1 /*
   2  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.util.Random;
  28 
  29 import sun.misc.FloatConsts;
  30 import sun.misc.DoubleConsts;
  31 
  32 /**
  33  * The class {@code Math} contains methods for performing basic
  34  * numeric operations such as the elementary exponential, logarithm,
  35  * square root, and trigonometric functions.
  36  *
  37  * <p>Unlike some of the numeric methods of class
  38  * {@code StrictMath}, all implementations of the equivalent
  39  * functions of class {@code Math} are not defined to return the
  40  * bit-for-bit same results.  This relaxation permits
  41  * better-performing implementations where strict reproducibility is
  42  * not required.
  43  *
  44  * <p>By default many of the {@code Math} methods simply call
  45  * the equivalent method in {@code StrictMath} for their
  46  * implementation.  Code generators are encouraged to use
  47  * platform-specific native libraries or microprocessor instructions,
  48  * where available, to provide higher-performance implementations of
  49  * {@code Math} methods.  Such higher-performance
  50  * implementations still must conform to the specification for
  51  * {@code Math}.
  52  *
  53  * <p>The quality of implementation specifications concern two
  54  * properties, accuracy of the returned result and monotonicity of the
  55  * method.  Accuracy of the floating-point {@code Math} methods is
  56  * measured in terms of <i>ulps</i>, units in the last place.  For a
  57  * given floating-point format, an {@linkplain #ulp(double) ulp} of a
  58  * specific real number value is the distance between the two
  59  * floating-point values bracketing that numerical value.  When
  60  * discussing the accuracy of a method as a whole rather than at a
  61  * specific argument, the number of ulps cited is for the worst-case
  62  * error at any argument.  If a method always has an error less than
  63  * 0.5 ulps, the method always returns the floating-point number
  64  * nearest the exact result; such a method is <i>correctly
  65  * rounded</i>.  A correctly rounded method is generally the best a
  66  * floating-point approximation can be; however, it is impractical for
  67  * many floating-point methods to be correctly rounded.  Instead, for
  68  * the {@code Math} class, a larger error bound of 1 or 2 ulps is
  69  * allowed for certain methods.  Informally, with a 1 ulp error bound,
  70  * when the exact result is a representable number, the exact result
  71  * should be returned as the computed result; otherwise, either of the
  72  * two floating-point values which bracket the exact result may be
  73  * returned.  For exact results large in magnitude, one of the
  74  * endpoints of the bracket may be infinite.  Besides accuracy at
  75  * individual arguments, maintaining proper relations between the
  76  * method at different arguments is also important.  Therefore, most
  77  * methods with more than 0.5 ulp errors are required to be
  78  * <i>semi-monotonic</i>: whenever the mathematical function is
  79  * non-decreasing, so is the floating-point approximation, likewise,
  80  * whenever the mathematical function is non-increasing, so is the
  81  * floating-point approximation.  Not all approximations that have 1
  82  * ulp accuracy will automatically meet the monotonicity requirements.
  83  *
  84  * <p>
  85  * The platform uses signed two's complement integer arithmetic with
  86  * int and long primitive types.  The developer should choose
  87  * the primitive type to ensure that arithmetic operations consistently
  88  * produce correct results, which in some cases means the operations
  89  * will not overflow the range of values of the computation.
  90  * The best practice is to choose the primitive type and algorithm to avoid
  91  * overflow. In cases where the size is {@code int} or {@code long} and
  92  * overflow errors need to be detected, the methods {@code addExact},
  93  * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
  94  * throw an {@code ArithmeticException} when the results overflow.
  95  * For other arithmetic operations such as divide, absolute value,
  96  * increment, decrement, and negation overflow occurs only with
  97  * a specific minimum or maximum value and should be checked against
  98  * the minimum or maximum as appropriate.
  99  *
 100  * @author  unascribed
 101  * @author  Joseph D. Darcy
 102  * @since   JDK1.0
 103  */
 104 
 105 public final class Math {
 106 
 107     /**
 108      * Don't let anyone instantiate this class.
 109      */
 110     private Math() {}
 111 
 112     /**
 113      * The {@code double} value that is closer than any other to
 114      * <i>e</i>, the base of the natural logarithms.
 115      */
 116     public static final double E = 2.7182818284590452354;
 117 
 118     /**
 119      * The {@code double} value that is closer than any other to
 120      * <i>pi</i>, the ratio of the circumference of a circle to its
 121      * diameter.
 122      */
 123     public static final double PI = 3.14159265358979323846;
 124 
 125     /**
 126      * Returns the trigonometric sine of an angle.  Special cases:
 127      * <ul><li>If the argument is NaN or an infinity, then the
 128      * result is NaN.
 129      * <li>If the argument is zero, then the result is a zero with the
 130      * same sign as the argument.</ul>
 131      *
 132      * <p>The computed result must be within 1 ulp of the exact result.
 133      * Results must be semi-monotonic.
 134      *
 135      * @param   a   an angle, in radians.
 136      * @return  the sine of the argument.
 137      */
 138     public static double sin(double a) {
 139         return StrictMath.sin(a); // default impl. delegates to StrictMath
 140     }
 141 
 142     /**
 143      * Returns the trigonometric cosine of an angle. Special cases:
 144      * <ul><li>If the argument is NaN or an infinity, then the
 145      * result is NaN.</ul>
 146      *
 147      * <p>The computed result must be within 1 ulp of the exact result.
 148      * Results must be semi-monotonic.
 149      *
 150      * @param   a   an angle, in radians.
 151      * @return  the cosine of the argument.
 152      */
 153     public static double cos(double a) {
 154         return StrictMath.cos(a); // default impl. delegates to StrictMath
 155     }
 156 
 157     /**
 158      * Returns the trigonometric tangent of an angle.  Special cases:
 159      * <ul><li>If the argument is NaN or an infinity, then the result
 160      * is NaN.
 161      * <li>If the argument is zero, then the result is a zero with the
 162      * same sign as the argument.</ul>
 163      *
 164      * <p>The computed result must be within 1 ulp of the exact result.
 165      * Results must be semi-monotonic.
 166      *
 167      * @param   a   an angle, in radians.
 168      * @return  the tangent of the argument.
 169      */
 170     public static double tan(double a) {
 171         return StrictMath.tan(a); // default impl. delegates to StrictMath
 172     }
 173 
 174     /**
 175      * Returns the arc sine of a value; the returned angle is in the
 176      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 177      * <ul><li>If the argument is NaN or its absolute value is greater
 178      * than 1, then the result is NaN.
 179      * <li>If the argument is zero, then the result is a zero with the
 180      * same sign as the argument.</ul>
 181      *
 182      * <p>The computed result must be within 1 ulp of the exact result.
 183      * Results must be semi-monotonic.
 184      *
 185      * @param   a   the value whose arc sine is to be returned.
 186      * @return  the arc sine of the argument.
 187      */
 188     public static double asin(double a) {
 189         return StrictMath.asin(a); // default impl. delegates to StrictMath
 190     }
 191 
 192     /**
 193      * Returns the arc cosine of a value; the returned angle is in the
 194      * range 0.0 through <i>pi</i>.  Special case:
 195      * <ul><li>If the argument is NaN or its absolute value is greater
 196      * than 1, then the result is NaN.</ul>
 197      *
 198      * <p>The computed result must be within 1 ulp of the exact result.
 199      * Results must be semi-monotonic.
 200      *
 201      * @param   a   the value whose arc cosine is to be returned.
 202      * @return  the arc cosine of the argument.
 203      */
 204     public static double acos(double a) {
 205         return StrictMath.acos(a); // default impl. delegates to StrictMath
 206     }
 207 
 208     /**
 209      * Returns the arc tangent of a value; the returned angle is in the
 210      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 211      * <ul><li>If the argument is NaN, then the result is NaN.
 212      * <li>If the argument is zero, then the result is a zero with the
 213      * same sign as the argument.</ul>
 214      *
 215      * <p>The computed result must be within 1 ulp of the exact result.
 216      * Results must be semi-monotonic.
 217      *
 218      * @param   a   the value whose arc tangent is to be returned.
 219      * @return  the arc tangent of the argument.
 220      */
 221     public static double atan(double a) {
 222         return StrictMath.atan(a); // default impl. delegates to StrictMath
 223     }
 224 
 225     /**
 226      * Converts an angle measured in degrees to an approximately
 227      * equivalent angle measured in radians.  The conversion from
 228      * degrees to radians is generally inexact.
 229      *
 230      * @param   angdeg   an angle, in degrees
 231      * @return  the measurement of the angle {@code angdeg}
 232      *          in radians.
 233      * @since   1.2
 234      */
 235     public static double toRadians(double angdeg) {
 236         return angdeg / 180.0 * PI;
 237     }
 238 
 239     /**
 240      * Converts an angle measured in radians to an approximately
 241      * equivalent angle measured in degrees.  The conversion from
 242      * radians to degrees is generally inexact; users should
 243      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 244      * equal {@code 0.0}.
 245      *
 246      * @param   angrad   an angle, in radians
 247      * @return  the measurement of the angle {@code angrad}
 248      *          in degrees.
 249      * @since   1.2
 250      */
 251     public static double toDegrees(double angrad) {
 252         return angrad * 180.0 / PI;
 253     }
 254 
 255     /**
 256      * Returns Euler's number <i>e</i> raised to the power of a
 257      * {@code double} value.  Special cases:
 258      * <ul><li>If the argument is NaN, the result is NaN.
 259      * <li>If the argument is positive infinity, then the result is
 260      * positive infinity.
 261      * <li>If the argument is negative infinity, then the result is
 262      * positive zero.</ul>
 263      *
 264      * <p>The computed result must be within 1 ulp of the exact result.
 265      * Results must be semi-monotonic.
 266      *
 267      * @param   a   the exponent to raise <i>e</i> to.
 268      * @return  the value <i>e</i><sup>{@code a}</sup>,
 269      *          where <i>e</i> is the base of the natural logarithms.
 270      */
 271     public static double exp(double a) {
 272         return StrictMath.exp(a); // default impl. delegates to StrictMath
 273     }
 274 
 275     /**
 276      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 277      * value.  Special cases:
 278      * <ul><li>If the argument is NaN or less than zero, then the result
 279      * is NaN.
 280      * <li>If the argument is positive infinity, then the result is
 281      * positive infinity.
 282      * <li>If the argument is positive zero or negative zero, then the
 283      * result is negative infinity.</ul>
 284      *
 285      * <p>The computed result must be within 1 ulp of the exact result.
 286      * Results must be semi-monotonic.
 287      *
 288      * @param   a   a value
 289      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 290      *          {@code a}.
 291      */
 292     public static double log(double a) {
 293         return StrictMath.log(a); // default impl. delegates to StrictMath
 294     }
 295 
 296     /**
 297      * Returns the base 10 logarithm of a {@code double} value.
 298      * Special cases:
 299      *
 300      * <ul><li>If the argument is NaN or less than zero, then the result
 301      * is NaN.
 302      * <li>If the argument is positive infinity, then the result is
 303      * positive infinity.
 304      * <li>If the argument is positive zero or negative zero, then the
 305      * result is negative infinity.
 306      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 307      * integer <i>n</i>, then the result is <i>n</i>.
 308      * </ul>
 309      *
 310      * <p>The computed result must be within 1 ulp of the exact result.
 311      * Results must be semi-monotonic.
 312      *
 313      * @param   a   a value
 314      * @return  the base 10 logarithm of  {@code a}.
 315      * @since 1.5
 316      */
 317     public static double log10(double a) {
 318         return StrictMath.log10(a); // default impl. delegates to StrictMath
 319     }
 320 
 321     /**
 322      * Returns the correctly rounded positive square root of a
 323      * {@code double} value.
 324      * Special cases:
 325      * <ul><li>If the argument is NaN or less than zero, then the result
 326      * is NaN.
 327      * <li>If the argument is positive infinity, then the result is positive
 328      * infinity.
 329      * <li>If the argument is positive zero or negative zero, then the
 330      * result is the same as the argument.</ul>
 331      * Otherwise, the result is the {@code double} value closest to
 332      * the true mathematical square root of the argument value.
 333      *
 334      * @param   a   a value.
 335      * @return  the positive square root of {@code a}.
 336      *          If the argument is NaN or less than zero, the result is NaN.
 337      */
 338     public static double sqrt(double a) {
 339         return StrictMath.sqrt(a); // default impl. delegates to StrictMath
 340                                    // Note that hardware sqrt instructions
 341                                    // frequently can be directly used by JITs
 342                                    // and should be much faster than doing
 343                                    // Math.sqrt in software.
 344     }
 345 
 346 
 347     /**
 348      * Returns the cube root of a {@code double} value.  For
 349      * positive finite {@code x}, {@code cbrt(-x) ==
 350      * -cbrt(x)}; that is, the cube root of a negative value is
 351      * the negative of the cube root of that value's magnitude.
 352      *
 353      * Special cases:
 354      *
 355      * <ul>
 356      *
 357      * <li>If the argument is NaN, then the result is NaN.
 358      *
 359      * <li>If the argument is infinite, then the result is an infinity
 360      * with the same sign as the argument.
 361      *
 362      * <li>If the argument is zero, then the result is a zero with the
 363      * same sign as the argument.
 364      *
 365      * </ul>
 366      *
 367      * <p>The computed result must be within 1 ulp of the exact result.
 368      *
 369      * @param   a   a value.
 370      * @return  the cube root of {@code a}.
 371      * @since 1.5
 372      */
 373     public static double cbrt(double a) {
 374         return StrictMath.cbrt(a);
 375     }
 376 
 377     /**
 378      * Computes the remainder operation on two arguments as prescribed
 379      * by the IEEE 754 standard.
 380      * The remainder value is mathematically equal to
 381      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 382      * where <i>n</i> is the mathematical integer closest to the exact
 383      * mathematical value of the quotient {@code f1/f2}, and if two
 384      * mathematical integers are equally close to {@code f1/f2},
 385      * then <i>n</i> is the integer that is even. If the remainder is
 386      * zero, its sign is the same as the sign of the first argument.
 387      * Special cases:
 388      * <ul><li>If either argument is NaN, or the first argument is infinite,
 389      * or the second argument is positive zero or negative zero, then the
 390      * result is NaN.
 391      * <li>If the first argument is finite and the second argument is
 392      * infinite, then the result is the same as the first argument.</ul>
 393      *
 394      * @param   f1   the dividend.
 395      * @param   f2   the divisor.
 396      * @return  the remainder when {@code f1} is divided by
 397      *          {@code f2}.
 398      */
 399     public static double IEEEremainder(double f1, double f2) {
 400         return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
 401     }
 402 
 403     /**
 404      * Returns the smallest (closest to negative infinity)
 405      * {@code double} value that is greater than or equal to the
 406      * argument and is equal to a mathematical integer. Special cases:
 407      * <ul><li>If the argument value is already equal to a
 408      * mathematical integer, then the result is the same as the
 409      * argument.  <li>If the argument is NaN or an infinity or
 410      * positive zero or negative zero, then the result is the same as
 411      * the argument.  <li>If the argument value is less than zero but
 412      * greater than -1.0, then the result is negative zero.</ul> Note
 413      * that the value of {@code Math.ceil(x)} is exactly the
 414      * value of {@code -Math.floor(-x)}.
 415      *
 416      *
 417      * @param   a   a value.
 418      * @return  the smallest (closest to negative infinity)
 419      *          floating-point value that is greater than or equal to
 420      *          the argument and is equal to a mathematical integer.
 421      */
 422     public static double ceil(double a) {
 423         return StrictMath.ceil(a); // default impl. delegates to StrictMath
 424     }
 425 
 426     /**
 427      * Returns the largest (closest to positive infinity)
 428      * {@code double} value that is less than or equal to the
 429      * argument and is equal to a mathematical integer. Special cases:
 430      * <ul><li>If the argument value is already equal to a
 431      * mathematical integer, then the result is the same as the
 432      * argument.  <li>If the argument is NaN or an infinity or
 433      * positive zero or negative zero, then the result is the same as
 434      * the argument.</ul>
 435      *
 436      * @param   a   a value.
 437      * @return  the largest (closest to positive infinity)
 438      *          floating-point value that less than or equal to the argument
 439      *          and is equal to a mathematical integer.
 440      */
 441     public static double floor(double a) {
 442         return StrictMath.floor(a); // default impl. delegates to StrictMath
 443     }
 444 
 445     /**
 446      * Returns the {@code double} value that is closest in value
 447      * to the argument and is equal to a mathematical integer. If two
 448      * {@code double} values that are mathematical integers are
 449      * equally close, the result is the integer value that is
 450      * even. Special cases:
 451      * <ul><li>If the argument value is already equal to a mathematical
 452      * integer, then the result is the same as the argument.
 453      * <li>If the argument is NaN or an infinity or positive zero or negative
 454      * zero, then the result is the same as the argument.</ul>
 455      *
 456      * @param   a   a {@code double} value.
 457      * @return  the closest floating-point value to {@code a} that is
 458      *          equal to a mathematical integer.
 459      */
 460     public static double rint(double a) {
 461         return StrictMath.rint(a); // default impl. delegates to StrictMath
 462     }
 463 
 464     /**
 465      * Returns the angle <i>theta</i> from the conversion of rectangular
 466      * coordinates ({@code x},&nbsp;{@code y}) to polar
 467      * coordinates (r,&nbsp;<i>theta</i>).
 468      * This method computes the phase <i>theta</i> by computing an arc tangent
 469      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 470      * cases:
 471      * <ul><li>If either argument is NaN, then the result is NaN.
 472      * <li>If the first argument is positive zero and the second argument
 473      * is positive, or the first argument is positive and finite and the
 474      * second argument is positive infinity, then the result is positive
 475      * zero.
 476      * <li>If the first argument is negative zero and the second argument
 477      * is positive, or the first argument is negative and finite and the
 478      * second argument is positive infinity, then the result is negative zero.
 479      * <li>If the first argument is positive zero and the second argument
 480      * is negative, or the first argument is positive and finite and the
 481      * second argument is negative infinity, then the result is the
 482      * {@code double} value closest to <i>pi</i>.
 483      * <li>If the first argument is negative zero and the second argument
 484      * is negative, or the first argument is negative and finite and the
 485      * second argument is negative infinity, then the result is the
 486      * {@code double} value closest to -<i>pi</i>.
 487      * <li>If the first argument is positive and the second argument is
 488      * positive zero or negative zero, or the first argument is positive
 489      * infinity and the second argument is finite, then the result is the
 490      * {@code double} value closest to <i>pi</i>/2.
 491      * <li>If the first argument is negative and the second argument is
 492      * positive zero or negative zero, or the first argument is negative
 493      * infinity and the second argument is finite, then the result is the
 494      * {@code double} value closest to -<i>pi</i>/2.
 495      * <li>If both arguments are positive infinity, then the result is the
 496      * {@code double} value closest to <i>pi</i>/4.
 497      * <li>If the first argument is positive infinity and the second argument
 498      * is negative infinity, then the result is the {@code double}
 499      * value closest to 3*<i>pi</i>/4.
 500      * <li>If the first argument is negative infinity and the second argument
 501      * is positive infinity, then the result is the {@code double} value
 502      * closest to -<i>pi</i>/4.
 503      * <li>If both arguments are negative infinity, then the result is the
 504      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 505      *
 506      * <p>The computed result must be within 2 ulps of the exact result.
 507      * Results must be semi-monotonic.
 508      *
 509      * @param   y   the ordinate coordinate
 510      * @param   x   the abscissa coordinate
 511      * @return  the <i>theta</i> component of the point
 512      *          (<i>r</i>,&nbsp;<i>theta</i>)
 513      *          in polar coordinates that corresponds to the point
 514      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 515      */
 516     public static double atan2(double y, double x) {
 517         return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
 518     }
 519 
 520     /**
 521      * Returns the value of the first argument raised to the power of the
 522      * second argument. Special cases:
 523      *
 524      * <ul><li>If the second argument is positive or negative zero, then the
 525      * result is 1.0.
 526      * <li>If the second argument is 1.0, then the result is the same as the
 527      * first argument.
 528      * <li>If the second argument is NaN, then the result is NaN.
 529      * <li>If the first argument is NaN and the second argument is nonzero,
 530      * then the result is NaN.
 531      *
 532      * <li>If
 533      * <ul>
 534      * <li>the absolute value of the first argument is greater than 1
 535      * and the second argument is positive infinity, or
 536      * <li>the absolute value of the first argument is less than 1 and
 537      * the second argument is negative infinity,
 538      * </ul>
 539      * then the result is positive infinity.
 540      *
 541      * <li>If
 542      * <ul>
 543      * <li>the absolute value of the first argument is greater than 1 and
 544      * the second argument is negative infinity, or
 545      * <li>the absolute value of the
 546      * first argument is less than 1 and the second argument is positive
 547      * infinity,
 548      * </ul>
 549      * then the result is positive zero.
 550      *
 551      * <li>If the absolute value of the first argument equals 1 and the
 552      * second argument is infinite, then the result is NaN.
 553      *
 554      * <li>If
 555      * <ul>
 556      * <li>the first argument is positive zero and the second argument
 557      * is greater than zero, or
 558      * <li>the first argument is positive infinity and the second
 559      * argument is less than zero,
 560      * </ul>
 561      * then the result is positive zero.
 562      *
 563      * <li>If
 564      * <ul>
 565      * <li>the first argument is positive zero and the second argument
 566      * is less than zero, or
 567      * <li>the first argument is positive infinity and the second
 568      * argument is greater than zero,
 569      * </ul>
 570      * then the result is positive infinity.
 571      *
 572      * <li>If
 573      * <ul>
 574      * <li>the first argument is negative zero and the second argument
 575      * is greater than zero but not a finite odd integer, or
 576      * <li>the first argument is negative infinity and the second
 577      * argument is less than zero but not a finite odd integer,
 578      * </ul>
 579      * then the result is positive zero.
 580      *
 581      * <li>If
 582      * <ul>
 583      * <li>the first argument is negative zero and the second argument
 584      * is a positive finite odd integer, or
 585      * <li>the first argument is negative infinity and the second
 586      * argument is a negative finite odd integer,
 587      * </ul>
 588      * then the result is negative zero.
 589      *
 590      * <li>If
 591      * <ul>
 592      * <li>the first argument is negative zero and the second argument
 593      * is less than zero but not a finite odd integer, or
 594      * <li>the first argument is negative infinity and the second
 595      * argument is greater than zero but not a finite odd integer,
 596      * </ul>
 597      * then the result is positive infinity.
 598      *
 599      * <li>If
 600      * <ul>
 601      * <li>the first argument is negative zero and the second argument
 602      * is a negative finite odd integer, or
 603      * <li>the first argument is negative infinity and the second
 604      * argument is a positive finite odd integer,
 605      * </ul>
 606      * then the result is negative infinity.
 607      *
 608      * <li>If the first argument is finite and less than zero
 609      * <ul>
 610      * <li> if the second argument is a finite even integer, the
 611      * result is equal to the result of raising the absolute value of
 612      * the first argument to the power of the second argument
 613      *
 614      * <li>if the second argument is a finite odd integer, the result
 615      * is equal to the negative of the result of raising the absolute
 616      * value of the first argument to the power of the second
 617      * argument
 618      *
 619      * <li>if the second argument is finite and not an integer, then
 620      * the result is NaN.
 621      * </ul>
 622      *
 623      * <li>If both arguments are integers, then the result is exactly equal
 624      * to the mathematical result of raising the first argument to the power
 625      * of the second argument if that result can in fact be represented
 626      * exactly as a {@code double} value.</ul>
 627      *
 628      * <p>(In the foregoing descriptions, a floating-point value is
 629      * considered to be an integer if and only if it is finite and a
 630      * fixed point of the method {@link #ceil ceil} or,
 631      * equivalently, a fixed point of the method {@link #floor
 632      * floor}. A value is a fixed point of a one-argument
 633      * method if and only if the result of applying the method to the
 634      * value is equal to the value.)
 635      *
 636      * <p>The computed result must be within 1 ulp of the exact result.
 637      * Results must be semi-monotonic.
 638      *
 639      * @param   a   the base.
 640      * @param   b   the exponent.
 641      * @return  the value {@code a}<sup>{@code b}</sup>.
 642      */
 643     public static double pow(double a, double b) {
 644         return StrictMath.pow(a, b); // default impl. delegates to StrictMath
 645     }
 646 
 647     /**
 648      * Returns the closest {@code int} to the argument, with ties
 649      * rounding to positive infinity.
 650      *
 651      * <p>
 652      * Special cases:
 653      * <ul><li>If the argument is NaN, the result is 0.
 654      * <li>If the argument is negative infinity or any value less than or
 655      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 656      * equal to the value of {@code Integer.MIN_VALUE}.
 657      * <li>If the argument is positive infinity or any value greater than or
 658      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 659      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 660      *
 661      * @param   a   a floating-point value to be rounded to an integer.
 662      * @return  the value of the argument rounded to the nearest
 663      *          {@code int} value.
 664      * @see     java.lang.Integer#MAX_VALUE
 665      * @see     java.lang.Integer#MIN_VALUE
 666      */
 667     public static int round(float a) {
 668         int intBits = Float.floatToRawIntBits(a);
 669         int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK)
 670                 >> (FloatConsts.SIGNIFICAND_WIDTH - 1);
 671         int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2
 672                 + FloatConsts.EXP_BIAS) - biasedExp;
 673         if ((shift & -32) == 0) { // shift >= 0 && shift < 32
 674             // a is a finite number such that pow(2,-32) <= ulp(a) < 1
 675             int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK)
 676                     | (FloatConsts.SIGNIF_BIT_MASK + 1));
 677             if (intBits < 0) {
 678                 r = -r;
 679             }
 680             // In the comments below each Java expression evaluates to the value
 681             // the corresponding mathematical expression:
 682             // (r) evaluates to a / ulp(a)
 683             // (r >> shift) evaluates to floor(a * 2)
 684             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
 685             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
 686             return ((r >> shift) + 1) >> 1;
 687         } else {
 688             // a is either
 689             // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2
 690             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
 691             // - an infinity or NaN
 692             return (int) a;
 693         }
 694     }
 695 
 696     /**
 697      * Returns the closest {@code long} to the argument, with ties
 698      * rounding to positive infinity.
 699      *
 700      * <p>Special cases:
 701      * <ul><li>If the argument is NaN, the result is 0.
 702      * <li>If the argument is negative infinity or any value less than or
 703      * equal to the value of {@code Long.MIN_VALUE}, the result is
 704      * equal to the value of {@code Long.MIN_VALUE}.
 705      * <li>If the argument is positive infinity or any value greater than or
 706      * equal to the value of {@code Long.MAX_VALUE}, the result is
 707      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 708      *
 709      * @param   a   a floating-point value to be rounded to a
 710      *          {@code long}.
 711      * @return  the value of the argument rounded to the nearest
 712      *          {@code long} value.
 713      * @see     java.lang.Long#MAX_VALUE
 714      * @see     java.lang.Long#MIN_VALUE
 715      */
 716     public static long round(double a) {
 717         long longBits = Double.doubleToRawLongBits(a);
 718         long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK)
 719                 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1);
 720         long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2
 721                 + DoubleConsts.EXP_BIAS) - biasedExp;
 722         if ((shift & -64) == 0) { // shift >= 0 && shift < 64
 723             // a is a finite number such that pow(2,-64) <= ulp(a) < 1
 724             long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK)
 725                     | (DoubleConsts.SIGNIF_BIT_MASK + 1));
 726             if (longBits < 0) {
 727                 r = -r;
 728             }
 729             // In the comments below each Java expression evaluates to the value
 730             // the corresponding mathematical expression:
 731             // (r) evaluates to a / ulp(a)
 732             // (r >> shift) evaluates to floor(a * 2)
 733             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
 734             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
 735             return ((r >> shift) + 1) >> 1;
 736         } else {
 737             // a is either
 738             // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2
 739             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
 740             // - an infinity or NaN
 741             return (long) a;
 742         }
 743     }
 744 
 745     private static final class RandomNumberGeneratorHolder {
 746         static final Random randomNumberGenerator = new Random();
 747     }
 748 
 749     /**
 750      * Returns a {@code double} value with a positive sign, greater
 751      * than or equal to {@code 0.0} and less than {@code 1.0}.
 752      * Returned values are chosen pseudorandomly with (approximately)
 753      * uniform distribution from that range.
 754      *
 755      * <p>When this method is first called, it creates a single new
 756      * pseudorandom-number generator, exactly as if by the expression
 757      *
 758      * <blockquote>{@code new java.util.Random()}</blockquote>
 759      *
 760      * This new pseudorandom-number generator is used thereafter for
 761      * all calls to this method and is used nowhere else.
 762      *
 763      * <p>This method is properly synchronized to allow correct use by
 764      * more than one thread. However, if many threads need to generate
 765      * pseudorandom numbers at a great rate, it may reduce contention
 766      * for each thread to have its own pseudorandom-number generator.
 767      *
 768      * @return  a pseudorandom {@code double} greater than or equal
 769      * to {@code 0.0} and less than {@code 1.0}.
 770      * @see Random#nextDouble()
 771      */
 772     public static double random() {
 773         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
 774     }
 775 
 776     /**
 777      * Returns the sum of its arguments,
 778      * throwing an exception if the result overflows an {@code int}.
 779      *
 780      * @param x the first value
 781      * @param y the second value
 782      * @return the result
 783      * @throws ArithmeticException if the result overflows an int
 784      * @since 1.8
 785      */
 786     public static int addExact(int x, int y) {
 787         int r = x + y;
 788         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
 789         if (((x ^ r) & (y ^ r)) < 0) {
 790             throw new ArithmeticException("integer overflow");
 791         }
 792         return r;
 793     }
 794 
 795     /**
 796      * Returns the sum of its arguments,
 797      * throwing an exception if the result overflows a {@code long}.
 798      *
 799      * @param x the first value
 800      * @param y the second value
 801      * @return the result
 802      * @throws ArithmeticException if the result overflows a long
 803      * @since 1.8
 804      */
 805     public static long addExact(long x, long y) {
 806         long r = x + y;
 807         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
 808         if (((x ^ r) & (y ^ r)) < 0) {
 809             throw new ArithmeticException("long overflow");
 810         }
 811         return r;
 812     }
 813 
 814     /**
 815      * Returns the difference of the arguments,
 816      * throwing an exception if the result overflows an {@code int}.
 817      *
 818      * @param x the first value
 819      * @param y the second value to subtract from the first
 820      * @return the result
 821      * @throws ArithmeticException if the result overflows an int
 822      * @since 1.8
 823      */
 824     public static int subtractExact(int x, int y) {
 825         int r = x - y;
 826         // HD 2-12 Overflow iff the arguments have different signs and
 827         // the sign of the result is different than the sign of x
 828         if (((x ^ y) & (x ^ r)) < 0) {
 829             throw new ArithmeticException("integer overflow");
 830         }
 831         return r;
 832     }
 833 
 834     /**
 835      * Returns the difference of the arguments,
 836      * throwing an exception if the result overflows a {@code long}.
 837      *
 838      * @param x the first value
 839      * @param y the second value to subtract from the first
 840      * @return the result
 841      * @throws ArithmeticException if the result overflows a long
 842      * @since 1.8
 843      */
 844     public static long subtractExact(long x, long y) {
 845         long r = x - y;
 846         // HD 2-12 Overflow iff the arguments have different signs and
 847         // the sign of the result is different than the sign of x
 848         if (((x ^ y) & (x ^ r)) < 0) {
 849             throw new ArithmeticException("long overflow");
 850         }
 851         return r;
 852     }
 853 
 854     /**
 855      * Returns the product of the arguments,
 856      * throwing an exception if the result overflows an {@code int}.
 857      *
 858      * @param x the first value
 859      * @param y the second value
 860      * @return the result
 861      * @throws ArithmeticException if the result overflows an int
 862      * @since 1.8
 863      */
 864     public static int multiplyExact(int x, int y) {
 865         long r = (long)x * (long)y;
 866         if ((int)r != r) {
 867             throw new ArithmeticException("integer overflow");
 868         }
 869         return (int)r;
 870     }
 871 
 872     /**
 873      * Returns the product of the arguments,
 874      * throwing an exception if the result overflows a {@code long}.
 875      *
 876      * @param x the first value
 877      * @param y the second value
 878      * @return the result
 879      * @throws ArithmeticException if the result overflows a long
 880      * @since 1.8
 881      */
 882     public static long multiplyExact(long x, long y) {
 883         long r = x * y;
 884         long ax = Math.abs(x);
 885         long ay = Math.abs(y);
 886         if (((ax | ay) >>> 31 != 0)) {
 887             // Some bits greater than 2^31 that might cause overflow
 888             // Check the result using the divide operator
 889             // and check for the special case of Long.MIN_VALUE * -1
 890            if (((y != 0) && (r / y != x)) ||
 891                (x == Long.MIN_VALUE && y == -1)) {
 892                 throw new ArithmeticException("long overflow");
 893             }
 894         }
 895         return r;
 896     }
 897 
 898     /**
 899      * Returns the argument incremented by one, throwing an exception if the
 900      * result overflows an {@code int}.
 901      *
 902      * @param a the value to increment
 903      * @return the result
 904      * @throws ArithmeticException if the result overflows an int
 905      * @since 1.8
 906      */
 907     public static int incrementExact(int a) {
 908         if (a == Integer.MAX_VALUE) {
 909             throw new ArithmeticException("integer overflow");
 910         }
 911 
 912         return a + 1;
 913     }
 914 
 915     /**
 916      * Returns the argument incremented by one, throwing an exception if the
 917      * result overflows a {@code long}.
 918      *
 919      * @param a the value to increment
 920      * @return the result
 921      * @throws ArithmeticException if the result overflows a long
 922      * @since 1.8
 923      */
 924     public static long incrementExact(long a) {
 925         if (a == Long.MAX_VALUE) {
 926             throw new ArithmeticException("long overflow");
 927         }
 928 
 929         return a + 1L;
 930     }
 931 
 932     /**
 933      * Returns the argument decremented by one, throwing an exception if the
 934      * result overflows an {@code int}.
 935      *
 936      * @param a the value to decrement
 937      * @return the result
 938      * @throws ArithmeticException if the result overflows an int
 939      * @since 1.8
 940      */
 941     public static int decrementExact(int a) {
 942         if (a == Integer.MIN_VALUE) {
 943             throw new ArithmeticException("integer overflow");
 944         }
 945 
 946         return a - 1;
 947     }
 948 
 949     /**
 950      * Returns the argument decremented by one, throwing an exception if the
 951      * result overflows a {@code long}.
 952      *
 953      * @param a the value to decrement
 954      * @return the result
 955      * @throws ArithmeticException if the result overflows a long
 956      * @since 1.8
 957      */
 958     public static long decrementExact(long a) {
 959         if (a == Long.MIN_VALUE) {
 960             throw new ArithmeticException("long overflow");
 961         }
 962 
 963         return a - 1L;
 964     }
 965 
 966     /**
 967      * Returns the negation of the argument, throwing an exception if the
 968      * result overflows an {@code int}.
 969      *
 970      * @param a the value to negate
 971      * @return the result
 972      * @throws ArithmeticException if the result overflows an int
 973      * @since 1.8
 974      */
 975     public static int negateExact(int a) {
 976         if (a == Integer.MIN_VALUE) {
 977             throw new ArithmeticException("integer overflow");
 978         }
 979 
 980         return -a;
 981     }
 982 
 983     /**
 984      * Returns the negation of the argument, throwing an exception if the
 985      * result overflows a {@code long}.
 986      *
 987      * @param a the value to negate
 988      * @return the result
 989      * @throws ArithmeticException if the result overflows a long
 990      * @since 1.8
 991      */
 992     public static long negateExact(long a) {
 993         if (a == Long.MIN_VALUE) {
 994             throw new ArithmeticException("long overflow");
 995         }
 996 
 997         return -a;
 998     }
 999 
1000     /**
1001      * Returns the value of the {@code long} argument;
1002      * throwing an exception if the value overflows an {@code int}.
1003      *
1004      * @param value the long value
1005      * @return the argument as an int
1006      * @throws ArithmeticException if the {@code argument} overflows an int
1007      * @since 1.8
1008      */
1009     public static int toIntExact(long value) {
1010         if ((int)value != value) {
1011             throw new ArithmeticException("integer overflow");
1012         }
1013         return (int)value;
1014     }
1015 
1016     /**
1017      * Returns the largest (closest to positive infinity)
1018      * {@code int} value that is less than or equal to the algebraic quotient.
1019      * There is one special case, if the dividend is the
1020      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
1021      * then integer overflow occurs and
1022      * the result is equal to the {@code Integer.MIN_VALUE}.
1023      * <p>
1024      * Normal integer division operates under the round to zero rounding mode
1025      * (truncation).  This operation instead acts under the round toward
1026      * negative infinity (floor) rounding mode.
1027      * The floor rounding mode gives different results than truncation
1028      * when the exact result is negative.
1029      * <ul>
1030      *   <li>If the signs of the arguments are the same, the results of
1031      *       {@code floorDiv} and the {@code /} operator are the same.  <br>
1032      *       For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
1033      *   <li>If the signs of the arguments are different,  the quotient is negative and
1034      *       {@code floorDiv} returns the integer less than or equal to the quotient
1035      *       and the {@code /} operator returns the integer closest to zero.<br>
1036      *       For example, {@code floorDiv(-4, 3) == -2},
1037      *       whereas {@code (-4 / 3) == -1}.
1038      *   </li>
1039      * </ul>
1040      * <p>
1041      *
1042      * @param x the dividend
1043      * @param y the divisor
1044      * @return the largest (closest to positive infinity)
1045      * {@code int} value that is less than or equal to the algebraic quotient.
1046      * @throws ArithmeticException if the divisor {@code y} is zero
1047      * @see #floorMod(int, int)
1048      * @see #floor(double)
1049      * @since 1.8
1050      */
1051     public static int floorDiv(int x, int y) {
1052         int r = x / y;
1053         // if the signs are different and modulo not zero, round down
1054         if ((x ^ y) < 0 && (r * y != x)) {
1055             r--;
1056         }
1057         return r;
1058     }
1059 
1060     /**
1061      * Returns the largest (closest to positive infinity)
1062      * {@code long} value that is less than or equal to the algebraic quotient.
1063      * There is one special case, if the dividend is the
1064      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1065      * then integer overflow occurs and
1066      * the result is equal to the {@code Long.MIN_VALUE}.
1067      * <p>
1068      * Normal integer division operates under the round to zero rounding mode
1069      * (truncation).  This operation instead acts under the round toward
1070      * negative infinity (floor) rounding mode.
1071      * The floor rounding mode gives different results than truncation
1072      * when the exact result is negative.
1073      * <p>
1074      * For examples, see {@link #floorDiv(int, int)}.
1075      *
1076      * @param x the dividend
1077      * @param y the divisor
1078      * @return the largest (closest to positive infinity)
1079      * {@code long} value that is less than or equal to the algebraic quotient.
1080      * @throws ArithmeticException if the divisor {@code y} is zero
1081      * @see #floorMod(long, long)
1082      * @see #floor(double)
1083      * @since 1.8
1084      */
1085     public static long floorDiv(long x, long y) {
1086         long r = x / y;
1087         // if the signs are different and modulo not zero, round down
1088         if ((x ^ y) < 0 && (r * y != x)) {
1089             r--;
1090         }
1091         return r;
1092     }
1093 
1094     /**
1095      * Returns the floor modulus of the {@code int} arguments.
1096      * <p>
1097      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1098      * has the same sign as the divisor {@code y}, and
1099      * is in the range of {@code -abs(y) < r < +abs(y)}.
1100      *
1101      * <p>
1102      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1103      * <ul>
1104      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1105      * </ul>
1106      * <p>
1107      * The difference in values between {@code floorMod} and
1108      * the {@code %} operator is due to the difference between
1109      * {@code floorDiv} that returns the integer less than or equal to the quotient
1110      * and the {@code /} operator that returns the integer closest to zero.
1111      * <p>
1112      * Examples:
1113      * <ul>
1114      *   <li>If the signs of the arguments are the same, the results
1115      *       of {@code floorMod} and the {@code %} operator are the same.  <br>
1116      *       <ul>
1117      *       <li>{@code floorMod(4, 3) == 1}; &nbsp; and {@code (4 % 3) == 1}</li>
1118      *       </ul>
1119      *   <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br>
1120      *      <ul>
1121      *      <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1} </li>
1122      *      <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1} </li>
1123      *      <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1 } </li>
1124      *      </ul>
1125      *   </li>
1126      * </ul>
1127      * <p>
1128      * If the signs of arguments are unknown and a positive modulus
1129      * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
1130      *
1131      * @param x the dividend
1132      * @param y the divisor
1133      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1134      * @throws ArithmeticException if the divisor {@code y} is zero
1135      * @see #floorDiv(int, int)
1136      * @since 1.8
1137      */
1138     public static int floorMod(int x, int y) {
1139         int r = x - floorDiv(x, y) * y;
1140         return r;
1141     }
1142 
1143     /**
1144      * Returns the floor modulus of the {@code long} arguments.
1145      * <p>
1146      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1147      * has the same sign as the divisor {@code y}, and
1148      * is in the range of {@code -abs(y) < r < +abs(y)}.
1149      *
1150      * <p>
1151      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1152      * <ul>
1153      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1154      * </ul>
1155      * <p>
1156      * For examples, see {@link #floorMod(int, int)}.
1157      *
1158      * @param x the dividend
1159      * @param y the divisor
1160      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1161      * @throws ArithmeticException if the divisor {@code y} is zero
1162      * @see #floorDiv(long, long)
1163      * @since 1.8
1164      */
1165     public static long floorMod(long x, long y) {
1166         return x - floorDiv(x, y) * y;
1167     }
1168 
1169     /**
1170      * Returns the absolute value of an {@code int} value.
1171      * If the argument is not negative, the argument is returned.
1172      * If the argument is negative, the negation of the argument is returned.
1173      *
1174      * <p>Note that if the argument is equal to the value of
1175      * {@link Integer#MIN_VALUE}, the most negative representable
1176      * {@code int} value, the result is that same value, which is
1177      * negative.
1178      *
1179      * @param   a   the argument whose absolute value is to be determined
1180      * @return  the absolute value of the argument.
1181      */
1182     public static int abs(int a) {
1183         return (a < 0) ? -a : a;
1184     }
1185 
1186     /**
1187      * Returns the absolute value of a {@code long} value.
1188      * If the argument is not negative, the argument is returned.
1189      * If the argument is negative, the negation of the argument is returned.
1190      *
1191      * <p>Note that if the argument is equal to the value of
1192      * {@link Long#MIN_VALUE}, the most negative representable
1193      * {@code long} value, the result is that same value, which
1194      * is negative.
1195      *
1196      * @param   a   the argument whose absolute value is to be determined
1197      * @return  the absolute value of the argument.
1198      */
1199     public static long abs(long a) {
1200         return (a < 0) ? -a : a;
1201     }
1202 
1203     /**
1204      * Returns the absolute value of a {@code float} value.
1205      * If the argument is not negative, the argument is returned.
1206      * If the argument is negative, the negation of the argument is returned.
1207      * Special cases:
1208      * <ul><li>If the argument is positive zero or negative zero, the
1209      * result is positive zero.
1210      * <li>If the argument is infinite, the result is positive infinity.
1211      * <li>If the argument is NaN, the result is NaN.</ul>
1212      * In other words, the result is the same as the value of the expression:
1213      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
1214      *
1215      * @param   a   the argument whose absolute value is to be determined
1216      * @return  the absolute value of the argument.
1217      */
1218     public static float abs(float a) {
1219         return (a <= 0.0F) ? 0.0F - a : a;
1220     }
1221 
1222     /**
1223      * Returns the absolute value of a {@code double} value.
1224      * If the argument is not negative, the argument is returned.
1225      * If the argument is negative, the negation of the argument is returned.
1226      * Special cases:
1227      * <ul><li>If the argument is positive zero or negative zero, the result
1228      * is positive zero.
1229      * <li>If the argument is infinite, the result is positive infinity.
1230      * <li>If the argument is NaN, the result is NaN.</ul>
1231      * In other words, the result is the same as the value of the expression:
1232      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
1233      *
1234      * @param   a   the argument whose absolute value is to be determined
1235      * @return  the absolute value of the argument.
1236      */
1237     public static double abs(double a) {
1238         return (a <= 0.0D) ? 0.0D - a : a;
1239     }
1240 
1241     /**
1242      * Returns the greater of two {@code int} values. That is, the
1243      * result is the argument closer to the value of
1244      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1245      * the result is that same value.
1246      *
1247      * @param   a   an argument.
1248      * @param   b   another argument.
1249      * @return  the larger of {@code a} and {@code b}.
1250      */
1251     public static int max(int a, int b) {
1252         return (a >= b) ? a : b;
1253     }
1254 
1255     /**
1256      * Returns the greater of two {@code long} values. That is, the
1257      * result is the argument closer to the value of
1258      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1259      * the result is that same value.
1260      *
1261      * @param   a   an argument.
1262      * @param   b   another argument.
1263      * @return  the larger of {@code a} and {@code b}.
1264      */
1265     public static long max(long a, long b) {
1266         return (a >= b) ? a : b;
1267     }
1268 
1269     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
1270     private static long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
1271     private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
1272 
1273     /**
1274      * Returns the greater of two {@code float} values.  That is,
1275      * the result is the argument closer to positive infinity. If the
1276      * arguments have the same value, the result is that same
1277      * value. If either value is NaN, then the result is NaN.  Unlike
1278      * the numerical comparison operators, this method considers
1279      * negative zero to be strictly smaller than positive zero. If one
1280      * argument is positive zero and the other negative zero, the
1281      * result is positive zero.
1282      *
1283      * @param   a   an argument.
1284      * @param   b   another argument.
1285      * @return  the larger of {@code a} and {@code b}.
1286      */
1287     public static float max(float a, float b) {
1288         if (a != a)
1289             return a;   // a is NaN
1290         if ((a == 0.0f) &&
1291             (b == 0.0f) &&
1292             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
1293             // Raw conversion ok since NaN can't map to -0.0.
1294             return b;
1295         }
1296         return (a >= b) ? a : b;
1297     }
1298 
1299     /**
1300      * Returns the greater of two {@code double} values.  That
1301      * is, the result is the argument closer to positive infinity. If
1302      * the arguments have the same value, the result is that same
1303      * value. If either value is NaN, then the result is NaN.  Unlike
1304      * the numerical comparison operators, this method considers
1305      * negative zero to be strictly smaller than positive zero. If one
1306      * argument is positive zero and the other negative zero, the
1307      * result is positive zero.
1308      *
1309      * @param   a   an argument.
1310      * @param   b   another argument.
1311      * @return  the larger of {@code a} and {@code b}.
1312      */
1313     public static double max(double a, double b) {
1314         if (a != a)
1315             return a;   // a is NaN
1316         if ((a == 0.0d) &&
1317             (b == 0.0d) &&
1318             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
1319             // Raw conversion ok since NaN can't map to -0.0.
1320             return b;
1321         }
1322         return (a >= b) ? a : b;
1323     }
1324 
1325     /**
1326      * Returns the smaller of two {@code int} values. That is,
1327      * the result the argument closer to the value of
1328      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1329      * value, the result is that same value.
1330      *
1331      * @param   a   an argument.
1332      * @param   b   another argument.
1333      * @return  the smaller of {@code a} and {@code b}.
1334      */
1335     public static int min(int a, int b) {
1336         return (a <= b) ? a : b;
1337     }
1338 
1339     /**
1340      * Returns the smaller of two {@code long} values. That is,
1341      * the result is the argument closer to the value of
1342      * {@link Long#MIN_VALUE}. If the arguments have the same
1343      * value, the result is that same value.
1344      *
1345      * @param   a   an argument.
1346      * @param   b   another argument.
1347      * @return  the smaller of {@code a} and {@code b}.
1348      */
1349     public static long min(long a, long b) {
1350         return (a <= b) ? a : b;
1351     }
1352 
1353     /**
1354      * Returns the smaller of two {@code float} values.  That is,
1355      * the result is the value closer to negative infinity. If the
1356      * arguments have the same value, the result is that same
1357      * value. If either value is NaN, then the result is NaN.  Unlike
1358      * the numerical comparison operators, this method considers
1359      * negative zero to be strictly smaller than positive zero.  If
1360      * one argument is positive zero and the other is negative zero,
1361      * the result is negative zero.
1362      *
1363      * @param   a   an argument.
1364      * @param   b   another argument.
1365      * @return  the smaller of {@code a} and {@code b}.
1366      */
1367     public static float min(float a, float b) {
1368         if (a != a)
1369             return a;   // a is NaN
1370         if ((a == 0.0f) &&
1371             (b == 0.0f) &&
1372             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
1373             // Raw conversion ok since NaN can't map to -0.0.
1374             return b;
1375         }
1376         return (a <= b) ? a : b;
1377     }
1378 
1379     /**
1380      * Returns the smaller of two {@code double} values.  That
1381      * is, the result is the value closer to negative infinity. If the
1382      * arguments have the same value, the result is that same
1383      * value. If either value is NaN, then the result is NaN.  Unlike
1384      * the numerical comparison operators, this method considers
1385      * negative zero to be strictly smaller than positive zero. If one
1386      * argument is positive zero and the other is negative zero, the
1387      * result is negative zero.
1388      *
1389      * @param   a   an argument.
1390      * @param   b   another argument.
1391      * @return  the smaller of {@code a} and {@code b}.
1392      */
1393     public static double min(double a, double b) {
1394         if (a != a)
1395             return a;   // a is NaN
1396         if ((a == 0.0d) &&
1397             (b == 0.0d) &&
1398             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
1399             // Raw conversion ok since NaN can't map to -0.0.
1400             return b;
1401         }
1402         return (a <= b) ? a : b;
1403     }
1404 
1405     /**
1406      * Returns the size of an ulp of the argument.  An ulp, unit in
1407      * the last place, of a {@code double} value is the positive
1408      * distance between this floating-point value and the {@code
1409      * double} value next larger in magnitude.  Note that for non-NaN
1410      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1411      *
1412      * <p>Special Cases:
1413      * <ul>
1414      * <li> If the argument is NaN, then the result is NaN.
1415      * <li> If the argument is positive or negative infinity, then the
1416      * result is positive infinity.
1417      * <li> If the argument is positive or negative zero, then the result is
1418      * {@code Double.MIN_VALUE}.
1419      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1420      * the result is equal to 2<sup>971</sup>.
1421      * </ul>
1422      *
1423      * @param d the floating-point value whose ulp is to be returned
1424      * @return the size of an ulp of the argument
1425      * @author Joseph D. Darcy
1426      * @since 1.5
1427      */
1428     public static double ulp(double d) {
1429         int exp = getExponent(d);
1430 
1431         switch(exp) {
1432         case DoubleConsts.MAX_EXPONENT+1:       // NaN or infinity
1433             return Math.abs(d);
1434 
1435         case DoubleConsts.MIN_EXPONENT-1:       // zero or subnormal
1436             return Double.MIN_VALUE;
1437 
1438         default:
1439             assert exp <= DoubleConsts.MAX_EXPONENT && exp >= DoubleConsts.MIN_EXPONENT;
1440 
1441             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1442             exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH-1);
1443             if (exp >= DoubleConsts.MIN_EXPONENT) {
1444                 return powerOfTwoD(exp);
1445             }
1446             else {
1447                 // return a subnormal result; left shift integer
1448                 // representation of Double.MIN_VALUE appropriate
1449                 // number of positions
1450                 return Double.longBitsToDouble(1L <<
1451                 (exp - (DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) ));
1452             }
1453         }
1454     }
1455 
1456     /**
1457      * Returns the size of an ulp of the argument.  An ulp, unit in
1458      * the last place, of a {@code float} value is the positive
1459      * distance between this floating-point value and the {@code
1460      * float} value next larger in magnitude.  Note that for non-NaN
1461      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1462      *
1463      * <p>Special Cases:
1464      * <ul>
1465      * <li> If the argument is NaN, then the result is NaN.
1466      * <li> If the argument is positive or negative infinity, then the
1467      * result is positive infinity.
1468      * <li> If the argument is positive or negative zero, then the result is
1469      * {@code Float.MIN_VALUE}.
1470      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1471      * the result is equal to 2<sup>104</sup>.
1472      * </ul>
1473      *
1474      * @param f the floating-point value whose ulp is to be returned
1475      * @return the size of an ulp of the argument
1476      * @author Joseph D. Darcy
1477      * @since 1.5
1478      */
1479     public static float ulp(float f) {
1480         int exp = getExponent(f);
1481 
1482         switch(exp) {
1483         case FloatConsts.MAX_EXPONENT+1:        // NaN or infinity
1484             return Math.abs(f);
1485 
1486         case FloatConsts.MIN_EXPONENT-1:        // zero or subnormal
1487             return FloatConsts.MIN_VALUE;
1488 
1489         default:
1490             assert exp <= FloatConsts.MAX_EXPONENT && exp >= FloatConsts.MIN_EXPONENT;
1491 
1492             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1493             exp = exp - (FloatConsts.SIGNIFICAND_WIDTH-1);
1494             if (exp >= FloatConsts.MIN_EXPONENT) {
1495                 return powerOfTwoF(exp);
1496             }
1497             else {
1498                 // return a subnormal result; left shift integer
1499                 // representation of FloatConsts.MIN_VALUE appropriate
1500                 // number of positions
1501                 return Float.intBitsToFloat(1 <<
1502                 (exp - (FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) ));
1503             }
1504         }
1505     }
1506 
1507     /**
1508      * Returns the signum function of the argument; zero if the argument
1509      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1510      * argument is less than zero.
1511      *
1512      * <p>Special Cases:
1513      * <ul>
1514      * <li> If the argument is NaN, then the result is NaN.
1515      * <li> If the argument is positive zero or negative zero, then the
1516      *      result is the same as the argument.
1517      * </ul>
1518      *
1519      * @param d the floating-point value whose signum is to be returned
1520      * @return the signum function of the argument
1521      * @author Joseph D. Darcy
1522      * @since 1.5
1523      */
1524     public static double signum(double d) {
1525         return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d);
1526     }
1527 
1528     /**
1529      * Returns the signum function of the argument; zero if the argument
1530      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1531      * argument is less than zero.
1532      *
1533      * <p>Special Cases:
1534      * <ul>
1535      * <li> If the argument is NaN, then the result is NaN.
1536      * <li> If the argument is positive zero or negative zero, then the
1537      *      result is the same as the argument.
1538      * </ul>
1539      *
1540      * @param f the floating-point value whose signum is to be returned
1541      * @return the signum function of the argument
1542      * @author Joseph D. Darcy
1543      * @since 1.5
1544      */
1545     public static float signum(float f) {
1546         return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f);
1547     }
1548 
1549     /**
1550      * Returns the hyperbolic sine of a {@code double} value.
1551      * The hyperbolic sine of <i>x</i> is defined to be
1552      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1553      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1554      *
1555      * <p>Special cases:
1556      * <ul>
1557      *
1558      * <li>If the argument is NaN, then the result is NaN.
1559      *
1560      * <li>If the argument is infinite, then the result is an infinity
1561      * with the same sign as the argument.
1562      *
1563      * <li>If the argument is zero, then the result is a zero with the
1564      * same sign as the argument.
1565      *
1566      * </ul>
1567      *
1568      * <p>The computed result must be within 2.5 ulps of the exact result.
1569      *
1570      * @param   x The number whose hyperbolic sine is to be returned.
1571      * @return  The hyperbolic sine of {@code x}.
1572      * @since 1.5
1573      */
1574     public static double sinh(double x) {
1575         return StrictMath.sinh(x);
1576     }
1577 
1578     /**
1579      * Returns the hyperbolic cosine of a {@code double} value.
1580      * The hyperbolic cosine of <i>x</i> is defined to be
1581      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1582      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1583      *
1584      * <p>Special cases:
1585      * <ul>
1586      *
1587      * <li>If the argument is NaN, then the result is NaN.
1588      *
1589      * <li>If the argument is infinite, then the result is positive
1590      * infinity.
1591      *
1592      * <li>If the argument is zero, then the result is {@code 1.0}.
1593      *
1594      * </ul>
1595      *
1596      * <p>The computed result must be within 2.5 ulps of the exact result.
1597      *
1598      * @param   x The number whose hyperbolic cosine is to be returned.
1599      * @return  The hyperbolic cosine of {@code x}.
1600      * @since 1.5
1601      */
1602     public static double cosh(double x) {
1603         return StrictMath.cosh(x);
1604     }
1605 
1606     /**
1607      * Returns the hyperbolic tangent of a {@code double} value.
1608      * The hyperbolic tangent of <i>x</i> is defined to be
1609      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1610      * in other words, {@linkplain Math#sinh
1611      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1612      * that the absolute value of the exact tanh is always less than
1613      * 1.
1614      *
1615      * <p>Special cases:
1616      * <ul>
1617      *
1618      * <li>If the argument is NaN, then the result is NaN.
1619      *
1620      * <li>If the argument is zero, then the result is a zero with the
1621      * same sign as the argument.
1622      *
1623      * <li>If the argument is positive infinity, then the result is
1624      * {@code +1.0}.
1625      *
1626      * <li>If the argument is negative infinity, then the result is
1627      * {@code -1.0}.
1628      *
1629      * </ul>
1630      *
1631      * <p>The computed result must be within 2.5 ulps of the exact result.
1632      * The result of {@code tanh} for any finite input must have
1633      * an absolute value less than or equal to 1.  Note that once the
1634      * exact result of tanh is within 1/2 of an ulp of the limit value
1635      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
1636      * be returned.
1637      *
1638      * @param   x The number whose hyperbolic tangent is to be returned.
1639      * @return  The hyperbolic tangent of {@code x}.
1640      * @since 1.5
1641      */
1642     public static double tanh(double x) {
1643         return StrictMath.tanh(x);
1644     }
1645 
1646     /**
1647      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1648      * without intermediate overflow or underflow.
1649      *
1650      * <p>Special cases:
1651      * <ul>
1652      *
1653      * <li> If either argument is infinite, then the result
1654      * is positive infinity.
1655      *
1656      * <li> If either argument is NaN and neither argument is infinite,
1657      * then the result is NaN.
1658      *
1659      * </ul>
1660      *
1661      * <p>The computed result must be within 1 ulp of the exact
1662      * result.  If one parameter is held constant, the results must be
1663      * semi-monotonic in the other parameter.
1664      *
1665      * @param x a value
1666      * @param y a value
1667      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1668      * without intermediate overflow or underflow
1669      * @since 1.5
1670      */
1671     public static double hypot(double x, double y) {
1672         return StrictMath.hypot(x, y);
1673     }
1674 
1675     /**
1676      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1677      * <i>x</i> near 0, the exact sum of
1678      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1679      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1680      *
1681      * <p>Special cases:
1682      * <ul>
1683      * <li>If the argument is NaN, the result is NaN.
1684      *
1685      * <li>If the argument is positive infinity, then the result is
1686      * positive infinity.
1687      *
1688      * <li>If the argument is negative infinity, then the result is
1689      * -1.0.
1690      *
1691      * <li>If the argument is zero, then the result is a zero with the
1692      * same sign as the argument.
1693      *
1694      * </ul>
1695      *
1696      * <p>The computed result must be within 1 ulp of the exact result.
1697      * Results must be semi-monotonic.  The result of
1698      * {@code expm1} for any finite input must be greater than or
1699      * equal to {@code -1.0}.  Note that once the exact result of
1700      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
1701      * ulp of the limit value -1, {@code -1.0} should be
1702      * returned.
1703      *
1704      * @param   x   the exponent to raise <i>e</i> to in the computation of
1705      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1706      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1707      * @since 1.5
1708      */
1709     public static double expm1(double x) {
1710         return StrictMath.expm1(x);
1711     }
1712 
1713     /**
1714      * Returns the natural logarithm of the sum of the argument and 1.
1715      * Note that for small values {@code x}, the result of
1716      * {@code log1p(x)} is much closer to the true result of ln(1
1717      * + {@code x}) than the floating-point evaluation of
1718      * {@code log(1.0+x)}.
1719      *
1720      * <p>Special cases:
1721      *
1722      * <ul>
1723      *
1724      * <li>If the argument is NaN or less than -1, then the result is
1725      * NaN.
1726      *
1727      * <li>If the argument is positive infinity, then the result is
1728      * positive infinity.
1729      *
1730      * <li>If the argument is negative one, then the result is
1731      * negative infinity.
1732      *
1733      * <li>If the argument is zero, then the result is a zero with the
1734      * same sign as the argument.
1735      *
1736      * </ul>
1737      *
1738      * <p>The computed result must be within 1 ulp of the exact result.
1739      * Results must be semi-monotonic.
1740      *
1741      * @param   x   a value
1742      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1743      * log of {@code x}&nbsp;+&nbsp;1
1744      * @since 1.5
1745      */
1746     public static double log1p(double x) {
1747         return StrictMath.log1p(x);
1748     }
1749 
1750     /**
1751      * Returns the first floating-point argument with the sign of the
1752      * second floating-point argument.  Note that unlike the {@link
1753      * StrictMath#copySign(double, double) StrictMath.copySign}
1754      * method, this method does not require NaN {@code sign}
1755      * arguments to be treated as positive values; implementations are
1756      * permitted to treat some NaN arguments as positive and other NaN
1757      * arguments as negative to allow greater performance.
1758      *
1759      * @param magnitude  the parameter providing the magnitude of the result
1760      * @param sign   the parameter providing the sign of the result
1761      * @return a value with the magnitude of {@code magnitude}
1762      * and the sign of {@code sign}.
1763      * @since 1.6
1764      */
1765     public static double copySign(double magnitude, double sign) {
1766         return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) &
1767                                         (DoubleConsts.SIGN_BIT_MASK)) |
1768                                        (Double.doubleToRawLongBits(magnitude) &
1769                                         (DoubleConsts.EXP_BIT_MASK |
1770                                          DoubleConsts.SIGNIF_BIT_MASK)));
1771     }
1772 
1773     /**
1774      * Returns the first floating-point argument with the sign of the
1775      * second floating-point argument.  Note that unlike the {@link
1776      * StrictMath#copySign(float, float) StrictMath.copySign}
1777      * method, this method does not require NaN {@code sign}
1778      * arguments to be treated as positive values; implementations are
1779      * permitted to treat some NaN arguments as positive and other NaN
1780      * arguments as negative to allow greater performance.
1781      *
1782      * @param magnitude  the parameter providing the magnitude of the result
1783      * @param sign   the parameter providing the sign of the result
1784      * @return a value with the magnitude of {@code magnitude}
1785      * and the sign of {@code sign}.
1786      * @since 1.6
1787      */
1788     public static float copySign(float magnitude, float sign) {
1789         return Float.intBitsToFloat((Float.floatToRawIntBits(sign) &
1790                                      (FloatConsts.SIGN_BIT_MASK)) |
1791                                     (Float.floatToRawIntBits(magnitude) &
1792                                      (FloatConsts.EXP_BIT_MASK |
1793                                       FloatConsts.SIGNIF_BIT_MASK)));
1794     }
1795 
1796     /**
1797      * Returns the unbiased exponent used in the representation of a
1798      * {@code float}.  Special cases:
1799      *
1800      * <ul>
1801      * <li>If the argument is NaN or infinite, then the result is
1802      * {@link Float#MAX_EXPONENT} + 1.
1803      * <li>If the argument is zero or subnormal, then the result is
1804      * {@link Float#MIN_EXPONENT} -1.
1805      * </ul>
1806      * @param f a {@code float} value
1807      * @return the unbiased exponent of the argument
1808      * @since 1.6
1809      */
1810     public static int getExponent(float f) {
1811         /*
1812          * Bitwise convert f to integer, mask out exponent bits, shift
1813          * to the right and then subtract out float's bias adjust to
1814          * get true exponent value
1815          */
1816         return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >>
1817                 (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS;
1818     }
1819 
1820     /**
1821      * Returns the unbiased exponent used in the representation of a
1822      * {@code double}.  Special cases:
1823      *
1824      * <ul>
1825      * <li>If the argument is NaN or infinite, then the result is
1826      * {@link Double#MAX_EXPONENT} + 1.
1827      * <li>If the argument is zero or subnormal, then the result is
1828      * {@link Double#MIN_EXPONENT} -1.
1829      * </ul>
1830      * @param d a {@code double} value
1831      * @return the unbiased exponent of the argument
1832      * @since 1.6
1833      */
1834     public static int getExponent(double d) {
1835         /*
1836          * Bitwise convert d to long, mask out exponent bits, shift
1837          * to the right and then subtract out double's bias adjust to
1838          * get true exponent value.
1839          */
1840         return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >>
1841                       (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS);
1842     }
1843 
1844     /**
1845      * Returns the floating-point number adjacent to the first
1846      * argument in the direction of the second argument.  If both
1847      * arguments compare as equal the second argument is returned.
1848      *
1849      * <p>
1850      * Special cases:
1851      * <ul>
1852      * <li> If either argument is a NaN, then NaN is returned.
1853      *
1854      * <li> If both arguments are signed zeros, {@code direction}
1855      * is returned unchanged (as implied by the requirement of
1856      * returning the second argument if the arguments compare as
1857      * equal).
1858      *
1859      * <li> If {@code start} is
1860      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1861      * has a value such that the result should have a smaller
1862      * magnitude, then a zero with the same sign as {@code start}
1863      * is returned.
1864      *
1865      * <li> If {@code start} is infinite and
1866      * {@code direction} has a value such that the result should
1867      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1868      * same sign as {@code start} is returned.
1869      *
1870      * <li> If {@code start} is equal to &plusmn;
1871      * {@link Double#MAX_VALUE} and {@code direction} has a
1872      * value such that the result should have a larger magnitude, an
1873      * infinity with same sign as {@code start} is returned.
1874      * </ul>
1875      *
1876      * @param start  starting floating-point value
1877      * @param direction value indicating which of
1878      * {@code start}'s neighbors or {@code start} should
1879      * be returned
1880      * @return The floating-point number adjacent to {@code start} in the
1881      * direction of {@code direction}.
1882      * @since 1.6
1883      */
1884     public static double nextAfter(double start, double direction) {
1885         /*
1886          * The cases:
1887          *
1888          * nextAfter(+infinity, 0)  == MAX_VALUE
1889          * nextAfter(+infinity, +infinity)  == +infinity
1890          * nextAfter(-infinity, 0)  == -MAX_VALUE
1891          * nextAfter(-infinity, -infinity)  == -infinity
1892          *
1893          * are naturally handled without any additional testing
1894          */
1895 
1896         // First check for NaN values
1897         if (Double.isNaN(start) || Double.isNaN(direction)) {
1898             // return a NaN derived from the input NaN(s)
1899             return start + direction;
1900         } else if (start == direction) {
1901             return direction;
1902         } else {        // start > direction or start < direction
1903             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
1904             // then bitwise convert start to integer.
1905             long transducer = Double.doubleToRawLongBits(start + 0.0d);
1906 
1907             /*
1908              * IEEE 754 floating-point numbers are lexicographically
1909              * ordered if treated as signed- magnitude integers .
1910              * Since Java's integers are two's complement,
1911              * incrementing" the two's complement representation of a
1912              * logically negative floating-point value *decrements*
1913              * the signed-magnitude representation. Therefore, when
1914              * the integer representation of a floating-point values
1915              * is less than zero, the adjustment to the representation
1916              * is in the opposite direction than would be expected at
1917              * first .
1918              */
1919             if (direction > start) { // Calculate next greater value
1920                 transducer = transducer + (transducer >= 0L ? 1L:-1L);
1921             } else  { // Calculate next lesser value
1922                 assert direction < start;
1923                 if (transducer > 0L)
1924                     --transducer;
1925                 else
1926                     if (transducer < 0L )
1927                         ++transducer;
1928                     /*
1929                      * transducer==0, the result is -MIN_VALUE
1930                      *
1931                      * The transition from zero (implicitly
1932                      * positive) to the smallest negative
1933                      * signed magnitude value must be done
1934                      * explicitly.
1935                      */
1936                     else
1937                         transducer = DoubleConsts.SIGN_BIT_MASK | 1L;
1938             }
1939 
1940             return Double.longBitsToDouble(transducer);
1941         }
1942     }
1943 
1944     /**
1945      * Returns the floating-point number adjacent to the first
1946      * argument in the direction of the second argument.  If both
1947      * arguments compare as equal a value equivalent to the second argument
1948      * is returned.
1949      *
1950      * <p>
1951      * Special cases:
1952      * <ul>
1953      * <li> If either argument is a NaN, then NaN is returned.
1954      *
1955      * <li> If both arguments are signed zeros, a value equivalent
1956      * to {@code direction} is returned.
1957      *
1958      * <li> If {@code start} is
1959      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1960      * has a value such that the result should have a smaller
1961      * magnitude, then a zero with the same sign as {@code start}
1962      * is returned.
1963      *
1964      * <li> If {@code start} is infinite and
1965      * {@code direction} has a value such that the result should
1966      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1967      * same sign as {@code start} is returned.
1968      *
1969      * <li> If {@code start} is equal to &plusmn;
1970      * {@link Float#MAX_VALUE} and {@code direction} has a
1971      * value such that the result should have a larger magnitude, an
1972      * infinity with same sign as {@code start} is returned.
1973      * </ul>
1974      *
1975      * @param start  starting floating-point value
1976      * @param direction value indicating which of
1977      * {@code start}'s neighbors or {@code start} should
1978      * be returned
1979      * @return The floating-point number adjacent to {@code start} in the
1980      * direction of {@code direction}.
1981      * @since 1.6
1982      */
1983     public static float nextAfter(float start, double direction) {
1984         /*
1985          * The cases:
1986          *
1987          * nextAfter(+infinity, 0)  == MAX_VALUE
1988          * nextAfter(+infinity, +infinity)  == +infinity
1989          * nextAfter(-infinity, 0)  == -MAX_VALUE
1990          * nextAfter(-infinity, -infinity)  == -infinity
1991          *
1992          * are naturally handled without any additional testing
1993          */
1994 
1995         // First check for NaN values
1996         if (Float.isNaN(start) || Double.isNaN(direction)) {
1997             // return a NaN derived from the input NaN(s)
1998             return start + (float)direction;
1999         } else if (start == direction) {
2000             return (float)direction;
2001         } else {        // start > direction or start < direction
2002             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
2003             // then bitwise convert start to integer.
2004             int transducer = Float.floatToRawIntBits(start + 0.0f);
2005 
2006             /*
2007              * IEEE 754 floating-point numbers are lexicographically
2008              * ordered if treated as signed- magnitude integers .
2009              * Since Java's integers are two's complement,
2010              * incrementing" the two's complement representation of a
2011              * logically negative floating-point value *decrements*
2012              * the signed-magnitude representation. Therefore, when
2013              * the integer representation of a floating-point values
2014              * is less than zero, the adjustment to the representation
2015              * is in the opposite direction than would be expected at
2016              * first.
2017              */
2018             if (direction > start) {// Calculate next greater value
2019                 transducer = transducer + (transducer >= 0 ? 1:-1);
2020             } else  { // Calculate next lesser value
2021                 assert direction < start;
2022                 if (transducer > 0)
2023                     --transducer;
2024                 else
2025                     if (transducer < 0 )
2026                         ++transducer;
2027                     /*
2028                      * transducer==0, the result is -MIN_VALUE
2029                      *
2030                      * The transition from zero (implicitly
2031                      * positive) to the smallest negative
2032                      * signed magnitude value must be done
2033                      * explicitly.
2034                      */
2035                     else
2036                         transducer = FloatConsts.SIGN_BIT_MASK | 1;
2037             }
2038 
2039             return Float.intBitsToFloat(transducer);
2040         }
2041     }
2042 
2043     /**
2044      * Returns the floating-point value adjacent to {@code d} in
2045      * the direction of positive infinity.  This method is
2046      * semantically equivalent to {@code nextAfter(d,
2047      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
2048      * implementation may run faster than its equivalent
2049      * {@code nextAfter} call.
2050      *
2051      * <p>Special Cases:
2052      * <ul>
2053      * <li> If the argument is NaN, the result is NaN.
2054      *
2055      * <li> If the argument is positive infinity, the result is
2056      * positive infinity.
2057      *
2058      * <li> If the argument is zero, the result is
2059      * {@link Double#MIN_VALUE}
2060      *
2061      * </ul>
2062      *
2063      * @param d starting floating-point value
2064      * @return The adjacent floating-point value closer to positive
2065      * infinity.
2066      * @since 1.6
2067      */
2068     public static double nextUp(double d) {
2069         if( Double.isNaN(d) || d == Double.POSITIVE_INFINITY)
2070             return d;
2071         else {
2072             d += 0.0d;
2073             return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
2074                                            ((d >= 0.0d)?+1L:-1L));
2075         }
2076     }
2077 
2078     /**
2079      * Returns the floating-point value adjacent to {@code f} in
2080      * the direction of positive infinity.  This method is
2081      * semantically equivalent to {@code nextAfter(f,
2082      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
2083      * implementation may run faster than its equivalent
2084      * {@code nextAfter} call.
2085      *
2086      * <p>Special Cases:
2087      * <ul>
2088      * <li> If the argument is NaN, the result is NaN.
2089      *
2090      * <li> If the argument is positive infinity, the result is
2091      * positive infinity.
2092      *
2093      * <li> If the argument is zero, the result is
2094      * {@link Float#MIN_VALUE}
2095      *
2096      * </ul>
2097      *
2098      * @param f starting floating-point value
2099      * @return The adjacent floating-point value closer to positive
2100      * infinity.
2101      * @since 1.6
2102      */
2103     public static float nextUp(float f) {
2104         if( Float.isNaN(f) || f == FloatConsts.POSITIVE_INFINITY)
2105             return f;
2106         else {
2107             f += 0.0f;
2108             return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
2109                                         ((f >= 0.0f)?+1:-1));
2110         }
2111     }
2112 
2113     /**
2114      * Returns the floating-point value adjacent to {@code d} in
2115      * the direction of negative infinity.  This method is
2116      * semantically equivalent to {@code nextAfter(d,
2117      * Double.NEGATIVE_INFINITY)}; however, a
2118      * {@code nextDown} implementation may run faster than its
2119      * equivalent {@code nextAfter} call.
2120      *
2121      * <p>Special Cases:
2122      * <ul>
2123      * <li> If the argument is NaN, the result is NaN.
2124      *
2125      * <li> If the argument is negative infinity, the result is
2126      * negative infinity.
2127      *
2128      * <li> If the argument is zero, the result is
2129      * {@code -Double.MIN_VALUE}
2130      *
2131      * </ul>
2132      *
2133      * @param d  starting floating-point value
2134      * @return The adjacent floating-point value closer to negative
2135      * infinity.
2136      * @since 1.8
2137      */
2138     public static double nextDown(double d) {
2139         if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY)
2140             return d;
2141         else {
2142             if (d == 0.0)
2143                 return -Double.MIN_VALUE;
2144             else
2145                 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
2146                                                ((d > 0.0d)?-1L:+1L));
2147         }
2148     }
2149 
2150     /**
2151      * Returns the floating-point value adjacent to {@code f} in
2152      * the direction of negative infinity.  This method is
2153      * semantically equivalent to {@code nextAfter(f,
2154      * Float.NEGATIVE_INFINITY)}; however, a
2155      * {@code nextDown} implementation may run faster than its
2156      * equivalent {@code nextAfter} call.
2157      *
2158      * <p>Special Cases:
2159      * <ul>
2160      * <li> If the argument is NaN, the result is NaN.
2161      *
2162      * <li> If the argument is negative infinity, the result is
2163      * negative infinity.
2164      *
2165      * <li> If the argument is zero, the result is
2166      * {@code -Float.MIN_VALUE}
2167      *
2168      * </ul>
2169      *
2170      * @param f  starting floating-point value
2171      * @return The adjacent floating-point value closer to negative
2172      * infinity.
2173      * @since 1.8
2174      */
2175     public static float nextDown(float f) {
2176         if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY)
2177             return f;
2178         else {
2179             if (f == 0.0f)
2180                 return -Float.MIN_VALUE;
2181             else
2182                 return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
2183                                             ((f > 0.0f)?-1:+1));
2184         }
2185     }
2186 
2187     /**
2188      * Returns {@code d} &times;
2189      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2190      * by a single correctly rounded floating-point multiply to a
2191      * member of the double value set.  See the Java
2192      * Language Specification for a discussion of floating-point
2193      * value sets.  If the exponent of the result is between {@link
2194      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
2195      * answer is calculated exactly.  If the exponent of the result
2196      * would be larger than {@code Double.MAX_EXPONENT}, an
2197      * infinity is returned.  Note that if the result is subnormal,
2198      * precision may be lost; that is, when {@code scalb(x, n)}
2199      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2200      * <i>x</i>.  When the result is non-NaN, the result has the same
2201      * sign as {@code d}.
2202      *
2203      * <p>Special cases:
2204      * <ul>
2205      * <li> If the first argument is NaN, NaN is returned.
2206      * <li> If the first argument is infinite, then an infinity of the
2207      * same sign is returned.
2208      * <li> If the first argument is zero, then a zero of the same
2209      * sign is returned.
2210      * </ul>
2211      *
2212      * @param d number to be scaled by a power of two.
2213      * @param scaleFactor power of 2 used to scale {@code d}
2214      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
2215      * @since 1.6
2216      */
2217     public static double scalb(double d, int scaleFactor) {
2218         /*
2219          * This method does not need to be declared strictfp to
2220          * compute the same correct result on all platforms.  When
2221          * scaling up, it does not matter what order the
2222          * multiply-store operations are done; the result will be
2223          * finite or overflow regardless of the operation ordering.
2224          * However, to get the correct result when scaling down, a
2225          * particular ordering must be used.
2226          *
2227          * When scaling down, the multiply-store operations are
2228          * sequenced so that it is not possible for two consecutive
2229          * multiply-stores to return subnormal results.  If one
2230          * multiply-store result is subnormal, the next multiply will
2231          * round it away to zero.  This is done by first multiplying
2232          * by 2 ^ (scaleFactor % n) and then multiplying several
2233          * times by by 2^n as needed where n is the exponent of number
2234          * that is a covenient power of two.  In this way, at most one
2235          * real rounding error occurs.  If the double value set is
2236          * being used exclusively, the rounding will occur on a
2237          * multiply.  If the double-extended-exponent value set is
2238          * being used, the products will (perhaps) be exact but the
2239          * stores to d are guaranteed to round to the double value
2240          * set.
2241          *
2242          * It is _not_ a valid implementation to first multiply d by
2243          * 2^MIN_EXPONENT and then by 2 ^ (scaleFactor %
2244          * MIN_EXPONENT) since even in a strictfp program double
2245          * rounding on underflow could occur; e.g. if the scaleFactor
2246          * argument was (MIN_EXPONENT - n) and the exponent of d was a
2247          * little less than -(MIN_EXPONENT - n), meaning the final
2248          * result would be subnormal.
2249          *
2250          * Since exact reproducibility of this method can be achieved
2251          * without any undue performance burden, there is no
2252          * compelling reason to allow double rounding on underflow in
2253          * scalb.
2254          */
2255 
2256         // magnitude of a power of two so large that scaling a finite
2257         // nonzero value by it would be guaranteed to over or
2258         // underflow; due to rounding, scaling down takes takes an
2259         // additional power of two which is reflected here
2260         final int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT +
2261                               DoubleConsts.SIGNIFICAND_WIDTH + 1;
2262         int exp_adjust = 0;
2263         int scale_increment = 0;
2264         double exp_delta = Double.NaN;
2265 
2266         // Make sure scaling factor is in a reasonable range
2267 
2268         if(scaleFactor < 0) {
2269             scaleFactor = Math.max(scaleFactor, -MAX_SCALE);
2270             scale_increment = -512;
2271             exp_delta = twoToTheDoubleScaleDown;
2272         }
2273         else {
2274             scaleFactor = Math.min(scaleFactor, MAX_SCALE);
2275             scale_increment = 512;
2276             exp_delta = twoToTheDoubleScaleUp;
2277         }
2278 
2279         // Calculate (scaleFactor % +/-512), 512 = 2^9, using
2280         // technique from "Hacker's Delight" section 10-2.
2281         int t = (scaleFactor >> 9-1) >>> 32 - 9;
2282         exp_adjust = ((scaleFactor + t) & (512 -1)) - t;
2283 
2284         d *= powerOfTwoD(exp_adjust);
2285         scaleFactor -= exp_adjust;
2286 
2287         while(scaleFactor != 0) {
2288             d *= exp_delta;
2289             scaleFactor -= scale_increment;
2290         }
2291         return d;
2292     }
2293 
2294     /**
2295      * Returns {@code f} &times;
2296      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2297      * by a single correctly rounded floating-point multiply to a
2298      * member of the float value set.  See the Java
2299      * Language Specification for a discussion of floating-point
2300      * value sets.  If the exponent of the result is between {@link
2301      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
2302      * answer is calculated exactly.  If the exponent of the result
2303      * would be larger than {@code Float.MAX_EXPONENT}, an
2304      * infinity is returned.  Note that if the result is subnormal,
2305      * precision may be lost; that is, when {@code scalb(x, n)}
2306      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2307      * <i>x</i>.  When the result is non-NaN, the result has the same
2308      * sign as {@code f}.
2309      *
2310      * <p>Special cases:
2311      * <ul>
2312      * <li> If the first argument is NaN, NaN is returned.
2313      * <li> If the first argument is infinite, then an infinity of the
2314      * same sign is returned.
2315      * <li> If the first argument is zero, then a zero of the same
2316      * sign is returned.
2317      * </ul>
2318      *
2319      * @param f number to be scaled by a power of two.
2320      * @param scaleFactor power of 2 used to scale {@code f}
2321      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
2322      * @since 1.6
2323      */
2324     public static float scalb(float f, int scaleFactor) {
2325         // magnitude of a power of two so large that scaling a finite
2326         // nonzero value by it would be guaranteed to over or
2327         // underflow; due to rounding, scaling down takes takes an
2328         // additional power of two which is reflected here
2329         final int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT +
2330                               FloatConsts.SIGNIFICAND_WIDTH + 1;
2331 
2332         // Make sure scaling factor is in a reasonable range
2333         scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE);
2334 
2335         /*
2336          * Since + MAX_SCALE for float fits well within the double
2337          * exponent range and + float -> double conversion is exact
2338          * the multiplication below will be exact. Therefore, the
2339          * rounding that occurs when the double product is cast to
2340          * float will be the correctly rounded float result.  Since
2341          * all operations other than the final multiply will be exact,
2342          * it is not necessary to declare this method strictfp.
2343          */
2344         return (float)((double)f*powerOfTwoD(scaleFactor));
2345     }
2346 
2347     // Constants used in scalb
2348     static double twoToTheDoubleScaleUp = powerOfTwoD(512);
2349     static double twoToTheDoubleScaleDown = powerOfTwoD(-512);
2350 
2351     /**
2352      * Returns a floating-point power of two in the normal range.
2353      */
2354     static double powerOfTwoD(int n) {
2355         assert(n >= DoubleConsts.MIN_EXPONENT && n <= DoubleConsts.MAX_EXPONENT);
2356         return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) <<
2357                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
2358                                        & DoubleConsts.EXP_BIT_MASK);
2359     }
2360 
2361     /**
2362      * Returns a floating-point power of two in the normal range.
2363      */
2364     static float powerOfTwoF(int n) {
2365         assert(n >= FloatConsts.MIN_EXPONENT && n <= FloatConsts.MAX_EXPONENT);
2366         return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) <<
2367                                      (FloatConsts.SIGNIFICAND_WIDTH-1))
2368                                     & FloatConsts.EXP_BIT_MASK);
2369     }
2370 }