1 /*
   2  * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  * Portions Copyright IBM Corporation, 2001. All Rights Reserved.
  28  */
  29 
  30 package java.math;
  31 
  32 import java.util.Arrays;
  33 import static java.math.BigInteger.LONG_MASK;
  34 
  35 /**
  36  * Immutable, arbitrary-precision signed decimal numbers.  A
  37  * {@code BigDecimal} consists of an arbitrary precision integer
  38  * <i>unscaled value</i> and a 32-bit integer <i>scale</i>.  If zero
  39  * or positive, the scale is the number of digits to the right of the
  40  * decimal point.  If negative, the unscaled value of the number is
  41  * multiplied by ten to the power of the negation of the scale.  The
  42  * value of the number represented by the {@code BigDecimal} is
  43  * therefore <tt>(unscaledValue &times; 10<sup>-scale</sup>)</tt>.
  44  *
  45  * <p>The {@code BigDecimal} class provides operations for
  46  * arithmetic, scale manipulation, rounding, comparison, hashing, and
  47  * format conversion.  The {@link #toString} method provides a
  48  * canonical representation of a {@code BigDecimal}.
  49  *
  50  * <p>The {@code BigDecimal} class gives its user complete control
  51  * over rounding behavior.  If no rounding mode is specified and the
  52  * exact result cannot be represented, an exception is thrown;
  53  * otherwise, calculations can be carried out to a chosen precision
  54  * and rounding mode by supplying an appropriate {@link MathContext}
  55  * object to the operation.  In either case, eight <em>rounding
  56  * modes</em> are provided for the control of rounding.  Using the
  57  * integer fields in this class (such as {@link #ROUND_HALF_UP}) to
  58  * represent rounding mode is largely obsolete; the enumeration values
  59  * of the {@code RoundingMode} {@code enum}, (such as {@link
  60  * RoundingMode#HALF_UP}) should be used instead.
  61  *
  62  * <p>When a {@code MathContext} object is supplied with a precision
  63  * setting of 0 (for example, {@link MathContext#UNLIMITED}),
  64  * arithmetic operations are exact, as are the arithmetic methods
  65  * which take no {@code MathContext} object.  (This is the only
  66  * behavior that was supported in releases prior to 5.)  As a
  67  * corollary of computing the exact result, the rounding mode setting
  68  * of a {@code MathContext} object with a precision setting of 0 is
  69  * not used and thus irrelevant.  In the case of divide, the exact
  70  * quotient could have an infinitely long decimal expansion; for
  71  * example, 1 divided by 3.  If the quotient has a nonterminating
  72  * decimal expansion and the operation is specified to return an exact
  73  * result, an {@code ArithmeticException} is thrown.  Otherwise, the
  74  * exact result of the division is returned, as done for other
  75  * operations.
  76  *
  77  * <p>When the precision setting is not 0, the rules of
  78  * {@code BigDecimal} arithmetic are broadly compatible with selected
  79  * modes of operation of the arithmetic defined in ANSI X3.274-1996
  80  * and ANSI X3.274-1996/AM 1-2000 (section 7.4).  Unlike those
  81  * standards, {@code BigDecimal} includes many rounding modes, which
  82  * were mandatory for division in {@code BigDecimal} releases prior
  83  * to 5.  Any conflicts between these ANSI standards and the
  84  * {@code BigDecimal} specification are resolved in favor of
  85  * {@code BigDecimal}.
  86  *
  87  * <p>Since the same numerical value can have different
  88  * representations (with different scales), the rules of arithmetic
  89  * and rounding must specify both the numerical result and the scale
  90  * used in the result's representation.
  91  *
  92  *
  93  * <p>In general the rounding modes and precision setting determine
  94  * how operations return results with a limited number of digits when
  95  * the exact result has more digits (perhaps infinitely many in the
  96  * case of division) than the number of digits returned.
  97  *
  98  * First, the
  99  * total number of digits to return is specified by the
 100  * {@code MathContext}'s {@code precision} setting; this determines
 101  * the result's <i>precision</i>.  The digit count starts from the
 102  * leftmost nonzero digit of the exact result.  The rounding mode
 103  * determines how any discarded trailing digits affect the returned
 104  * result.
 105  *
 106  * <p>For all arithmetic operators , the operation is carried out as
 107  * though an exact intermediate result were first calculated and then
 108  * rounded to the number of digits specified by the precision setting
 109  * (if necessary), using the selected rounding mode.  If the exact
 110  * result is not returned, some digit positions of the exact result
 111  * are discarded.  When rounding increases the magnitude of the
 112  * returned result, it is possible for a new digit position to be
 113  * created by a carry propagating to a leading {@literal "9"} digit.
 114  * For example, rounding the value 999.9 to three digits rounding up
 115  * would be numerically equal to one thousand, represented as
 116  * 100&times;10<sup>1</sup>.  In such cases, the new {@literal "1"} is
 117  * the leading digit position of the returned result.
 118  *
 119  * <p>Besides a logical exact result, each arithmetic operation has a
 120  * preferred scale for representing a result.  The preferred
 121  * scale for each operation is listed in the table below.
 122  *
 123  * <table border>
 124  * <caption><b>Preferred Scales for Results of Arithmetic Operations
 125  * </b></caption>
 126  * <tr><th>Operation</th><th>Preferred Scale of Result</th></tr>
 127  * <tr><td>Add</td><td>max(addend.scale(), augend.scale())</td>
 128  * <tr><td>Subtract</td><td>max(minuend.scale(), subtrahend.scale())</td>
 129  * <tr><td>Multiply</td><td>multiplier.scale() + multiplicand.scale()</td>
 130  * <tr><td>Divide</td><td>dividend.scale() - divisor.scale()</td>
 131  * </table>
 132  *
 133  * These scales are the ones used by the methods which return exact
 134  * arithmetic results; except that an exact divide may have to use a
 135  * larger scale since the exact result may have more digits.  For
 136  * example, {@code 1/32} is {@code 0.03125}.
 137  *
 138  * <p>Before rounding, the scale of the logical exact intermediate
 139  * result is the preferred scale for that operation.  If the exact
 140  * numerical result cannot be represented in {@code precision}
 141  * digits, rounding selects the set of digits to return and the scale
 142  * of the result is reduced from the scale of the intermediate result
 143  * to the least scale which can represent the {@code precision}
 144  * digits actually returned.  If the exact result can be represented
 145  * with at most {@code precision} digits, the representation
 146  * of the result with the scale closest to the preferred scale is
 147  * returned.  In particular, an exactly representable quotient may be
 148  * represented in fewer than {@code precision} digits by removing
 149  * trailing zeros and decreasing the scale.  For example, rounding to
 150  * three digits using the {@linkplain RoundingMode#FLOOR floor}
 151  * rounding mode, <br>
 152  *
 153  * {@code 19/100 = 0.19   // integer=19,  scale=2} <br>
 154  *
 155  * but<br>
 156  *
 157  * {@code 21/110 = 0.190  // integer=190, scale=3} <br>
 158  *
 159  * <p>Note that for add, subtract, and multiply, the reduction in
 160  * scale will equal the number of digit positions of the exact result
 161  * which are discarded. If the rounding causes a carry propagation to
 162  * create a new high-order digit position, an additional digit of the
 163  * result is discarded than when no new digit position is created.
 164  *
 165  * <p>Other methods may have slightly different rounding semantics.
 166  * For example, the result of the {@code pow} method using the
 167  * {@linkplain #pow(int, MathContext) specified algorithm} can
 168  * occasionally differ from the rounded mathematical result by more
 169  * than one unit in the last place, one <i>{@linkplain #ulp() ulp}</i>.
 170  *
 171  * <p>Two types of operations are provided for manipulating the scale
 172  * of a {@code BigDecimal}: scaling/rounding operations and decimal
 173  * point motion operations.  Scaling/rounding operations ({@link
 174  * #setScale setScale} and {@link #round round}) return a
 175  * {@code BigDecimal} whose value is approximately (or exactly) equal
 176  * to that of the operand, but whose scale or precision is the
 177  * specified value; that is, they increase or decrease the precision
 178  * of the stored number with minimal effect on its value.  Decimal
 179  * point motion operations ({@link #movePointLeft movePointLeft} and
 180  * {@link #movePointRight movePointRight}) return a
 181  * {@code BigDecimal} created from the operand by moving the decimal
 182  * point a specified distance in the specified direction.
 183  *
 184  * <p>For the sake of brevity and clarity, pseudo-code is used
 185  * throughout the descriptions of {@code BigDecimal} methods.  The
 186  * pseudo-code expression {@code (i + j)} is shorthand for "a
 187  * {@code BigDecimal} whose value is that of the {@code BigDecimal}
 188  * {@code i} added to that of the {@code BigDecimal}
 189  * {@code j}." The pseudo-code expression {@code (i == j)} is
 190  * shorthand for "{@code true} if and only if the
 191  * {@code BigDecimal} {@code i} represents the same value as the
 192  * {@code BigDecimal} {@code j}." Other pseudo-code expressions
 193  * are interpreted similarly.  Square brackets are used to represent
 194  * the particular {@code BigInteger} and scale pair defining a
 195  * {@code BigDecimal} value; for example [19, 2] is the
 196  * {@code BigDecimal} numerically equal to 0.19 having a scale of 2.
 197  *
 198  * <p>Note: care should be exercised if {@code BigDecimal} objects
 199  * are used as keys in a {@link java.util.SortedMap SortedMap} or
 200  * elements in a {@link java.util.SortedSet SortedSet} since
 201  * {@code BigDecimal}'s <i>natural ordering</i> is <i>inconsistent
 202  * with equals</i>.  See {@link Comparable}, {@link
 203  * java.util.SortedMap} or {@link java.util.SortedSet} for more
 204  * information.
 205  *
 206  * <p>All methods and constructors for this class throw
 207  * {@code NullPointerException} when passed a {@code null} object
 208  * reference for any input parameter.
 209  *
 210  * @see     BigInteger
 211  * @see     MathContext
 212  * @see     RoundingMode
 213  * @see     java.util.SortedMap
 214  * @see     java.util.SortedSet
 215  * @author  Josh Bloch
 216  * @author  Mike Cowlishaw
 217  * @author  Joseph D. Darcy
 218  * @author  Sergey V. Kuksenko
 219  */
 220 public class BigDecimal extends Number implements Comparable<BigDecimal> {
 221     /**
 222      * The unscaled value of this BigDecimal, as returned by {@link
 223      * #unscaledValue}.
 224      *
 225      * @serial
 226      * @see #unscaledValue
 227      */
 228     private final BigInteger intVal;
 229 
 230     /**
 231      * The scale of this BigDecimal, as returned by {@link #scale}.
 232      *
 233      * @serial
 234      * @see #scale
 235      */
 236     private final int scale;  // Note: this may have any value, so
 237                               // calculations must be done in longs
 238 
 239     /**
 240      * The number of decimal digits in this BigDecimal, or 0 if the
 241      * number of digits are not known (lookaside information).  If
 242      * nonzero, the value is guaranteed correct.  Use the precision()
 243      * method to obtain and set the value if it might be 0.  This
 244      * field is mutable until set nonzero.
 245      *
 246      * @since  1.5
 247      */
 248     private transient int precision;
 249 
 250     /**
 251      * Used to store the canonical string representation, if computed.
 252      */
 253     private transient String stringCache;
 254 
 255     /**
 256      * Sentinel value for {@link #intCompact} indicating the
 257      * significand information is only available from {@code intVal}.
 258      */
 259     static final long INFLATED = Long.MIN_VALUE;
 260 
 261     private static final BigInteger INFLATED_BIGINT = BigInteger.valueOf(INFLATED);
 262 
 263     /**
 264      * If the absolute value of the significand of this BigDecimal is
 265      * less than or equal to {@code Long.MAX_VALUE}, the value can be
 266      * compactly stored in this field and used in computations.
 267      */
 268     private final transient long intCompact;
 269 
 270     // All 18-digit base ten strings fit into a long; not all 19-digit
 271     // strings will
 272     private static final int MAX_COMPACT_DIGITS = 18;
 273 
 274     /* Appease the serialization gods */
 275     private static final long serialVersionUID = 6108874887143696463L;
 276 
 277     private static final ThreadLocal<StringBuilderHelper>
 278         threadLocalStringBuilderHelper = new ThreadLocal<StringBuilderHelper>() {
 279         @Override
 280         protected StringBuilderHelper initialValue() {
 281             return new StringBuilderHelper();
 282         }
 283     };
 284 
 285     // Cache of common small BigDecimal values.
 286     private static final BigDecimal zeroThroughTen[] = {
 287         new BigDecimal(BigInteger.ZERO,       0,  0, 1),
 288         new BigDecimal(BigInteger.ONE,        1,  0, 1),
 289         new BigDecimal(BigInteger.valueOf(2), 2,  0, 1),
 290         new BigDecimal(BigInteger.valueOf(3), 3,  0, 1),
 291         new BigDecimal(BigInteger.valueOf(4), 4,  0, 1),
 292         new BigDecimal(BigInteger.valueOf(5), 5,  0, 1),
 293         new BigDecimal(BigInteger.valueOf(6), 6,  0, 1),
 294         new BigDecimal(BigInteger.valueOf(7), 7,  0, 1),
 295         new BigDecimal(BigInteger.valueOf(8), 8,  0, 1),
 296         new BigDecimal(BigInteger.valueOf(9), 9,  0, 1),
 297         new BigDecimal(BigInteger.TEN,        10, 0, 2),
 298     };
 299 
 300     // Cache of zero scaled by 0 - 15
 301     private static final BigDecimal[] ZERO_SCALED_BY = {
 302         zeroThroughTen[0],
 303         new BigDecimal(BigInteger.ZERO, 0, 1, 1),
 304         new BigDecimal(BigInteger.ZERO, 0, 2, 1),
 305         new BigDecimal(BigInteger.ZERO, 0, 3, 1),
 306         new BigDecimal(BigInteger.ZERO, 0, 4, 1),
 307         new BigDecimal(BigInteger.ZERO, 0, 5, 1),
 308         new BigDecimal(BigInteger.ZERO, 0, 6, 1),
 309         new BigDecimal(BigInteger.ZERO, 0, 7, 1),
 310         new BigDecimal(BigInteger.ZERO, 0, 8, 1),
 311         new BigDecimal(BigInteger.ZERO, 0, 9, 1),
 312         new BigDecimal(BigInteger.ZERO, 0, 10, 1),
 313         new BigDecimal(BigInteger.ZERO, 0, 11, 1),
 314         new BigDecimal(BigInteger.ZERO, 0, 12, 1),
 315         new BigDecimal(BigInteger.ZERO, 0, 13, 1),
 316         new BigDecimal(BigInteger.ZERO, 0, 14, 1),
 317         new BigDecimal(BigInteger.ZERO, 0, 15, 1),
 318     };
 319 
 320     // Half of Long.MIN_VALUE & Long.MAX_VALUE.
 321     private static final long HALF_LONG_MAX_VALUE = Long.MAX_VALUE / 2;
 322     private static final long HALF_LONG_MIN_VALUE = Long.MIN_VALUE / 2;
 323 
 324     // Constants
 325     /**
 326      * The value 0, with a scale of 0.
 327      *
 328      * @since  1.5
 329      */
 330     public static final BigDecimal ZERO =
 331         zeroThroughTen[0];
 332 
 333     /**
 334      * The value 1, with a scale of 0.
 335      *
 336      * @since  1.5
 337      */
 338     public static final BigDecimal ONE =
 339         zeroThroughTen[1];
 340 
 341     /**
 342      * The value 10, with a scale of 0.
 343      *
 344      * @since  1.5
 345      */
 346     public static final BigDecimal TEN =
 347         zeroThroughTen[10];
 348 
 349     // Constructors
 350 
 351     /**
 352      * Trusted package private constructor.
 353      * Trusted simply means if val is INFLATED, intVal could not be null and
 354      * if intVal is null, val could not be INFLATED.
 355      */
 356     BigDecimal(BigInteger intVal, long val, int scale, int prec) {
 357         this.scale = scale;
 358         this.precision = prec;
 359         this.intCompact = val;
 360         this.intVal = intVal;
 361     }
 362 
 363     /**
 364      * Translates a character array representation of a
 365      * {@code BigDecimal} into a {@code BigDecimal}, accepting the
 366      * same sequence of characters as the {@link #BigDecimal(String)}
 367      * constructor, while allowing a sub-array to be specified.
 368      *
 369      * <p>Note that if the sequence of characters is already available
 370      * within a character array, using this constructor is faster than
 371      * converting the {@code char} array to string and using the
 372      * {@code BigDecimal(String)} constructor .
 373      *
 374      * @param  in {@code char} array that is the source of characters.
 375      * @param  offset first character in the array to inspect.
 376      * @param  len number of characters to consider.
 377      * @throws NumberFormatException if {@code in} is not a valid
 378      *         representation of a {@code BigDecimal} or the defined subarray
 379      *         is not wholly within {@code in}.
 380      * @since  1.5
 381      */
 382     public BigDecimal(char[] in, int offset, int len) {
 383         this(in,offset,len,MathContext.UNLIMITED);
 384     }
 385 
 386     /**
 387      * Translates a character array representation of a
 388      * {@code BigDecimal} into a {@code BigDecimal}, accepting the
 389      * same sequence of characters as the {@link #BigDecimal(String)}
 390      * constructor, while allowing a sub-array to be specified and
 391      * with rounding according to the context settings.
 392      *
 393      * <p>Note that if the sequence of characters is already available
 394      * within a character array, using this constructor is faster than
 395      * converting the {@code char} array to string and using the
 396      * {@code BigDecimal(String)} constructor .
 397      *
 398      * @param  in {@code char} array that is the source of characters.
 399      * @param  offset first character in the array to inspect.
 400      * @param  len number of characters to consider..
 401      * @param  mc the context to use.
 402      * @throws ArithmeticException if the result is inexact but the
 403      *         rounding mode is {@code UNNECESSARY}.
 404      * @throws NumberFormatException if {@code in} is not a valid
 405      *         representation of a {@code BigDecimal} or the defined subarray
 406      *         is not wholly within {@code in}.
 407      * @since  1.5
 408      */
 409     public BigDecimal(char[] in, int offset, int len, MathContext mc) {
 410         // protect against huge length.
 411         if (offset + len > in.length || offset < 0)
 412             throw new NumberFormatException("Bad offset or len arguments for char[] input.");
 413         // This is the primary string to BigDecimal constructor; all
 414         // incoming strings end up here; it uses explicit (inline)
 415         // parsing for speed and generates at most one intermediate
 416         // (temporary) object (a char[] array) for non-compact case.
 417 
 418         // Use locals for all fields values until completion
 419         int prec = 0;                 // record precision value
 420         int scl = 0;                  // record scale value
 421         long rs = 0;                  // the compact value in long
 422         BigInteger rb = null;         // the inflated value in BigInteger
 423         // use array bounds checking to handle too-long, len == 0,
 424         // bad offset, etc.
 425         try {
 426             // handle the sign
 427             boolean isneg = false;          // assume positive
 428             if (in[offset] == '-') {
 429                 isneg = true;               // leading minus means negative
 430                 offset++;
 431                 len--;
 432             } else if (in[offset] == '+') { // leading + allowed
 433                 offset++;
 434                 len--;
 435             }
 436 
 437             // should now be at numeric part of the significand
 438             boolean dot = false;             // true when there is a '.'
 439             long exp = 0;                    // exponent
 440             char c;                          // current character
 441             boolean isCompact = (len <= MAX_COMPACT_DIGITS);
 442             // integer significand array & idx is the index to it. The array
 443             // is ONLY used when we can't use a compact representation.
 444             int idx = 0;
 445             if (isCompact) {
 446                 // First compact case, we need not to preserve the character
 447                 // and we can just compute the value in place.
 448                 for (; len > 0; offset++, len--) {
 449                     c = in[offset];
 450                     if ((c == '0')) { // have zero
 451                         if (prec == 0)
 452                             prec = 1;
 453                         else if (rs != 0) {
 454                             rs *= 10;
 455                             ++prec;
 456                         } // else digit is a redundant leading zero
 457                         if (dot)
 458                             ++scl;
 459                     } else if ((c >= '1' && c <= '9')) { // have digit
 460                         int digit = c - '0';
 461                         if (prec != 1 || rs != 0)
 462                             ++prec; // prec unchanged if preceded by 0s
 463                         rs = rs * 10 + digit;
 464                         if (dot)
 465                             ++scl;
 466                     } else if (c == '.') {   // have dot
 467                         // have dot
 468                         if (dot) // two dots
 469                             throw new NumberFormatException();
 470                         dot = true;
 471                     } else if (Character.isDigit(c)) { // slow path
 472                         int digit = Character.digit(c, 10);
 473                         if (digit == 0) {
 474                             if (prec == 0)
 475                                 prec = 1;
 476                             else if (rs != 0) {
 477                                 rs *= 10;
 478                                 ++prec;
 479                             } // else digit is a redundant leading zero
 480                         } else {
 481                             if (prec != 1 || rs != 0)
 482                                 ++prec; // prec unchanged if preceded by 0s
 483                             rs = rs * 10 + digit;
 484                         }
 485                         if (dot)
 486                             ++scl;
 487                     } else if ((c == 'e') || (c == 'E')) {
 488                         exp = parseExp(in, offset, len);
 489                         // Next test is required for backwards compatibility
 490                         if ((int) exp != exp) // overflow
 491                             throw new NumberFormatException();
 492                         break; // [saves a test]
 493                     } else {
 494                         throw new NumberFormatException();
 495                     }
 496                 }
 497                 if (prec == 0) // no digits found
 498                     throw new NumberFormatException();
 499                 // Adjust scale if exp is not zero.
 500                 if (exp != 0) { // had significant exponent
 501                     scl = adjustScale(scl, exp);
 502                 }
 503                 rs = isneg ? -rs : rs;
 504                 int mcp = mc.precision;
 505                 int drop = prec - mcp; // prec has range [1, MAX_INT], mcp has range [0, MAX_INT];
 506                                        // therefore, this subtract cannot overflow
 507                 if (mcp > 0 && drop > 0) {  // do rounding
 508                     while (drop > 0) {
 509                         scl = checkScaleNonZero((long) scl - drop);
 510                         rs = divideAndRound(rs, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
 511                         prec = longDigitLength(rs);
 512                         drop = prec - mcp;
 513                     }
 514                 }
 515             } else {
 516                 char coeff[] = new char[len];
 517                 for (; len > 0; offset++, len--) {
 518                     c = in[offset];
 519                     // have digit
 520                     if ((c >= '0' && c <= '9') || Character.isDigit(c)) {
 521                         // First compact case, we need not to preserve the character
 522                         // and we can just compute the value in place.
 523                         if (c == '0' || Character.digit(c, 10) == 0) {
 524                             if (prec == 0) {
 525                                 coeff[idx] = c;
 526                                 prec = 1;
 527                             } else if (idx != 0) {
 528                                 coeff[idx++] = c;
 529                                 ++prec;
 530                             } // else c must be a redundant leading zero
 531                         } else {
 532                             if (prec != 1 || idx != 0)
 533                                 ++prec; // prec unchanged if preceded by 0s
 534                             coeff[idx++] = c;
 535                         }
 536                         if (dot)
 537                             ++scl;
 538                         continue;
 539                     }
 540                     // have dot
 541                     if (c == '.') {
 542                         // have dot
 543                         if (dot) // two dots
 544                             throw new NumberFormatException();
 545                         dot = true;
 546                         continue;
 547                     }
 548                     // exponent expected
 549                     if ((c != 'e') && (c != 'E'))
 550                         throw new NumberFormatException();
 551                     exp = parseExp(in, offset, len);
 552                     // Next test is required for backwards compatibility
 553                     if ((int) exp != exp) // overflow
 554                         throw new NumberFormatException();
 555                     break; // [saves a test]
 556                 }
 557                 // here when no characters left
 558                 if (prec == 0) // no digits found
 559                     throw new NumberFormatException();
 560                 // Adjust scale if exp is not zero.
 561                 if (exp != 0) { // had significant exponent
 562                     scl = adjustScale(scl, exp);
 563                 }
 564                 // Remove leading zeros from precision (digits count)
 565                 rb = new BigInteger(coeff, isneg ? -1 : 1, prec);
 566                 rs = compactValFor(rb);
 567                 int mcp = mc.precision;
 568                 if (mcp > 0 && (prec > mcp)) {
 569                     if (rs == INFLATED) {
 570                         int drop = prec - mcp;
 571                         while (drop > 0) {
 572                             scl = checkScaleNonZero((long) scl - drop);
 573                             rb = divideAndRoundByTenPow(rb, drop, mc.roundingMode.oldMode);
 574                             rs = compactValFor(rb);
 575                             if (rs != INFLATED) {
 576                                 prec = longDigitLength(rs);
 577                                 break;
 578                             }
 579                             prec = bigDigitLength(rb);
 580                             drop = prec - mcp;
 581                         }
 582                     }
 583                     if (rs != INFLATED) {
 584                         int drop = prec - mcp;
 585                         while (drop > 0) {
 586                             scl = checkScaleNonZero((long) scl - drop);
 587                             rs = divideAndRound(rs, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
 588                             prec = longDigitLength(rs);
 589                             drop = prec - mcp;
 590                         }
 591                         rb = null;
 592                     }
 593                 }
 594             }
 595         } catch (ArrayIndexOutOfBoundsException e) {
 596             throw new NumberFormatException();
 597         } catch (NegativeArraySizeException e) {
 598             throw new NumberFormatException();
 599         }
 600         this.scale = scl;
 601         this.precision = prec;
 602         this.intCompact = rs;
 603         this.intVal = rb;
 604     }
 605 
 606     private int adjustScale(int scl, long exp) {
 607         long adjustedScale = scl - exp;
 608         if (adjustedScale > Integer.MAX_VALUE || adjustedScale < Integer.MIN_VALUE)
 609             throw new NumberFormatException("Scale out of range.");
 610         scl = (int) adjustedScale;
 611         return scl;
 612     }
 613 
 614     /*
 615      * parse exponent
 616      */
 617     private static long parseExp(char[] in, int offset, int len){
 618         long exp = 0;
 619         offset++;
 620         char c = in[offset];
 621         len--;
 622         boolean negexp = (c == '-');
 623         // optional sign
 624         if (negexp || c == '+') {
 625             offset++;
 626             c = in[offset];
 627             len--;
 628         }
 629         if (len <= 0) // no exponent digits
 630             throw new NumberFormatException();
 631         // skip leading zeros in the exponent
 632         while (len > 10 && (c=='0' || (Character.digit(c, 10) == 0))) {
 633             offset++;
 634             c = in[offset];
 635             len--;
 636         }
 637         if (len > 10) // too many nonzero exponent digits
 638             throw new NumberFormatException();
 639         // c now holds first digit of exponent
 640         for (;; len--) {
 641             int v;
 642             if (c >= '0' && c <= '9') {
 643                 v = c - '0';
 644             } else {
 645                 v = Character.digit(c, 10);
 646                 if (v < 0) // not a digit
 647                     throw new NumberFormatException();
 648             }
 649             exp = exp * 10 + v;
 650             if (len == 1)
 651                 break; // that was final character
 652             offset++;
 653             c = in[offset];
 654         }
 655         if (negexp) // apply sign
 656             exp = -exp;
 657         return exp;
 658     }
 659 
 660     /**
 661      * Translates a character array representation of a
 662      * {@code BigDecimal} into a {@code BigDecimal}, accepting the
 663      * same sequence of characters as the {@link #BigDecimal(String)}
 664      * constructor.
 665      *
 666      * <p>Note that if the sequence of characters is already available
 667      * as a character array, using this constructor is faster than
 668      * converting the {@code char} array to string and using the
 669      * {@code BigDecimal(String)} constructor .
 670      *
 671      * @param in {@code char} array that is the source of characters.
 672      * @throws NumberFormatException if {@code in} is not a valid
 673      *         representation of a {@code BigDecimal}.
 674      * @since  1.5
 675      */
 676     public BigDecimal(char[] in) {
 677         this(in, 0, in.length);
 678     }
 679 
 680     /**
 681      * Translates a character array representation of a
 682      * {@code BigDecimal} into a {@code BigDecimal}, accepting the
 683      * same sequence of characters as the {@link #BigDecimal(String)}
 684      * constructor and with rounding according to the context
 685      * settings.
 686      *
 687      * <p>Note that if the sequence of characters is already available
 688      * as a character array, using this constructor is faster than
 689      * converting the {@code char} array to string and using the
 690      * {@code BigDecimal(String)} constructor .
 691      *
 692      * @param  in {@code char} array that is the source of characters.
 693      * @param  mc the context to use.
 694      * @throws ArithmeticException if the result is inexact but the
 695      *         rounding mode is {@code UNNECESSARY}.
 696      * @throws NumberFormatException if {@code in} is not a valid
 697      *         representation of a {@code BigDecimal}.
 698      * @since  1.5
 699      */
 700     public BigDecimal(char[] in, MathContext mc) {
 701         this(in, 0, in.length, mc);
 702     }
 703 
 704     /**
 705      * Translates the string representation of a {@code BigDecimal}
 706      * into a {@code BigDecimal}.  The string representation consists
 707      * of an optional sign, {@code '+'} (<tt> '&#92;u002B'</tt>) or
 708      * {@code '-'} (<tt>'&#92;u002D'</tt>), followed by a sequence of
 709      * zero or more decimal digits ("the integer"), optionally
 710      * followed by a fraction, optionally followed by an exponent.
 711      *
 712      * <p>The fraction consists of a decimal point followed by zero
 713      * or more decimal digits.  The string must contain at least one
 714      * digit in either the integer or the fraction.  The number formed
 715      * by the sign, the integer and the fraction is referred to as the
 716      * <i>significand</i>.
 717      *
 718      * <p>The exponent consists of the character {@code 'e'}
 719      * (<tt>'&#92;u0065'</tt>) or {@code 'E'} (<tt>'&#92;u0045'</tt>)
 720      * followed by one or more decimal digits.  The value of the
 721      * exponent must lie between -{@link Integer#MAX_VALUE} ({@link
 722      * Integer#MIN_VALUE}+1) and {@link Integer#MAX_VALUE}, inclusive.
 723      *
 724      * <p>More formally, the strings this constructor accepts are
 725      * described by the following grammar:
 726      * <blockquote>
 727      * <dl>
 728      * <dt><i>BigDecimalString:</i>
 729      * <dd><i>Sign<sub>opt</sub> Significand Exponent<sub>opt</sub></i>
 730      * <p>
 731      * <dt><i>Sign:</i>
 732      * <dd>{@code +}
 733      * <dd>{@code -}
 734      * <p>
 735      * <dt><i>Significand:</i>
 736      * <dd><i>IntegerPart</i> {@code .} <i>FractionPart<sub>opt</sub></i>
 737      * <dd>{@code .} <i>FractionPart</i>
 738      * <dd><i>IntegerPart</i>
 739      * <p>
 740      * <dt><i>IntegerPart:</i>
 741      * <dd><i>Digits</i>
 742      * <p>
 743      * <dt><i>FractionPart:</i>
 744      * <dd><i>Digits</i>
 745      * <p>
 746      * <dt><i>Exponent:</i>
 747      * <dd><i>ExponentIndicator SignedInteger</i>
 748      * <p>
 749      * <dt><i>ExponentIndicator:</i>
 750      * <dd>{@code e}
 751      * <dd>{@code E}
 752      * <p>
 753      * <dt><i>SignedInteger:</i>
 754      * <dd><i>Sign<sub>opt</sub> Digits</i>
 755      * <p>
 756      * <dt><i>Digits:</i>
 757      * <dd><i>Digit</i>
 758      * <dd><i>Digits Digit</i>
 759      * <p>
 760      * <dt><i>Digit:</i>
 761      * <dd>any character for which {@link Character#isDigit}
 762      * returns {@code true}, including 0, 1, 2 ...
 763      * </dl>
 764      * </blockquote>
 765      *
 766      * <p>The scale of the returned {@code BigDecimal} will be the
 767      * number of digits in the fraction, or zero if the string
 768      * contains no decimal point, subject to adjustment for any
 769      * exponent; if the string contains an exponent, the exponent is
 770      * subtracted from the scale.  The value of the resulting scale
 771      * must lie between {@code Integer.MIN_VALUE} and
 772      * {@code Integer.MAX_VALUE}, inclusive.
 773      *
 774      * <p>The character-to-digit mapping is provided by {@link
 775      * java.lang.Character#digit} set to convert to radix 10.  The
 776      * String may not contain any extraneous characters (whitespace,
 777      * for example).
 778      *
 779      * <p><b>Examples:</b><br>
 780      * The value of the returned {@code BigDecimal} is equal to
 781      * <i>significand</i> &times; 10<sup>&nbsp;<i>exponent</i></sup>.
 782      * For each string on the left, the resulting representation
 783      * [{@code BigInteger}, {@code scale}] is shown on the right.
 784      * <pre>
 785      * "0"            [0,0]
 786      * "0.00"         [0,2]
 787      * "123"          [123,0]
 788      * "-123"         [-123,0]
 789      * "1.23E3"       [123,-1]
 790      * "1.23E+3"      [123,-1]
 791      * "12.3E+7"      [123,-6]
 792      * "12.0"         [120,1]
 793      * "12.3"         [123,1]
 794      * "0.00123"      [123,5]
 795      * "-1.23E-12"    [-123,14]
 796      * "1234.5E-4"    [12345,5]
 797      * "0E+7"         [0,-7]
 798      * "-0"           [0,0]
 799      * </pre>
 800      *
 801      * <p>Note: For values other than {@code float} and
 802      * {@code double} NaN and &plusmn;Infinity, this constructor is
 803      * compatible with the values returned by {@link Float#toString}
 804      * and {@link Double#toString}.  This is generally the preferred
 805      * way to convert a {@code float} or {@code double} into a
 806      * BigDecimal, as it doesn't suffer from the unpredictability of
 807      * the {@link #BigDecimal(double)} constructor.
 808      *
 809      * @param val String representation of {@code BigDecimal}.
 810      *
 811      * @throws NumberFormatException if {@code val} is not a valid
 812      *         representation of a {@code BigDecimal}.
 813      */
 814     public BigDecimal(String val) {
 815         this(val.toCharArray(), 0, val.length());
 816     }
 817 
 818     /**
 819      * Translates the string representation of a {@code BigDecimal}
 820      * into a {@code BigDecimal}, accepting the same strings as the
 821      * {@link #BigDecimal(String)} constructor, with rounding
 822      * according to the context settings.
 823      *
 824      * @param  val string representation of a {@code BigDecimal}.
 825      * @param  mc the context to use.
 826      * @throws ArithmeticException if the result is inexact but the
 827      *         rounding mode is {@code UNNECESSARY}.
 828      * @throws NumberFormatException if {@code val} is not a valid
 829      *         representation of a BigDecimal.
 830      * @since  1.5
 831      */
 832     public BigDecimal(String val, MathContext mc) {
 833         this(val.toCharArray(), 0, val.length(), mc);
 834     }
 835 
 836     /**
 837      * Translates a {@code double} into a {@code BigDecimal} which
 838      * is the exact decimal representation of the {@code double}'s
 839      * binary floating-point value.  The scale of the returned
 840      * {@code BigDecimal} is the smallest value such that
 841      * <tt>(10<sup>scale</sup> &times; val)</tt> is an integer.
 842      * <p>
 843      * <b>Notes:</b>
 844      * <ol>
 845      * <li>
 846      * The results of this constructor can be somewhat unpredictable.
 847      * One might assume that writing {@code new BigDecimal(0.1)} in
 848      * Java creates a {@code BigDecimal} which is exactly equal to
 849      * 0.1 (an unscaled value of 1, with a scale of 1), but it is
 850      * actually equal to
 851      * 0.1000000000000000055511151231257827021181583404541015625.
 852      * This is because 0.1 cannot be represented exactly as a
 853      * {@code double} (or, for that matter, as a binary fraction of
 854      * any finite length).  Thus, the value that is being passed
 855      * <i>in</i> to the constructor is not exactly equal to 0.1,
 856      * appearances notwithstanding.
 857      *
 858      * <li>
 859      * The {@code String} constructor, on the other hand, is
 860      * perfectly predictable: writing {@code new BigDecimal("0.1")}
 861      * creates a {@code BigDecimal} which is <i>exactly</i> equal to
 862      * 0.1, as one would expect.  Therefore, it is generally
 863      * recommended that the {@linkplain #BigDecimal(String)
 864      * <tt>String</tt> constructor} be used in preference to this one.
 865      *
 866      * <li>
 867      * When a {@code double} must be used as a source for a
 868      * {@code BigDecimal}, note that this constructor provides an
 869      * exact conversion; it does not give the same result as
 870      * converting the {@code double} to a {@code String} using the
 871      * {@link Double#toString(double)} method and then using the
 872      * {@link #BigDecimal(String)} constructor.  To get that result,
 873      * use the {@code static} {@link #valueOf(double)} method.
 874      * </ol>
 875      *
 876      * @param val {@code double} value to be converted to
 877      *        {@code BigDecimal}.
 878      * @throws NumberFormatException if {@code val} is infinite or NaN.
 879      */
 880     public BigDecimal(double val) {
 881         this(val,MathContext.UNLIMITED);
 882     }
 883 
 884     /**
 885      * Translates a {@code double} into a {@code BigDecimal}, with
 886      * rounding according to the context settings.  The scale of the
 887      * {@code BigDecimal} is the smallest value such that
 888      * <tt>(10<sup>scale</sup> &times; val)</tt> is an integer.
 889      *
 890      * <p>The results of this constructor can be somewhat unpredictable
 891      * and its use is generally not recommended; see the notes under
 892      * the {@link #BigDecimal(double)} constructor.
 893      *
 894      * @param  val {@code double} value to be converted to
 895      *         {@code BigDecimal}.
 896      * @param  mc the context to use.
 897      * @throws ArithmeticException if the result is inexact but the
 898      *         RoundingMode is UNNECESSARY.
 899      * @throws NumberFormatException if {@code val} is infinite or NaN.
 900      * @since  1.5
 901      */
 902     public BigDecimal(double val, MathContext mc) {
 903         if (Double.isInfinite(val) || Double.isNaN(val))
 904             throw new NumberFormatException("Infinite or NaN");
 905         // Translate the double into sign, exponent and significand, according
 906         // to the formulae in JLS, Section 20.10.22.
 907         long valBits = Double.doubleToLongBits(val);
 908         int sign = ((valBits >> 63) == 0 ? 1 : -1);
 909         int exponent = (int) ((valBits >> 52) & 0x7ffL);
 910         long significand = (exponent == 0
 911                 ? (valBits & ((1L << 52) - 1)) << 1
 912                 : (valBits & ((1L << 52) - 1)) | (1L << 52));
 913         exponent -= 1075;
 914         // At this point, val == sign * significand * 2**exponent.
 915 
 916         /*
 917          * Special case zero to supress nonterminating normalization and bogus
 918          * scale calculation.
 919          */
 920         if (significand == 0) {
 921             this.intVal = BigInteger.ZERO;
 922             this.scale = 0;
 923             this.intCompact = 0;
 924             this.precision = 1;
 925             return;
 926         }
 927         // Normalize
 928         while ((significand & 1) == 0) { // i.e., significand is even
 929             significand >>= 1;
 930             exponent++;
 931         }
 932         int scale = 0;
 933         // Calculate intVal and scale
 934         BigInteger intVal;
 935         long compactVal = sign * significand;
 936         if (exponent == 0) {
 937             intVal = (compactVal == INFLATED) ? INFLATED_BIGINT : null;
 938         } else {
 939             if (exponent < 0) {
 940                 intVal = BigInteger.valueOf(5).pow(-exponent).multiply(compactVal);
 941                 scale = -exponent;
 942             } else { //  (exponent > 0)
 943                 intVal = BigInteger.valueOf(2).pow(exponent).multiply(compactVal);
 944             }
 945             compactVal = compactValFor(intVal);
 946         }
 947         int prec = 0;
 948         int mcp = mc.precision;
 949         if (mcp > 0) { // do rounding
 950             int mode = mc.roundingMode.oldMode;
 951             int drop;
 952             if (compactVal == INFLATED) {
 953                 prec = bigDigitLength(intVal);
 954                 drop = prec - mcp;
 955                 while (drop > 0) {
 956                     scale = checkScaleNonZero((long) scale - drop);
 957                     intVal = divideAndRoundByTenPow(intVal, drop, mode);
 958                     compactVal = compactValFor(intVal);
 959                     if (compactVal != INFLATED) {
 960                         break;
 961                     }
 962                     prec = bigDigitLength(intVal);
 963                     drop = prec - mcp;
 964                 }
 965             }
 966             if (compactVal != INFLATED) {
 967                 prec = longDigitLength(compactVal);
 968                 drop = prec - mcp;
 969                 while (drop > 0) {
 970                     scale = checkScaleNonZero((long) scale - drop);
 971                     compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
 972                     prec = longDigitLength(compactVal);
 973                     drop = prec - mcp;
 974                 }
 975                 intVal = null;
 976             }
 977         }
 978         this.intVal = intVal;
 979         this.intCompact = compactVal;
 980         this.scale = scale;
 981         this.precision = prec;
 982     }
 983 
 984     /**
 985      * Translates a {@code BigInteger} into a {@code BigDecimal}.
 986      * The scale of the {@code BigDecimal} is zero.
 987      *
 988      * @param val {@code BigInteger} value to be converted to
 989      *            {@code BigDecimal}.
 990      */
 991     public BigDecimal(BigInteger val) {
 992         scale = 0;
 993         intVal = val;
 994         intCompact = compactValFor(val);
 995     }
 996 
 997     /**
 998      * Translates a {@code BigInteger} into a {@code BigDecimal}
 999      * rounding according to the context settings.  The scale of the
1000      * {@code BigDecimal} is zero.
1001      *
1002      * @param val {@code BigInteger} value to be converted to
1003      *            {@code BigDecimal}.
1004      * @param  mc the context to use.
1005      * @throws ArithmeticException if the result is inexact but the
1006      *         rounding mode is {@code UNNECESSARY}.
1007      * @since  1.5
1008      */
1009     public BigDecimal(BigInteger val, MathContext mc) {
1010         this(val,0,mc);
1011     }
1012 
1013     /**
1014      * Translates a {@code BigInteger} unscaled value and an
1015      * {@code int} scale into a {@code BigDecimal}.  The value of
1016      * the {@code BigDecimal} is
1017      * <tt>(unscaledVal &times; 10<sup>-scale</sup>)</tt>.
1018      *
1019      * @param unscaledVal unscaled value of the {@code BigDecimal}.
1020      * @param scale scale of the {@code BigDecimal}.
1021      */
1022     public BigDecimal(BigInteger unscaledVal, int scale) {
1023         // Negative scales are now allowed
1024         this.intVal = unscaledVal;
1025         this.intCompact = compactValFor(unscaledVal);
1026         this.scale = scale;
1027     }
1028 
1029     /**
1030      * Translates a {@code BigInteger} unscaled value and an
1031      * {@code int} scale into a {@code BigDecimal}, with rounding
1032      * according to the context settings.  The value of the
1033      * {@code BigDecimal} is <tt>(unscaledVal &times;
1034      * 10<sup>-scale</sup>)</tt>, rounded according to the
1035      * {@code precision} and rounding mode settings.
1036      *
1037      * @param  unscaledVal unscaled value of the {@code BigDecimal}.
1038      * @param  scale scale of the {@code BigDecimal}.
1039      * @param  mc the context to use.
1040      * @throws ArithmeticException if the result is inexact but the
1041      *         rounding mode is {@code UNNECESSARY}.
1042      * @since  1.5
1043      */
1044     public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) {
1045         long compactVal = compactValFor(unscaledVal);
1046         int mcp = mc.precision;
1047         int prec = 0;
1048         if (mcp > 0) { // do rounding
1049             int mode = mc.roundingMode.oldMode;
1050             if (compactVal == INFLATED) {
1051                 prec = bigDigitLength(unscaledVal);
1052                 int drop = prec - mcp;
1053                 while (drop > 0) {
1054                     scale = checkScaleNonZero((long) scale - drop);
1055                     unscaledVal = divideAndRoundByTenPow(unscaledVal, drop, mode);
1056                     compactVal = compactValFor(unscaledVal);
1057                     if (compactVal != INFLATED) {
1058                         break;
1059                     }
1060                     prec = bigDigitLength(unscaledVal);
1061                     drop = prec - mcp;
1062                 }
1063             }
1064             if (compactVal != INFLATED) {
1065                 prec = longDigitLength(compactVal);
1066                 int drop = prec - mcp;     // drop can't be more than 18
1067                 while (drop > 0) {
1068                     scale = checkScaleNonZero((long) scale - drop);
1069                     compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mode);
1070                     prec = longDigitLength(compactVal);
1071                     drop = prec - mcp;
1072                 }
1073                 unscaledVal = null;
1074             }
1075         }
1076         this.intVal = unscaledVal;
1077         this.intCompact = compactVal;
1078         this.scale = scale;
1079         this.precision = prec;
1080     }
1081 
1082     /**
1083      * Translates an {@code int} into a {@code BigDecimal}.  The
1084      * scale of the {@code BigDecimal} is zero.
1085      *
1086      * @param val {@code int} value to be converted to
1087      *            {@code BigDecimal}.
1088      * @since  1.5
1089      */
1090     public BigDecimal(int val) {
1091         this.intCompact = val;
1092         this.scale = 0;
1093         this.intVal = null;
1094     }
1095 
1096     /**
1097      * Translates an {@code int} into a {@code BigDecimal}, with
1098      * rounding according to the context settings.  The scale of the
1099      * {@code BigDecimal}, before any rounding, is zero.
1100      *
1101      * @param  val {@code int} value to be converted to {@code BigDecimal}.
1102      * @param  mc the context to use.
1103      * @throws ArithmeticException if the result is inexact but the
1104      *         rounding mode is {@code UNNECESSARY}.
1105      * @since  1.5
1106      */
1107     public BigDecimal(int val, MathContext mc) {
1108         int mcp = mc.precision;
1109         long compactVal = val;
1110         int scale = 0;
1111         int prec = 0;
1112         if (mcp > 0) { // do rounding
1113             prec = longDigitLength(compactVal);
1114             int drop = prec - mcp; // drop can't be more than 18
1115             while (drop > 0) {
1116                 scale = checkScaleNonZero((long) scale - drop);
1117                 compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
1118                 prec = longDigitLength(compactVal);
1119                 drop = prec - mcp;
1120             }
1121         }
1122         this.intVal = null;
1123         this.intCompact = compactVal;
1124         this.scale = scale;
1125         this.precision = prec;
1126     }
1127 
1128     /**
1129      * Translates a {@code long} into a {@code BigDecimal}.  The
1130      * scale of the {@code BigDecimal} is zero.
1131      *
1132      * @param val {@code long} value to be converted to {@code BigDecimal}.
1133      * @since  1.5
1134      */
1135     public BigDecimal(long val) {
1136         this.intCompact = val;
1137         this.intVal = (val == INFLATED) ? INFLATED_BIGINT : null;
1138         this.scale = 0;
1139     }
1140 
1141     /**
1142      * Translates a {@code long} into a {@code BigDecimal}, with
1143      * rounding according to the context settings.  The scale of the
1144      * {@code BigDecimal}, before any rounding, is zero.
1145      *
1146      * @param  val {@code long} value to be converted to {@code BigDecimal}.
1147      * @param  mc the context to use.
1148      * @throws ArithmeticException if the result is inexact but the
1149      *         rounding mode is {@code UNNECESSARY}.
1150      * @since  1.5
1151      */
1152     public BigDecimal(long val, MathContext mc) {
1153         int mcp = mc.precision;
1154         int mode = mc.roundingMode.oldMode;
1155         int prec = 0;
1156         int scale = 0;
1157         BigInteger intVal = (val == INFLATED) ? INFLATED_BIGINT : null;
1158         if (mcp > 0) { // do rounding
1159             if (val == INFLATED) {
1160                 prec = 19;
1161                 int drop = prec - mcp;
1162                 while (drop > 0) {
1163                     scale = checkScaleNonZero((long) scale - drop);
1164                     intVal = divideAndRoundByTenPow(intVal, drop, mode);
1165                     val = compactValFor(intVal);
1166                     if (val != INFLATED) {
1167                         break;
1168                     }
1169                     prec = bigDigitLength(intVal);
1170                     drop = prec - mcp;
1171                 }
1172             }
1173             if (val != INFLATED) {
1174                 prec = longDigitLength(val);
1175                 int drop = prec - mcp;
1176                 while (drop > 0) {
1177                     scale = checkScaleNonZero((long) scale - drop);
1178                     val = divideAndRound(val, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
1179                     prec = longDigitLength(val);
1180                     drop = prec - mcp;
1181                 }
1182                 intVal = null;
1183             }
1184         }
1185         this.intVal = intVal;
1186         this.intCompact = val;
1187         this.scale = scale;
1188         this.precision = prec;
1189     }
1190 
1191     // Static Factory Methods
1192 
1193     /**
1194      * Translates a {@code long} unscaled value and an
1195      * {@code int} scale into a {@code BigDecimal}.  This
1196      * {@literal "static factory method"} is provided in preference to
1197      * a ({@code long}, {@code int}) constructor because it
1198      * allows for reuse of frequently used {@code BigDecimal} values..
1199      *
1200      * @param unscaledVal unscaled value of the {@code BigDecimal}.
1201      * @param scale scale of the {@code BigDecimal}.
1202      * @return a {@code BigDecimal} whose value is
1203      *         <tt>(unscaledVal &times; 10<sup>-scale</sup>)</tt>.
1204      */
1205     public static BigDecimal valueOf(long unscaledVal, int scale) {
1206         if (scale == 0)
1207             return valueOf(unscaledVal);
1208         else if (unscaledVal == 0) {
1209             return zeroValueOf(scale);
1210         }
1211         return new BigDecimal(unscaledVal == INFLATED ?
1212                               INFLATED_BIGINT : null,
1213                               unscaledVal, scale, 0);
1214     }
1215 
1216     /**
1217      * Translates a {@code long} value into a {@code BigDecimal}
1218      * with a scale of zero.  This {@literal "static factory method"}
1219      * is provided in preference to a ({@code long}) constructor
1220      * because it allows for reuse of frequently used
1221      * {@code BigDecimal} values.
1222      *
1223      * @param val value of the {@code BigDecimal}.
1224      * @return a {@code BigDecimal} whose value is {@code val}.
1225      */
1226     public static BigDecimal valueOf(long val) {
1227         if (val >= 0 && val < zeroThroughTen.length)
1228             return zeroThroughTen[(int)val];
1229         else if (val != INFLATED)
1230             return new BigDecimal(null, val, 0, 0);
1231         return new BigDecimal(INFLATED_BIGINT, val, 0, 0);
1232     }
1233 
1234     static BigDecimal valueOf(long unscaledVal, int scale, int prec) {
1235         if (scale == 0 && unscaledVal >= 0 && unscaledVal < zeroThroughTen.length) {
1236             return zeroThroughTen[(int) unscaledVal];
1237         } else if (unscaledVal == 0) {
1238             return zeroValueOf(scale);
1239         }
1240         return new BigDecimal(unscaledVal == INFLATED ? INFLATED_BIGINT : null,
1241                 unscaledVal, scale, prec);
1242     }
1243 
1244     static BigDecimal valueOf(BigInteger intVal, int scale, int prec) {
1245         long val = compactValFor(intVal);
1246         if (val == 0) {
1247             return zeroValueOf(scale);
1248         } else if (scale == 0 && val >= 0 && val < zeroThroughTen.length) {
1249             return zeroThroughTen[(int) val];
1250         }
1251         return new BigDecimal(intVal, val, scale, prec);
1252     }
1253 
1254     static BigDecimal zeroValueOf(int scale) {
1255         if (scale >= 0 && scale < ZERO_SCALED_BY.length)
1256             return ZERO_SCALED_BY[scale];
1257         else
1258             return new BigDecimal(BigInteger.ZERO, 0, scale, 1);
1259     }
1260 
1261     /**
1262      * Translates a {@code double} into a {@code BigDecimal}, using
1263      * the {@code double}'s canonical string representation provided
1264      * by the {@link Double#toString(double)} method.
1265      *
1266      * <p><b>Note:</b> This is generally the preferred way to convert
1267      * a {@code double} (or {@code float}) into a
1268      * {@code BigDecimal}, as the value returned is equal to that
1269      * resulting from constructing a {@code BigDecimal} from the
1270      * result of using {@link Double#toString(double)}.
1271      *
1272      * @param  val {@code double} to convert to a {@code BigDecimal}.
1273      * @return a {@code BigDecimal} whose value is equal to or approximately
1274      *         equal to the value of {@code val}.
1275      * @throws NumberFormatException if {@code val} is infinite or NaN.
1276      * @since  1.5
1277      */
1278     public static BigDecimal valueOf(double val) {
1279         // Reminder: a zero double returns '0.0', so we cannot fastpath
1280         // to use the constant ZERO.  This might be important enough to
1281         // justify a factory approach, a cache, or a few private
1282         // constants, later.
1283         return new BigDecimal(Double.toString(val));
1284     }
1285 
1286     // Arithmetic Operations
1287     /**
1288      * Returns a {@code BigDecimal} whose value is {@code (this +
1289      * augend)}, and whose scale is {@code max(this.scale(),
1290      * augend.scale())}.
1291      *
1292      * @param  augend value to be added to this {@code BigDecimal}.
1293      * @return {@code this + augend}
1294      */
1295     public BigDecimal add(BigDecimal augend) {
1296         if (this.intCompact != INFLATED) {
1297             if ((augend.intCompact != INFLATED)) {
1298                 return add(this.intCompact, this.scale, augend.intCompact, augend.scale);
1299             } else {
1300                 return add(this.intCompact, this.scale, augend.intVal, augend.scale);
1301             }
1302         } else {
1303             if ((augend.intCompact != INFLATED)) {
1304                 return add(augend.intCompact, augend.scale, this.intVal, this.scale);
1305             } else {
1306                 return add(this.intVal, this.scale, augend.intVal, augend.scale);
1307             }
1308         }
1309     }
1310 
1311     /**
1312      * Returns a {@code BigDecimal} whose value is {@code (this + augend)},
1313      * with rounding according to the context settings.
1314      *
1315      * If either number is zero and the precision setting is nonzero then
1316      * the other number, rounded if necessary, is used as the result.
1317      *
1318      * @param  augend value to be added to this {@code BigDecimal}.
1319      * @param  mc the context to use.
1320      * @return {@code this + augend}, rounded as necessary.
1321      * @throws ArithmeticException if the result is inexact but the
1322      *         rounding mode is {@code UNNECESSARY}.
1323      * @since  1.5
1324      */
1325     public BigDecimal add(BigDecimal augend, MathContext mc) {
1326         if (mc.precision == 0)
1327             return add(augend);
1328         BigDecimal lhs = this;
1329 
1330         // If either number is zero then the other number, rounded and
1331         // scaled if necessary, is used as the result.
1332         {
1333             boolean lhsIsZero = lhs.signum() == 0;
1334             boolean augendIsZero = augend.signum() == 0;
1335 
1336             if (lhsIsZero || augendIsZero) {
1337                 int preferredScale = Math.max(lhs.scale(), augend.scale());
1338                 BigDecimal result;
1339 
1340                 if (lhsIsZero && augendIsZero)
1341                     return zeroValueOf(preferredScale);
1342                 result = lhsIsZero ? doRound(augend, mc) : doRound(lhs, mc);
1343 
1344                 if (result.scale() == preferredScale)
1345                     return result;
1346                 else if (result.scale() > preferredScale) {
1347                     return stripZerosToMatchScale(result.intVal, result.intCompact, result.scale, preferredScale);
1348                 } else { // result.scale < preferredScale
1349                     int precisionDiff = mc.precision - result.precision();
1350                     int scaleDiff     = preferredScale - result.scale();
1351 
1352                     if (precisionDiff >= scaleDiff)
1353                         return result.setScale(preferredScale); // can achieve target scale
1354                     else
1355                         return result.setScale(result.scale() + precisionDiff);
1356                 }
1357             }
1358         }
1359 
1360         long padding = (long) lhs.scale - augend.scale;
1361         if (padding != 0) { // scales differ; alignment needed
1362             BigDecimal arg[] = preAlign(lhs, augend, padding, mc);
1363             matchScale(arg);
1364             lhs = arg[0];
1365             augend = arg[1];
1366         }
1367         return doRound(lhs.inflated().add(augend.inflated()), lhs.scale, mc);
1368     }
1369 
1370     /**
1371      * Returns an array of length two, the sum of whose entries is
1372      * equal to the rounded sum of the {@code BigDecimal} arguments.
1373      *
1374      * <p>If the digit positions of the arguments have a sufficient
1375      * gap between them, the value smaller in magnitude can be
1376      * condensed into a {@literal "sticky bit"} and the end result will
1377      * round the same way <em>if</em> the precision of the final
1378      * result does not include the high order digit of the small
1379      * magnitude operand.
1380      *
1381      * <p>Note that while strictly speaking this is an optimization,
1382      * it makes a much wider range of additions practical.
1383      *
1384      * <p>This corresponds to a pre-shift operation in a fixed
1385      * precision floating-point adder; this method is complicated by
1386      * variable precision of the result as determined by the
1387      * MathContext.  A more nuanced operation could implement a
1388      * {@literal "right shift"} on the smaller magnitude operand so
1389      * that the number of digits of the smaller operand could be
1390      * reduced even though the significands partially overlapped.
1391      */
1392     private BigDecimal[] preAlign(BigDecimal lhs, BigDecimal augend, long padding, MathContext mc) {
1393         assert padding != 0;
1394         BigDecimal big;
1395         BigDecimal small;
1396 
1397         if (padding < 0) { // lhs is big; augend is small
1398             big = lhs;
1399             small = augend;
1400         } else { // lhs is small; augend is big
1401             big = augend;
1402             small = lhs;
1403         }
1404 
1405         /*
1406          * This is the estimated scale of an ulp of the result; it assumes that
1407          * the result doesn't have a carry-out on a true add (e.g. 999 + 1 =>
1408          * 1000) or any subtractive cancellation on borrowing (e.g. 100 - 1.2 =>
1409          * 98.8)
1410          */
1411         long estResultUlpScale = (long) big.scale - big.precision() + mc.precision;
1412 
1413         /*
1414          * The low-order digit position of big is big.scale().  This
1415          * is true regardless of whether big has a positive or
1416          * negative scale.  The high-order digit position of small is
1417          * small.scale - (small.precision() - 1).  To do the full
1418          * condensation, the digit positions of big and small must be
1419          * disjoint *and* the digit positions of small should not be
1420          * directly visible in the result.
1421          */
1422         long smallHighDigitPos = (long) small.scale - small.precision() + 1;
1423         if (smallHighDigitPos > big.scale + 2 && // big and small disjoint
1424             smallHighDigitPos > estResultUlpScale + 2) { // small digits not visible
1425             small = BigDecimal.valueOf(small.signum(), this.checkScale(Math.max(big.scale, estResultUlpScale) + 3));
1426         }
1427 
1428         // Since addition is symmetric, preserving input order in
1429         // returned operands doesn't matter
1430         BigDecimal[] result = {big, small};
1431         return result;
1432     }
1433 
1434     /**
1435      * Returns a {@code BigDecimal} whose value is {@code (this -
1436      * subtrahend)}, and whose scale is {@code max(this.scale(),
1437      * subtrahend.scale())}.
1438      *
1439      * @param  subtrahend value to be subtracted from this {@code BigDecimal}.
1440      * @return {@code this - subtrahend}
1441      */
1442     public BigDecimal subtract(BigDecimal subtrahend) {
1443         if (this.intCompact != INFLATED) {
1444             if ((subtrahend.intCompact != INFLATED)) {
1445                 return add(this.intCompact, this.scale, -subtrahend.intCompact, subtrahend.scale);
1446             } else {
1447                 return add(this.intCompact, this.scale, subtrahend.intVal.negate(), subtrahend.scale);
1448             }
1449         } else {
1450             if ((subtrahend.intCompact != INFLATED)) {
1451                 // Pair of subtrahend values given before pair of
1452                 // values from this BigDecimal to avoid need for
1453                 // method overloading on the specialized add method
1454                 return add(-subtrahend.intCompact, subtrahend.scale, this.intVal, this.scale);
1455             } else {
1456                 return add(this.intVal, this.scale, subtrahend.intVal.negate(), subtrahend.scale);
1457             }
1458         }
1459     }
1460 
1461     /**
1462      * Returns a {@code BigDecimal} whose value is {@code (this - subtrahend)},
1463      * with rounding according to the context settings.
1464      *
1465      * If {@code subtrahend} is zero then this, rounded if necessary, is used as the
1466      * result.  If this is zero then the result is {@code subtrahend.negate(mc)}.
1467      *
1468      * @param  subtrahend value to be subtracted from this {@code BigDecimal}.
1469      * @param  mc the context to use.
1470      * @return {@code this - subtrahend}, rounded as necessary.
1471      * @throws ArithmeticException if the result is inexact but the
1472      *         rounding mode is {@code UNNECESSARY}.
1473      * @since  1.5
1474      */
1475     public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) {
1476         if (mc.precision == 0)
1477             return subtract(subtrahend);
1478         // share the special rounding code in add()
1479         return add(subtrahend.negate(), mc);
1480     }
1481 
1482     /**
1483      * Returns a {@code BigDecimal} whose value is <tt>(this &times;
1484      * multiplicand)</tt>, and whose scale is {@code (this.scale() +
1485      * multiplicand.scale())}.
1486      *
1487      * @param  multiplicand value to be multiplied by this {@code BigDecimal}.
1488      * @return {@code this * multiplicand}
1489      */
1490     public BigDecimal multiply(BigDecimal multiplicand) {
1491         int productScale = checkScale((long) scale + multiplicand.scale);
1492         if (this.intCompact != INFLATED) {
1493             if ((multiplicand.intCompact != INFLATED)) {
1494                 return multiply(this.intCompact, multiplicand.intCompact, productScale);
1495             } else {
1496                 return multiply(this.intCompact, multiplicand.intVal, productScale);
1497             }
1498         } else {
1499             if ((multiplicand.intCompact != INFLATED)) {
1500                 return multiply(multiplicand.intCompact, this.intVal, productScale);
1501             } else {
1502                 return multiply(this.intVal, multiplicand.intVal, productScale);
1503             }
1504         }
1505     }
1506 
1507     /**
1508      * Returns a {@code BigDecimal} whose value is <tt>(this &times;
1509      * multiplicand)</tt>, with rounding according to the context settings.
1510      *
1511      * @param  multiplicand value to be multiplied by this {@code BigDecimal}.
1512      * @param  mc the context to use.
1513      * @return {@code this * multiplicand}, rounded as necessary.
1514      * @throws ArithmeticException if the result is inexact but the
1515      *         rounding mode is {@code UNNECESSARY}.
1516      * @since  1.5
1517      */
1518     public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) {
1519         if (mc.precision == 0)
1520             return multiply(multiplicand);
1521         int productScale = checkScale((long) scale + multiplicand.scale);
1522         if (this.intCompact != INFLATED) {
1523             if ((multiplicand.intCompact != INFLATED)) {
1524                 return multiplyAndRound(this.intCompact, multiplicand.intCompact, productScale, mc);
1525             } else {
1526                 return multiplyAndRound(this.intCompact, multiplicand.intVal, productScale, mc);
1527             }
1528         } else {
1529             if ((multiplicand.intCompact != INFLATED)) {
1530                 return multiplyAndRound(multiplicand.intCompact, this.intVal, productScale, mc);
1531             } else {
1532                 return multiplyAndRound(this.intVal, multiplicand.intVal, productScale, mc);
1533             }
1534         }
1535     }
1536 
1537     /**
1538      * Returns a {@code BigDecimal} whose value is {@code (this /
1539      * divisor)}, and whose scale is as specified.  If rounding must
1540      * be performed to generate a result with the specified scale, the
1541      * specified rounding mode is applied.
1542      *
1543      * <p>The new {@link #divide(BigDecimal, int, RoundingMode)} method
1544      * should be used in preference to this legacy method.
1545      *
1546      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1547      * @param  scale scale of the {@code BigDecimal} quotient to be returned.
1548      * @param  roundingMode rounding mode to apply.
1549      * @return {@code this / divisor}
1550      * @throws ArithmeticException if {@code divisor} is zero,
1551      *         {@code roundingMode==ROUND_UNNECESSARY} and
1552      *         the specified scale is insufficient to represent the result
1553      *         of the division exactly.
1554      * @throws IllegalArgumentException if {@code roundingMode} does not
1555      *         represent a valid rounding mode.
1556      * @see    #ROUND_UP
1557      * @see    #ROUND_DOWN
1558      * @see    #ROUND_CEILING
1559      * @see    #ROUND_FLOOR
1560      * @see    #ROUND_HALF_UP
1561      * @see    #ROUND_HALF_DOWN
1562      * @see    #ROUND_HALF_EVEN
1563      * @see    #ROUND_UNNECESSARY
1564      */
1565     public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) {
1566         if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
1567             throw new IllegalArgumentException("Invalid rounding mode");
1568         if (this.intCompact != INFLATED) {
1569             if ((divisor.intCompact != INFLATED)) {
1570                 return divide(this.intCompact, this.scale, divisor.intCompact, divisor.scale, scale, roundingMode);
1571             } else {
1572                 return divide(this.intCompact, this.scale, divisor.intVal, divisor.scale, scale, roundingMode);
1573             }
1574         } else {
1575             if ((divisor.intCompact != INFLATED)) {
1576                 return divide(this.intVal, this.scale, divisor.intCompact, divisor.scale, scale, roundingMode);
1577             } else {
1578                 return divide(this.intVal, this.scale, divisor.intVal, divisor.scale, scale, roundingMode);
1579             }
1580         }
1581     }
1582 
1583     /**
1584      * Returns a {@code BigDecimal} whose value is {@code (this /
1585      * divisor)}, and whose scale is as specified.  If rounding must
1586      * be performed to generate a result with the specified scale, the
1587      * specified rounding mode is applied.
1588      *
1589      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1590      * @param  scale scale of the {@code BigDecimal} quotient to be returned.
1591      * @param  roundingMode rounding mode to apply.
1592      * @return {@code this / divisor}
1593      * @throws ArithmeticException if {@code divisor} is zero,
1594      *         {@code roundingMode==RoundingMode.UNNECESSARY} and
1595      *         the specified scale is insufficient to represent the result
1596      *         of the division exactly.
1597      * @since 1.5
1598      */
1599     public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
1600         return divide(divisor, scale, roundingMode.oldMode);
1601     }
1602 
1603     /**
1604      * Returns a {@code BigDecimal} whose value is {@code (this /
1605      * divisor)}, and whose scale is {@code this.scale()}.  If
1606      * rounding must be performed to generate a result with the given
1607      * scale, the specified rounding mode is applied.
1608      *
1609      * <p>The new {@link #divide(BigDecimal, RoundingMode)} method
1610      * should be used in preference to this legacy method.
1611      *
1612      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1613      * @param  roundingMode rounding mode to apply.
1614      * @return {@code this / divisor}
1615      * @throws ArithmeticException if {@code divisor==0}, or
1616      *         {@code roundingMode==ROUND_UNNECESSARY} and
1617      *         {@code this.scale()} is insufficient to represent the result
1618      *         of the division exactly.
1619      * @throws IllegalArgumentException if {@code roundingMode} does not
1620      *         represent a valid rounding mode.
1621      * @see    #ROUND_UP
1622      * @see    #ROUND_DOWN
1623      * @see    #ROUND_CEILING
1624      * @see    #ROUND_FLOOR
1625      * @see    #ROUND_HALF_UP
1626      * @see    #ROUND_HALF_DOWN
1627      * @see    #ROUND_HALF_EVEN
1628      * @see    #ROUND_UNNECESSARY
1629      */
1630     public BigDecimal divide(BigDecimal divisor, int roundingMode) {
1631         return this.divide(divisor, scale, roundingMode);
1632     }
1633 
1634     /**
1635      * Returns a {@code BigDecimal} whose value is {@code (this /
1636      * divisor)}, and whose scale is {@code this.scale()}.  If
1637      * rounding must be performed to generate a result with the given
1638      * scale, the specified rounding mode is applied.
1639      *
1640      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1641      * @param  roundingMode rounding mode to apply.
1642      * @return {@code this / divisor}
1643      * @throws ArithmeticException if {@code divisor==0}, or
1644      *         {@code roundingMode==RoundingMode.UNNECESSARY} and
1645      *         {@code this.scale()} is insufficient to represent the result
1646      *         of the division exactly.
1647      * @since 1.5
1648      */
1649     public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode) {
1650         return this.divide(divisor, scale, roundingMode.oldMode);
1651     }
1652 
1653     /**
1654      * Returns a {@code BigDecimal} whose value is {@code (this /
1655      * divisor)}, and whose preferred scale is {@code (this.scale() -
1656      * divisor.scale())}; if the exact quotient cannot be
1657      * represented (because it has a non-terminating decimal
1658      * expansion) an {@code ArithmeticException} is thrown.
1659      *
1660      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1661      * @throws ArithmeticException if the exact quotient does not have a
1662      *         terminating decimal expansion
1663      * @return {@code this / divisor}
1664      * @since 1.5
1665      * @author Joseph D. Darcy
1666      */
1667     public BigDecimal divide(BigDecimal divisor) {
1668         /*
1669          * Handle zero cases first.
1670          */
1671         if (divisor.signum() == 0) {   // x/0
1672             if (this.signum() == 0)    // 0/0
1673                 throw new ArithmeticException("Division undefined");  // NaN
1674             throw new ArithmeticException("Division by zero");
1675         }
1676 
1677         // Calculate preferred scale
1678         int preferredScale = saturateLong((long) this.scale - divisor.scale);
1679 
1680         if (this.signum() == 0) // 0/y
1681             return zeroValueOf(preferredScale);
1682         else {
1683             /*
1684              * If the quotient this/divisor has a terminating decimal
1685              * expansion, the expansion can have no more than
1686              * (a.precision() + ceil(10*b.precision)/3) digits.
1687              * Therefore, create a MathContext object with this
1688              * precision and do a divide with the UNNECESSARY rounding
1689              * mode.
1690              */
1691             MathContext mc = new MathContext( (int)Math.min(this.precision() +
1692                                                             (long)Math.ceil(10.0*divisor.precision()/3.0),
1693                                                             Integer.MAX_VALUE),
1694                                               RoundingMode.UNNECESSARY);
1695             BigDecimal quotient;
1696             try {
1697                 quotient = this.divide(divisor, mc);
1698             } catch (ArithmeticException e) {
1699                 throw new ArithmeticException("Non-terminating decimal expansion; " +
1700                                               "no exact representable decimal result.");
1701             }
1702 
1703             int quotientScale = quotient.scale();
1704 
1705             // divide(BigDecimal, mc) tries to adjust the quotient to
1706             // the desired one by removing trailing zeros; since the
1707             // exact divide method does not have an explicit digit
1708             // limit, we can add zeros too.
1709             if (preferredScale > quotientScale)
1710                 return quotient.setScale(preferredScale, ROUND_UNNECESSARY);
1711 
1712             return quotient;
1713         }
1714     }
1715 
1716     /**
1717      * Returns a {@code BigDecimal} whose value is {@code (this /
1718      * divisor)}, with rounding according to the context settings.
1719      *
1720      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1721      * @param  mc the context to use.
1722      * @return {@code this / divisor}, rounded as necessary.
1723      * @throws ArithmeticException if the result is inexact but the
1724      *         rounding mode is {@code UNNECESSARY} or
1725      *         {@code mc.precision == 0} and the quotient has a
1726      *         non-terminating decimal expansion.
1727      * @since  1.5
1728      */
1729     public BigDecimal divide(BigDecimal divisor, MathContext mc) {
1730         int mcp = mc.precision;
1731         if (mcp == 0)
1732             return divide(divisor);
1733 
1734         BigDecimal dividend = this;
1735         long preferredScale = (long)dividend.scale - divisor.scale;
1736         // Now calculate the answer.  We use the existing
1737         // divide-and-round method, but as this rounds to scale we have
1738         // to normalize the values here to achieve the desired result.
1739         // For x/y we first handle y=0 and x=0, and then normalize x and
1740         // y to give x' and y' with the following constraints:
1741         //   (a) 0.1 <= x' < 1
1742         //   (b)  x' <= y' < 10*x'
1743         // Dividing x'/y' with the required scale set to mc.precision then
1744         // will give a result in the range 0.1 to 1 rounded to exactly
1745         // the right number of digits (except in the case of a result of
1746         // 1.000... which can arise when x=y, or when rounding overflows
1747         // The 1.000... case will reduce properly to 1.
1748         if (divisor.signum() == 0) {      // x/0
1749             if (dividend.signum() == 0)    // 0/0
1750                 throw new ArithmeticException("Division undefined");  // NaN
1751             throw new ArithmeticException("Division by zero");
1752         }
1753         if (dividend.signum() == 0) // 0/y
1754             return zeroValueOf(saturateLong(preferredScale));
1755         int xscale = dividend.precision();
1756         int yscale = divisor.precision();
1757         if(dividend.intCompact!=INFLATED) {
1758             if(divisor.intCompact!=INFLATED) {
1759                 return divide(dividend.intCompact, xscale, divisor.intCompact, yscale, preferredScale, mc);
1760             } else {
1761                 return divide(dividend.intCompact, xscale, divisor.intVal, yscale, preferredScale, mc);
1762             }
1763         } else {
1764             if(divisor.intCompact!=INFLATED) {
1765                 return divide(dividend.intVal, xscale, divisor.intCompact, yscale, preferredScale, mc);
1766             } else {
1767                 return divide(dividend.intVal, xscale, divisor.intVal, yscale, preferredScale, mc);
1768             }
1769         }
1770     }
1771 
1772     /**
1773      * Returns a {@code BigDecimal} whose value is the integer part
1774      * of the quotient {@code (this / divisor)} rounded down.  The
1775      * preferred scale of the result is {@code (this.scale() -
1776      * divisor.scale())}.
1777      *
1778      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1779      * @return The integer part of {@code this / divisor}.
1780      * @throws ArithmeticException if {@code divisor==0}
1781      * @since  1.5
1782      */
1783     public BigDecimal divideToIntegralValue(BigDecimal divisor) {
1784         // Calculate preferred scale
1785         int preferredScale = saturateLong((long) this.scale - divisor.scale);
1786         if (this.compareMagnitude(divisor) < 0) {
1787             // much faster when this << divisor
1788             return zeroValueOf(preferredScale);
1789         }
1790 
1791         if (this.signum() == 0 && divisor.signum() != 0)
1792             return this.setScale(preferredScale, ROUND_UNNECESSARY);
1793 
1794         // Perform a divide with enough digits to round to a correct
1795         // integer value; then remove any fractional digits
1796 
1797         int maxDigits = (int)Math.min(this.precision() +
1798                                       (long)Math.ceil(10.0*divisor.precision()/3.0) +
1799                                       Math.abs((long)this.scale() - divisor.scale()) + 2,
1800                                       Integer.MAX_VALUE);
1801         BigDecimal quotient = this.divide(divisor, new MathContext(maxDigits,
1802                                                                    RoundingMode.DOWN));
1803         if (quotient.scale > 0) {
1804             quotient = quotient.setScale(0, RoundingMode.DOWN);
1805             quotient = stripZerosToMatchScale(quotient.intVal, quotient.intCompact, quotient.scale, preferredScale);
1806         }
1807 
1808         if (quotient.scale < preferredScale) {
1809             // pad with zeros if necessary
1810             quotient = quotient.setScale(preferredScale, ROUND_UNNECESSARY);
1811         }
1812 
1813         return quotient;
1814     }
1815 
1816     /**
1817      * Returns a {@code BigDecimal} whose value is the integer part
1818      * of {@code (this / divisor)}.  Since the integer part of the
1819      * exact quotient does not depend on the rounding mode, the
1820      * rounding mode does not affect the values returned by this
1821      * method.  The preferred scale of the result is
1822      * {@code (this.scale() - divisor.scale())}.  An
1823      * {@code ArithmeticException} is thrown if the integer part of
1824      * the exact quotient needs more than {@code mc.precision}
1825      * digits.
1826      *
1827      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1828      * @param  mc the context to use.
1829      * @return The integer part of {@code this / divisor}.
1830      * @throws ArithmeticException if {@code divisor==0}
1831      * @throws ArithmeticException if {@code mc.precision} {@literal >} 0 and the result
1832      *         requires a precision of more than {@code mc.precision} digits.
1833      * @since  1.5
1834      * @author Joseph D. Darcy
1835      */
1836     public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) {
1837         if (mc.precision == 0 || // exact result
1838             (this.compareMagnitude(divisor) < 0)) // zero result
1839             return divideToIntegralValue(divisor);
1840 
1841         // Calculate preferred scale
1842         int preferredScale = saturateLong((long)this.scale - divisor.scale);
1843 
1844         /*
1845          * Perform a normal divide to mc.precision digits.  If the
1846          * remainder has absolute value less than the divisor, the
1847          * integer portion of the quotient fits into mc.precision
1848          * digits.  Next, remove any fractional digits from the
1849          * quotient and adjust the scale to the preferred value.
1850          */
1851         BigDecimal result = this.divide(divisor, new MathContext(mc.precision, RoundingMode.DOWN));
1852 
1853         if (result.scale() < 0) {
1854             /*
1855              * Result is an integer. See if quotient represents the
1856              * full integer portion of the exact quotient; if it does,
1857              * the computed remainder will be less than the divisor.
1858              */
1859             BigDecimal product = result.multiply(divisor);
1860             // If the quotient is the full integer value,
1861             // |dividend-product| < |divisor|.
1862             if (this.subtract(product).compareMagnitude(divisor) >= 0) {
1863                 throw new ArithmeticException("Division impossible");
1864             }
1865         } else if (result.scale() > 0) {
1866             /*
1867              * Integer portion of quotient will fit into precision
1868              * digits; recompute quotient to scale 0 to avoid double
1869              * rounding and then try to adjust, if necessary.
1870              */
1871             result = result.setScale(0, RoundingMode.DOWN);
1872         }
1873         // else result.scale() == 0;
1874 
1875         int precisionDiff;
1876         if ((preferredScale > result.scale()) &&
1877             (precisionDiff = mc.precision - result.precision()) > 0) {
1878             return result.setScale(result.scale() +
1879                                    Math.min(precisionDiff, preferredScale - result.scale) );
1880         } else {
1881             return stripZerosToMatchScale(result.intVal,result.intCompact,result.scale,preferredScale);
1882         }
1883     }
1884 
1885     /**
1886      * Returns a {@code BigDecimal} whose value is {@code (this % divisor)}.
1887      *
1888      * <p>The remainder is given by
1889      * {@code this.subtract(this.divideToIntegralValue(divisor).multiply(divisor))}.
1890      * Note that this is not the modulo operation (the result can be
1891      * negative).
1892      *
1893      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1894      * @return {@code this % divisor}.
1895      * @throws ArithmeticException if {@code divisor==0}
1896      * @since  1.5
1897      */
1898     public BigDecimal remainder(BigDecimal divisor) {
1899         BigDecimal divrem[] = this.divideAndRemainder(divisor);
1900         return divrem[1];
1901     }
1902 
1903 
1904     /**
1905      * Returns a {@code BigDecimal} whose value is {@code (this %
1906      * divisor)}, with rounding according to the context settings.
1907      * The {@code MathContext} settings affect the implicit divide
1908      * used to compute the remainder.  The remainder computation
1909      * itself is by definition exact.  Therefore, the remainder may
1910      * contain more than {@code mc.getPrecision()} digits.
1911      *
1912      * <p>The remainder is given by
1913      * {@code this.subtract(this.divideToIntegralValue(divisor,
1914      * mc).multiply(divisor))}.  Note that this is not the modulo
1915      * operation (the result can be negative).
1916      *
1917      * @param  divisor value by which this {@code BigDecimal} is to be divided.
1918      * @param  mc the context to use.
1919      * @return {@code this % divisor}, rounded as necessary.
1920      * @throws ArithmeticException if {@code divisor==0}
1921      * @throws ArithmeticException if the result is inexact but the
1922      *         rounding mode is {@code UNNECESSARY}, or {@code mc.precision}
1923      *         {@literal >} 0 and the result of {@code this.divideToIntgralValue(divisor)} would
1924      *         require a precision of more than {@code mc.precision} digits.
1925      * @see    #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
1926      * @since  1.5
1927      */
1928     public BigDecimal remainder(BigDecimal divisor, MathContext mc) {
1929         BigDecimal divrem[] = this.divideAndRemainder(divisor, mc);
1930         return divrem[1];
1931     }
1932 
1933     /**
1934      * Returns a two-element {@code BigDecimal} array containing the
1935      * result of {@code divideToIntegralValue} followed by the result of
1936      * {@code remainder} on the two operands.
1937      *
1938      * <p>Note that if both the integer quotient and remainder are
1939      * needed, this method is faster than using the
1940      * {@code divideToIntegralValue} and {@code remainder} methods
1941      * separately because the division need only be carried out once.
1942      *
1943      * @param  divisor value by which this {@code BigDecimal} is to be divided,
1944      *         and the remainder computed.
1945      * @return a two element {@code BigDecimal} array: the quotient
1946      *         (the result of {@code divideToIntegralValue}) is the initial element
1947      *         and the remainder is the final element.
1948      * @throws ArithmeticException if {@code divisor==0}
1949      * @see    #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
1950      * @see    #remainder(java.math.BigDecimal, java.math.MathContext)
1951      * @since  1.5
1952      */
1953     public BigDecimal[] divideAndRemainder(BigDecimal divisor) {
1954         // we use the identity  x = i * y + r to determine r
1955         BigDecimal[] result = new BigDecimal[2];
1956 
1957         result[0] = this.divideToIntegralValue(divisor);
1958         result[1] = this.subtract(result[0].multiply(divisor));
1959         return result;
1960     }
1961 
1962     /**
1963      * Returns a two-element {@code BigDecimal} array containing the
1964      * result of {@code divideToIntegralValue} followed by the result of
1965      * {@code remainder} on the two operands calculated with rounding
1966      * according to the context settings.
1967      *
1968      * <p>Note that if both the integer quotient and remainder are
1969      * needed, this method is faster than using the
1970      * {@code divideToIntegralValue} and {@code remainder} methods
1971      * separately because the division need only be carried out once.
1972      *
1973      * @param  divisor value by which this {@code BigDecimal} is to be divided,
1974      *         and the remainder computed.
1975      * @param  mc the context to use.
1976      * @return a two element {@code BigDecimal} array: the quotient
1977      *         (the result of {@code divideToIntegralValue}) is the
1978      *         initial element and the remainder is the final element.
1979      * @throws ArithmeticException if {@code divisor==0}
1980      * @throws ArithmeticException if the result is inexact but the
1981      *         rounding mode is {@code UNNECESSARY}, or {@code mc.precision}
1982      *         {@literal >} 0 and the result of {@code this.divideToIntgralValue(divisor)} would
1983      *         require a precision of more than {@code mc.precision} digits.
1984      * @see    #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
1985      * @see    #remainder(java.math.BigDecimal, java.math.MathContext)
1986      * @since  1.5
1987      */
1988     public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc) {
1989         if (mc.precision == 0)
1990             return divideAndRemainder(divisor);
1991 
1992         BigDecimal[] result = new BigDecimal[2];
1993         BigDecimal lhs = this;
1994 
1995         result[0] = lhs.divideToIntegralValue(divisor, mc);
1996         result[1] = lhs.subtract(result[0].multiply(divisor));
1997         return result;
1998     }
1999 
2000     /**
2001      * Returns a {@code BigDecimal} whose value is
2002      * <tt>(this<sup>n</sup>)</tt>, The power is computed exactly, to
2003      * unlimited precision.
2004      *
2005      * <p>The parameter {@code n} must be in the range 0 through
2006      * 999999999, inclusive.  {@code ZERO.pow(0)} returns {@link
2007      * #ONE}.
2008      *
2009      * Note that future releases may expand the allowable exponent
2010      * range of this method.
2011      *
2012      * @param  n power to raise this {@code BigDecimal} to.
2013      * @return <tt>this<sup>n</sup></tt>
2014      * @throws ArithmeticException if {@code n} is out of range.
2015      * @since  1.5
2016      */
2017     public BigDecimal pow(int n) {
2018         if (n < 0 || n > 999999999)
2019             throw new ArithmeticException("Invalid operation");
2020         // No need to calculate pow(n) if result will over/underflow.
2021         // Don't attempt to support "supernormal" numbers.
2022         int newScale = checkScale((long)scale * n);
2023         return new BigDecimal(this.inflated().pow(n), newScale);
2024     }
2025 
2026 
2027     /**
2028      * Returns a {@code BigDecimal} whose value is
2029      * <tt>(this<sup>n</sup>)</tt>.  The current implementation uses
2030      * the core algorithm defined in ANSI standard X3.274-1996 with
2031      * rounding according to the context settings.  In general, the
2032      * returned numerical value is within two ulps of the exact
2033      * numerical value for the chosen precision.  Note that future
2034      * releases may use a different algorithm with a decreased
2035      * allowable error bound and increased allowable exponent range.
2036      *
2037      * <p>The X3.274-1996 algorithm is:
2038      *
2039      * <ul>
2040      * <li> An {@code ArithmeticException} exception is thrown if
2041      *  <ul>
2042      *    <li>{@code abs(n) > 999999999}
2043      *    <li>{@code mc.precision == 0} and {@code n < 0}
2044      *    <li>{@code mc.precision > 0} and {@code n} has more than
2045      *    {@code mc.precision} decimal digits
2046      *  </ul>
2047      *
2048      * <li> if {@code n} is zero, {@link #ONE} is returned even if
2049      * {@code this} is zero, otherwise
2050      * <ul>
2051      *   <li> if {@code n} is positive, the result is calculated via
2052      *   the repeated squaring technique into a single accumulator.
2053      *   The individual multiplications with the accumulator use the
2054      *   same math context settings as in {@code mc} except for a
2055      *   precision increased to {@code mc.precision + elength + 1}
2056      *   where {@code elength} is the number of decimal digits in
2057      *   {@code n}.
2058      *
2059      *   <li> if {@code n} is negative, the result is calculated as if
2060      *   {@code n} were positive; this value is then divided into one
2061      *   using the working precision specified above.
2062      *
2063      *   <li> The final value from either the positive or negative case
2064      *   is then rounded to the destination precision.
2065      *   </ul>
2066      * </ul>
2067      *
2068      * @param  n power to raise this {@code BigDecimal} to.
2069      * @param  mc the context to use.
2070      * @return <tt>this<sup>n</sup></tt> using the ANSI standard X3.274-1996
2071      *         algorithm
2072      * @throws ArithmeticException if the result is inexact but the
2073      *         rounding mode is {@code UNNECESSARY}, or {@code n} is out
2074      *         of range.
2075      * @since  1.5
2076      */
2077     public BigDecimal pow(int n, MathContext mc) {
2078         if (mc.precision == 0)
2079             return pow(n);
2080         if (n < -999999999 || n > 999999999)
2081             throw new ArithmeticException("Invalid operation");
2082         if (n == 0)
2083             return ONE;                      // x**0 == 1 in X3.274
2084         BigDecimal lhs = this;
2085         MathContext workmc = mc;           // working settings
2086         int mag = Math.abs(n);               // magnitude of n
2087         if (mc.precision > 0) {
2088             int elength = longDigitLength(mag); // length of n in digits
2089             if (elength > mc.precision)        // X3.274 rule
2090                 throw new ArithmeticException("Invalid operation");
2091             workmc = new MathContext(mc.precision + elength + 1,
2092                                       mc.roundingMode);
2093         }
2094         // ready to carry out power calculation...
2095         BigDecimal acc = ONE;           // accumulator
2096         boolean seenbit = false;        // set once we've seen a 1-bit
2097         for (int i=1;;i++) {            // for each bit [top bit ignored]
2098             mag += mag;                 // shift left 1 bit
2099             if (mag < 0) {              // top bit is set
2100                 seenbit = true;         // OK, we're off
2101                 acc = acc.multiply(lhs, workmc); // acc=acc*x
2102             }
2103             if (i == 31)
2104                 break;                  // that was the last bit
2105             if (seenbit)
2106                 acc=acc.multiply(acc, workmc);   // acc=acc*acc [square]
2107                 // else (!seenbit) no point in squaring ONE
2108         }
2109         // if negative n, calculate the reciprocal using working precision
2110         if (n < 0) // [hence mc.precision>0]
2111             acc=ONE.divide(acc, workmc);
2112         // round to final precision and strip zeros
2113         return doRound(acc, mc);
2114     }
2115 
2116     /**
2117      * Returns a {@code BigDecimal} whose value is the absolute value
2118      * of this {@code BigDecimal}, and whose scale is
2119      * {@code this.scale()}.
2120      *
2121      * @return {@code abs(this)}
2122      */
2123     public BigDecimal abs() {
2124         return (signum() < 0 ? negate() : this);
2125     }
2126 
2127     /**
2128      * Returns a {@code BigDecimal} whose value is the absolute value
2129      * of this {@code BigDecimal}, with rounding according to the
2130      * context settings.
2131      *
2132      * @param mc the context to use.
2133      * @return {@code abs(this)}, rounded as necessary.
2134      * @throws ArithmeticException if the result is inexact but the
2135      *         rounding mode is {@code UNNECESSARY}.
2136      * @since 1.5
2137      */
2138     public BigDecimal abs(MathContext mc) {
2139         return (signum() < 0 ? negate(mc) : plus(mc));
2140     }
2141 
2142     /**
2143      * Returns a {@code BigDecimal} whose value is {@code (-this)},
2144      * and whose scale is {@code this.scale()}.
2145      *
2146      * @return {@code -this}.
2147      */
2148     public BigDecimal negate() {
2149         if (intCompact == INFLATED) {
2150             return new BigDecimal(intVal.negate(), INFLATED, scale, precision);
2151         } else {
2152             return valueOf(-intCompact, scale, precision);
2153         }
2154     }
2155 
2156     /**
2157      * Returns a {@code BigDecimal} whose value is {@code (-this)},
2158      * with rounding according to the context settings.
2159      *
2160      * @param mc the context to use.
2161      * @return {@code -this}, rounded as necessary.
2162      * @throws ArithmeticException if the result is inexact but the
2163      *         rounding mode is {@code UNNECESSARY}.
2164      * @since  1.5
2165      */
2166     public BigDecimal negate(MathContext mc) {
2167         return negate().plus(mc);
2168     }
2169 
2170     /**
2171      * Returns a {@code BigDecimal} whose value is {@code (+this)}, and whose
2172      * scale is {@code this.scale()}.
2173      *
2174      * <p>This method, which simply returns this {@code BigDecimal}
2175      * is included for symmetry with the unary minus method {@link
2176      * #negate()}.
2177      *
2178      * @return {@code this}.
2179      * @see #negate()
2180      * @since  1.5
2181      */
2182     public BigDecimal plus() {
2183         return this;
2184     }
2185 
2186     /**
2187      * Returns a {@code BigDecimal} whose value is {@code (+this)},
2188      * with rounding according to the context settings.
2189      *
2190      * <p>The effect of this method is identical to that of the {@link
2191      * #round(MathContext)} method.
2192      *
2193      * @param mc the context to use.
2194      * @return {@code this}, rounded as necessary.  A zero result will
2195      *         have a scale of 0.
2196      * @throws ArithmeticException if the result is inexact but the
2197      *         rounding mode is {@code UNNECESSARY}.
2198      * @see    #round(MathContext)
2199      * @since  1.5
2200      */
2201     public BigDecimal plus(MathContext mc) {
2202         if (mc.precision == 0)                 // no rounding please
2203             return this;
2204         return doRound(this, mc);
2205     }
2206 
2207     /**
2208      * Returns the signum function of this {@code BigDecimal}.
2209      *
2210      * @return -1, 0, or 1 as the value of this {@code BigDecimal}
2211      *         is negative, zero, or positive.
2212      */
2213     public int signum() {
2214         return (intCompact != INFLATED)?
2215             Long.signum(intCompact):
2216             intVal.signum();
2217     }
2218 
2219     /**
2220      * Returns the <i>scale</i> of this {@code BigDecimal}.  If zero
2221      * or positive, the scale is the number of digits to the right of
2222      * the decimal point.  If negative, the unscaled value of the
2223      * number is multiplied by ten to the power of the negation of the
2224      * scale.  For example, a scale of {@code -3} means the unscaled
2225      * value is multiplied by 1000.
2226      *
2227      * @return the scale of this {@code BigDecimal}.
2228      */
2229     public int scale() {
2230         return scale;
2231     }
2232 
2233     /**
2234      * Returns the <i>precision</i> of this {@code BigDecimal}.  (The
2235      * precision is the number of digits in the unscaled value.)
2236      *
2237      * <p>The precision of a zero value is 1.
2238      *
2239      * @return the precision of this {@code BigDecimal}.
2240      * @since  1.5
2241      */
2242     public int precision() {
2243         int result = precision;
2244         if (result == 0) {
2245             long s = intCompact;
2246             if (s != INFLATED)
2247                 result = longDigitLength(s);
2248             else
2249                 result = bigDigitLength(intVal);
2250             precision = result;
2251         }
2252         return result;
2253     }
2254 
2255 
2256     /**
2257      * Returns a {@code BigInteger} whose value is the <i>unscaled
2258      * value</i> of this {@code BigDecimal}.  (Computes <tt>(this *
2259      * 10<sup>this.scale()</sup>)</tt>.)
2260      *
2261      * @return the unscaled value of this {@code BigDecimal}.
2262      * @since  1.2
2263      */
2264     public BigInteger unscaledValue() {
2265         return this.inflated();
2266     }
2267 
2268     // Rounding Modes
2269 
2270     /**
2271      * Rounding mode to round away from zero.  Always increments the
2272      * digit prior to a nonzero discarded fraction.  Note that this rounding
2273      * mode never decreases the magnitude of the calculated value.
2274      */
2275     public final static int ROUND_UP =           0;
2276 
2277     /**
2278      * Rounding mode to round towards zero.  Never increments the digit
2279      * prior to a discarded fraction (i.e., truncates).  Note that this
2280      * rounding mode never increases the magnitude of the calculated value.
2281      */
2282     public final static int ROUND_DOWN =         1;
2283 
2284     /**
2285      * Rounding mode to round towards positive infinity.  If the
2286      * {@code BigDecimal} is positive, behaves as for
2287      * {@code ROUND_UP}; if negative, behaves as for
2288      * {@code ROUND_DOWN}.  Note that this rounding mode never
2289      * decreases the calculated value.
2290      */
2291     public final static int ROUND_CEILING =      2;
2292 
2293     /**
2294      * Rounding mode to round towards negative infinity.  If the
2295      * {@code BigDecimal} is positive, behave as for
2296      * {@code ROUND_DOWN}; if negative, behave as for
2297      * {@code ROUND_UP}.  Note that this rounding mode never
2298      * increases the calculated value.
2299      */
2300     public final static int ROUND_FLOOR =        3;
2301 
2302     /**
2303      * Rounding mode to round towards {@literal "nearest neighbor"}
2304      * unless both neighbors are equidistant, in which case round up.
2305      * Behaves as for {@code ROUND_UP} if the discarded fraction is
2306      * &ge; 0.5; otherwise, behaves as for {@code ROUND_DOWN}.  Note
2307      * that this is the rounding mode that most of us were taught in
2308      * grade school.
2309      */
2310     public final static int ROUND_HALF_UP =      4;
2311 
2312     /**
2313      * Rounding mode to round towards {@literal "nearest neighbor"}
2314      * unless both neighbors are equidistant, in which case round
2315      * down.  Behaves as for {@code ROUND_UP} if the discarded
2316      * fraction is {@literal >} 0.5; otherwise, behaves as for
2317      * {@code ROUND_DOWN}.
2318      */
2319     public final static int ROUND_HALF_DOWN =    5;
2320 
2321     /**
2322      * Rounding mode to round towards the {@literal "nearest neighbor"}
2323      * unless both neighbors are equidistant, in which case, round
2324      * towards the even neighbor.  Behaves as for
2325      * {@code ROUND_HALF_UP} if the digit to the left of the
2326      * discarded fraction is odd; behaves as for
2327      * {@code ROUND_HALF_DOWN} if it's even.  Note that this is the
2328      * rounding mode that minimizes cumulative error when applied
2329      * repeatedly over a sequence of calculations.
2330      */
2331     public final static int ROUND_HALF_EVEN =    6;
2332 
2333     /**
2334      * Rounding mode to assert that the requested operation has an exact
2335      * result, hence no rounding is necessary.  If this rounding mode is
2336      * specified on an operation that yields an inexact result, an
2337      * {@code ArithmeticException} is thrown.
2338      */
2339     public final static int ROUND_UNNECESSARY =  7;
2340 
2341 
2342     // Scaling/Rounding Operations
2343 
2344     /**
2345      * Returns a {@code BigDecimal} rounded according to the
2346      * {@code MathContext} settings.  If the precision setting is 0 then
2347      * no rounding takes place.
2348      *
2349      * <p>The effect of this method is identical to that of the
2350      * {@link #plus(MathContext)} method.
2351      *
2352      * @param mc the context to use.
2353      * @return a {@code BigDecimal} rounded according to the
2354      *         {@code MathContext} settings.
2355      * @throws ArithmeticException if the rounding mode is
2356      *         {@code UNNECESSARY} and the
2357      *         {@code BigDecimal}  operation would require rounding.
2358      * @see    #plus(MathContext)
2359      * @since  1.5
2360      */
2361     public BigDecimal round(MathContext mc) {
2362         return plus(mc);
2363     }
2364 
2365     /**
2366      * Returns a {@code BigDecimal} whose scale is the specified
2367      * value, and whose unscaled value is determined by multiplying or
2368      * dividing this {@code BigDecimal}'s unscaled value by the
2369      * appropriate power of ten to maintain its overall value.  If the
2370      * scale is reduced by the operation, the unscaled value must be
2371      * divided (rather than multiplied), and the value may be changed;
2372      * in this case, the specified rounding mode is applied to the
2373      * division.
2374      *
2375      * <p>Note that since BigDecimal objects are immutable, calls of
2376      * this method do <i>not</i> result in the original object being
2377      * modified, contrary to the usual convention of having methods
2378      * named <tt>set<i>X</i></tt> mutate field <i>{@code X}</i>.
2379      * Instead, {@code setScale} returns an object with the proper
2380      * scale; the returned object may or may not be newly allocated.
2381      *
2382      * @param  newScale scale of the {@code BigDecimal} value to be returned.
2383      * @param  roundingMode The rounding mode to apply.
2384      * @return a {@code BigDecimal} whose scale is the specified value,
2385      *         and whose unscaled value is determined by multiplying or
2386      *         dividing this {@code BigDecimal}'s unscaled value by the
2387      *         appropriate power of ten to maintain its overall value.
2388      * @throws ArithmeticException if {@code roundingMode==UNNECESSARY}
2389      *         and the specified scaling operation would require
2390      *         rounding.
2391      * @see    RoundingMode
2392      * @since  1.5
2393      */
2394     public BigDecimal setScale(int newScale, RoundingMode roundingMode) {
2395         return setScale(newScale, roundingMode.oldMode);
2396     }
2397 
2398     /**
2399      * Returns a {@code BigDecimal} whose scale is the specified
2400      * value, and whose unscaled value is determined by multiplying or
2401      * dividing this {@code BigDecimal}'s unscaled value by the
2402      * appropriate power of ten to maintain its overall value.  If the
2403      * scale is reduced by the operation, the unscaled value must be
2404      * divided (rather than multiplied), and the value may be changed;
2405      * in this case, the specified rounding mode is applied to the
2406      * division.
2407      *
2408      * <p>Note that since BigDecimal objects are immutable, calls of
2409      * this method do <i>not</i> result in the original object being
2410      * modified, contrary to the usual convention of having methods
2411      * named <tt>set<i>X</i></tt> mutate field <i>{@code X}</i>.
2412      * Instead, {@code setScale} returns an object with the proper
2413      * scale; the returned object may or may not be newly allocated.
2414      *
2415      * <p>The new {@link #setScale(int, RoundingMode)} method should
2416      * be used in preference to this legacy method.
2417      *
2418      * @param  newScale scale of the {@code BigDecimal} value to be returned.
2419      * @param  roundingMode The rounding mode to apply.
2420      * @return a {@code BigDecimal} whose scale is the specified value,
2421      *         and whose unscaled value is determined by multiplying or
2422      *         dividing this {@code BigDecimal}'s unscaled value by the
2423      *         appropriate power of ten to maintain its overall value.
2424      * @throws ArithmeticException if {@code roundingMode==ROUND_UNNECESSARY}
2425      *         and the specified scaling operation would require
2426      *         rounding.
2427      * @throws IllegalArgumentException if {@code roundingMode} does not
2428      *         represent a valid rounding mode.
2429      * @see    #ROUND_UP
2430      * @see    #ROUND_DOWN
2431      * @see    #ROUND_CEILING
2432      * @see    #ROUND_FLOOR
2433      * @see    #ROUND_HALF_UP
2434      * @see    #ROUND_HALF_DOWN
2435      * @see    #ROUND_HALF_EVEN
2436      * @see    #ROUND_UNNECESSARY
2437      */
2438     public BigDecimal setScale(int newScale, int roundingMode) {
2439         if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
2440             throw new IllegalArgumentException("Invalid rounding mode");
2441 
2442         int oldScale = this.scale;
2443         if (newScale == oldScale)        // easy case
2444             return this;
2445         if (this.signum() == 0)            // zero can have any scale
2446             return zeroValueOf(newScale);
2447         if(this.intCompact!=INFLATED) {
2448             long rs = this.intCompact;
2449             if (newScale > oldScale) {
2450                 int raise = checkScale((long) newScale - oldScale);
2451                 if ((rs = longMultiplyPowerTen(rs, raise)) != INFLATED) {
2452                     return valueOf(rs,newScale);
2453                 }
2454                 BigInteger rb = bigMultiplyPowerTen(raise);
2455                 return new BigDecimal(rb, INFLATED, newScale, (precision > 0) ? precision + raise : 0);
2456             } else {
2457                 // newScale < oldScale -- drop some digits
2458                 // Can't predict the precision due to the effect of rounding.
2459                 int drop = checkScale((long) oldScale - newScale);
2460                 if (drop < LONG_TEN_POWERS_TABLE.length) {
2461                     return divideAndRound(rs, LONG_TEN_POWERS_TABLE[drop], newScale, roundingMode, newScale);
2462                 } else {
2463                     return divideAndRound(this.inflated(), bigTenToThe(drop), newScale, roundingMode, newScale);
2464                 }
2465             }
2466         } else {
2467             if (newScale > oldScale) {
2468                 int raise = checkScale((long) newScale - oldScale);
2469                 BigInteger rb = bigMultiplyPowerTen(this.intVal,raise);
2470                 return new BigDecimal(rb, INFLATED, newScale, (precision > 0) ? precision + raise : 0);
2471             } else {
2472                 // newScale < oldScale -- drop some digits
2473                 // Can't predict the precision due to the effect of rounding.
2474                 int drop = checkScale((long) oldScale - newScale);
2475                 if (drop < LONG_TEN_POWERS_TABLE.length)
2476                     return divideAndRound(this.intVal, LONG_TEN_POWERS_TABLE[drop], newScale, roundingMode,
2477                                           newScale);
2478                 else
2479                     return divideAndRound(this.intVal,  bigTenToThe(drop), newScale, roundingMode, newScale);
2480             }
2481         }
2482     }
2483 
2484     /**
2485      * Returns a {@code BigDecimal} whose scale is the specified
2486      * value, and whose value is numerically equal to this
2487      * {@code BigDecimal}'s.  Throws an {@code ArithmeticException}
2488      * if this is not possible.
2489      *
2490      * <p>This call is typically used to increase the scale, in which
2491      * case it is guaranteed that there exists a {@code BigDecimal}
2492      * of the specified scale and the correct value.  The call can
2493      * also be used to reduce the scale if the caller knows that the
2494      * {@code BigDecimal} has sufficiently many zeros at the end of
2495      * its fractional part (i.e., factors of ten in its integer value)
2496      * to allow for the rescaling without changing its value.
2497      *
2498      * <p>This method returns the same result as the two-argument
2499      * versions of {@code setScale}, but saves the caller the trouble
2500      * of specifying a rounding mode in cases where it is irrelevant.
2501      *
2502      * <p>Note that since {@code BigDecimal} objects are immutable,
2503      * calls of this method do <i>not</i> result in the original
2504      * object being modified, contrary to the usual convention of
2505      * having methods named <tt>set<i>X</i></tt> mutate field
2506      * <i>{@code X}</i>.  Instead, {@code setScale} returns an
2507      * object with the proper scale; the returned object may or may
2508      * not be newly allocated.
2509      *
2510      * @param  newScale scale of the {@code BigDecimal} value to be returned.
2511      * @return a {@code BigDecimal} whose scale is the specified value, and
2512      *         whose unscaled value is determined by multiplying or dividing
2513      *         this {@code BigDecimal}'s unscaled value by the appropriate
2514      *         power of ten to maintain its overall value.
2515      * @throws ArithmeticException if the specified scaling operation would
2516      *         require rounding.
2517      * @see    #setScale(int, int)
2518      * @see    #setScale(int, RoundingMode)
2519      */
2520     public BigDecimal setScale(int newScale) {
2521         return setScale(newScale, ROUND_UNNECESSARY);
2522     }
2523 
2524     // Decimal Point Motion Operations
2525 
2526     /**
2527      * Returns a {@code BigDecimal} which is equivalent to this one
2528      * with the decimal point moved {@code n} places to the left.  If
2529      * {@code n} is non-negative, the call merely adds {@code n} to
2530      * the scale.  If {@code n} is negative, the call is equivalent
2531      * to {@code movePointRight(-n)}.  The {@code BigDecimal}
2532      * returned by this call has value <tt>(this &times;
2533      * 10<sup>-n</sup>)</tt> and scale {@code max(this.scale()+n,
2534      * 0)}.
2535      *
2536      * @param  n number of places to move the decimal point to the left.
2537      * @return a {@code BigDecimal} which is equivalent to this one with the
2538      *         decimal point moved {@code n} places to the left.
2539      * @throws ArithmeticException if scale overflows.
2540      */
2541     public BigDecimal movePointLeft(int n) {
2542         // Cannot use movePointRight(-n) in case of n==Integer.MIN_VALUE
2543         int newScale = checkScale((long)scale + n);
2544         BigDecimal num = new BigDecimal(intVal, intCompact, newScale, 0);
2545         return num.scale < 0 ? num.setScale(0, ROUND_UNNECESSARY) : num;
2546     }
2547 
2548     /**
2549      * Returns a {@code BigDecimal} which is equivalent to this one
2550      * with the decimal point moved {@code n} places to the right.
2551      * If {@code n} is non-negative, the call merely subtracts
2552      * {@code n} from the scale.  If {@code n} is negative, the call
2553      * is equivalent to {@code movePointLeft(-n)}.  The
2554      * {@code BigDecimal} returned by this call has value <tt>(this
2555      * &times; 10<sup>n</sup>)</tt> and scale {@code max(this.scale()-n,
2556      * 0)}.
2557      *
2558      * @param  n number of places to move the decimal point to the right.
2559      * @return a {@code BigDecimal} which is equivalent to this one
2560      *         with the decimal point moved {@code n} places to the right.
2561      * @throws ArithmeticException if scale overflows.
2562      */
2563     public BigDecimal movePointRight(int n) {
2564         // Cannot use movePointLeft(-n) in case of n==Integer.MIN_VALUE
2565         int newScale = checkScale((long)scale - n);
2566         BigDecimal num = new BigDecimal(intVal, intCompact, newScale, 0);
2567         return num.scale < 0 ? num.setScale(0, ROUND_UNNECESSARY) : num;
2568     }
2569 
2570     /**
2571      * Returns a BigDecimal whose numerical value is equal to
2572      * ({@code this} * 10<sup>n</sup>).  The scale of
2573      * the result is {@code (this.scale() - n)}.
2574      *
2575      * @param n the exponent power of ten to scale by
2576      * @return a BigDecimal whose numerical value is equal to
2577      * ({@code this} * 10<sup>n</sup>)
2578      * @throws ArithmeticException if the scale would be
2579      *         outside the range of a 32-bit integer.
2580      *
2581      * @since 1.5
2582      */
2583     public BigDecimal scaleByPowerOfTen(int n) {
2584         return new BigDecimal(intVal, intCompact,
2585                               checkScale((long)scale - n), precision);
2586     }
2587 
2588     /**
2589      * Returns a {@code BigDecimal} which is numerically equal to
2590      * this one but with any trailing zeros removed from the
2591      * representation.  For example, stripping the trailing zeros from
2592      * the {@code BigDecimal} value {@code 600.0}, which has
2593      * [{@code BigInteger}, {@code scale}] components equals to
2594      * [6000, 1], yields {@code 6E2} with [{@code BigInteger},
2595      * {@code scale}] components equals to [6, -2].  If
2596      * this BigDecimal is numerically equal to zero, then
2597      * {@code BigDecimal.ZERO} is returned.
2598      *
2599      * @return a numerically equal {@code BigDecimal} with any
2600      * trailing zeros removed.
2601      * @since 1.5
2602      */
2603     public BigDecimal stripTrailingZeros() {
2604         if (intCompact == 0 || (intVal != null && intVal.signum() == 0)) {
2605             return BigDecimal.ZERO;
2606         } else if (intCompact != INFLATED) {
2607             return createAndStripZerosToMatchScale(intCompact, scale, Long.MIN_VALUE);
2608         } else {
2609             return createAndStripZerosToMatchScale(intVal, scale, Long.MIN_VALUE);
2610         }
2611     }
2612 
2613     // Comparison Operations
2614 
2615     /**
2616      * Compares this {@code BigDecimal} with the specified
2617      * {@code BigDecimal}.  Two {@code BigDecimal} objects that are
2618      * equal in value but have a different scale (like 2.0 and 2.00)
2619      * are considered equal by this method.  This method is provided
2620      * in preference to individual methods for each of the six boolean
2621      * comparison operators ({@literal <}, ==,
2622      * {@literal >}, {@literal >=}, !=, {@literal <=}).  The
2623      * suggested idiom for performing these comparisons is:
2624      * {@code (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
2625      * &lt;<i>op</i>&gt; is one of the six comparison operators.
2626      *
2627      * @param  val {@code BigDecimal} to which this {@code BigDecimal} is
2628      *         to be compared.
2629      * @return -1, 0, or 1 as this {@code BigDecimal} is numerically
2630      *          less than, equal to, or greater than {@code val}.
2631      */
2632     public int compareTo(BigDecimal val) {
2633         // Quick path for equal scale and non-inflated case.
2634         if (scale == val.scale) {
2635             long xs = intCompact;
2636             long ys = val.intCompact;
2637             if (xs != INFLATED && ys != INFLATED)
2638                 return xs != ys ? ((xs > ys) ? 1 : -1) : 0;
2639         }
2640         int xsign = this.signum();
2641         int ysign = val.signum();
2642         if (xsign != ysign)
2643             return (xsign > ysign) ? 1 : -1;
2644         if (xsign == 0)
2645             return 0;
2646         int cmp = compareMagnitude(val);
2647         return (xsign > 0) ? cmp : -cmp;
2648     }
2649 
2650     /**
2651      * Version of compareTo that ignores sign.
2652      */
2653     private int compareMagnitude(BigDecimal val) {
2654         // Match scales, avoid unnecessary inflation
2655         long ys = val.intCompact;
2656         long xs = this.intCompact;
2657         if (xs == 0)
2658             return (ys == 0) ? 0 : -1;
2659         if (ys == 0)
2660             return 1;
2661 
2662         int sdiff = this.scale - val.scale;
2663         if (sdiff != 0) {
2664             // Avoid matching scales if the (adjusted) exponents differ
2665             int xae = this.precision() - this.scale;   // [-1]
2666             int yae = val.precision() - val.scale;     // [-1]
2667             if (xae < yae)
2668                 return -1;
2669             if (xae > yae)
2670                 return 1;
2671             BigInteger rb = null;
2672             if (sdiff < 0) {
2673                 if ( (xs == INFLATED ||
2674                       (xs = longMultiplyPowerTen(xs, -sdiff)) == INFLATED) &&
2675                      ys == INFLATED) {
2676                     rb = bigMultiplyPowerTen(-sdiff);
2677                     return rb.compareMagnitude(val.intVal);
2678                 }
2679             } else { // sdiff > 0
2680                 if ( (ys == INFLATED ||
2681                       (ys = longMultiplyPowerTen(ys, sdiff)) == INFLATED) &&
2682                      xs == INFLATED) {
2683                     rb = val.bigMultiplyPowerTen(sdiff);
2684                     return this.intVal.compareMagnitude(rb);
2685                 }
2686             }
2687         }
2688         if (xs != INFLATED)
2689             return (ys != INFLATED) ? longCompareMagnitude(xs, ys) : -1;
2690         else if (ys != INFLATED)
2691             return 1;
2692         else
2693             return this.intVal.compareMagnitude(val.intVal);
2694     }
2695 
2696     /**
2697      * Compares this {@code BigDecimal} with the specified
2698      * {@code Object} for equality.  Unlike {@link
2699      * #compareTo(BigDecimal) compareTo}, this method considers two
2700      * {@code BigDecimal} objects equal only if they are equal in
2701      * value and scale (thus 2.0 is not equal to 2.00 when compared by
2702      * this method).
2703      *
2704      * @param  x {@code Object} to which this {@code BigDecimal} is
2705      *         to be compared.
2706      * @return {@code true} if and only if the specified {@code Object} is a
2707      *         {@code BigDecimal} whose value and scale are equal to this
2708      *         {@code BigDecimal}'s.
2709      * @see    #compareTo(java.math.BigDecimal)
2710      * @see    #hashCode
2711      */
2712     @Override
2713     public boolean equals(Object x) {
2714         if (!(x instanceof BigDecimal))
2715             return false;
2716         BigDecimal xDec = (BigDecimal) x;
2717         if (x == this)
2718             return true;
2719         if (scale != xDec.scale)
2720             return false;
2721         long s = this.intCompact;
2722         long xs = xDec.intCompact;
2723         if (s != INFLATED) {
2724             if (xs == INFLATED)
2725                 xs = compactValFor(xDec.intVal);
2726             return xs == s;
2727         } else if (xs != INFLATED)
2728             return xs == compactValFor(this.intVal);
2729 
2730         return this.inflated().equals(xDec.inflated());
2731     }
2732 
2733     /**
2734      * Returns the minimum of this {@code BigDecimal} and
2735      * {@code val}.
2736      *
2737      * @param  val value with which the minimum is to be computed.
2738      * @return the {@code BigDecimal} whose value is the lesser of this
2739      *         {@code BigDecimal} and {@code val}.  If they are equal,
2740      *         as defined by the {@link #compareTo(BigDecimal) compareTo}
2741      *         method, {@code this} is returned.
2742      * @see    #compareTo(java.math.BigDecimal)
2743      */
2744     public BigDecimal min(BigDecimal val) {
2745         return (compareTo(val) <= 0 ? this : val);
2746     }
2747 
2748     /**
2749      * Returns the maximum of this {@code BigDecimal} and {@code val}.
2750      *
2751      * @param  val value with which the maximum is to be computed.
2752      * @return the {@code BigDecimal} whose value is the greater of this
2753      *         {@code BigDecimal} and {@code val}.  If they are equal,
2754      *         as defined by the {@link #compareTo(BigDecimal) compareTo}
2755      *         method, {@code this} is returned.
2756      * @see    #compareTo(java.math.BigDecimal)
2757      */
2758     public BigDecimal max(BigDecimal val) {
2759         return (compareTo(val) >= 0 ? this : val);
2760     }
2761 
2762     // Hash Function
2763 
2764     /**
2765      * Returns the hash code for this {@code BigDecimal}.  Note that
2766      * two {@code BigDecimal} objects that are numerically equal but
2767      * differ in scale (like 2.0 and 2.00) will generally <i>not</i>
2768      * have the same hash code.
2769      *
2770      * @return hash code for this {@code BigDecimal}.
2771      * @see #equals(Object)
2772      */
2773     @Override
2774     public int hashCode() {
2775         if (intCompact != INFLATED) {
2776             long val2 = (intCompact < 0)? -intCompact : intCompact;
2777             int temp = (int)( ((int)(val2 >>> 32)) * 31  +
2778                               (val2 & LONG_MASK));
2779             return 31*((intCompact < 0) ?-temp:temp) + scale;
2780         } else
2781             return 31*intVal.hashCode() + scale;
2782     }
2783 
2784     // Format Converters
2785 
2786     /**
2787      * Returns the string representation of this {@code BigDecimal},
2788      * using scientific notation if an exponent is needed.
2789      *
2790      * <p>A standard canonical string form of the {@code BigDecimal}
2791      * is created as though by the following steps: first, the
2792      * absolute value of the unscaled value of the {@code BigDecimal}
2793      * is converted to a string in base ten using the characters
2794      * {@code '0'} through {@code '9'} with no leading zeros (except
2795      * if its value is zero, in which case a single {@code '0'}
2796      * character is used).
2797      *
2798      * <p>Next, an <i>adjusted exponent</i> is calculated; this is the
2799      * negated scale, plus the number of characters in the converted
2800      * unscaled value, less one.  That is,
2801      * {@code -scale+(ulength-1)}, where {@code ulength} is the
2802      * length of the absolute value of the unscaled value in decimal
2803      * digits (its <i>precision</i>).
2804      *
2805      * <p>If the scale is greater than or equal to zero and the
2806      * adjusted exponent is greater than or equal to {@code -6}, the
2807      * number will be converted to a character form without using
2808      * exponential notation.  In this case, if the scale is zero then
2809      * no decimal point is added and if the scale is positive a
2810      * decimal point will be inserted with the scale specifying the
2811      * number of characters to the right of the decimal point.
2812      * {@code '0'} characters are added to the left of the converted
2813      * unscaled value as necessary.  If no character precedes the
2814      * decimal point after this insertion then a conventional
2815      * {@code '0'} character is prefixed.
2816      *
2817      * <p>Otherwise (that is, if the scale is negative, or the
2818      * adjusted exponent is less than {@code -6}), the number will be
2819      * converted to a character form using exponential notation.  In
2820      * this case, if the converted {@code BigInteger} has more than
2821      * one digit a decimal point is inserted after the first digit.
2822      * An exponent in character form is then suffixed to the converted
2823      * unscaled value (perhaps with inserted decimal point); this
2824      * comprises the letter {@code 'E'} followed immediately by the
2825      * adjusted exponent converted to a character form.  The latter is
2826      * in base ten, using the characters {@code '0'} through
2827      * {@code '9'} with no leading zeros, and is always prefixed by a
2828      * sign character {@code '-'} (<tt>'&#92;u002D'</tt>) if the
2829      * adjusted exponent is negative, {@code '+'}
2830      * (<tt>'&#92;u002B'</tt>) otherwise).
2831      *
2832      * <p>Finally, the entire string is prefixed by a minus sign
2833      * character {@code '-'} (<tt>'&#92;u002D'</tt>) if the unscaled
2834      * value is less than zero.  No sign character is prefixed if the
2835      * unscaled value is zero or positive.
2836      *
2837      * <p><b>Examples:</b>
2838      * <p>For each representation [<i>unscaled value</i>, <i>scale</i>]
2839      * on the left, the resulting string is shown on the right.
2840      * <pre>
2841      * [123,0]      "123"
2842      * [-123,0]     "-123"
2843      * [123,-1]     "1.23E+3"
2844      * [123,-3]     "1.23E+5"
2845      * [123,1]      "12.3"
2846      * [123,5]      "0.00123"
2847      * [123,10]     "1.23E-8"
2848      * [-123,12]    "-1.23E-10"
2849      * </pre>
2850      *
2851      * <b>Notes:</b>
2852      * <ol>
2853      *
2854      * <li>There is a one-to-one mapping between the distinguishable
2855      * {@code BigDecimal} values and the result of this conversion.
2856      * That is, every distinguishable {@code BigDecimal} value
2857      * (unscaled value and scale) has a unique string representation
2858      * as a result of using {@code toString}.  If that string
2859      * representation is converted back to a {@code BigDecimal} using
2860      * the {@link #BigDecimal(String)} constructor, then the original
2861      * value will be recovered.
2862      *
2863      * <li>The string produced for a given number is always the same;
2864      * it is not affected by locale.  This means that it can be used
2865      * as a canonical string representation for exchanging decimal
2866      * data, or as a key for a Hashtable, etc.  Locale-sensitive
2867      * number formatting and parsing is handled by the {@link
2868      * java.text.NumberFormat} class and its subclasses.
2869      *
2870      * <li>The {@link #toEngineeringString} method may be used for
2871      * presenting numbers with exponents in engineering notation, and the
2872      * {@link #setScale(int,RoundingMode) setScale} method may be used for
2873      * rounding a {@code BigDecimal} so it has a known number of digits after
2874      * the decimal point.
2875      *
2876      * <li>The digit-to-character mapping provided by
2877      * {@code Character.forDigit} is used.
2878      *
2879      * </ol>
2880      *
2881      * @return string representation of this {@code BigDecimal}.
2882      * @see    Character#forDigit
2883      * @see    #BigDecimal(java.lang.String)
2884      */
2885     @Override
2886     public String toString() {
2887         String sc = stringCache;
2888         if (sc == null)
2889             stringCache = sc = layoutChars(true);
2890         return sc;
2891     }
2892 
2893     /**
2894      * Returns a string representation of this {@code BigDecimal},
2895      * using engineering notation if an exponent is needed.
2896      *
2897      * <p>Returns a string that represents the {@code BigDecimal} as
2898      * described in the {@link #toString()} method, except that if
2899      * exponential notation is used, the power of ten is adjusted to
2900      * be a multiple of three (engineering notation) such that the
2901      * integer part of nonzero values will be in the range 1 through
2902      * 999.  If exponential notation is used for zero values, a
2903      * decimal point and one or two fractional zero digits are used so
2904      * that the scale of the zero value is preserved.  Note that
2905      * unlike the output of {@link #toString()}, the output of this
2906      * method is <em>not</em> guaranteed to recover the same [integer,
2907      * scale] pair of this {@code BigDecimal} if the output string is
2908      * converting back to a {@code BigDecimal} using the {@linkplain
2909      * #BigDecimal(String) string constructor}.  The result of this method meets
2910      * the weaker constraint of always producing a numerically equal
2911      * result from applying the string constructor to the method's output.
2912      *
2913      * @return string representation of this {@code BigDecimal}, using
2914      *         engineering notation if an exponent is needed.
2915      * @since  1.5
2916      */
2917     public String toEngineeringString() {
2918         return layoutChars(false);
2919     }
2920 
2921     /**
2922      * Returns a string representation of this {@code BigDecimal}
2923      * without an exponent field.  For values with a positive scale,
2924      * the number of digits to the right of the decimal point is used
2925      * to indicate scale.  For values with a zero or negative scale,
2926      * the resulting string is generated as if the value were
2927      * converted to a numerically equal value with zero scale and as
2928      * if all the trailing zeros of the zero scale value were present
2929      * in the result.
2930      *
2931      * The entire string is prefixed by a minus sign character '-'
2932      * (<tt>'&#92;u002D'</tt>) if the unscaled value is less than
2933      * zero. No sign character is prefixed if the unscaled value is
2934      * zero or positive.
2935      *
2936      * Note that if the result of this method is passed to the
2937      * {@linkplain #BigDecimal(String) string constructor}, only the
2938      * numerical value of this {@code BigDecimal} will necessarily be
2939      * recovered; the representation of the new {@code BigDecimal}
2940      * may have a different scale.  In particular, if this
2941      * {@code BigDecimal} has a negative scale, the string resulting
2942      * from this method will have a scale of zero when processed by
2943      * the string constructor.
2944      *
2945      * (This method behaves analogously to the {@code toString}
2946      * method in 1.4 and earlier releases.)
2947      *
2948      * @return a string representation of this {@code BigDecimal}
2949      * without an exponent field.
2950      * @since 1.5
2951      * @see #toString()
2952      * @see #toEngineeringString()
2953      */
2954     public String toPlainString() {
2955         if(scale==0) {
2956             if(intCompact!=INFLATED) {
2957                 return Long.toString(intCompact);
2958             } else {
2959                 return intVal.toString();
2960             }
2961         }
2962         if(this.scale<0) { // No decimal point
2963             if(signum()==0) {
2964                 return "0";
2965             }
2966             int tailingZeros = checkScaleNonZero((-(long)scale));
2967             StringBuilder buf;
2968             if(intCompact!=INFLATED) {
2969                 buf = new StringBuilder(20+tailingZeros);
2970                 buf.append(intCompact);
2971             } else {
2972                 String str = intVal.toString();
2973                 buf = new StringBuilder(str.length()+tailingZeros);
2974                 buf.append(str);
2975             }
2976             for (int i = 0; i < tailingZeros; i++)
2977                 buf.append('0');
2978             return buf.toString();
2979         }
2980         String str ;
2981         if(intCompact!=INFLATED) {
2982             str = Long.toString(Math.abs(intCompact));
2983         } else {
2984             str = intVal.abs().toString();
2985         }
2986         return getValueString(signum(), str, scale);
2987     }
2988 
2989     /* Returns a digit.digit string */
2990     private String getValueString(int signum, String intString, int scale) {
2991         /* Insert decimal point */
2992         StringBuilder buf;
2993         int insertionPoint = intString.length() - scale;
2994         if (insertionPoint == 0) {  /* Point goes right before intVal */
2995             return (signum<0 ? "-0." : "0.") + intString;
2996         } else if (insertionPoint > 0) { /* Point goes inside intVal */
2997             buf = new StringBuilder(intString);
2998             buf.insert(insertionPoint, '.');
2999             if (signum < 0)
3000                 buf.insert(0, '-');
3001         } else { /* We must insert zeros between point and intVal */
3002             buf = new StringBuilder(3-insertionPoint + intString.length());
3003             buf.append(signum<0 ? "-0." : "0.");
3004             for (int i=0; i<-insertionPoint; i++)
3005                 buf.append('0');
3006             buf.append(intString);
3007         }
3008         return buf.toString();
3009     }
3010 
3011     /**
3012      * Converts this {@code BigDecimal} to a {@code BigInteger}.
3013      * This conversion is analogous to the
3014      * <i>narrowing primitive conversion</i> from {@code double} to
3015      * {@code long} as defined in section 5.1.3 of
3016      * <cite>The Java&trade; Language Specification</cite>:
3017      * any fractional part of this
3018      * {@code BigDecimal} will be discarded.  Note that this
3019      * conversion can lose information about the precision of the
3020      * {@code BigDecimal} value.
3021      * <p>
3022      * To have an exception thrown if the conversion is inexact (in
3023      * other words if a nonzero fractional part is discarded), use the
3024      * {@link #toBigIntegerExact()} method.
3025      *
3026      * @return this {@code BigDecimal} converted to a {@code BigInteger}.
3027      */
3028     public BigInteger toBigInteger() {
3029         // force to an integer, quietly
3030         return this.setScale(0, ROUND_DOWN).inflated();
3031     }
3032 
3033     /**
3034      * Converts this {@code BigDecimal} to a {@code BigInteger},
3035      * checking for lost information.  An exception is thrown if this
3036      * {@code BigDecimal} has a nonzero fractional part.
3037      *
3038      * @return this {@code BigDecimal} converted to a {@code BigInteger}.
3039      * @throws ArithmeticException if {@code this} has a nonzero
3040      *         fractional part.
3041      * @since  1.5
3042      */
3043     public BigInteger toBigIntegerExact() {
3044         // round to an integer, with Exception if decimal part non-0
3045         return this.setScale(0, ROUND_UNNECESSARY).inflated();
3046     }
3047 
3048     /**
3049      * Converts this {@code BigDecimal} to a {@code long}.
3050      * This conversion is analogous to the
3051      * <i>narrowing primitive conversion</i> from {@code double} to
3052      * {@code short} as defined in section 5.1.3 of
3053      * <cite>The Java&trade; Language Specification</cite>:
3054      * any fractional part of this
3055      * {@code BigDecimal} will be discarded, and if the resulting
3056      * "{@code BigInteger}" is too big to fit in a
3057      * {@code long}, only the low-order 64 bits are returned.
3058      * Note that this conversion can lose information about the
3059      * overall magnitude and precision of this {@code BigDecimal} value as well
3060      * as return a result with the opposite sign.
3061      *
3062      * @return this {@code BigDecimal} converted to a {@code long}.
3063      */
3064     public long longValue(){
3065         return (intCompact != INFLATED && scale == 0) ?
3066             intCompact:
3067             toBigInteger().longValue();
3068     }
3069 
3070     /**
3071      * Converts this {@code BigDecimal} to a {@code long}, checking
3072      * for lost information.  If this {@code BigDecimal} has a
3073      * nonzero fractional part or is out of the possible range for a
3074      * {@code long} result then an {@code ArithmeticException} is
3075      * thrown.
3076      *
3077      * @return this {@code BigDecimal} converted to a {@code long}.
3078      * @throws ArithmeticException if {@code this} has a nonzero
3079      *         fractional part, or will not fit in a {@code long}.
3080      * @since  1.5
3081      */
3082     public long longValueExact() {
3083         if (intCompact != INFLATED && scale == 0)
3084             return intCompact;
3085         // If more than 19 digits in integer part it cannot possibly fit
3086         if ((precision() - scale) > 19) // [OK for negative scale too]
3087             throw new java.lang.ArithmeticException("Overflow");
3088         // Fastpath zero and < 1.0 numbers (the latter can be very slow
3089         // to round if very small)
3090         if (this.signum() == 0)
3091             return 0;
3092         if ((this.precision() - this.scale) <= 0)
3093             throw new ArithmeticException("Rounding necessary");
3094         // round to an integer, with Exception if decimal part non-0
3095         BigDecimal num = this.setScale(0, ROUND_UNNECESSARY);
3096         if (num.precision() >= 19) // need to check carefully
3097             LongOverflow.check(num);
3098         return num.inflated().longValue();
3099     }
3100 
3101     private static class LongOverflow {
3102         /** BigInteger equal to Long.MIN_VALUE. */
3103         private static final BigInteger LONGMIN = BigInteger.valueOf(Long.MIN_VALUE);
3104 
3105         /** BigInteger equal to Long.MAX_VALUE. */
3106         private static final BigInteger LONGMAX = BigInteger.valueOf(Long.MAX_VALUE);
3107 
3108         public static void check(BigDecimal num) {
3109             BigInteger intVal = num.inflated();
3110             if (intVal.compareTo(LONGMIN) < 0 ||
3111                 intVal.compareTo(LONGMAX) > 0)
3112                 throw new java.lang.ArithmeticException("Overflow");
3113         }
3114     }
3115 
3116     /**
3117      * Converts this {@code BigDecimal} to an {@code int}.
3118      * This conversion is analogous to the
3119      * <i>narrowing primitive conversion</i> from {@code double} to
3120      * {@code short} as defined in section 5.1.3 of
3121      * <cite>The Java&trade; Language Specification</cite>:
3122      * any fractional part of this
3123      * {@code BigDecimal} will be discarded, and if the resulting
3124      * "{@code BigInteger}" is too big to fit in an
3125      * {@code int}, only the low-order 32 bits are returned.
3126      * Note that this conversion can lose information about the
3127      * overall magnitude and precision of this {@code BigDecimal}
3128      * value as well as return a result with the opposite sign.
3129      *
3130      * @return this {@code BigDecimal} converted to an {@code int}.
3131      */
3132     public int intValue() {
3133         return  (intCompact != INFLATED && scale == 0) ?
3134             (int)intCompact :
3135             toBigInteger().intValue();
3136     }
3137 
3138     /**
3139      * Converts this {@code BigDecimal} to an {@code int}, checking
3140      * for lost information.  If this {@code BigDecimal} has a
3141      * nonzero fractional part or is out of the possible range for an
3142      * {@code int} result then an {@code ArithmeticException} is
3143      * thrown.
3144      *
3145      * @return this {@code BigDecimal} converted to an {@code int}.
3146      * @throws ArithmeticException if {@code this} has a nonzero
3147      *         fractional part, or will not fit in an {@code int}.
3148      * @since  1.5
3149      */
3150     public int intValueExact() {
3151        long num;
3152        num = this.longValueExact();     // will check decimal part
3153        if ((int)num != num)
3154            throw new java.lang.ArithmeticException("Overflow");
3155        return (int)num;
3156     }
3157 
3158     /**
3159      * Converts this {@code BigDecimal} to a {@code short}, checking
3160      * for lost information.  If this {@code BigDecimal} has a
3161      * nonzero fractional part or is out of the possible range for a
3162      * {@code short} result then an {@code ArithmeticException} is
3163      * thrown.
3164      *
3165      * @return this {@code BigDecimal} converted to a {@code short}.
3166      * @throws ArithmeticException if {@code this} has a nonzero
3167      *         fractional part, or will not fit in a {@code short}.
3168      * @since  1.5
3169      */
3170     public short shortValueExact() {
3171        long num;
3172        num = this.longValueExact();     // will check decimal part
3173        if ((short)num != num)
3174            throw new java.lang.ArithmeticException("Overflow");
3175        return (short)num;
3176     }
3177 
3178     /**
3179      * Converts this {@code BigDecimal} to a {@code byte}, checking
3180      * for lost information.  If this {@code BigDecimal} has a
3181      * nonzero fractional part or is out of the possible range for a
3182      * {@code byte} result then an {@code ArithmeticException} is
3183      * thrown.
3184      *
3185      * @return this {@code BigDecimal} converted to a {@code byte}.
3186      * @throws ArithmeticException if {@code this} has a nonzero
3187      *         fractional part, or will not fit in a {@code byte}.
3188      * @since  1.5
3189      */
3190     public byte byteValueExact() {
3191        long num;
3192        num = this.longValueExact();     // will check decimal part
3193        if ((byte)num != num)
3194            throw new java.lang.ArithmeticException("Overflow");
3195        return (byte)num;
3196     }
3197 
3198     /**
3199      * Converts this {@code BigDecimal} to a {@code float}.
3200      * This conversion is similar to the
3201      * <i>narrowing primitive conversion</i> from {@code double} to
3202      * {@code float} as defined in section 5.1.3 of
3203      * <cite>The Java&trade; Language Specification</cite>:
3204      * if this {@code BigDecimal} has too great a
3205      * magnitude to represent as a {@code float}, it will be
3206      * converted to {@link Float#NEGATIVE_INFINITY} or {@link
3207      * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
3208      * the return value is finite, this conversion can lose
3209      * information about the precision of the {@code BigDecimal}
3210      * value.
3211      *
3212      * @return this {@code BigDecimal} converted to a {@code float}.
3213      */
3214     public float floatValue(){
3215         if(intCompact != INFLATED) {
3216             if (scale == 0) {
3217                 return (float)intCompact;
3218             } else {
3219                 /*
3220                  * If both intCompact and the scale can be exactly
3221                  * represented as float values, perform a single float
3222                  * multiply or divide to compute the (properly
3223                  * rounded) result.
3224                  */
3225                 if (Math.abs(intCompact) < 1L<<22 ) {
3226                     // Don't have too guard against
3227                     // Math.abs(MIN_VALUE) because of outer check
3228                     // against INFLATED.
3229                     if (scale > 0 && scale < float10pow.length) {
3230                         return (float)intCompact / float10pow[scale];
3231                     } else if (scale < 0 && scale > -float10pow.length) {
3232                         return (float)intCompact * float10pow[-scale];
3233                     }
3234                 }
3235             }
3236         }
3237         // Somewhat inefficient, but guaranteed to work.
3238         return Float.parseFloat(this.toString());
3239     }
3240 
3241     /**
3242      * Converts this {@code BigDecimal} to a {@code double}.
3243      * This conversion is similar to the
3244      * <i>narrowing primitive conversion</i> from {@code double} to
3245      * {@code float} as defined in section 5.1.3 of
3246      * <cite>The Java&trade; Language Specification</cite>:
3247      * if this {@code BigDecimal} has too great a
3248      * magnitude represent as a {@code double}, it will be
3249      * converted to {@link Double#NEGATIVE_INFINITY} or {@link
3250      * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
3251      * the return value is finite, this conversion can lose
3252      * information about the precision of the {@code BigDecimal}
3253      * value.
3254      *
3255      * @return this {@code BigDecimal} converted to a {@code double}.
3256      */
3257     public double doubleValue(){
3258         if(intCompact != INFLATED) {
3259             if (scale == 0) {
3260                 return (double)intCompact;
3261             } else {
3262                 /*
3263                  * If both intCompact and the scale can be exactly
3264                  * represented as double values, perform a single
3265                  * double multiply or divide to compute the (properly
3266                  * rounded) result.
3267                  */
3268                 if (Math.abs(intCompact) < 1L<<52 ) {
3269                     // Don't have too guard against
3270                     // Math.abs(MIN_VALUE) because of outer check
3271                     // against INFLATED.
3272                     if (scale > 0 && scale < double10pow.length) {
3273                         return (double)intCompact / double10pow[scale];
3274                     } else if (scale < 0 && scale > -double10pow.length) {
3275                         return (double)intCompact * double10pow[-scale];
3276                     }
3277                 }
3278             }
3279         }
3280         // Somewhat inefficient, but guaranteed to work.
3281         return Double.parseDouble(this.toString());
3282     }
3283 
3284     /**
3285      * Powers of 10 which can be represented exactly in {@code
3286      * double}.
3287      */
3288     private static final double double10pow[] = {
3289         1.0e0,  1.0e1,  1.0e2,  1.0e3,  1.0e4,  1.0e5,
3290         1.0e6,  1.0e7,  1.0e8,  1.0e9,  1.0e10, 1.0e11,
3291         1.0e12, 1.0e13, 1.0e14, 1.0e15, 1.0e16, 1.0e17,
3292         1.0e18, 1.0e19, 1.0e20, 1.0e21, 1.0e22
3293     };
3294 
3295     /**
3296      * Powers of 10 which can be represented exactly in {@code
3297      * float}.
3298      */
3299     private static final float float10pow[] = {
3300         1.0e0f, 1.0e1f, 1.0e2f, 1.0e3f, 1.0e4f, 1.0e5f,
3301         1.0e6f, 1.0e7f, 1.0e8f, 1.0e9f, 1.0e10f
3302     };
3303 
3304     /**
3305      * Returns the size of an ulp, a unit in the last place, of this
3306      * {@code BigDecimal}.  An ulp of a nonzero {@code BigDecimal}
3307      * value is the positive distance between this value and the
3308      * {@code BigDecimal} value next larger in magnitude with the
3309      * same number of digits.  An ulp of a zero value is numerically
3310      * equal to 1 with the scale of {@code this}.  The result is
3311      * stored with the same scale as {@code this} so the result
3312      * for zero and nonzero values is equal to {@code [1,
3313      * this.scale()]}.
3314      *
3315      * @return the size of an ulp of {@code this}
3316      * @since 1.5
3317      */
3318     public BigDecimal ulp() {
3319         return BigDecimal.valueOf(1, this.scale(), 1);
3320     }
3321 
3322     // Private class to build a string representation for BigDecimal object.
3323     // "StringBuilderHelper" is constructed as a thread local variable so it is
3324     // thread safe. The StringBuilder field acts as a buffer to hold the temporary
3325     // representation of BigDecimal. The cmpCharArray holds all the characters for
3326     // the compact representation of BigDecimal (except for '-' sign' if it is
3327     // negative) if its intCompact field is not INFLATED. It is shared by all
3328     // calls to toString() and its variants in that particular thread.
3329     static class StringBuilderHelper {
3330         final StringBuilder sb;    // Placeholder for BigDecimal string
3331         final char[] cmpCharArray; // character array to place the intCompact
3332 
3333         StringBuilderHelper() {
3334             sb = new StringBuilder();
3335             // All non negative longs can be made to fit into 19 character array.
3336             cmpCharArray = new char[19];
3337         }
3338 
3339         // Accessors.
3340         StringBuilder getStringBuilder() {
3341             sb.setLength(0);
3342             return sb;
3343         }
3344 
3345         char[] getCompactCharArray() {
3346             return cmpCharArray;
3347         }
3348 
3349         /**
3350          * Places characters representing the intCompact in {@code long} into
3351          * cmpCharArray and returns the offset to the array where the
3352          * representation starts.
3353          *
3354          * @param intCompact the number to put into the cmpCharArray.
3355          * @return offset to the array where the representation starts.
3356          * Note: intCompact must be greater or equal to zero.
3357          */
3358         int putIntCompact(long intCompact) {
3359             assert intCompact >= 0;
3360 
3361             long q;
3362             int r;
3363             // since we start from the least significant digit, charPos points to
3364             // the last character in cmpCharArray.
3365             int charPos = cmpCharArray.length;
3366 
3367             // Get 2 digits/iteration using longs until quotient fits into an int
3368             while (intCompact > Integer.MAX_VALUE) {
3369                 q = intCompact / 100;
3370                 r = (int)(intCompact - q * 100);
3371                 intCompact = q;
3372                 cmpCharArray[--charPos] = DIGIT_ONES[r];
3373                 cmpCharArray[--charPos] = DIGIT_TENS[r];
3374             }
3375 
3376             // Get 2 digits/iteration using ints when i2 >= 100
3377             int q2;
3378             int i2 = (int)intCompact;
3379             while (i2 >= 100) {
3380                 q2 = i2 / 100;
3381                 r  = i2 - q2 * 100;
3382                 i2 = q2;
3383                 cmpCharArray[--charPos] = DIGIT_ONES[r];
3384                 cmpCharArray[--charPos] = DIGIT_TENS[r];
3385             }
3386 
3387             cmpCharArray[--charPos] = DIGIT_ONES[i2];
3388             if (i2 >= 10)
3389                 cmpCharArray[--charPos] = DIGIT_TENS[i2];
3390 
3391             return charPos;
3392         }
3393 
3394         final static char[] DIGIT_TENS = {
3395             '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
3396             '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
3397             '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
3398             '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
3399             '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
3400             '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
3401             '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
3402             '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
3403             '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
3404             '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
3405         };
3406 
3407         final static char[] DIGIT_ONES = {
3408             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3409             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3410             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3411             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3412             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3413             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3414             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3415             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3416             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3417             '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
3418         };
3419     }
3420 
3421     /**
3422      * Lay out this {@code BigDecimal} into a {@code char[]} array.
3423      * The Java 1.2 equivalent to this was called {@code getValueString}.
3424      *
3425      * @param  sci {@code true} for Scientific exponential notation;
3426      *          {@code false} for Engineering
3427      * @return string with canonical string representation of this
3428      *         {@code BigDecimal}
3429      */
3430     private String layoutChars(boolean sci) {
3431         if (scale == 0)                      // zero scale is trivial
3432             return (intCompact != INFLATED) ?
3433                 Long.toString(intCompact):
3434                 intVal.toString();
3435         if (scale == 2  &&
3436             intCompact >= 0 && intCompact < Integer.MAX_VALUE) {
3437             // currency fast path
3438             int lowInt = (int)intCompact % 100;
3439             int highInt = (int)intCompact / 100;
3440             return (Integer.toString(highInt) + '.' +
3441                     StringBuilderHelper.DIGIT_TENS[lowInt] +
3442                     StringBuilderHelper.DIGIT_ONES[lowInt]) ;
3443         }
3444 
3445         StringBuilderHelper sbHelper = threadLocalStringBuilderHelper.get();
3446         char[] coeff;
3447         int offset;  // offset is the starting index for coeff array
3448         // Get the significand as an absolute value
3449         if (intCompact != INFLATED) {
3450             offset = sbHelper.putIntCompact(Math.abs(intCompact));
3451             coeff  = sbHelper.getCompactCharArray();
3452         } else {
3453             offset = 0;
3454             coeff  = intVal.abs().toString().toCharArray();
3455         }
3456 
3457         // Construct a buffer, with sufficient capacity for all cases.
3458         // If E-notation is needed, length will be: +1 if negative, +1
3459         // if '.' needed, +2 for "E+", + up to 10 for adjusted exponent.
3460         // Otherwise it could have +1 if negative, plus leading "0.00000"
3461         StringBuilder buf = sbHelper.getStringBuilder();
3462         if (signum() < 0)             // prefix '-' if negative
3463             buf.append('-');
3464         int coeffLen = coeff.length - offset;
3465         long adjusted = -(long)scale + (coeffLen -1);
3466         if ((scale >= 0) && (adjusted >= -6)) { // plain number
3467             int pad = scale - coeffLen;         // count of padding zeros
3468             if (pad >= 0) {                     // 0.xxx form
3469                 buf.append('0');
3470                 buf.append('.');
3471                 for (; pad>0; pad--) {
3472                     buf.append('0');
3473                 }
3474                 buf.append(coeff, offset, coeffLen);
3475             } else {                         // xx.xx form
3476                 buf.append(coeff, offset, -pad);
3477                 buf.append('.');
3478                 buf.append(coeff, -pad + offset, scale);
3479             }
3480         } else { // E-notation is needed
3481             if (sci) {                       // Scientific notation
3482                 buf.append(coeff[offset]);   // first character
3483                 if (coeffLen > 1) {          // more to come
3484                     buf.append('.');
3485                     buf.append(coeff, offset + 1, coeffLen - 1);
3486                 }
3487             } else {                         // Engineering notation
3488                 int sig = (int)(adjusted % 3);
3489                 if (sig < 0)
3490                     sig += 3;                // [adjusted was negative]
3491                 adjusted -= sig;             // now a multiple of 3
3492                 sig++;
3493                 if (signum() == 0) {
3494                     switch (sig) {
3495                     case 1:
3496                         buf.append('0'); // exponent is a multiple of three
3497                         break;
3498                     case 2:
3499                         buf.append("0.00");
3500                         adjusted += 3;
3501                         break;
3502                     case 3:
3503                         buf.append("0.0");
3504                         adjusted += 3;
3505                         break;
3506                     default:
3507                         throw new AssertionError("Unexpected sig value " + sig);
3508                     }
3509                 } else if (sig >= coeffLen) {   // significand all in integer
3510                     buf.append(coeff, offset, coeffLen);
3511                     // may need some zeros, too
3512                     for (int i = sig - coeffLen; i > 0; i--)
3513                         buf.append('0');
3514                 } else {                     // xx.xxE form
3515                     buf.append(coeff, offset, sig);
3516                     buf.append('.');
3517                     buf.append(coeff, offset + sig, coeffLen - sig);
3518                 }
3519             }
3520             if (adjusted != 0) {             // [!sci could have made 0]
3521                 buf.append('E');
3522                 if (adjusted > 0)            // force sign for positive
3523                     buf.append('+');
3524                 buf.append(adjusted);
3525             }
3526         }
3527         return buf.toString();
3528     }
3529 
3530     /**
3531      * Return 10 to the power n, as a {@code BigInteger}.
3532      *
3533      * @param  n the power of ten to be returned (>=0)
3534      * @return a {@code BigInteger} with the value (10<sup>n</sup>)
3535      */
3536     private static BigInteger bigTenToThe(int n) {
3537         if (n < 0)
3538             return BigInteger.ZERO;
3539 
3540         if (n < BIG_TEN_POWERS_TABLE_MAX) {
3541             BigInteger[] pows = BIG_TEN_POWERS_TABLE;
3542             if (n < pows.length)
3543                 return pows[n];
3544             else
3545                 return expandBigIntegerTenPowers(n);
3546         }
3547 
3548         return BigInteger.TEN.pow(n);
3549     }
3550 
3551     /**
3552      * Expand the BIG_TEN_POWERS_TABLE array to contain at least 10**n.
3553      *
3554      * @param n the power of ten to be returned (>=0)
3555      * @return a {@code BigDecimal} with the value (10<sup>n</sup>) and
3556      *         in the meantime, the BIG_TEN_POWERS_TABLE array gets
3557      *         expanded to the size greater than n.
3558      */
3559     private static BigInteger expandBigIntegerTenPowers(int n) {
3560         synchronized(BigDecimal.class) {
3561             BigInteger[] pows = BIG_TEN_POWERS_TABLE;
3562             int curLen = pows.length;
3563             // The following comparison and the above synchronized statement is
3564             // to prevent multiple threads from expanding the same array.
3565             if (curLen <= n) {
3566                 int newLen = curLen << 1;
3567                 while (newLen <= n)
3568                     newLen <<= 1;
3569                 pows = Arrays.copyOf(pows, newLen);
3570                 for (int i = curLen; i < newLen; i++)
3571                     pows[i] = pows[i - 1].multiply(BigInteger.TEN);
3572                 // Based on the following facts:
3573                 // 1. pows is a private local varible;
3574                 // 2. the following store is a volatile store.
3575                 // the newly created array elements can be safely published.
3576                 BIG_TEN_POWERS_TABLE = pows;
3577             }
3578             return pows[n];
3579         }
3580     }
3581 
3582     private static final long[] LONG_TEN_POWERS_TABLE = {
3583         1,                     // 0 / 10^0
3584         10,                    // 1 / 10^1
3585         100,                   // 2 / 10^2
3586         1000,                  // 3 / 10^3
3587         10000,                 // 4 / 10^4
3588         100000,                // 5 / 10^5
3589         1000000,               // 6 / 10^6
3590         10000000,              // 7 / 10^7
3591         100000000,             // 8 / 10^8
3592         1000000000,            // 9 / 10^9
3593         10000000000L,          // 10 / 10^10
3594         100000000000L,         // 11 / 10^11
3595         1000000000000L,        // 12 / 10^12
3596         10000000000000L,       // 13 / 10^13
3597         100000000000000L,      // 14 / 10^14
3598         1000000000000000L,     // 15 / 10^15
3599         10000000000000000L,    // 16 / 10^16
3600         100000000000000000L,   // 17 / 10^17
3601         1000000000000000000L   // 18 / 10^18
3602     };
3603 
3604     private static volatile BigInteger BIG_TEN_POWERS_TABLE[] = {
3605         BigInteger.ONE,
3606         BigInteger.valueOf(10),
3607         BigInteger.valueOf(100),
3608         BigInteger.valueOf(1000),
3609         BigInteger.valueOf(10000),
3610         BigInteger.valueOf(100000),
3611         BigInteger.valueOf(1000000),
3612         BigInteger.valueOf(10000000),
3613         BigInteger.valueOf(100000000),
3614         BigInteger.valueOf(1000000000),
3615         BigInteger.valueOf(10000000000L),
3616         BigInteger.valueOf(100000000000L),
3617         BigInteger.valueOf(1000000000000L),
3618         BigInteger.valueOf(10000000000000L),
3619         BigInteger.valueOf(100000000000000L),
3620         BigInteger.valueOf(1000000000000000L),
3621         BigInteger.valueOf(10000000000000000L),
3622         BigInteger.valueOf(100000000000000000L),
3623         BigInteger.valueOf(1000000000000000000L)
3624     };
3625 
3626     private static final int BIG_TEN_POWERS_TABLE_INITLEN =
3627         BIG_TEN_POWERS_TABLE.length;
3628     private static final int BIG_TEN_POWERS_TABLE_MAX =
3629         16 * BIG_TEN_POWERS_TABLE_INITLEN;
3630 
3631     private static final long THRESHOLDS_TABLE[] = {
3632         Long.MAX_VALUE,                     // 0
3633         Long.MAX_VALUE/10L,                 // 1
3634         Long.MAX_VALUE/100L,                // 2
3635         Long.MAX_VALUE/1000L,               // 3
3636         Long.MAX_VALUE/10000L,              // 4
3637         Long.MAX_VALUE/100000L,             // 5
3638         Long.MAX_VALUE/1000000L,            // 6
3639         Long.MAX_VALUE/10000000L,           // 7
3640         Long.MAX_VALUE/100000000L,          // 8
3641         Long.MAX_VALUE/1000000000L,         // 9
3642         Long.MAX_VALUE/10000000000L,        // 10
3643         Long.MAX_VALUE/100000000000L,       // 11
3644         Long.MAX_VALUE/1000000000000L,      // 12
3645         Long.MAX_VALUE/10000000000000L,     // 13
3646         Long.MAX_VALUE/100000000000000L,    // 14
3647         Long.MAX_VALUE/1000000000000000L,   // 15
3648         Long.MAX_VALUE/10000000000000000L,  // 16
3649         Long.MAX_VALUE/100000000000000000L, // 17
3650         Long.MAX_VALUE/1000000000000000000L // 18
3651     };
3652 
3653     /**
3654      * Compute val * 10 ^ n; return this product if it is
3655      * representable as a long, INFLATED otherwise.
3656      */
3657     private static long longMultiplyPowerTen(long val, int n) {
3658         if (val == 0 || n <= 0)
3659             return val;
3660         long[] tab = LONG_TEN_POWERS_TABLE;
3661         long[] bounds = THRESHOLDS_TABLE;
3662         if (n < tab.length && n < bounds.length) {
3663             long tenpower = tab[n];
3664             if (val == 1)
3665                 return tenpower;
3666             if (Math.abs(val) <= bounds[n])
3667                 return val * tenpower;
3668         }
3669         return INFLATED;
3670     }
3671 
3672     /**
3673      * Compute this * 10 ^ n.
3674      * Needed mainly to allow special casing to trap zero value
3675      */
3676     private BigInteger bigMultiplyPowerTen(int n) {
3677         if (n <= 0)
3678             return this.inflated();
3679 
3680         if (intCompact != INFLATED)
3681             return bigTenToThe(n).multiply(intCompact);
3682         else
3683             return intVal.multiply(bigTenToThe(n));
3684     }
3685 
3686     /**
3687      * Returns appropriate BigInteger from intVal field if intVal is
3688      * null, i.e. the compact representation is in use.
3689      */
3690     private BigInteger inflated() {
3691         if (intVal == null) {
3692             return BigInteger.valueOf(intCompact);
3693         }
3694         return intVal;
3695     }
3696 
3697     /**
3698      * Match the scales of two {@code BigDecimal}s to align their
3699      * least significant digits.
3700      *
3701      * <p>If the scales of val[0] and val[1] differ, rescale
3702      * (non-destructively) the lower-scaled {@code BigDecimal} so
3703      * they match.  That is, the lower-scaled reference will be
3704      * replaced by a reference to a new object with the same scale as
3705      * the other {@code BigDecimal}.
3706      *
3707      * @param  val array of two elements referring to the two
3708      *         {@code BigDecimal}s to be aligned.
3709      */
3710     private static void matchScale(BigDecimal[] val) {
3711         if (val[0].scale == val[1].scale) {
3712             return;
3713         } else if (val[0].scale < val[1].scale) {
3714             val[0] = val[0].setScale(val[1].scale, ROUND_UNNECESSARY);
3715         } else if (val[1].scale < val[0].scale) {
3716             val[1] = val[1].setScale(val[0].scale, ROUND_UNNECESSARY);
3717         }
3718     }
3719 
3720     private static class UnsafeHolder {
3721         private static final sun.misc.Unsafe unsafe;
3722         private static final long intCompactOffset;
3723         private static final long intValOffset;
3724         static {
3725             try {
3726                 unsafe = sun.misc.Unsafe.getUnsafe();
3727                 intCompactOffset = unsafe.objectFieldOffset
3728                     (BigDecimal.class.getDeclaredField("intCompact"));
3729                 intValOffset = unsafe.objectFieldOffset
3730                     (BigDecimal.class.getDeclaredField("intVal"));
3731             } catch (Exception ex) {
3732                 throw new ExceptionInInitializerError(ex);
3733             }
3734         }
3735         static void setIntCompactVolatile(BigDecimal bd, long val) {
3736             unsafe.putLongVolatile(bd, intCompactOffset, val);
3737         }
3738 
3739         static void setIntValVolatile(BigDecimal bd, BigInteger val) {
3740             unsafe.putObjectVolatile(bd, intValOffset, val);
3741         }
3742     }
3743 
3744     /**
3745      * Reconstitute the {@code BigDecimal} instance from a stream (that is,
3746      * deserialize it).
3747      *
3748      * @param s the stream being read.
3749      */
3750     private void readObject(java.io.ObjectInputStream s)
3751         throws java.io.IOException, ClassNotFoundException {
3752         // Read in all fields
3753         s.defaultReadObject();
3754         // validate possibly bad fields
3755         if (intVal == null) {
3756             String message = "BigDecimal: null intVal in stream";
3757             throw new java.io.StreamCorruptedException(message);
3758         // [all values of scale are now allowed]
3759         }
3760         UnsafeHolder.setIntCompactVolatile(this, compactValFor(intVal));
3761     }
3762 
3763    /**
3764     * Serialize this {@code BigDecimal} to the stream in question
3765     *
3766     * @param s the stream to serialize to.
3767     */
3768    private void writeObject(java.io.ObjectOutputStream s)
3769        throws java.io.IOException {
3770        // Must inflate to maintain compatible serial form.
3771        if (this.intVal == null)
3772            UnsafeHolder.setIntValVolatile(this, BigInteger.valueOf(this.intCompact));
3773        // Could reset intVal back to null if it has to be set.
3774        s.defaultWriteObject();
3775    }
3776 
3777     /**
3778      * Returns the length of the absolute value of a {@code long}, in decimal
3779      * digits.
3780      *
3781      * @param x the {@code long}
3782      * @return the length of the unscaled value, in deciaml digits.
3783      */
3784     static int longDigitLength(long x) {
3785         /*
3786          * As described in "Bit Twiddling Hacks" by Sean Anderson,
3787          * (http://graphics.stanford.edu/~seander/bithacks.html)
3788          * integer log 10 of x is within 1 of (1233/4096)* (1 +
3789          * integer log 2 of x). The fraction 1233/4096 approximates
3790          * log10(2). So we first do a version of log2 (a variant of
3791          * Long class with pre-checks and opposite directionality) and
3792          * then scale and check against powers table. This is a little
3793          * simpler in present context than the version in Hacker's
3794          * Delight sec 11-4. Adding one to bit length allows comparing
3795          * downward from the LONG_TEN_POWERS_TABLE that we need
3796          * anyway.
3797          */
3798         assert x != BigDecimal.INFLATED;
3799         if (x < 0)
3800             x = -x;
3801         if (x < 10) // must screen for 0, might as well 10
3802             return 1;
3803         int r = ((64 - Long.numberOfLeadingZeros(x) + 1) * 1233) >>> 12;
3804         long[] tab = LONG_TEN_POWERS_TABLE;
3805         // if r >= length, must have max possible digits for long
3806         return (r >= tab.length || x < tab[r]) ? r : r + 1;
3807     }
3808 
3809     /**
3810      * Returns the length of the absolute value of a BigInteger, in
3811      * decimal digits.
3812      *
3813      * @param b the BigInteger
3814      * @return the length of the unscaled value, in decimal digits
3815      */
3816     private static int bigDigitLength(BigInteger b) {
3817         /*
3818          * Same idea as the long version, but we need a better
3819          * approximation of log10(2). Using 646456993/2^31
3820          * is accurate up to max possible reported bitLength.
3821          */
3822         if (b.signum == 0)
3823             return 1;
3824         int r = (int)((((long)b.bitLength() + 1) * 646456993) >>> 31);
3825         return b.compareMagnitude(bigTenToThe(r)) < 0? r : r+1;
3826     }
3827 
3828     /**
3829      * Check a scale for Underflow or Overflow.  If this BigDecimal is
3830      * nonzero, throw an exception if the scale is outof range. If this
3831      * is zero, saturate the scale to the extreme value of the right
3832      * sign if the scale is out of range.
3833      *
3834      * @param val The new scale.
3835      * @throws ArithmeticException (overflow or underflow) if the new
3836      *         scale is out of range.
3837      * @return validated scale as an int.
3838      */
3839     private int checkScale(long val) {
3840         int asInt = (int)val;
3841         if (asInt != val) {
3842             asInt = val>Integer.MAX_VALUE ? Integer.MAX_VALUE : Integer.MIN_VALUE;
3843             BigInteger b;
3844             if (intCompact != 0 &&
3845                 ((b = intVal) == null || b.signum() != 0))
3846                 throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
3847         }
3848         return asInt;
3849     }
3850 
3851    /**
3852      * Returns the compact value for given {@code BigInteger}, or
3853      * INFLATED if too big. Relies on internal representation of
3854      * {@code BigInteger}.
3855      */
3856     private static long compactValFor(BigInteger b) {
3857         int[] m = b.mag;
3858         int len = m.length;
3859         if (len == 0)
3860             return 0;
3861         int d = m[0];
3862         if (len > 2 || (len == 2 && d < 0))
3863             return INFLATED;
3864 
3865         long u = (len == 2)?
3866             (((long) m[1] & LONG_MASK) + (((long)d) << 32)) :
3867             (((long)d)   & LONG_MASK);
3868         return (b.signum < 0)? -u : u;
3869     }
3870 
3871     private static int longCompareMagnitude(long x, long y) {
3872         if (x < 0)
3873             x = -x;
3874         if (y < 0)
3875             y = -y;
3876         return (x < y) ? -1 : ((x == y) ? 0 : 1);
3877     }
3878 
3879     private static int saturateLong(long s) {
3880         int i = (int)s;
3881         return (s == i) ? i : (s < 0 ? Integer.MIN_VALUE : Integer.MAX_VALUE);
3882     }
3883 
3884     /*
3885      * Internal printing routine
3886      */
3887     private static void print(String name, BigDecimal bd) {
3888         System.err.format("%s:\tintCompact %d\tintVal %d\tscale %d\tprecision %d%n",
3889                           name,
3890                           bd.intCompact,
3891                           bd.intVal,
3892                           bd.scale,
3893                           bd.precision);
3894     }
3895 
3896     /**
3897      * Check internal invariants of this BigDecimal.  These invariants
3898      * include:
3899      *
3900      * <ul>
3901      *
3902      * <li>The object must be initialized; either intCompact must not be
3903      * INFLATED or intVal is non-null.  Both of these conditions may
3904      * be true.
3905      *
3906      * <li>If both intCompact and intVal and set, their values must be
3907      * consistent.
3908      *
3909      * <li>If precision is nonzero, it must have the right value.
3910      * </ul>
3911      *
3912      * Note: Since this is an audit method, we are not supposed to change the
3913      * state of this BigDecimal object.
3914      */
3915     private BigDecimal audit() {
3916         if (intCompact == INFLATED) {
3917             if (intVal == null) {
3918                 print("audit", this);
3919                 throw new AssertionError("null intVal");
3920             }
3921             // Check precision
3922             if (precision > 0 && precision != bigDigitLength(intVal)) {
3923                 print("audit", this);
3924                 throw new AssertionError("precision mismatch");
3925             }
3926         } else {
3927             if (intVal != null) {
3928                 long val = intVal.longValue();
3929                 if (val != intCompact) {
3930                     print("audit", this);
3931                     throw new AssertionError("Inconsistent state, intCompact=" +
3932                                              intCompact + "\t intVal=" + val);
3933                 }
3934             }
3935             // Check precision
3936             if (precision > 0 && precision != longDigitLength(intCompact)) {
3937                 print("audit", this);
3938                 throw new AssertionError("precision mismatch");
3939             }
3940         }
3941         return this;
3942     }
3943 
3944     /* the same as checkScale where value!=0 */
3945     private static int checkScaleNonZero(long val) {
3946         int asInt = (int)val;
3947         if (asInt != val) {
3948             throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
3949         }
3950         return asInt;
3951     }
3952 
3953     private static int checkScale(long intCompact, long val) {
3954         int asInt = (int)val;
3955         if (asInt != val) {
3956             asInt = val>Integer.MAX_VALUE ? Integer.MAX_VALUE : Integer.MIN_VALUE;
3957             if (intCompact != 0)
3958                 throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
3959         }
3960         return asInt;
3961     }
3962 
3963     private static int checkScale(BigInteger intVal, long val) {
3964         int asInt = (int)val;
3965         if (asInt != val) {
3966             asInt = val>Integer.MAX_VALUE ? Integer.MAX_VALUE : Integer.MIN_VALUE;
3967             if (intVal.signum() != 0)
3968                 throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
3969         }
3970         return asInt;
3971     }
3972 
3973     /**
3974      * Returns a {@code BigDecimal} rounded according to the MathContext
3975      * settings;
3976      * If rounding is needed a new {@code BigDecimal} is created and returned.
3977      *
3978      * @param val the value to be rounded
3979      * @param mc the context to use.
3980      * @return a {@code BigDecimal} rounded according to the MathContext
3981      *         settings.  May return {@code value}, if no rounding needed.
3982      * @throws ArithmeticException if the rounding mode is
3983      *         {@code RoundingMode.UNNECESSARY} and the
3984      *         result is inexact.
3985      */
3986     private static BigDecimal doRound(BigDecimal val, MathContext mc) {
3987         int mcp = mc.precision;
3988         boolean wasDivided = false;
3989         if (mcp > 0) {
3990             BigInteger intVal = val.intVal;
3991             long compactVal = val.intCompact;
3992             int scale = val.scale;
3993             int prec = val.precision();
3994             int mode = mc.roundingMode.oldMode;
3995             int drop;
3996             if (compactVal == INFLATED) {
3997                 drop = prec - mcp;
3998                 while (drop > 0) {
3999                     scale = checkScaleNonZero((long) scale - drop);
4000                     intVal = divideAndRoundByTenPow(intVal, drop, mode);
4001                     wasDivided = true;
4002                     compactVal = compactValFor(intVal);
4003                     if (compactVal != INFLATED) {
4004                         prec = longDigitLength(compactVal);
4005                         break;
4006                     }
4007                     prec = bigDigitLength(intVal);
4008                     drop = prec - mcp;
4009                 }
4010             }
4011             if (compactVal != INFLATED) {
4012                 drop = prec - mcp;  // drop can't be more than 18
4013                 while (drop > 0) {
4014                     scale = checkScaleNonZero((long) scale - drop);
4015                     compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
4016                     wasDivided = true;
4017                     prec = longDigitLength(compactVal);
4018                     drop = prec - mcp;
4019                     intVal = null;
4020                 }
4021             }
4022             return wasDivided ? new BigDecimal(intVal,compactVal,scale,prec) : val;
4023         }
4024         return val;
4025     }
4026 
4027     /*
4028      * Returns a {@code BigDecimal} created from {@code long} value with
4029      * given scale rounded according to the MathContext settings
4030      */
4031     private static BigDecimal doRound(long compactVal, int scale, MathContext mc) {
4032         int mcp = mc.precision;
4033         if (mcp > 0 && mcp < 19) {
4034             int prec = longDigitLength(compactVal);
4035             int drop = prec - mcp;  // drop can't be more than 18
4036             while (drop > 0) {
4037                 scale = checkScaleNonZero((long) scale - drop);
4038                 compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
4039                 prec = longDigitLength(compactVal);
4040                 drop = prec - mcp;
4041             }
4042             return valueOf(compactVal, scale, prec);
4043         }
4044         return valueOf(compactVal, scale);
4045     }
4046 
4047     /*
4048      * Returns a {@code BigDecimal} created from {@code BigInteger} value with
4049      * given scale rounded according to the MathContext settings
4050      */
4051     private static BigDecimal doRound(BigInteger intVal, int scale, MathContext mc) {
4052         int mcp = mc.precision;
4053         int prec = 0;
4054         if (mcp > 0) {
4055             long compactVal = compactValFor(intVal);
4056             int mode = mc.roundingMode.oldMode;
4057             int drop;
4058             if (compactVal == INFLATED) {
4059                 prec = bigDigitLength(intVal);
4060                 drop = prec - mcp;
4061                 while (drop > 0) {
4062                     scale = checkScaleNonZero((long) scale - drop);
4063                     intVal = divideAndRoundByTenPow(intVal, drop, mode);
4064                     compactVal = compactValFor(intVal);
4065                     if (compactVal != INFLATED) {
4066                         break;
4067                     }
4068                     prec = bigDigitLength(intVal);
4069                     drop = prec - mcp;
4070                 }
4071             }
4072             if (compactVal != INFLATED) {
4073                 prec = longDigitLength(compactVal);
4074                 drop = prec - mcp;     // drop can't be more than 18
4075                 while (drop > 0) {
4076                     scale = checkScaleNonZero((long) scale - drop);
4077                     compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
4078                     prec = longDigitLength(compactVal);
4079                     drop = prec - mcp;
4080                 }
4081                 return valueOf(compactVal,scale,prec);
4082             }
4083         }
4084         return new BigDecimal(intVal,INFLATED,scale,prec);
4085     }
4086 
4087     /*
4088      * Divides {@code BigInteger} value by ten power.
4089      */
4090     private static BigInteger divideAndRoundByTenPow(BigInteger intVal, int tenPow, int roundingMode) {
4091         if (tenPow < LONG_TEN_POWERS_TABLE.length)
4092             intVal = divideAndRound(intVal, LONG_TEN_POWERS_TABLE[tenPow], roundingMode);
4093         else
4094             intVal = divideAndRound(intVal, bigTenToThe(tenPow), roundingMode);
4095         return intVal;
4096     }
4097 
4098     /**
4099      * Internally used for division operation for division {@code long} by
4100      * {@code long}.
4101      * The returned {@code BigDecimal} object is the quotient whose scale is set
4102      * to the passed in scale. If the remainder is not zero, it will be rounded
4103      * based on the passed in roundingMode. Also, if the remainder is zero and
4104      * the last parameter, i.e. preferredScale is NOT equal to scale, the
4105      * trailing zeros of the result is stripped to match the preferredScale.
4106      */
4107     private static BigDecimal divideAndRound(long ldividend, long ldivisor, int scale, int roundingMode,
4108                                              int preferredScale) {
4109 
4110         int qsign; // quotient sign
4111         long q = ldividend / ldivisor; // store quotient in long
4112         if (roundingMode == ROUND_DOWN && scale == preferredScale)
4113             return valueOf(q, scale);
4114         long r = ldividend % ldivisor; // store remainder in long
4115         qsign = ((ldividend < 0) == (ldivisor < 0)) ? 1 : -1;
4116         if (r != 0) {
4117             boolean increment = needIncrement(ldivisor, roundingMode, qsign, q, r);
4118             return valueOf((increment ? q + qsign : q), scale);
4119         } else {
4120             if (preferredScale != scale)
4121                 return createAndStripZerosToMatchScale(q, scale, preferredScale);
4122             else
4123                 return valueOf(q, scale);
4124         }
4125     }
4126 
4127     /**
4128      * Divides {@code long} by {@code long} and do rounding based on the
4129      * passed in roundingMode.
4130      */
4131     private static long divideAndRound(long ldividend, long ldivisor, int roundingMode) {
4132         int qsign; // quotient sign
4133         long q = ldividend / ldivisor; // store quotient in long
4134         if (roundingMode == ROUND_DOWN)
4135             return q;
4136         long r = ldividend % ldivisor; // store remainder in long
4137         qsign = ((ldividend < 0) == (ldivisor < 0)) ? 1 : -1;
4138         if (r != 0) {
4139             boolean increment = needIncrement(ldivisor, roundingMode, qsign, q,     r);
4140             return increment ? q + qsign : q;
4141         } else {
4142             return q;
4143         }
4144     }
4145 
4146     /**
4147      * Shared logic of need increment computation.
4148      */
4149     private static boolean commonNeedIncrement(int roundingMode, int qsign,
4150                                         int cmpFracHalf, boolean oddQuot) {
4151         switch(roundingMode) {
4152         case ROUND_UNNECESSARY:
4153             throw new ArithmeticException("Rounding necessary");
4154 
4155         case ROUND_UP: // Away from zero
4156             return true;
4157 
4158         case ROUND_DOWN: // Towards zero
4159             return false;
4160 
4161         case ROUND_CEILING: // Towards +infinity
4162             return qsign > 0;
4163 
4164         case ROUND_FLOOR: // Towards -infinity
4165             return qsign < 0;
4166 
4167         default: // Some kind of half-way rounding
4168             assert roundingMode >= ROUND_HALF_UP &&
4169                 roundingMode <= ROUND_HALF_EVEN: "Unexpected rounding mode" + RoundingMode.valueOf(roundingMode);
4170 
4171             if (cmpFracHalf < 0 ) // We're closer to higher digit
4172                 return false;
4173             else if (cmpFracHalf > 0 ) // We're closer to lower digit
4174                 return true;
4175             else { // half-way
4176                 assert cmpFracHalf == 0;
4177 
4178                 switch(roundingMode) {
4179                 case ROUND_HALF_DOWN:
4180                     return false;
4181 
4182                 case ROUND_HALF_UP:
4183                     return true;
4184 
4185                 case ROUND_HALF_EVEN:
4186                     return oddQuot;
4187 
4188                 default:
4189                     throw new AssertionError("Unexpected rounding mode" + roundingMode);
4190                 }
4191             }
4192         }
4193     }
4194 
4195     /**
4196      * Tests if quotient has to be incremented according the roundingMode
4197      */
4198     private static boolean needIncrement(long ldivisor, int roundingMode,
4199                                          int qsign, long q, long r) {
4200         assert r != 0L;
4201 
4202         int cmpFracHalf;
4203         if (r <= HALF_LONG_MIN_VALUE || r > HALF_LONG_MAX_VALUE) {
4204             cmpFracHalf = 1; // 2 * r can't fit into long
4205         } else {
4206             cmpFracHalf = longCompareMagnitude(2 * r, ldivisor);
4207         }
4208 
4209         return commonNeedIncrement(roundingMode, qsign, cmpFracHalf, (q & 1L) != 0L);
4210     }
4211 
4212     /**
4213      * Divides {@code BigInteger} value by {@code long} value and
4214      * do rounding based on the passed in roundingMode.
4215      */
4216     private static BigInteger divideAndRound(BigInteger bdividend, long ldivisor, int roundingMode) {
4217         boolean isRemainderZero; // record remainder is zero or not
4218         int qsign; // quotient sign
4219         long r = 0; // store quotient & remainder in long
4220         MutableBigInteger mq = null; // store quotient
4221         // Descend into mutables for faster remainder checks
4222         MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
4223         mq = new MutableBigInteger();
4224         r = mdividend.divide(ldivisor, mq);
4225         isRemainderZero = (r == 0);
4226         qsign = (ldivisor < 0) ? -bdividend.signum : bdividend.signum;
4227         if (!isRemainderZero) {
4228             if(needIncrement(ldivisor, roundingMode, qsign, mq, r)) {
4229                 mq.add(MutableBigInteger.ONE);
4230             }
4231         }
4232         return mq.toBigInteger(qsign);
4233     }
4234 
4235     /**
4236      * Internally used for division operation for division {@code BigInteger}
4237      * by {@code long}.
4238      * The returned {@code BigDecimal} object is the quotient whose scale is set
4239      * to the passed in scale. If the remainder is not zero, it will be rounded
4240      * based on the passed in roundingMode. Also, if the remainder is zero and
4241      * the last parameter, i.e. preferredScale is NOT equal to scale, the
4242      * trailing zeros of the result is stripped to match the preferredScale.
4243      */
4244     private static BigDecimal divideAndRound(BigInteger bdividend,
4245                                              long ldivisor, int scale, int roundingMode, int preferredScale) {
4246         boolean isRemainderZero; // record remainder is zero or not
4247         int qsign; // quotient sign
4248         long r = 0; // store quotient & remainder in long
4249         MutableBigInteger mq = null; // store quotient
4250         // Descend into mutables for faster remainder checks
4251         MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
4252         mq = new MutableBigInteger();
4253         r = mdividend.divide(ldivisor, mq);
4254         isRemainderZero = (r == 0);
4255         qsign = (ldivisor < 0) ? -bdividend.signum : bdividend.signum;
4256         if (!isRemainderZero) {
4257             if(needIncrement(ldivisor, roundingMode, qsign, mq, r)) {
4258                 mq.add(MutableBigInteger.ONE);
4259             }
4260             return mq.toBigDecimal(qsign, scale);
4261         } else {
4262             if (preferredScale != scale) {
4263                 long compactVal = mq.toCompactValue(qsign);
4264                 if(compactVal!=INFLATED) {
4265                     return createAndStripZerosToMatchScale(compactVal, scale, preferredScale);
4266                 }
4267                 BigInteger intVal =  mq.toBigInteger(qsign);
4268                 return createAndStripZerosToMatchScale(intVal,scale, preferredScale);
4269             } else {
4270                 return mq.toBigDecimal(qsign, scale);
4271             }
4272         }
4273     }
4274 
4275     /**
4276      * Tests if quotient has to be incremented according the roundingMode
4277      */
4278     private static boolean needIncrement(long ldivisor, int roundingMode,
4279                                          int qsign, MutableBigInteger mq, long r) {
4280         assert r != 0L;
4281 
4282         int cmpFracHalf;
4283         if (r <= HALF_LONG_MIN_VALUE || r > HALF_LONG_MAX_VALUE) {
4284             cmpFracHalf = 1; // 2 * r can't fit into long
4285         } else {
4286             cmpFracHalf = longCompareMagnitude(2 * r, ldivisor);
4287         }
4288 
4289         return commonNeedIncrement(roundingMode, qsign, cmpFracHalf, mq.isOdd());
4290     }
4291 
4292     /**
4293      * Divides {@code BigInteger} value by {@code BigInteger} value and
4294      * do rounding based on the passed in roundingMode.
4295      */
4296     private static BigInteger divideAndRound(BigInteger bdividend, BigInteger bdivisor, int roundingMode) {
4297         boolean isRemainderZero; // record remainder is zero or not
4298         int qsign; // quotient sign
4299         // Descend into mutables for faster remainder checks
4300         MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
4301         MutableBigInteger mq = new MutableBigInteger();
4302         MutableBigInteger mdivisor = new MutableBigInteger(bdivisor.mag);
4303         MutableBigInteger mr = mdividend.divide(mdivisor, mq);
4304         isRemainderZero = mr.isZero();
4305         qsign = (bdividend.signum != bdivisor.signum) ? -1 : 1;
4306         if (!isRemainderZero) {
4307             if (needIncrement(mdivisor, roundingMode, qsign, mq, mr)) {
4308                 mq.add(MutableBigInteger.ONE);
4309             }
4310         }
4311         return mq.toBigInteger(qsign);
4312     }
4313 
4314     /**
4315      * Internally used for division operation for division {@code BigInteger}
4316      * by {@code BigInteger}.
4317      * The returned {@code BigDecimal} object is the quotient whose scale is set
4318      * to the passed in scale. If the remainder is not zero, it will be rounded
4319      * based on the passed in roundingMode. Also, if the remainder is zero and
4320      * the last parameter, i.e. preferredScale is NOT equal to scale, the
4321      * trailing zeros of the result is stripped to match the preferredScale.
4322      */
4323     private static BigDecimal divideAndRound(BigInteger bdividend, BigInteger bdivisor, int scale, int roundingMode,
4324                                              int preferredScale) {
4325         boolean isRemainderZero; // record remainder is zero or not
4326         int qsign; // quotient sign
4327         // Descend into mutables for faster remainder checks
4328         MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
4329         MutableBigInteger mq = new MutableBigInteger();
4330         MutableBigInteger mdivisor = new MutableBigInteger(bdivisor.mag);
4331         MutableBigInteger mr = mdividend.divide(mdivisor, mq);
4332         isRemainderZero = mr.isZero();
4333         qsign = (bdividend.signum != bdivisor.signum) ? -1 : 1;
4334         if (!isRemainderZero) {
4335             if (needIncrement(mdivisor, roundingMode, qsign, mq, mr)) {
4336                 mq.add(MutableBigInteger.ONE);
4337             }
4338             return mq.toBigDecimal(qsign, scale);
4339         } else {
4340             if (preferredScale != scale) {
4341                 long compactVal = mq.toCompactValue(qsign);
4342                 if (compactVal != INFLATED) {
4343                     return createAndStripZerosToMatchScale(compactVal, scale, preferredScale);
4344                 }
4345                 BigInteger intVal = mq.toBigInteger(qsign);
4346                 return createAndStripZerosToMatchScale(intVal, scale, preferredScale);
4347             } else {
4348                 return mq.toBigDecimal(qsign, scale);
4349             }
4350         }
4351     }
4352 
4353     /**
4354      * Tests if quotient has to be incremented according the roundingMode
4355      */
4356     private static boolean needIncrement(MutableBigInteger mdivisor, int roundingMode,
4357                                          int qsign, MutableBigInteger mq, MutableBigInteger mr) {
4358         assert !mr.isZero();
4359         int cmpFracHalf = mr.compareHalf(mdivisor);
4360         return commonNeedIncrement(roundingMode, qsign, cmpFracHalf, mq.isOdd());
4361     }
4362 
4363     /**
4364      * Remove insignificant trailing zeros from this
4365      * {@code BigInteger} value until the preferred scale is reached or no
4366      * more zeros can be removed.  If the preferred scale is less than
4367      * Integer.MIN_VALUE, all the trailing zeros will be removed.
4368      *
4369      * @return new {@code BigDecimal} with a scale possibly reduced
4370      * to be closed to the preferred scale.
4371      */
4372     private static BigDecimal createAndStripZerosToMatchScale(BigInteger intVal, int scale, long preferredScale) {
4373         BigInteger qr[]; // quotient-remainder pair
4374         while (intVal.compareMagnitude(BigInteger.TEN) >= 0
4375                && scale > preferredScale) {
4376             if (intVal.testBit(0))
4377                 break; // odd number cannot end in 0
4378             qr = intVal.divideAndRemainder(BigInteger.TEN);
4379             if (qr[1].signum() != 0)
4380                 break; // non-0 remainder
4381             intVal = qr[0];
4382             scale = checkScale(intVal,(long) scale - 1); // could Overflow
4383         }
4384         return valueOf(intVal, scale, 0);
4385     }
4386 
4387     /**
4388      * Remove insignificant trailing zeros from this
4389      * {@code long} value until the preferred scale is reached or no
4390      * more zeros can be removed.  If the preferred scale is less than
4391      * Integer.MIN_VALUE, all the trailing zeros will be removed.
4392      *
4393      * @return new {@code BigDecimal} with a scale possibly reduced
4394      * to be closed to the preferred scale.
4395      */
4396     private static BigDecimal createAndStripZerosToMatchScale(long compactVal, int scale, long preferredScale) {
4397         while (Math.abs(compactVal) >= 10L && scale > preferredScale) {
4398             if ((compactVal & 1L) != 0L)
4399                 break; // odd number cannot end in 0
4400             long r = compactVal % 10L;
4401             if (r != 0L)
4402                 break; // non-0 remainder
4403             compactVal /= 10;
4404             scale = checkScale(compactVal, (long) scale - 1); // could Overflow
4405         }
4406         return valueOf(compactVal, scale);
4407     }
4408 
4409     private static BigDecimal stripZerosToMatchScale(BigInteger intVal, long intCompact, int scale, int preferredScale) {
4410         if(intCompact!=INFLATED) {
4411             return createAndStripZerosToMatchScale(intCompact, scale, preferredScale);
4412         } else {
4413             return createAndStripZerosToMatchScale(intVal==null ? INFLATED_BIGINT : intVal,
4414                                                    scale, preferredScale);
4415         }
4416     }
4417 
4418     /*
4419      * returns INFLATED if oveflow
4420      */
4421     private static long add(long xs, long ys){
4422         long sum = xs + ys;
4423         // See "Hacker's Delight" section 2-12 for explanation of
4424         // the overflow test.
4425         if ( (((sum ^ xs) & (sum ^ ys))) >= 0L) { // not overflowed
4426             return sum;
4427         }
4428         return INFLATED;
4429     }
4430 
4431     private static BigDecimal add(long xs, long ys, int scale){
4432         long sum = add(xs, ys);
4433         if (sum!=INFLATED)
4434             return BigDecimal.valueOf(sum, scale);
4435         return new BigDecimal(BigInteger.valueOf(xs).add(ys), scale);
4436     }
4437 
4438     private static BigDecimal add(final long xs, int scale1, final long ys, int scale2) {
4439         long sdiff = (long) scale1 - scale2;
4440         if (sdiff == 0) {
4441             return add(xs, ys, scale1);
4442         } else if (sdiff < 0) {
4443             int raise = checkScale(xs,-sdiff);
4444             long scaledX = longMultiplyPowerTen(xs, raise);
4445             if (scaledX != INFLATED) {
4446                 return add(scaledX, ys, scale2);
4447             } else {
4448                 BigInteger bigsum = bigMultiplyPowerTen(xs,raise).add(ys);
4449                 return ((xs^ys)>=0) ? // same sign test
4450                     new BigDecimal(bigsum, INFLATED, scale2, 0)
4451                     : valueOf(bigsum, scale2, 0);
4452             }
4453         } else {
4454             int raise = checkScale(ys,sdiff);
4455             long scaledY = longMultiplyPowerTen(ys, raise);
4456             if (scaledY != INFLATED) {
4457                 return add(xs, scaledY, scale1);
4458             } else {
4459                 BigInteger bigsum = bigMultiplyPowerTen(ys,raise).add(xs);
4460                 return ((xs^ys)>=0) ?
4461                     new BigDecimal(bigsum, INFLATED, scale1, 0)
4462                     : valueOf(bigsum, scale1, 0);
4463             }
4464         }
4465     }
4466 
4467     private static BigDecimal add(final long xs, int scale1, BigInteger snd, int scale2) {
4468         int rscale = scale1;
4469         long sdiff = (long)rscale - scale2;
4470         boolean sameSigns =  (Long.signum(xs) == snd.signum);
4471         BigInteger sum;
4472         if (sdiff < 0) {
4473             int raise = checkScale(xs,-sdiff);
4474             rscale = scale2;
4475             long scaledX = longMultiplyPowerTen(xs, raise);
4476             if (scaledX == INFLATED) {
4477                 sum = snd.add(bigMultiplyPowerTen(xs,raise));
4478             } else {
4479                 sum = snd.add(scaledX);
4480             }
4481         } else { //if (sdiff > 0) {
4482             int raise = checkScale(snd,sdiff);
4483             snd = bigMultiplyPowerTen(snd,raise);
4484             sum = snd.add(xs);
4485         }
4486         return (sameSigns) ?
4487             new BigDecimal(sum, INFLATED, rscale, 0) :
4488             valueOf(sum, rscale, 0);
4489     }
4490 
4491     private static BigDecimal add(BigInteger fst, int scale1, BigInteger snd, int scale2) {
4492         int rscale = scale1;
4493         long sdiff = (long)rscale - scale2;
4494         if (sdiff != 0) {
4495             if (sdiff < 0) {
4496                 int raise = checkScale(fst,-sdiff);
4497                 rscale = scale2;
4498                 fst = bigMultiplyPowerTen(fst,raise);
4499             } else {
4500                 int raise = checkScale(snd,sdiff);
4501                 snd = bigMultiplyPowerTen(snd,raise);
4502             }
4503         }
4504         BigInteger sum = fst.add(snd);
4505         return (fst.signum == snd.signum) ?
4506                 new BigDecimal(sum, INFLATED, rscale, 0) :
4507                 valueOf(sum, rscale, 0);
4508     }
4509 
4510     private static BigInteger bigMultiplyPowerTen(long value, int n) {
4511         if (n <= 0)
4512             return BigInteger.valueOf(value);
4513         return bigTenToThe(n).multiply(value);
4514     }
4515 
4516     private static BigInteger bigMultiplyPowerTen(BigInteger value, int n) {
4517         if (n <= 0)
4518             return value;
4519         if(n<LONG_TEN_POWERS_TABLE.length) {
4520                 return value.multiply(LONG_TEN_POWERS_TABLE[n]);
4521         }
4522         return value.multiply(bigTenToThe(n));
4523     }
4524 
4525     /**
4526      * Returns a {@code BigDecimal} whose value is {@code (xs /
4527      * ys)}, with rounding according to the context settings.
4528      *
4529      * Fast path - used only when (xscale <= yscale && yscale < 18
4530      *  && mc.presision<18) {
4531      */
4532     private static BigDecimal divideSmallFastPath(final long xs, int xscale,
4533                                                   final long ys, int yscale,
4534                                                   long preferredScale, MathContext mc) {
4535         int mcp = mc.precision;
4536         int roundingMode = mc.roundingMode.oldMode;
4537 
4538         assert (xscale <= yscale) && (yscale < 18) && (mcp < 18);
4539         int xraise = yscale - xscale; // xraise >=0
4540         long scaledX = (xraise==0) ? xs :
4541             longMultiplyPowerTen(xs, xraise); // can't overflow here!
4542         BigDecimal quotient;
4543 
4544         int cmp = longCompareMagnitude(scaledX, ys);
4545         if(cmp > 0) { // satisfy constraint (b)
4546             yscale -= 1; // [that is, divisor *= 10]
4547             int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4548             if (checkScaleNonZero((long) mcp + yscale) > xscale) {
4549                 // assert newScale >= xscale
4550                 int raise = checkScaleNonZero((long) mcp + yscale - xscale);
4551                 long scaledXs;
4552                 if ((scaledXs = longMultiplyPowerTen(xs, raise)) == INFLATED) {
4553                     quotient = null;
4554                     if((mcp-1) >=0 && (mcp-1)<LONG_TEN_POWERS_TABLE.length) {
4555                         quotient = multiplyDivideAndRound(LONG_TEN_POWERS_TABLE[mcp-1], scaledX, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4556                     }
4557                     if(quotient==null) {
4558                         BigInteger rb = bigMultiplyPowerTen(scaledX,mcp-1);
4559                         quotient = divideAndRound(rb, ys,
4560                                                   scl, roundingMode, checkScaleNonZero(preferredScale));
4561                     }
4562                 } else {
4563                     quotient = divideAndRound(scaledXs, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4564                 }
4565             } else {
4566                 int newScale = checkScaleNonZero((long) xscale - mcp);
4567                 // assert newScale >= yscale
4568                 if (newScale == yscale) { // easy case
4569                     quotient = divideAndRound(xs, ys, scl, roundingMode,checkScaleNonZero(preferredScale));
4570                 } else {
4571                     int raise = checkScaleNonZero((long) newScale - yscale);
4572                     long scaledYs;
4573                     if ((scaledYs = longMultiplyPowerTen(ys, raise)) == INFLATED) {
4574                         BigInteger rb = bigMultiplyPowerTen(ys,raise);
4575                         quotient = divideAndRound(BigInteger.valueOf(xs),
4576                                                   rb, scl, roundingMode,checkScaleNonZero(preferredScale));
4577                     } else {
4578                         quotient = divideAndRound(xs, scaledYs, scl, roundingMode,checkScaleNonZero(preferredScale));
4579                     }
4580                 }
4581             }
4582         } else {
4583             // abs(scaledX) <= abs(ys)
4584             // result is "scaledX * 10^msp / ys"
4585             int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4586             if(cmp==0) {
4587                 // abs(scaleX)== abs(ys) => result will be scaled 10^mcp + correct sign
4588                 quotient = roundedTenPower(((scaledX < 0) == (ys < 0)) ? 1 : -1, mcp, scl, checkScaleNonZero(preferredScale));
4589             } else {
4590                 // abs(scaledX) < abs(ys)
4591                 long scaledXs;
4592                 if ((scaledXs = longMultiplyPowerTen(scaledX, mcp)) == INFLATED) {
4593                     quotient = null;
4594                     if(mcp<LONG_TEN_POWERS_TABLE.length) {
4595                         quotient = multiplyDivideAndRound(LONG_TEN_POWERS_TABLE[mcp], scaledX, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4596                     }
4597                     if(quotient==null) {
4598                         BigInteger rb = bigMultiplyPowerTen(scaledX,mcp);
4599                         quotient = divideAndRound(rb, ys,
4600                                                   scl, roundingMode, checkScaleNonZero(preferredScale));
4601                     }
4602                 } else {
4603                     quotient = divideAndRound(scaledXs, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4604                 }
4605             }
4606         }
4607         // doRound, here, only affects 1000000000 case.
4608         return doRound(quotient,mc);
4609     }
4610 
4611     /**
4612      * Returns a {@code BigDecimal} whose value is {@code (xs /
4613      * ys)}, with rounding according to the context settings.
4614      */
4615     private static BigDecimal divide(final long xs, int xscale, final long ys, int yscale, long preferredScale, MathContext mc) {
4616         int mcp = mc.precision;
4617         if(xscale <= yscale && yscale < 18 && mcp<18) {
4618             return divideSmallFastPath(xs, xscale, ys, yscale, preferredScale, mc);
4619         }
4620         if (compareMagnitudeNormalized(xs, xscale, ys, yscale) > 0) {// satisfy constraint (b)
4621             yscale -= 1; // [that is, divisor *= 10]
4622         }
4623         int roundingMode = mc.roundingMode.oldMode;
4624         // In order to find out whether the divide generates the exact result,
4625         // we avoid calling the above divide method. 'quotient' holds the
4626         // return BigDecimal object whose scale will be set to 'scl'.
4627         int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4628         BigDecimal quotient;
4629         if (checkScaleNonZero((long) mcp + yscale) > xscale) {
4630             int raise = checkScaleNonZero((long) mcp + yscale - xscale);
4631             long scaledXs;
4632             if ((scaledXs = longMultiplyPowerTen(xs, raise)) == INFLATED) {
4633                 BigInteger rb = bigMultiplyPowerTen(xs,raise);
4634                 quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4635             } else {
4636                 quotient = divideAndRound(scaledXs, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4637             }
4638         } else {
4639             int newScale = checkScaleNonZero((long) xscale - mcp);
4640             // assert newScale >= yscale
4641             if (newScale == yscale) { // easy case
4642                 quotient = divideAndRound(xs, ys, scl, roundingMode,checkScaleNonZero(preferredScale));
4643             } else {
4644                 int raise = checkScaleNonZero((long) newScale - yscale);
4645                 long scaledYs;
4646                 if ((scaledYs = longMultiplyPowerTen(ys, raise)) == INFLATED) {
4647                     BigInteger rb = bigMultiplyPowerTen(ys,raise);
4648                     quotient = divideAndRound(BigInteger.valueOf(xs),
4649                                               rb, scl, roundingMode,checkScaleNonZero(preferredScale));
4650                 } else {
4651                     quotient = divideAndRound(xs, scaledYs, scl, roundingMode,checkScaleNonZero(preferredScale));
4652                 }
4653             }
4654         }
4655         // doRound, here, only affects 1000000000 case.
4656         return doRound(quotient,mc);
4657     }
4658 
4659     /**
4660      * Returns a {@code BigDecimal} whose value is {@code (xs /
4661      * ys)}, with rounding according to the context settings.
4662      */
4663     private static BigDecimal divide(BigInteger xs, int xscale, long ys, int yscale, long preferredScale, MathContext mc) {
4664         // Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4665         if ((-compareMagnitudeNormalized(ys, yscale, xs, xscale)) > 0) {// satisfy constraint (b)
4666             yscale -= 1; // [that is, divisor *= 10]
4667         }
4668         int mcp = mc.precision;
4669         int roundingMode = mc.roundingMode.oldMode;
4670 
4671         // In order to find out whether the divide generates the exact result,
4672         // we avoid calling the above divide method. 'quotient' holds the
4673         // return BigDecimal object whose scale will be set to 'scl'.
4674         BigDecimal quotient;
4675         int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4676         if (checkScaleNonZero((long) mcp + yscale) > xscale) {
4677             int raise = checkScaleNonZero((long) mcp + yscale - xscale);
4678             BigInteger rb = bigMultiplyPowerTen(xs,raise);
4679             quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4680         } else {
4681             int newScale = checkScaleNonZero((long) xscale - mcp);
4682             // assert newScale >= yscale
4683             if (newScale == yscale) { // easy case
4684                 quotient = divideAndRound(xs, ys, scl, roundingMode,checkScaleNonZero(preferredScale));
4685             } else {
4686                 int raise = checkScaleNonZero((long) newScale - yscale);
4687                 long scaledYs;
4688                 if ((scaledYs = longMultiplyPowerTen(ys, raise)) == INFLATED) {
4689                     BigInteger rb = bigMultiplyPowerTen(ys,raise);
4690                     quotient = divideAndRound(xs, rb, scl, roundingMode,checkScaleNonZero(preferredScale));
4691                 } else {
4692                     quotient = divideAndRound(xs, scaledYs, scl, roundingMode,checkScaleNonZero(preferredScale));
4693                 }
4694             }
4695         }
4696         // doRound, here, only affects 1000000000 case.
4697         return doRound(quotient, mc);
4698     }
4699 
4700     /**
4701      * Returns a {@code BigDecimal} whose value is {@code (xs /
4702      * ys)}, with rounding according to the context settings.
4703      */
4704     private static BigDecimal divide(long xs, int xscale, BigInteger ys, int yscale, long preferredScale, MathContext mc) {
4705         // Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4706         if (compareMagnitudeNormalized(xs, xscale, ys, yscale) > 0) {// satisfy constraint (b)
4707             yscale -= 1; // [that is, divisor *= 10]
4708         }
4709         int mcp = mc.precision;
4710         int roundingMode = mc.roundingMode.oldMode;
4711 
4712         // In order to find out whether the divide generates the exact result,
4713         // we avoid calling the above divide method. 'quotient' holds the
4714         // return BigDecimal object whose scale will be set to 'scl'.
4715         BigDecimal quotient;
4716         int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4717         if (checkScaleNonZero((long) mcp + yscale) > xscale) {
4718             int raise = checkScaleNonZero((long) mcp + yscale - xscale);
4719             BigInteger rb = bigMultiplyPowerTen(xs,raise);
4720             quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4721         } else {
4722             int newScale = checkScaleNonZero((long) xscale - mcp);
4723             int raise = checkScaleNonZero((long) newScale - yscale);
4724             BigInteger rb = bigMultiplyPowerTen(ys,raise);
4725             quotient = divideAndRound(BigInteger.valueOf(xs), rb, scl, roundingMode,checkScaleNonZero(preferredScale));
4726         }
4727         // doRound, here, only affects 1000000000 case.
4728         return doRound(quotient, mc);
4729     }
4730 
4731     /**
4732      * Returns a {@code BigDecimal} whose value is {@code (xs /
4733      * ys)}, with rounding according to the context settings.
4734      */
4735     private static BigDecimal divide(BigInteger xs, int xscale, BigInteger ys, int yscale, long preferredScale, MathContext mc) {
4736         // Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4737         if (compareMagnitudeNormalized(xs, xscale, ys, yscale) > 0) {// satisfy constraint (b)
4738             yscale -= 1; // [that is, divisor *= 10]
4739         }
4740         int mcp = mc.precision;
4741         int roundingMode = mc.roundingMode.oldMode;
4742 
4743         // In order to find out whether the divide generates the exact result,
4744         // we avoid calling the above divide method. 'quotient' holds the
4745         // return BigDecimal object whose scale will be set to 'scl'.
4746         BigDecimal quotient;
4747         int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
4748         if (checkScaleNonZero((long) mcp + yscale) > xscale) {
4749             int raise = checkScaleNonZero((long) mcp + yscale - xscale);
4750             BigInteger rb = bigMultiplyPowerTen(xs,raise);
4751             quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
4752         } else {
4753             int newScale = checkScaleNonZero((long) xscale - mcp);
4754             int raise = checkScaleNonZero((long) newScale - yscale);
4755             BigInteger rb = bigMultiplyPowerTen(ys,raise);
4756             quotient = divideAndRound(xs, rb, scl, roundingMode,checkScaleNonZero(preferredScale));
4757         }
4758         // doRound, here, only affects 1000000000 case.
4759         return doRound(quotient, mc);
4760     }
4761 
4762     /*
4763      * performs divideAndRound for (dividend0*dividend1, divisor)
4764      * returns null if quotient can't fit into long value;
4765      */
4766     private static BigDecimal multiplyDivideAndRound(long dividend0, long dividend1, long divisor, int scale, int roundingMode,
4767                                                      int preferredScale) {
4768         int qsign = Long.signum(dividend0)*Long.signum(dividend1)*Long.signum(divisor);
4769         dividend0 = Math.abs(dividend0);
4770         dividend1 = Math.abs(dividend1);
4771         divisor = Math.abs(divisor);
4772         // multiply dividend0 * dividend1
4773         long d0_hi = dividend0 >>> 32;
4774         long d0_lo = dividend0 & LONG_MASK;
4775         long d1_hi = dividend1 >>> 32;
4776         long d1_lo = dividend1 & LONG_MASK;
4777         long product = d0_lo * d1_lo;
4778         long d0 = product & LONG_MASK;
4779         long d1 = product >>> 32;
4780         product = d0_hi * d1_lo + d1;
4781         d1 = product & LONG_MASK;
4782         long d2 = product >>> 32;
4783         product = d0_lo * d1_hi + d1;
4784         d1 = product & LONG_MASK;
4785         d2 += product >>> 32;
4786         long d3 = d2>>>32;
4787         d2 &= LONG_MASK;
4788         product = d0_hi*d1_hi + d2;
4789         d2 = product & LONG_MASK;
4790         d3 = ((product>>>32) + d3) & LONG_MASK;
4791         final long dividendHi = make64(d3,d2);
4792         final long dividendLo = make64(d1,d0);
4793         // divide
4794         return divideAndRound128(dividendHi, dividendLo, divisor, qsign, scale, roundingMode, preferredScale);
4795     }
4796 
4797     private static final long DIV_NUM_BASE = (1L<<32); // Number base (32 bits).
4798 
4799     /*
4800      * divideAndRound 128-bit value by long divisor.
4801      * returns null if quotient can't fit into long value;
4802      * Specialized version of Knuth's division
4803      */
4804     private static BigDecimal divideAndRound128(final long dividendHi, final long dividendLo, long divisor, int sign,
4805                                                 int scale, int roundingMode, int preferredScale) {
4806         if (dividendHi >= divisor) {
4807             return null;
4808         }
4809         final int shift = Long.numberOfLeadingZeros(divisor);
4810         divisor <<= shift;
4811 
4812         final long v1 = divisor >>> 32;
4813         final long v0 = divisor & LONG_MASK;
4814 
4815         long q1, q0;
4816         long r_tmp;
4817 
4818         long tmp = dividendLo << shift;
4819         long u1 = tmp >>> 32;
4820         long u0 = tmp & LONG_MASK;
4821 
4822         tmp = (dividendHi << shift) | (dividendLo >>> 64 - shift);
4823         long u2 = tmp & LONG_MASK;
4824         tmp = divWord(tmp,v1);
4825         q1 = tmp & LONG_MASK;
4826         r_tmp = tmp >>> 32;
4827         while(q1 >= DIV_NUM_BASE || unsignedLongCompare(q1*v0, make64(r_tmp, u1))) {
4828             q1--;
4829             r_tmp += v1;
4830             if (r_tmp >= DIV_NUM_BASE)
4831                 break;
4832         }
4833         tmp = mulsub(u2,u1,v1,v0,q1);
4834         u1 = tmp & LONG_MASK;
4835         tmp = divWord(tmp,v1);
4836         q0 = tmp & LONG_MASK;
4837         r_tmp = tmp >>> 32;
4838         while(q0 >= DIV_NUM_BASE || unsignedLongCompare(q0*v0,make64(r_tmp,u0))) {
4839             q0--;
4840             r_tmp += v1;
4841             if (r_tmp >= DIV_NUM_BASE)
4842                 break;
4843         }
4844         if((int)q1 < 0) {
4845             // result (which is positive and unsigned here)
4846             // can't fit into long due to sign bit is used for value
4847             MutableBigInteger mq = new MutableBigInteger(new int[]{(int)q1, (int)q0});
4848             if (roundingMode == ROUND_DOWN && scale == preferredScale) {
4849                 return mq.toBigDecimal(sign, scale);
4850             }
4851             long r = mulsub(u1, u0, v1, v0, q0) >>> shift;
4852             if (r != 0) {
4853                 if(needIncrement(divisor >>> shift, roundingMode, sign, mq, r)){
4854                     mq.add(MutableBigInteger.ONE);
4855                 }
4856                 return mq.toBigDecimal(sign, scale);
4857             } else {
4858                 if (preferredScale != scale) {
4859                     BigInteger intVal =  mq.toBigInteger(sign);
4860                     return createAndStripZerosToMatchScale(intVal,scale, preferredScale);
4861                 } else {
4862                     return mq.toBigDecimal(sign, scale);
4863                 }
4864             }
4865         }
4866         long q = make64(q1,q0);
4867         q*=sign;
4868         if (roundingMode == ROUND_DOWN && scale == preferredScale)
4869             return valueOf(q, scale);
4870         long r = mulsub(u1, u0, v1, v0, q0) >>> shift;
4871         if (r != 0) {
4872             boolean increment = needIncrement(divisor >>> shift, roundingMode, sign, q, r);
4873             return valueOf((increment ? q + sign : q), scale);
4874         } else {
4875             if (preferredScale != scale) {
4876                 return createAndStripZerosToMatchScale(q, scale, preferredScale);
4877             } else {
4878                 return valueOf(q, scale);
4879             }
4880         }
4881     }
4882 
4883     /*
4884      * calculate divideAndRound for ldividend*10^raise / divisor
4885      * when abs(dividend)==abs(divisor);
4886      */
4887     private static BigDecimal roundedTenPower(int qsign, int raise, int scale, int preferredScale) {
4888         if (scale > preferredScale) {
4889             int diff = scale - preferredScale;
4890             if(diff < raise) {
4891                 return scaledTenPow(raise - diff, qsign, preferredScale);
4892             } else {
4893                 return valueOf(qsign,scale-raise);
4894             }
4895         } else {
4896             return scaledTenPow(raise, qsign, scale);
4897         }
4898     }
4899 
4900     static BigDecimal scaledTenPow(int n, int sign, int scale) {
4901         if (n < LONG_TEN_POWERS_TABLE.length)
4902             return valueOf(sign*LONG_TEN_POWERS_TABLE[n],scale);
4903         else {
4904             BigInteger unscaledVal = bigTenToThe(n);
4905             if(sign==-1) {
4906                 unscaledVal = unscaledVal.negate();
4907             }
4908             return new BigDecimal(unscaledVal, INFLATED, scale, n+1);
4909         }
4910     }
4911 
4912     private static long divWord(long n, long dLong) {
4913         long r;
4914         long q;
4915         if (dLong == 1) {
4916             q = (int)n;
4917             return (q & LONG_MASK);
4918         }
4919         // Approximate the quotient and remainder
4920         q = (n >>> 1) / (dLong >>> 1);
4921         r = n - q*dLong;
4922 
4923         // Correct the approximation
4924         while (r < 0) {
4925             r += dLong;
4926             q--;
4927         }
4928         while (r >= dLong) {
4929             r -= dLong;
4930             q++;
4931         }
4932         // n - q*dlong == r && 0 <= r <dLong, hence we're done.
4933         return (r << 32) | (q & LONG_MASK);
4934     }
4935 
4936     private static long make64(long hi, long lo) {
4937         return hi<<32 | lo;
4938     }
4939 
4940     private static long mulsub(long u1, long u0, final long v1, final long v0, long q0) {
4941         long tmp = u0 - q0*v0;
4942         return make64(u1 + (tmp>>>32) - q0*v1,tmp & LONG_MASK);
4943     }
4944 
4945     private static boolean unsignedLongCompare(long one, long two) {
4946         return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE);
4947     }
4948 
4949     private static boolean unsignedLongCompareEq(long one, long two) {
4950         return (one+Long.MIN_VALUE) >= (two+Long.MIN_VALUE);
4951     }
4952 
4953 
4954     // Compare Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4955     private static int compareMagnitudeNormalized(long xs, int xscale, long ys, int yscale) {
4956         // assert xs!=0 && ys!=0
4957         int sdiff = xscale - yscale;
4958         if (sdiff != 0) {
4959             if (sdiff < 0) {
4960                 xs = longMultiplyPowerTen(xs, -sdiff);
4961             } else { // sdiff > 0
4962                 ys = longMultiplyPowerTen(ys, sdiff);
4963             }
4964         }
4965         if (xs != INFLATED)
4966             return (ys != INFLATED) ? longCompareMagnitude(xs, ys) : -1;
4967         else
4968             return 1;
4969     }
4970 
4971     // Compare Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4972     private static int compareMagnitudeNormalized(long xs, int xscale, BigInteger ys, int yscale) {
4973         // assert "ys can't be represented as long"
4974         if (xs == 0)
4975             return -1;
4976         int sdiff = xscale - yscale;
4977         if (sdiff < 0) {
4978             if (longMultiplyPowerTen(xs, -sdiff) == INFLATED ) {
4979                 return bigMultiplyPowerTen(xs, -sdiff).compareMagnitude(ys);
4980             }
4981         }
4982         return -1;
4983     }
4984 
4985     // Compare Normalize dividend & divisor so that both fall into [0.1, 0.999...]
4986     private static int compareMagnitudeNormalized(BigInteger xs, int xscale, BigInteger ys, int yscale) {
4987         int sdiff = xscale - yscale;
4988         if (sdiff < 0) {
4989             return bigMultiplyPowerTen(xs, -sdiff).compareMagnitude(ys);
4990         } else { // sdiff >= 0
4991             return xs.compareMagnitude(bigMultiplyPowerTen(ys, sdiff));
4992         }
4993     }
4994 
4995     private static long multiply(long x, long y){
4996                 long product = x * y;
4997         long ax = Math.abs(x);
4998         long ay = Math.abs(y);
4999         if (((ax | ay) >>> 31 == 0) || (y == 0) || (product / y == x)){
5000                         return product;
5001                 }
5002         return INFLATED;
5003     }
5004 
5005     private static BigDecimal multiply(long x, long y, int scale) {
5006         long product = multiply(x, y);
5007         if(product!=INFLATED) {
5008             return valueOf(product,scale);
5009         }
5010         return new BigDecimal(BigInteger.valueOf(x).multiply(y),INFLATED,scale,0);
5011     }
5012 
5013     private static BigDecimal multiply(long x, BigInteger y, int scale) {
5014         if(x==0) {
5015             return zeroValueOf(scale);
5016         }
5017         return new BigDecimal(y.multiply(x),INFLATED,scale,0);
5018     }
5019 
5020     private static BigDecimal multiply(BigInteger x, BigInteger y, int scale) {
5021         return new BigDecimal(x.multiply(y),INFLATED,scale,0);
5022     }
5023 
5024     /**
5025      * Multiplies two long values and rounds according {@code MathContext}
5026      */
5027     private static BigDecimal multiplyAndRound(long x, long y, int scale, MathContext mc) {
5028         long product = multiply(x, y);
5029         if(product!=INFLATED) {
5030             return doRound(product, scale, mc);
5031         }
5032         // attempt to do it in 128 bits
5033         int rsign = 1;
5034         if(x < 0) {
5035             x = -x;
5036             rsign = -1;
5037         }
5038         if(y < 0) {
5039             y = -y;
5040             rsign *= -1;
5041         }
5042         // multiply dividend0 * dividend1
5043         long m0_hi = x >>> 32;
5044         long m0_lo = x & LONG_MASK;
5045         long m1_hi = y >>> 32;
5046         long m1_lo = y & LONG_MASK;
5047         product = m0_lo * m1_lo;
5048         long m0 = product & LONG_MASK;
5049         long m1 = product >>> 32;
5050         product = m0_hi * m1_lo + m1;
5051         m1 = product & LONG_MASK;
5052         long m2 = product >>> 32;
5053         product = m0_lo * m1_hi + m1;
5054         m1 = product & LONG_MASK;
5055         m2 += product >>> 32;
5056         long m3 = m2>>>32;
5057         m2 &= LONG_MASK;
5058         product = m0_hi*m1_hi + m2;
5059         m2 = product & LONG_MASK;
5060         m3 = ((product>>>32) + m3) & LONG_MASK;
5061         final long mHi = make64(m3,m2);
5062         final long mLo = make64(m1,m0);
5063         BigDecimal res = doRound128(mHi, mLo, rsign, scale, mc);
5064         if(res!=null) {
5065             return res;
5066         }
5067         res = new BigDecimal(BigInteger.valueOf(x).multiply(y*rsign), INFLATED, scale, 0);
5068         return doRound(res,mc);
5069     }
5070 
5071     private static BigDecimal multiplyAndRound(long x, BigInteger y, int scale, MathContext mc) {
5072         if(x==0) {
5073             return zeroValueOf(scale);
5074         }
5075         return doRound(y.multiply(x), scale, mc);
5076     }
5077 
5078     private static BigDecimal multiplyAndRound(BigInteger x, BigInteger y, int scale, MathContext mc) {
5079         return doRound(x.multiply(y), scale, mc);
5080     }
5081 
5082     /**
5083      * rounds 128-bit value according {@code MathContext}
5084      * returns null if result can't be repsented as compact BigDecimal.
5085      */
5086     private static BigDecimal doRound128(long hi, long lo, int sign, int scale, MathContext mc) {
5087         int mcp = mc.precision;
5088         int drop;
5089         BigDecimal res = null;
5090         if(((drop = precision(hi, lo) - mcp) > 0)&&(drop<LONG_TEN_POWERS_TABLE.length)) {
5091             scale = checkScaleNonZero((long)scale - drop);
5092             res = divideAndRound128(hi, lo, LONG_TEN_POWERS_TABLE[drop], sign, scale, mc.roundingMode.oldMode, scale);
5093         }
5094         if(res!=null) {
5095             return doRound(res,mc);
5096         }
5097         return null;
5098     }
5099 
5100     private static final long[][] LONGLONG_TEN_POWERS_TABLE = {
5101         {   0L, 0x8AC7230489E80000L },  //10^19
5102         {       0x5L, 0x6bc75e2d63100000L },  //10^20
5103         {       0x36L, 0x35c9adc5dea00000L },  //10^21
5104         {       0x21eL, 0x19e0c9bab2400000L  },  //10^22
5105         {       0x152dL, 0x02c7e14af6800000L  },  //10^23
5106         {       0xd3c2L, 0x1bcecceda1000000L  },  //10^24
5107         {       0x84595L, 0x161401484a000000L  },  //10^25
5108         {       0x52b7d2L, 0xdcc80cd2e4000000L  },  //10^26
5109         {       0x33b2e3cL, 0x9fd0803ce8000000L  },  //10^27
5110         {       0x204fce5eL, 0x3e25026110000000L  },  //10^28
5111         {       0x1431e0faeL, 0x6d7217caa0000000L  },  //10^29
5112         {       0xc9f2c9cd0L, 0x4674edea40000000L  },  //10^30
5113         {       0x7e37be2022L, 0xc0914b2680000000L  },  //10^31
5114         {       0x4ee2d6d415bL, 0x85acef8100000000L  },  //10^32
5115         {       0x314dc6448d93L, 0x38c15b0a00000000L  },  //10^33
5116         {       0x1ed09bead87c0L, 0x378d8e6400000000L  },  //10^34
5117         {       0x13426172c74d82L, 0x2b878fe800000000L  },  //10^35
5118         {       0xc097ce7bc90715L, 0xb34b9f1000000000L  },  //10^36
5119         {       0x785ee10d5da46d9L, 0x00f436a000000000L  },  //10^37
5120         {       0x4b3b4ca85a86c47aL, 0x098a224000000000L  },  //10^38
5121     };
5122 
5123     /*
5124      * returns precision of 128-bit value
5125      */
5126     private static int precision(long hi, long lo){
5127         if(hi==0) {
5128             if(lo>=0) {
5129                 return longDigitLength(lo);
5130             }
5131             return (unsignedLongCompareEq(lo, LONGLONG_TEN_POWERS_TABLE[0][1])) ? 20 : 19;
5132             // 0x8AC7230489E80000L  = unsigned 2^19
5133         }
5134         int r = ((128 - Long.numberOfLeadingZeros(hi) + 1) * 1233) >>> 12;
5135         int idx = r-19;
5136         return (idx >= LONGLONG_TEN_POWERS_TABLE.length || longLongCompareMagnitude(hi, lo,
5137                                                                                     LONGLONG_TEN_POWERS_TABLE[idx][0], LONGLONG_TEN_POWERS_TABLE[idx][1])) ? r : r + 1;
5138     }
5139 
5140     /*
5141      * returns true if 128 bit number <hi0,lo0> is less then <hi1,lo1>
5142      * hi0 & hi1 should be non-negative
5143      */
5144     private static boolean longLongCompareMagnitude(long hi0, long lo0, long hi1, long lo1) {
5145         if(hi0!=hi1) {
5146             return hi0<hi1;
5147         }
5148         return (lo0+Long.MIN_VALUE) <(lo1+Long.MIN_VALUE);
5149     }
5150 
5151     private static BigDecimal divide(long dividend, int dividendScale, long divisor, int divisorScale, int scale, int roundingMode) {
5152         if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
5153             int newScale = scale + divisorScale;
5154             int raise = newScale - dividendScale;
5155             if(raise<LONG_TEN_POWERS_TABLE.length) {
5156                 long xs = dividend;
5157                 if ((xs = longMultiplyPowerTen(xs, raise)) != INFLATED) {
5158                     return divideAndRound(xs, divisor, scale, roundingMode, scale);
5159                 }
5160                 BigDecimal q = multiplyDivideAndRound(LONG_TEN_POWERS_TABLE[raise], dividend, divisor, scale, roundingMode, scale);
5161                 if(q!=null) {
5162                     return q;
5163                 }
5164             }
5165             BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
5166             return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
5167         } else {
5168             int newScale = checkScale(divisor,(long)dividendScale - scale);
5169             int raise = newScale - divisorScale;
5170             if(raise<LONG_TEN_POWERS_TABLE.length) {
5171                 long ys = divisor;
5172                 if ((ys = longMultiplyPowerTen(ys, raise)) != INFLATED) {
5173                     return divideAndRound(dividend, ys, scale, roundingMode, scale);
5174                 }
5175             }
5176             BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
5177             return divideAndRound(BigInteger.valueOf(dividend), scaledDivisor, scale, roundingMode, scale);
5178         }
5179     }
5180 
5181     private static BigDecimal divide(BigInteger dividend, int dividendScale, long divisor, int divisorScale, int scale, int roundingMode) {
5182         if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
5183             int newScale = scale + divisorScale;
5184             int raise = newScale - dividendScale;
5185             BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
5186             return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
5187         } else {
5188             int newScale = checkScale(divisor,(long)dividendScale - scale);
5189             int raise = newScale - divisorScale;
5190             if(raise<LONG_TEN_POWERS_TABLE.length) {
5191                 long ys = divisor;
5192                 if ((ys = longMultiplyPowerTen(ys, raise)) != INFLATED) {
5193                     return divideAndRound(dividend, ys, scale, roundingMode, scale);
5194                 }
5195             }
5196             BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
5197             return divideAndRound(dividend, scaledDivisor, scale, roundingMode, scale);
5198         }
5199     }
5200 
5201     private static BigDecimal divide(long dividend, int dividendScale, BigInteger divisor, int divisorScale, int scale, int roundingMode) {
5202         if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
5203             int newScale = scale + divisorScale;
5204             int raise = newScale - dividendScale;
5205             BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
5206             return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
5207         } else {
5208             int newScale = checkScale(divisor,(long)dividendScale - scale);
5209             int raise = newScale - divisorScale;
5210             BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
5211             return divideAndRound(BigInteger.valueOf(dividend), scaledDivisor, scale, roundingMode, scale);
5212         }
5213     }
5214 
5215     private static BigDecimal divide(BigInteger dividend, int dividendScale, BigInteger divisor, int divisorScale, int scale, int roundingMode) {
5216         if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
5217             int newScale = scale + divisorScale;
5218             int raise = newScale - dividendScale;
5219             BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
5220             return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
5221         } else {
5222             int newScale = checkScale(divisor,(long)dividendScale - scale);
5223             int raise = newScale - divisorScale;
5224             BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
5225             return divideAndRound(dividend, scaledDivisor, scale, roundingMode, scale);
5226         }
5227     }
5228 
5229 }