_top = new_obj + word_size;
 242 
 243   // First, we need to zero the header of the space that we will be
 244   // allocating. When we update top further down, some refinement
 245   // threads might try to scan the region. By zeroing the header we
 246   // ensure that any thread that will try to scan the region will
 247   // come across the zero klass word and bail out.
 248   //
 249   // NOTE: It would not have been correct to have used
 250   // CollectedHeap::fill_with_object() and make the space look like
 251   // an int array. The thread that is doing the allocation will
 252   // later update the object header to a potentially different array
 253   // type and, for a very short period of time, the klass and length
 254   // fields will be inconsistent. This could cause a refinement
 255   // thread to calculate the object size incorrectly.
 256   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 257 
 258   // Next, pad out the unused tail of the last region with filler
 259   // objects, for improved usage accounting.
 260   // How many words we use for filler objects.
 261   size_t word_fill_size = word_size_sum - word_size;
 262 
 263   // How many words memory we "waste" which cannot hold a filler object.
 264   size_t words_not_fillable = 0;
 265 
 266   if (word_fill_size >= min_fill_size()) {
 267     fill_with_objects(obj_top, word_fill_size);
 268   } else if (word_fill_size > 0) {
 269     // We have space to fill, but we cannot fit an object there.
 270     words_not_fillable = word_fill_size;
 271     word_fill_size = 0;
 272   }
 273 
 274   // We will set up the first region as "starts humongous". This
 275   // will also update the BOT covering all the regions to reflect
 276   // that there is a single object that starts at the bottom of the
 277   // first region.
 278   first_hr->set_starts_humongous(obj_top, word_fill_size);
 279   _policy->remset_tracker()->update_at_allocate(first_hr);
 280   // Then, if there are any, we will set up the "continues
 281   // humongous" regions.
 282   HeapRegion* hr = NULL;
 283   for (uint i = first + 1; i <= last; ++i) {
 284     hr = region_at(i);
 285     hr->set_continues_humongous(first_hr);
 286     _policy->remset_tracker()->update_at_allocate(hr);
 287   }
 288 
 289   // Up to this point no concurrent thread would have been able to
 290   // do any scanning on any region in this series. All the top
 291   // fields still point to bottom, so the intersection between
 292   // [bottom,top] and [card_start,card_end] will be empty. Before we
 293   // update the top fields, we'll do a storestore to make sure that
 294   // no thread sees the update to top before the zeroing of the
 295   // object header and the BOT initialization.
 296   OrderAccess::storestore();
 297 
 298   // Now, we will update the top fields of the "continues humongous"
 299   // regions except the last one.
 300   for (uint i = first; i < last; ++i) {
 301     hr = region_at(i);
 302     hr->set_top(hr->end());
 303   }
 304 
 305   hr = region_at(last);
 306   // If we cannot fit a filler object, we must set top to the end
 307   // of the humongous object, otherwise we cannot iterate the heap
 308   // and the BOT will not be complete.
 309   hr->set_top(hr->end() - words_not_fillable);
 310 
 311   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 312          "obj_top should be in last region");
 313 
 314   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 315 
 316   assert(words_not_fillable == 0 ||
 317          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 318          "Miscalculation in humongous allocation");
 319 
 320   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 321 
 322   for (uint i = first; i <= last; ++i) {
 323     hr = region_at(i);
 324     _humongous_set.add(hr);
 325     _hr_printer.alloc(hr);
 326   }
 327 
 328   return new_obj;
 329 }
 330 
 331 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 332   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 333   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 334 }
 335 
 336 // If could fit into free regions w/o expansion, try.
 337 // Otherwise, if can expand, do so.
 338 // Otherwise, if using ex regions might help, try with ex given back.
 339 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 340   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 341 
 342   _verifier->verify_region_sets_optional();
 343 
 344   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 345 
 346   // Policy: First try to allocate a humongous object in the free list.
 347   HeapRegion* humongous_start = _hrm->allocate_humongous(obj_regions);
 348   if (humongous_start == NULL) {
 349     // Policy: We could not find enough regions for the humongous object in the
 350     // free list. Look through the heap to find a mix of free and uncommitted regions.
 351     // If so, expand the heap and allocate the humongous object.
 352     humongous_start = _hrm->expand_and_allocate_humongous(obj_regions);
 353     if (humongous_start != NULL) {
 354       // We managed to find a region by expanding the heap.
 355       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
 356                                 word_size * HeapWordSize);
 357       policy()->record_new_heap_size(num_regions());
 358     } else {
 359       // Policy: Potentially trigger a defragmentation GC.
 360     }
 361   }
 362 
 363   HeapWord* result = NULL;
 364   if (humongous_start != NULL) {
 365     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 366     assert(result != NULL, "it should always return a valid result");
 367 
 368     // A successful humongous object allocation changes the used space
 369     // information of the old generation so we need to recalculate the
 370     // sizes and update the jstat counters here.
 371     g1mm()->update_sizes();
 372   }
 373 
 374   _verifier->verify_region_sets_optional();
 375 
 376   return result;
 377 }
 378 
 379 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 380                                              size_t requested_size,
 381                                              size_t* actual_size) {
 382   assert_heap_not_locked_and_not_at_safepoint();
 383   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 384 
 385   return attempt_allocation(min_size, requested_size, actual_size);
 386 }
 387 
 388 HeapWord*
 389 G1CollectedHeap::mem_allocate(size_t word_size,
 390                               bool*  gc_overhead_limit_was_exceeded) {
 391   assert_heap_not_locked_and_not_at_safepoint();
 392 
 393   if (is_humongous(word_size)) {
 394     return attempt_allocation_humongous(word_size);
 395   }
 396   size_t dummy = 0;
 397   return attempt_allocation(word_size, word_size, &dummy);
 398 }
 399 
 400 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 401   ResourceMark rm; // For retrieving the thread names in log messages.
 402 
 403   // Make sure you read the note in attempt_allocation_humongous().
 404 
 405   assert_heap_not_locked_and_not_at_safepoint();
 406   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 407          "be called for humongous allocation requests");
 408 
 409   // We should only get here after the first-level allocation attempt
 410   // (attempt_allocation()) failed to allocate.
 411 
 412   // We will loop until a) we manage to successfully perform the
 413   // allocation or b) we successfully schedule a collection which
 414   // fails to perform the allocation. b) is the only case when we'll
 415   // return NULL.
 416   HeapWord* result = NULL;
 417   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 418     bool should_try_gc;
 419     uint gc_count_before;
 420 
 421     {
 422       MutexLocker x(Heap_lock);
 423       result = _allocator->attempt_allocation_locked(word_size);
 424       if (result != NULL) {
 425         return result;
 426       }
 427 
 428       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 429       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 430       // waiting because the GCLocker is active to not wait too long.
 431       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 432         // No need for an ergo message here, can_expand_young_list() does this when
 433         // it returns true.
 434         result = _allocator->attempt_allocation_force(word_size);
 435         if (result != NULL) {
 436           return result;
 437         }
 438       }
 439       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 440       // the GCLocker initiated GC has been performed and then retry. This includes
 441       // the case when the GC Locker is not active but has not been performed.
 442       should_try_gc = !GCLocker::needs_gc();
 443       // Read the GC count while still holding the Heap_lock.
 444       gc_count_before = total_collections();
 445     }
 446 
 447     if (should_try_gc) {
 448       bool succeeded;
 449       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 450                                    GCCause::_g1_inc_collection_pause);
 451       if (result != NULL) {
 452         assert(succeeded, "only way to get back a non-NULL result");
 453         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 454                              Thread::current()->name(), p2i(result));
 455         return result;
 456       }
 457 
 458       if (succeeded) {
 459         // We successfully scheduled a collection which failed to allocate. No
 460         // point in trying to allocate further. We'll just return NULL.
 461         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 462                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 463         return NULL;
 464       }
 465       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 466                            Thread::current()->name(), word_size);
 467     } else {
 468       // Failed to schedule a collection.
 469       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 470         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 471                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 472         return NULL;
 473       }
 474       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 475       // The GCLocker is either active or the GCLocker initiated
 476       // GC has not yet been performed. Stall until it is and
 477       // then retry the allocation.
 478       GCLocker::stall_until_clear();
 479       gclocker_retry_count += 1;
 480     }
 481 
 482     // We can reach here if we were unsuccessful in scheduling a
 483     // collection (because another thread beat us to it) or if we were
 484     // stalled due to the GC locker. In either can we should retry the
 485     // allocation attempt in case another thread successfully
 486     // performed a collection and reclaimed enough space. We do the
 487     // first attempt (without holding the Heap_lock) here and the
 488     // follow-on attempt will be at the start of the next loop
 489     // iteration (after taking the Heap_lock).
 490     size_t dummy = 0;
 491     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 492     if (result != NULL) {
 493       return result;
 494     }
 495 
 496     // Give a warning if we seem to be looping forever.
 497     if ((QueuedAllocationWarningCount > 0) &&
 498         (try_count % QueuedAllocationWarningCount == 0)) {
 499       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 500                              Thread::current()->name(), try_count, word_size);
 501     }
 502   }
 503 
 504   ShouldNotReachHere();
 505   return NULL;
 506 }
 507 
 508 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 509   assert_at_safepoint_on_vm_thread();
 510   if (_archive_allocator == NULL) {
 511     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 512   }
 513 }
 514 
 515 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 516   // Allocations in archive regions cannot be of a size that would be considered
 517   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 518   // may be different at archive-restore time.
 519   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 520 }
 521 
 522 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 523   assert_at_safepoint_on_vm_thread();
 524   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 525   if (is_archive_alloc_too_large(word_size)) {
 526     return NULL;
 527   }
 528   return _archive_allocator->archive_mem_allocate(word_size);
 529 }
 530 
 531 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 532                                               size_t end_alignment_in_bytes) {
 533   assert_at_safepoint_on_vm_thread();
 534   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 535 
 536   // Call complete_archive to do the real work, filling in the MemRegion
 537   // array with the archive regions.
 538   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 539   delete _archive_allocator;
 540   _archive_allocator = NULL;
 541 }
 542 
 543 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 544   assert(ranges != NULL, "MemRegion array NULL");
 545   assert(count != 0, "No MemRegions provided");
 546   MemRegion reserved = _hrm->reserved();
 547   for (size_t i = 0; i < count; i++) {
 548     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 549       return false;
 550     }
 551   }
 552   return true;
 553 }
 554 
 555 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 556                                             size_t count,
 557                                             bool open) {
 558   assert(!is_init_completed(), "Expect to be called at JVM init time");
 559   assert(ranges != NULL, "MemRegion array NULL");
 560   assert(count != 0, "No MemRegions provided");
 561   MutexLocker x(Heap_lock);
 562 
 563   MemRegion reserved = _hrm->reserved();
 564   HeapWord* prev_last_addr = NULL;
 565   HeapRegion* prev_last_region = NULL;
 566 
 567   // Temporarily disable pretouching of heap pages. This interface is used
 568   // when mmap'ing archived heap data in, so pre-touching is wasted.
 569   FlagSetting fs(AlwaysPreTouch, false);
 570 
 571   // Enable archive object checking used by G1MarkSweep. We have to let it know
 572   // about each archive range, so that objects in those ranges aren't marked.
 573   G1ArchiveAllocator::enable_archive_object_check();
 574 
 575   // For each specified MemRegion range, allocate the corresponding G1
 576   // regions and mark them as archive regions. We expect the ranges
 577   // in ascending starting address order, without overlap.
 578   for (size_t i = 0; i < count; i++) {
 579     MemRegion curr_range = ranges[i];
 580     HeapWord* start_address = curr_range.start();
 581     size_t word_size = curr_range.word_size();
 582     HeapWord* last_address = curr_range.last();
 583     size_t commits = 0;
 584 
 585     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 586               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 587               p2i(start_address), p2i(last_address));
 588     guarantee(start_address > prev_last_addr,
 589               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 590               p2i(start_address), p2i(prev_last_addr));
 591     prev_last_addr = last_address;
 592 
 593     // Check for ranges that start in the same G1 region in which the previous
 594     // range ended, and adjust the start address so we don't try to allocate
 595     // the same region again. If the current range is entirely within that
 596     // region, skip it, just adjusting the recorded top.
 597     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 598     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 599       start_address = start_region->end();
 600       if (start_address > last_address) {
 601         increase_used(word_size * HeapWordSize);
 602         start_region->set_top(last_address + 1);
 603         continue;
 604       }
 605       start_region->set_top(start_address);
 606       curr_range = MemRegion(start_address, last_address + 1);
 607       start_region = _hrm->addr_to_region(start_address);
 608     }
 609 
 610     // Perform the actual region allocation, exiting if it fails.
 611     // Then note how much new space we have allocated.
 612     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 613       return false;
 614     }
 615     increase_used(word_size * HeapWordSize);
 616     if (commits != 0) {
 617       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 618                                 HeapRegion::GrainWords * HeapWordSize * commits);
 619 
 620     }
 621 
 622     // Mark each G1 region touched by the range as archive, add it to
 623     // the old set, and set top.
 624     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 625     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 626     prev_last_region = last_region;
 627 
 628     while (curr_region != NULL) {
 629       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 630              "Region already in use (index %u)", curr_region->hrm_index());
 631       if (open) {
 632         curr_region->set_open_archive();
 633       } else {
 634         curr_region->set_closed_archive();
 635       }
 636       _hr_printer.alloc(curr_region);
 637       _archive_set.add(curr_region);
 638       HeapWord* top;
 639       HeapRegion* next_region;
 640       if (curr_region != last_region) {
 641         top = curr_region->end();
 642         next_region = _hrm->next_region_in_heap(curr_region);
 643       } else {
 644         top = last_address + 1;
 645         next_region = NULL;
 646       }
 647       curr_region->set_top(top);
 648       curr_region = next_region;
 649     }
 650 
 651     // Notify mark-sweep of the archive
 652     G1ArchiveAllocator::set_range_archive(curr_range, open);
 653   }
 654   return true;
 655 }
 656 
 657 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 658   assert(!is_init_completed(), "Expect to be called at JVM init time");
 659   assert(ranges != NULL, "MemRegion array NULL");
 660   assert(count != 0, "No MemRegions provided");
 661   MemRegion reserved = _hrm->reserved();
 662   HeapWord *prev_last_addr = NULL;
 663   HeapRegion* prev_last_region = NULL;
 664 
 665   // For each MemRegion, create filler objects, if needed, in the G1 regions
 666   // that contain the address range. The address range actually within the
 667   // MemRegion will not be modified. That is assumed to have been initialized
 668   // elsewhere, probably via an mmap of archived heap data.
 669   MutexLocker x(Heap_lock);
 670   for (size_t i = 0; i < count; i++) {
 671     HeapWord* start_address = ranges[i].start();
 672     HeapWord* last_address = ranges[i].last();
 673 
 674     assert(reserved.contains(start_address) && reserved.contains(last_address),
 675            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 676            p2i(start_address), p2i(last_address));
 677     assert(start_address > prev_last_addr,
 678            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 679            p2i(start_address), p2i(prev_last_addr));
 680 
 681     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 682     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 683     HeapWord* bottom_address = start_region->bottom();
 684 
 685     // Check for a range beginning in the same region in which the
 686     // previous one ended.
 687     if (start_region == prev_last_region) {
 688       bottom_address = prev_last_addr + 1;
 689     }
 690 
 691     // Verify that the regions were all marked as archive regions by
 692     // alloc_archive_regions.
 693     HeapRegion* curr_region = start_region;
 694     while (curr_region != NULL) {
 695       guarantee(curr_region->is_archive(),
 696                 "Expected archive region at index %u", curr_region->hrm_index());
 697       if (curr_region != last_region) {
 698         curr_region = _hrm->next_region_in_heap(curr_region);
 699       } else {
 700         curr_region = NULL;
 701       }
 702     }
 703 
 704     prev_last_addr = last_address;
 705     prev_last_region = last_region;
 706 
 707     // Fill the memory below the allocated range with dummy object(s),
 708     // if the region bottom does not match the range start, or if the previous
 709     // range ended within the same G1 region, and there is a gap.
 710     if (start_address != bottom_address) {
 711       size_t fill_size = pointer_delta(start_address, bottom_address);
 712       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 713       increase_used(fill_size * HeapWordSize);
 714     }
 715   }
 716 }
 717 
 718 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 719                                                      size_t desired_word_size,
 720                                                      size_t* actual_word_size) {
 721   assert_heap_not_locked_and_not_at_safepoint();
 722   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 723          "be called for humongous allocation requests");
 724 
 725   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 726 
 727   if (result == NULL) {
 728     *actual_word_size = desired_word_size;
 729     result = attempt_allocation_slow(desired_word_size);
 730   }
 731 
 732   assert_heap_not_locked();
 733   if (result != NULL) {
 734     assert(*actual_word_size != 0, "Actual size must have been set here");
 735     dirty_young_block(result, *actual_word_size);
 736   } else {
 737     *actual_word_size = 0;
 738   }
 739 
 740   return result;
 741 }
 742 
 743 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 744   assert(!is_init_completed(), "Expect to be called at JVM init time");
 745   assert(ranges != NULL, "MemRegion array NULL");
 746   assert(count != 0, "No MemRegions provided");
 747   MemRegion reserved = _hrm->reserved();
 748   HeapWord* prev_last_addr = NULL;
 749   HeapRegion* prev_last_region = NULL;
 750   size_t size_used = 0;
 751   size_t uncommitted_regions = 0;
 752 
 753   // For each Memregion, free the G1 regions that constitute it, and
 754   // notify mark-sweep that the range is no longer to be considered 'archive.'
 755   MutexLocker x(Heap_lock);
 756   for (size_t i = 0; i < count; i++) {
 757     HeapWord* start_address = ranges[i].start();
 758     HeapWord* last_address = ranges[i].last();
 759 
 760     assert(reserved.contains(start_address) && reserved.contains(last_address),
 761            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 762            p2i(start_address), p2i(last_address));
 763     assert(start_address > prev_last_addr,
 764            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 765            p2i(start_address), p2i(prev_last_addr));
 766     size_used += ranges[i].byte_size();
 767     prev_last_addr = last_address;
 768 
 769     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 770     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 771 
 772     // Check for ranges that start in the same G1 region in which the previous
 773     // range ended, and adjust the start address so we don't try to free
 774     // the same region again. If the current range is entirely within that
 775     // region, skip it.
 776     if (start_region == prev_last_region) {
 777       start_address = start_region->end();
 778       if (start_address > last_address) {
 779         continue;
 780       }
 781       start_region = _hrm->addr_to_region(start_address);
 782     }
 783     prev_last_region = last_region;
 784 
 785     // After verifying that each region was marked as an archive region by
 786     // alloc_archive_regions, set it free and empty and uncommit it.
 787     HeapRegion* curr_region = start_region;
 788     while (curr_region != NULL) {
 789       guarantee(curr_region->is_archive(),
 790                 "Expected archive region at index %u", curr_region->hrm_index());
 791       uint curr_index = curr_region->hrm_index();
 792       _archive_set.remove(curr_region);
 793       curr_region->set_free();
 794       curr_region->set_top(curr_region->bottom());
 795       if (curr_region != last_region) {
 796         curr_region = _hrm->next_region_in_heap(curr_region);
 797       } else {
 798         curr_region = NULL;
 799       }
 800       _hrm->shrink_at(curr_index, 1);
 801       uncommitted_regions++;
 802     }
 803 
 804     // Notify mark-sweep that this is no longer an archive range.
 805     G1ArchiveAllocator::clear_range_archive(ranges[i]);
 806   }
 807 
 808   if (uncommitted_regions != 0) {
 809     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 810                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 811   }
 812   decrease_used(size_used);
 813 }
 814 
 815 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 816   assert(obj != NULL, "archived obj is NULL");
 817   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 818 
 819   // Loading an archived object makes it strongly reachable. If it is
 820   // loaded during concurrent marking, it must be enqueued to the SATB
 821   // queue, shading the previously white object gray.
 822   G1BarrierSet::enqueue(obj);
 823 
 824   return obj;
 825 }
 826 
 827 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 828   ResourceMark rm; // For retrieving the thread names in log messages.
 829 
 830   // The structure of this method has a lot of similarities to
 831   // attempt_allocation_slow(). The reason these two were not merged
 832   // into a single one is that such a method would require several "if
 833   // allocation is not humongous do this, otherwise do that"
 834   // conditional paths which would obscure its flow. In fact, an early
 835   // version of this code did use a unified method which was harder to
 836   // follow and, as a result, it had subtle bugs that were hard to
 837   // track down. So keeping these two methods separate allows each to
 838   // be more readable. It will be good to keep these two in sync as
 839   // much as possible.
 840 
 841   assert_heap_not_locked_and_not_at_safepoint();
 842   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 843          "should only be called for humongous allocations");
 844 
 845   // Humongous objects can exhaust the heap quickly, so we should check if we
 846   // need to start a marking cycle at each humongous object allocation. We do
 847   // the check before we do the actual allocation. The reason for doing it
 848   // before the allocation is that we avoid having to keep track of the newly
 849   // allocated memory while we do a GC.
 850   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 851                                            word_size)) {
 852     collect(GCCause::_g1_humongous_allocation);
 853   }
 854 
 855   // We will loop until a) we manage to successfully perform the
 856   // allocation or b) we successfully schedule a collection which
 857   // fails to perform the allocation. b) is the only case when we'll
 858   // return NULL.
 859   HeapWord* result = NULL;
 860   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 861     bool should_try_gc;
 862     uint gc_count_before;
 863 
 864 
 865     {
 866       MutexLocker x(Heap_lock);
 867 
 868       // Given that humongous objects are not allocated in young
 869       // regions, we'll first try to do the allocation without doing a
 870       // collection hoping that there's enough space in the heap.
 871       result = humongous_obj_allocate(word_size);
 872       if (result != NULL) {
 873         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 874         policy()->old_gen_alloc_tracker()->
 875           add_allocated_humongous_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 876         return result;
 877       }
 878 
 879       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 880       // the GCLocker initiated GC has been performed and then retry. This includes
 881       // the case when the GC Locker is not active but has not been performed.
 882       should_try_gc = !GCLocker::needs_gc();
 883       // Read the GC count while still holding the Heap_lock.
 884       gc_count_before = total_collections();
 885     }
 886 
 887     if (should_try_gc) {
 888       bool succeeded;
 889       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 890                                    GCCause::_g1_humongous_allocation);
 891       if (result != NULL) {
 892         assert(succeeded, "only way to get back a non-NULL result");
 893         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 894                              Thread::current()->name(), p2i(result));
 895         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 896         policy()->old_gen_alloc_tracker()->
 897           record_collection_pause_humongous_allocation(size_in_regions * HeapRegion::GrainBytes);
 898         return result;
 899       }
 900 
 901       if (succeeded) {
 902         // We successfully scheduled a collection which failed to allocate. No
 903         // point in trying to allocate further. We'll just return NULL.
 904         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 905                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 906         return NULL;
 907       }
 908       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 909                            Thread::current()->name(), word_size);
 910     } else {
 911       // Failed to schedule a collection.
 912       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 913         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 914                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 915         return NULL;
 916       }
 917       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 918       // The GCLocker is either active or the GCLocker initiated
 919       // GC has not yet been performed. Stall until it is and
 920       // then retry the allocation.
 921       GCLocker::stall_until_clear();
 922       gclocker_retry_count += 1;
 923     }
 924 
 925 
 926     // We can reach here if we were unsuccessful in scheduling a
 927     // collection (because another thread beat us to it) or if we were
 928     // stalled due to the GC locker. In either can we should retry the
 929     // allocation attempt in case another thread successfully
 930     // performed a collection and reclaimed enough space.
 931     // Humongous object allocation always needs a lock, so we wait for the retry
 932     // in the next iteration of the loop, unlike for the regular iteration case.
 933     // Give a warning if we seem to be looping forever.
 934 
 935     if ((QueuedAllocationWarningCount > 0) &&
 936         (try_count % QueuedAllocationWarningCount == 0)) {
 937       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 938                              Thread::current()->name(), try_count, word_size);
 939     }
 940   }
 941 
 942   ShouldNotReachHere();
 943   return NULL;
 944 }
 945 
 946 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 947                                                            bool expect_null_mutator_alloc_region) {
 948   assert_at_safepoint_on_vm_thread();
 949   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 950          "the current alloc region was unexpectedly found to be non-NULL");
 951 
 952   if (!is_humongous(word_size)) {
 953     return _allocator->attempt_allocation_locked(word_size);
 954   } else {
 955     HeapWord* result = humongous_obj_allocate(word_size);
 956     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 957       collector_state()->set_initiate_conc_mark_if_possible(true);
 958     }
 959     return result;
 960   }
 961 
 962   ShouldNotReachHere();
 963 }
 964 
 965 class PostCompactionPrinterClosure: public HeapRegionClosure {
 966 private:
 967   G1HRPrinter* _hr_printer;
 968 public:
 969   bool do_heap_region(HeapRegion* hr) {
 970     assert(!hr->is_young(), "not expecting to find young regions");
 971     _hr_printer->post_compaction(hr);
 972     return false;
 973   }
 974 
 975   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 976     : _hr_printer(hr_printer) { }
 977 };
 978 
 979 void G1CollectedHeap::print_hrm_post_compaction() {
 980   if (_hr_printer.is_active()) {
 981     PostCompactionPrinterClosure cl(hr_printer());
 982     heap_region_iterate(&cl);
 983   }
 984 }
 985 
 986 void G1CollectedHeap::abort_concurrent_cycle() {
 987   // If we start the compaction before the CM threads finish
 988   // scanning the root regions we might trip them over as we'll
 989   // be moving objects / updating references. So let's wait until
 990   // they are done. By telling them to abort, they should complete
 991   // early.
 992   _cm->root_regions()->abort();
 993   _cm->root_regions()->wait_until_scan_finished();
 994 
 995   // Disable discovery and empty the discovered lists
 996   // for the CM ref processor.
 997   _ref_processor_cm->disable_discovery();
 998   _ref_processor_cm->abandon_partial_discovery();
 999   _ref_processor_cm->verify_no_references_recorded();
1000 
1001   // Abandon current iterations of concurrent marking and concurrent
1002   // refinement, if any are in progress.
1003   concurrent_mark()->concurrent_cycle_abort();
1004 }
1005 
1006 void G1CollectedHeap::prepare_heap_for_full_collection() {
1007   // Make sure we'll choose a new allocation region afterwards.
1008   _allocator->release_mutator_alloc_regions();
1009   _allocator->abandon_gc_alloc_regions();
1010 
1011   // We may have added regions to the current incremental collection
1012   // set between the last GC or pause and now. We need to clear the
1013   // incremental collection set and then start rebuilding it afresh
1014   // after this full GC.
1015   abandon_collection_set(collection_set());
1016 
1017   tear_down_region_sets(false /* free_list_only */);
1018 
1019   hrm()->prepare_for_full_collection_start();
1020 }
1021 
1022 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1023   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1024   assert_used_and_recalculate_used_equal(this);
1025   _verifier->verify_region_sets_optional();
1026   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1027   _verifier->check_bitmaps("Full GC Start");
1028 }
1029 
1030 void G1CollectedHeap::prepare_heap_for_mutators() {
1031   hrm()->prepare_for_full_collection_end();
1032 
1033   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1034   ClassLoaderDataGraph::purge();
1035   MetaspaceUtils::verify_metrics();
1036 
1037   // Prepare heap for normal collections.
1038   assert(num_free_regions() == 0, "we should not have added any free regions");
1039   rebuild_region_sets(false /* free_list_only */);
1040   abort_refinement();
1041   resize_heap_if_necessary();
1042 
1043   // Rebuild the strong code root lists for each region
1044   rebuild_strong_code_roots();
1045 
1046   // Purge code root memory
1047   purge_code_root_memory();
1048 
1049   // Start a new incremental collection set for the next pause
1050   start_new_collection_set();
1051 
1052   _allocator->init_mutator_alloc_regions();
1053 
1054   // Post collection state updates.
1055   MetaspaceGC::compute_new_size();
1056 }
1057 
1058 void G1CollectedHeap::abort_refinement() {
1059   if (_hot_card_cache->use_cache()) {
1060     _hot_card_cache->reset_hot_cache();
1061   }
1062 
1063   // Discard all remembered set updates and reset refinement statistics.
1064   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1065   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1066          "DCQS should be empty");
1067   concurrent_refine()->get_and_reset_refinement_stats();
1068 }
1069 
1070 void G1CollectedHeap::verify_after_full_collection() {
1071   _hrm->verify_optional();
1072   _verifier->verify_region_sets_optional();
1073   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1074   // Clear the previous marking bitmap, if needed for bitmap verification.
1075   // Note we cannot do this when we clear the next marking bitmap in
1076   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1077   // objects marked during a full GC against the previous bitmap.
1078   // But we need to clear it before calling check_bitmaps below since
1079   // the full GC has compacted objects and updated TAMS but not updated
1080   // the prev bitmap.
1081   if (G1VerifyBitmaps) {
1082     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1083     _cm->clear_prev_bitmap(workers());
1084   }
1085   // This call implicitly verifies that the next bitmap is clear after Full GC.
1086   _verifier->check_bitmaps("Full GC End");
1087 
1088   // At this point there should be no regions in the
1089   // entire heap tagged as young.
1090   assert(check_young_list_empty(), "young list should be empty at this point");
1091 
1092   // Note: since we've just done a full GC, concurrent
1093   // marking is no longer active. Therefore we need not
1094   // re-enable reference discovery for the CM ref processor.
1095   // That will be done at the start of the next marking cycle.
1096   // We also know that the STW processor should no longer
1097   // discover any new references.
1098   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1099   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1100   _ref_processor_stw->verify_no_references_recorded();
1101   _ref_processor_cm->verify_no_references_recorded();
1102 }
1103 
1104 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1105   // Post collection logging.
1106   // We should do this after we potentially resize the heap so
1107   // that all the COMMIT / UNCOMMIT events are generated before
1108   // the compaction events.
1109   print_hrm_post_compaction();
1110   heap_transition->print();
1111   print_heap_after_gc();
1112   print_heap_regions();
1113 }
1114 
1115 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1116                                          bool clear_all_soft_refs) {
1117   assert_at_safepoint_on_vm_thread();
1118 
1119   if (GCLocker::check_active_before_gc()) {
1120     // Full GC was not completed.
1121     return false;
1122   }
1123 
1124   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1125       soft_ref_policy()->should_clear_all_soft_refs();
1126 
1127   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1128   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1129 
1130   collector.prepare_collection();
1131   collector.collect();
1132   collector.complete_collection();
1133 
1134   // Full collection was successfully completed.
1135   return true;
1136 }
1137 
1138 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1139   // Currently, there is no facility in the do_full_collection(bool) API to notify
1140   // the caller that the collection did not succeed (e.g., because it was locked
1141   // out by the GC locker). So, right now, we'll ignore the return value.
1142   bool dummy = do_full_collection(true,                /* explicit_gc */
1143                                   clear_all_soft_refs);
1144 }
1145 
1146 void G1CollectedHeap::resize_heap_if_necessary() {
1147   assert_at_safepoint_on_vm_thread();
1148 
1149   bool should_expand;
1150   size_t resize_amount = _heap_sizing_policy->full_collection_resize_amount(should_expand);
1151 
1152   if (resize_amount == 0) {
1153     return;
1154   } else if (should_expand) {
1155     expand(resize_amount, _workers);
1156   } else {
1157     shrink(resize_amount);
1158   }
1159 }
1160 
1161 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1162                                                             bool do_gc,
1163                                                             bool clear_all_soft_refs,
1164                                                             bool expect_null_mutator_alloc_region,
1165                                                             bool* gc_succeeded) {
1166   *gc_succeeded = true;
1167   // Let's attempt the allocation first.
1168   HeapWord* result =
1169     attempt_allocation_at_safepoint(word_size,
1170                                     expect_null_mutator_alloc_region);
1171   if (result != NULL) {
1172     return result;
1173   }
1174 
1175   // In a G1 heap, we're supposed to keep allocation from failing by
1176   // incremental pauses.  Therefore, at least for now, we'll favor
1177   // expansion over collection.  (This might change in the future if we can
1178   // do something smarter than full collection to satisfy a failed alloc.)
1179   result = expand_and_allocate(word_size);
1180   if (result != NULL) {
1181     return result;
1182   }
1183 
1184   if (do_gc) {
1185     // Expansion didn't work, we'll try to do a Full GC.
1186     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1187                                        clear_all_soft_refs);
1188   }
1189 
1190   return NULL;
1191 }
1192 
1193 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1194                                                      bool* succeeded) {
1195   assert_at_safepoint_on_vm_thread();
1196 
1197   // Attempts to allocate followed by Full GC.
1198   HeapWord* result =
1199     satisfy_failed_allocation_helper(word_size,
1200                                      true,  /* do_gc */
1201                                      false, /* clear_all_soft_refs */
1202                                      false, /* expect_null_mutator_alloc_region */
1203                                      succeeded);
1204 
1205   if (result != NULL || !*succeeded) {
1206     return result;
1207   }
1208 
1209   // Attempts to allocate followed by Full GC that will collect all soft references.
1210   result = satisfy_failed_allocation_helper(word_size,
1211                                             true, /* do_gc */
1212                                             true, /* clear_all_soft_refs */
1213                                             true, /* expect_null_mutator_alloc_region */
1214                                             succeeded);
1215 
1216   if (result != NULL || !*succeeded) {
1217     return result;
1218   }
1219 
1220   // Attempts to allocate, no GC
1221   result = satisfy_failed_allocation_helper(word_size,
1222                                             false, /* do_gc */
1223                                             false, /* clear_all_soft_refs */
1224                                             true,  /* expect_null_mutator_alloc_region */
1225                                             succeeded);
1226 
1227   if (result != NULL) {
1228     return result;
1229   }
1230 
1231   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1232          "Flag should have been handled and cleared prior to this point");
1233 
1234   // What else?  We might try synchronous finalization later.  If the total
1235   // space available is large enough for the allocation, then a more
1236   // complete compaction phase than we've tried so far might be
1237   // appropriate.
1238   return NULL;
1239 }
1240 
1241 // Attempting to expand the heap sufficiently
1242 // to support an allocation of the given "word_size".  If
1243 // successful, perform the allocation and return the address of the
1244 // allocated block, or else "NULL".
1245 
1246 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1247   assert_at_safepoint_on_vm_thread();
1248 
1249   _verifier->verify_region_sets_optional();
1250 
1251   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1252   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1253                             word_size * HeapWordSize);
1254 
1255 
1256   if (expand(expand_bytes, _workers)) {
1257     _hrm->verify_optional();
1258     _verifier->verify_region_sets_optional();
1259     return attempt_allocation_at_safepoint(word_size,
1260                                            false /* expect_null_mutator_alloc_region */);
1261   }
1262   return NULL;
1263 }
1264 
1265 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1266   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1267   aligned_expand_bytes = align_up(aligned_expand_bytes,
1268                                        HeapRegion::GrainBytes);
1269 
1270   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1271                             expand_bytes, aligned_expand_bytes);
1272 
1273   if (is_maximal_no_gc()) {
1274     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1275     return false;
1276   }
1277 
1278   double expand_heap_start_time_sec = os::elapsedTime();
1279   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1280   assert(regions_to_expand > 0, "Must expand by at least one region");
1281 
1282   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1283   if (expand_time_ms != NULL) {
1284     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1285   }
1286 
1287   if (expanded_by > 0) {
1288     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1289     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1290     policy()->record_new_heap_size(num_regions());
1291   } else {
1292     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1293 
1294     // The expansion of the virtual storage space was unsuccessful.
1295     // Let's see if it was because we ran out of swap.
1296     if (G1ExitOnExpansionFailure &&
1297         _hrm->available() >= regions_to_expand) {
1298       // We had head room...
1299       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1300     }
1301   }
1302   return regions_to_expand > 0;
1303 }
1304 
1305 bool G1CollectedHeap::expand_single_region(uint node_index) {
1306   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1307 
1308   if (expanded_by == 0) {
1309     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1310     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1311     return false;
1312   }
1313 
1314   policy()->record_new_heap_size(num_regions());
1315   return true;
1316 }
1317 
1318 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1319   size_t aligned_shrink_bytes =
1320     ReservedSpace::page_align_size_down(shrink_bytes);
1321   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1322                                          HeapRegion::GrainBytes);
1323   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1324 
1325   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1326   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1327 
1328   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1329                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1330   if (num_regions_removed > 0) {
1331     policy()->record_new_heap_size(num_regions());
1332   } else {
1333     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1334   }
1335 }
1336 
1337 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1338   _verifier->verify_region_sets_optional();
1339 
1340   // We should only reach here at the end of a Full GC or during Remark which
1341   // means we should not not be holding to any GC alloc regions. The method
1342   // below will make sure of that and do any remaining clean up.
1343   _allocator->abandon_gc_alloc_regions();
1344 
1345   // Instead of tearing down / rebuilding the free lists here, we
1346   // could instead use the remove_all_pending() method on free_list to
1347   // remove only the ones that we need to remove.
1348   tear_down_region_sets(true /* free_list_only */);
1349   shrink_helper(shrink_bytes);
1350   rebuild_region_sets(true /* free_list_only */);
1351 
1352   _hrm->verify_optional();
1353   _verifier->verify_region_sets_optional();
1354 }
1355 
1356 class OldRegionSetChecker : public HeapRegionSetChecker {
1357 public:
1358   void check_mt_safety() {
1359     // Master Old Set MT safety protocol:
1360     // (a) If we're at a safepoint, operations on the master old set
1361     // should be invoked:
1362     // - by the VM thread (which will serialize them), or
1363     // - by the GC workers while holding the FreeList_lock, if we're
1364     //   at a safepoint for an evacuation pause (this lock is taken
1365     //   anyway when an GC alloc region is retired so that a new one
1366     //   is allocated from the free list), or
1367     // - by the GC workers while holding the OldSets_lock, if we're at a
1368     //   safepoint for a cleanup pause.
1369     // (b) If we're not at a safepoint, operations on the master old set
1370     // should be invoked while holding the Heap_lock.
1371 
1372     if (SafepointSynchronize::is_at_safepoint()) {
1373       guarantee(Thread::current()->is_VM_thread() ||
1374                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1375                 "master old set MT safety protocol at a safepoint");
1376     } else {
1377       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1378     }
1379   }
1380   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1381   const char* get_description() { return "Old Regions"; }
1382 };
1383 
1384 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1385 public:
1386   void check_mt_safety() {
1387     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1388               "May only change archive regions during initialization or safepoint.");
1389   }
1390   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1391   const char* get_description() { return "Archive Regions"; }
1392 };
1393 
1394 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1395 public:
1396   void check_mt_safety() {
1397     // Humongous Set MT safety protocol:
1398     // (a) If we're at a safepoint, operations on the master humongous
1399     // set should be invoked by either the VM thread (which will
1400     // serialize them) or by the GC workers while holding the
1401     // OldSets_lock.
1402     // (b) If we're not at a safepoint, operations on the master
1403     // humongous set should be invoked while holding the Heap_lock.
1404 
1405     if (SafepointSynchronize::is_at_safepoint()) {
1406       guarantee(Thread::current()->is_VM_thread() ||
1407                 OldSets_lock->owned_by_self(),
1408                 "master humongous set MT safety protocol at a safepoint");
1409     } else {
1410       guarantee(Heap_lock->owned_by_self(),
1411                 "master humongous set MT safety protocol outside a safepoint");
1412     }
1413   }
1414   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1415   const char* get_description() { return "Humongous Regions"; }
1416 };
1417 
1418 G1CollectedHeap::G1CollectedHeap() :
1419   CollectedHeap(),
1420   _young_gen_sampling_thread(NULL),
1421   _workers(NULL),
1422   _card_table(NULL),
1423   _collection_pause_end(Ticks::now()),
1424   _soft_ref_policy(),
1425   _old_set("Old Region Set", new OldRegionSetChecker()),
1426   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1427   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1428   _bot(NULL),
1429   _listener(),
1430   _numa(G1NUMA::create()),
1431   _hrm(NULL),
1432   _allocator(NULL),
1433   _verifier(NULL),
1434   _summary_bytes_used(0),
1435   _bytes_used_during_gc(0),
1436   _archive_allocator(NULL),
1437   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1438   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1439   _expand_heap_after_alloc_failure(true),
1440   _g1mm(NULL),
1441   _humongous_reclaim_candidates(),
1442   _has_humongous_reclaim_candidates(false),
1443   _hr_printer(),
1444   _collector_state(),
1445   _old_marking_cycles_started(0),
1446   _old_marking_cycles_completed(0),
1447   _eden(),
1448   _survivor(),
1449   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1450   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1451   _policy(G1Policy::create_policy(_gc_timer_stw)),
1452   _heap_sizing_policy(NULL),
1453   _collection_set(this, _policy),
1454   _hot_card_cache(NULL),
1455   _rem_set(NULL),
1456   _cm(NULL),
1457   _cm_thread(NULL),
1458   _cr(NULL),
1459   _task_queues(NULL),
1460   _evacuation_failed(false),
1461   _evacuation_failed_info_array(NULL),
1462   _preserved_marks_set(true /* in_c_heap */),
1463 #ifndef PRODUCT
1464   _evacuation_failure_alot_for_current_gc(false),
1465   _evacuation_failure_alot_gc_number(0),
1466   _evacuation_failure_alot_count(0),
1467 #endif
1468   _ref_processor_stw(NULL),
1469   _is_alive_closure_stw(this),
1470   _is_subject_to_discovery_stw(this),
1471   _ref_processor_cm(NULL),
1472   _is_alive_closure_cm(this),
1473   _is_subject_to_discovery_cm(this),
1474   _region_attr() {
1475 
1476   _verifier = new G1HeapVerifier(this);
1477 
1478   _allocator = new G1Allocator(this);
1479 
1480   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1481 
1482   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1483 
1484   // Override the default _filler_array_max_size so that no humongous filler
1485   // objects are created.
1486   _filler_array_max_size = _humongous_object_threshold_in_words;
1487 
1488   uint n_queues = ParallelGCThreads;
1489   _task_queues = new G1ScannerTasksQueueSet(n_queues);
1490 
1491   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1492 
1493   for (uint i = 0; i < n_queues; i++) {
1494     G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
1495     q->initialize();
1496     _task_queues->register_queue(i, q);
1497     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1498   }
1499 
1500   // Initialize the G1EvacuationFailureALot counters and flags.
1501   NOT_PRODUCT(reset_evacuation_should_fail();)
1502   _gc_tracer_stw->initialize();
1503 
1504   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1505 }
1506 
1507 static size_t actual_reserved_page_size(ReservedSpace rs) {
1508   size_t page_size = os::vm_page_size();
1509   if (UseLargePages) {
1510     // There are two ways to manage large page memory.
1511     // 1. OS supports committing large page memory.
1512     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1513     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1514     //    we reserved memory without large page.
1515     if (os::can_commit_large_page_memory() || rs.special()) {
1516       // An alignment at ReservedSpace comes from preferred page size or
1517       // heap alignment, and if the alignment came from heap alignment, it could be
1518       // larger than large pages size. So need to cap with the large page size.
1519       page_size = MIN2(rs.alignment(), os::large_page_size());
1520     }
1521   }
1522 
1523   return page_size;
1524 }
1525 
1526 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1527                                                                  size_t size,
1528                                                                  size_t translation_factor) {
1529   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1530   // Allocate a new reserved space, preferring to use large pages.
1531   ReservedSpace rs(size, preferred_page_size);
1532   size_t page_size = actual_reserved_page_size(rs);
1533   G1RegionToSpaceMapper* result  =
1534     G1RegionToSpaceMapper::create_mapper(rs,
1535                                          size,
1536                                          page_size,
1537                                          HeapRegion::GrainBytes,
1538                                          translation_factor,
1539                                          mtGC);
1540 
1541   os::trace_page_sizes_for_requested_size(description,
1542                                           size,
1543                                           preferred_page_size,
1544                                           page_size,
1545                                           rs.base(),
1546                                           rs.size());
1547 
1548   return result;
1549 }
1550 
1551 jint G1CollectedHeap::initialize_concurrent_refinement() {
1552   jint ecode = JNI_OK;
1553   _cr = G1ConcurrentRefine::create(&ecode);
1554   return ecode;
1555 }
1556 
1557 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1558   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1559   if (_young_gen_sampling_thread->osthread() == NULL) {
1560     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1561     return JNI_ENOMEM;
1562   }
1563   return JNI_OK;
1564 }
1565 
1566 jint G1CollectedHeap::initialize() {
1567 
1568   // Necessary to satisfy locking discipline assertions.
1569 
1570   MutexLocker x(Heap_lock);
1571 
1572   // While there are no constraints in the GC code that HeapWordSize
1573   // be any particular value, there are multiple other areas in the
1574   // system which believe this to be true (e.g. oop->object_size in some
1575   // cases incorrectly returns the size in wordSize units rather than
1576   // HeapWordSize).
1577   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1578 
1579   size_t init_byte_size = InitialHeapSize;
1580   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1581 
1582   // Ensure that the sizes are properly aligned.
1583   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1584   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1585   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1586 
1587   // Reserve the maximum.
1588 
1589   // When compressed oops are enabled, the preferred heap base
1590   // is calculated by subtracting the requested size from the
1591   // 32Gb boundary and using the result as the base address for
1592   // heap reservation. If the requested size is not aligned to
1593   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1594   // into the ReservedHeapSpace constructor) then the actual
1595   // base of the reserved heap may end up differing from the
1596   // address that was requested (i.e. the preferred heap base).
1597   // If this happens then we could end up using a non-optimal
1598   // compressed oops mode.
1599 
1600   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1601                                                      HeapAlignment);
1602 
1603   initialize_reserved_region(heap_rs);
1604 
1605   // Create the barrier set for the entire reserved region.
1606   G1CardTable* ct = new G1CardTable(heap_rs.region());
1607   ct->initialize();
1608   G1BarrierSet* bs = new G1BarrierSet(ct);
1609   bs->initialize();
1610   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1611   BarrierSet::set_barrier_set(bs);
1612   _card_table = ct;
1613 
1614   {
1615     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1616     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1617     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1618   }
1619 
1620   // Create the hot card cache.
1621   _hot_card_cache = new G1HotCardCache(this);
1622 
1623   // Carve out the G1 part of the heap.
1624   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1625   size_t page_size = actual_reserved_page_size(heap_rs);
1626   G1RegionToSpaceMapper* heap_storage =
1627     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1628                                               g1_rs.size(),
1629                                               page_size,
1630                                               HeapRegion::GrainBytes,
1631                                               1,
1632                                               mtJavaHeap);
1633   if(heap_storage == NULL) {
1634     vm_shutdown_during_initialization("Could not initialize G1 heap");
1635     return JNI_ERR;
1636   }
1637 
1638   os::trace_page_sizes("Heap",
1639                        MinHeapSize,
1640                        reserved_byte_size,
1641                        page_size,
1642                        heap_rs.base(),
1643                        heap_rs.size());
1644   heap_storage->set_mapping_changed_listener(&_listener);
1645 
1646   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1647   G1RegionToSpaceMapper* bot_storage =
1648     create_aux_memory_mapper("Block Offset Table",
1649                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1650                              G1BlockOffsetTable::heap_map_factor());
1651 
1652   G1RegionToSpaceMapper* cardtable_storage =
1653     create_aux_memory_mapper("Card Table",
1654                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1655                              G1CardTable::heap_map_factor());
1656 
1657   G1RegionToSpaceMapper* card_counts_storage =
1658     create_aux_memory_mapper("Card Counts Table",
1659                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1660                              G1CardCounts::heap_map_factor());
1661 
1662   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1663   G1RegionToSpaceMapper* prev_bitmap_storage =
1664     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1665   G1RegionToSpaceMapper* next_bitmap_storage =
1666     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1667 
1668   _hrm = HeapRegionManager::create_manager(this);
1669 
1670   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1671   _card_table->initialize(cardtable_storage);
1672 
1673   // Do later initialization work for concurrent refinement.
1674   _hot_card_cache->initialize(card_counts_storage);
1675 
1676   // 6843694 - ensure that the maximum region index can fit
1677   // in the remembered set structures.
1678   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1679   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1680 
1681   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1682   // start within the first card.
1683   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1684   // Also create a G1 rem set.
1685   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1686   _rem_set->initialize(max_reserved_capacity(), max_regions());
1687 
1688   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1689   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1690   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1691             "too many cards per region");
1692 
1693   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1694 
1695   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1696 
1697   {
1698     HeapWord* start = _hrm->reserved().start();
1699     HeapWord* end = _hrm->reserved().end();
1700     size_t granularity = HeapRegion::GrainBytes;
1701 
1702     _region_attr.initialize(start, end, granularity);
1703     _humongous_reclaim_candidates.initialize(start, end, granularity);
1704   }
1705 
1706   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1707                           true /* are_GC_task_threads */,
1708                           false /* are_ConcurrentGC_threads */);
1709   if (_workers == NULL) {
1710     return JNI_ENOMEM;
1711   }
1712   _workers->initialize_workers();
1713 
1714   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1715 
1716   // Create the G1ConcurrentMark data structure and thread.
1717   // (Must do this late, so that "max_regions" is defined.)
1718   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1719   _cm_thread = _cm->cm_thread();
1720 
1721   // Now expand into the initial heap size.
1722   if (!expand(init_byte_size, _workers)) {
1723     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1724     return JNI_ENOMEM;
1725   }
1726 
1727   // Perform any initialization actions delegated to the policy.
1728   policy()->init(this, &_collection_set);
1729 
1730   jint ecode = initialize_concurrent_refinement();
1731   if (ecode != JNI_OK) {
1732     return ecode;
1733   }
1734 
1735   ecode = initialize_young_gen_sampling_thread();
1736   if (ecode != JNI_OK) {
1737     return ecode;
1738   }
1739 
1740   {
1741     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1742     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1743     dcqs.set_max_cards(concurrent_refine()->red_zone());
1744   }
1745 
1746   // Here we allocate the dummy HeapRegion that is required by the
1747   // G1AllocRegion class.
1748   HeapRegion* dummy_region = _hrm->get_dummy_region();
1749 
1750   // We'll re-use the same region whether the alloc region will
1751   // require BOT updates or not and, if it doesn't, then a non-young
1752   // region will complain that it cannot support allocations without
1753   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1754   dummy_region->set_eden();
1755   // Make sure it's full.
1756   dummy_region->set_top(dummy_region->end());
1757   G1AllocRegion::setup(this, dummy_region);
1758 
1759   _allocator->init_mutator_alloc_regions();
1760 
1761   // Do create of the monitoring and management support so that
1762   // values in the heap have been properly initialized.
1763   _g1mm = new G1MonitoringSupport(this);
1764 
1765   G1StringDedup::initialize();
1766 
1767   _preserved_marks_set.init(ParallelGCThreads);
1768 
1769   _collection_set.initialize(max_regions());
1770 
1771   G1InitLogger::print();
1772 
1773   return JNI_OK;
1774 }
1775 
1776 void G1CollectedHeap::stop() {
1777   // Stop all concurrent threads. We do this to make sure these threads
1778   // do not continue to execute and access resources (e.g. logging)
1779   // that are destroyed during shutdown.
1780   _cr->stop();
1781   _young_gen_sampling_thread->stop();
1782   _cm_thread->stop();
1783   if (G1StringDedup::is_enabled()) {
1784     G1StringDedup::stop();
1785   }
1786 }
1787 
1788 void G1CollectedHeap::safepoint_synchronize_begin() {
1789   SuspendibleThreadSet::synchronize();
1790 }
1791 
1792 void G1CollectedHeap::safepoint_synchronize_end() {
1793   SuspendibleThreadSet::desynchronize();
1794 }
1795 
1796 void G1CollectedHeap::post_initialize() {
1797   CollectedHeap::post_initialize();
1798   ref_processing_init();
1799 }
1800 
1801 void G1CollectedHeap::ref_processing_init() {
1802   // Reference processing in G1 currently works as follows:
1803   //
1804   // * There are two reference processor instances. One is
1805   //   used to record and process discovered references
1806   //   during concurrent marking; the other is used to
1807   //   record and process references during STW pauses
1808   //   (both full and incremental).
1809   // * Both ref processors need to 'span' the entire heap as
1810   //   the regions in the collection set may be dotted around.
1811   //
1812   // * For the concurrent marking ref processor:
1813   //   * Reference discovery is enabled at concurrent start.
1814   //   * Reference discovery is disabled and the discovered
1815   //     references processed etc during remarking.
1816   //   * Reference discovery is MT (see below).
1817   //   * Reference discovery requires a barrier (see below).
1818   //   * Reference processing may or may not be MT
1819   //     (depending on the value of ParallelRefProcEnabled
1820   //     and ParallelGCThreads).
1821   //   * A full GC disables reference discovery by the CM
1822   //     ref processor and abandons any entries on it's
1823   //     discovered lists.
1824   //
1825   // * For the STW processor:
1826   //   * Non MT discovery is enabled at the start of a full GC.
1827   //   * Processing and enqueueing during a full GC is non-MT.
1828   //   * During a full GC, references are processed after marking.
1829   //
1830   //   * Discovery (may or may not be MT) is enabled at the start
1831   //     of an incremental evacuation pause.
1832   //   * References are processed near the end of a STW evacuation pause.
1833   //   * For both types of GC:
1834   //     * Discovery is atomic - i.e. not concurrent.
1835   //     * Reference discovery will not need a barrier.
1836 
1837   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1838 
1839   // Concurrent Mark ref processor
1840   _ref_processor_cm =
1841     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1842                            mt_processing,                                  // mt processing
1843                            ParallelGCThreads,                              // degree of mt processing
1844                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1845                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1846                            false,                                          // Reference discovery is not atomic
1847                            &_is_alive_closure_cm,                          // is alive closure
1848                            true);                                          // allow changes to number of processing threads
1849 
1850   // STW ref processor
1851   _ref_processor_stw =
1852     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1853                            mt_processing,                        // mt processing
1854                            ParallelGCThreads,                    // degree of mt processing
1855                            (ParallelGCThreads > 1),              // mt discovery
1856                            ParallelGCThreads,                    // degree of mt discovery
1857                            true,                                 // Reference discovery is atomic
1858                            &_is_alive_closure_stw,               // is alive closure
1859                            true);                                // allow changes to number of processing threads
1860 }
1861 
1862 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1863   return &_soft_ref_policy;
1864 }
1865 
1866 size_t G1CollectedHeap::capacity() const {
1867   return _hrm->length() * HeapRegion::GrainBytes;
1868 }
1869 
1870 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1871   return _hrm->total_free_bytes();
1872 }
1873 
1874 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1875   _hot_card_cache->drain(cl, worker_id);
1876 }
1877 
1878 // Computes the sum of the storage used by the various regions.
1879 size_t G1CollectedHeap::used() const {
1880   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1881   if (_archive_allocator != NULL) {
1882     result += _archive_allocator->used();
1883   }
1884   return result;
1885 }
1886 
1887 size_t G1CollectedHeap::used_unlocked() const {
1888   return _summary_bytes_used;
1889 }
1890 
1891 class SumUsedClosure: public HeapRegionClosure {
1892   size_t _used;
1893 public:
1894   SumUsedClosure() : _used(0) {}
1895   bool do_heap_region(HeapRegion* r) {
1896     _used += r->used();
1897     return false;
1898   }
1899   size_t result() { return _used; }
1900 };
1901 
1902 size_t G1CollectedHeap::recalculate_used() const {
1903   SumUsedClosure blk;
1904   heap_region_iterate(&blk);
1905   return blk.result();
1906 }
1907 
1908 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1909   switch (cause) {
1910     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1911     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1912     case GCCause::_wb_conc_mark:                        return true;
1913     default :                                           return false;
1914   }
1915 }
1916 
1917 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1918   switch (cause) {
1919     case GCCause::_g1_humongous_allocation: return true;
1920     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1921     case GCCause::_wb_breakpoint:           return true;
1922     default:                                return is_user_requested_concurrent_full_gc(cause);
1923   }
1924 }
1925 
1926 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
1927   if (policy()->force_upgrade_to_full()) {
1928     return true;
1929   } else if (should_do_concurrent_full_gc(_gc_cause)) {
1930     return false;
1931   } else if (has_regions_left_for_allocation()) {
1932     return false;
1933   } else {
1934     return true;
1935   }
1936 }
1937 
1938 #ifndef PRODUCT
1939 void G1CollectedHeap::allocate_dummy_regions() {
1940   // Let's fill up most of the region
1941   size_t word_size = HeapRegion::GrainWords - 1024;
1942   // And as a result the region we'll allocate will be humongous.
1943   guarantee(is_humongous(word_size), "sanity");
1944 
1945   // _filler_array_max_size is set to humongous object threshold
1946   // but temporarily change it to use CollectedHeap::fill_with_object().
1947   AutoModifyRestore<size_t> temporarily(_filler_array_max_size, word_size);
1948 
1949   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1950     // Let's use the existing mechanism for the allocation
1951     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1952     if (dummy_obj != NULL) {
1953       MemRegion mr(dummy_obj, word_size);
1954       CollectedHeap::fill_with_object(mr);
1955     } else {
1956       // If we can't allocate once, we probably cannot allocate
1957       // again. Let's get out of the loop.
1958       break;
1959     }
1960   }
1961 }
1962 #endif // !PRODUCT
1963 
1964 void G1CollectedHeap::increment_old_marking_cycles_started() {
1965   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1966          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1967          "Wrong marking cycle count (started: %d, completed: %d)",
1968          _old_marking_cycles_started, _old_marking_cycles_completed);
1969 
1970   _old_marking_cycles_started++;
1971 }
1972 
1973 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent,
1974                                                              bool whole_heap_examined) {
1975   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
1976 
1977   // We assume that if concurrent == true, then the caller is a
1978   // concurrent thread that was joined the Suspendible Thread
1979   // Set. If there's ever a cheap way to check this, we should add an
1980   // assert here.
1981 
1982   // Given that this method is called at the end of a Full GC or of a
1983   // concurrent cycle, and those can be nested (i.e., a Full GC can
1984   // interrupt a concurrent cycle), the number of full collections
1985   // completed should be either one (in the case where there was no
1986   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1987   // behind the number of full collections started.
1988 
1989   // This is the case for the inner caller, i.e. a Full GC.
1990   assert(concurrent ||
1991          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1992          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1993          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1994          "is inconsistent with _old_marking_cycles_completed = %u",
1995          _old_marking_cycles_started, _old_marking_cycles_completed);
1996 
1997   // This is the case for the outer caller, i.e. the concurrent cycle.
1998   assert(!concurrent ||
1999          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2000          "for outer caller (concurrent cycle): "
2001          "_old_marking_cycles_started = %u "
2002          "is inconsistent with _old_marking_cycles_completed = %u",
2003          _old_marking_cycles_started, _old_marking_cycles_completed);
2004 
2005   _old_marking_cycles_completed += 1;
2006   if (whole_heap_examined) {
2007     // Signal that we have completed a visit to all live objects.
2008     record_whole_heap_examined_timestamp();
2009   }
2010 
2011   // We need to clear the "in_progress" flag in the CM thread before
2012   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2013   // is set) so that if a waiter requests another System.gc() it doesn't
2014   // incorrectly see that a marking cycle is still in progress.
2015   if (concurrent) {
2016     _cm_thread->set_idle();
2017   }
2018 
2019   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2020   // for a full GC to finish that their wait is over.
2021   ml.notify_all();
2022 }
2023 
2024 void G1CollectedHeap::collect(GCCause::Cause cause) {
2025   try_collect(cause);
2026 }
2027 
2028 // Return true if (x < y) with allowance for wraparound.
2029 static bool gc_counter_less_than(uint x, uint y) {
2030   return (x - y) > (UINT_MAX/2);
2031 }
2032 
2033 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2034 // Macro so msg printing is format-checked.
2035 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2036   do {                                                                  \
2037     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2038     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2039       ResourceMark rm; /* For thread name. */                           \
2040       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2041       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2042                                        Thread::current()->name(),       \
2043                                        GCCause::to_string(cause));      \
2044       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2045     }                                                                   \
2046   } while (0)
2047 
2048 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2049   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2050 
2051 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2052                                                uint gc_counter,
2053                                                uint old_marking_started_before) {
2054   assert_heap_not_locked();
2055   assert(should_do_concurrent_full_gc(cause),
2056          "Non-concurrent cause %s", GCCause::to_string(cause));
2057 
2058   for (uint i = 1; true; ++i) {
2059     // Try to schedule concurrent start evacuation pause that will
2060     // start a concurrent cycle.
2061     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2062     VM_G1TryInitiateConcMark op(gc_counter,
2063                                 cause,
2064                                 policy()->max_pause_time_ms());
2065     VMThread::execute(&op);
2066 
2067     // Request is trivially finished.
2068     if (cause == GCCause::_g1_periodic_collection) {
2069       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2070       return op.gc_succeeded();
2071     }
2072 
2073     // If VMOp skipped initiating concurrent marking cycle because
2074     // we're terminating, then we're done.
2075     if (op.terminating()) {
2076       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2077       return false;
2078     }
2079 
2080     // Lock to get consistent set of values.
2081     uint old_marking_started_after;
2082     uint old_marking_completed_after;
2083     {
2084       MutexLocker ml(Heap_lock);
2085       // Update gc_counter for retrying VMOp if needed. Captured here to be
2086       // consistent with the values we use below for termination tests.  If
2087       // a retry is needed after a possible wait, and another collection
2088       // occurs in the meantime, it will cause our retry to be skipped and
2089       // we'll recheck for termination with updated conditions from that
2090       // more recent collection.  That's what we want, rather than having
2091       // our retry possibly perform an unnecessary collection.
2092       gc_counter = total_collections();
2093       old_marking_started_after = _old_marking_cycles_started;
2094       old_marking_completed_after = _old_marking_cycles_completed;
2095     }
2096 
2097     if (cause == GCCause::_wb_breakpoint) {
2098       if (op.gc_succeeded()) {
2099         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2100         return true;
2101       }
2102       // When _wb_breakpoint there can't be another cycle or deferred.
2103       assert(!op.cycle_already_in_progress(), "invariant");
2104       assert(!op.whitebox_attached(), "invariant");
2105       // Concurrent cycle attempt might have been cancelled by some other
2106       // collection, so retry.  Unlike other cases below, we want to retry
2107       // even if cancelled by a STW full collection, because we really want
2108       // to start a concurrent cycle.
2109       if (old_marking_started_before != old_marking_started_after) {
2110         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
2111         old_marking_started_before = old_marking_started_after;
2112       }
2113     } else if (!GCCause::is_user_requested_gc(cause)) {
2114       // For an "automatic" (not user-requested) collection, we just need to
2115       // ensure that progress is made.
2116       //
2117       // Request is finished if any of
2118       // (1) the VMOp successfully performed a GC,
2119       // (2) a concurrent cycle was already in progress,
2120       // (3) whitebox is controlling concurrent cycles,
2121       // (4) a new cycle was started (by this thread or some other), or
2122       // (5) a Full GC was performed.
2123       // Cases (4) and (5) are detected together by a change to
2124       // _old_marking_cycles_started.
2125       //
2126       // Note that (1) does not imply (4).  If we're still in the mixed
2127       // phase of an earlier concurrent collection, the request to make the
2128       // collection a concurrent start won't be honored.  If we don't check for
2129       // both conditions we'll spin doing back-to-back collections.
2130       if (op.gc_succeeded() ||
2131           op.cycle_already_in_progress() ||
2132           op.whitebox_attached() ||
2133           (old_marking_started_before != old_marking_started_after)) {
2134         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2135         return true;
2136       }
2137     } else {                    // User-requested GC.
2138       // For a user-requested collection, we want to ensure that a complete
2139       // full collection has been performed before returning, but without
2140       // waiting for more than needed.
2141 
2142       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2143       // new cycle was started.  That's good, because it's not clear what we
2144       // should do otherwise.  Trying again just does back to back GCs.
2145       // Can't wait for someone else to start a cycle.  And returning fails
2146       // to meet the goal of ensuring a full collection was performed.
2147       assert(!op.gc_succeeded() ||
2148              (old_marking_started_before != old_marking_started_after),
2149              "invariant: succeeded %s, started before %u, started after %u",
2150              BOOL_TO_STR(op.gc_succeeded()),
2151              old_marking_started_before, old_marking_started_after);
2152 
2153       // Request is finished if a full collection (concurrent or stw)
2154       // was started after this request and has completed, e.g.
2155       // started_before < completed_after.
2156       if (gc_counter_less_than(old_marking_started_before,
2157                                old_marking_completed_after)) {
2158         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2159         return true;
2160       }
2161 
2162       if (old_marking_started_after != old_marking_completed_after) {
2163         // If there is an in-progress cycle (possibly started by us), then
2164         // wait for that cycle to complete, e.g.
2165         // while completed_now < started_after.
2166         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2167         MonitorLocker ml(G1OldGCCount_lock);
2168         while (gc_counter_less_than(_old_marking_cycles_completed,
2169                                     old_marking_started_after)) {
2170           ml.wait();
2171         }
2172         // Request is finished if the collection we just waited for was
2173         // started after this request.
2174         if (old_marking_started_before != old_marking_started_after) {
2175           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2176           return true;
2177         }
2178       }
2179 
2180       // If VMOp was successful then it started a new cycle that the above
2181       // wait &etc should have recognized as finishing this request.  This
2182       // differs from a non-user-request, where gc_succeeded does not imply
2183       // a new cycle was started.
2184       assert(!op.gc_succeeded(), "invariant");
2185 
2186       if (op.cycle_already_in_progress()) {
2187         // If VMOp failed because a cycle was already in progress, it
2188         // is now complete.  But it didn't finish this user-requested
2189         // GC, so try again.
2190         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2191         continue;
2192       } else if (op.whitebox_attached()) {
2193         // If WhiteBox wants control, wait for notification of a state
2194         // change in the controller, then try again.  Don't wait for
2195         // release of control, since collections may complete while in
2196         // control.  Note: This won't recognize a STW full collection
2197         // while waiting; we can't wait on multiple monitors.
2198         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
2199         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
2200         if (ConcurrentGCBreakpoints::is_controlled()) {
2201           ml.wait();
2202         }
2203         continue;
2204       }
2205     }
2206 
2207     // Collection failed and should be retried.
2208     assert(op.transient_failure(), "invariant");
2209 
2210     if (GCLocker::is_active_and_needs_gc()) {
2211       // If GCLocker is active, wait until clear before retrying.
2212       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2213       GCLocker::stall_until_clear();
2214     }
2215 
2216     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2217   }
2218 }
2219 
2220 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2221   assert_heap_not_locked();
2222 
2223   // Lock to get consistent set of values.
2224   uint gc_count_before;
2225   uint full_gc_count_before;
2226   uint old_marking_started_before;
2227   {
2228     MutexLocker ml(Heap_lock);
2229     gc_count_before = total_collections();
2230     full_gc_count_before = total_full_collections();
2231     old_marking_started_before = _old_marking_cycles_started;
2232   }
2233 
2234   if (should_do_concurrent_full_gc(cause)) {
2235     return try_collect_concurrently(cause,
2236                                     gc_count_before,
2237                                     old_marking_started_before);
2238   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2239     // Indicate failure to be consistent with VMOp failure due to
2240     // another collection slipping in after our gc_count but before
2241     // our request is processed.
2242     return false;
2243   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2244              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2245 
2246     // Schedule a standard evacuation pause. We're setting word_size
2247     // to 0 which means that we are not requesting a post-GC allocation.
2248     VM_G1CollectForAllocation op(0,     /* word_size */
2249                                  gc_count_before,
2250                                  cause,
2251                                  policy()->max_pause_time_ms());
2252     VMThread::execute(&op);
2253     return op.gc_succeeded();
2254   } else {
2255     // Schedule a Full GC.
2256     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2257     VMThread::execute(&op);
2258     return op.gc_succeeded();
2259   }
2260 }
2261 
2262 bool G1CollectedHeap::is_in(const void* p) const {
2263   if (_hrm->reserved().contains(p)) {
2264     // Given that we know that p is in the reserved space,
2265     // heap_region_containing() should successfully
2266     // return the containing region.
2267     HeapRegion* hr = heap_region_containing(p);
2268     return hr->is_in(p);
2269   } else {
2270     return false;
2271   }
2272 }
2273 
2274 #ifdef ASSERT
2275 bool G1CollectedHeap::is_in_exact(const void* p) const {
2276   bool contains = reserved_region().contains(p);
2277   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2278   if (contains && available) {
2279     return true;
2280   } else {
2281     return false;
2282   }
2283 }
2284 #endif
2285 
2286 // Iteration functions.
2287 
2288 // Iterates an ObjectClosure over all objects within a HeapRegion.
2289 
2290 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2291   ObjectClosure* _cl;
2292 public:
2293   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2294   bool do_heap_region(HeapRegion* r) {
2295     if (!r->is_continues_humongous()) {
2296       r->object_iterate(_cl);
2297     }
2298     return false;
2299   }
2300 };
2301 
2302 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2303   IterateObjectClosureRegionClosure blk(cl);
2304   heap_region_iterate(&blk);
2305 }
2306 
2307 void G1CollectedHeap::keep_alive(oop obj) {
2308   G1BarrierSet::enqueue(obj);
2309 }
2310 
2311 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2312   _hrm->iterate(cl);
2313 }
2314 
2315 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2316                                                                  HeapRegionClaimer *hrclaimer,
2317                                                                  uint worker_id) const {
2318   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2319 }
2320 
2321 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2322                                                          HeapRegionClaimer *hrclaimer) const {
2323   _hrm->par_iterate(cl, hrclaimer, 0);
2324 }
2325 
2326 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2327   _collection_set.iterate(cl);
2328 }
2329 
2330 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2331   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2332 }
2333 
2334 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2335   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2336 }
2337 
2338 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2339   HeapRegion* hr = heap_region_containing(addr);
2340   return hr->block_start(addr);
2341 }
2342 
2343 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2344   HeapRegion* hr = heap_region_containing(addr);
2345   return hr->block_is_obj(addr);
2346 }
2347 
2348 bool G1CollectedHeap::supports_tlab_allocation() const {
2349   return true;
2350 }
2351 
2352 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2353   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2354 }
2355 
2356 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2357   return _eden.length() * HeapRegion::GrainBytes;
2358 }
2359 
2360 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2361 // must be equal to the humongous object limit.
2362 size_t G1CollectedHeap::max_tlab_size() const {
2363   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2364 }
2365 
2366 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2367   return _allocator->unsafe_max_tlab_alloc();
2368 }
2369 
2370 size_t G1CollectedHeap::max_capacity() const {
2371   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2372 }
2373 
2374 size_t G1CollectedHeap::max_reserved_capacity() const {
2375   return _hrm->max_length() * HeapRegion::GrainBytes;
2376 }
2377 
2378 void G1CollectedHeap::deduplicate_string(oop str) {
2379   assert(java_lang_String::is_instance(str), "invariant");
2380 
2381   if (G1StringDedup::is_enabled()) {
2382     G1StringDedup::deduplicate(str);
2383   }
2384 }
2385 
2386 void G1CollectedHeap::prepare_for_verify() {
2387   _verifier->prepare_for_verify();
2388 }
2389 
2390 void G1CollectedHeap::verify(VerifyOption vo) {
2391   _verifier->verify(vo);
2392 }
2393 
2394 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2395   return true;
2396 }
2397 
2398 bool G1CollectedHeap::is_heterogeneous_heap() const {
2399   return G1Arguments::is_heterogeneous_heap();
2400 }
2401 
2402 class PrintRegionClosure: public HeapRegionClosure {
2403   outputStream* _st;
2404 public:
2405   PrintRegionClosure(outputStream* st) : _st(st) {}
2406   bool do_heap_region(HeapRegion* r) {
2407     r->print_on(_st);
2408     return false;
2409   }
2410 };
2411 
2412 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2413                                        const HeapRegion* hr,
2414                                        const VerifyOption vo) const {
2415   switch (vo) {
2416   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2417   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2418   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2419   default:                            ShouldNotReachHere();
2420   }
2421   return false; // keep some compilers happy
2422 }
2423 
2424 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2425                                        const VerifyOption vo) const {
2426   switch (vo) {
2427   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2428   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2429   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2430   default:                            ShouldNotReachHere();
2431   }
2432   return false; // keep some compilers happy
2433 }
2434 
2435 void G1CollectedHeap::print_heap_regions() const {
2436   LogTarget(Trace, gc, heap, region) lt;
2437   if (lt.is_enabled()) {
2438     LogStream ls(lt);
2439     print_regions_on(&ls);
2440   }
2441 }
2442 
2443 void G1CollectedHeap::print_on(outputStream* st) const {
2444   st->print(" %-20s", "garbage-first heap");
2445   if (_hrm != NULL) {
2446     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2447               capacity()/K, used_unlocked()/K);
2448     st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2449               p2i(_hrm->reserved().start()),
2450               p2i(_hrm->reserved().end()));
2451   }
2452   st->cr();
2453   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2454   uint young_regions = young_regions_count();
2455   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2456             (size_t) young_regions * HeapRegion::GrainBytes / K);
2457   uint survivor_regions = survivor_regions_count();
2458   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2459             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2460   st->cr();
2461   if (_numa->is_enabled()) {
2462     uint num_nodes = _numa->num_active_nodes();
2463     st->print("  remaining free region(s) on each NUMA node: ");
2464     const int* node_ids = _numa->node_ids();
2465     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2466       uint num_free_regions = (_hrm != NULL ? _hrm->num_free_regions(node_index) : 0);
2467       st->print("%d=%u ", node_ids[node_index], num_free_regions);
2468     }
2469     st->cr();
2470   }
2471   MetaspaceUtils::print_on(st);
2472 }
2473 
2474 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2475   if (_hrm == NULL) {
2476     return;
2477   }
2478 
2479   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2480                "HS=humongous(starts), HC=humongous(continues), "
2481                "CS=collection set, F=free, "
2482                "OA=open archive, CA=closed archive, "
2483                "TAMS=top-at-mark-start (previous, next)");
2484   PrintRegionClosure blk(st);
2485   heap_region_iterate(&blk);
2486 }
2487 
2488 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2489   print_on(st);
2490 
2491   // Print the per-region information.
2492   if (_hrm != NULL) {
2493     st->cr();
2494     print_regions_on(st);
2495   }
2496 }
2497 
2498 void G1CollectedHeap::print_on_error(outputStream* st) const {
2499   this->CollectedHeap::print_on_error(st);
2500 
2501   if (_cm != NULL) {
2502     st->cr();
2503     _cm->print_on_error(st);
2504   }
2505 }
2506 
2507 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2508   workers()->threads_do(tc);
2509   tc->do_thread(_cm_thread);
2510   _cm->threads_do(tc);
2511   _cr->threads_do(tc);
2512   tc->do_thread(_young_gen_sampling_thread);
2513   if (G1StringDedup::is_enabled()) {
2514     G1StringDedup::threads_do(tc);
2515   }
2516 }
2517 
2518 void G1CollectedHeap::print_tracing_info() const {
2519   rem_set()->print_summary_info();
2520   concurrent_mark()->print_summary_info();
2521 }
2522 
2523 #ifndef PRODUCT
2524 // Helpful for debugging RSet issues.
2525 
2526 class PrintRSetsClosure : public HeapRegionClosure {
2527 private:
2528   const char* _msg;
2529   size_t _occupied_sum;
2530 
2531 public:
2532   bool do_heap_region(HeapRegion* r) {
2533     HeapRegionRemSet* hrrs = r->rem_set();
2534     size_t occupied = hrrs->occupied();
2535     _occupied_sum += occupied;
2536 
2537     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2538     if (occupied == 0) {
2539       tty->print_cr("  RSet is empty");
2540     } else {
2541       hrrs->print();
2542     }
2543     tty->print_cr("----------");
2544     return false;
2545   }
2546 
2547   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2548     tty->cr();
2549     tty->print_cr("========================================");
2550     tty->print_cr("%s", msg);
2551     tty->cr();
2552   }
2553 
2554   ~PrintRSetsClosure() {
2555     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2556     tty->print_cr("========================================");
2557     tty->cr();
2558   }
2559 };
2560 
2561 void G1CollectedHeap::print_cset_rsets() {
2562   PrintRSetsClosure cl("Printing CSet RSets");
2563   collection_set_iterate_all(&cl);
2564 }
2565 
2566 void G1CollectedHeap::print_all_rsets() {
2567   PrintRSetsClosure cl("Printing All RSets");;
2568   heap_region_iterate(&cl);
2569 }
2570 #endif // PRODUCT
2571 
2572 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2573   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2574 }
2575 
2576 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2577 
2578   size_t eden_used_bytes = _eden.used_bytes();
2579   size_t survivor_used_bytes = _survivor.used_bytes();
2580   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2581 
2582   size_t eden_capacity_bytes =
2583     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2584 
2585   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2586   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2587                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2588 }
2589 
2590 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2591   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2592                        stats->unused(), stats->used(), stats->region_end_waste(),
2593                        stats->regions_filled(), stats->direct_allocated(),
2594                        stats->failure_used(), stats->failure_waste());
2595 }
2596 
2597 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2598   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2599   gc_tracer->report_gc_heap_summary(when, heap_summary);
2600 
2601   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2602   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2603 }
2604 
2605 void G1CollectedHeap::gc_prologue(bool full) {
2606   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2607 
2608   // This summary needs to be printed before incrementing total collections.
2609   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2610 
2611   // Update common counters.
2612   increment_total_collections(full /* full gc */);
2613   if (full || collector_state()->in_concurrent_start_gc()) {
2614     increment_old_marking_cycles_started();
2615   }
2616 
2617   // Fill TLAB's and such
2618   {
2619     Ticks start = Ticks::now();
2620     ensure_parsability(true);
2621     Tickspan dt = Ticks::now() - start;
2622     phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS);
2623   }
2624 
2625   if (!full) {
2626     // Flush dirty card queues to qset, so later phases don't need to account
2627     // for partially filled per-thread queues and such.  Not needed for full
2628     // collections, which ignore those logs.
2629     Ticks start = Ticks::now();
2630     G1BarrierSet::dirty_card_queue_set().concatenate_logs();
2631     Tickspan dt = Ticks::now() - start;
2632     phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS);
2633   }
2634 }
2635 
2636 void G1CollectedHeap::gc_epilogue(bool full) {
2637   // Update common counters.
2638   if (full) {
2639     // Update the number of full collections that have been completed.
2640     increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */);
2641   }
2642 
2643   // We are at the end of the GC. Total collections has already been increased.
2644   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2645 
2646   // FIXME: what is this about?
2647   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2648   // is set.
2649 #if COMPILER2_OR_JVMCI
2650   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2651 #endif
2652 
2653   double start = os::elapsedTime();
2654   resize_all_tlabs();
2655   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2656 
2657   MemoryService::track_memory_usage();
2658   // We have just completed a GC. Update the soft reference
2659   // policy with the new heap occupancy
2660   Universe::update_heap_info_at_gc();
2661 
2662   // Print NUMA statistics.
2663   _numa->print_statistics();
2664 
2665   _collection_pause_end = Ticks::now();
2666 }
2667 
2668 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2669   LogTarget(Trace, gc, heap, verify) lt;
2670 
2671   if (lt.is_enabled()) {
2672     LogStream ls(lt);
2673     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2674     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2675     heap_region_iterate(&cl);
2676   }
2677 }
2678 
2679 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2680                                                uint gc_count_before,
2681                                                bool* succeeded,
2682                                                GCCause::Cause gc_cause) {
2683   assert_heap_not_locked_and_not_at_safepoint();
2684   VM_G1CollectForAllocation op(word_size,
2685                                gc_count_before,
2686                                gc_cause,
2687                                policy()->max_pause_time_ms());
2688   VMThread::execute(&op);
2689 
2690   HeapWord* result = op.result();
2691   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2692   assert(result == NULL || ret_succeeded,
2693          "the result should be NULL if the VM did not succeed");
2694   *succeeded = ret_succeeded;
2695 
2696   assert_heap_not_locked();
2697   return result;
2698 }
2699 
2700 void G1CollectedHeap::do_concurrent_mark() {
2701   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2702   if (!_cm_thread->in_progress()) {
2703     _cm_thread->set_started();
2704     CGC_lock->notify();
2705   }
2706 }
2707 
2708 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2709   // We don't nominate objects with many remembered set entries, on
2710   // the assumption that such objects are likely still live.
2711   HeapRegionRemSet* rem_set = r->rem_set();
2712 
2713   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2714          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2715          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2716 }
2717 
2718 #ifndef PRODUCT
2719 void G1CollectedHeap::verify_region_attr_remset_update() {
2720   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2721   public:
2722     virtual bool do_heap_region(HeapRegion* r) {
2723       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2724       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2725       assert(r->rem_set()->is_tracked() == needs_remset_update,
2726              "Region %u remset tracking status (%s) different to region attribute (%s)",
2727              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2728       return false;
2729     }
2730   } cl;
2731   heap_region_iterate(&cl);
2732 }
2733 #endif
2734 
2735 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2736   public:
2737     bool do_heap_region(HeapRegion* hr) {
2738       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2739         hr->verify_rem_set();
2740       }
2741       return false;
2742     }
2743 };
2744 
2745 uint G1CollectedHeap::num_task_queues() const {
2746   return _task_queues->size();
2747 }
2748 
2749 #if TASKQUEUE_STATS
2750 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2751   st->print_raw_cr("GC Task Stats");
2752   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2753   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2754 }
2755 
2756 void G1CollectedHeap::print_taskqueue_stats() const {
2757   if (!log_is_enabled(Trace, gc, task, stats)) {
2758     return;
2759   }
2760   Log(gc, task, stats) log;
2761   ResourceMark rm;
2762   LogStream ls(log.trace());
2763   outputStream* st = &ls;
2764 
2765   print_taskqueue_stats_hdr(st);
2766 
2767   TaskQueueStats totals;
2768   const uint n = num_task_queues();
2769   for (uint i = 0; i < n; ++i) {
2770     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2771     totals += task_queue(i)->stats;
2772   }
2773   st->print_raw("tot "); totals.print(st); st->cr();
2774 
2775   DEBUG_ONLY(totals.verify());
2776 }
2777 
2778 void G1CollectedHeap::reset_taskqueue_stats() {
2779   const uint n = num_task_queues();
2780   for (uint i = 0; i < n; ++i) {
2781     task_queue(i)->stats.reset();
2782   }
2783 }
2784 #endif // TASKQUEUE_STATS
2785 
2786 void G1CollectedHeap::wait_for_root_region_scanning() {
2787   double scan_wait_start = os::elapsedTime();
2788   // We have to wait until the CM threads finish scanning the
2789   // root regions as it's the only way to ensure that all the
2790   // objects on them have been correctly scanned before we start
2791   // moving them during the GC.
2792   bool waited = _cm->root_regions()->wait_until_scan_finished();
2793   double wait_time_ms = 0.0;
2794   if (waited) {
2795     double scan_wait_end = os::elapsedTime();
2796     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2797   }
2798   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2799 }
2800 
2801 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2802 private:
2803   G1HRPrinter* _hr_printer;
2804 public:
2805   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2806 
2807   virtual bool do_heap_region(HeapRegion* r) {
2808     _hr_printer->cset(r);
2809     return false;
2810   }
2811 };
2812 
2813 void G1CollectedHeap::start_new_collection_set() {
2814   double start = os::elapsedTime();
2815 
2816   collection_set()->start_incremental_building();
2817 
2818   clear_region_attr();
2819 
2820   guarantee(_eden.length() == 0, "eden should have been cleared");
2821   policy()->transfer_survivors_to_cset(survivor());
2822 
2823   // We redo the verification but now wrt to the new CSet which
2824   // has just got initialized after the previous CSet was freed.
2825   _cm->verify_no_collection_set_oops();
2826 
2827   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2828 }
2829 
2830 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2831 
2832   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2833   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2834                                             collection_set()->optional_region_length());
2835 
2836   _cm->verify_no_collection_set_oops();
2837 
2838   if (_hr_printer.is_active()) {
2839     G1PrintCollectionSetClosure cl(&_hr_printer);
2840     _collection_set.iterate(&cl);
2841     _collection_set.iterate_optional(&cl);
2842   }
2843 }
2844 
2845 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2846   if (collector_state()->in_concurrent_start_gc()) {
2847     return G1HeapVerifier::G1VerifyConcurrentStart;
2848   } else if (collector_state()->in_young_only_phase()) {
2849     return G1HeapVerifier::G1VerifyYoungNormal;
2850   } else {
2851     return G1HeapVerifier::G1VerifyMixed;
2852   }
2853 }
2854 
2855 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2856   if (VerifyRememberedSets) {
2857     log_info(gc, verify)("[Verifying RemSets before GC]");
2858     VerifyRegionRemSetClosure v_cl;
2859     heap_region_iterate(&v_cl);
2860   }
2861   _verifier->verify_before_gc(type);
2862   _verifier->check_bitmaps("GC Start");
2863   verify_numa_regions("GC Start");
2864 }
2865 
2866 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2867   if (VerifyRememberedSets) {
2868     log_info(gc, verify)("[Verifying RemSets after GC]");
2869     VerifyRegionRemSetClosure v_cl;
2870     heap_region_iterate(&v_cl);
2871   }
2872   _verifier->verify_after_gc(type);
2873   _verifier->check_bitmaps("GC End");
2874   verify_numa_regions("GC End");
2875 }
2876 
2877 void G1CollectedHeap::expand_heap_after_young_collection(){
2878   size_t expand_bytes = _heap_sizing_policy->young_collection_expansion_amount();
2879   if (expand_bytes > 0) {
2880     // No need for an ergo logging here,
2881     // expansion_amount() does this when it returns a value > 0.
2882     double expand_ms;
2883     if (!expand(expand_bytes, _workers, &expand_ms)) {
2884       // We failed to expand the heap. Cannot do anything about it.
2885     }
2886     phase_times()->record_expand_heap_time(expand_ms);
2887   }
2888 }
2889 
2890 const char* G1CollectedHeap::young_gc_name() const {
2891   if (collector_state()->in_concurrent_start_gc()) {
2892     return "Pause Young (Concurrent Start)";
2893   } else if (collector_state()->in_young_only_phase()) {
2894     if (collector_state()->in_young_gc_before_mixed()) {
2895       return "Pause Young (Prepare Mixed)";
2896     } else {
2897       return "Pause Young (Normal)";
2898     }
2899   } else {
2900     return "Pause Young (Mixed)";
2901   }
2902 }
2903 
2904 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2905   assert_at_safepoint_on_vm_thread();
2906   guarantee(!is_gc_active(), "collection is not reentrant");
2907 
2908   if (GCLocker::check_active_before_gc()) {
2909     return false;
2910   }
2911 
2912   do_collection_pause_at_safepoint_helper(target_pause_time_ms);
2913   if (should_upgrade_to_full_gc(gc_cause())) {
2914     log_info(gc, ergo)("Attempting maximally compacting collection");
2915     bool result = do_full_collection(false /* explicit gc */,
2916                                      true /* clear_all_soft_refs */);
2917     // do_full_collection only fails if blocked by GC locker, but
2918     // we've already checked for that above.
2919     assert(result, "invariant");
2920   }
2921   return true;
2922 }
2923 
2924 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
2925   GCIdMark gc_id_mark;
2926 
2927   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2928   ResourceMark rm;
2929 
2930   policy()->note_gc_start();
2931 
2932   _gc_timer_stw->register_gc_start();
2933   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2934 
2935   wait_for_root_region_scanning();
2936 
2937   print_heap_before_gc();
2938   print_heap_regions();
2939   trace_heap_before_gc(_gc_tracer_stw);
2940 
2941   _verifier->verify_region_sets_optional();
2942   _verifier->verify_dirty_young_regions();
2943 
2944   // We should not be doing concurrent start unless the concurrent mark thread is running
2945   if (!_cm_thread->should_terminate()) {
2946     // This call will decide whether this pause is a concurrent start
2947     // pause. If it is, in_concurrent_start_gc() will return true
2948     // for the duration of this pause.
2949     policy()->decide_on_conc_mark_initiation();
2950   }
2951 
2952   // We do not allow concurrent start to be piggy-backed on a mixed GC.
2953   assert(!collector_state()->in_concurrent_start_gc() ||
2954          collector_state()->in_young_only_phase(), "sanity");
2955   // We also do not allow mixed GCs during marking.
2956   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2957 
2958   // Record whether this pause is a concurrent start. When the current
2959   // thread has completed its logging output and it's safe to signal
2960   // the CM thread, the flag's value in the policy has been reset.
2961   bool should_start_conc_mark = collector_state()->in_concurrent_start_gc();
2962   if (should_start_conc_mark) {
2963     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2964   }
2965 
2966   // Inner scope for scope based logging, timers, and stats collection
2967   {
2968     G1EvacuationInfo evacuation_info;
2969 
2970     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2971 
2972     GCTraceCPUTime tcpu;
2973 
2974     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
2975 
2976     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
2977                                                             workers()->active_workers(),
2978                                                             Threads::number_of_non_daemon_threads());
2979     active_workers = workers()->update_active_workers(active_workers);
2980     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2981 
2982     G1MonitoringScope ms(g1mm(),
2983                          false /* full_gc */,
2984                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2985 
2986     G1HeapTransition heap_transition(this);
2987 
2988     {
2989       IsGCActiveMark x;
2990 
2991       gc_prologue(false);
2992 
2993       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
2994       verify_before_young_collection(verify_type);
2995 
2996       {
2997         // The elapsed time induced by the start time below deliberately elides
2998         // the possible verification above.
2999         double sample_start_time_sec = os::elapsedTime();
3000 
3001         // Please see comment in g1CollectedHeap.hpp and
3002         // G1CollectedHeap::ref_processing_init() to see how
3003         // reference processing currently works in G1.
3004         _ref_processor_stw->enable_discovery();
3005 
3006         // We want to temporarily turn off discovery by the
3007         // CM ref processor, if necessary, and turn it back on
3008         // on again later if we do. Using a scoped
3009         // NoRefDiscovery object will do this.
3010         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3011 
3012         policy()->record_collection_pause_start(sample_start_time_sec);
3013 
3014         // Forget the current allocation region (we might even choose it to be part
3015         // of the collection set!).
3016         _allocator->release_mutator_alloc_regions();
3017 
3018         calculate_collection_set(evacuation_info, target_pause_time_ms);
3019 
3020         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3021         G1ParScanThreadStateSet per_thread_states(this,
3022                                                   &rdcqs,
3023                                                   workers()->active_workers(),
3024                                                   collection_set()->young_region_length(),
3025                                                   collection_set()->optional_region_length());
3026         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3027 
3028         // Actually do the work...
3029         evacuate_initial_collection_set(&per_thread_states);
3030 
3031         if (_collection_set.optional_region_length() != 0) {
3032           evacuate_optional_collection_set(&per_thread_states);
3033         }
3034         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3035 
3036         start_new_collection_set();
3037 
3038         _survivor_evac_stats.adjust_desired_plab_sz();
3039         _old_evac_stats.adjust_desired_plab_sz();
3040 
3041         if (should_start_conc_mark) {
3042           // We have to do this before we notify the CM threads that
3043           // they can start working to make sure that all the
3044           // appropriate initialization is done on the CM object.
3045           concurrent_mark()->post_concurrent_start();
3046           // Note that we don't actually trigger the CM thread at
3047           // this point. We do that later when we're sure that
3048           // the current thread has completed its logging output.
3049         }
3050 
3051         allocate_dummy_regions();
3052 
3053         _allocator->init_mutator_alloc_regions();
3054 
3055         expand_heap_after_young_collection();
3056 
3057         double sample_end_time_sec = os::elapsedTime();
3058         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3059         policy()->record_collection_pause_end(pause_time_ms);
3060       }
3061 
3062       verify_after_young_collection(verify_type);
3063 
3064       gc_epilogue(false);
3065     }
3066 
3067     // Print the remainder of the GC log output.
3068     if (evacuation_failed()) {
3069       log_info(gc)("To-space exhausted");
3070     }
3071 
3072     policy()->print_phases();
3073     heap_transition.print();
3074 
3075     _hrm->verify_optional();
3076     _verifier->verify_region_sets_optional();
3077 
3078     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3079     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3080 
3081     print_heap_after_gc();
3082     print_heap_regions();
3083     trace_heap_after_gc(_gc_tracer_stw);
3084 
3085     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3086     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3087     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3088     // before any GC notifications are raised.
3089     g1mm()->update_sizes();
3090 
3091     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3092     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3093     _gc_timer_stw->register_gc_end();
3094     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3095   }
3096   // It should now be safe to tell the concurrent mark thread to start
3097   // without its logging output interfering with the logging output
3098   // that came from the pause.
3099 
3100   if (should_start_conc_mark) {
3101     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3102     // thread(s) could be running concurrently with us. Make sure that anything
3103     // after this point does not assume that we are the only GC thread running.
3104     // Note: of course, the actual marking work will not start until the safepoint
3105     // itself is released in SuspendibleThreadSet::desynchronize().
3106     do_concurrent_mark();
3107     ConcurrentGCBreakpoints::notify_idle_to_active();
3108   }
3109 }
3110 
3111 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3112   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3113   workers()->run_task(&rsfp_task);
3114 }
3115 
3116 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3117   double remove_self_forwards_start = os::elapsedTime();
3118 
3119   remove_self_forwarding_pointers(rdcqs);
3120   _preserved_marks_set.restore(workers());
3121 
3122   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3123 }
3124 
3125 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3126   if (!_evacuation_failed) {
3127     _evacuation_failed = true;
3128   }
3129 
3130   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3131   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3132 }
3133 
3134 bool G1ParEvacuateFollowersClosure::offer_termination() {
3135   EventGCPhaseParallel event;
3136   G1ParScanThreadState* const pss = par_scan_state();
3137   start_term_time();
3138   const bool res = terminator()->offer_termination();
3139   end_term_time();
3140   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3141   return res;
3142 }
3143 
3144 void G1ParEvacuateFollowersClosure::do_void() {
3145   EventGCPhaseParallel event;
3146   G1ParScanThreadState* const pss = par_scan_state();
3147   pss->trim_queue();
3148   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3149   do {
3150     EventGCPhaseParallel event;
3151     pss->steal_and_trim_queue(queues());
3152     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3153   } while (!offer_termination());
3154 }
3155 
3156 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3157                                         bool class_unloading_occurred) {
3158   uint num_workers = workers()->active_workers();
3159   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3160   workers()->run_task(&unlink_task);
3161 }
3162 
3163 // Clean string dedup data structures.
3164 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3165 // record the durations of the phases. Hence the almost-copy.
3166 class G1StringDedupCleaningTask : public AbstractGangTask {
3167   BoolObjectClosure* _is_alive;
3168   OopClosure* _keep_alive;
3169   G1GCPhaseTimes* _phase_times;
3170 
3171 public:
3172   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3173                             OopClosure* keep_alive,
3174                             G1GCPhaseTimes* phase_times) :
3175     AbstractGangTask("Partial Cleaning Task"),
3176     _is_alive(is_alive),
3177     _keep_alive(keep_alive),
3178     _phase_times(phase_times)
3179   {
3180     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3181     StringDedup::gc_prologue(true);
3182   }
3183 
3184   ~G1StringDedupCleaningTask() {
3185     StringDedup::gc_epilogue();
3186   }
3187 
3188   void work(uint worker_id) {
3189     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3190     {
3191       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3192       StringDedupQueue::unlink_or_oops_do(&cl);
3193     }
3194     {
3195       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3196       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3197     }
3198   }
3199 };
3200 
3201 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3202                                             OopClosure* keep_alive,
3203                                             G1GCPhaseTimes* phase_times) {
3204   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3205   workers()->run_task(&cl);
3206 }
3207 
3208 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3209  private:
3210   G1RedirtyCardsQueueSet* _qset;
3211   G1CollectedHeap* _g1h;
3212   BufferNode* volatile _nodes;
3213 
3214   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3215     size_t buffer_size = _qset->buffer_size();
3216     BufferNode* next = Atomic::load(&_nodes);
3217     while (next != NULL) {
3218       BufferNode* node = next;
3219       next = Atomic::cmpxchg(&_nodes, node, node->next());
3220       if (next == node) {
3221         cl->apply_to_buffer(node, buffer_size, worker_id);
3222         next = node->next();
3223       }
3224     }
3225   }
3226 
3227  public:
3228   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3229     AbstractGangTask("Redirty Cards"),
3230     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3231 
3232   virtual void work(uint worker_id) {
3233     G1GCPhaseTimes* p = _g1h->phase_times();
3234     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3235 
3236     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3237     par_apply(&cl, worker_id);
3238 
3239     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3240   }
3241 };
3242 
3243 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3244   double redirty_logged_cards_start = os::elapsedTime();
3245 
3246   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3247   workers()->run_task(&redirty_task);
3248 
3249   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3250   dcq.merge_bufferlists(rdcqs);
3251 
3252   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3253 }
3254 
3255 // Weak Reference Processing support
3256 
3257 bool G1STWIsAliveClosure::do_object_b(oop p) {
3258   // An object is reachable if it is outside the collection set,
3259   // or is inside and copied.
3260   return !_g1h->is_in_cset(p) || p->is_forwarded();
3261 }
3262 
3263 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3264   assert(obj != NULL, "must not be NULL");
3265   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3266   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3267   // may falsely indicate that this is not the case here: however the collection set only
3268   // contains old regions when concurrent mark is not running.
3269   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3270 }
3271 
3272 // Non Copying Keep Alive closure
3273 class G1KeepAliveClosure: public OopClosure {
3274   G1CollectedHeap*_g1h;
3275 public:
3276   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3277   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3278   void do_oop(oop* p) {
3279     oop obj = *p;
3280     assert(obj != NULL, "the caller should have filtered out NULL values");
3281 
3282     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3283     if (!region_attr.is_in_cset_or_humongous()) {
3284       return;
3285     }
3286     if (region_attr.is_in_cset()) {
3287       assert( obj->is_forwarded(), "invariant" );
3288       *p = obj->forwardee();
3289     } else {
3290       assert(!obj->is_forwarded(), "invariant" );
3291       assert(region_attr.is_humongous(),
3292              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3293      _g1h->set_humongous_is_live(obj);
3294     }
3295   }
3296 };
3297 
3298 // Copying Keep Alive closure - can be called from both
3299 // serial and parallel code as long as different worker
3300 // threads utilize different G1ParScanThreadState instances
3301 // and different queues.
3302 
3303 class G1CopyingKeepAliveClosure: public OopClosure {
3304   G1CollectedHeap*         _g1h;
3305   G1ParScanThreadState*    _par_scan_state;
3306 
3307 public:
3308   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3309                             G1ParScanThreadState* pss):
3310     _g1h(g1h),
3311     _par_scan_state(pss)
3312   {}
3313 
3314   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3315   virtual void do_oop(      oop* p) { do_oop_work(p); }
3316 
3317   template <class T> void do_oop_work(T* p) {
3318     oop obj = RawAccess<>::oop_load(p);
3319 
3320     if (_g1h->is_in_cset_or_humongous(obj)) {
3321       // If the referent object has been forwarded (either copied
3322       // to a new location or to itself in the event of an
3323       // evacuation failure) then we need to update the reference
3324       // field and, if both reference and referent are in the G1
3325       // heap, update the RSet for the referent.
3326       //
3327       // If the referent has not been forwarded then we have to keep
3328       // it alive by policy. Therefore we have copy the referent.
3329       //
3330       // When the queue is drained (after each phase of reference processing)
3331       // the object and it's followers will be copied, the reference field set
3332       // to point to the new location, and the RSet updated.
3333       _par_scan_state->push_on_queue(ScannerTask(p));
3334     }
3335   }
3336 };
3337 
3338 // Serial drain queue closure. Called as the 'complete_gc'
3339 // closure for each discovered list in some of the
3340 // reference processing phases.
3341 
3342 class G1STWDrainQueueClosure: public VoidClosure {
3343 protected:
3344   G1CollectedHeap* _g1h;
3345   G1ParScanThreadState* _par_scan_state;
3346 
3347   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3348 
3349 public:
3350   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3351     _g1h(g1h),
3352     _par_scan_state(pss)
3353   { }
3354 
3355   void do_void() {
3356     G1ParScanThreadState* const pss = par_scan_state();
3357     pss->trim_queue();
3358   }
3359 };
3360 
3361 // Parallel Reference Processing closures
3362 
3363 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3364 // processing during G1 evacuation pauses.
3365 
3366 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3367 private:
3368   G1CollectedHeap*          _g1h;
3369   G1ParScanThreadStateSet*  _pss;
3370   G1ScannerTasksQueueSet*   _queues;
3371   WorkGang*                 _workers;
3372 
3373 public:
3374   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3375                            G1ParScanThreadStateSet* per_thread_states,
3376                            WorkGang* workers,
3377                            G1ScannerTasksQueueSet *task_queues) :
3378     _g1h(g1h),
3379     _pss(per_thread_states),
3380     _queues(task_queues),
3381     _workers(workers)
3382   {
3383     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3384   }
3385 
3386   // Executes the given task using concurrent marking worker threads.
3387   virtual void execute(ProcessTask& task, uint ergo_workers);
3388 };
3389 
3390 // Gang task for possibly parallel reference processing
3391 
3392 class G1STWRefProcTaskProxy: public AbstractGangTask {
3393   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3394   ProcessTask&     _proc_task;
3395   G1CollectedHeap* _g1h;
3396   G1ParScanThreadStateSet* _pss;
3397   G1ScannerTasksQueueSet* _task_queues;
3398   TaskTerminator* _terminator;
3399 
3400 public:
3401   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3402                         G1CollectedHeap* g1h,
3403                         G1ParScanThreadStateSet* per_thread_states,
3404                         G1ScannerTasksQueueSet *task_queues,
3405                         TaskTerminator* terminator) :
3406     AbstractGangTask("Process reference objects in parallel"),
3407     _proc_task(proc_task),
3408     _g1h(g1h),
3409     _pss(per_thread_states),
3410     _task_queues(task_queues),
3411     _terminator(terminator)
3412   {}
3413 
3414   virtual void work(uint worker_id) {
3415     // The reference processing task executed by a single worker.
3416     ResourceMark rm;
3417 
3418     G1STWIsAliveClosure is_alive(_g1h);
3419 
3420     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3421     pss->set_ref_discoverer(NULL);
3422 
3423     // Keep alive closure.
3424     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3425 
3426     // Complete GC closure
3427     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3428 
3429     // Call the reference processing task's work routine.
3430     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3431 
3432     // Note we cannot assert that the refs array is empty here as not all
3433     // of the processing tasks (specifically phase2 - pp2_work) execute
3434     // the complete_gc closure (which ordinarily would drain the queue) so
3435     // the queue may not be empty.
3436   }
3437 };
3438 
3439 // Driver routine for parallel reference processing.
3440 // Creates an instance of the ref processing gang
3441 // task and has the worker threads execute it.
3442 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3443   assert(_workers != NULL, "Need parallel worker threads.");
3444 
3445   assert(_workers->active_workers() >= ergo_workers,
3446          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3447          ergo_workers, _workers->active_workers());
3448   TaskTerminator terminator(ergo_workers, _queues);
3449   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3450 
3451   _workers->run_task(&proc_task_proxy, ergo_workers);
3452 }
3453 
3454 // End of weak reference support closures
3455 
3456 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3457   double ref_proc_start = os::elapsedTime();
3458 
3459   ReferenceProcessor* rp = _ref_processor_stw;
3460   assert(rp->discovery_enabled(), "should have been enabled");
3461 
3462   // Closure to test whether a referent is alive.
3463   G1STWIsAliveClosure is_alive(this);
3464 
3465   // Even when parallel reference processing is enabled, the processing
3466   // of JNI refs is serial and performed serially by the current thread
3467   // rather than by a worker. The following PSS will be used for processing
3468   // JNI refs.
3469 
3470   // Use only a single queue for this PSS.
3471   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3472   pss->set_ref_discoverer(NULL);
3473   assert(pss->queue_is_empty(), "pre-condition");
3474 
3475   // Keep alive closure.
3476   G1CopyingKeepAliveClosure keep_alive(this, pss);
3477 
3478   // Serial Complete GC closure
3479   G1STWDrainQueueClosure drain_queue(this, pss);
3480 
3481   // Setup the soft refs policy...
3482   rp->setup_policy(false);
3483 
3484   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3485 
3486   ReferenceProcessorStats stats;
3487   if (!rp->processing_is_mt()) {
3488     // Serial reference processing...
3489     stats = rp->process_discovered_references(&is_alive,
3490                                               &keep_alive,
3491                                               &drain_queue,
3492                                               NULL,
3493                                               pt);
3494   } else {
3495     uint no_of_gc_workers = workers()->active_workers();
3496 
3497     // Parallel reference processing
3498     assert(no_of_gc_workers <= rp->max_num_queues(),
3499            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3500            no_of_gc_workers,  rp->max_num_queues());
3501 
3502     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3503     stats = rp->process_discovered_references(&is_alive,
3504                                               &keep_alive,
3505                                               &drain_queue,
3506                                               &par_task_executor,
3507                                               pt);
3508   }
3509 
3510   _gc_tracer_stw->report_gc_reference_stats(stats);
3511 
3512   // We have completed copying any necessary live referent objects.
3513   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3514 
3515   make_pending_list_reachable();
3516 
3517   assert(!rp->discovery_enabled(), "Postcondition");
3518   rp->verify_no_references_recorded();
3519 
3520   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3521   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3522 }
3523 
3524 void G1CollectedHeap::make_pending_list_reachable() {
3525   if (collector_state()->in_concurrent_start_gc()) {
3526     oop pll_head = Universe::reference_pending_list();
3527     if (pll_head != NULL) {
3528       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3529       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3530     }
3531   }
3532 }
3533 
3534 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3535   Ticks start = Ticks::now();
3536   per_thread_states->flush();
3537   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3538 }
3539 
3540 class G1PrepareEvacuationTask : public AbstractGangTask {
3541   class G1PrepareRegionsClosure : public HeapRegionClosure {
3542     G1CollectedHeap* _g1h;
3543     G1PrepareEvacuationTask* _parent_task;
3544     size_t _worker_humongous_total;
3545     size_t _worker_humongous_candidates;
3546 
3547     bool humongous_region_is_candidate(HeapRegion* region) const {
3548       assert(region->is_starts_humongous(), "Must start a humongous object");
3549 
3550       oop obj = oop(region->bottom());
3551 
3552       // Dead objects cannot be eager reclaim candidates. Due to class
3553       // unloading it is unsafe to query their classes so we return early.
3554       if (_g1h->is_obj_dead(obj, region)) {
3555         return false;
3556       }
3557 
3558       // If we do not have a complete remembered set for the region, then we can
3559       // not be sure that we have all references to it.
3560       if (!region->rem_set()->is_complete()) {
3561         return false;
3562       }
3563       // Candidate selection must satisfy the following constraints
3564       // while concurrent marking is in progress:
3565       //
3566       // * In order to maintain SATB invariants, an object must not be
3567       // reclaimed if it was allocated before the start of marking and
3568       // has not had its references scanned.  Such an object must have
3569       // its references (including type metadata) scanned to ensure no
3570       // live objects are missed by the marking process.  Objects
3571       // allocated after the start of concurrent marking don't need to
3572       // be scanned.
3573       //
3574       // * An object must not be reclaimed if it is on the concurrent
3575       // mark stack.  Objects allocated after the start of concurrent
3576       // marking are never pushed on the mark stack.
3577       //
3578       // Nominating only objects allocated after the start of concurrent
3579       // marking is sufficient to meet both constraints.  This may miss
3580       // some objects that satisfy the constraints, but the marking data
3581       // structures don't support efficiently performing the needed
3582       // additional tests or scrubbing of the mark stack.
3583       //
3584       // However, we presently only nominate is_typeArray() objects.
3585       // A humongous object containing references induces remembered
3586       // set entries on other regions.  In order to reclaim such an
3587       // object, those remembered sets would need to be cleaned up.
3588       //
3589       // We also treat is_typeArray() objects specially, allowing them
3590       // to be reclaimed even if allocated before the start of
3591       // concurrent mark.  For this we rely on mark stack insertion to
3592       // exclude is_typeArray() objects, preventing reclaiming an object
3593       // that is in the mark stack.  We also rely on the metadata for
3594       // such objects to be built-in and so ensured to be kept live.
3595       // Frequent allocation and drop of large binary blobs is an
3596       // important use case for eager reclaim, and this special handling
3597       // may reduce needed headroom.
3598 
3599       return obj->is_typeArray() &&
3600              _g1h->is_potential_eager_reclaim_candidate(region);
3601     }
3602 
3603   public:
3604     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3605       _g1h(g1h),
3606       _parent_task(parent_task),
3607       _worker_humongous_total(0),
3608       _worker_humongous_candidates(0) { }
3609 
3610     ~G1PrepareRegionsClosure() {
3611       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3612       _parent_task->add_humongous_total(_worker_humongous_total);
3613     }
3614 
3615     virtual bool do_heap_region(HeapRegion* hr) {
3616       // First prepare the region for scanning
3617       _g1h->rem_set()->prepare_region_for_scan(hr);
3618 
3619       // Now check if region is a humongous candidate
3620       if (!hr->is_starts_humongous()) {
3621         _g1h->register_region_with_region_attr(hr);
3622         return false;
3623       }
3624 
3625       uint index = hr->hrm_index();
3626       if (humongous_region_is_candidate(hr)) {
3627         _g1h->set_humongous_reclaim_candidate(index, true);
3628         _g1h->register_humongous_region_with_region_attr(index);
3629         _worker_humongous_candidates++;
3630         // We will later handle the remembered sets of these regions.
3631       } else {
3632         _g1h->set_humongous_reclaim_candidate(index, false);
3633         _g1h->register_region_with_region_attr(hr);
3634       }
3635       _worker_humongous_total++;
3636 
3637       return false;
3638     }
3639   };
3640 
3641   G1CollectedHeap* _g1h;
3642   HeapRegionClaimer _claimer;
3643   volatile size_t _humongous_total;
3644   volatile size_t _humongous_candidates;
3645 public:
3646   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3647     AbstractGangTask("Prepare Evacuation"),
3648     _g1h(g1h),
3649     _claimer(_g1h->workers()->active_workers()),
3650     _humongous_total(0),
3651     _humongous_candidates(0) { }
3652 
3653   ~G1PrepareEvacuationTask() {
3654     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3655   }
3656 
3657   void work(uint worker_id) {
3658     G1PrepareRegionsClosure cl(_g1h, this);
3659     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3660   }
3661 
3662   void add_humongous_candidates(size_t candidates) {
3663     Atomic::add(&_humongous_candidates, candidates);
3664   }
3665 
3666   void add_humongous_total(size_t total) {
3667     Atomic::add(&_humongous_total, total);
3668   }
3669 
3670   size_t humongous_candidates() {
3671     return _humongous_candidates;
3672   }
3673 
3674   size_t humongous_total() {
3675     return _humongous_total;
3676   }
3677 };
3678 
3679 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3680   _bytes_used_during_gc = 0;
3681 
3682   _expand_heap_after_alloc_failure = true;
3683   _evacuation_failed = false;
3684 
3685   // Disable the hot card cache.
3686   _hot_card_cache->reset_hot_cache_claimed_index();
3687   _hot_card_cache->set_use_cache(false);
3688 
3689   // Initialize the GC alloc regions.
3690   _allocator->init_gc_alloc_regions(evacuation_info);
3691 
3692   {
3693     Ticks start = Ticks::now();
3694     rem_set()->prepare_for_scan_heap_roots();
3695     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3696   }
3697 
3698   {
3699     G1PrepareEvacuationTask g1_prep_task(this);
3700     Tickspan task_time = run_task(&g1_prep_task);
3701 
3702     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3703                                            g1_prep_task.humongous_total(),
3704                                            g1_prep_task.humongous_candidates());
3705   }
3706 
3707   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3708   _preserved_marks_set.assert_empty();
3709 
3710 #if COMPILER2_OR_JVMCI
3711   DerivedPointerTable::clear();
3712 #endif
3713 
3714   // Concurrent start needs claim bits to keep track of the marked-through CLDs.
3715   if (collector_state()->in_concurrent_start_gc()) {
3716     concurrent_mark()->pre_concurrent_start();
3717 
3718     double start_clear_claimed_marks = os::elapsedTime();
3719 
3720     ClassLoaderDataGraph::clear_claimed_marks();
3721 
3722     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3723     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3724   }
3725 
3726   // Should G1EvacuationFailureALot be in effect for this GC?
3727   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3728 }
3729 
3730 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3731 protected:
3732   G1CollectedHeap* _g1h;
3733   G1ParScanThreadStateSet* _per_thread_states;
3734   G1ScannerTasksQueueSet* _task_queues;
3735   TaskTerminator _terminator;
3736   uint _num_workers;
3737 
3738   void evacuate_live_objects(G1ParScanThreadState* pss,
3739                              uint worker_id,
3740                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3741                              G1GCPhaseTimes::GCParPhases termination_phase) {
3742     G1GCPhaseTimes* p = _g1h->phase_times();
3743 
3744     Ticks start = Ticks::now();
3745     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
3746     cl.do_void();
3747 
3748     assert(pss->queue_is_empty(), "should be empty");
3749 
3750     Tickspan evac_time = (Ticks::now() - start);
3751     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3752 
3753     if (termination_phase == G1GCPhaseTimes::Termination) {
3754       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3755       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3756     } else {
3757       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3758       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3759     }
3760     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3761   }
3762 
3763   virtual void start_work(uint worker_id) { }
3764 
3765   virtual void end_work(uint worker_id) { }
3766 
3767   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3768 
3769   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3770 
3771 public:
3772   G1EvacuateRegionsBaseTask(const char* name,
3773                             G1ParScanThreadStateSet* per_thread_states,
3774                             G1ScannerTasksQueueSet* task_queues,
3775                             uint num_workers) :
3776     AbstractGangTask(name),
3777     _g1h(G1CollectedHeap::heap()),
3778     _per_thread_states(per_thread_states),
3779     _task_queues(task_queues),
3780     _terminator(num_workers, _task_queues),
3781     _num_workers(num_workers)
3782   { }
3783 
3784   void work(uint worker_id) {
3785     start_work(worker_id);
3786 
3787     {
3788       ResourceMark rm;
3789 
3790       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3791       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3792 
3793       scan_roots(pss, worker_id);
3794       evacuate_live_objects(pss, worker_id);
3795     }
3796 
3797     end_work(worker_id);
3798   }
3799 };
3800 
3801 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3802   G1RootProcessor* _root_processor;
3803 
3804   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3805     _root_processor->evacuate_roots(pss, worker_id);
3806     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3807     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3808   }
3809 
3810   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3811     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3812   }
3813 
3814   void start_work(uint worker_id) {
3815     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3816   }
3817 
3818   void end_work(uint worker_id) {
3819     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3820   }
3821 
3822 public:
3823   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3824                         G1ParScanThreadStateSet* per_thread_states,
3825                         G1ScannerTasksQueueSet* task_queues,
3826                         G1RootProcessor* root_processor,
3827                         uint num_workers) :
3828     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3829     _root_processor(root_processor)
3830   { }
3831 };
3832 
3833 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3834   G1GCPhaseTimes* p = phase_times();
3835 
3836   {
3837     Ticks start = Ticks::now();
3838     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3839     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3840   }
3841 
3842   Tickspan task_time;
3843   const uint num_workers = workers()->active_workers();
3844 
3845   Ticks start_processing = Ticks::now();
3846   {
3847     G1RootProcessor root_processor(this, num_workers);
3848     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3849     task_time = run_task(&g1_par_task);
3850     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3851     // To extract its code root fixup time we measure total time of this scope and
3852     // subtract from the time the WorkGang task took.
3853   }
3854   Tickspan total_processing = Ticks::now() - start_processing;
3855 
3856   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3857   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3858 }
3859 
3860 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3861 
3862   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3863     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3864     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3865   }
3866 
3867   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3868     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3869   }
3870 
3871 public:
3872   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3873                                 G1ScannerTasksQueueSet* queues,
3874                                 uint num_workers) :
3875     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3876   }
3877 };
3878 
3879 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3880   class G1MarkScope : public MarkScope { };
3881 
3882   Tickspan task_time;
3883 
3884   Ticks start_processing = Ticks::now();
3885   {
3886     G1MarkScope code_mark_scope;
3887     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3888     task_time = run_task(&task);
3889     // See comment in evacuate_collection_set() for the reason of the scope.
3890   }
3891   Tickspan total_processing = Ticks::now() - start_processing;
3892 
3893   G1GCPhaseTimes* p = phase_times();
3894   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3895 }
3896 
3897 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3898   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3899 
3900   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3901 
3902     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3903     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3904 
3905     if (time_left_ms < 0 ||
3906         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3907       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3908                                 _collection_set.optional_region_length(), time_left_ms);
3909       break;
3910     }
3911 
3912     {
3913       Ticks start = Ticks::now();
3914       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3915       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3916     }
3917 
3918     {
3919       Ticks start = Ticks::now();
3920       evacuate_next_optional_regions(per_thread_states);
3921       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3922     }
3923   }
3924 
3925   _collection_set.abandon_optional_collection_set(per_thread_states);
3926 }
3927 
3928 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
3929                                                    G1RedirtyCardsQueueSet* rdcqs,
3930                                                    G1ParScanThreadStateSet* per_thread_states) {
3931   G1GCPhaseTimes* p = phase_times();
3932 
3933   rem_set()->cleanup_after_scan_heap_roots();
3934 
3935   // Process any discovered reference objects - we have
3936   // to do this _before_ we retire the GC alloc regions
3937   // as we may have to copy some 'reachable' referent
3938   // objects (and their reachable sub-graphs) that were
3939   // not copied during the pause.
3940   process_discovered_references(per_thread_states);
3941 
3942   G1STWIsAliveClosure is_alive(this);
3943   G1KeepAliveClosure keep_alive(this);
3944 
3945   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
3946 
3947   if (G1StringDedup::is_enabled()) {
3948     double string_dedup_time_ms = os::elapsedTime();
3949 
3950     string_dedup_cleaning(&is_alive, &keep_alive, p);
3951 
3952     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
3953     p->record_string_deduplication_time(string_cleanup_time_ms);
3954   }
3955 
3956   _allocator->release_gc_alloc_regions(evacuation_info);
3957 
3958   if (evacuation_failed()) {
3959     restore_after_evac_failure(rdcqs);
3960 
3961     // Reset the G1EvacuationFailureALot counters and flags
3962     NOT_PRODUCT(reset_evacuation_should_fail();)
3963 
3964     double recalculate_used_start = os::elapsedTime();
3965     set_used(recalculate_used());
3966     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3967 
3968     if (_archive_allocator != NULL) {
3969       _archive_allocator->clear_used();
3970     }
3971     for (uint i = 0; i < ParallelGCThreads; i++) {
3972       if (_evacuation_failed_info_array[i].has_failed()) {
3973         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3974       }
3975     }
3976   } else {
3977     // The "used" of the the collection set have already been subtracted
3978     // when they were freed.  Add in the bytes used.
3979     increase_used(_bytes_used_during_gc);
3980   }
3981 
3982   _preserved_marks_set.assert_empty();
3983 
3984   merge_per_thread_state_info(per_thread_states);
3985 
3986   // Reset and re-enable the hot card cache.
3987   // Note the counts for the cards in the regions in the
3988   // collection set are reset when the collection set is freed.
3989   _hot_card_cache->reset_hot_cache();
3990   _hot_card_cache->set_use_cache(true);
3991 
3992   purge_code_root_memory();
3993 
3994   redirty_logged_cards(rdcqs);
3995 
3996   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
3997 
3998   eagerly_reclaim_humongous_regions();
3999 
4000   record_obj_copy_mem_stats();
4001 
4002   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4003   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4004 
4005 #if COMPILER2_OR_JVMCI
4006   double start = os::elapsedTime();
4007   DerivedPointerTable::update_pointers();
4008   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4009 #endif
4010   policy()->print_age_table();
4011 }
4012 
4013 void G1CollectedHeap::record_obj_copy_mem_stats() {
4014   policy()->old_gen_alloc_tracker()->
4015     add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4016 
4017   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4018                                                create_g1_evac_summary(&_old_evac_stats));
4019 }
4020 
4021 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4022   assert(!hr->is_free(), "the region should not be free");
4023   assert(!hr->is_empty(), "the region should not be empty");
4024   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4025 
4026   if (G1VerifyBitmaps) {
4027     MemRegion mr(hr->bottom(), hr->end());
4028     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4029   }
4030 
4031   // Clear the card counts for this region.
4032   // Note: we only need to do this if the region is not young
4033   // (since we don't refine cards in young regions).
4034   if (!hr->is_young()) {
4035     _hot_card_cache->reset_card_counts(hr);
4036   }
4037 
4038   // Reset region metadata to allow reuse.
4039   hr->hr_clear(true /* clear_space */);
4040   _policy->remset_tracker()->update_at_free(hr);
4041 
4042   if (free_list != NULL) {
4043     free_list->add_ordered(hr);
4044   }
4045 }
4046 
4047 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4048                                             FreeRegionList* free_list) {
4049   assert(hr->is_humongous(), "this is only for humongous regions");
4050   assert(free_list != NULL, "pre-condition");
4051   hr->clear_humongous();
4052   free_region(hr, free_list);
4053 }
4054 
4055 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4056                                            const uint humongous_regions_removed) {
4057   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4058     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4059     _old_set.bulk_remove(old_regions_removed);
4060     _humongous_set.bulk_remove(humongous_regions_removed);
4061   }
4062 
4063 }
4064 
4065 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4066   assert(list != NULL, "list can't be null");
4067   if (!list->is_empty()) {
4068     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4069     _hrm->insert_list_into_free_list(list);
4070   }
4071 }
4072 
4073 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4074   decrease_used(bytes);
4075 }
4076 
4077 class G1FreeCollectionSetTask : public AbstractGangTask {
4078   // Helper class to keep statistics for the collection set freeing
4079   class FreeCSetStats {
4080     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4081     size_t _after_used_bytes;    // Usage in regions failing evacuation
4082     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4083     size_t _failure_used_words;  // Live size in failed regions
4084     size_t _failure_waste_words; // Wasted size in failed regions
4085     size_t _rs_length;           // Remembered set size
4086     uint _regions_freed;         // Number of regions freed
4087   public:
4088     FreeCSetStats() :
4089         _before_used_bytes(0),
4090         _after_used_bytes(0),
4091         _bytes_allocated_in_old_since_last_gc(0),
4092         _failure_used_words(0),
4093         _failure_waste_words(0),
4094         _rs_length(0),
4095         _regions_freed(0) { }
4096 
4097     void merge_stats(FreeCSetStats* other) {
4098       assert(other != NULL, "invariant");
4099       _before_used_bytes += other->_before_used_bytes;
4100       _after_used_bytes += other->_after_used_bytes;
4101       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4102       _failure_used_words += other->_failure_used_words;
4103       _failure_waste_words += other->_failure_waste_words;
4104       _rs_length += other->_rs_length;
4105       _regions_freed += other->_regions_freed;
4106     }
4107 
4108     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4109       evacuation_info->set_regions_freed(_regions_freed);
4110       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4111 
4112       g1h->decrement_summary_bytes(_before_used_bytes);
4113       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4114 
4115       G1Policy *policy = g1h->policy();
4116       policy->old_gen_alloc_tracker()->add_allocated_bytes_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4117       policy->record_rs_length(_rs_length);
4118       policy->cset_regions_freed();
4119     }
4120 
4121     void account_failed_region(HeapRegion* r) {
4122       size_t used_words = r->marked_bytes() / HeapWordSize;
4123       _failure_used_words += used_words;
4124       _failure_waste_words += HeapRegion::GrainWords - used_words;
4125       _after_used_bytes += r->used();
4126 
4127       // When moving a young gen region to old gen, we "allocate" that whole
4128       // region there. This is in addition to any already evacuated objects.
4129       // Notify the policy about that. Old gen regions do not cause an
4130       // additional allocation: both the objects still in the region and the
4131       // ones already moved are accounted for elsewhere.
4132       if (r->is_young()) {
4133         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4134       }
4135     }
4136 
4137     void account_evacuated_region(HeapRegion* r) {
4138       _before_used_bytes += r->used();
4139       _regions_freed += 1;
4140     }
4141 
4142     void account_rs_length(HeapRegion* r) {
4143       _rs_length += r->rem_set()->occupied();
4144     }
4145   };
4146 
4147   // Closure applied to all regions in the collection set.
4148   class FreeCSetClosure : public HeapRegionClosure {
4149     // Helper to send JFR events for regions.
4150     class JFREventForRegion {
4151       EventGCPhaseParallel _event;
4152     public:
4153       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4154         _event.set_gcId(GCId::current());
4155         _event.set_gcWorkerId(worker_id);
4156         if (region->is_young()) {
4157           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4158         } else {
4159           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4160         }
4161       }
4162 
4163       ~JFREventForRegion() {
4164         _event.commit();
4165       }
4166     };
4167 
4168     // Helper to do timing for region work.
4169     class TimerForRegion {
4170       Tickspan& _time;
4171       Ticks     _start_time;
4172     public:
4173       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
4174       ~TimerForRegion() {
4175         _time += Ticks::now() - _start_time;
4176       }
4177     };
4178 
4179     // FreeCSetClosure members
4180     G1CollectedHeap* _g1h;
4181     const size_t*    _surviving_young_words;
4182     uint             _worker_id;
4183     Tickspan         _young_time;
4184     Tickspan         _non_young_time;
4185     FreeCSetStats*   _stats;
4186 
4187     void assert_in_cset(HeapRegion* r) {
4188       assert(r->young_index_in_cset() != 0 &&
4189              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4190              "Young index %u is wrong for region %u of type %s with %u young regions",
4191              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4192     }
4193 
4194     void handle_evacuated_region(HeapRegion* r) {
4195       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4196       stats()->account_evacuated_region(r);
4197 
4198       // Free the region and and its remembered set.
4199       _g1h->free_region(r, NULL);
4200     }
4201 
4202     void handle_failed_region(HeapRegion* r) {
4203       // Do some allocation statistics accounting. Regions that failed evacuation
4204       // are always made old, so there is no need to update anything in the young
4205       // gen statistics, but we need to update old gen statistics.
4206       stats()->account_failed_region(r);
4207 
4208       // Update the region state due to the failed evacuation.
4209       r->handle_evacuation_failure();
4210 
4211       // Add region to old set, need to hold lock.
4212       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4213       _g1h->old_set_add(r);
4214     }
4215 
4216     Tickspan& timer_for_region(HeapRegion* r) {
4217       return r->is_young() ? _young_time : _non_young_time;
4218     }
4219 
4220     FreeCSetStats* stats() {
4221       return _stats;
4222     }
4223   public:
4224     FreeCSetClosure(const size_t* surviving_young_words,
4225                     uint worker_id,
4226                     FreeCSetStats* stats) :
4227         HeapRegionClosure(),
4228         _g1h(G1CollectedHeap::heap()),
4229         _surviving_young_words(surviving_young_words),
4230         _worker_id(worker_id),
4231         _young_time(),
4232         _non_young_time(),
4233         _stats(stats) { }
4234 
4235     virtual bool do_heap_region(HeapRegion* r) {
4236       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4237       JFREventForRegion event(r, _worker_id);
4238       TimerForRegion timer(timer_for_region(r));
4239 
4240       _g1h->clear_region_attr(r);
4241       stats()->account_rs_length(r);
4242 
4243       if (r->is_young()) {
4244         assert_in_cset(r);
4245         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4246       }
4247 
4248       if (r->evacuation_failed()) {
4249         handle_failed_region(r);
4250       } else {
4251         handle_evacuated_region(r);
4252       }
4253       assert(!_g1h->is_on_master_free_list(r), "sanity");
4254 
4255       return false;
4256     }
4257 
4258     void report_timing(Tickspan parallel_time) {
4259       G1GCPhaseTimes* pt = _g1h->phase_times();
4260       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4261       if (_young_time.value() > 0) {
4262         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4263       }
4264       if (_non_young_time.value() > 0) {
4265         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4266       }
4267     }
4268   };
4269 
4270   // G1FreeCollectionSetTask members
4271   G1CollectedHeap*  _g1h;
4272   G1EvacuationInfo* _evacuation_info;
4273   FreeCSetStats*    _worker_stats;
4274   HeapRegionClaimer _claimer;
4275   const size_t*     _surviving_young_words;
4276   uint              _active_workers;
4277 
4278   FreeCSetStats* worker_stats(uint worker) {
4279     return &_worker_stats[worker];
4280   }
4281 
4282   void report_statistics() {
4283     // Merge the accounting
4284     FreeCSetStats total_stats;
4285     for (uint worker = 0; worker < _active_workers; worker++) {
4286       total_stats.merge_stats(worker_stats(worker));
4287     }
4288     total_stats.report(_g1h, _evacuation_info);
4289   }
4290 
4291 public:
4292   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4293       AbstractGangTask("G1 Free Collection Set"),
4294       _g1h(G1CollectedHeap::heap()),
4295       _evacuation_info(evacuation_info),
4296       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4297       _claimer(active_workers),
4298       _surviving_young_words(surviving_young_words),
4299       _active_workers(active_workers) {
4300     for (uint worker = 0; worker < active_workers; worker++) {
4301       ::new (&_worker_stats[worker]) FreeCSetStats();
4302     }
4303   }
4304 
4305   ~G1FreeCollectionSetTask() {
4306     Ticks serial_time = Ticks::now();
4307     report_statistics();
4308     for (uint worker = 0; worker < _active_workers; worker++) {
4309       _worker_stats[worker].~FreeCSetStats();
4310     }
4311     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4312     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4313   }
4314 
4315   virtual void work(uint worker_id) {
4316     EventGCPhaseParallel event;
4317     Ticks start = Ticks::now();
4318     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4319     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4320 
4321     // Report the total parallel time along with some more detailed metrics.
4322     cl.report_timing(Ticks::now() - start);
4323     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4324   }
4325 };
4326 
4327 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4328   _eden.clear();
4329 
4330   // The free collections set is split up in two tasks, the first
4331   // frees the collection set and records what regions are free,
4332   // and the second one rebuilds the free list. This proved to be
4333   // more efficient than adding a sorted list to another.
4334 
4335   Ticks free_cset_start_time = Ticks::now();
4336   {
4337     uint const num_cs_regions = _collection_set.region_length();
4338     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4339     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4340 
4341     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4342                         cl.name(), num_workers, num_cs_regions, num_regions());
4343     workers()->run_task(&cl, num_workers);
4344   }
4345 
4346   Ticks free_cset_end_time = Ticks::now();
4347   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4348 
4349   // Now rebuild the free region list.
4350   hrm()->rebuild_free_list(workers());
4351   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4352 
4353   collection_set->clear();
4354 }
4355 
4356 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4357  private:
4358   FreeRegionList* _free_region_list;
4359   HeapRegionSet* _proxy_set;
4360   uint _humongous_objects_reclaimed;
4361   uint _humongous_regions_reclaimed;
4362   size_t _freed_bytes;
4363  public:
4364 
4365   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4366     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4367   }
4368 
4369   virtual bool do_heap_region(HeapRegion* r) {
4370     if (!r->is_starts_humongous()) {
4371       return false;
4372     }
4373 
4374     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4375 
4376     oop obj = (oop)r->bottom();
4377     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4378 
4379     // The following checks whether the humongous object is live are sufficient.
4380     // The main additional check (in addition to having a reference from the roots
4381     // or the young gen) is whether the humongous object has a remembered set entry.
4382     //
4383     // A humongous object cannot be live if there is no remembered set for it
4384     // because:
4385     // - there can be no references from within humongous starts regions referencing
4386     // the object because we never allocate other objects into them.
4387     // (I.e. there are no intra-region references that may be missed by the
4388     // remembered set)
4389     // - as soon there is a remembered set entry to the humongous starts region
4390     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4391     // until the end of a concurrent mark.
4392     //
4393     // It is not required to check whether the object has been found dead by marking
4394     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4395     // all objects allocated during that time are considered live.
4396     // SATB marking is even more conservative than the remembered set.
4397     // So if at this point in the collection there is no remembered set entry,
4398     // nobody has a reference to it.
4399     // At the start of collection we flush all refinement logs, and remembered sets
4400     // are completely up-to-date wrt to references to the humongous object.
4401     //
4402     // Other implementation considerations:
4403     // - never consider object arrays at this time because they would pose
4404     // considerable effort for cleaning up the the remembered sets. This is
4405     // required because stale remembered sets might reference locations that
4406     // are currently allocated into.
4407     uint region_idx = r->hrm_index();
4408     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4409         !r->rem_set()->is_empty()) {
4410       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4411                                region_idx,
4412                                (size_t)obj->size() * HeapWordSize,
4413                                p2i(r->bottom()),
4414                                r->rem_set()->occupied(),
4415                                r->rem_set()->strong_code_roots_list_length(),
4416                                next_bitmap->is_marked(r->bottom()),
4417                                g1h->is_humongous_reclaim_candidate(region_idx),
4418                                obj->is_typeArray()
4419                               );
4420       return false;
4421     }
4422 
4423     guarantee(obj->is_typeArray(),
4424               "Only eagerly reclaiming type arrays is supported, but the object "
4425               PTR_FORMAT " is not.", p2i(r->bottom()));
4426 
4427     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4428                              region_idx,
4429                              (size_t)obj->size() * HeapWordSize,
4430                              p2i(r->bottom()),
4431                              r->rem_set()->occupied(),
4432                              r->rem_set()->strong_code_roots_list_length(),
4433                              next_bitmap->is_marked(r->bottom()),
4434                              g1h->is_humongous_reclaim_candidate(region_idx),
4435                              obj->is_typeArray()
4436                             );
4437 
4438     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4439     cm->humongous_object_eagerly_reclaimed(r);
4440     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4441            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4442            region_idx,
4443            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4444            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4445     _humongous_objects_reclaimed++;
4446     do {
4447       HeapRegion* next = g1h->next_region_in_humongous(r);
4448       _freed_bytes += r->used();
4449       r->set_containing_set(NULL);
4450       _humongous_regions_reclaimed++;
4451       g1h->free_humongous_region(r, _free_region_list);
4452       r = next;
4453     } while (r != NULL);
4454 
4455     return false;
4456   }
4457 
4458   uint humongous_objects_reclaimed() {
4459     return _humongous_objects_reclaimed;
4460   }
4461 
4462   uint humongous_regions_reclaimed() {
4463     return _humongous_regions_reclaimed;
4464   }
4465 
4466   size_t bytes_freed() const {
4467     return _freed_bytes;
4468   }
4469 };
4470 
4471 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4472   assert_at_safepoint_on_vm_thread();
4473 
4474   if (!G1EagerReclaimHumongousObjects ||
4475       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4476     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4477     return;
4478   }
4479 
4480   double start_time = os::elapsedTime();
4481 
4482   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4483 
4484   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4485   heap_region_iterate(&cl);
4486 
4487   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4488 
4489   G1HRPrinter* hrp = hr_printer();
4490   if (hrp->is_active()) {
4491     FreeRegionListIterator iter(&local_cleanup_list);
4492     while (iter.more_available()) {
4493       HeapRegion* hr = iter.get_next();
4494       hrp->cleanup(hr);
4495     }
4496   }
4497 
4498   prepend_to_freelist(&local_cleanup_list);
4499   decrement_summary_bytes(cl.bytes_freed());
4500 
4501   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4502                                                        cl.humongous_objects_reclaimed());
4503 }
4504 
4505 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4506 public:
4507   virtual bool do_heap_region(HeapRegion* r) {
4508     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4509     G1CollectedHeap::heap()->clear_region_attr(r);
4510     r->clear_young_index_in_cset();
4511     return false;
4512   }
4513 };
4514 
4515 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4516   G1AbandonCollectionSetClosure cl;
4517   collection_set_iterate_all(&cl);
4518 
4519   collection_set->clear();
4520   collection_set->stop_incremental_building();
4521 }
4522 
4523 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4524   return _allocator->is_retained_old_region(hr);
4525 }
4526 
4527 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4528   _eden.add(hr);
4529   _policy->set_region_eden(hr);
4530 }
4531 
4532 #ifdef ASSERT
4533 
4534 class NoYoungRegionsClosure: public HeapRegionClosure {
4535 private:
4536   bool _success;
4537 public:
4538   NoYoungRegionsClosure() : _success(true) { }
4539   bool do_heap_region(HeapRegion* r) {
4540     if (r->is_young()) {
4541       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4542                             p2i(r->bottom()), p2i(r->end()));
4543       _success = false;
4544     }
4545     return false;
4546   }
4547   bool success() { return _success; }
4548 };
4549 
4550 bool G1CollectedHeap::check_young_list_empty() {
4551   bool ret = (young_regions_count() == 0);
4552 
4553   NoYoungRegionsClosure closure;
4554   heap_region_iterate(&closure);
4555   ret = ret && closure.success();
4556 
4557   return ret;
4558 }
4559 
4560 #endif // ASSERT
4561 
4562 class TearDownRegionSetsClosure : public HeapRegionClosure {
4563   HeapRegionSet *_old_set;
4564 
4565 public:
4566   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4567 
4568   bool do_heap_region(HeapRegion* r) {
4569     if (r->is_old()) {
4570       _old_set->remove(r);
4571     } else if(r->is_young()) {
4572       r->uninstall_surv_rate_group();
4573     } else {
4574       // We ignore free regions, we'll empty the free list afterwards.
4575       // We ignore humongous and archive regions, we're not tearing down these
4576       // sets.
4577       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4578              "it cannot be another type");
4579     }
4580     return false;
4581   }
4582 
4583   ~TearDownRegionSetsClosure() {
4584     assert(_old_set->is_empty(), "post-condition");
4585   }
4586 };
4587 
4588 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4589   assert_at_safepoint_on_vm_thread();
4590 
4591   if (!free_list_only) {
4592     TearDownRegionSetsClosure cl(&_old_set);
4593     heap_region_iterate(&cl);
4594 
4595     // Note that emptying the _young_list is postponed and instead done as
4596     // the first step when rebuilding the regions sets again. The reason for
4597     // this is that during a full GC string deduplication needs to know if
4598     // a collected region was young or old when the full GC was initiated.
4599   }
4600   _hrm->remove_all_free_regions();
4601 }
4602 
4603 void G1CollectedHeap::increase_used(size_t bytes) {
4604   _summary_bytes_used += bytes;
4605 }
4606 
4607 void G1CollectedHeap::decrease_used(size_t bytes) {
4608   assert(_summary_bytes_used >= bytes,
4609          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4610          _summary_bytes_used, bytes);
4611   _summary_bytes_used -= bytes;
4612 }
4613 
4614 void G1CollectedHeap::set_used(size_t bytes) {
4615   _summary_bytes_used = bytes;
4616 }
4617 
4618 class RebuildRegionSetsClosure : public HeapRegionClosure {
4619 private:
4620   bool _free_list_only;
4621 
4622   HeapRegionSet* _old_set;
4623   HeapRegionManager* _hrm;
4624 
4625   size_t _total_used;
4626 
4627 public:
4628   RebuildRegionSetsClosure(bool free_list_only,
4629                            HeapRegionSet* old_set,
4630                            HeapRegionManager* hrm) :
4631     _free_list_only(free_list_only),
4632     _old_set(old_set), _hrm(hrm), _total_used(0) {
4633     assert(_hrm->num_free_regions() == 0, "pre-condition");
4634     if (!free_list_only) {
4635       assert(_old_set->is_empty(), "pre-condition");
4636     }
4637   }
4638 
4639   bool do_heap_region(HeapRegion* r) {
4640     if (r->is_empty()) {
4641       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4642       // Add free regions to the free list
4643       r->set_free();
4644       _hrm->insert_into_free_list(r);
4645     } else if (!_free_list_only) {
4646       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4647 
4648       if (r->is_archive() || r->is_humongous()) {
4649         // We ignore archive and humongous regions. We left these sets unchanged.
4650       } else {
4651         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4652         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4653         r->move_to_old();
4654         _old_set->add(r);
4655       }
4656       _total_used += r->used();
4657     }
4658 
4659     return false;
4660   }
4661 
4662   size_t total_used() {
4663     return _total_used;
4664   }
4665 };
4666 
4667 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4668   assert_at_safepoint_on_vm_thread();
4669 
4670   if (!free_list_only) {
4671     _eden.clear();
4672     _survivor.clear();
4673   }
4674 
4675   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4676   heap_region_iterate(&cl);
4677 
4678   if (!free_list_only) {
4679     set_used(cl.total_used());
4680     if (_archive_allocator != NULL) {
4681       _archive_allocator->clear_used();
4682     }
4683   }
4684   assert_used_and_recalculate_used_equal(this);
4685 }
4686 
4687 // Methods for the mutator alloc region
4688 
4689 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4690                                                       bool force,
4691                                                       uint node_index) {
4692   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4693   bool should_allocate = policy()->should_allocate_mutator_region();
4694   if (force || should_allocate) {
4695     HeapRegion* new_alloc_region = new_region(word_size,
4696                                               HeapRegionType::Eden,
4697                                               false /* do_expand */,
4698                                               node_index);
4699     if (new_alloc_region != NULL) {
4700       set_region_short_lived_locked(new_alloc_region);
4701       _hr_printer.alloc(new_alloc_region, !should_allocate);
4702       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4703       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4704       return new_alloc_region;
4705     }
4706   }
4707   return NULL;
4708 }
4709 
4710 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4711                                                   size_t allocated_bytes) {
4712   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4713   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4714 
4715   collection_set()->add_eden_region(alloc_region);
4716   increase_used(allocated_bytes);
4717   _eden.add_used_bytes(allocated_bytes);
4718   _hr_printer.retire(alloc_region);
4719 
4720   // We update the eden sizes here, when the region is retired,
4721   // instead of when it's allocated, since this is the point that its
4722   // used space has been recorded in _summary_bytes_used.
4723   g1mm()->update_eden_size();
4724 }
4725 
4726 // Methods for the GC alloc regions
4727 
4728 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4729   if (dest.is_old()) {
4730     return true;
4731   } else {
4732     return survivor_regions_count() < policy()->max_survivor_regions();
4733   }
4734 }
4735 
4736 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4737   assert(FreeList_lock->owned_by_self(), "pre-condition");
4738 
4739   if (!has_more_regions(dest)) {
4740     return NULL;
4741   }
4742 
4743   HeapRegionType type;
4744   if (dest.is_young()) {
4745     type = HeapRegionType::Survivor;
4746   } else {
4747     type = HeapRegionType::Old;
4748   }
4749 
4750   HeapRegion* new_alloc_region = new_region(word_size,
4751                                             type,
4752                                             true /* do_expand */,
4753                                             node_index);
4754 
4755   if (new_alloc_region != NULL) {
4756     if (type.is_survivor()) {
4757       new_alloc_region->set_survivor();
4758       _survivor.add(new_alloc_region);
4759       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4760     } else {
4761       new_alloc_region->set_old();
4762       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4763     }
4764     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4765     register_region_with_region_attr(new_alloc_region);
4766     _hr_printer.alloc(new_alloc_region);
4767     return new_alloc_region;
4768   }
4769   return NULL;
4770 }
4771 
4772 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4773                                              size_t allocated_bytes,
4774                                              G1HeapRegionAttr dest) {
4775   _bytes_used_during_gc += allocated_bytes;
4776   if (dest.is_old()) {
4777     old_set_add(alloc_region);
4778   } else {
4779     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4780     _survivor.add_used_bytes(allocated_bytes);
4781   }
4782 
4783   bool const during_im = collector_state()->in_concurrent_start_gc();
4784   if (during_im && allocated_bytes > 0) {
4785     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4786   }
4787   _hr_printer.retire(alloc_region);
4788 }
4789 
4790 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4791   bool expanded = false;
4792   uint index = _hrm->find_highest_free(&expanded);
4793 
4794   if (index != G1_NO_HRM_INDEX) {
4795     if (expanded) {
4796       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4797                                 HeapRegion::GrainWords * HeapWordSize);
4798     }
4799     return _hrm->allocate_free_regions_starting_at(index, 1);
4800   }
4801   return NULL;
4802 }
4803 
4804 // Optimized nmethod scanning
4805 
4806 class RegisterNMethodOopClosure: public OopClosure {
4807   G1CollectedHeap* _g1h;
4808   nmethod* _nm;
4809 
4810   template <class T> void do_oop_work(T* p) {
4811     T heap_oop = RawAccess<>::oop_load(p);
4812     if (!CompressedOops::is_null(heap_oop)) {
4813       oop obj = CompressedOops::decode_not_null(heap_oop);
4814       HeapRegion* hr = _g1h->heap_region_containing(obj);
4815       assert(!hr->is_continues_humongous(),
4816              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4817              " starting at " HR_FORMAT,
4818              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4819 
4820       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4821       hr->add_strong_code_root_locked(_nm);
4822     }
4823   }
4824 
4825 public:
4826   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4827     _g1h(g1h), _nm(nm) {}
4828 
4829   void do_oop(oop* p)       { do_oop_work(p); }
4830   void do_oop(narrowOop* p) { do_oop_work(p); }
4831 };
4832 
4833 class UnregisterNMethodOopClosure: public OopClosure {
4834   G1CollectedHeap* _g1h;
4835   nmethod* _nm;
4836 
4837   template <class T> void do_oop_work(T* p) {
4838     T heap_oop = RawAccess<>::oop_load(p);
4839     if (!CompressedOops::is_null(heap_oop)) {
4840       oop obj = CompressedOops::decode_not_null(heap_oop);
4841       HeapRegion* hr = _g1h->heap_region_containing(obj);
4842       assert(!hr->is_continues_humongous(),
4843              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4844              " starting at " HR_FORMAT,
4845              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4846 
4847       hr->remove_strong_code_root(_nm);
4848     }
4849   }
4850 
4851 public:
4852   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4853     _g1h(g1h), _nm(nm) {}
4854 
4855   void do_oop(oop* p)       { do_oop_work(p); }
4856   void do_oop(narrowOop* p) { do_oop_work(p); }
4857 };
4858 
4859 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4860   guarantee(nm != NULL, "sanity");
4861   RegisterNMethodOopClosure reg_cl(this, nm);
4862   nm->oops_do(&reg_cl);
4863 }
4864 
4865 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4866   guarantee(nm != NULL, "sanity");
4867   UnregisterNMethodOopClosure reg_cl(this, nm);
4868   nm->oops_do(&reg_cl, true);
4869 }
4870 
4871 void G1CollectedHeap::purge_code_root_memory() {
4872   double purge_start = os::elapsedTime();
4873   G1CodeRootSet::purge();
4874   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4875   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4876 }
4877 
4878 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4879   G1CollectedHeap* _g1h;
4880 
4881 public:
4882   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4883     _g1h(g1h) {}
4884 
4885   void do_code_blob(CodeBlob* cb) {
4886     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4887     if (nm == NULL) {
4888       return;
4889     }
4890 
4891     _g1h->register_nmethod(nm);
4892   }
4893 };
4894 
4895 void G1CollectedHeap::rebuild_strong_code_roots() {
4896   RebuildStrongCodeRootClosure blob_cl(this);
4897   CodeCache::blobs_do(&blob_cl);
4898 }
4899 
4900 void G1CollectedHeap::initialize_serviceability() {
4901   _g1mm->initialize_serviceability();
4902 }
4903 
4904 MemoryUsage G1CollectedHeap::memory_usage() {
4905   return _g1mm->memory_usage();
4906 }
4907 
4908 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4909   return _g1mm->memory_managers();
4910 }
4911 
4912 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4913   return _g1mm->memory_pools();
4914 }