1 /*
   2  * Copyright (c) 1996, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  * Portions Copyright (c) 1995  Colin Plumb.  All rights reserved.
  28  */
  29 
  30 package java.math;
  31 
  32 import java.io.IOException;
  33 import java.io.ObjectInputStream;
  34 import java.io.ObjectOutputStream;
  35 import java.io.ObjectStreamField;
  36 import java.util.Arrays;
  37 import java.util.Random;
  38 import java.util.concurrent.ThreadLocalRandom;
  39 import sun.misc.DoubleConsts;
  40 import sun.misc.FloatConsts;
  41 
  42 /**
  43  * Immutable arbitrary-precision integers.  All operations behave as if
  44  * BigIntegers were represented in two's-complement notation (like Java's
  45  * primitive integer types).  BigInteger provides analogues to all of Java's
  46  * primitive integer operators, and all relevant methods from java.lang.Math.
  47  * Additionally, BigInteger provides operations for modular arithmetic, GCD
  48  * calculation, primality testing, prime generation, bit manipulation,
  49  * and a few other miscellaneous operations.
  50  *
  51  * <p>Semantics of arithmetic operations exactly mimic those of Java's integer
  52  * arithmetic operators, as defined in <i>The Java Language Specification</i>.
  53  * For example, division by zero throws an {@code ArithmeticException}, and
  54  * division of a negative by a positive yields a negative (or zero) remainder.
  55  * All of the details in the Spec concerning overflow are ignored, as
  56  * BigIntegers are made as large as necessary to accommodate the results of an
  57  * operation.
  58  *
  59  * <p>Semantics of shift operations extend those of Java's shift operators
  60  * to allow for negative shift distances.  A right-shift with a negative
  61  * shift distance results in a left shift, and vice-versa.  The unsigned
  62  * right shift operator ({@code >>>}) is omitted, as this operation makes
  63  * little sense in combination with the "infinite word size" abstraction
  64  * provided by this class.
  65  *
  66  * <p>Semantics of bitwise logical operations exactly mimic those of Java's
  67  * bitwise integer operators.  The binary operators ({@code and},
  68  * {@code or}, {@code xor}) implicitly perform sign extension on the shorter
  69  * of the two operands prior to performing the operation.
  70  *
  71  * <p>Comparison operations perform signed integer comparisons, analogous to
  72  * those performed by Java's relational and equality operators.
  73  *
  74  * <p>Modular arithmetic operations are provided to compute residues, perform
  75  * exponentiation, and compute multiplicative inverses.  These methods always
  76  * return a non-negative result, between {@code 0} and {@code (modulus - 1)},
  77  * inclusive.
  78  *
  79  * <p>Bit operations operate on a single bit of the two's-complement
  80  * representation of their operand.  If necessary, the operand is sign-
  81  * extended so that it contains the designated bit.  None of the single-bit
  82  * operations can produce a BigInteger with a different sign from the
  83  * BigInteger being operated on, as they affect only a single bit, and the
  84  * "infinite word size" abstraction provided by this class ensures that there
  85  * are infinitely many "virtual sign bits" preceding each BigInteger.
  86  *
  87  * <p>For the sake of brevity and clarity, pseudo-code is used throughout the
  88  * descriptions of BigInteger methods.  The pseudo-code expression
  89  * {@code (i + j)} is shorthand for "a BigInteger whose value is
  90  * that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
  91  * The pseudo-code expression {@code (i == j)} is shorthand for
  92  * "{@code true} if and only if the BigInteger {@code i} represents the same
  93  * value as the BigInteger {@code j}."  Other pseudo-code expressions are
  94  * interpreted similarly.
  95  *
  96  * <p>All methods and constructors in this class throw
  97  * {@code NullPointerException} when passed
  98  * a null object reference for any input parameter.
  99  *
 100  * BigInteger must support values in the range
 101  * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
 102  * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive)
 103  * and may support values outside of that range.
 104  *
 105  * The range of probable prime values is limited and may be less than
 106  * the full supported positive range of {@code BigInteger}.
 107  * The range must be at least 1 to 2<sup>500000000</sup>.
 108  *
 109  * @implNote
 110  * BigInteger constructors and operations throw {@code ArithmeticException} when
 111  * the result is out of the supported range of
 112  * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
 113  * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive).
 114  *
 115  * @see     BigDecimal
 116  * @author  Josh Bloch
 117  * @author  Michael McCloskey
 118  * @author  Alan Eliasen
 119  * @author  Timothy Buktu
 120  * @since 1.1
 121  */
 122 
 123 public class BigInteger extends Number implements Comparable<BigInteger> {
 124     /**
 125      * The signum of this BigInteger: -1 for negative, 0 for zero, or
 126      * 1 for positive.  Note that the BigInteger zero <i>must</i> have
 127      * a signum of 0.  This is necessary to ensures that there is exactly one
 128      * representation for each BigInteger value.
 129      */
 130     final int signum;
 131 
 132     /**
 133      * The magnitude of this BigInteger, in <i>big-endian</i> order: the
 134      * zeroth element of this array is the most-significant int of the
 135      * magnitude.  The magnitude must be "minimal" in that the most-significant
 136      * int ({@code mag[0]}) must be non-zero.  This is necessary to
 137      * ensure that there is exactly one representation for each BigInteger
 138      * value.  Note that this implies that the BigInteger zero has a
 139      * zero-length mag array.
 140      */
 141     final int[] mag;
 142 
 143     // The following fields are stable variables. A stable variable's value
 144     // changes at most once from the default zero value to a non-zero stable
 145     // value. A stable value is calculated lazily on demand.
 146 
 147     /**
 148      * One plus the bitCount of this BigInteger. This is a stable variable.
 149      *
 150      * @see #bitCount
 151      */
 152     private int bitCountPlusOne;
 153 
 154     /**
 155      * One plus the bitLength of this BigInteger. This is a stable variable.
 156      * (either value is acceptable).
 157      *
 158      * @see #bitLength()
 159      */
 160     private int bitLengthPlusOne;
 161 
 162     /**
 163      * Two plus the lowest set bit of this BigInteger. This is a stable variable.
 164      *
 165      * @see #getLowestSetBit
 166      */
 167     private int lowestSetBitPlusTwo;
 168 
 169     /**
 170      * Two plus the index of the lowest-order int in the magnitude of this
 171      * BigInteger that contains a nonzero int. This is a stable variable. The
 172      * least significant int has int-number 0, the next int in order of
 173      * increasing significance has int-number 1, and so forth.
 174      *
 175      * <p>Note: never used for a BigInteger with a magnitude of zero.
 176      *
 177      * @see #firstNonzeroIntNum()
 178      */
 179     private int firstNonzeroIntNumPlusTwo;
 180 
 181     /**
 182      * This mask is used to obtain the value of an int as if it were unsigned.
 183      */
 184     final static long LONG_MASK = 0xffffffffL;
 185 
 186     /**
 187      * This constant limits {@code mag.length} of BigIntegers to the supported
 188      * range.
 189      */
 190     private static final int MAX_MAG_LENGTH = Integer.MAX_VALUE / Integer.SIZE + 1; // (1 << 26)
 191 
 192     /**
 193      * Bit lengths larger than this constant can cause overflow in searchLen
 194      * calculation and in BitSieve.singleSearch method.
 195      */
 196     private static final  int PRIME_SEARCH_BIT_LENGTH_LIMIT = 500000000;
 197 
 198     /**
 199      * The threshold value for using Karatsuba multiplication.  If the number
 200      * of ints in both mag arrays are greater than this number, then
 201      * Karatsuba multiplication will be used.   This value is found
 202      * experimentally to work well.
 203      */
 204     private static final int KARATSUBA_THRESHOLD = 80;
 205 
 206     /**
 207      * The threshold value for using 3-way Toom-Cook multiplication.
 208      * If the number of ints in each mag array is greater than the
 209      * Karatsuba threshold, and the number of ints in at least one of
 210      * the mag arrays is greater than this threshold, then Toom-Cook
 211      * multiplication will be used.
 212      */
 213     private static final int TOOM_COOK_THRESHOLD = 240;
 214 
 215     /**
 216      * The threshold value for using Karatsuba squaring.  If the number
 217      * of ints in the number are larger than this value,
 218      * Karatsuba squaring will be used.   This value is found
 219      * experimentally to work well.
 220      */
 221     private static final int KARATSUBA_SQUARE_THRESHOLD = 128;
 222 
 223     /**
 224      * The threshold value for using Toom-Cook squaring.  If the number
 225      * of ints in the number are larger than this value,
 226      * Toom-Cook squaring will be used.   This value is found
 227      * experimentally to work well.
 228      */
 229     private static final int TOOM_COOK_SQUARE_THRESHOLD = 216;
 230 
 231     /**
 232      * The threshold value for using Burnikel-Ziegler division.  If the number
 233      * of ints in the divisor are larger than this value, Burnikel-Ziegler
 234      * division may be used.  This value is found experimentally to work well.
 235      */
 236     static final int BURNIKEL_ZIEGLER_THRESHOLD = 80;
 237 
 238     /**
 239      * The offset value for using Burnikel-Ziegler division.  If the number
 240      * of ints in the divisor exceeds the Burnikel-Ziegler threshold, and the
 241      * number of ints in the dividend is greater than the number of ints in the
 242      * divisor plus this value, Burnikel-Ziegler division will be used.  This
 243      * value is found experimentally to work well.
 244      */
 245     static final int BURNIKEL_ZIEGLER_OFFSET = 40;
 246 
 247     /**
 248      * The threshold value for using Schoenhage recursive base conversion. If
 249      * the number of ints in the number are larger than this value,
 250      * the Schoenhage algorithm will be used.  In practice, it appears that the
 251      * Schoenhage routine is faster for any threshold down to 2, and is
 252      * relatively flat for thresholds between 2-25, so this choice may be
 253      * varied within this range for very small effect.
 254      */
 255     private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20;
 256 
 257     /**
 258      * The threshold value for using squaring code to perform multiplication
 259      * of a {@code BigInteger} instance by itself.  If the number of ints in
 260      * the number are larger than this value, {@code multiply(this)} will
 261      * return {@code square()}.
 262      */
 263     private static final int MULTIPLY_SQUARE_THRESHOLD = 20;
 264 
 265     // Constructors
 266 
 267     /**
 268      * Translates a byte sub-array containing the two's-complement binary
 269      * representation of a BigInteger into a BigInteger.  The sub-array is
 270      * specified via an offset into the array and a length.  The sub-array is
 271      * assumed to be in <i>big-endian</i> byte-order: the most significant
 272      * byte is the element at index {@code off}.
 273      *
 274      * An {@code IndexOutOfBoundsException} is thrown if the length of the array
 275      * {@code val} is non-zero and either {@code off} is negative, {@code len}
 276      * is negative, or {@code off+len} is greater than the length of
 277      * {@code val}.
 278      *
 279      * @param  val byte array containing a sub-array which is the big-endian
 280      *         two's-complement binary representation of a BigInteger.
 281      * @param  off the start offset of the binary representation.
 282      * @param  len the number of bytes to use.
 283      * @throws NumberFormatException {@code val} is zero bytes long.
 284      */
 285     public BigInteger(byte[] val, int off, int len) {
 286         if (val.length == 0) {
 287             throw new NumberFormatException("Zero length BigInteger");
 288         } else if ((off < 0) || (off > val.length) || (len < 0) ||
 289                    ((off + len) > val.length) || ((off + len) < 0)) {
 290             throw new IndexOutOfBoundsException();
 291         }
 292 
 293         if (val[off] < 0) {
 294             mag = makePositive(val, off, len);
 295             signum = -1;
 296         } else {
 297             mag = stripLeadingZeroBytes(val, off, len);
 298             signum = (mag.length == 0 ? 0 : 1);
 299         }
 300         if (mag.length >= MAX_MAG_LENGTH) {
 301             checkRange();
 302         }
 303     }
 304 
 305     /**
 306      * Translates a byte array containing the two's-complement binary
 307      * representation of a BigInteger into a BigInteger.  The input array is
 308      * assumed to be in <i>big-endian</i> byte-order: the most significant
 309      * byte is in the zeroth element.
 310      *
 311      * @param  val big-endian two's-complement binary representation of a
 312      *         BigInteger.
 313      * @throws NumberFormatException {@code val} is zero bytes long.
 314      */
 315     public BigInteger(byte[] val) {
 316         this(val, 0, val.length);
 317     }
 318 
 319     /**
 320      * This private constructor translates an int array containing the
 321      * two's-complement binary representation of a BigInteger into a
 322      * BigInteger. The input array is assumed to be in <i>big-endian</i>
 323      * int-order: the most significant int is in the zeroth element.
 324      */
 325     private BigInteger(int[] val) {
 326         if (val.length == 0)
 327             throw new NumberFormatException("Zero length BigInteger");
 328 
 329         if (val[0] < 0) {
 330             mag = makePositive(val);
 331             signum = -1;
 332         } else {
 333             mag = trustedStripLeadingZeroInts(val);
 334             signum = (mag.length == 0 ? 0 : 1);
 335         }
 336         if (mag.length >= MAX_MAG_LENGTH) {
 337             checkRange();
 338         }
 339     }
 340 
 341     /**
 342      * Translates the sign-magnitude representation of a BigInteger into a
 343      * BigInteger.  The sign is represented as an integer signum value: -1 for
 344      * negative, 0 for zero, or 1 for positive.  The magnitude is a sub-array of
 345      * a byte array in <i>big-endian</i> byte-order: the most significant byte
 346      * is the element at index {@code off}.  A zero value of the length
 347      * {@code len} is permissible, and will result in a BigInteger value of 0,
 348      * whether signum is -1, 0 or 1.
 349      *
 350      * An {@code IndexOutOfBoundsException} is thrown if the length of the array
 351      * {@code magnitude} is non-zero and either {@code off} is negative,
 352      * {@code len} is negative, or {@code off+len} is greater than the length of
 353      * {@code magnitude}.
 354      *
 355      * @param  signum signum of the number (-1 for negative, 0 for zero, 1
 356      *         for positive).
 357      * @param  magnitude big-endian binary representation of the magnitude of
 358      *         the number.
 359      * @throws NumberFormatException {@code signum} is not one of the three
 360      *         legal values (-1, 0, and 1), or {@code signum} is 0 and
 361      *         {@code magnitude} contains one or more non-zero bytes.
 362      */
 363     public BigInteger(int signum, byte[] magnitude, int off, int len) {
 364         if ((off < 0) || (off > magnitude.length) || (len < 0)
 365                 || ((off + len) > magnitude.length) || ((off + len) < 0)) {
 366             throw new IndexOutOfBoundsException();
 367         }
 368         this.mag = stripLeadingZeroBytes(magnitude, off, len);
 369 
 370         if (signum < -1 || signum > 1)
 371             throw(new NumberFormatException("Invalid signum value"));
 372 
 373         if (this.mag.length == 0) {
 374             this.signum = 0;
 375         } else {
 376             if (signum == 0)
 377                 throw(new NumberFormatException("signum-magnitude mismatch"));
 378             this.signum = signum;
 379         }
 380         if (mag.length >= MAX_MAG_LENGTH) {
 381             checkRange();
 382         }
 383     }
 384 
 385     /**
 386      * Translates the sign-magnitude representation of a BigInteger into a
 387      * BigInteger.  The sign is represented as an integer signum value: -1 for
 388      * negative, 0 for zero, or 1 for positive.  The magnitude is a byte array
 389      * in <i>big-endian</i> byte-order: the most significant byte is the
 390      * zeroth element.  A zero-length magnitude array is permissible, and will
 391      * result in a BigInteger value of 0, whether signum is -1, 0 or 1.
 392      *
 393      * @param  signum signum of the number (-1 for negative, 0 for zero, 1
 394      *         for positive).
 395      * @param  magnitude big-endian binary representation of the magnitude of
 396      *         the number.
 397      * @throws NumberFormatException {@code signum} is not one of the three
 398      *         legal values (-1, 0, and 1), or {@code signum} is 0 and
 399      *         {@code magnitude} contains one or more non-zero bytes.
 400      */
 401     public BigInteger(int signum, byte[] magnitude) {
 402          this(signum, magnitude, 0, magnitude.length);
 403     }
 404 
 405     /**
 406      * A constructor for internal use that translates the sign-magnitude
 407      * representation of a BigInteger into a BigInteger. It checks the
 408      * arguments and copies the magnitude so this constructor would be
 409      * safe for external use.
 410      */
 411     private BigInteger(int signum, int[] magnitude) {
 412         this.mag = stripLeadingZeroInts(magnitude);
 413 
 414         if (signum < -1 || signum > 1)
 415             throw(new NumberFormatException("Invalid signum value"));
 416 
 417         if (this.mag.length == 0) {
 418             this.signum = 0;
 419         } else {
 420             if (signum == 0)
 421                 throw(new NumberFormatException("signum-magnitude mismatch"));
 422             this.signum = signum;
 423         }
 424         if (mag.length >= MAX_MAG_LENGTH) {
 425             checkRange();
 426         }
 427     }
 428 
 429     /**
 430      * Translates the String representation of a BigInteger in the
 431      * specified radix into a BigInteger.  The String representation
 432      * consists of an optional minus or plus sign followed by a
 433      * sequence of one or more digits in the specified radix.  The
 434      * character-to-digit mapping is provided by {@code
 435      * Character.digit}.  The String may not contain any extraneous
 436      * characters (whitespace, for example).
 437      *
 438      * @param val String representation of BigInteger.
 439      * @param radix radix to be used in interpreting {@code val}.
 440      * @throws NumberFormatException {@code val} is not a valid representation
 441      *         of a BigInteger in the specified radix, or {@code radix} is
 442      *         outside the range from {@link Character#MIN_RADIX} to
 443      *         {@link Character#MAX_RADIX}, inclusive.
 444      * @see    Character#digit
 445      */
 446     public BigInteger(String val, int radix) {
 447         int cursor = 0, numDigits;
 448         final int len = val.length();
 449 
 450         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 451             throw new NumberFormatException("Radix out of range");
 452         if (len == 0)
 453             throw new NumberFormatException("Zero length BigInteger");
 454 
 455         // Check for at most one leading sign
 456         int sign = 1;
 457         int index1 = val.lastIndexOf('-');
 458         int index2 = val.lastIndexOf('+');
 459         if (index1 >= 0) {
 460             if (index1 != 0 || index2 >= 0) {
 461                 throw new NumberFormatException("Illegal embedded sign character");
 462             }
 463             sign = -1;
 464             cursor = 1;
 465         } else if (index2 >= 0) {
 466             if (index2 != 0) {
 467                 throw new NumberFormatException("Illegal embedded sign character");
 468             }
 469             cursor = 1;
 470         }
 471         if (cursor == len)
 472             throw new NumberFormatException("Zero length BigInteger");
 473 
 474         // Skip leading zeros and compute number of digits in magnitude
 475         while (cursor < len &&
 476                Character.digit(val.charAt(cursor), radix) == 0) {
 477             cursor++;
 478         }
 479 
 480         if (cursor == len) {
 481             signum = 0;
 482             mag = ZERO.mag;
 483             return;
 484         }
 485 
 486         numDigits = len - cursor;
 487         signum = sign;
 488 
 489         // Pre-allocate array of expected size. May be too large but can
 490         // never be too small. Typically exact.
 491         long numBits = ((numDigits * bitsPerDigit[radix]) >>> 10) + 1;
 492         if (numBits + 31 >= (1L << 32)) {
 493             reportOverflow();
 494         }
 495         int numWords = (int) (numBits + 31) >>> 5;
 496         int[] magnitude = new int[numWords];
 497 
 498         // Process first (potentially short) digit group
 499         int firstGroupLen = numDigits % digitsPerInt[radix];
 500         if (firstGroupLen == 0)
 501             firstGroupLen = digitsPerInt[radix];
 502         String group = val.substring(cursor, cursor += firstGroupLen);
 503         magnitude[numWords - 1] = Integer.parseInt(group, radix);
 504         if (magnitude[numWords - 1] < 0)
 505             throw new NumberFormatException("Illegal digit");
 506 
 507         // Process remaining digit groups
 508         int superRadix = intRadix[radix];
 509         int groupVal = 0;
 510         while (cursor < len) {
 511             group = val.substring(cursor, cursor += digitsPerInt[radix]);
 512             groupVal = Integer.parseInt(group, radix);
 513             if (groupVal < 0)
 514                 throw new NumberFormatException("Illegal digit");
 515             destructiveMulAdd(magnitude, superRadix, groupVal);
 516         }
 517         // Required for cases where the array was overallocated.
 518         mag = trustedStripLeadingZeroInts(magnitude);
 519         if (mag.length >= MAX_MAG_LENGTH) {
 520             checkRange();
 521         }
 522     }
 523 
 524     /*
 525      * Constructs a new BigInteger using a char array with radix=10.
 526      * Sign is precalculated outside and not allowed in the val.
 527      */
 528     BigInteger(char[] val, int sign, int len) {
 529         int cursor = 0, numDigits;
 530 
 531         // Skip leading zeros and compute number of digits in magnitude
 532         while (cursor < len && Character.digit(val[cursor], 10) == 0) {
 533             cursor++;
 534         }
 535         if (cursor == len) {
 536             signum = 0;
 537             mag = ZERO.mag;
 538             return;
 539         }
 540 
 541         numDigits = len - cursor;
 542         signum = sign;
 543         // Pre-allocate array of expected size
 544         int numWords;
 545         if (len < 10) {
 546             numWords = 1;
 547         } else {
 548             long numBits = ((numDigits * bitsPerDigit[10]) >>> 10) + 1;
 549             if (numBits + 31 >= (1L << 32)) {
 550                 reportOverflow();
 551             }
 552             numWords = (int) (numBits + 31) >>> 5;
 553         }
 554         int[] magnitude = new int[numWords];
 555 
 556         // Process first (potentially short) digit group
 557         int firstGroupLen = numDigits % digitsPerInt[10];
 558         if (firstGroupLen == 0)
 559             firstGroupLen = digitsPerInt[10];
 560         magnitude[numWords - 1] = parseInt(val, cursor,  cursor += firstGroupLen);
 561 
 562         // Process remaining digit groups
 563         while (cursor < len) {
 564             int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
 565             destructiveMulAdd(magnitude, intRadix[10], groupVal);
 566         }
 567         mag = trustedStripLeadingZeroInts(magnitude);
 568         if (mag.length >= MAX_MAG_LENGTH) {
 569             checkRange();
 570         }
 571     }
 572 
 573     // Create an integer with the digits between the two indexes
 574     // Assumes start < end. The result may be negative, but it
 575     // is to be treated as an unsigned value.
 576     private int parseInt(char[] source, int start, int end) {
 577         int result = Character.digit(source[start++], 10);
 578         if (result == -1)
 579             throw new NumberFormatException(new String(source));
 580 
 581         for (int index = start; index < end; index++) {
 582             int nextVal = Character.digit(source[index], 10);
 583             if (nextVal == -1)
 584                 throw new NumberFormatException(new String(source));
 585             result = 10*result + nextVal;
 586         }
 587 
 588         return result;
 589     }
 590 
 591     // bitsPerDigit in the given radix times 1024
 592     // Rounded up to avoid underallocation.
 593     private static long bitsPerDigit[] = { 0, 0,
 594         1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
 595         3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
 596         4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
 597                                            5253, 5295};
 598 
 599     // Multiply x array times word y in place, and add word z
 600     private static void destructiveMulAdd(int[] x, int y, int z) {
 601         // Perform the multiplication word by word
 602         long ylong = y & LONG_MASK;
 603         long zlong = z & LONG_MASK;
 604         int len = x.length;
 605 
 606         long product = 0;
 607         long carry = 0;
 608         for (int i = len-1; i >= 0; i--) {
 609             product = ylong * (x[i] & LONG_MASK) + carry;
 610             x[i] = (int)product;
 611             carry = product >>> 32;
 612         }
 613 
 614         // Perform the addition
 615         long sum = (x[len-1] & LONG_MASK) + zlong;
 616         x[len-1] = (int)sum;
 617         carry = sum >>> 32;
 618         for (int i = len-2; i >= 0; i--) {
 619             sum = (x[i] & LONG_MASK) + carry;
 620             x[i] = (int)sum;
 621             carry = sum >>> 32;
 622         }
 623     }
 624 
 625     /**
 626      * Translates the decimal String representation of a BigInteger into a
 627      * BigInteger.  The String representation consists of an optional minus
 628      * sign followed by a sequence of one or more decimal digits.  The
 629      * character-to-digit mapping is provided by {@code Character.digit}.
 630      * The String may not contain any extraneous characters (whitespace, for
 631      * example).
 632      *
 633      * @param val decimal String representation of BigInteger.
 634      * @throws NumberFormatException {@code val} is not a valid representation
 635      *         of a BigInteger.
 636      * @see    Character#digit
 637      */
 638     public BigInteger(String val) {
 639         this(val, 10);
 640     }
 641 
 642     /**
 643      * Constructs a randomly generated BigInteger, uniformly distributed over
 644      * the range 0 to (2<sup>{@code numBits}</sup> - 1), inclusive.
 645      * The uniformity of the distribution assumes that a fair source of random
 646      * bits is provided in {@code rnd}.  Note that this constructor always
 647      * constructs a non-negative BigInteger.
 648      *
 649      * @param  numBits maximum bitLength of the new BigInteger.
 650      * @param  rnd source of randomness to be used in computing the new
 651      *         BigInteger.
 652      * @throws IllegalArgumentException {@code numBits} is negative.
 653      * @see #bitLength()
 654      */
 655     public BigInteger(int numBits, Random rnd) {
 656         this(1, randomBits(numBits, rnd));
 657     }
 658 
 659     private static byte[] randomBits(int numBits, Random rnd) {
 660         if (numBits < 0)
 661             throw new IllegalArgumentException("numBits must be non-negative");
 662         int numBytes = (int)(((long)numBits+7)/8); // avoid overflow
 663         byte[] randomBits = new byte[numBytes];
 664 
 665         // Generate random bytes and mask out any excess bits
 666         if (numBytes > 0) {
 667             rnd.nextBytes(randomBits);
 668             int excessBits = 8*numBytes - numBits;
 669             randomBits[0] &= (1 << (8-excessBits)) - 1;
 670         }
 671         return randomBits;
 672     }
 673 
 674     /**
 675      * Constructs a randomly generated positive BigInteger that is probably
 676      * prime, with the specified bitLength.
 677      *
 678      * <p>It is recommended that the {@link #probablePrime probablePrime}
 679      * method be used in preference to this constructor unless there
 680      * is a compelling need to specify a certainty.
 681      *
 682      * @param  bitLength bitLength of the returned BigInteger.
 683      * @param  certainty a measure of the uncertainty that the caller is
 684      *         willing to tolerate.  The probability that the new BigInteger
 685      *         represents a prime number will exceed
 686      *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
 687      *         this constructor is proportional to the value of this parameter.
 688      * @param  rnd source of random bits used to select candidates to be
 689      *         tested for primality.
 690      * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
 691      * @see    #bitLength()
 692      */
 693     public BigInteger(int bitLength, int certainty, Random rnd) {
 694         BigInteger prime;
 695 
 696         if (bitLength < 2)
 697             throw new ArithmeticException("bitLength < 2");
 698         prime = (bitLength < SMALL_PRIME_THRESHOLD
 699                                 ? smallPrime(bitLength, certainty, rnd)
 700                                 : largePrime(bitLength, certainty, rnd));
 701         signum = 1;
 702         mag = prime.mag;
 703     }
 704 
 705     // Minimum size in bits that the requested prime number has
 706     // before we use the large prime number generating algorithms.
 707     // The cutoff of 95 was chosen empirically for best performance.
 708     private static final int SMALL_PRIME_THRESHOLD = 95;
 709 
 710     // Certainty required to meet the spec of probablePrime
 711     private static final int DEFAULT_PRIME_CERTAINTY = 100;
 712 
 713     /**
 714      * Returns a positive BigInteger that is probably prime, with the
 715      * specified bitLength. The probability that a BigInteger returned
 716      * by this method is composite does not exceed 2<sup>-100</sup>.
 717      *
 718      * @param  bitLength bitLength of the returned BigInteger.
 719      * @param  rnd source of random bits used to select candidates to be
 720      *         tested for primality.
 721      * @return a BigInteger of {@code bitLength} bits that is probably prime
 722      * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
 723      * @see    #bitLength()
 724      * @since 1.4
 725      */
 726     public static BigInteger probablePrime(int bitLength, Random rnd) {
 727         if (bitLength < 2)
 728             throw new ArithmeticException("bitLength < 2");
 729 
 730         return (bitLength < SMALL_PRIME_THRESHOLD ?
 731                 smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
 732                 largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
 733     }
 734 
 735     /**
 736      * Find a random number of the specified bitLength that is probably prime.
 737      * This method is used for smaller primes, its performance degrades on
 738      * larger bitlengths.
 739      *
 740      * This method assumes bitLength > 1.
 741      */
 742     private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
 743         int magLen = (bitLength + 31) >>> 5;
 744         int temp[] = new int[magLen];
 745         int highBit = 1 << ((bitLength+31) & 0x1f);  // High bit of high int
 746         int highMask = (highBit << 1) - 1;  // Bits to keep in high int
 747 
 748         while (true) {
 749             // Construct a candidate
 750             for (int i=0; i < magLen; i++)
 751                 temp[i] = rnd.nextInt();
 752             temp[0] = (temp[0] & highMask) | highBit;  // Ensure exact length
 753             if (bitLength > 2)
 754                 temp[magLen-1] |= 1;  // Make odd if bitlen > 2
 755 
 756             BigInteger p = new BigInteger(temp, 1);
 757 
 758             // Do cheap "pre-test" if applicable
 759             if (bitLength > 6) {
 760                 long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
 761                 if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
 762                     (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
 763                     (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
 764                     continue; // Candidate is composite; try another
 765             }
 766 
 767             // All candidates of bitLength 2 and 3 are prime by this point
 768             if (bitLength < 4)
 769                 return p;
 770 
 771             // Do expensive test if we survive pre-test (or it's inapplicable)
 772             if (p.primeToCertainty(certainty, rnd))
 773                 return p;
 774         }
 775     }
 776 
 777     private static final BigInteger SMALL_PRIME_PRODUCT
 778                        = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
 779 
 780     /**
 781      * Find a random number of the specified bitLength that is probably prime.
 782      * This method is more appropriate for larger bitlengths since it uses
 783      * a sieve to eliminate most composites before using a more expensive
 784      * test.
 785      */
 786     private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
 787         BigInteger p;
 788         p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
 789         p.mag[p.mag.length-1] &= 0xfffffffe;
 790 
 791         // Use a sieve length likely to contain the next prime number
 792         int searchLen = getPrimeSearchLen(bitLength);
 793         BitSieve searchSieve = new BitSieve(p, searchLen);
 794         BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
 795 
 796         while ((candidate == null) || (candidate.bitLength() != bitLength)) {
 797             p = p.add(BigInteger.valueOf(2*searchLen));
 798             if (p.bitLength() != bitLength)
 799                 p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
 800             p.mag[p.mag.length-1] &= 0xfffffffe;
 801             searchSieve = new BitSieve(p, searchLen);
 802             candidate = searchSieve.retrieve(p, certainty, rnd);
 803         }
 804         return candidate;
 805     }
 806 
 807    /**
 808     * Returns the first integer greater than this {@code BigInteger} that
 809     * is probably prime.  The probability that the number returned by this
 810     * method is composite does not exceed 2<sup>-100</sup>. This method will
 811     * never skip over a prime when searching: if it returns {@code p}, there
 812     * is no prime {@code q} such that {@code this < q < p}.
 813     *
 814     * @return the first integer greater than this {@code BigInteger} that
 815     *         is probably prime.
 816     * @throws ArithmeticException {@code this < 0} or {@code this} is too large.
 817     * @since 1.5
 818     */
 819     public BigInteger nextProbablePrime() {
 820         if (this.signum < 0)
 821             throw new ArithmeticException("start < 0: " + this);
 822 
 823         // Handle trivial cases
 824         if ((this.signum == 0) || this.equals(ONE))
 825             return TWO;
 826 
 827         BigInteger result = this.add(ONE);
 828 
 829         // Fastpath for small numbers
 830         if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
 831 
 832             // Ensure an odd number
 833             if (!result.testBit(0))
 834                 result = result.add(ONE);
 835 
 836             while (true) {
 837                 // Do cheap "pre-test" if applicable
 838                 if (result.bitLength() > 6) {
 839                     long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
 840                     if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
 841                         (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
 842                         (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
 843                         result = result.add(TWO);
 844                         continue; // Candidate is composite; try another
 845                     }
 846                 }
 847 
 848                 // All candidates of bitLength 2 and 3 are prime by this point
 849                 if (result.bitLength() < 4)
 850                     return result;
 851 
 852                 // The expensive test
 853                 if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
 854                     return result;
 855 
 856                 result = result.add(TWO);
 857             }
 858         }
 859 
 860         // Start at previous even number
 861         if (result.testBit(0))
 862             result = result.subtract(ONE);
 863 
 864         // Looking for the next large prime
 865         int searchLen = getPrimeSearchLen(result.bitLength());
 866 
 867         while (true) {
 868            BitSieve searchSieve = new BitSieve(result, searchLen);
 869            BigInteger candidate = searchSieve.retrieve(result,
 870                                                  DEFAULT_PRIME_CERTAINTY, null);
 871            if (candidate != null)
 872                return candidate;
 873            result = result.add(BigInteger.valueOf(2 * searchLen));
 874         }
 875     }
 876 
 877     private static int getPrimeSearchLen(int bitLength) {
 878         if (bitLength > PRIME_SEARCH_BIT_LENGTH_LIMIT + 1) {
 879             throw new ArithmeticException("Prime search implementation restriction on bitLength");
 880         }
 881         return bitLength / 20 * 64;
 882     }
 883 
 884     /**
 885      * Returns {@code true} if this BigInteger is probably prime,
 886      * {@code false} if it's definitely composite.
 887      *
 888      * This method assumes bitLength > 2.
 889      *
 890      * @param  certainty a measure of the uncertainty that the caller is
 891      *         willing to tolerate: if the call returns {@code true}
 892      *         the probability that this BigInteger is prime exceeds
 893      *         {@code (1 - 1/2<sup>certainty</sup>)}.  The execution time of
 894      *         this method is proportional to the value of this parameter.
 895      * @return {@code true} if this BigInteger is probably prime,
 896      *         {@code false} if it's definitely composite.
 897      */
 898     boolean primeToCertainty(int certainty, Random random) {
 899         int rounds = 0;
 900         int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;
 901 
 902         // The relationship between the certainty and the number of rounds
 903         // we perform is given in the draft standard ANSI X9.80, "PRIME
 904         // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
 905         int sizeInBits = this.bitLength();
 906         if (sizeInBits < 100) {
 907             rounds = 50;
 908             rounds = n < rounds ? n : rounds;
 909             return passesMillerRabin(rounds, random);
 910         }
 911 
 912         if (sizeInBits < 256) {
 913             rounds = 27;
 914         } else if (sizeInBits < 512) {
 915             rounds = 15;
 916         } else if (sizeInBits < 768) {
 917             rounds = 8;
 918         } else if (sizeInBits < 1024) {
 919             rounds = 4;
 920         } else {
 921             rounds = 2;
 922         }
 923         rounds = n < rounds ? n : rounds;
 924 
 925         return passesMillerRabin(rounds, random) && passesLucasLehmer();
 926     }
 927 
 928     /**
 929      * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
 930      *
 931      * The following assumptions are made:
 932      * This BigInteger is a positive, odd number.
 933      */
 934     private boolean passesLucasLehmer() {
 935         BigInteger thisPlusOne = this.add(ONE);
 936 
 937         // Step 1
 938         int d = 5;
 939         while (jacobiSymbol(d, this) != -1) {
 940             // 5, -7, 9, -11, ...
 941             d = (d < 0) ? Math.abs(d)+2 : -(d+2);
 942         }
 943 
 944         // Step 2
 945         BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
 946 
 947         // Step 3
 948         return u.mod(this).equals(ZERO);
 949     }
 950 
 951     /**
 952      * Computes Jacobi(p,n).
 953      * Assumes n positive, odd, n>=3.
 954      */
 955     private static int jacobiSymbol(int p, BigInteger n) {
 956         if (p == 0)
 957             return 0;
 958 
 959         // Algorithm and comments adapted from Colin Plumb's C library.
 960         int j = 1;
 961         int u = n.mag[n.mag.length-1];
 962 
 963         // Make p positive
 964         if (p < 0) {
 965             p = -p;
 966             int n8 = u & 7;
 967             if ((n8 == 3) || (n8 == 7))
 968                 j = -j; // 3 (011) or 7 (111) mod 8
 969         }
 970 
 971         // Get rid of factors of 2 in p
 972         while ((p & 3) == 0)
 973             p >>= 2;
 974         if ((p & 1) == 0) {
 975             p >>= 1;
 976             if (((u ^ (u>>1)) & 2) != 0)
 977                 j = -j; // 3 (011) or 5 (101) mod 8
 978         }
 979         if (p == 1)
 980             return j;
 981         // Then, apply quadratic reciprocity
 982         if ((p & u & 2) != 0)   // p = u = 3 (mod 4)?
 983             j = -j;
 984         // And reduce u mod p
 985         u = n.mod(BigInteger.valueOf(p)).intValue();
 986 
 987         // Now compute Jacobi(u,p), u < p
 988         while (u != 0) {
 989             while ((u & 3) == 0)
 990                 u >>= 2;
 991             if ((u & 1) == 0) {
 992                 u >>= 1;
 993                 if (((p ^ (p>>1)) & 2) != 0)
 994                     j = -j;     // 3 (011) or 5 (101) mod 8
 995             }
 996             if (u == 1)
 997                 return j;
 998             // Now both u and p are odd, so use quadratic reciprocity
 999             assert (u < p);
1000             int t = u; u = p; p = t;
1001             if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
1002                 j = -j;
1003             // Now u >= p, so it can be reduced
1004             u %= p;
1005         }
1006         return 0;
1007     }
1008 
1009     private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
1010         BigInteger d = BigInteger.valueOf(z);
1011         BigInteger u = ONE; BigInteger u2;
1012         BigInteger v = ONE; BigInteger v2;
1013 
1014         for (int i=k.bitLength()-2; i >= 0; i--) {
1015             u2 = u.multiply(v).mod(n);
1016 
1017             v2 = v.square().add(d.multiply(u.square())).mod(n);
1018             if (v2.testBit(0))
1019                 v2 = v2.subtract(n);
1020 
1021             v2 = v2.shiftRight(1);
1022 
1023             u = u2; v = v2;
1024             if (k.testBit(i)) {
1025                 u2 = u.add(v).mod(n);
1026                 if (u2.testBit(0))
1027                     u2 = u2.subtract(n);
1028 
1029                 u2 = u2.shiftRight(1);
1030                 v2 = v.add(d.multiply(u)).mod(n);
1031                 if (v2.testBit(0))
1032                     v2 = v2.subtract(n);
1033                 v2 = v2.shiftRight(1);
1034 
1035                 u = u2; v = v2;
1036             }
1037         }
1038         return u;
1039     }
1040 
1041     /**
1042      * Returns true iff this BigInteger passes the specified number of
1043      * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
1044      * 186-2).
1045      *
1046      * The following assumptions are made:
1047      * This BigInteger is a positive, odd number greater than 2.
1048      * iterations<=50.
1049      */
1050     private boolean passesMillerRabin(int iterations, Random rnd) {
1051         // Find a and m such that m is odd and this == 1 + 2**a * m
1052         BigInteger thisMinusOne = this.subtract(ONE);
1053         BigInteger m = thisMinusOne;
1054         int a = m.getLowestSetBit();
1055         m = m.shiftRight(a);
1056 
1057         // Do the tests
1058         if (rnd == null) {
1059             rnd = ThreadLocalRandom.current();
1060         }
1061         for (int i=0; i < iterations; i++) {
1062             // Generate a uniform random on (1, this)
1063             BigInteger b;
1064             do {
1065                 b = new BigInteger(this.bitLength(), rnd);
1066             } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
1067 
1068             int j = 0;
1069             BigInteger z = b.modPow(m, this);
1070             while (!((j == 0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
1071                 if (j > 0 && z.equals(ONE) || ++j == a)
1072                     return false;
1073                 z = z.modPow(TWO, this);
1074             }
1075         }
1076         return true;
1077     }
1078 
1079     /**
1080      * This internal constructor differs from its public cousin
1081      * with the arguments reversed in two ways: it assumes that its
1082      * arguments are correct, and it doesn't copy the magnitude array.
1083      */
1084     BigInteger(int[] magnitude, int signum) {
1085         this.signum = (magnitude.length == 0 ? 0 : signum);
1086         this.mag = magnitude;
1087         if (mag.length >= MAX_MAG_LENGTH) {
1088             checkRange();
1089         }
1090     }
1091 
1092     /**
1093      * This private constructor is for internal use and assumes that its
1094      * arguments are correct.
1095      */
1096     private BigInteger(byte[] magnitude, int signum) {
1097         this.signum = (magnitude.length == 0 ? 0 : signum);
1098         this.mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
1099         if (mag.length >= MAX_MAG_LENGTH) {
1100             checkRange();
1101         }
1102     }
1103 
1104     /**
1105      * Throws an {@code ArithmeticException} if the {@code BigInteger} would be
1106      * out of the supported range.
1107      *
1108      * @throws ArithmeticException if {@code this} exceeds the supported range.
1109      */
1110     private void checkRange() {
1111         if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) {
1112             reportOverflow();
1113         }
1114     }
1115 
1116     private static void reportOverflow() {
1117         throw new ArithmeticException("BigInteger would overflow supported range");
1118     }
1119 
1120     //Static Factory Methods
1121 
1122     /**
1123      * Returns a BigInteger whose value is equal to that of the
1124      * specified {@code long}.  This "static factory method" is
1125      * provided in preference to a ({@code long}) constructor
1126      * because it allows for reuse of frequently used BigIntegers.
1127      *
1128      * @param  val value of the BigInteger to return.
1129      * @return a BigInteger with the specified value.
1130      */
1131     public static BigInteger valueOf(long val) {
1132         // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
1133         if (val == 0)
1134             return ZERO;
1135         if (val > 0 && val <= MAX_CONSTANT)
1136             return posConst[(int) val];
1137         else if (val < 0 && val >= -MAX_CONSTANT)
1138             return negConst[(int) -val];
1139 
1140         return new BigInteger(val);
1141     }
1142 
1143     /**
1144      * Constructs a BigInteger with the specified value, which may not be zero.
1145      */
1146     private BigInteger(long val) {
1147         if (val < 0) {
1148             val = -val;
1149             signum = -1;
1150         } else {
1151             signum = 1;
1152         }
1153 
1154         int highWord = (int)(val >>> 32);
1155         if (highWord == 0) {
1156             mag = new int[1];
1157             mag[0] = (int)val;
1158         } else {
1159             mag = new int[2];
1160             mag[0] = highWord;
1161             mag[1] = (int)val;
1162         }
1163     }
1164 
1165     /**
1166      * Returns a BigInteger with the given two's complement representation.
1167      * Assumes that the input array will not be modified (the returned
1168      * BigInteger will reference the input array if feasible).
1169      */
1170     private static BigInteger valueOf(int val[]) {
1171         return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val));
1172     }
1173 
1174     // Constants
1175 
1176     /**
1177      * Initialize static constant array when class is loaded.
1178      */
1179     private final static int MAX_CONSTANT = 16;
1180     private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
1181     private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
1182 
1183     /**
1184      * The cache of powers of each radix.  This allows us to not have to
1185      * recalculate powers of radix^(2^n) more than once.  This speeds
1186      * Schoenhage recursive base conversion significantly.
1187      */
1188     private static volatile BigInteger[][] powerCache;
1189 
1190     /** The cache of logarithms of radices for base conversion. */
1191     private static final double[] logCache;
1192 
1193     /** The natural log of 2.  This is used in computing cache indices. */
1194     private static final double LOG_TWO = Math.log(2.0);
1195 
1196     static {
1197         for (int i = 1; i <= MAX_CONSTANT; i++) {
1198             int[] magnitude = new int[1];
1199             magnitude[0] = i;
1200             posConst[i] = new BigInteger(magnitude,  1);
1201             negConst[i] = new BigInteger(magnitude, -1);
1202         }
1203 
1204         /*
1205          * Initialize the cache of radix^(2^x) values used for base conversion
1206          * with just the very first value.  Additional values will be created
1207          * on demand.
1208          */
1209         powerCache = new BigInteger[Character.MAX_RADIX+1][];
1210         logCache = new double[Character.MAX_RADIX+1];
1211 
1212         for (int i=Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
1213             powerCache[i] = new BigInteger[] { BigInteger.valueOf(i) };
1214             logCache[i] = Math.log(i);
1215         }
1216     }
1217 
1218     /**
1219      * The BigInteger constant zero.
1220      *
1221      * @since   1.2
1222      */
1223     public static final BigInteger ZERO = new BigInteger(new int[0], 0);
1224 
1225     /**
1226      * The BigInteger constant one.
1227      *
1228      * @since   1.2
1229      */
1230     public static final BigInteger ONE = valueOf(1);
1231 
1232     /**
1233      * The BigInteger constant two.  (Not exported.)
1234      */
1235     private static final BigInteger TWO = valueOf(2);
1236 
1237     /**
1238      * The BigInteger constant -1.  (Not exported.)
1239      */
1240     private static final BigInteger NEGATIVE_ONE = valueOf(-1);
1241 
1242     /**
1243      * The BigInteger constant ten.
1244      *
1245      * @since   1.5
1246      */
1247     public static final BigInteger TEN = valueOf(10);
1248 
1249     // Arithmetic Operations
1250 
1251     /**
1252      * Returns a BigInteger whose value is {@code (this + val)}.
1253      *
1254      * @param  val value to be added to this BigInteger.
1255      * @return {@code this + val}
1256      */
1257     public BigInteger add(BigInteger val) {
1258         if (val.signum == 0)
1259             return this;
1260         if (signum == 0)
1261             return val;
1262         if (val.signum == signum)
1263             return new BigInteger(add(mag, val.mag), signum);
1264 
1265         int cmp = compareMagnitude(val);
1266         if (cmp == 0)
1267             return ZERO;
1268         int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
1269                            : subtract(val.mag, mag));
1270         resultMag = trustedStripLeadingZeroInts(resultMag);
1271 
1272         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1273     }
1274 
1275     /**
1276      * Package private methods used by BigDecimal code to add a BigInteger
1277      * with a long. Assumes val is not equal to INFLATED.
1278      */
1279     BigInteger add(long val) {
1280         if (val == 0)
1281             return this;
1282         if (signum == 0)
1283             return valueOf(val);
1284         if (Long.signum(val) == signum)
1285             return new BigInteger(add(mag, Math.abs(val)), signum);
1286         int cmp = compareMagnitude(val);
1287         if (cmp == 0)
1288             return ZERO;
1289         int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag));
1290         resultMag = trustedStripLeadingZeroInts(resultMag);
1291         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1292     }
1293 
1294     /**
1295      * Adds the contents of the int array x and long value val. This
1296      * method allocates a new int array to hold the answer and returns
1297      * a reference to that array.  Assumes x.length &gt; 0 and val is
1298      * non-negative
1299      */
1300     private static int[] add(int[] x, long val) {
1301         int[] y;
1302         long sum = 0;
1303         int xIndex = x.length;
1304         int[] result;
1305         int highWord = (int)(val >>> 32);
1306         if (highWord == 0) {
1307             result = new int[xIndex];
1308             sum = (x[--xIndex] & LONG_MASK) + val;
1309             result[xIndex] = (int)sum;
1310         } else {
1311             if (xIndex == 1) {
1312                 result = new int[2];
1313                 sum = val  + (x[0] & LONG_MASK);
1314                 result[1] = (int)sum;
1315                 result[0] = (int)(sum >>> 32);
1316                 return result;
1317             } else {
1318                 result = new int[xIndex];
1319                 sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK);
1320                 result[xIndex] = (int)sum;
1321                 sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32);
1322                 result[xIndex] = (int)sum;
1323             }
1324         }
1325         // Copy remainder of longer number while carry propagation is required
1326         boolean carry = (sum >>> 32 != 0);
1327         while (xIndex > 0 && carry)
1328             carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
1329         // Copy remainder of longer number
1330         while (xIndex > 0)
1331             result[--xIndex] = x[xIndex];
1332         // Grow result if necessary
1333         if (carry) {
1334             int bigger[] = new int[result.length + 1];
1335             System.arraycopy(result, 0, bigger, 1, result.length);
1336             bigger[0] = 0x01;
1337             return bigger;
1338         }
1339         return result;
1340     }
1341 
1342     /**
1343      * Adds the contents of the int arrays x and y. This method allocates
1344      * a new int array to hold the answer and returns a reference to that
1345      * array.
1346      */
1347     private static int[] add(int[] x, int[] y) {
1348         // If x is shorter, swap the two arrays
1349         if (x.length < y.length) {
1350             int[] tmp = x;
1351             x = y;
1352             y = tmp;
1353         }
1354 
1355         int xIndex = x.length;
1356         int yIndex = y.length;
1357         int result[] = new int[xIndex];
1358         long sum = 0;
1359         if (yIndex == 1) {
1360             sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ;
1361             result[xIndex] = (int)sum;
1362         } else {
1363             // Add common parts of both numbers
1364             while (yIndex > 0) {
1365                 sum = (x[--xIndex] & LONG_MASK) +
1366                       (y[--yIndex] & LONG_MASK) + (sum >>> 32);
1367                 result[xIndex] = (int)sum;
1368             }
1369         }
1370         // Copy remainder of longer number while carry propagation is required
1371         boolean carry = (sum >>> 32 != 0);
1372         while (xIndex > 0 && carry)
1373             carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
1374 
1375         // Copy remainder of longer number
1376         while (xIndex > 0)
1377             result[--xIndex] = x[xIndex];
1378 
1379         // Grow result if necessary
1380         if (carry) {
1381             int bigger[] = new int[result.length + 1];
1382             System.arraycopy(result, 0, bigger, 1, result.length);
1383             bigger[0] = 0x01;
1384             return bigger;
1385         }
1386         return result;
1387     }
1388 
1389     private static int[] subtract(long val, int[] little) {
1390         int highWord = (int)(val >>> 32);
1391         if (highWord == 0) {
1392             int result[] = new int[1];
1393             result[0] = (int)(val - (little[0] & LONG_MASK));
1394             return result;
1395         } else {
1396             int result[] = new int[2];
1397             if (little.length == 1) {
1398                 long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK);
1399                 result[1] = (int)difference;
1400                 // Subtract remainder of longer number while borrow propagates
1401                 boolean borrow = (difference >> 32 != 0);
1402                 if (borrow) {
1403                     result[0] = highWord - 1;
1404                 } else {        // Copy remainder of longer number
1405                     result[0] = highWord;
1406                 }
1407                 return result;
1408             } else { // little.length == 2
1409                 long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK);
1410                 result[1] = (int)difference;
1411                 difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32);
1412                 result[0] = (int)difference;
1413                 return result;
1414             }
1415         }
1416     }
1417 
1418     /**
1419      * Subtracts the contents of the second argument (val) from the
1420      * first (big).  The first int array (big) must represent a larger number
1421      * than the second.  This method allocates the space necessary to hold the
1422      * answer.
1423      * assumes val &gt;= 0
1424      */
1425     private static int[] subtract(int[] big, long val) {
1426         int highWord = (int)(val >>> 32);
1427         int bigIndex = big.length;
1428         int result[] = new int[bigIndex];
1429         long difference = 0;
1430 
1431         if (highWord == 0) {
1432             difference = (big[--bigIndex] & LONG_MASK) - val;
1433             result[bigIndex] = (int)difference;
1434         } else {
1435             difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK);
1436             result[bigIndex] = (int)difference;
1437             difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32);
1438             result[bigIndex] = (int)difference;
1439         }
1440 
1441         // Subtract remainder of longer number while borrow propagates
1442         boolean borrow = (difference >> 32 != 0);
1443         while (bigIndex > 0 && borrow)
1444             borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
1445 
1446         // Copy remainder of longer number
1447         while (bigIndex > 0)
1448             result[--bigIndex] = big[bigIndex];
1449 
1450         return result;
1451     }
1452 
1453     /**
1454      * Returns a BigInteger whose value is {@code (this - val)}.
1455      *
1456      * @param  val value to be subtracted from this BigInteger.
1457      * @return {@code this - val}
1458      */
1459     public BigInteger subtract(BigInteger val) {
1460         if (val.signum == 0)
1461             return this;
1462         if (signum == 0)
1463             return val.negate();
1464         if (val.signum != signum)
1465             return new BigInteger(add(mag, val.mag), signum);
1466 
1467         int cmp = compareMagnitude(val);
1468         if (cmp == 0)
1469             return ZERO;
1470         int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
1471                            : subtract(val.mag, mag));
1472         resultMag = trustedStripLeadingZeroInts(resultMag);
1473         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1474     }
1475 
1476     /**
1477      * Subtracts the contents of the second int arrays (little) from the
1478      * first (big).  The first int array (big) must represent a larger number
1479      * than the second.  This method allocates the space necessary to hold the
1480      * answer.
1481      */
1482     private static int[] subtract(int[] big, int[] little) {
1483         int bigIndex = big.length;
1484         int result[] = new int[bigIndex];
1485         int littleIndex = little.length;
1486         long difference = 0;
1487 
1488         // Subtract common parts of both numbers
1489         while (littleIndex > 0) {
1490             difference = (big[--bigIndex] & LONG_MASK) -
1491                          (little[--littleIndex] & LONG_MASK) +
1492                          (difference >> 32);
1493             result[bigIndex] = (int)difference;
1494         }
1495 
1496         // Subtract remainder of longer number while borrow propagates
1497         boolean borrow = (difference >> 32 != 0);
1498         while (bigIndex > 0 && borrow)
1499             borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
1500 
1501         // Copy remainder of longer number
1502         while (bigIndex > 0)
1503             result[--bigIndex] = big[bigIndex];
1504 
1505         return result;
1506     }
1507 
1508     /**
1509      * Returns a BigInteger whose value is {@code (this * val)}.
1510      *
1511      * @implNote An implementation may offer better algorithmic
1512      * performance when {@code val == this}.
1513      *
1514      * @param  val value to be multiplied by this BigInteger.
1515      * @return {@code this * val}
1516      */
1517     public BigInteger multiply(BigInteger val) {
1518         if (val.signum == 0 || signum == 0)
1519             return ZERO;
1520 
1521         int xlen = mag.length;
1522 
1523         if (val == this && xlen > MULTIPLY_SQUARE_THRESHOLD) {
1524             return square();
1525         }
1526 
1527         int ylen = val.mag.length;
1528 
1529         if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) {
1530             int resultSign = signum == val.signum ? 1 : -1;
1531             if (val.mag.length == 1) {
1532                 return multiplyByInt(mag,val.mag[0], resultSign);
1533             }
1534             if (mag.length == 1) {
1535                 return multiplyByInt(val.mag,mag[0], resultSign);
1536             }
1537             int[] result = multiplyToLen(mag, xlen,
1538                                          val.mag, ylen, null);
1539             result = trustedStripLeadingZeroInts(result);
1540             return new BigInteger(result, resultSign);
1541         } else {
1542             if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) {
1543                 return multiplyKaratsuba(this, val);
1544             } else {
1545                 return multiplyToomCook3(this, val);
1546             }
1547         }
1548     }
1549 
1550     private static BigInteger multiplyByInt(int[] x, int y, int sign) {
1551         if (Integer.bitCount(y) == 1) {
1552             return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign);
1553         }
1554         int xlen = x.length;
1555         int[] rmag =  new int[xlen + 1];
1556         long carry = 0;
1557         long yl = y & LONG_MASK;
1558         int rstart = rmag.length - 1;
1559         for (int i = xlen - 1; i >= 0; i--) {
1560             long product = (x[i] & LONG_MASK) * yl + carry;
1561             rmag[rstart--] = (int)product;
1562             carry = product >>> 32;
1563         }
1564         if (carry == 0L) {
1565             rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
1566         } else {
1567             rmag[rstart] = (int)carry;
1568         }
1569         return new BigInteger(rmag, sign);
1570     }
1571 
1572     /**
1573      * Package private methods used by BigDecimal code to multiply a BigInteger
1574      * with a long. Assumes v is not equal to INFLATED.
1575      */
1576     BigInteger multiply(long v) {
1577         if (v == 0 || signum == 0)
1578           return ZERO;
1579         if (v == BigDecimal.INFLATED)
1580             return multiply(BigInteger.valueOf(v));
1581         int rsign = (v > 0 ? signum : -signum);
1582         if (v < 0)
1583             v = -v;
1584         long dh = v >>> 32;      // higher order bits
1585         long dl = v & LONG_MASK; // lower order bits
1586 
1587         int xlen = mag.length;
1588         int[] value = mag;
1589         int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
1590         long carry = 0;
1591         int rstart = rmag.length - 1;
1592         for (int i = xlen - 1; i >= 0; i--) {
1593             long product = (value[i] & LONG_MASK) * dl + carry;
1594             rmag[rstart--] = (int)product;
1595             carry = product >>> 32;
1596         }
1597         rmag[rstart] = (int)carry;
1598         if (dh != 0L) {
1599             carry = 0;
1600             rstart = rmag.length - 2;
1601             for (int i = xlen - 1; i >= 0; i--) {
1602                 long product = (value[i] & LONG_MASK) * dh +
1603                     (rmag[rstart] & LONG_MASK) + carry;
1604                 rmag[rstart--] = (int)product;
1605                 carry = product >>> 32;
1606             }
1607             rmag[0] = (int)carry;
1608         }
1609         if (carry == 0L)
1610             rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
1611         return new BigInteger(rmag, rsign);
1612     }
1613 
1614     /**
1615      * Multiplies int arrays x and y to the specified lengths and places
1616      * the result into z. There will be no leading zeros in the resultant array.
1617      */
1618     private int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
1619         int xstart = xlen - 1;
1620         int ystart = ylen - 1;
1621 
1622         if (z == null || z.length < (xlen+ ylen))
1623             z = new int[xlen+ylen];
1624 
1625         long carry = 0;
1626         for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) {
1627             long product = (y[j] & LONG_MASK) *
1628                            (x[xstart] & LONG_MASK) + carry;
1629             z[k] = (int)product;
1630             carry = product >>> 32;
1631         }
1632         z[xstart] = (int)carry;
1633 
1634         for (int i = xstart-1; i >= 0; i--) {
1635             carry = 0;
1636             for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) {
1637                 long product = (y[j] & LONG_MASK) *
1638                                (x[i] & LONG_MASK) +
1639                                (z[k] & LONG_MASK) + carry;
1640                 z[k] = (int)product;
1641                 carry = product >>> 32;
1642             }
1643             z[i] = (int)carry;
1644         }
1645         return z;
1646     }
1647 
1648     /**
1649      * Multiplies two BigIntegers using the Karatsuba multiplication
1650      * algorithm.  This is a recursive divide-and-conquer algorithm which is
1651      * more efficient for large numbers than what is commonly called the
1652      * "grade-school" algorithm used in multiplyToLen.  If the numbers to be
1653      * multiplied have length n, the "grade-school" algorithm has an
1654      * asymptotic complexity of O(n^2).  In contrast, the Karatsuba algorithm
1655      * has complexity of O(n^(log2(3))), or O(n^1.585).  It achieves this
1656      * increased performance by doing 3 multiplies instead of 4 when
1657      * evaluating the product.  As it has some overhead, should be used when
1658      * both numbers are larger than a certain threshold (found
1659      * experimentally).
1660      *
1661      * See:  http://en.wikipedia.org/wiki/Karatsuba_algorithm
1662      */
1663     private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) {
1664         int xlen = x.mag.length;
1665         int ylen = y.mag.length;
1666 
1667         // The number of ints in each half of the number.
1668         int half = (Math.max(xlen, ylen)+1) / 2;
1669 
1670         // xl and yl are the lower halves of x and y respectively,
1671         // xh and yh are the upper halves.
1672         BigInteger xl = x.getLower(half);
1673         BigInteger xh = x.getUpper(half);
1674         BigInteger yl = y.getLower(half);
1675         BigInteger yh = y.getUpper(half);
1676 
1677         BigInteger p1 = xh.multiply(yh);  // p1 = xh*yh
1678         BigInteger p2 = xl.multiply(yl);  // p2 = xl*yl
1679 
1680         // p3=(xh+xl)*(yh+yl)
1681         BigInteger p3 = xh.add(xl).multiply(yh.add(yl));
1682 
1683         // result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2
1684         BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2);
1685 
1686         if (x.signum != y.signum) {
1687             return result.negate();
1688         } else {
1689             return result;
1690         }
1691     }
1692 
1693     /**
1694      * Multiplies two BigIntegers using a 3-way Toom-Cook multiplication
1695      * algorithm.  This is a recursive divide-and-conquer algorithm which is
1696      * more efficient for large numbers than what is commonly called the
1697      * "grade-school" algorithm used in multiplyToLen.  If the numbers to be
1698      * multiplied have length n, the "grade-school" algorithm has an
1699      * asymptotic complexity of O(n^2).  In contrast, 3-way Toom-Cook has a
1700      * complexity of about O(n^1.465).  It achieves this increased asymptotic
1701      * performance by breaking each number into three parts and by doing 5
1702      * multiplies instead of 9 when evaluating the product.  Due to overhead
1703      * (additions, shifts, and one division) in the Toom-Cook algorithm, it
1704      * should only be used when both numbers are larger than a certain
1705      * threshold (found experimentally).  This threshold is generally larger
1706      * than that for Karatsuba multiplication, so this algorithm is generally
1707      * only used when numbers become significantly larger.
1708      *
1709      * The algorithm used is the "optimal" 3-way Toom-Cook algorithm outlined
1710      * by Marco Bodrato.
1711      *
1712      *  See: http://bodrato.it/toom-cook/
1713      *       http://bodrato.it/papers/#WAIFI2007
1714      *
1715      * "Towards Optimal Toom-Cook Multiplication for Univariate and
1716      * Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO;
1717      * In C.Carlet and B.Sunar, Eds., "WAIFI'07 proceedings", p. 116-133,
1718      * LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007.
1719      *
1720      */
1721     private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) {
1722         int alen = a.mag.length;
1723         int blen = b.mag.length;
1724 
1725         int largest = Math.max(alen, blen);
1726 
1727         // k is the size (in ints) of the lower-order slices.
1728         int k = (largest+2)/3;   // Equal to ceil(largest/3)
1729 
1730         // r is the size (in ints) of the highest-order slice.
1731         int r = largest - 2*k;
1732 
1733         // Obtain slices of the numbers. a2 and b2 are the most significant
1734         // bits of the numbers a and b, and a0 and b0 the least significant.
1735         BigInteger a0, a1, a2, b0, b1, b2;
1736         a2 = a.getToomSlice(k, r, 0, largest);
1737         a1 = a.getToomSlice(k, r, 1, largest);
1738         a0 = a.getToomSlice(k, r, 2, largest);
1739         b2 = b.getToomSlice(k, r, 0, largest);
1740         b1 = b.getToomSlice(k, r, 1, largest);
1741         b0 = b.getToomSlice(k, r, 2, largest);
1742 
1743         BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1;
1744 
1745         v0 = a0.multiply(b0);
1746         da1 = a2.add(a0);
1747         db1 = b2.add(b0);
1748         vm1 = da1.subtract(a1).multiply(db1.subtract(b1));
1749         da1 = da1.add(a1);
1750         db1 = db1.add(b1);
1751         v1 = da1.multiply(db1);
1752         v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply(
1753              db1.add(b2).shiftLeft(1).subtract(b0));
1754         vinf = a2.multiply(b2);
1755 
1756         // The algorithm requires two divisions by 2 and one by 3.
1757         // All divisions are known to be exact, that is, they do not produce
1758         // remainders, and all results are positive.  The divisions by 2 are
1759         // implemented as right shifts which are relatively efficient, leaving
1760         // only an exact division by 3, which is done by a specialized
1761         // linear-time algorithm.
1762         t2 = v2.subtract(vm1).exactDivideBy3();
1763         tm1 = v1.subtract(vm1).shiftRight(1);
1764         t1 = v1.subtract(v0);
1765         t2 = t2.subtract(t1).shiftRight(1);
1766         t1 = t1.subtract(tm1).subtract(vinf);
1767         t2 = t2.subtract(vinf.shiftLeft(1));
1768         tm1 = tm1.subtract(t2);
1769 
1770         // Number of bits to shift left.
1771         int ss = k*32;
1772 
1773         BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
1774 
1775         if (a.signum != b.signum) {
1776             return result.negate();
1777         } else {
1778             return result;
1779         }
1780     }
1781 
1782 
1783     /**
1784      * Returns a slice of a BigInteger for use in Toom-Cook multiplication.
1785      *
1786      * @param lowerSize The size of the lower-order bit slices.
1787      * @param upperSize The size of the higher-order bit slices.
1788      * @param slice The index of which slice is requested, which must be a
1789      * number from 0 to size-1. Slice 0 is the highest-order bits, and slice
1790      * size-1 are the lowest-order bits. Slice 0 may be of different size than
1791      * the other slices.
1792      * @param fullsize The size of the larger integer array, used to align
1793      * slices to the appropriate position when multiplying different-sized
1794      * numbers.
1795      */
1796     private BigInteger getToomSlice(int lowerSize, int upperSize, int slice,
1797                                     int fullsize) {
1798         int start, end, sliceSize, len, offset;
1799 
1800         len = mag.length;
1801         offset = fullsize - len;
1802 
1803         if (slice == 0) {
1804             start = 0 - offset;
1805             end = upperSize - 1 - offset;
1806         } else {
1807             start = upperSize + (slice-1)*lowerSize - offset;
1808             end = start + lowerSize - 1;
1809         }
1810 
1811         if (start < 0) {
1812             start = 0;
1813         }
1814         if (end < 0) {
1815            return ZERO;
1816         }
1817 
1818         sliceSize = (end-start) + 1;
1819 
1820         if (sliceSize <= 0) {
1821             return ZERO;
1822         }
1823 
1824         // While performing Toom-Cook, all slices are positive and
1825         // the sign is adjusted when the final number is composed.
1826         if (start == 0 && sliceSize >= len) {
1827             return this.abs();
1828         }
1829 
1830         int intSlice[] = new int[sliceSize];
1831         System.arraycopy(mag, start, intSlice, 0, sliceSize);
1832 
1833         return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1);
1834     }
1835 
1836     /**
1837      * Does an exact division (that is, the remainder is known to be zero)
1838      * of the specified number by 3.  This is used in Toom-Cook
1839      * multiplication.  This is an efficient algorithm that runs in linear
1840      * time.  If the argument is not exactly divisible by 3, results are
1841      * undefined.  Note that this is expected to be called with positive
1842      * arguments only.
1843      */
1844     private BigInteger exactDivideBy3() {
1845         int len = mag.length;
1846         int[] result = new int[len];
1847         long x, w, q, borrow;
1848         borrow = 0L;
1849         for (int i=len-1; i >= 0; i--) {
1850             x = (mag[i] & LONG_MASK);
1851             w = x - borrow;
1852             if (borrow > x) {      // Did we make the number go negative?
1853                 borrow = 1L;
1854             } else {
1855                 borrow = 0L;
1856             }
1857 
1858             // 0xAAAAAAAB is the modular inverse of 3 (mod 2^32).  Thus,
1859             // the effect of this is to divide by 3 (mod 2^32).
1860             // This is much faster than division on most architectures.
1861             q = (w * 0xAAAAAAABL) & LONG_MASK;
1862             result[i] = (int) q;
1863 
1864             // Now check the borrow. The second check can of course be
1865             // eliminated if the first fails.
1866             if (q >= 0x55555556L) {
1867                 borrow++;
1868                 if (q >= 0xAAAAAAABL)
1869                     borrow++;
1870             }
1871         }
1872         result = trustedStripLeadingZeroInts(result);
1873         return new BigInteger(result, signum);
1874     }
1875 
1876     /**
1877      * Returns a new BigInteger representing n lower ints of the number.
1878      * This is used by Karatsuba multiplication and Karatsuba squaring.
1879      */
1880     private BigInteger getLower(int n) {
1881         int len = mag.length;
1882 
1883         if (len <= n) {
1884             return abs();
1885         }
1886 
1887         int lowerInts[] = new int[n];
1888         System.arraycopy(mag, len-n, lowerInts, 0, n);
1889 
1890         return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1);
1891     }
1892 
1893     /**
1894      * Returns a new BigInteger representing mag.length-n upper
1895      * ints of the number.  This is used by Karatsuba multiplication and
1896      * Karatsuba squaring.
1897      */
1898     private BigInteger getUpper(int n) {
1899         int len = mag.length;
1900 
1901         if (len <= n) {
1902             return ZERO;
1903         }
1904 
1905         int upperLen = len - n;
1906         int upperInts[] = new int[upperLen];
1907         System.arraycopy(mag, 0, upperInts, 0, upperLen);
1908 
1909         return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1);
1910     }
1911 
1912     // Squaring
1913 
1914     /**
1915      * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}.
1916      *
1917      * @return {@code this<sup>2</sup>}
1918      */
1919     private BigInteger square() {
1920         if (signum == 0) {
1921             return ZERO;
1922         }
1923         int len = mag.length;
1924 
1925         if (len < KARATSUBA_SQUARE_THRESHOLD) {
1926             int[] z = squareToLen(mag, len, null);
1927             return new BigInteger(trustedStripLeadingZeroInts(z), 1);
1928         } else {
1929             if (len < TOOM_COOK_SQUARE_THRESHOLD) {
1930                 return squareKaratsuba();
1931             } else {
1932                 return squareToomCook3();
1933             }
1934         }
1935     }
1936 
1937     /**
1938      * Squares the contents of the int array x. The result is placed into the
1939      * int array z.  The contents of x are not changed.
1940      */
1941     private static final int[] squareToLen(int[] x, int len, int[] z) {
1942         /*
1943          * The algorithm used here is adapted from Colin Plumb's C library.
1944          * Technique: Consider the partial products in the multiplication
1945          * of "abcde" by itself:
1946          *
1947          *               a  b  c  d  e
1948          *            *  a  b  c  d  e
1949          *          ==================
1950          *              ae be ce de ee
1951          *           ad bd cd dd de
1952          *        ac bc cc cd ce
1953          *     ab bb bc bd be
1954          *  aa ab ac ad ae
1955          *
1956          * Note that everything above the main diagonal:
1957          *              ae be ce de = (abcd) * e
1958          *           ad bd cd       = (abc) * d
1959          *        ac bc             = (ab) * c
1960          *     ab                   = (a) * b
1961          *
1962          * is a copy of everything below the main diagonal:
1963          *                       de
1964          *                 cd ce
1965          *           bc bd be
1966          *     ab ac ad ae
1967          *
1968          * Thus, the sum is 2 * (off the diagonal) + diagonal.
1969          *
1970          * This is accumulated beginning with the diagonal (which
1971          * consist of the squares of the digits of the input), which is then
1972          * divided by two, the off-diagonal added, and multiplied by two
1973          * again.  The low bit is simply a copy of the low bit of the
1974          * input, so it doesn't need special care.
1975          */
1976         int zlen = len << 1;
1977         if (z == null || z.length < zlen)
1978             z = new int[zlen];
1979 
1980         // Store the squares, right shifted one bit (i.e., divided by 2)
1981         int lastProductLowWord = 0;
1982         for (int j=0, i=0; j < len; j++) {
1983             long piece = (x[j] & LONG_MASK);
1984             long product = piece * piece;
1985             z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
1986             z[i++] = (int)(product >>> 1);
1987             lastProductLowWord = (int)product;
1988         }
1989 
1990         // Add in off-diagonal sums
1991         for (int i=len, offset=1; i > 0; i--, offset+=2) {
1992             int t = x[i-1];
1993             t = mulAdd(z, x, offset, i-1, t);
1994             addOne(z, offset-1, i, t);
1995         }
1996 
1997         // Shift back up and set low bit
1998         primitiveLeftShift(z, zlen, 1);
1999         z[zlen-1] |= x[len-1] & 1;
2000 
2001         return z;
2002     }
2003 
2004     /**
2005      * Squares a BigInteger using the Karatsuba squaring algorithm.  It should
2006      * be used when both numbers are larger than a certain threshold (found
2007      * experimentally).  It is a recursive divide-and-conquer algorithm that
2008      * has better asymptotic performance than the algorithm used in
2009      * squareToLen.
2010      */
2011     private BigInteger squareKaratsuba() {
2012         int half = (mag.length+1) / 2;
2013 
2014         BigInteger xl = getLower(half);
2015         BigInteger xh = getUpper(half);
2016 
2017         BigInteger xhs = xh.square();  // xhs = xh^2
2018         BigInteger xls = xl.square();  // xls = xl^2
2019 
2020         // xh^2 << 64  +  (((xl+xh)^2 - (xh^2 + xl^2)) << 32) + xl^2
2021         return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls);
2022     }
2023 
2024     /**
2025      * Squares a BigInteger using the 3-way Toom-Cook squaring algorithm.  It
2026      * should be used when both numbers are larger than a certain threshold
2027      * (found experimentally).  It is a recursive divide-and-conquer algorithm
2028      * that has better asymptotic performance than the algorithm used in
2029      * squareToLen or squareKaratsuba.
2030      */
2031     private BigInteger squareToomCook3() {
2032         int len = mag.length;
2033 
2034         // k is the size (in ints) of the lower-order slices.
2035         int k = (len+2)/3;   // Equal to ceil(largest/3)
2036 
2037         // r is the size (in ints) of the highest-order slice.
2038         int r = len - 2*k;
2039 
2040         // Obtain slices of the numbers. a2 is the most significant
2041         // bits of the number, and a0 the least significant.
2042         BigInteger a0, a1, a2;
2043         a2 = getToomSlice(k, r, 0, len);
2044         a1 = getToomSlice(k, r, 1, len);
2045         a0 = getToomSlice(k, r, 2, len);
2046         BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1;
2047 
2048         v0 = a0.square();
2049         da1 = a2.add(a0);
2050         vm1 = da1.subtract(a1).square();
2051         da1 = da1.add(a1);
2052         v1 = da1.square();
2053         vinf = a2.square();
2054         v2 = da1.add(a2).shiftLeft(1).subtract(a0).square();
2055 
2056         // The algorithm requires two divisions by 2 and one by 3.
2057         // All divisions are known to be exact, that is, they do not produce
2058         // remainders, and all results are positive.  The divisions by 2 are
2059         // implemented as right shifts which are relatively efficient, leaving
2060         // only a division by 3.
2061         // The division by 3 is done by an optimized algorithm for this case.
2062         t2 = v2.subtract(vm1).exactDivideBy3();
2063         tm1 = v1.subtract(vm1).shiftRight(1);
2064         t1 = v1.subtract(v0);
2065         t2 = t2.subtract(t1).shiftRight(1);
2066         t1 = t1.subtract(tm1).subtract(vinf);
2067         t2 = t2.subtract(vinf.shiftLeft(1));
2068         tm1 = tm1.subtract(t2);
2069 
2070         // Number of bits to shift left.
2071         int ss = k*32;
2072 
2073         return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
2074     }
2075 
2076     // Division
2077 
2078     /**
2079      * Returns a BigInteger whose value is {@code (this / val)}.
2080      *
2081      * @param  val value by which this BigInteger is to be divided.
2082      * @return {@code this / val}
2083      * @throws ArithmeticException if {@code val} is zero.
2084      */
2085     public BigInteger divide(BigInteger val) {
2086         if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
2087                 mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
2088             return divideKnuth(val);
2089         } else {
2090             return divideBurnikelZiegler(val);
2091         }
2092     }
2093 
2094     /**
2095      * Returns a BigInteger whose value is {@code (this / val)} using an O(n^2) algorithm from Knuth.
2096      *
2097      * @param  val value by which this BigInteger is to be divided.
2098      * @return {@code this / val}
2099      * @throws ArithmeticException if {@code val} is zero.
2100      * @see MutableBigInteger#divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
2101      */
2102     private BigInteger divideKnuth(BigInteger val) {
2103         MutableBigInteger q = new MutableBigInteger(),
2104                           a = new MutableBigInteger(this.mag),
2105                           b = new MutableBigInteger(val.mag);
2106 
2107         a.divideKnuth(b, q, false);
2108         return q.toBigInteger(this.signum * val.signum);
2109     }
2110 
2111     /**
2112      * Returns an array of two BigIntegers containing {@code (this / val)}
2113      * followed by {@code (this % val)}.
2114      *
2115      * @param  val value by which this BigInteger is to be divided, and the
2116      *         remainder computed.
2117      * @return an array of two BigIntegers: the quotient {@code (this / val)}
2118      *         is the initial element, and the remainder {@code (this % val)}
2119      *         is the final element.
2120      * @throws ArithmeticException if {@code val} is zero.
2121      */
2122     public BigInteger[] divideAndRemainder(BigInteger val) {
2123         if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
2124                 mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
2125             return divideAndRemainderKnuth(val);
2126         } else {
2127             return divideAndRemainderBurnikelZiegler(val);
2128         }
2129     }
2130 
2131     /** Long division */
2132     private BigInteger[] divideAndRemainderKnuth(BigInteger val) {
2133         BigInteger[] result = new BigInteger[2];
2134         MutableBigInteger q = new MutableBigInteger(),
2135                           a = new MutableBigInteger(this.mag),
2136                           b = new MutableBigInteger(val.mag);
2137         MutableBigInteger r = a.divideKnuth(b, q);
2138         result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
2139         result[1] = r.toBigInteger(this.signum);
2140         return result;
2141     }
2142 
2143     /**
2144      * Returns a BigInteger whose value is {@code (this % val)}.
2145      *
2146      * @param  val value by which this BigInteger is to be divided, and the
2147      *         remainder computed.
2148      * @return {@code this % val}
2149      * @throws ArithmeticException if {@code val} is zero.
2150      */
2151     public BigInteger remainder(BigInteger val) {
2152         if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
2153                 mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
2154             return remainderKnuth(val);
2155         } else {
2156             return remainderBurnikelZiegler(val);
2157         }
2158     }
2159 
2160     /** Long division */
2161     private BigInteger remainderKnuth(BigInteger val) {
2162         MutableBigInteger q = new MutableBigInteger(),
2163                           a = new MutableBigInteger(this.mag),
2164                           b = new MutableBigInteger(val.mag);
2165 
2166         return a.divideKnuth(b, q).toBigInteger(this.signum);
2167     }
2168 
2169     /**
2170      * Calculates {@code this / val} using the Burnikel-Ziegler algorithm.
2171      * @param  val the divisor
2172      * @return {@code this / val}
2173      */
2174     private BigInteger divideBurnikelZiegler(BigInteger val) {
2175         return divideAndRemainderBurnikelZiegler(val)[0];
2176     }
2177 
2178     /**
2179      * Calculates {@code this % val} using the Burnikel-Ziegler algorithm.
2180      * @param val the divisor
2181      * @return {@code this % val}
2182      */
2183     private BigInteger remainderBurnikelZiegler(BigInteger val) {
2184         return divideAndRemainderBurnikelZiegler(val)[1];
2185     }
2186 
2187     /**
2188      * Computes {@code this / val} and {@code this % val} using the
2189      * Burnikel-Ziegler algorithm.
2190      * @param val the divisor
2191      * @return an array containing the quotient and remainder
2192      */
2193     private BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) {
2194         MutableBigInteger q = new MutableBigInteger();
2195         MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q);
2196         BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum);
2197         BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum);
2198         return new BigInteger[] {qBigInt, rBigInt};
2199     }
2200 
2201     /**
2202      * Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>.
2203      * Note that {@code exponent} is an integer rather than a BigInteger.
2204      *
2205      * @param  exponent exponent to which this BigInteger is to be raised.
2206      * @return <tt>this<sup>exponent</sup></tt>
2207      * @throws ArithmeticException {@code exponent} is negative.  (This would
2208      *         cause the operation to yield a non-integer value.)
2209      */
2210     public BigInteger pow(int exponent) {
2211         if (exponent < 0) {
2212             throw new ArithmeticException("Negative exponent");
2213         }
2214         if (signum == 0) {
2215             return (exponent == 0 ? ONE : this);
2216         }
2217 
2218         BigInteger partToSquare = this.abs();
2219 
2220         // Factor out powers of two from the base, as the exponentiation of
2221         // these can be done by left shifts only.
2222         // The remaining part can then be exponentiated faster.  The
2223         // powers of two will be multiplied back at the end.
2224         int powersOfTwo = partToSquare.getLowestSetBit();
2225         long bitsToShift = (long)powersOfTwo * exponent;
2226         if (bitsToShift > Integer.MAX_VALUE) {
2227             reportOverflow();
2228         }
2229 
2230         int remainingBits;
2231 
2232         // Factor the powers of two out quickly by shifting right, if needed.
2233         if (powersOfTwo > 0) {
2234             partToSquare = partToSquare.shiftRight(powersOfTwo);
2235             remainingBits = partToSquare.bitLength();
2236             if (remainingBits == 1) {  // Nothing left but +/- 1?
2237                 if (signum < 0 && (exponent&1) == 1) {
2238                     return NEGATIVE_ONE.shiftLeft(powersOfTwo*exponent);
2239                 } else {
2240                     return ONE.shiftLeft(powersOfTwo*exponent);
2241                 }
2242             }
2243         } else {
2244             remainingBits = partToSquare.bitLength();
2245             if (remainingBits == 1) { // Nothing left but +/- 1?
2246                 if (signum < 0  && (exponent&1) == 1) {
2247                     return NEGATIVE_ONE;
2248                 } else {
2249                     return ONE;
2250                 }
2251             }
2252         }
2253 
2254         // This is a quick way to approximate the size of the result,
2255         // similar to doing log2[n] * exponent.  This will give an upper bound
2256         // of how big the result can be, and which algorithm to use.
2257         long scaleFactor = (long)remainingBits * exponent;
2258 
2259         // Use slightly different algorithms for small and large operands.
2260         // See if the result will safely fit into a long. (Largest 2^63-1)
2261         if (partToSquare.mag.length == 1 && scaleFactor <= 62) {
2262             // Small number algorithm.  Everything fits into a long.
2263             int newSign = (signum <0  && (exponent&1) == 1 ? -1 : 1);
2264             long result = 1;
2265             long baseToPow2 = partToSquare.mag[0] & LONG_MASK;
2266 
2267             int workingExponent = exponent;
2268 
2269             // Perform exponentiation using repeated squaring trick
2270             while (workingExponent != 0) {
2271                 if ((workingExponent & 1) == 1) {
2272                     result = result * baseToPow2;
2273                 }
2274 
2275                 if ((workingExponent >>>= 1) != 0) {
2276                     baseToPow2 = baseToPow2 * baseToPow2;
2277                 }
2278             }
2279 
2280             // Multiply back the powers of two (quickly, by shifting left)
2281             if (powersOfTwo > 0) {
2282                 if (bitsToShift + scaleFactor <= 62) { // Fits in long?
2283                     return valueOf((result << bitsToShift) * newSign);
2284                 } else {
2285                     return valueOf(result*newSign).shiftLeft((int) bitsToShift);
2286                 }
2287             }
2288             else {
2289                 return valueOf(result*newSign);
2290             }
2291         } else {
2292             // Large number algorithm.  This is basically identical to
2293             // the algorithm above, but calls multiply() and square()
2294             // which may use more efficient algorithms for large numbers.
2295             BigInteger answer = ONE;
2296 
2297             int workingExponent = exponent;
2298             // Perform exponentiation using repeated squaring trick
2299             while (workingExponent != 0) {
2300                 if ((workingExponent & 1) == 1) {
2301                     answer = answer.multiply(partToSquare);
2302                 }
2303 
2304                 if ((workingExponent >>>= 1) != 0) {
2305                     partToSquare = partToSquare.square();
2306                 }
2307             }
2308             // Multiply back the (exponentiated) powers of two (quickly,
2309             // by shifting left)
2310             if (powersOfTwo > 0) {
2311                 answer = answer.shiftLeft(powersOfTwo*exponent);
2312             }
2313 
2314             if (signum < 0 && (exponent&1) == 1) {
2315                 return answer.negate();
2316             } else {
2317                 return answer;
2318             }
2319         }
2320     }
2321 
2322     /**
2323      * Returns a BigInteger whose value is the greatest common divisor of
2324      * {@code abs(this)} and {@code abs(val)}.  Returns 0 if
2325      * {@code this == 0 && val == 0}.
2326      *
2327      * @param  val value with which the GCD is to be computed.
2328      * @return {@code GCD(abs(this), abs(val))}
2329      */
2330     public BigInteger gcd(BigInteger val) {
2331         if (val.signum == 0)
2332             return this.abs();
2333         else if (this.signum == 0)
2334             return val.abs();
2335 
2336         MutableBigInteger a = new MutableBigInteger(this);
2337         MutableBigInteger b = new MutableBigInteger(val);
2338 
2339         MutableBigInteger result = a.hybridGCD(b);
2340 
2341         return result.toBigInteger(1);
2342     }
2343 
2344     /**
2345      * Package private method to return bit length for an integer.
2346      */
2347     static int bitLengthForInt(int n) {
2348         return 32 - Integer.numberOfLeadingZeros(n);
2349     }
2350 
2351     /**
2352      * Left shift int array a up to len by n bits. Returns the array that
2353      * results from the shift since space may have to be reallocated.
2354      */
2355     private static int[] leftShift(int[] a, int len, int n) {
2356         int nInts = n >>> 5;
2357         int nBits = n&0x1F;
2358         int bitsInHighWord = bitLengthForInt(a[0]);
2359 
2360         // If shift can be done without recopy, do so
2361         if (n <= (32-bitsInHighWord)) {
2362             primitiveLeftShift(a, len, nBits);
2363             return a;
2364         } else { // Array must be resized
2365             if (nBits <= (32-bitsInHighWord)) {
2366                 int result[] = new int[nInts+len];
2367                 System.arraycopy(a, 0, result, 0, len);
2368                 primitiveLeftShift(result, result.length, nBits);
2369                 return result;
2370             } else {
2371                 int result[] = new int[nInts+len+1];
2372                 System.arraycopy(a, 0, result, 0, len);
2373                 primitiveRightShift(result, result.length, 32 - nBits);
2374                 return result;
2375             }
2376         }
2377     }
2378 
2379     // shifts a up to len right n bits assumes no leading zeros, 0<n<32
2380     static void primitiveRightShift(int[] a, int len, int n) {
2381         int n2 = 32 - n;
2382         for (int i=len-1, c=a[i]; i > 0; i--) {
2383             int b = c;
2384             c = a[i-1];
2385             a[i] = (c << n2) | (b >>> n);
2386         }
2387         a[0] >>>= n;
2388     }
2389 
2390     // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
2391     static void primitiveLeftShift(int[] a, int len, int n) {
2392         if (len == 0 || n == 0)
2393             return;
2394 
2395         int n2 = 32 - n;
2396         for (int i=0, c=a[i], m=i+len-1; i < m; i++) {
2397             int b = c;
2398             c = a[i+1];
2399             a[i] = (b << n) | (c >>> n2);
2400         }
2401         a[len-1] <<= n;
2402     }
2403 
2404     /**
2405      * Calculate bitlength of contents of the first len elements an int array,
2406      * assuming there are no leading zero ints.
2407      */
2408     private static int bitLength(int[] val, int len) {
2409         if (len == 0)
2410             return 0;
2411         return ((len - 1) << 5) + bitLengthForInt(val[0]);
2412     }
2413 
2414     /**
2415      * Returns a BigInteger whose value is the absolute value of this
2416      * BigInteger.
2417      *
2418      * @return {@code abs(this)}
2419      */
2420     public BigInteger abs() {
2421         return (signum >= 0 ? this : this.negate());
2422     }
2423 
2424     /**
2425      * Returns a BigInteger whose value is {@code (-this)}.
2426      *
2427      * @return {@code -this}
2428      */
2429     public BigInteger negate() {
2430         return new BigInteger(this.mag, -this.signum);
2431     }
2432 
2433     /**
2434      * Returns the signum function of this BigInteger.
2435      *
2436      * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
2437      *         positive.
2438      */
2439     public int signum() {
2440         return this.signum;
2441     }
2442 
2443     // Modular Arithmetic Operations
2444 
2445     /**
2446      * Returns a BigInteger whose value is {@code (this mod m}).  This method
2447      * differs from {@code remainder} in that it always returns a
2448      * <i>non-negative</i> BigInteger.
2449      *
2450      * @param  m the modulus.
2451      * @return {@code this mod m}
2452      * @throws ArithmeticException {@code m} &le; 0
2453      * @see    #remainder
2454      */
2455     public BigInteger mod(BigInteger m) {
2456         if (m.signum <= 0)
2457             throw new ArithmeticException("BigInteger: modulus not positive");
2458 
2459         BigInteger result = this.remainder(m);
2460         return (result.signum >= 0 ? result : result.add(m));
2461     }
2462 
2463     /**
2464      * Returns a BigInteger whose value is
2465      * <tt>(this<sup>exponent</sup> mod m)</tt>.  (Unlike {@code pow}, this
2466      * method permits negative exponents.)
2467      *
2468      * @param  exponent the exponent.
2469      * @param  m the modulus.
2470      * @return <tt>this<sup>exponent</sup> mod m</tt>
2471      * @throws ArithmeticException {@code m} &le; 0 or the exponent is
2472      *         negative and this BigInteger is not <i>relatively
2473      *         prime</i> to {@code m}.
2474      * @see    #modInverse
2475      */
2476     public BigInteger modPow(BigInteger exponent, BigInteger m) {
2477         if (m.signum <= 0)
2478             throw new ArithmeticException("BigInteger: modulus not positive");
2479 
2480         // Trivial cases
2481         if (exponent.signum == 0)
2482             return (m.equals(ONE) ? ZERO : ONE);
2483 
2484         if (this.equals(ONE))
2485             return (m.equals(ONE) ? ZERO : ONE);
2486 
2487         if (this.equals(ZERO) && exponent.signum >= 0)
2488             return ZERO;
2489 
2490         if (this.equals(negConst[1]) && (!exponent.testBit(0)))
2491             return (m.equals(ONE) ? ZERO : ONE);
2492 
2493         boolean invertResult;
2494         if ((invertResult = (exponent.signum < 0)))
2495             exponent = exponent.negate();
2496 
2497         BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
2498                            ? this.mod(m) : this);
2499         BigInteger result;
2500         if (m.testBit(0)) { // odd modulus
2501             result = base.oddModPow(exponent, m);
2502         } else {
2503             /*
2504              * Even modulus.  Tear it into an "odd part" (m1) and power of two
2505              * (m2), exponentiate mod m1, manually exponentiate mod m2, and
2506              * use Chinese Remainder Theorem to combine results.
2507              */
2508 
2509             // Tear m apart into odd part (m1) and power of 2 (m2)
2510             int p = m.getLowestSetBit();   // Max pow of 2 that divides m
2511 
2512             BigInteger m1 = m.shiftRight(p);  // m/2**p
2513             BigInteger m2 = ONE.shiftLeft(p); // 2**p
2514 
2515             // Calculate new base from m1
2516             BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
2517                                 ? this.mod(m1) : this);
2518 
2519             // Caculate (base ** exponent) mod m1.
2520             BigInteger a1 = (m1.equals(ONE) ? ZERO :
2521                              base2.oddModPow(exponent, m1));
2522 
2523             // Calculate (this ** exponent) mod m2
2524             BigInteger a2 = base.modPow2(exponent, p);
2525 
2526             // Combine results using Chinese Remainder Theorem
2527             BigInteger y1 = m2.modInverse(m1);
2528             BigInteger y2 = m1.modInverse(m2);
2529 
2530             if (m.mag.length < MAX_MAG_LENGTH / 2) {
2531                 result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m);
2532             } else {
2533                 MutableBigInteger t1 = new MutableBigInteger();
2534                 new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1);
2535                 MutableBigInteger t2 = new MutableBigInteger();
2536                 new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2);
2537                 t1.add(t2);
2538                 MutableBigInteger q = new MutableBigInteger();
2539                 result = t1.divide(new MutableBigInteger(m), q).toBigInteger();
2540             }
2541         }
2542 
2543         return (invertResult ? result.modInverse(m) : result);
2544     }
2545 
2546     static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
2547                                                 Integer.MAX_VALUE}; // Sentinel
2548 
2549     /**
2550      * Returns a BigInteger whose value is x to the power of y mod z.
2551      * Assumes: z is odd && x < z.
2552      */
2553     private BigInteger oddModPow(BigInteger y, BigInteger z) {
2554     /*
2555      * The algorithm is adapted from Colin Plumb's C library.
2556      *
2557      * The window algorithm:
2558      * The idea is to keep a running product of b1 = n^(high-order bits of exp)
2559      * and then keep appending exponent bits to it.  The following patterns
2560      * apply to a 3-bit window (k = 3):
2561      * To append   0: square
2562      * To append   1: square, multiply by n^1
2563      * To append  10: square, multiply by n^1, square
2564      * To append  11: square, square, multiply by n^3
2565      * To append 100: square, multiply by n^1, square, square
2566      * To append 101: square, square, square, multiply by n^5
2567      * To append 110: square, square, multiply by n^3, square
2568      * To append 111: square, square, square, multiply by n^7
2569      *
2570      * Since each pattern involves only one multiply, the longer the pattern
2571      * the better, except that a 0 (no multiplies) can be appended directly.
2572      * We precompute a table of odd powers of n, up to 2^k, and can then
2573      * multiply k bits of exponent at a time.  Actually, assuming random
2574      * exponents, there is on average one zero bit between needs to
2575      * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
2576      * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
2577      * you have to do one multiply per k+1 bits of exponent.
2578      *
2579      * The loop walks down the exponent, squaring the result buffer as
2580      * it goes.  There is a wbits+1 bit lookahead buffer, buf, that is
2581      * filled with the upcoming exponent bits.  (What is read after the
2582      * end of the exponent is unimportant, but it is filled with zero here.)
2583      * When the most-significant bit of this buffer becomes set, i.e.
2584      * (buf & tblmask) != 0, we have to decide what pattern to multiply
2585      * by, and when to do it.  We decide, remember to do it in future
2586      * after a suitable number of squarings have passed (e.g. a pattern
2587      * of "100" in the buffer requires that we multiply by n^1 immediately;
2588      * a pattern of "110" calls for multiplying by n^3 after one more
2589      * squaring), clear the buffer, and continue.
2590      *
2591      * When we start, there is one more optimization: the result buffer
2592      * is implcitly one, so squaring it or multiplying by it can be
2593      * optimized away.  Further, if we start with a pattern like "100"
2594      * in the lookahead window, rather than placing n into the buffer
2595      * and then starting to square it, we have already computed n^2
2596      * to compute the odd-powers table, so we can place that into
2597      * the buffer and save a squaring.
2598      *
2599      * This means that if you have a k-bit window, to compute n^z,
2600      * where z is the high k bits of the exponent, 1/2 of the time
2601      * it requires no squarings.  1/4 of the time, it requires 1
2602      * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
2603      * And the remaining 1/2^(k-1) of the time, the top k bits are a
2604      * 1 followed by k-1 0 bits, so it again only requires k-2
2605      * squarings, not k-1.  The average of these is 1.  Add that
2606      * to the one squaring we have to do to compute the table,
2607      * and you'll see that a k-bit window saves k-2 squarings
2608      * as well as reducing the multiplies.  (It actually doesn't
2609      * hurt in the case k = 1, either.)
2610      */
2611         // Special case for exponent of one
2612         if (y.equals(ONE))
2613             return this;
2614 
2615         // Special case for base of zero
2616         if (signum == 0)
2617             return ZERO;
2618 
2619         int[] base = mag.clone();
2620         int[] exp = y.mag;
2621         int[] mod = z.mag;
2622         int modLen = mod.length;
2623 
2624         // Select an appropriate window size
2625         int wbits = 0;
2626         int ebits = bitLength(exp, exp.length);
2627         // if exponent is 65537 (0x10001), use minimum window size
2628         if ((ebits != 17) || (exp[0] != 65537)) {
2629             while (ebits > bnExpModThreshTable[wbits]) {
2630                 wbits++;
2631             }
2632         }
2633 
2634         // Calculate appropriate table size
2635         int tblmask = 1 << wbits;
2636 
2637         // Allocate table for precomputed odd powers of base in Montgomery form
2638         int[][] table = new int[tblmask][];
2639         for (int i=0; i < tblmask; i++)
2640             table[i] = new int[modLen];
2641 
2642         // Compute the modular inverse
2643         int inv = -MutableBigInteger.inverseMod32(mod[modLen-1]);
2644 
2645         // Convert base to Montgomery form
2646         int[] a = leftShift(base, base.length, modLen << 5);
2647 
2648         MutableBigInteger q = new MutableBigInteger(),
2649                           a2 = new MutableBigInteger(a),
2650                           b2 = new MutableBigInteger(mod);
2651 
2652         MutableBigInteger r= a2.divide(b2, q);
2653         table[0] = r.toIntArray();
2654 
2655         // Pad table[0] with leading zeros so its length is at least modLen
2656         if (table[0].length < modLen) {
2657            int offset = modLen - table[0].length;
2658            int[] t2 = new int[modLen];
2659            for (int i=0; i < table[0].length; i++)
2660                t2[i+offset] = table[0][i];
2661            table[0] = t2;
2662         }
2663 
2664         // Set b to the square of the base
2665         int[] b = squareToLen(table[0], modLen, null);
2666         b = montReduce(b, mod, modLen, inv);
2667 
2668         // Set t to high half of b
2669         int[] t = Arrays.copyOf(b, modLen);
2670 
2671         // Fill in the table with odd powers of the base
2672         for (int i=1; i < tblmask; i++) {
2673             int[] prod = multiplyToLen(t, modLen, table[i-1], modLen, null);
2674             table[i] = montReduce(prod, mod, modLen, inv);
2675         }
2676 
2677         // Pre load the window that slides over the exponent
2678         int bitpos = 1 << ((ebits-1) & (32-1));
2679 
2680         int buf = 0;
2681         int elen = exp.length;
2682         int eIndex = 0;
2683         for (int i = 0; i <= wbits; i++) {
2684             buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
2685             bitpos >>>= 1;
2686             if (bitpos == 0) {
2687                 eIndex++;
2688                 bitpos = 1 << (32-1);
2689                 elen--;
2690             }
2691         }
2692 
2693         int multpos = ebits;
2694 
2695         // The first iteration, which is hoisted out of the main loop
2696         ebits--;
2697         boolean isone = true;
2698 
2699         multpos = ebits - wbits;
2700         while ((buf & 1) == 0) {
2701             buf >>>= 1;
2702             multpos++;
2703         }
2704 
2705         int[] mult = table[buf >>> 1];
2706 
2707         buf = 0;
2708         if (multpos == ebits)
2709             isone = false;
2710 
2711         // The main loop
2712         while (true) {
2713             ebits--;
2714             // Advance the window
2715             buf <<= 1;
2716 
2717             if (elen != 0) {
2718                 buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
2719                 bitpos >>>= 1;
2720                 if (bitpos == 0) {
2721                     eIndex++;
2722                     bitpos = 1 << (32-1);
2723                     elen--;
2724                 }
2725             }
2726 
2727             // Examine the window for pending multiplies
2728             if ((buf & tblmask) != 0) {
2729                 multpos = ebits - wbits;
2730                 while ((buf & 1) == 0) {
2731                     buf >>>= 1;
2732                     multpos++;
2733                 }
2734                 mult = table[buf >>> 1];
2735                 buf = 0;
2736             }
2737 
2738             // Perform multiply
2739             if (ebits == multpos) {
2740                 if (isone) {
2741                     b = mult.clone();
2742                     isone = false;
2743                 } else {
2744                     t = b;
2745                     a = multiplyToLen(t, modLen, mult, modLen, a);
2746                     a = montReduce(a, mod, modLen, inv);
2747                     t = a; a = b; b = t;
2748                 }
2749             }
2750 
2751             // Check if done
2752             if (ebits == 0)
2753                 break;
2754 
2755             // Square the input
2756             if (!isone) {
2757                 t = b;
2758                 a = squareToLen(t, modLen, a);
2759                 a = montReduce(a, mod, modLen, inv);
2760                 t = a; a = b; b = t;
2761             }
2762         }
2763 
2764         // Convert result out of Montgomery form and return
2765         int[] t2 = new int[2*modLen];
2766         System.arraycopy(b, 0, t2, modLen, modLen);
2767 
2768         b = montReduce(t2, mod, modLen, inv);
2769 
2770         t2 = Arrays.copyOf(b, modLen);
2771 
2772         return new BigInteger(1, t2);
2773     }
2774 
2775     /**
2776      * Montgomery reduce n, modulo mod.  This reduces modulo mod and divides
2777      * by 2^(32*mlen). Adapted from Colin Plumb's C library.
2778      */
2779     private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
2780         int c=0;
2781         int len = mlen;
2782         int offset=0;
2783 
2784         do {
2785             int nEnd = n[n.length-1-offset];
2786             int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
2787             c += addOne(n, offset, mlen, carry);
2788             offset++;
2789         } while (--len > 0);
2790 
2791         while (c > 0)
2792             c += subN(n, mod, mlen);
2793 
2794         while (intArrayCmpToLen(n, mod, mlen) >= 0)
2795             subN(n, mod, mlen);
2796 
2797         return n;
2798     }
2799 
2800 
2801     /*
2802      * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
2803      * equal to, or greater than arg2 up to length len.
2804      */
2805     private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
2806         for (int i=0; i < len; i++) {
2807             long b1 = arg1[i] & LONG_MASK;
2808             long b2 = arg2[i] & LONG_MASK;
2809             if (b1 < b2)
2810                 return -1;
2811             if (b1 > b2)
2812                 return 1;
2813         }
2814         return 0;
2815     }
2816 
2817     /**
2818      * Subtracts two numbers of same length, returning borrow.
2819      */
2820     private static int subN(int[] a, int[] b, int len) {
2821         long sum = 0;
2822 
2823         while (--len >= 0) {
2824             sum = (a[len] & LONG_MASK) -
2825                  (b[len] & LONG_MASK) + (sum >> 32);
2826             a[len] = (int)sum;
2827         }
2828 
2829         return (int)(sum >> 32);
2830     }
2831 
2832     /**
2833      * Multiply an array by one word k and add to result, return the carry
2834      */
2835     static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
2836         long kLong = k & LONG_MASK;
2837         long carry = 0;
2838 
2839         offset = out.length-offset - 1;
2840         for (int j=len-1; j >= 0; j--) {
2841             long product = (in[j] & LONG_MASK) * kLong +
2842                            (out[offset] & LONG_MASK) + carry;
2843             out[offset--] = (int)product;
2844             carry = product >>> 32;
2845         }
2846         return (int)carry;
2847     }
2848 
2849     /**
2850      * Add one word to the number a mlen words into a. Return the resulting
2851      * carry.
2852      */
2853     static int addOne(int[] a, int offset, int mlen, int carry) {
2854         offset = a.length-1-mlen-offset;
2855         long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
2856 
2857         a[offset] = (int)t;
2858         if ((t >>> 32) == 0)
2859             return 0;
2860         while (--mlen >= 0) {
2861             if (--offset < 0) { // Carry out of number
2862                 return 1;
2863             } else {
2864                 a[offset]++;
2865                 if (a[offset] != 0)
2866                     return 0;
2867             }
2868         }
2869         return 1;
2870     }
2871 
2872     /**
2873      * Returns a BigInteger whose value is (this ** exponent) mod (2**p)
2874      */
2875     private BigInteger modPow2(BigInteger exponent, int p) {
2876         /*
2877          * Perform exponentiation using repeated squaring trick, chopping off
2878          * high order bits as indicated by modulus.
2879          */
2880         BigInteger result = ONE;
2881         BigInteger baseToPow2 = this.mod2(p);
2882         int expOffset = 0;
2883 
2884         int limit = exponent.bitLength();
2885 
2886         if (this.testBit(0))
2887            limit = (p-1) < limit ? (p-1) : limit;
2888 
2889         while (expOffset < limit) {
2890             if (exponent.testBit(expOffset))
2891                 result = result.multiply(baseToPow2).mod2(p);
2892             expOffset++;
2893             if (expOffset < limit)
2894                 baseToPow2 = baseToPow2.square().mod2(p);
2895         }
2896 
2897         return result;
2898     }
2899 
2900     /**
2901      * Returns a BigInteger whose value is this mod(2**p).
2902      * Assumes that this {@code BigInteger >= 0} and {@code p > 0}.
2903      */
2904     private BigInteger mod2(int p) {
2905         if (bitLength() <= p)
2906             return this;
2907 
2908         // Copy remaining ints of mag
2909         int numInts = (p + 31) >>> 5;
2910         int[] mag = new int[numInts];
2911         System.arraycopy(this.mag, (this.mag.length - numInts), mag, 0, numInts);
2912 
2913         // Mask out any excess bits
2914         int excessBits = (numInts << 5) - p;
2915         mag[0] &= (1L << (32-excessBits)) - 1;
2916 
2917         return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
2918     }
2919 
2920     /**
2921      * Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}.
2922      *
2923      * @param  m the modulus.
2924      * @return {@code this}<sup>-1</sup> {@code mod m}.
2925      * @throws ArithmeticException {@code  m} &le; 0, or this BigInteger
2926      *         has no multiplicative inverse mod m (that is, this BigInteger
2927      *         is not <i>relatively prime</i> to m).
2928      */
2929     public BigInteger modInverse(BigInteger m) {
2930         if (m.signum != 1)
2931             throw new ArithmeticException("BigInteger: modulus not positive");
2932 
2933         if (m.equals(ONE))
2934             return ZERO;
2935 
2936         // Calculate (this mod m)
2937         BigInteger modVal = this;
2938         if (signum < 0 || (this.compareMagnitude(m) >= 0))
2939             modVal = this.mod(m);
2940 
2941         if (modVal.equals(ONE))
2942             return ONE;
2943 
2944         MutableBigInteger a = new MutableBigInteger(modVal);
2945         MutableBigInteger b = new MutableBigInteger(m);
2946 
2947         MutableBigInteger result = a.mutableModInverse(b);
2948         return result.toBigInteger(1);
2949     }
2950 
2951     // Shift Operations
2952 
2953     /**
2954      * Returns a BigInteger whose value is {@code (this << n)}.
2955      * The shift distance, {@code n}, may be negative, in which case
2956      * this method performs a right shift.
2957      * (Computes <tt>floor(this * 2<sup>n</sup>)</tt>.)
2958      *
2959      * @param  n shift distance, in bits.
2960      * @return {@code this << n}
2961      * @see #shiftRight
2962      */
2963     public BigInteger shiftLeft(int n) {
2964         if (signum == 0)
2965             return ZERO;
2966         if (n > 0) {
2967             return new BigInteger(shiftLeft(mag, n), signum);
2968         } else if (n == 0) {
2969             return this;
2970         } else {
2971             // Possible int overflow in (-n) is not a trouble,
2972             // because shiftRightImpl considers its argument unsigned
2973             return shiftRightImpl(-n);
2974         }
2975     }
2976 
2977     /**
2978      * Returns a magnitude array whose value is {@code (mag << n)}.
2979      * The shift distance, {@code n}, is considered unnsigned.
2980      * (Computes <tt>this * 2<sup>n</sup></tt>.)
2981      *
2982      * @param mag magnitude, the most-significant int ({@code mag[0]}) must be non-zero.
2983      * @param  n unsigned shift distance, in bits.
2984      * @return {@code mag << n}
2985      */
2986     private static int[] shiftLeft(int[] mag, int n) {
2987         int nInts = n >>> 5;
2988         int nBits = n & 0x1f;
2989         int magLen = mag.length;
2990         int newMag[] = null;
2991 
2992         if (nBits == 0) {
2993             newMag = new int[magLen + nInts];
2994             System.arraycopy(mag, 0, newMag, 0, magLen);
2995         } else {
2996             int i = 0;
2997             int nBits2 = 32 - nBits;
2998             int highBits = mag[0] >>> nBits2;
2999             if (highBits != 0) {
3000                 newMag = new int[magLen + nInts + 1];
3001                 newMag[i++] = highBits;
3002             } else {
3003                 newMag = new int[magLen + nInts];
3004             }
3005             int j=0;
3006             while (j < magLen-1)
3007                 newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
3008             newMag[i] = mag[j] << nBits;
3009         }
3010         return newMag;
3011     }
3012 
3013     /**
3014      * Returns a BigInteger whose value is {@code (this >> n)}.  Sign
3015      * extension is performed.  The shift distance, {@code n}, may be
3016      * negative, in which case this method performs a left shift.
3017      * (Computes <tt>floor(this / 2<sup>n</sup>)</tt>.)
3018      *
3019      * @param  n shift distance, in bits.
3020      * @return {@code this >> n}
3021      * @see #shiftLeft
3022      */
3023     public BigInteger shiftRight(int n) {
3024         if (signum == 0)
3025             return ZERO;
3026         if (n > 0) {
3027             return shiftRightImpl(n);
3028         } else if (n == 0) {
3029             return this;
3030         } else {
3031             // Possible int overflow in {@code -n} is not a trouble,
3032             // because shiftLeft considers its argument unsigned
3033             return new BigInteger(shiftLeft(mag, -n), signum);
3034         }
3035     }
3036 
3037     /**
3038      * Returns a BigInteger whose value is {@code (this >> n)}. The shift
3039      * distance, {@code n}, is considered unsigned.
3040      * (Computes <tt>floor(this * 2<sup>-n</sup>)</tt>.)
3041      *
3042      * @param  n unsigned shift distance, in bits.
3043      * @return {@code this >> n}
3044      */
3045     private BigInteger shiftRightImpl(int n) {
3046         int nInts = n >>> 5;
3047         int nBits = n & 0x1f;
3048         int magLen = mag.length;
3049         int newMag[] = null;
3050 
3051         // Special case: entire contents shifted off the end
3052         if (nInts >= magLen)
3053             return (signum >= 0 ? ZERO : negConst[1]);
3054 
3055         if (nBits == 0) {
3056             int newMagLen = magLen - nInts;
3057             newMag = Arrays.copyOf(mag, newMagLen);
3058         } else {
3059             int i = 0;
3060             int highBits = mag[0] >>> nBits;
3061             if (highBits != 0) {
3062                 newMag = new int[magLen - nInts];
3063                 newMag[i++] = highBits;
3064             } else {
3065                 newMag = new int[magLen - nInts -1];
3066             }
3067 
3068             int nBits2 = 32 - nBits;
3069             int j=0;
3070             while (j < magLen - nInts - 1)
3071                 newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
3072         }
3073 
3074         if (signum < 0) {
3075             // Find out whether any one-bits were shifted off the end.
3076             boolean onesLost = false;
3077             for (int i=magLen-1, j=magLen-nInts; i >= j && !onesLost; i--)
3078                 onesLost = (mag[i] != 0);
3079             if (!onesLost && nBits != 0)
3080                 onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
3081 
3082             if (onesLost)
3083                 newMag = javaIncrement(newMag);
3084         }
3085 
3086         return new BigInteger(newMag, signum);
3087     }
3088 
3089     int[] javaIncrement(int[] val) {
3090         int lastSum = 0;
3091         for (int i=val.length-1;  i >= 0 && lastSum == 0; i--)
3092             lastSum = (val[i] += 1);
3093         if (lastSum == 0) {
3094             val = new int[val.length+1];
3095             val[0] = 1;
3096         }
3097         return val;
3098     }
3099 
3100     // Bitwise Operations
3101 
3102     /**
3103      * Returns a BigInteger whose value is {@code (this & val)}.  (This
3104      * method returns a negative BigInteger if and only if this and val are
3105      * both negative.)
3106      *
3107      * @param val value to be AND'ed with this BigInteger.
3108      * @return {@code this & val}
3109      */
3110     public BigInteger and(BigInteger val) {
3111         int[] result = new int[Math.max(intLength(), val.intLength())];
3112         for (int i=0; i < result.length; i++)
3113             result[i] = (getInt(result.length-i-1)
3114                          & val.getInt(result.length-i-1));
3115 
3116         return valueOf(result);
3117     }
3118 
3119     /**
3120      * Returns a BigInteger whose value is {@code (this | val)}.  (This method
3121      * returns a negative BigInteger if and only if either this or val is
3122      * negative.)
3123      *
3124      * @param val value to be OR'ed with this BigInteger.
3125      * @return {@code this | val}
3126      */
3127     public BigInteger or(BigInteger val) {
3128         int[] result = new int[Math.max(intLength(), val.intLength())];
3129         for (int i=0; i < result.length; i++)
3130             result[i] = (getInt(result.length-i-1)
3131                          | val.getInt(result.length-i-1));
3132 
3133         return valueOf(result);
3134     }
3135 
3136     /**
3137      * Returns a BigInteger whose value is {@code (this ^ val)}.  (This method
3138      * returns a negative BigInteger if and only if exactly one of this and
3139      * val are negative.)
3140      *
3141      * @param val value to be XOR'ed with this BigInteger.
3142      * @return {@code this ^ val}
3143      */
3144     public BigInteger xor(BigInteger val) {
3145         int[] result = new int[Math.max(intLength(), val.intLength())];
3146         for (int i=0; i < result.length; i++)
3147             result[i] = (getInt(result.length-i-1)
3148                          ^ val.getInt(result.length-i-1));
3149 
3150         return valueOf(result);
3151     }
3152 
3153     /**
3154      * Returns a BigInteger whose value is {@code (~this)}.  (This method
3155      * returns a negative value if and only if this BigInteger is
3156      * non-negative.)
3157      *
3158      * @return {@code ~this}
3159      */
3160     public BigInteger not() {
3161         int[] result = new int[intLength()];
3162         for (int i=0; i < result.length; i++)
3163             result[i] = ~getInt(result.length-i-1);
3164 
3165         return valueOf(result);
3166     }
3167 
3168     /**
3169      * Returns a BigInteger whose value is {@code (this & ~val)}.  This
3170      * method, which is equivalent to {@code and(val.not())}, is provided as
3171      * a convenience for masking operations.  (This method returns a negative
3172      * BigInteger if and only if {@code this} is negative and {@code val} is
3173      * positive.)
3174      *
3175      * @param val value to be complemented and AND'ed with this BigInteger.
3176      * @return {@code this & ~val}
3177      */
3178     public BigInteger andNot(BigInteger val) {
3179         int[] result = new int[Math.max(intLength(), val.intLength())];
3180         for (int i=0; i < result.length; i++)
3181             result[i] = (getInt(result.length-i-1)
3182                          & ~val.getInt(result.length-i-1));
3183 
3184         return valueOf(result);
3185     }
3186 
3187 
3188     // Single Bit Operations
3189 
3190     /**
3191      * Returns {@code true} if and only if the designated bit is set.
3192      * (Computes {@code ((this & (1<<n)) != 0)}.)
3193      *
3194      * @param  n index of bit to test.
3195      * @return {@code true} if and only if the designated bit is set.
3196      * @throws ArithmeticException {@code n} is negative.
3197      */
3198     public boolean testBit(int n) {
3199         if (n < 0)
3200             throw new ArithmeticException("Negative bit address");
3201 
3202         return (getInt(n >>> 5) & (1 << (n & 31))) != 0;
3203     }
3204 
3205     /**
3206      * Returns a BigInteger whose value is equivalent to this BigInteger
3207      * with the designated bit set.  (Computes {@code (this | (1<<n))}.)
3208      *
3209      * @param  n index of bit to set.
3210      * @return {@code this | (1<<n)}
3211      * @throws ArithmeticException {@code n} is negative.
3212      */
3213     public BigInteger setBit(int n) {
3214         if (n < 0)
3215             throw new ArithmeticException("Negative bit address");
3216 
3217         int intNum = n >>> 5;
3218         int[] result = new int[Math.max(intLength(), intNum+2)];
3219 
3220         for (int i=0; i < result.length; i++)
3221             result[result.length-i-1] = getInt(i);
3222 
3223         result[result.length-intNum-1] |= (1 << (n & 31));
3224 
3225         return valueOf(result);
3226     }
3227 
3228     /**
3229      * Returns a BigInteger whose value is equivalent to this BigInteger
3230      * with the designated bit cleared.
3231      * (Computes {@code (this & ~(1<<n))}.)
3232      *
3233      * @param  n index of bit to clear.
3234      * @return {@code this & ~(1<<n)}
3235      * @throws ArithmeticException {@code n} is negative.
3236      */
3237     public BigInteger clearBit(int n) {
3238         if (n < 0)
3239             throw new ArithmeticException("Negative bit address");
3240 
3241         int intNum = n >>> 5;
3242         int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)];
3243 
3244         for (int i=0; i < result.length; i++)
3245             result[result.length-i-1] = getInt(i);
3246 
3247         result[result.length-intNum-1] &= ~(1 << (n & 31));
3248 
3249         return valueOf(result);
3250     }
3251 
3252     /**
3253      * Returns a BigInteger whose value is equivalent to this BigInteger
3254      * with the designated bit flipped.
3255      * (Computes {@code (this ^ (1<<n))}.)
3256      *
3257      * @param  n index of bit to flip.
3258      * @return {@code this ^ (1<<n)}
3259      * @throws ArithmeticException {@code n} is negative.
3260      */
3261     public BigInteger flipBit(int n) {
3262         if (n < 0)
3263             throw new ArithmeticException("Negative bit address");
3264 
3265         int intNum = n >>> 5;
3266         int[] result = new int[Math.max(intLength(), intNum+2)];
3267 
3268         for (int i=0; i < result.length; i++)
3269             result[result.length-i-1] = getInt(i);
3270 
3271         result[result.length-intNum-1] ^= (1 << (n & 31));
3272 
3273         return valueOf(result);
3274     }
3275 
3276     /**
3277      * Returns the index of the rightmost (lowest-order) one bit in this
3278      * BigInteger (the number of zero bits to the right of the rightmost
3279      * one bit).  Returns -1 if this BigInteger contains no one bits.
3280      * (Computes {@code (this == 0? -1 : log2(this & -this))}.)
3281      *
3282      * @return index of the rightmost one bit in this BigInteger.
3283      */
3284     public int getLowestSetBit() {
3285         int lsb = lowestSetBitPlusTwo - 2;
3286         if (lsb == -2) {  // lowestSetBit not initialized yet
3287             lsb = 0;
3288             if (signum == 0) {
3289                 lsb -= 1;
3290             } else {
3291                 // Search for lowest order nonzero int
3292                 int i,b;
3293                 for (i=0; (b = getInt(i)) == 0; i++)
3294                     ;
3295                 lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
3296             }
3297             lowestSetBitPlusTwo = lsb + 2;
3298         }
3299         return lsb;
3300     }
3301 
3302 
3303     // Miscellaneous Bit Operations
3304 
3305     /**
3306      * Returns the number of bits in the minimal two's-complement
3307      * representation of this BigInteger, <i>excluding</i> a sign bit.
3308      * For positive BigIntegers, this is equivalent to the number of bits in
3309      * the ordinary binary representation.  (Computes
3310      * {@code (ceil(log2(this < 0 ? -this : this+1)))}.)
3311      *
3312      * @return number of bits in the minimal two's-complement
3313      *         representation of this BigInteger, <i>excluding</i> a sign bit.
3314      */
3315     public int bitLength() {
3316         int n = bitLengthPlusOne - 1;
3317         if (n == -1) { // bitLength not initialized yet
3318             int[] m = mag;
3319             int len = m.length;
3320             if (len == 0) {
3321                 n = 0; // offset by one to initialize
3322             }  else {
3323                 // Calculate the bit length of the magnitude
3324                 int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]);
3325                  if (signum < 0) {
3326                      // Check if magnitude is a power of two
3327                      boolean pow2 = (Integer.bitCount(mag[0]) == 1);
3328                      for (int i=1; i< len && pow2; i++)
3329                          pow2 = (mag[i] == 0);
3330 
3331                      n = (pow2 ? magBitLength -1 : magBitLength);
3332                  } else {
3333                      n = magBitLength;
3334                  }
3335             }
3336             bitLengthPlusOne = n + 1;
3337         }
3338         return n;
3339     }
3340 
3341     /**
3342      * Returns the number of bits in the two's complement representation
3343      * of this BigInteger that differ from its sign bit.  This method is
3344      * useful when implementing bit-vector style sets atop BigIntegers.
3345      *
3346      * @return number of bits in the two's complement representation
3347      *         of this BigInteger that differ from its sign bit.
3348      */
3349     public int bitCount() {
3350         int bc = bitCountPlusOne - 1;
3351         if (bc == -1) {  // bitCount not initialized yet
3352             bc = 0;      // offset by one to initialize
3353             // Count the bits in the magnitude
3354             for (int i=0; i < mag.length; i++)
3355                 bc += Integer.bitCount(mag[i]);
3356             if (signum < 0) {
3357                 // Count the trailing zeros in the magnitude
3358                 int magTrailingZeroCount = 0, j;
3359                 for (j=mag.length-1; mag[j] == 0; j--)
3360                     magTrailingZeroCount += 32;
3361                 magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
3362                 bc += magTrailingZeroCount - 1;
3363             }
3364             bitCountPlusOne = bc + 1;
3365         }
3366         return bc;
3367     }
3368 
3369     // Primality Testing
3370 
3371     /**
3372      * Returns {@code true} if this BigInteger is probably prime,
3373      * {@code false} if it's definitely composite.  If
3374      * {@code certainty} is &le; 0, {@code true} is
3375      * returned.
3376      *
3377      * @param  certainty a measure of the uncertainty that the caller is
3378      *         willing to tolerate: if the call returns {@code true}
3379      *         the probability that this BigInteger is prime exceeds
3380      *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
3381      *         this method is proportional to the value of this parameter.
3382      * @return {@code true} if this BigInteger is probably prime,
3383      *         {@code false} if it's definitely composite.
3384      */
3385     public boolean isProbablePrime(int certainty) {
3386         if (certainty <= 0)
3387             return true;
3388         BigInteger w = this.abs();
3389         if (w.equals(TWO))
3390             return true;
3391         if (!w.testBit(0) || w.equals(ONE))
3392             return false;
3393 
3394         return w.primeToCertainty(certainty, null);
3395     }
3396 
3397     // Comparison Operations
3398 
3399     /**
3400      * Compares this BigInteger with the specified BigInteger.  This
3401      * method is provided in preference to individual methods for each
3402      * of the six boolean comparison operators ({@literal <}, ==,
3403      * {@literal >}, {@literal >=}, !=, {@literal <=}).  The suggested
3404      * idiom for performing these comparisons is: {@code
3405      * (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
3406      * &lt;<i>op</i>&gt; is one of the six comparison operators.
3407      *
3408      * @param  val BigInteger to which this BigInteger is to be compared.
3409      * @return -1, 0 or 1 as this BigInteger is numerically less than, equal
3410      *         to, or greater than {@code val}.
3411      */
3412     public int compareTo(BigInteger val) {
3413         if (signum == val.signum) {
3414             switch (signum) {
3415             case 1:
3416                 return compareMagnitude(val);
3417             case -1:
3418                 return val.compareMagnitude(this);
3419             default:
3420                 return 0;
3421             }
3422         }
3423         return signum > val.signum ? 1 : -1;
3424     }
3425 
3426     /**
3427      * Compares the magnitude array of this BigInteger with the specified
3428      * BigInteger's. This is the version of compareTo ignoring sign.
3429      *
3430      * @param val BigInteger whose magnitude array to be compared.
3431      * @return -1, 0 or 1 as this magnitude array is less than, equal to or
3432      *         greater than the magnitude aray for the specified BigInteger's.
3433      */
3434     final int compareMagnitude(BigInteger val) {
3435         int[] m1 = mag;
3436         int len1 = m1.length;
3437         int[] m2 = val.mag;
3438         int len2 = m2.length;
3439         if (len1 < len2)
3440             return -1;
3441         if (len1 > len2)
3442             return 1;
3443         for (int i = 0; i < len1; i++) {
3444             int a = m1[i];
3445             int b = m2[i];
3446             if (a != b)
3447                 return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
3448         }
3449         return 0;
3450     }
3451 
3452     /**
3453      * Version of compareMagnitude that compares magnitude with long value.
3454      * val can't be Long.MIN_VALUE.
3455      */
3456     final int compareMagnitude(long val) {
3457         assert val != Long.MIN_VALUE;
3458         int[] m1 = mag;
3459         int len = m1.length;
3460         if (len > 2) {
3461             return 1;
3462         }
3463         if (val < 0) {
3464             val = -val;
3465         }
3466         int highWord = (int)(val >>> 32);
3467         if (highWord == 0) {
3468             if (len < 1)
3469                 return -1;
3470             if (len > 1)
3471                 return 1;
3472             int a = m1[0];
3473             int b = (int)val;
3474             if (a != b) {
3475                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
3476             }
3477             return 0;
3478         } else {
3479             if (len < 2)
3480                 return -1;
3481             int a = m1[0];
3482             int b = highWord;
3483             if (a != b) {
3484                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
3485             }
3486             a = m1[1];
3487             b = (int)val;
3488             if (a != b) {
3489                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
3490             }
3491             return 0;
3492         }
3493     }
3494 
3495     /**
3496      * Compares this BigInteger with the specified Object for equality.
3497      *
3498      * @param  x Object to which this BigInteger is to be compared.
3499      * @return {@code true} if and only if the specified Object is a
3500      *         BigInteger whose value is numerically equal to this BigInteger.
3501      */
3502     public boolean equals(Object x) {
3503         // This test is just an optimization, which may or may not help
3504         if (x == this)
3505             return true;
3506 
3507         if (!(x instanceof BigInteger))
3508             return false;
3509 
3510         BigInteger xInt = (BigInteger) x;
3511         if (xInt.signum != signum)
3512             return false;
3513 
3514         int[] m = mag;
3515         int len = m.length;
3516         int[] xm = xInt.mag;
3517         if (len != xm.length)
3518             return false;
3519 
3520         for (int i = 0; i < len; i++)
3521             if (xm[i] != m[i])
3522                 return false;
3523 
3524         return true;
3525     }
3526 
3527     /**
3528      * Returns the minimum of this BigInteger and {@code val}.
3529      *
3530      * @param  val value with which the minimum is to be computed.
3531      * @return the BigInteger whose value is the lesser of this BigInteger and
3532      *         {@code val}.  If they are equal, either may be returned.
3533      */
3534     public BigInteger min(BigInteger val) {
3535         return (compareTo(val) < 0 ? this : val);
3536     }
3537 
3538     /**
3539      * Returns the maximum of this BigInteger and {@code val}.
3540      *
3541      * @param  val value with which the maximum is to be computed.
3542      * @return the BigInteger whose value is the greater of this and
3543      *         {@code val}.  If they are equal, either may be returned.
3544      */
3545     public BigInteger max(BigInteger val) {
3546         return (compareTo(val) > 0 ? this : val);
3547     }
3548 
3549 
3550     // Hash Function
3551 
3552     /**
3553      * Returns the hash code for this BigInteger.
3554      *
3555      * @return hash code for this BigInteger.
3556      */
3557     public int hashCode() {
3558         int hashCode = 0;
3559 
3560         for (int i=0; i < mag.length; i++)
3561             hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
3562 
3563         return hashCode * signum;
3564     }
3565 
3566     /**
3567      * Returns the String representation of this BigInteger in the
3568      * given radix.  If the radix is outside the range from {@link
3569      * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
3570      * it will default to 10 (as is the case for
3571      * {@code Integer.toString}).  The digit-to-character mapping
3572      * provided by {@code Character.forDigit} is used, and a minus
3573      * sign is prepended if appropriate.  (This representation is
3574      * compatible with the {@link #BigInteger(String, int) (String,
3575      * int)} constructor.)
3576      *
3577      * @param  radix  radix of the String representation.
3578      * @return String representation of this BigInteger in the given radix.
3579      * @see    Integer#toString
3580      * @see    Character#forDigit
3581      * @see    #BigInteger(java.lang.String, int)
3582      */
3583     public String toString(int radix) {
3584         if (signum == 0)
3585             return "0";
3586         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
3587             radix = 10;
3588 
3589         // If it's small enough, use smallToString.
3590         if (mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD)
3591            return smallToString(radix);
3592 
3593         // Otherwise use recursive toString, which requires positive arguments.
3594         // The results will be concatenated into this StringBuilder
3595         StringBuilder sb = new StringBuilder();
3596         if (signum < 0) {
3597             toString(this.negate(), sb, radix, 0);
3598             sb.insert(0, '-');
3599         }
3600         else
3601             toString(this, sb, radix, 0);
3602 
3603         return sb.toString();
3604     }
3605 
3606     /** This method is used to perform toString when arguments are small. */
3607     private String smallToString(int radix) {
3608         if (signum == 0) {
3609             return "0";
3610         }
3611 
3612         // Compute upper bound on number of digit groups and allocate space
3613         int maxNumDigitGroups = (4*mag.length + 6)/7;
3614         String digitGroup[] = new String[maxNumDigitGroups];
3615 
3616         // Translate number to string, a digit group at a time
3617         BigInteger tmp = this.abs();
3618         int numGroups = 0;
3619         while (tmp.signum != 0) {
3620             BigInteger d = longRadix[radix];
3621 
3622             MutableBigInteger q = new MutableBigInteger(),
3623                               a = new MutableBigInteger(tmp.mag),
3624                               b = new MutableBigInteger(d.mag);
3625             MutableBigInteger r = a.divide(b, q);
3626             BigInteger q2 = q.toBigInteger(tmp.signum * d.signum);
3627             BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);
3628 
3629             digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
3630             tmp = q2;
3631         }
3632 
3633         // Put sign (if any) and first digit group into result buffer
3634         StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1);
3635         if (signum < 0) {
3636             buf.append('-');
3637         }
3638         buf.append(digitGroup[numGroups-1]);
3639 
3640         // Append remaining digit groups padded with leading zeros
3641         for (int i=numGroups-2; i >= 0; i--) {
3642             // Prepend (any) leading zeros for this digit group
3643             int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
3644             if (numLeadingZeros != 0) {
3645                 buf.append(zeros[numLeadingZeros]);
3646             }
3647             buf.append(digitGroup[i]);
3648         }
3649         return buf.toString();
3650     }
3651 
3652     /**
3653      * Converts the specified BigInteger to a string and appends to
3654      * {@code sb}.  This implements the recursive Schoenhage algorithm
3655      * for base conversions.
3656      * <p>
3657      * See Knuth, Donald,  _The Art of Computer Programming_, Vol. 2,
3658      * Answers to Exercises (4.4) Question 14.
3659      *
3660      * @param u      The number to convert to a string.
3661      * @param sb     The StringBuilder that will be appended to in place.
3662      * @param radix  The base to convert to.
3663      * @param digits The minimum number of digits to pad to.
3664      */
3665     private static void toString(BigInteger u, StringBuilder sb, int radix,
3666                                  int digits) {
3667         // If we're smaller than a certain threshold, use the smallToString
3668         // method, padding with leading zeroes when necessary.
3669         if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) {
3670             String s = u.smallToString(radix);
3671 
3672             // Pad with internal zeros if necessary.
3673             // Don't pad if we're at the beginning of the string.
3674             if ((s.length() < digits) && (sb.length() > 0)) {
3675                 for (int i=s.length(); i < digits; i++) {
3676                     sb.append('0');
3677                 }
3678             }
3679 
3680             sb.append(s);
3681             return;
3682         }
3683 
3684         int b, n;
3685         b = u.bitLength();
3686 
3687         // Calculate a value for n in the equation radix^(2^n) = u
3688         // and subtract 1 from that value.  This is used to find the
3689         // cache index that contains the best value to divide u.
3690         n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) / LOG_TWO - 1.0);
3691         BigInteger v = getRadixConversionCache(radix, n);
3692         BigInteger[] results;
3693         results = u.divideAndRemainder(v);
3694 
3695         int expectedDigits = 1 << n;
3696 
3697         // Now recursively build the two halves of each number.
3698         toString(results[0], sb, radix, digits-expectedDigits);
3699         toString(results[1], sb, radix, expectedDigits);
3700     }
3701 
3702     /**
3703      * Returns the value radix^(2^exponent) from the cache.
3704      * If this value doesn't already exist in the cache, it is added.
3705      * <p>
3706      * This could be changed to a more complicated caching method using
3707      * {@code Future}.
3708      */
3709     private static BigInteger getRadixConversionCache(int radix, int exponent) {
3710         BigInteger[] cacheLine = powerCache[radix]; // volatile read
3711         if (exponent < cacheLine.length) {
3712             return cacheLine[exponent];
3713         }
3714 
3715         int oldLength = cacheLine.length;
3716         cacheLine = Arrays.copyOf(cacheLine, exponent + 1);
3717         for (int i = oldLength; i <= exponent; i++) {
3718             cacheLine[i] = cacheLine[i - 1].pow(2);
3719         }
3720 
3721         BigInteger[][] pc = powerCache; // volatile read again
3722         if (exponent >= pc[radix].length) {
3723             pc = pc.clone();
3724             pc[radix] = cacheLine;
3725             powerCache = pc; // volatile write, publish
3726         }
3727         return cacheLine[exponent];
3728     }
3729 
3730     /* zero[i] is a string of i consecutive zeros. */
3731     private static String zeros[] = new String[64];
3732     static {
3733         zeros[63] =
3734             "000000000000000000000000000000000000000000000000000000000000000";
3735         for (int i=0; i < 63; i++)
3736             zeros[i] = zeros[63].substring(0, i);
3737     }
3738 
3739     /**
3740      * Returns the decimal String representation of this BigInteger.
3741      * The digit-to-character mapping provided by
3742      * {@code Character.forDigit} is used, and a minus sign is
3743      * prepended if appropriate.  (This representation is compatible
3744      * with the {@link #BigInteger(String) (String)} constructor, and
3745      * allows for String concatenation with Java's + operator.)
3746      *
3747      * @return decimal String representation of this BigInteger.
3748      * @see    Character#forDigit
3749      * @see    #BigInteger(java.lang.String)
3750      */
3751     public String toString() {
3752         return toString(10);
3753     }
3754 
3755     /**
3756      * Returns a byte array containing the two's-complement
3757      * representation of this BigInteger.  The byte array will be in
3758      * <i>big-endian</i> byte-order: the most significant byte is in
3759      * the zeroth element.  The array will contain the minimum number
3760      * of bytes required to represent this BigInteger, including at
3761      * least one sign bit, which is {@code (ceil((this.bitLength() +
3762      * 1)/8))}.  (This representation is compatible with the
3763      * {@link #BigInteger(byte[]) (byte[])} constructor.)
3764      *
3765      * @return a byte array containing the two's-complement representation of
3766      *         this BigInteger.
3767      * @see    #BigInteger(byte[])
3768      */
3769     public byte[] toByteArray() {
3770         int byteLen = bitLength()/8 + 1;
3771         byte[] byteArray = new byte[byteLen];
3772 
3773         for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) {
3774             if (bytesCopied == 4) {
3775                 nextInt = getInt(intIndex++);
3776                 bytesCopied = 1;
3777             } else {
3778                 nextInt >>>= 8;
3779                 bytesCopied++;
3780             }
3781             byteArray[i] = (byte)nextInt;
3782         }
3783         return byteArray;
3784     }
3785 
3786     /**
3787      * Converts this BigInteger to an {@code int}.  This
3788      * conversion is analogous to a
3789      * <i>narrowing primitive conversion</i> from {@code long} to
3790      * {@code int} as defined in section 5.1.3 of
3791      * <cite>The Java&trade; Language Specification</cite>:
3792      * if this BigInteger is too big to fit in an
3793      * {@code int}, only the low-order 32 bits are returned.
3794      * Note that this conversion can lose information about the
3795      * overall magnitude of the BigInteger value as well as return a
3796      * result with the opposite sign.
3797      *
3798      * @return this BigInteger converted to an {@code int}.
3799      * @see #intValueExact()
3800      */
3801     public int intValue() {
3802         int result = 0;
3803         result = getInt(0);
3804         return result;
3805     }
3806 
3807     /**
3808      * Converts this BigInteger to a {@code long}.  This
3809      * conversion is analogous to a
3810      * <i>narrowing primitive conversion</i> from {@code long} to
3811      * {@code int} as defined in section 5.1.3 of
3812      * <cite>The Java&trade; Language Specification</cite>:
3813      * if this BigInteger is too big to fit in a
3814      * {@code long}, only the low-order 64 bits are returned.
3815      * Note that this conversion can lose information about the
3816      * overall magnitude of the BigInteger value as well as return a
3817      * result with the opposite sign.
3818      *
3819      * @return this BigInteger converted to a {@code long}.
3820      * @see #longValueExact()
3821      */
3822     public long longValue() {
3823         long result = 0;
3824 
3825         for (int i=1; i >= 0; i--)
3826             result = (result << 32) + (getInt(i) & LONG_MASK);
3827         return result;
3828     }
3829 
3830     /**
3831      * Converts this BigInteger to a {@code float}.  This
3832      * conversion is similar to the
3833      * <i>narrowing primitive conversion</i> from {@code double} to
3834      * {@code float} as defined in section 5.1.3 of
3835      * <cite>The Java&trade; Language Specification</cite>:
3836      * if this BigInteger has too great a magnitude
3837      * to represent as a {@code float}, it will be converted to
3838      * {@link Float#NEGATIVE_INFINITY} or {@link
3839      * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
3840      * the return value is finite, this conversion can lose
3841      * information about the precision of the BigInteger value.
3842      *
3843      * @return this BigInteger converted to a {@code float}.
3844      */
3845     public float floatValue() {
3846         if (signum == 0) {
3847             return 0.0f;
3848         }
3849 
3850         int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
3851 
3852         // exponent == floor(log2(abs(this)))
3853         if (exponent < Long.SIZE - 1) {
3854             return longValue();
3855         } else if (exponent > Float.MAX_EXPONENT) {
3856             return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
3857         }
3858 
3859         /*
3860          * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
3861          * one bit. To make rounding easier, we pick out the top
3862          * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
3863          * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
3864          * bits, and signifFloor the top SIGNIFICAND_WIDTH.
3865          *
3866          * It helps to consider the real number signif = abs(this) *
3867          * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
3868          */
3869         int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH;
3870 
3871         int twiceSignifFloor;
3872         // twiceSignifFloor will be == abs().shiftRight(shift).intValue()
3873         // We do the shift into an int directly to improve performance.
3874 
3875         int nBits = shift & 0x1f;
3876         int nBits2 = 32 - nBits;
3877 
3878         if (nBits == 0) {
3879             twiceSignifFloor = mag[0];
3880         } else {
3881             twiceSignifFloor = mag[0] >>> nBits;
3882             if (twiceSignifFloor == 0) {
3883                 twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits);
3884             }
3885         }
3886 
3887         int signifFloor = twiceSignifFloor >> 1;
3888         signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit
3889 
3890         /*
3891          * We round up if either the fractional part of signif is strictly
3892          * greater than 0.5 (which is true if the 0.5 bit is set and any lower
3893          * bit is set), or if the fractional part of signif is >= 0.5 and
3894          * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
3895          * are set). This is equivalent to the desired HALF_EVEN rounding.
3896          */
3897         boolean increment = (twiceSignifFloor & 1) != 0
3898                 && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
3899         int signifRounded = increment ? signifFloor + 1 : signifFloor;
3900         int bits = ((exponent + FloatConsts.EXP_BIAS))
3901                 << (FloatConsts.SIGNIFICAND_WIDTH - 1);
3902         bits += signifRounded;
3903         /*
3904          * If signifRounded == 2^24, we'd need to set all of the significand
3905          * bits to zero and add 1 to the exponent. This is exactly the behavior
3906          * we get from just adding signifRounded to bits directly. If the
3907          * exponent is Float.MAX_EXPONENT, we round up (correctly) to
3908          * Float.POSITIVE_INFINITY.
3909          */
3910         bits |= signum & FloatConsts.SIGN_BIT_MASK;
3911         return Float.intBitsToFloat(bits);
3912     }
3913 
3914     /**
3915      * Converts this BigInteger to a {@code double}.  This
3916      * conversion is similar to the
3917      * <i>narrowing primitive conversion</i> from {@code double} to
3918      * {@code float} as defined in section 5.1.3 of
3919      * <cite>The Java&trade; Language Specification</cite>:
3920      * if this BigInteger has too great a magnitude
3921      * to represent as a {@code double}, it will be converted to
3922      * {@link Double#NEGATIVE_INFINITY} or {@link
3923      * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
3924      * the return value is finite, this conversion can lose
3925      * information about the precision of the BigInteger value.
3926      *
3927      * @return this BigInteger converted to a {@code double}.
3928      */
3929     public double doubleValue() {
3930         if (signum == 0) {
3931             return 0.0;
3932         }
3933 
3934         int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
3935 
3936         // exponent == floor(log2(abs(this))Double)
3937         if (exponent < Long.SIZE - 1) {
3938             return longValue();
3939         } else if (exponent > Double.MAX_EXPONENT) {
3940             return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
3941         }
3942 
3943         /*
3944          * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
3945          * one bit. To make rounding easier, we pick out the top
3946          * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
3947          * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
3948          * bits, and signifFloor the top SIGNIFICAND_WIDTH.
3949          *
3950          * It helps to consider the real number signif = abs(this) *
3951          * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
3952          */
3953         int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH;
3954 
3955         long twiceSignifFloor;
3956         // twiceSignifFloor will be == abs().shiftRight(shift).longValue()
3957         // We do the shift into a long directly to improve performance.
3958 
3959         int nBits = shift & 0x1f;
3960         int nBits2 = 32 - nBits;
3961 
3962         int highBits;
3963         int lowBits;
3964         if (nBits == 0) {
3965             highBits = mag[0];
3966             lowBits = mag[1];
3967         } else {
3968             highBits = mag[0] >>> nBits;
3969             lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits);
3970             if (highBits == 0) {
3971                 highBits = lowBits;
3972                 lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits);
3973             }
3974         }
3975 
3976         twiceSignifFloor = ((highBits & LONG_MASK) << 32)
3977                 | (lowBits & LONG_MASK);
3978 
3979         long signifFloor = twiceSignifFloor >> 1;
3980         signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit
3981 
3982         /*
3983          * We round up if either the fractional part of signif is strictly
3984          * greater than 0.5 (which is true if the 0.5 bit is set and any lower
3985          * bit is set), or if the fractional part of signif is >= 0.5 and
3986          * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
3987          * are set). This is equivalent to the desired HALF_EVEN rounding.
3988          */
3989         boolean increment = (twiceSignifFloor & 1) != 0
3990                 && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
3991         long signifRounded = increment ? signifFloor + 1 : signifFloor;
3992         long bits = (long) ((exponent + DoubleConsts.EXP_BIAS))
3993                 << (DoubleConsts.SIGNIFICAND_WIDTH - 1);
3994         bits += signifRounded;
3995         /*
3996          * If signifRounded == 2^53, we'd need to set all of the significand
3997          * bits to zero and add 1 to the exponent. This is exactly the behavior
3998          * we get from just adding signifRounded to bits directly. If the
3999          * exponent is Double.MAX_EXPONENT, we round up (correctly) to
4000          * Double.POSITIVE_INFINITY.
4001          */
4002         bits |= signum & DoubleConsts.SIGN_BIT_MASK;
4003         return Double.longBitsToDouble(bits);
4004     }
4005 
4006     /**
4007      * Returns a copy of the input array stripped of any leading zero bytes.
4008      */
4009     private static int[] stripLeadingZeroInts(int val[]) {
4010         int vlen = val.length;
4011         int keep;
4012 
4013         // Find first nonzero byte
4014         for (keep = 0; keep < vlen && val[keep] == 0; keep++)
4015             ;
4016         return java.util.Arrays.copyOfRange(val, keep, vlen);
4017     }
4018 
4019     /**
4020      * Returns the input array stripped of any leading zero bytes.
4021      * Since the source is trusted the copying may be skipped.
4022      */
4023     private static int[] trustedStripLeadingZeroInts(int val[]) {
4024         int vlen = val.length;
4025         int keep;
4026 
4027         // Find first nonzero byte
4028         for (keep = 0; keep < vlen && val[keep] == 0; keep++)
4029             ;
4030         return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
4031     }
4032 
4033     /**
4034      * Returns a copy of the input array stripped of any leading zero bytes.
4035      */
4036     private static int[] stripLeadingZeroBytes(byte a[], int off, int len) {
4037         int indexBound = off + len;
4038         int keep;
4039 
4040         // Find first nonzero byte
4041         for (keep = off; keep < indexBound && a[keep] == 0; keep++)
4042             ;
4043 
4044         // Allocate new array and copy relevant part of input array
4045         int intLength = ((indexBound - keep) + 3) >>> 2;
4046         int[] result = new int[intLength];
4047         int b = indexBound - 1;
4048         for (int i = intLength-1; i >= 0; i--) {
4049             result[i] = a[b--] & 0xff;
4050             int bytesRemaining = b - keep + 1;
4051             int bytesToTransfer = Math.min(3, bytesRemaining);
4052             for (int j=8; j <= (bytesToTransfer << 3); j += 8)
4053                 result[i] |= ((a[b--] & 0xff) << j);
4054         }
4055         return result;
4056     }
4057 
4058     /**
4059      * Takes an array a representing a negative 2's-complement number and
4060      * returns the minimal (no leading zero bytes) unsigned whose value is -a.
4061      */
4062     private static int[] makePositive(byte a[], int off, int len) {
4063         int keep, k;
4064         int indexBound = off + len;
4065 
4066         // Find first non-sign (0xff) byte of input
4067         for (keep=off; keep < indexBound && a[keep] == -1; keep++)
4068             ;
4069 
4070 
4071         /* Allocate output array.  If all non-sign bytes are 0x00, we must
4072          * allocate space for one extra output byte. */
4073         for (k=keep; k < indexBound && a[k] == 0; k++)
4074             ;
4075 
4076         int extraByte = (k == indexBound) ? 1 : 0;
4077         int intLength = ((indexBound - keep + extraByte) + 3) >>> 2;
4078         int result[] = new int[intLength];
4079 
4080         /* Copy one's complement of input into output, leaving extra
4081          * byte (if it exists) == 0x00 */
4082         int b = indexBound - 1;
4083         for (int i = intLength-1; i >= 0; i--) {
4084             result[i] = a[b--] & 0xff;
4085             int numBytesToTransfer = Math.min(3, b-keep+1);
4086             if (numBytesToTransfer < 0)
4087                 numBytesToTransfer = 0;
4088             for (int j=8; j <= 8*numBytesToTransfer; j += 8)
4089                 result[i] |= ((a[b--] & 0xff) << j);
4090 
4091             // Mask indicates which bits must be complemented
4092             int mask = -1 >>> (8*(3-numBytesToTransfer));
4093             result[i] = ~result[i] & mask;
4094         }
4095 
4096         // Add one to one's complement to generate two's complement
4097         for (int i=result.length-1; i >= 0; i--) {
4098             result[i] = (int)((result[i] & LONG_MASK) + 1);
4099             if (result[i] != 0)
4100                 break;
4101         }
4102 
4103         return result;
4104     }
4105 
4106     /**
4107      * Takes an array a representing a negative 2's-complement number and
4108      * returns the minimal (no leading zero ints) unsigned whose value is -a.
4109      */
4110     private static int[] makePositive(int a[]) {
4111         int keep, j;
4112 
4113         // Find first non-sign (0xffffffff) int of input
4114         for (keep=0; keep < a.length && a[keep] == -1; keep++)
4115             ;
4116 
4117         /* Allocate output array.  If all non-sign ints are 0x00, we must
4118          * allocate space for one extra output int. */
4119         for (j=keep; j < a.length && a[j] == 0; j++)
4120             ;
4121         int extraInt = (j == a.length ? 1 : 0);
4122         int result[] = new int[a.length - keep + extraInt];
4123 
4124         /* Copy one's complement of input into output, leaving extra
4125          * int (if it exists) == 0x00 */
4126         for (int i = keep; i < a.length; i++)
4127             result[i - keep + extraInt] = ~a[i];
4128 
4129         // Add one to one's complement to generate two's complement
4130         for (int i=result.length-1; ++result[i] == 0; i--)
4131             ;
4132 
4133         return result;
4134     }
4135 
4136     /*
4137      * The following two arrays are used for fast String conversions.  Both
4138      * are indexed by radix.  The first is the number of digits of the given
4139      * radix that can fit in a Java long without "going negative", i.e., the
4140      * highest integer n such that radix**n < 2**63.  The second is the
4141      * "long radix" that tears each number into "long digits", each of which
4142      * consists of the number of digits in the corresponding element in
4143      * digitsPerLong (longRadix[i] = i**digitPerLong[i]).  Both arrays have
4144      * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
4145      * used.
4146      */
4147     private static int digitsPerLong[] = {0, 0,
4148         62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
4149         14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
4150 
4151     private static BigInteger longRadix[] = {null, null,
4152         valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
4153         valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
4154         valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
4155         valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
4156         valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
4157         valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
4158         valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
4159         valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
4160         valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
4161         valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
4162         valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
4163         valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
4164         valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
4165         valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
4166         valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
4167         valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
4168         valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
4169         valueOf(0x41c21cb8e1000000L)};
4170 
4171     /*
4172      * These two arrays are the integer analogue of above.
4173      */
4174     private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
4175         11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
4176         6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
4177 
4178     private static int intRadix[] = {0, 0,
4179         0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
4180         0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
4181         0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f,  0x10000000,
4182         0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
4183         0x6c20a40,  0x8d2d931,  0xb640000,  0xe8d4a51,  0x1269ae40,
4184         0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
4185         0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
4186     };
4187 
4188     /**
4189      * These routines provide access to the two's complement representation
4190      * of BigIntegers.
4191      */
4192 
4193     /**
4194      * Returns the length of the two's complement representation in ints,
4195      * including space for at least one sign bit.
4196      */
4197     private int intLength() {
4198         return (bitLength() >>> 5) + 1;
4199     }
4200 
4201     /* Returns sign bit */
4202     private int signBit() {
4203         return signum < 0 ? 1 : 0;
4204     }
4205 
4206     /* Returns an int of sign bits */
4207     private int signInt() {
4208         return signum < 0 ? -1 : 0;
4209     }
4210 
4211     /**
4212      * Returns the specified int of the little-endian two's complement
4213      * representation (int 0 is the least significant).  The int number can
4214      * be arbitrarily high (values are logically preceded by infinitely many
4215      * sign ints).
4216      */
4217     private int getInt(int n) {
4218         if (n < 0)
4219             return 0;
4220         if (n >= mag.length)
4221             return signInt();
4222 
4223         int magInt = mag[mag.length-n-1];
4224 
4225         return (signum >= 0 ? magInt :
4226                 (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
4227     }
4228 
4229     /**
4230     * Returns the index of the int that contains the first nonzero int in the
4231     * little-endian binary representation of the magnitude (int 0 is the
4232     * least significant). If the magnitude is zero, return value is undefined.
4233     *
4234     * <p>Note: never used for a BigInteger with a magnitude of zero.
4235     * @see #getInt.
4236     */
4237     private int firstNonzeroIntNum() {
4238         int fn = firstNonzeroIntNumPlusTwo - 2;
4239         if (fn == -2) { // firstNonzeroIntNum not initialized yet
4240             // Search for the first nonzero int
4241             int i;
4242             int mlen = mag.length;
4243             for (i = mlen - 1; i >= 0 && mag[i] == 0; i--)
4244                 ;
4245             fn = mlen - i - 1;
4246             firstNonzeroIntNumPlusTwo = fn + 2; // offset by two to initialize
4247         }
4248         return fn;
4249     }
4250 
4251     /** use serialVersionUID from JDK 1.1. for interoperability */
4252     private static final long serialVersionUID = -8287574255936472291L;
4253 
4254     /**
4255      * Serializable fields for BigInteger.
4256      *
4257      * @serialField signum  int
4258      *              signum of this BigInteger
4259      * @serialField magnitude byte[]
4260      *              magnitude array of this BigInteger
4261      * @serialField bitCount  int
4262      *              appears in the serialized form for backward compatibility
4263      * @serialField bitLength int
4264      *              appears in the serialized form for backward compatibility
4265      * @serialField firstNonzeroByteNum int
4266      *              appears in the serialized form for backward compatibility
4267      * @serialField lowestSetBit int
4268      *              appears in the serialized form for backward compatibility
4269      */
4270     private static final ObjectStreamField[] serialPersistentFields = {
4271         new ObjectStreamField("signum", Integer.TYPE),
4272         new ObjectStreamField("magnitude", byte[].class),
4273         new ObjectStreamField("bitCount", Integer.TYPE),
4274         new ObjectStreamField("bitLength", Integer.TYPE),
4275         new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE),
4276         new ObjectStreamField("lowestSetBit", Integer.TYPE)
4277         };
4278 
4279     /**
4280      * Reconstitute the {@code BigInteger} instance from a stream (that is,
4281      * deserialize it). The magnitude is read in as an array of bytes
4282      * for historical reasons, but it is converted to an array of ints
4283      * and the byte array is discarded.
4284      * Note:
4285      * The current convention is to initialize the cache fields, bitCountPlusOne,
4286      * bitLengthPlusOne and lowestSetBitPlusTwo, to 0 rather than some other
4287      * marker value. Therefore, no explicit action to set these fields needs to
4288      * be taken in readObject because those fields already have a 0 value by
4289      * default since defaultReadObject is not being used.
4290      */
4291     private void readObject(java.io.ObjectInputStream s)
4292         throws java.io.IOException, ClassNotFoundException {
4293         // prepare to read the alternate persistent fields
4294         ObjectInputStream.GetField fields = s.readFields();
4295 
4296         // Read the alternate persistent fields that we care about
4297         int sign = fields.get("signum", -2);
4298         byte[] magnitude = (byte[])fields.get("magnitude", null);
4299 
4300         // Validate signum
4301         if (sign < -1 || sign > 1) {
4302             String message = "BigInteger: Invalid signum value";
4303             if (fields.defaulted("signum"))
4304                 message = "BigInteger: Signum not present in stream";
4305             throw new java.io.StreamCorruptedException(message);
4306         }
4307         int[] mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
4308         if ((mag.length == 0) != (sign == 0)) {
4309             String message = "BigInteger: signum-magnitude mismatch";
4310             if (fields.defaulted("magnitude"))
4311                 message = "BigInteger: Magnitude not present in stream";
4312             throw new java.io.StreamCorruptedException(message);
4313         }
4314 
4315         // Commit final fields via Unsafe
4316         UnsafeHolder.putSign(this, sign);
4317 
4318         // Calculate mag field from magnitude and discard magnitude
4319         UnsafeHolder.putMag(this, mag);
4320         if (mag.length >= MAX_MAG_LENGTH) {
4321             try {
4322                 checkRange();
4323             } catch (ArithmeticException e) {
4324                 throw new java.io.StreamCorruptedException("BigInteger: Out of the supported range");
4325             }
4326         }
4327     }
4328 
4329     // Support for resetting final fields while deserializing
4330     private static class UnsafeHolder {
4331         private static final sun.misc.Unsafe unsafe;
4332         private static final long signumOffset;
4333         private static final long magOffset;
4334         static {
4335             try {
4336                 unsafe = sun.misc.Unsafe.getUnsafe();
4337                 signumOffset = unsafe.objectFieldOffset
4338                     (BigInteger.class.getDeclaredField("signum"));
4339                 magOffset = unsafe.objectFieldOffset
4340                     (BigInteger.class.getDeclaredField("mag"));
4341             } catch (Exception ex) {
4342                 throw new ExceptionInInitializerError(ex);
4343             }
4344         }
4345 
4346         static void putSign(BigInteger bi, int sign) {
4347             unsafe.putIntVolatile(bi, signumOffset, sign);
4348         }
4349 
4350         static void putMag(BigInteger bi, int[] magnitude) {
4351             unsafe.putObjectVolatile(bi, magOffset, magnitude);
4352         }
4353     }
4354 
4355     /**
4356      * Save the {@code BigInteger} instance to a stream.  The magnitude of a
4357      * {@code BigInteger} is serialized as a byte array for historical reasons.
4358      * To maintain compatibility with older implementations, the integers
4359      * -1, -1, -2, and -2 are written as the values of the obsolete fields
4360      * {@code bitCount}, {@code bitLength}, {@code lowestSetBit}, and
4361      * {@code firstNonzeroByteNum}, respectively.  These values are compatible
4362      * with older implementations, but will be ignored by current
4363      * implementations.
4364      */
4365     private void writeObject(ObjectOutputStream s) throws IOException {
4366         // set the values of the Serializable fields
4367         ObjectOutputStream.PutField fields = s.putFields();
4368         fields.put("signum", signum);
4369         fields.put("magnitude", magSerializedForm());
4370         // The values written for cached fields are compatible with older
4371         // versions, but are ignored in readObject so don't otherwise matter.
4372         fields.put("bitCount", -1);
4373         fields.put("bitLength", -1);
4374         fields.put("lowestSetBit", -2);
4375         fields.put("firstNonzeroByteNum", -2);
4376 
4377         // save them
4378         s.writeFields();
4379     }
4380 
4381     /**
4382      * Returns the mag array as an array of bytes.
4383      */
4384     private byte[] magSerializedForm() {
4385         int len = mag.length;
4386 
4387         int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0]));
4388         int byteLen = (bitLen + 7) >>> 3;
4389         byte[] result = new byte[byteLen];
4390 
4391         for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
4392              i >= 0; i--) {
4393             if (bytesCopied == 4) {
4394                 nextInt = mag[intIndex--];
4395                 bytesCopied = 1;
4396             } else {
4397                 nextInt >>>= 8;
4398                 bytesCopied++;
4399             }
4400             result[i] = (byte)nextInt;
4401         }
4402         return result;
4403     }
4404 
4405     /**
4406      * Converts this {@code BigInteger} to a {@code long}, checking
4407      * for lost information.  If the value of this {@code BigInteger}
4408      * is out of the range of the {@code long} type, then an
4409      * {@code ArithmeticException} is thrown.
4410      *
4411      * @return this {@code BigInteger} converted to a {@code long}.
4412      * @throws ArithmeticException if the value of {@code this} will
4413      * not exactly fit in a {@code long}.
4414      * @see BigInteger#longValue
4415      * @since  1.8
4416      */
4417     public long longValueExact() {
4418         if (mag.length <= 2 && bitLength() <= 63)
4419             return longValue();
4420         else
4421             throw new ArithmeticException("BigInteger out of long range");
4422     }
4423 
4424     /**
4425      * Converts this {@code BigInteger} to an {@code int}, checking
4426      * for lost information.  If the value of this {@code BigInteger}
4427      * is out of the range of the {@code int} type, then an
4428      * {@code ArithmeticException} is thrown.
4429      *
4430      * @return this {@code BigInteger} converted to an {@code int}.
4431      * @throws ArithmeticException if the value of {@code this} will
4432      * not exactly fit in a {@code int}.
4433      * @see BigInteger#intValue
4434      * @since  1.8
4435      */
4436     public int intValueExact() {
4437         if (mag.length <= 1 && bitLength() <= 31)
4438             return intValue();
4439         else
4440             throw new ArithmeticException("BigInteger out of int range");
4441     }
4442 
4443     /**
4444      * Converts this {@code BigInteger} to a {@code short}, checking
4445      * for lost information.  If the value of this {@code BigInteger}
4446      * is out of the range of the {@code short} type, then an
4447      * {@code ArithmeticException} is thrown.
4448      *
4449      * @return this {@code BigInteger} converted to a {@code short}.
4450      * @throws ArithmeticException if the value of {@code this} will
4451      * not exactly fit in a {@code short}.
4452      * @see BigInteger#shortValue
4453      * @since  1.8
4454      */
4455     public short shortValueExact() {
4456         if (mag.length <= 1 && bitLength() <= 31) {
4457             int value = intValue();
4458             if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE)
4459                 return shortValue();
4460         }
4461         throw new ArithmeticException("BigInteger out of short range");
4462     }
4463 
4464     /**
4465      * Converts this {@code BigInteger} to a {@code byte}, checking
4466      * for lost information.  If the value of this {@code BigInteger}
4467      * is out of the range of the {@code byte} type, then an
4468      * {@code ArithmeticException} is thrown.
4469      *
4470      * @return this {@code BigInteger} converted to a {@code byte}.
4471      * @throws ArithmeticException if the value of {@code this} will
4472      * not exactly fit in a {@code byte}.
4473      * @see BigInteger#byteValue
4474      * @since  1.8
4475      */
4476     public byte byteValueExact() {
4477         if (mag.length <= 1 && bitLength() <= 31) {
4478             int value = intValue();
4479             if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE)
4480                 return byteValue();
4481         }
4482         throw new ArithmeticException("BigInteger out of byte range");
4483     }
4484 }