1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @library /lib/testlibrary/
  27  * @build jdk.testlibrary.*
  28  * @run main HypotTests
  29  * @bug 4851638 4939441 8078672
  30  * @summary Tests for {Math, StrictMath}.hypot (use -Dseed=X to set PRNG seed)
  31  * @author Joseph D. Darcy
  32  * @key randomness
  33  */
  34 
  35 public class HypotTests {
  36     private HypotTests(){}
  37 
  38     static final double infinityD = Double.POSITIVE_INFINITY;
  39     static final double NaNd      = Double.NaN;
  40 
  41     /**
  42      * Given integers m and n, assuming m < n, the triple (n^2 - m^2,
  43      * 2mn, and n^2 + m^2) is a Pythagorean triple with a^2 + b^2 =
  44      * c^2.  This methods returns a long array holding the Pythagorean
  45      * triple corresponding to the inputs.
  46      */
  47     static long [] pythagoreanTriple(int m, int n) {
  48         long M = m;
  49         long N = n;
  50         long result[] = new long[3];
  51 
  52 
  53         result[0] = Math.abs(M*M - N*N);
  54         result[1] = Math.abs(2*M*N);
  55         result[2] = Math.abs(M*M + N*N);
  56 
  57         return result;
  58     }
  59 
  60     static int testHypot() {
  61         int failures = 0;
  62 
  63         double [][] testCases = {
  64             // Special cases
  65             {infinityD,         infinityD,              infinityD},
  66             {infinityD,         0.0,                    infinityD},
  67             {infinityD,         1.0,                    infinityD},
  68             {infinityD,         NaNd,                   infinityD},
  69             {NaNd,              NaNd,                   NaNd},
  70             {0.0,               NaNd,                   NaNd},
  71             {1.0,               NaNd,                   NaNd},
  72             {Double.longBitsToDouble(0x7FF0000000000001L),      1.0,    NaNd},
  73             {Double.longBitsToDouble(0xFFF0000000000001L),      1.0,    NaNd},
  74             {Double.longBitsToDouble(0x7FF8555555555555L),      1.0,    NaNd},
  75             {Double.longBitsToDouble(0xFFF8555555555555L),      1.0,    NaNd},
  76             {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      1.0,    NaNd},
  77             {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      1.0,    NaNd},
  78             {Double.longBitsToDouble(0x7FFDeadBeef00000L),      1.0,    NaNd},
  79             {Double.longBitsToDouble(0xFFFDeadBeef00000L),      1.0,    NaNd},
  80             {Double.longBitsToDouble(0x7FFCafeBabe00000L),      1.0,    NaNd},
  81             {Double.longBitsToDouble(0xFFFCafeBabe00000L),      1.0,    NaNd},
  82         };
  83 
  84         for(int i = 0; i < testCases.length; i++) {
  85             failures += testHypotCase(testCases[i][0], testCases[i][1],
  86                                       testCases[i][2]);
  87         }
  88 
  89         // Verify hypot(x, 0.0) is close to x over the entire exponent
  90         // range.
  91         for(int i = DoubleConsts.MIN_SUB_EXPONENT;
  92             i <= Double.MAX_EXPONENT;
  93             i++) {
  94             double input = Math.scalb(2, i);
  95             failures += testHypotCase(input, 0.0, input);
  96         }
  97 
  98 
  99         // Test Pythagorean triples
 100 
 101         // Small ones
 102         for(int m = 1; m < 10; m++) {
 103             for(int n = m+1; n < 11; n++) {
 104                 long [] result = pythagoreanTriple(m, n);
 105                 failures += testHypotCase(result[0], result[1], result[2]);
 106             }
 107         }
 108 
 109         // Big ones
 110         for(int m = 100000; m < 100100; m++) {
 111             for(int n = m+100000; n < 200200; n++) {
 112                 long [] result = pythagoreanTriple(m, n);
 113                 failures += testHypotCase(result[0], result[1], result[2]);
 114             }
 115         }
 116 
 117         // Approaching overflow tests
 118 
 119         /*
 120          * Create a random value r with an large-ish exponent.  The
 121          * result of hypot(3*r, 4*r) should be approximately 5*r. (The
 122          * computation of 4*r is exact since it just changes the
 123          * exponent).  While the exponent of r is less than or equal
 124          * to (MAX_EXPONENT - 3), the computation should not overflow.
 125          */
 126         java.util.Random rand = RandomFactory.getRandom();
 127         for(int i = 0; i < 1000; i++) {
 128             double d = rand.nextDouble();
 129             // Scale d to have an exponent equal to MAX_EXPONENT -15
 130             d = Math.scalb(d, Double.MAX_EXPONENT
 131                                  -15 - Tests.ilogb(d));
 132             for(int j = 0; j <= 13; j += 1) {
 133                 failures += testHypotCase(3*d, 4*d, 5*d, 2.5);
 134                 d *= 2.0; // increase exponent by 1
 135             }
 136         }
 137 
 138         // Test for monotonicity failures.  Fix one argument and test
 139         // two numbers before and two numbers after each chosen value;
 140         // i.e.
 141         //
 142         // pcNeighbors[] =
 143         // {nextDown(nextDown(pc)),
 144         // nextDown(pc),
 145         // pc,
 146         // nextUp(pc),
 147         // nextUp(nextUp(pc))}
 148         //
 149         // and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1])
 150         {
 151             double pcNeighbors[] = new double[5];
 152             double pcNeighborsHypot[] = new double[5];
 153             double pcNeighborsStrictHypot[] = new double[5];
 154 
 155 
 156             for(int i = -18; i <= 18; i++) {
 157                 double pc = Math.scalb(1.0, i);
 158 
 159                 pcNeighbors[2] = pc;
 160                 pcNeighbors[1] = Math.nextDown(pc);
 161                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
 162                 pcNeighbors[3] = Math.nextUp(pc);
 163                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
 164 
 165                 for(int j = 0; j < pcNeighbors.length; j++) {
 166                     pcNeighborsHypot[j]       =       Math.hypot(2.0, pcNeighbors[j]);
 167                     pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]);
 168                 }
 169 
 170                 for(int j = 0; j < pcNeighborsHypot.length-1; j++) {
 171                     if(pcNeighborsHypot[j] >  pcNeighborsHypot[j+1] ) {
 172                         failures++;
 173                         System.err.println("Monotonicity failure for Math.hypot on " +
 174                                           pcNeighbors[j] + " and "  +
 175                                           pcNeighbors[j+1] + "\n\treturned " +
 176                                           pcNeighborsHypot[j] + " and " +
 177                                           pcNeighborsHypot[j+1] );
 178                     }
 179 
 180                     if(pcNeighborsStrictHypot[j] >  pcNeighborsStrictHypot[j+1] ) {
 181                         failures++;
 182                         System.err.println("Monotonicity failure for StrictMath.hypot on " +
 183                                           pcNeighbors[j] + " and "  +
 184                                           pcNeighbors[j+1] + "\n\treturned " +
 185                                           pcNeighborsStrictHypot[j] + " and " +
 186                                           pcNeighborsStrictHypot[j+1] );
 187                     }
 188 
 189 
 190                 }
 191 
 192             }
 193         }
 194 
 195 
 196         return failures;
 197     }
 198 
 199     static int testHypotCase(double input1, double input2, double expected) {
 200         return testHypotCase(input1,input2, expected, 1);
 201     }
 202 
 203     static int testHypotCase(double input1, double input2, double expected,
 204                              double ulps) {
 205         int failures = 0;
 206         if (expected < 0.0) {
 207             throw new AssertionError("Result of hypot must be greater than " +
 208                                      "or equal to zero");
 209         }
 210 
 211         // Test Math and StrictMath methods with no inputs negated,
 212         // each input negated singly, and both inputs negated.  Also
 213         // test inputs in reversed order.
 214 
 215         for(int i = -1; i <= 1; i+=2) {
 216             for(int j = -1; j <= 1; j+=2) {
 217                 double x = i * input1;
 218                 double y = j * input2;
 219                 failures += Tests.testUlpDiff("Math.hypot", x, y,
 220                                               Math.hypot(x, y), expected, ulps);
 221                 failures += Tests.testUlpDiff("Math.hypot", y, x,
 222                                               Math.hypot(y, x ), expected, ulps);
 223 
 224                 failures += Tests.testUlpDiff("StrictMath.hypot", x, y,
 225                                               StrictMath.hypot(x, y), expected, ulps);
 226                 failures += Tests.testUlpDiff("StrictMath.hypot", y, x,
 227                                               StrictMath.hypot(y, x), expected, ulps);
 228             }
 229         }
 230 
 231         return failures;
 232     }
 233 
 234     public static void main(String argv[]) {
 235         int failures = 0;
 236 
 237         failures += testHypot();
 238 
 239         if (failures > 0) {
 240             System.err.println("Testing the hypot incurred "
 241                                + failures + " failures.");
 242             throw new RuntimeException();
 243         }
 244     }
 245 
 246 }