1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @library ..
  27  * @bug 4826774 8078586
  28  * @summary Numerical tests for hexadecimal inputs to parseDouble, parseFloat
  29  * @author Joseph D. Darcy
  30  */
  31 
  32 public class ParseHexFloatingPoint {
  33     private ParseHexFloatingPoint(){}
  34 
  35     public static final double infinityD = Double.POSITIVE_INFINITY;
  36     public static final double NaND = Double.NaN;
  37 
  38     static int test(String testName, String input,
  39                     double result, double expected) {
  40         int failures =0;
  41 
  42         if (Double.compare(result, expected) != 0 ) {
  43             System.err.println("Failure for " + testName +
  44                                ": For input " + input +
  45                                " expected " + expected +
  46                                " got " + result + ".");
  47         }
  48 
  49         return failures;
  50     }
  51 
  52     static int testCase(String input, double expected) {
  53         int failures =0;
  54 
  55 
  56         // Try different combination of letter components
  57         input = input.toLowerCase(java.util.Locale.US);
  58 
  59         String [] suffices = {"", "f", "F", "d", "D"};
  60         String [] signs = {"", "-", "+"};
  61 
  62         for(int i = 0; i < 2; i++) {
  63             String s1 = input;
  64             if(i == 1)
  65                 s1 = s1.replace('x', 'X');
  66 
  67             for(int j = 0; j < 2; j++) {
  68                 String s2 = s1;
  69                 if(j == 1)
  70                     s2 = s2.replace('p', 'P');
  71 
  72                 for(int k = 0; k < 2; k++) {
  73                     String s3 = s2;
  74                     if(k == 1)
  75                         s3 = upperCaseHex(s3);
  76 
  77 
  78                     for(int m = 0; m < suffices.length; m++) {
  79                         String s4 = s3 + suffices[m];
  80 
  81 
  82                         for(int n = 0; n < signs.length; n++) {
  83                             String s5 = signs[n] + s4;
  84 
  85                             double result = Double.parseDouble(s5);
  86                             failures += test("Double.parseDouble",
  87                                              s5, result, (signs[n].equals("-") ?
  88                                                           -expected:
  89                                                           expected));
  90                         }
  91                     }
  92                 }
  93             }
  94         }
  95 
  96         return failures;
  97     }
  98 
  99     static String upperCaseHex(String s) {
 100         return s.replace('a', 'A').replace('b', 'B').replace('c', 'C').
 101                  replace('d', 'D').replace('e','E').replace('f', 'F');
 102     }
 103 
 104     /*
 105      * Test easy and tricky double rounding cases.
 106      */
 107     static int doubleTests() {
 108 
 109         /*
 110          * A String, double pair
 111          */
 112         class PairSD {
 113             public String s;
 114             public double d;
 115             PairSD(String s, double d) {
 116                 this.s = s;
 117                 this.d = d;
 118             }
 119         }
 120         int failures = 0;
 121 
 122 
 123 
 124         // Hex strings that convert to three; test basic functionality
 125         // of significand and exponent shift adjusts along with the
 126         // no-op of adding leading zeros.  These cases don't exercise
 127         // the rounding code.
 128         String leadingZeros = "0x0000000000000000000";
 129         String [] threeTests = {
 130             "0x.003p12",
 131             "0x.006p11",
 132             "0x.00cp10",
 133             "0x.018p9",
 134 
 135             "0x.3p4",
 136             "0x.6p3",
 137             "0x.cp2",
 138             "0x1.8p1",
 139 
 140             "0x3p0",
 141             "0x6.0p-1",
 142             "0xc.0p-2",
 143             "0x18.0p-3",
 144 
 145             "0x3000000p-24",
 146             "0x3.0p0",
 147             "0x3.000000p0",
 148         };
 149         for(int i=0; i < threeTests.length; i++) {
 150             String input = threeTests[i];
 151             failures += testCase(input, 3.0);
 152 
 153             input.replaceFirst("^0x", leadingZeros);
 154             failures += testCase(input, 3.0);
 155         }
 156 
 157         long bigExponents [] = {
 158             2*Double.MAX_EXPONENT,
 159             2*Double.MIN_EXPONENT,
 160 
 161             (long)Integer.MAX_VALUE-1,
 162             (long)Integer.MAX_VALUE,
 163             (long)Integer.MAX_VALUE+1,
 164 
 165             (long)Integer.MIN_VALUE-1,
 166             (long)Integer.MIN_VALUE,
 167             (long)Integer.MIN_VALUE+1,
 168 
 169             Long.MAX_VALUE-1,
 170             Long.MAX_VALUE,
 171 
 172             Long.MIN_VALUE+1,
 173             Long.MIN_VALUE,
 174         };
 175 
 176         // Test zero significand with large exponents.
 177         for(int i = 0; i < bigExponents.length; i++) {
 178             failures += testCase("0x0.0p"+Long.toString(bigExponents[i]) , 0.0);
 179         }
 180 
 181         // Test nonzero significand with large exponents.
 182         for(int i = 0; i < bigExponents.length; i++) {
 183             long exponent = bigExponents[i];
 184             failures += testCase("0x10000.0p"+Long.toString(exponent) ,
 185                                  (exponent <0?0.0:infinityD));
 186         }
 187 
 188         // Test significands with different lengths and bit patterns.
 189         {
 190             long signif = 0;
 191                 for(int i = 1; i <= 0xe; i++) {
 192                     signif = (signif <<4) | (long)i;
 193                     failures += testCase("0x"+Long.toHexString(signif)+"p0", signif);
 194                 }
 195         }
 196 
 197         PairSD [] testCases = {
 198             new PairSD("0x0.0p0",               0.0/16.0),
 199             new PairSD("0x0.1p0",               1.0/16.0),
 200             new PairSD("0x0.2p0",               2.0/16.0),
 201             new PairSD("0x0.3p0",               3.0/16.0),
 202             new PairSD("0x0.4p0",               4.0/16.0),
 203             new PairSD("0x0.5p0",               5.0/16.0),
 204             new PairSD("0x0.6p0",               6.0/16.0),
 205             new PairSD("0x0.7p0",               7.0/16.0),
 206             new PairSD("0x0.8p0",               8.0/16.0),
 207             new PairSD("0x0.9p0",               9.0/16.0),
 208             new PairSD("0x0.ap0",               10.0/16.0),
 209             new PairSD("0x0.bp0",               11.0/16.0),
 210             new PairSD("0x0.cp0",               12.0/16.0),
 211             new PairSD("0x0.dp0",               13.0/16.0),
 212             new PairSD("0x0.ep0",               14.0/16.0),
 213             new PairSD("0x0.fp0",               15.0/16.0),
 214 
 215             // Half-way case between zero and MIN_VALUE rounds down to
 216             // zero
 217             new PairSD("0x1.0p-1075",           0.0),
 218 
 219             // Slighly more than half-way case between zero and
 220             // MIN_VALUES rounds up to zero.
 221             new PairSD("0x1.1p-1075",                   Double.MIN_VALUE),
 222             new PairSD("0x1.000000000001p-1075",        Double.MIN_VALUE),
 223             new PairSD("0x1.000000000000001p-1075",     Double.MIN_VALUE),
 224 
 225             // More subnormal rounding tests
 226             new PairSD("0x0.fffffffffffff7fffffp-1022", Math.nextDown(Double.MIN_NORMAL)),
 227             new PairSD("0x0.fffffffffffff8p-1022",      Double.MIN_NORMAL),
 228             new PairSD("0x0.fffffffffffff800000001p-1022",Double.MIN_NORMAL),
 229             new PairSD("0x0.fffffffffffff80000000000000001p-1022",Double.MIN_NORMAL),
 230             new PairSD("0x1.0p-1022",                   Double.MIN_NORMAL),
 231 
 232 
 233             // Large value and overflow rounding tests
 234             new PairSD("0x1.fffffffffffffp1023",        Double.MAX_VALUE),
 235             new PairSD("0x1.fffffffffffff0000000p1023", Double.MAX_VALUE),
 236             new PairSD("0x1.fffffffffffff4p1023",       Double.MAX_VALUE),
 237             new PairSD("0x1.fffffffffffff7fffffp1023",  Double.MAX_VALUE),
 238             new PairSD("0x1.fffffffffffff8p1023",       infinityD),
 239             new PairSD("0x1.fffffffffffff8000001p1023", infinityD),
 240 
 241             new PairSD("0x1.ffffffffffffep1023",        Math.nextDown(Double.MAX_VALUE)),
 242             new PairSD("0x1.ffffffffffffe0000p1023",    Math.nextDown(Double.MAX_VALUE)),
 243             new PairSD("0x1.ffffffffffffe8p1023",       Math.nextDown(Double.MAX_VALUE)),
 244             new PairSD("0x1.ffffffffffffe7p1023",       Math.nextDown(Double.MAX_VALUE)),
 245             new PairSD("0x1.ffffffffffffeffffffp1023",  Double.MAX_VALUE),
 246             new PairSD("0x1.ffffffffffffe8000001p1023", Double.MAX_VALUE),
 247         };
 248 
 249         for (int i = 0; i < testCases.length; i++) {
 250             failures += testCase(testCases[i].s,testCases[i].d);
 251         }
 252 
 253         failures += significandAlignmentTests();
 254 
 255         {
 256             long seed = RandomSeedFactory.getSeed();
 257             java.util.Random rand = new java.util.Random(seed);
 258             // Consistency check; double => hexadecimal => double
 259             // preserves the original value.
 260             for(int i = 0; i < 1000; i++) {
 261                 double d = rand.nextDouble();
 262                 failures += testCase(Double.toHexString(d), d);
 263             }
 264         }
 265 
 266         return failures;
 267     }
 268 
 269     /*
 270      * Verify rounding works the same regardless of how the
 271      * significand is aligned on input.  A useful extension could be
 272      * to have this sort of test for strings near the overflow
 273      * threshold.
 274      */
 275     static int significandAlignmentTests() {
 276         int failures = 0;
 277                 // baseSignif * 2^baseExp = nextDown(2.0)
 278         long [] baseSignifs = {
 279             0x1ffffffffffffe00L,
 280             0x1fffffffffffff00L
 281         };
 282 
 283         double [] answers = {
 284             Math.nextDown(Math.nextDown(2.0)),
 285             Math.nextDown(2.0),
 286             2.0
 287         };
 288 
 289         int baseExp = -60;
 290         int count = 0;
 291         for(int i = 0; i < 2; i++) {
 292             for(long j = 0; j <= 0xfL; j++) {
 293                 for(long k = 0; k <= 8; k+= 4) { // k = {0, 4, 8}
 294                     long base = baseSignifs[i];
 295                     long testValue = base | (j<<4) | k;
 296 
 297                     int offset = 0;
 298                     // Calculate when significand should be incremented
 299                     // see table 4.7 in Koren book
 300 
 301                     if ((base & 0x100L) == 0L ) { // lsb is 0
 302                         if ( (j >= 8L) &&         // round is 1
 303                              ((j & 0x7L) != 0 || k != 0 ) ) // sticky is 1
 304                             offset = 1;
 305                     }
 306                     else {                        // lsb is 1
 307                         if (j >= 8L)              // round is 1
 308                             offset = 1;
 309                     }
 310 
 311                     double expected = answers[i+offset];
 312 
 313                     for(int m = -2; m <= 3; m++) {
 314                         count ++;
 315 
 316                         // Form equal value string and evaluate it
 317                         String s = "0x" +
 318                             Long.toHexString((m >=0) ?(testValue<<m):(testValue>>(-m))) +
 319                             "p" + (baseExp - m);
 320 
 321                         failures += testCase(s, expected);
 322                     }
 323                 }
 324             }
 325         }
 326 
 327         return failures;
 328     }
 329 
 330 
 331     /*
 332      * Test tricky float rounding cases.  The code which
 333      * reads in a hex string converts the string to a double value.
 334      * If a float value is needed, the double value is cast to float.
 335      * However, the cast be itself not always guaranteed to return the
 336      * right result since:
 337      *
 338      * 1. hex string => double can discard a sticky bit which would
 339      * influence a direct hex string => float conversion.
 340      *
 341      * 2. hex string => double => float can have a rounding to double
 342      * precision which results in a larger float value while a direct
 343      * hex string => float conversion would not round up.
 344      *
 345      * This method includes tests of the latter two possibilities.
 346      */
 347     static int floatTests(){
 348         int failures = 0;
 349 
 350         /*
 351          * A String, float pair
 352          */
 353         class PairSD {
 354             public String s;
 355             public float f;
 356             PairSD(String s, float f) {
 357                 this.s = s;
 358                 this.f = f;
 359             }
 360         }
 361 
 362         String [][] roundingTestCases = {
 363             // Target float value       hard rouding version
 364 
 365             {"0x1.000000p0",    "0x1.0000000000001p0"},
 366 
 367             // Try some values that should round up to nextUp(1.0f)
 368             {"0x1.000002p0",    "0x1.0000010000001p0"},
 369             {"0x1.000002p0",    "0x1.00000100000008p0"},
 370             {"0x1.000002p0",    "0x1.0000010000000fp0"},
 371             {"0x1.000002p0",    "0x1.00000100000001p0"},
 372             {"0x1.000002p0",    "0x1.00000100000000000000000000000000000000001p0"},
 373             {"0x1.000002p0",    "0x1.0000010000000fp0"},
 374 
 375             // Potential double rounding cases
 376             {"0x1.000002p0",    "0x1.000002fffffffp0"},
 377             {"0x1.000002p0",    "0x1.000002fffffff8p0"},
 378             {"0x1.000002p0",    "0x1.000002ffffffffp0"},
 379 
 380             {"0x1.000002p0",    "0x1.000002ffff0ffp0"},
 381             {"0x1.000002p0",    "0x1.000002ffff0ff8p0"},
 382             {"0x1.000002p0",    "0x1.000002ffff0fffp0"},
 383 
 384 
 385             {"0x1.000000p0",    "0x1.000000fffffffp0"},
 386             {"0x1.000000p0",    "0x1.000000fffffff8p0"},
 387             {"0x1.000000p0",    "0x1.000000ffffffffp0"},
 388 
 389             {"0x1.000000p0",    "0x1.000000ffffffep0"},
 390             {"0x1.000000p0",    "0x1.000000ffffffe8p0"},
 391             {"0x1.000000p0",    "0x1.000000ffffffefp0"},
 392 
 393             // Float subnormal cases
 394             {"0x0.000002p-126", "0x0.0000010000001p-126"},
 395             {"0x0.000002p-126", "0x0.00000100000000000001p-126"},
 396 
 397             {"0x0.000006p-126", "0x0.0000050000001p-126"},
 398             {"0x0.000006p-126", "0x0.00000500000000000001p-126"},
 399 
 400             {"0x0.0p-149",      "0x0.7ffffffffffffffp-149"},
 401             {"0x1.0p-148",      "0x1.3ffffffffffffffp-148"},
 402             {"0x1.cp-147",      "0x1.bffffffffffffffp-147"},
 403 
 404             {"0x1.fffffcp-127", "0x1.fffffdffffffffp-127"},
 405         };
 406 
 407         String [] signs = {"", "-"};
 408 
 409         for(int i = 0; i < roundingTestCases.length; i++) {
 410             for(int j = 0; j < signs.length; j++) {
 411                 String expectedIn = signs[j]+roundingTestCases[i][0];
 412                 String resultIn   = signs[j]+roundingTestCases[i][1];
 413 
 414                 float expected =  Float.parseFloat(expectedIn);
 415                 float result   =  Float.parseFloat(resultIn);
 416 
 417                 if( Float.compare(expected, result) != 0) {
 418                     failures += 1;
 419                     System.err.println("" + (i+1));
 420                     System.err.println("Expected = " + Float.toHexString(expected));
 421                     System.err.println("Rounded  = " + Float.toHexString(result));
 422                     System.err.println("Double   = " + Double.toHexString(Double.parseDouble(resultIn)));
 423                     System.err.println("Input    = " + resultIn);
 424                     System.err.println("");
 425                 }
 426             }
 427         }
 428 
 429         return failures;
 430     }
 431 
 432     public static void main(String argv[]) {
 433         int failures = 0;
 434 
 435         failures += doubleTests();
 436         failures += floatTests();
 437 
 438         if (failures != 0) {
 439             throw new RuntimeException("" + failures + " failures while " +
 440                                        "testing hexadecimal floating-point " +
 441                                        "parsing.");
 442         }
 443     }
 444 
 445 }