1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  34 #include "runtime/arguments.hpp"
  35 #include "runtime/java.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "utilities/debug.hpp"
  38 
  39 #define PREDICTIONS_VERBOSE 0
  40 
  41 // <NEW PREDICTION>
  42 
  43 // Different defaults for different number of GC threads
  44 // They were chosen by running GCOld and SPECjbb on debris with different
  45 //   numbers of GC threads and choosing them based on the results
  46 
  47 // all the same
  48 static double rs_length_diff_defaults[] = {
  49   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  50 };
  51 
  52 static double cost_per_card_ms_defaults[] = {
  53   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  54 };
  55 
  56 // all the same
  57 static double fully_young_cards_per_entry_ratio_defaults[] = {
  58   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  59 };
  60 
  61 static double cost_per_entry_ms_defaults[] = {
  62   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  63 };
  64 
  65 static double cost_per_byte_ms_defaults[] = {
  66   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  67 };
  68 
  69 // these should be pretty consistent
  70 static double constant_other_time_ms_defaults[] = {
  71   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  72 };
  73 
  74 
  75 static double young_other_cost_per_region_ms_defaults[] = {
  76   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  77 };
  78 
  79 static double non_young_other_cost_per_region_ms_defaults[] = {
  80   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  81 };
  82 
  83 // </NEW PREDICTION>
  84 
  85 // Help class for avoiding interleaved logging
  86 class LineBuffer: public StackObj {
  87 
  88 private:
  89   static const int BUFFER_LEN = 1024;
  90   static const int INDENT_CHARS = 3;
  91   char _buffer[BUFFER_LEN];
  92   int _indent_level;
  93   int _cur;
  94 
  95   void vappend(const char* format, va_list ap) {
  96     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
  97     if (res != -1) {
  98       _cur += res;
  99     } else {
 100       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
 101       _buffer[BUFFER_LEN -1] = 0;
 102       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
 103     }
 104   }
 105 
 106 public:
 107   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
 108     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
 109       _buffer[_cur] = ' ';
 110     }
 111   }
 112 
 113 #ifndef PRODUCT
 114   ~LineBuffer() {
 115     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
 116   }
 117 #endif
 118 
 119   void append(const char* format, ...) {
 120     va_list ap;
 121     va_start(ap, format);
 122     vappend(format, ap);
 123     va_end(ap);
 124   }
 125 
 126   void append_and_print_cr(const char* format, ...) {
 127     va_list ap;
 128     va_start(ap, format);
 129     vappend(format, ap);
 130     va_end(ap);
 131     gclog_or_tty->print_cr("%s", _buffer);
 132     _cur = _indent_level * INDENT_CHARS;
 133   }
 134 };
 135 
 136 G1CollectorPolicy::G1CollectorPolicy() :
 137   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
 138                         ? ParallelGCThreads : 1),
 139 
 140   _n_pauses(0),
 141   _recent_rs_scan_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 142   _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 143   _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
 144   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 145   _all_pause_times_ms(new NumberSeq()),
 146   _stop_world_start(0.0),
 147   _all_stop_world_times_ms(new NumberSeq()),
 148   _all_yield_times_ms(new NumberSeq()),
 149   _using_new_ratio_calculations(false),
 150 
 151   _all_mod_union_times_ms(new NumberSeq()),
 152 
 153   _summary(new Summary()),
 154 
 155   _cur_clear_ct_time_ms(0.0),
 156 
 157   _cur_ref_proc_time_ms(0.0),
 158   _cur_ref_enq_time_ms(0.0),
 159 
 160 #ifndef PRODUCT
 161   _min_clear_cc_time_ms(-1.0),
 162   _max_clear_cc_time_ms(-1.0),
 163   _cur_clear_cc_time_ms(0.0),
 164   _cum_clear_cc_time_ms(0.0),
 165   _num_cc_clears(0L),
 166 #endif
 167 
 168   _region_num_young(0),
 169   _region_num_tenured(0),
 170   _prev_region_num_young(0),
 171   _prev_region_num_tenured(0),
 172 
 173   _aux_num(10),
 174   _all_aux_times_ms(new NumberSeq[_aux_num]),
 175   _cur_aux_start_times_ms(new double[_aux_num]),
 176   _cur_aux_times_ms(new double[_aux_num]),
 177   _cur_aux_times_set(new bool[_aux_num]),
 178 
 179   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 180   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 181 
 182   // <NEW PREDICTION>
 183 
 184   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 185   _prev_collection_pause_end_ms(0.0),
 186   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 187   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 188   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 189   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 190   _partially_young_cards_per_entry_ratio_seq(
 191                                          new TruncatedSeq(TruncatedSeqLength)),
 192   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 193   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 194   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 195   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 196   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 197   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 198   _non_young_other_cost_per_region_ms_seq(
 199                                          new TruncatedSeq(TruncatedSeqLength)),
 200 
 201   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 202   _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 203   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 204 
 205   _pause_time_target_ms((double) MaxGCPauseMillis),
 206 
 207   // </NEW PREDICTION>
 208 
 209   _full_young_gcs(true),
 210   _full_young_pause_num(0),
 211   _partial_young_pause_num(0),
 212 
 213   _during_marking(false),
 214   _in_marking_window(false),
 215   _in_marking_window_im(false),
 216 
 217   _known_garbage_ratio(0.0),
 218   _known_garbage_bytes(0),
 219 
 220   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
 221 
 222    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
 223 
 224   _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
 225   _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
 226 
 227   _recent_avg_pause_time_ratio(0.0),
 228 
 229   _all_full_gc_times_ms(new NumberSeq()),
 230 
 231   // G1PausesBtwnConcMark defaults to -1
 232   // so the hack is to do the cast  QQQ FIXME
 233   _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
 234   _initiate_conc_mark_if_possible(false),
 235   _during_initial_mark_pause(false),
 236   _should_revert_to_full_young_gcs(false),
 237   _last_full_young_gc(false),
 238 
 239   _eden_bytes_before_gc(0),
 240   _survivor_bytes_before_gc(0),
 241   _capacity_before_gc(0),
 242 
 243   _prev_collection_pause_used_at_end_bytes(0),
 244 
 245   _collection_set(NULL),
 246   _collection_set_size(0),
 247   _collection_set_bytes_used_before(0),
 248 
 249   // Incremental CSet attributes
 250   _inc_cset_build_state(Inactive),
 251   _inc_cset_head(NULL),
 252   _inc_cset_tail(NULL),
 253   _inc_cset_size(0),
 254   _inc_cset_young_index(0),
 255   _inc_cset_bytes_used_before(0),
 256   _inc_cset_max_finger(NULL),
 257   _inc_cset_recorded_young_bytes(0),
 258   _inc_cset_recorded_rs_lengths(0),
 259   _inc_cset_predicted_elapsed_time_ms(0.0),
 260   _inc_cset_predicted_bytes_to_copy(0),
 261 
 262 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 263 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 264 #endif // _MSC_VER
 265 
 266   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 267                                                  G1YoungSurvRateNumRegionsSummary)),
 268   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 269                                               G1YoungSurvRateNumRegionsSummary)),
 270   // add here any more surv rate groups
 271   _recorded_survivor_regions(0),
 272   _recorded_survivor_head(NULL),
 273   _recorded_survivor_tail(NULL),
 274   _survivors_age_table(true),
 275 
 276   _gc_overhead_perc(0.0) {
 277 
 278   // Set up the region size and associated fields. Given that the
 279   // policy is created before the heap, we have to set this up here,
 280   // so it's done as soon as possible.
 281   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 282   HeapRegionRemSet::setup_remset_size();
 283 
 284   G1ErgoVerbose::initialize();
 285   if (PrintAdaptiveSizePolicy) {
 286     // Currently, we only use a single switch for all the heuristics.
 287     G1ErgoVerbose::set_enabled(true);
 288     // Given that we don't currently have a verboseness level
 289     // parameter, we'll hardcode this to high. This can be easily
 290     // changed in the future.
 291     G1ErgoVerbose::set_level(ErgoHigh);
 292   } else {
 293     G1ErgoVerbose::set_enabled(false);
 294   }
 295 
 296   // Verify PLAB sizes
 297   const size_t region_size = HeapRegion::GrainWords;
 298   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 299     char buffer[128];
 300     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 301                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 302     vm_exit_during_initialization(buffer);
 303   }
 304 
 305   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 306   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 307 
 308   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
 309   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
 310   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
 311 
 312   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
 313   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
 314 
 315   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
 316 
 317   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
 318 
 319   _par_last_termination_times_ms = new double[_parallel_gc_threads];
 320   _par_last_termination_attempts = new double[_parallel_gc_threads];
 321   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
 322   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
 323   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
 324 
 325   // start conservatively
 326   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
 327 
 328   // <NEW PREDICTION>
 329 
 330   int index;
 331   if (ParallelGCThreads == 0)
 332     index = 0;
 333   else if (ParallelGCThreads > 8)
 334     index = 7;
 335   else
 336     index = ParallelGCThreads - 1;
 337 
 338   _pending_card_diff_seq->add(0.0);
 339   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 340   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 341   _fully_young_cards_per_entry_ratio_seq->add(
 342                             fully_young_cards_per_entry_ratio_defaults[index]);
 343   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 344   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 345   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 346   _young_other_cost_per_region_ms_seq->add(
 347                                young_other_cost_per_region_ms_defaults[index]);
 348   _non_young_other_cost_per_region_ms_seq->add(
 349                            non_young_other_cost_per_region_ms_defaults[index]);
 350 
 351   // </NEW PREDICTION>
 352 
 353   // Below, we might need to calculate the pause time target based on
 354   // the pause interval. When we do so we are going to give G1 maximum
 355   // flexibility and allow it to do pauses when it needs to. So, we'll
 356   // arrange that the pause interval to be pause time target + 1 to
 357   // ensure that a) the pause time target is maximized with respect to
 358   // the pause interval and b) we maintain the invariant that pause
 359   // time target < pause interval. If the user does not want this
 360   // maximum flexibility, they will have to set the pause interval
 361   // explicitly.
 362 
 363   // First make sure that, if either parameter is set, its value is
 364   // reasonable.
 365   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 366     if (MaxGCPauseMillis < 1) {
 367       vm_exit_during_initialization("MaxGCPauseMillis should be "
 368                                     "greater than 0");
 369     }
 370   }
 371   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 372     if (GCPauseIntervalMillis < 1) {
 373       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 374                                     "greater than 0");
 375     }
 376   }
 377 
 378   // Then, if the pause time target parameter was not set, set it to
 379   // the default value.
 380   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 381     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 382       // The default pause time target in G1 is 200ms
 383       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 384     } else {
 385       // We do not allow the pause interval to be set without the
 386       // pause time target
 387       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 388                                     "without setting MaxGCPauseMillis");
 389     }
 390   }
 391 
 392   // Then, if the interval parameter was not set, set it according to
 393   // the pause time target (this will also deal with the case when the
 394   // pause time target is the default value).
 395   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 396     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 397   }
 398 
 399   // Finally, make sure that the two parameters are consistent.
 400   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 401     char buffer[256];
 402     jio_snprintf(buffer, 256,
 403                  "MaxGCPauseMillis (%u) should be less than "
 404                  "GCPauseIntervalMillis (%u)",
 405                  MaxGCPauseMillis, GCPauseIntervalMillis);
 406     vm_exit_during_initialization(buffer);
 407   }
 408 
 409   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 410   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 411   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 412   _sigma = (double) G1ConfidencePercent / 100.0;
 413 
 414   // start conservatively (around 50ms is about right)
 415   _concurrent_mark_remark_times_ms->add(0.05);
 416   _concurrent_mark_cleanup_times_ms->add(0.20);
 417   _tenuring_threshold = MaxTenuringThreshold;
 418   // _max_survivor_regions will be calculated by
 419   // update_young_list_target_length() during initialization.
 420   _max_survivor_regions = 0;
 421 
 422   assert(GCTimeRatio > 0,
 423          "we should have set it to a default value set_g1_gc_flags() "
 424          "if a user set it to 0");
 425   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 426 
 427   uintx reserve_perc = G1ReservePercent;
 428   // Put an artificial ceiling on this so that it's not set to a silly value.
 429   if (reserve_perc > 50) {
 430     reserve_perc = 50;
 431     warning("G1ReservePercent is set to a value that is too large, "
 432             "it's been updated to %u", reserve_perc);
 433   }
 434   _reserve_factor = (double) reserve_perc / 100.0;
 435   // This will be set when the heap is expanded
 436   // for the first time during initialization.
 437   _reserve_regions = 0;
 438 
 439   initialize_all();
 440   _collectionSetChooser = new CollectionSetChooser();
 441 }
 442 
 443 // Increment "i", mod "len"
 444 static void inc_mod(int& i, int len) {
 445   i++; if (i == len) i = 0;
 446 }
 447 
 448 void G1CollectorPolicy::initialize_flags() {
 449   set_min_alignment(HeapRegion::GrainBytes);
 450   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 451   if (SurvivorRatio < 1) {
 452     vm_exit_during_initialization("Invalid survivor ratio specified");
 453   }
 454   CollectorPolicy::initialize_flags();
 455 }
 456 
 457 // The easiest way to deal with the parsing of the NewSize /
 458 // MaxNewSize / etc. parameteres is to re-use the code in the
 459 // TwoGenerationCollectorPolicy class. This is similar to what
 460 // ParallelScavenge does with its GenerationSizer class (see
 461 // ParallelScavengeHeap::initialize()). We might change this in the
 462 // future, but it's a good start.
 463 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
 464 private:
 465   size_t size_to_region_num(size_t byte_size) {
 466     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
 467   }
 468 
 469 public:
 470   G1YoungGenSizer() {
 471     initialize_flags();
 472     initialize_size_info();
 473   }
 474   size_t min_young_region_num() {
 475     return size_to_region_num(_min_gen0_size);
 476   }
 477   size_t initial_young_region_num() {
 478     return size_to_region_num(_initial_gen0_size);
 479   }
 480   size_t max_young_region_num() {
 481     return size_to_region_num(_max_gen0_size);
 482   }
 483 };
 484 
 485 void G1CollectorPolicy::update_young_list_size_using_newratio(size_t number_of_heap_regions) {
 486   assert(number_of_heap_regions > 0, "Heap must be initialized");
 487   size_t young_size = number_of_heap_regions / (NewRatio + 1);
 488   _min_desired_young_length = young_size;
 489   _max_desired_young_length = young_size;
 490 }
 491 
 492 void G1CollectorPolicy::init() {
 493   // Set aside an initial future to_space.
 494   _g1 = G1CollectedHeap::heap();
 495 
 496   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 497 
 498   initialize_gc_policy_counters();
 499 
 500   G1YoungGenSizer sizer;
 501   size_t initial_region_num = sizer.initial_young_region_num();
 502   _min_desired_young_length = sizer.min_young_region_num();
 503   _max_desired_young_length = sizer.max_young_region_num();
 504 
 505   if (FLAG_IS_CMDLINE(NewRatio)) {
 506     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 507       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 508     } else {
 509       // Treat NewRatio as a fixed size that is only recalculated when the heap size changes
 510       update_young_list_size_using_newratio(_g1->n_regions());
 511       _using_new_ratio_calculations = true;
 512     }
 513   }
 514 
 515   // GenCollectorPolicy guarantees that min <= initial <= max.
 516   // Asserting here just to state that we rely on this property.
 517   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 518   assert(initial_region_num <= _max_desired_young_length, "Initial young gen size too large");
 519   assert(_min_desired_young_length <= initial_region_num, "Initial young gen size too small");
 520 
 521   set_adaptive_young_list_length(_min_desired_young_length < _max_desired_young_length);
 522   if (adaptive_young_list_length()) {
 523     _young_list_fixed_length = 0;
 524   } else {
 525     _young_list_fixed_length = initial_region_num;
 526   }
 527   _free_regions_at_end_of_collection = _g1->free_regions();
 528   update_young_list_target_length();
 529   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
 530 
 531   // We may immediately start allocating regions and placing them on the
 532   // collection set list. Initialize the per-collection set info
 533   start_incremental_cset_building();
 534 }
 535 
 536 // Create the jstat counters for the policy.
 537 void G1CollectorPolicy::initialize_gc_policy_counters() {
 538   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 539 }
 540 
 541 bool G1CollectorPolicy::predict_will_fit(size_t young_length,
 542                                          double base_time_ms,
 543                                          size_t base_free_regions,
 544                                          double target_pause_time_ms) {
 545   if (young_length >= base_free_regions) {
 546     // end condition 1: not enough space for the young regions
 547     return false;
 548   }
 549 
 550   double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
 551   size_t bytes_to_copy =
 552                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 553   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 554   double young_other_time_ms = predict_young_other_time_ms(young_length);
 555   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 556   if (pause_time_ms > target_pause_time_ms) {
 557     // end condition 2: prediction is over the target pause time
 558     return false;
 559   }
 560 
 561   size_t free_bytes =
 562                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
 563   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 564     // end condition 3: out-of-space (conservatively!)
 565     return false;
 566   }
 567 
 568   // success!
 569   return true;
 570 }
 571 
 572 void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
 573   // re-calculate the necessary reserve
 574   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 575   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 576   // smaller than 1.0) we'll get 1.
 577   _reserve_regions = (size_t) ceil(reserve_regions_d);
 578 
 579   if (_using_new_ratio_calculations) {
 580     // -XX:NewRatio was specified so we need to update the
 581     // young gen length when the heap size has changed.
 582     update_young_list_size_using_newratio(new_number_of_regions);
 583   }
 584 }
 585 
 586 size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
 587                                                      size_t base_min_length) {
 588   size_t desired_min_length = 0;
 589   if (adaptive_young_list_length()) {
 590     if (_alloc_rate_ms_seq->num() > 3) {
 591       double now_sec = os::elapsedTime();
 592       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 593       double alloc_rate_ms = predict_alloc_rate_ms();
 594       desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
 595     } else {
 596       // otherwise we don't have enough info to make the prediction
 597     }
 598   }
 599   desired_min_length += base_min_length;
 600   // make sure we don't go below any user-defined minimum bound
 601   return MAX2(_min_desired_young_length, desired_min_length);
 602 }
 603 
 604 size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
 605   // Here, we might want to also take into account any additional
 606   // constraints (i.e., user-defined minimum bound). Currently, we
 607   // effectively don't set this bound.
 608   return _max_desired_young_length;
 609 }
 610 
 611 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 612   if (rs_lengths == (size_t) -1) {
 613     // if it's set to the default value (-1), we should predict it;
 614     // otherwise, use the given value.
 615     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 616   }
 617 
 618   // Calculate the absolute and desired min bounds.
 619 
 620   // This is how many young regions we already have (currently: the survivors).
 621   size_t base_min_length = recorded_survivor_regions();
 622   // This is the absolute minimum young length, which ensures that we
 623   // can allocate one eden region in the worst-case.
 624   size_t absolute_min_length = base_min_length + 1;
 625   size_t desired_min_length =
 626                      calculate_young_list_desired_min_length(base_min_length);
 627   if (desired_min_length < absolute_min_length) {
 628     desired_min_length = absolute_min_length;
 629   }
 630 
 631   // Calculate the absolute and desired max bounds.
 632 
 633   // We will try our best not to "eat" into the reserve.
 634   size_t absolute_max_length = 0;
 635   if (_free_regions_at_end_of_collection > _reserve_regions) {
 636     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 637   }
 638   size_t desired_max_length = calculate_young_list_desired_max_length();
 639   if (desired_max_length > absolute_max_length) {
 640     desired_max_length = absolute_max_length;
 641   }
 642 
 643   size_t young_list_target_length = 0;
 644   if (adaptive_young_list_length()) {
 645     if (full_young_gcs()) {
 646       young_list_target_length =
 647                         calculate_young_list_target_length(rs_lengths,
 648                                                            base_min_length,
 649                                                            desired_min_length,
 650                                                            desired_max_length);
 651       _rs_lengths_prediction = rs_lengths;
 652     } else {
 653       // Don't calculate anything and let the code below bound it to
 654       // the desired_min_length, i.e., do the next GC as soon as
 655       // possible to maximize how many old regions we can add to it.
 656     }
 657   } else {
 658     if (full_young_gcs()) {
 659       young_list_target_length = _young_list_fixed_length;
 660     } else {
 661       // A bit arbitrary: during partially-young GCs we allocate half
 662       // the young regions to try to add old regions to the CSet.
 663       young_list_target_length = _young_list_fixed_length / 2;
 664       // We choose to accept that we might go under the desired min
 665       // length given that we intentionally ask for a smaller young gen.
 666       desired_min_length = absolute_min_length;
 667     }
 668   }
 669 
 670   // Make sure we don't go over the desired max length, nor under the
 671   // desired min length. In case they clash, desired_min_length wins
 672   // which is why that test is second.
 673   if (young_list_target_length > desired_max_length) {
 674     young_list_target_length = desired_max_length;
 675   }
 676   if (young_list_target_length < desired_min_length) {
 677     young_list_target_length = desired_min_length;
 678   }
 679 
 680   assert(young_list_target_length > recorded_survivor_regions(),
 681          "we should be able to allocate at least one eden region");
 682   assert(young_list_target_length >= absolute_min_length, "post-condition");
 683   _young_list_target_length = young_list_target_length;
 684 
 685   update_max_gc_locker_expansion();
 686 }
 687 
 688 size_t
 689 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 690                                                    size_t base_min_length,
 691                                                    size_t desired_min_length,
 692                                                    size_t desired_max_length) {
 693   assert(adaptive_young_list_length(), "pre-condition");
 694   assert(full_young_gcs(), "only call this for fully-young GCs");
 695 
 696   // In case some edge-condition makes the desired max length too small...
 697   if (desired_max_length <= desired_min_length) {
 698     return desired_min_length;
 699   }
 700 
 701   // We'll adjust min_young_length and max_young_length not to include
 702   // the already allocated young regions (i.e., so they reflect the
 703   // min and max eden regions we'll allocate). The base_min_length
 704   // will be reflected in the predictions by the
 705   // survivor_regions_evac_time prediction.
 706   assert(desired_min_length > base_min_length, "invariant");
 707   size_t min_young_length = desired_min_length - base_min_length;
 708   assert(desired_max_length > base_min_length, "invariant");
 709   size_t max_young_length = desired_max_length - base_min_length;
 710 
 711   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 712   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 713   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 714   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 715   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 716   double base_time_ms =
 717     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 718     survivor_regions_evac_time;
 719   size_t available_free_regions = _free_regions_at_end_of_collection;
 720   size_t base_free_regions = 0;
 721   if (available_free_regions > _reserve_regions) {
 722     base_free_regions = available_free_regions - _reserve_regions;
 723   }
 724 
 725   // Here, we will make sure that the shortest young length that
 726   // makes sense fits within the target pause time.
 727 
 728   if (predict_will_fit(min_young_length, base_time_ms,
 729                        base_free_regions, target_pause_time_ms)) {
 730     // The shortest young length will fit into the target pause time;
 731     // we'll now check whether the absolute maximum number of young
 732     // regions will fit in the target pause time. If not, we'll do
 733     // a binary search between min_young_length and max_young_length.
 734     if (predict_will_fit(max_young_length, base_time_ms,
 735                          base_free_regions, target_pause_time_ms)) {
 736       // The maximum young length will fit into the target pause time.
 737       // We are done so set min young length to the maximum length (as
 738       // the result is assumed to be returned in min_young_length).
 739       min_young_length = max_young_length;
 740     } else {
 741       // The maximum possible number of young regions will not fit within
 742       // the target pause time so we'll search for the optimal
 743       // length. The loop invariants are:
 744       //
 745       // min_young_length < max_young_length
 746       // min_young_length is known to fit into the target pause time
 747       // max_young_length is known not to fit into the target pause time
 748       //
 749       // Going into the loop we know the above hold as we've just
 750       // checked them. Every time around the loop we check whether
 751       // the middle value between min_young_length and
 752       // max_young_length fits into the target pause time. If it
 753       // does, it becomes the new min. If it doesn't, it becomes
 754       // the new max. This way we maintain the loop invariants.
 755 
 756       assert(min_young_length < max_young_length, "invariant");
 757       size_t diff = (max_young_length - min_young_length) / 2;
 758       while (diff > 0) {
 759         size_t young_length = min_young_length + diff;
 760         if (predict_will_fit(young_length, base_time_ms,
 761                              base_free_regions, target_pause_time_ms)) {
 762           min_young_length = young_length;
 763         } else {
 764           max_young_length = young_length;
 765         }
 766         assert(min_young_length <  max_young_length, "invariant");
 767         diff = (max_young_length - min_young_length) / 2;
 768       }
 769       // The results is min_young_length which, according to the
 770       // loop invariants, should fit within the target pause time.
 771 
 772       // These are the post-conditions of the binary search above:
 773       assert(min_young_length < max_young_length,
 774              "otherwise we should have discovered that max_young_length "
 775              "fits into the pause target and not done the binary search");
 776       assert(predict_will_fit(min_young_length, base_time_ms,
 777                               base_free_regions, target_pause_time_ms),
 778              "min_young_length, the result of the binary search, should "
 779              "fit into the pause target");
 780       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 781                                base_free_regions, target_pause_time_ms),
 782              "min_young_length, the result of the binary search, should be "
 783              "optimal, so no larger length should fit into the pause target");
 784     }
 785   } else {
 786     // Even the minimum length doesn't fit into the pause time
 787     // target, return it as the result nevertheless.
 788   }
 789   return base_min_length + min_young_length;
 790 }
 791 
 792 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 793   double survivor_regions_evac_time = 0.0;
 794   for (HeapRegion * r = _recorded_survivor_head;
 795        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 796        r = r->get_next_young_region()) {
 797     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
 798   }
 799   return survivor_regions_evac_time;
 800 }
 801 
 802 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 803   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 804 
 805   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 806   if (rs_lengths > _rs_lengths_prediction) {
 807     // add 10% to avoid having to recalculate often
 808     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 809     update_young_list_target_length(rs_lengths_prediction);
 810   }
 811 }
 812 
 813 
 814 
 815 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 816                                                bool is_tlab,
 817                                                bool* gc_overhead_limit_was_exceeded) {
 818   guarantee(false, "Not using this policy feature yet.");
 819   return NULL;
 820 }
 821 
 822 // This method controls how a collector handles one or more
 823 // of its generations being fully allocated.
 824 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 825                                                        bool is_tlab) {
 826   guarantee(false, "Not using this policy feature yet.");
 827   return NULL;
 828 }
 829 
 830 
 831 #ifndef PRODUCT
 832 bool G1CollectorPolicy::verify_young_ages() {
 833   HeapRegion* head = _g1->young_list()->first_region();
 834   return
 835     verify_young_ages(head, _short_lived_surv_rate_group);
 836   // also call verify_young_ages on any additional surv rate groups
 837 }
 838 
 839 bool
 840 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 841                                      SurvRateGroup *surv_rate_group) {
 842   guarantee( surv_rate_group != NULL, "pre-condition" );
 843 
 844   const char* name = surv_rate_group->name();
 845   bool ret = true;
 846   int prev_age = -1;
 847 
 848   for (HeapRegion* curr = head;
 849        curr != NULL;
 850        curr = curr->get_next_young_region()) {
 851     SurvRateGroup* group = curr->surv_rate_group();
 852     if (group == NULL && !curr->is_survivor()) {
 853       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 854       ret = false;
 855     }
 856 
 857     if (surv_rate_group == group) {
 858       int age = curr->age_in_surv_rate_group();
 859 
 860       if (age < 0) {
 861         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 862         ret = false;
 863       }
 864 
 865       if (age <= prev_age) {
 866         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 867                                "(%d, %d)", name, age, prev_age);
 868         ret = false;
 869       }
 870       prev_age = age;
 871     }
 872   }
 873 
 874   return ret;
 875 }
 876 #endif // PRODUCT
 877 
 878 void G1CollectorPolicy::record_full_collection_start() {
 879   _cur_collection_start_sec = os::elapsedTime();
 880   // Release the future to-space so that it is available for compaction into.
 881   _g1->set_full_collection();
 882 }
 883 
 884 void G1CollectorPolicy::record_full_collection_end() {
 885   // Consider this like a collection pause for the purposes of allocation
 886   // since last pause.
 887   double end_sec = os::elapsedTime();
 888   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
 889   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 890 
 891   _all_full_gc_times_ms->add(full_gc_time_ms);
 892 
 893   update_recent_gc_times(end_sec, full_gc_time_ms);
 894 
 895   _g1->clear_full_collection();
 896 
 897   // "Nuke" the heuristics that control the fully/partially young GC
 898   // transitions and make sure we start with fully young GCs after the
 899   // Full GC.
 900   set_full_young_gcs(true);
 901   _last_full_young_gc = false;
 902   _should_revert_to_full_young_gcs = false;
 903   clear_initiate_conc_mark_if_possible();
 904   clear_during_initial_mark_pause();
 905   _known_garbage_bytes = 0;
 906   _known_garbage_ratio = 0.0;
 907   _in_marking_window = false;
 908   _in_marking_window_im = false;
 909 
 910   _short_lived_surv_rate_group->start_adding_regions();
 911   // also call this on any additional surv rate groups
 912 
 913   record_survivor_regions(0, NULL, NULL);
 914 
 915   _prev_region_num_young   = _region_num_young;
 916   _prev_region_num_tenured = _region_num_tenured;
 917 
 918   _free_regions_at_end_of_collection = _g1->free_regions();
 919   // Reset survivors SurvRateGroup.
 920   _survivor_surv_rate_group->reset();
 921   update_young_list_target_length();
 922   _collectionSetChooser->updateAfterFullCollection();
 923 }
 924 
 925 void G1CollectorPolicy::record_stop_world_start() {
 926   _stop_world_start = os::elapsedTime();
 927 }
 928 
 929 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
 930                                                       size_t start_used) {
 931   if (PrintGCDetails) {
 932     gclog_or_tty->stamp(PrintGCTimeStamps);
 933     gclog_or_tty->print("[GC pause");
 934     gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
 935   }
 936 
 937   // We only need to do this here as the policy will only be applied
 938   // to the GC we're about to start. so, no point is calculating this
 939   // every time we calculate / recalculate the target young length.
 940   update_survivors_policy();
 941 
 942   assert(_g1->used() == _g1->recalculate_used(),
 943          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 944                  _g1->used(), _g1->recalculate_used()));
 945 
 946   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 947   _all_stop_world_times_ms->add(s_w_t_ms);
 948   _stop_world_start = 0.0;
 949 
 950   _cur_collection_start_sec = start_time_sec;
 951   _cur_collection_pause_used_at_start_bytes = start_used;
 952   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
 953   _pending_cards = _g1->pending_card_num();
 954   _max_pending_cards = _g1->max_pending_card_num();
 955 
 956   _bytes_in_collection_set_before_gc = 0;
 957   _bytes_copied_during_gc = 0;
 958 
 959   YoungList* young_list = _g1->young_list();
 960   _eden_bytes_before_gc = young_list->eden_used_bytes();
 961   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
 962   _capacity_before_gc = _g1->capacity();
 963 
 964 #ifdef DEBUG
 965   // initialise these to something well known so that we can spot
 966   // if they are not set properly
 967 
 968   for (int i = 0; i < _parallel_gc_threads; ++i) {
 969     _par_last_gc_worker_start_times_ms[i] = -1234.0;
 970     _par_last_ext_root_scan_times_ms[i] = -1234.0;
 971     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
 972     _par_last_update_rs_times_ms[i] = -1234.0;
 973     _par_last_update_rs_processed_buffers[i] = -1234.0;
 974     _par_last_scan_rs_times_ms[i] = -1234.0;
 975     _par_last_obj_copy_times_ms[i] = -1234.0;
 976     _par_last_termination_times_ms[i] = -1234.0;
 977     _par_last_termination_attempts[i] = -1234.0;
 978     _par_last_gc_worker_end_times_ms[i] = -1234.0;
 979     _par_last_gc_worker_times_ms[i] = -1234.0;
 980     _par_last_gc_worker_other_times_ms[i] = -1234.0;
 981   }
 982 #endif
 983 
 984   for (int i = 0; i < _aux_num; ++i) {
 985     _cur_aux_times_ms[i] = 0.0;
 986     _cur_aux_times_set[i] = false;
 987   }
 988 
 989   // These are initialized to zero here and they are set during
 990   // the evacuation pause if marking is in progress.
 991   _cur_satb_drain_time_ms = 0.0;
 992   _last_satb_drain_processed_buffers = 0;
 993 
 994   _last_young_gc_full = false;
 995 
 996   // do that for any other surv rate groups
 997   _short_lived_surv_rate_group->stop_adding_regions();
 998   _survivors_age_table.clear();
 999 
1000   assert( verify_young_ages(), "region age verification" );
1001 }
1002 
1003 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
1004   _mark_closure_time_ms = mark_closure_time_ms;
1005 }
1006 
1007 void G1CollectorPolicy::record_concurrent_mark_init_end(double
1008                                                    mark_init_elapsed_time_ms) {
1009   _during_marking = true;
1010   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
1011   clear_during_initial_mark_pause();
1012   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
1013 }
1014 
1015 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
1016   _mark_remark_start_sec = os::elapsedTime();
1017   _during_marking = false;
1018 }
1019 
1020 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
1021   double end_time_sec = os::elapsedTime();
1022   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
1023   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
1024   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1025   _prev_collection_pause_end_ms += elapsed_time_ms;
1026 
1027   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
1028 }
1029 
1030 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
1031   _mark_cleanup_start_sec = os::elapsedTime();
1032 }
1033 
1034 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
1035   _should_revert_to_full_young_gcs = false;
1036   _last_full_young_gc = true;
1037   _in_marking_window = false;
1038 }
1039 
1040 void G1CollectorPolicy::record_concurrent_pause() {
1041   if (_stop_world_start > 0.0) {
1042     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
1043     _all_yield_times_ms->add(yield_ms);
1044   }
1045 }
1046 
1047 void G1CollectorPolicy::record_concurrent_pause_end() {
1048 }
1049 
1050 template<class T>
1051 T sum_of(T* sum_arr, int start, int n, int N) {
1052   T sum = (T)0;
1053   for (int i = 0; i < n; i++) {
1054     int j = (start + i) % N;
1055     sum += sum_arr[j];
1056   }
1057   return sum;
1058 }
1059 
1060 void G1CollectorPolicy::print_par_stats(int level,
1061                                         const char* str,
1062                                         double* data) {
1063   double min = data[0], max = data[0];
1064   double total = 0.0;
1065   LineBuffer buf(level);
1066   buf.append("[%s (ms):", str);
1067   for (uint i = 0; i < ParallelGCThreads; ++i) {
1068     double val = data[i];
1069     if (val < min)
1070       min = val;
1071     if (val > max)
1072       max = val;
1073     total += val;
1074     buf.append("  %3.1lf", val);
1075   }
1076   buf.append_and_print_cr("");
1077   double avg = total / (double) ParallelGCThreads;
1078   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
1079     avg, min, max, max - min);
1080 }
1081 
1082 void G1CollectorPolicy::print_par_sizes(int level,
1083                                         const char* str,
1084                                         double* data) {
1085   double min = data[0], max = data[0];
1086   double total = 0.0;
1087   LineBuffer buf(level);
1088   buf.append("[%s :", str);
1089   for (uint i = 0; i < ParallelGCThreads; ++i) {
1090     double val = data[i];
1091     if (val < min)
1092       min = val;
1093     if (val > max)
1094       max = val;
1095     total += val;
1096     buf.append(" %d", (int) val);
1097   }
1098   buf.append_and_print_cr("");
1099   double avg = total / (double) ParallelGCThreads;
1100   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
1101     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
1102 }
1103 
1104 void G1CollectorPolicy::print_stats(int level,
1105                                     const char* str,
1106                                     double value) {
1107   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
1108 }
1109 
1110 void G1CollectorPolicy::print_stats(int level,
1111                                     const char* str,
1112                                     int value) {
1113   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1114 }
1115 
1116 double G1CollectorPolicy::avg_value(double* data) {
1117   if (G1CollectedHeap::use_parallel_gc_threads()) {
1118     double ret = 0.0;
1119     for (uint i = 0; i < ParallelGCThreads; ++i) {
1120       ret += data[i];
1121     }
1122     return ret / (double) ParallelGCThreads;
1123   } else {
1124     return data[0];
1125   }
1126 }
1127 
1128 double G1CollectorPolicy::max_value(double* data) {
1129   if (G1CollectedHeap::use_parallel_gc_threads()) {
1130     double ret = data[0];
1131     for (uint i = 1; i < ParallelGCThreads; ++i) {
1132       if (data[i] > ret) {
1133         ret = data[i];
1134       }
1135     }
1136     return ret;
1137   } else {
1138     return data[0];
1139   }
1140 }
1141 
1142 double G1CollectorPolicy::sum_of_values(double* data) {
1143   if (G1CollectedHeap::use_parallel_gc_threads()) {
1144     double sum = 0.0;
1145     for (uint i = 0; i < ParallelGCThreads; i++) {
1146       sum += data[i];
1147     }
1148     return sum;
1149   } else {
1150     return data[0];
1151   }
1152 }
1153 
1154 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
1155   double ret = data1[0] + data2[0];
1156 
1157   if (G1CollectedHeap::use_parallel_gc_threads()) {
1158     for (uint i = 1; i < ParallelGCThreads; ++i) {
1159       double data = data1[i] + data2[i];
1160       if (data > ret) {
1161         ret = data;
1162       }
1163     }
1164   }
1165   return ret;
1166 }
1167 
1168 // Anything below that is considered to be zero
1169 #define MIN_TIMER_GRANULARITY 0.0000001
1170 
1171 void G1CollectorPolicy::record_collection_pause_end() {
1172   double end_time_sec = os::elapsedTime();
1173   double elapsed_ms = _last_pause_time_ms;
1174   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1175   size_t rs_size =
1176     _cur_collection_pause_used_regions_at_start - collection_set_size();
1177   size_t cur_used_bytes = _g1->used();
1178   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1179   bool last_pause_included_initial_mark = false;
1180   bool update_stats = !_g1->evacuation_failed();
1181 
1182 #ifndef PRODUCT
1183   if (G1YoungSurvRateVerbose) {
1184     gclog_or_tty->print_cr("");
1185     _short_lived_surv_rate_group->print();
1186     // do that for any other surv rate groups too
1187   }
1188 #endif // PRODUCT
1189 
1190   last_pause_included_initial_mark = during_initial_mark_pause();
1191   if (last_pause_included_initial_mark)
1192     record_concurrent_mark_init_end(0.0);
1193 
1194   size_t marking_initiating_used_threshold =
1195     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1196 
1197   if (!_g1->mark_in_progress() && !_last_full_young_gc) {
1198     assert(!last_pause_included_initial_mark, "invariant");
1199     if (cur_used_bytes > marking_initiating_used_threshold) {
1200       if (cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
1201         assert(!during_initial_mark_pause(), "we should not see this here");
1202 
1203         ergo_verbose3(ErgoConcCycles,
1204                       "request concurrent cycle initiation",
1205                       ergo_format_reason("occupancy higher than threshold")
1206                       ergo_format_byte("occupancy")
1207                       ergo_format_byte_perc("threshold"),
1208                       cur_used_bytes,
1209                       marking_initiating_used_threshold,
1210                       (double) InitiatingHeapOccupancyPercent);
1211 
1212         // Note: this might have already been set, if during the last
1213         // pause we decided to start a cycle but at the beginning of
1214         // this pause we decided to postpone it. That's OK.
1215         set_initiate_conc_mark_if_possible();
1216       } else {
1217         ergo_verbose2(ErgoConcCycles,
1218                   "do not request concurrent cycle initiation",
1219                   ergo_format_reason("occupancy lower than previous occupancy")
1220                   ergo_format_byte("occupancy")
1221                   ergo_format_byte("previous occupancy"),
1222                   cur_used_bytes,
1223                   _prev_collection_pause_used_at_end_bytes);
1224       }
1225     }
1226   }
1227 
1228   _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
1229 
1230   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
1231                           end_time_sec, false);
1232 
1233   guarantee(_cur_collection_pause_used_regions_at_start >=
1234             collection_set_size(),
1235             "Negative RS size?");
1236 
1237   // This assert is exempted when we're doing parallel collection pauses,
1238   // because the fragmentation caused by the parallel GC allocation buffers
1239   // can lead to more memory being used during collection than was used
1240   // before. Best leave this out until the fragmentation problem is fixed.
1241   // Pauses in which evacuation failed can also lead to negative
1242   // collections, since no space is reclaimed from a region containing an
1243   // object whose evacuation failed.
1244   // Further, we're now always doing parallel collection.  But I'm still
1245   // leaving this here as a placeholder for a more precise assertion later.
1246   // (DLD, 10/05.)
1247   assert((true || parallel) // Always using GC LABs now.
1248          || _g1->evacuation_failed()
1249          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
1250          "Negative collection");
1251 
1252   size_t freed_bytes =
1253     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
1254   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1255 
1256   double survival_fraction =
1257     (double)surviving_bytes/
1258     (double)_collection_set_bytes_used_before;
1259 
1260   _n_pauses++;
1261 
1262   // These values are used to update the summary information that is
1263   // displayed when TraceGen0Time is enabled, and are output as part
1264   // of the PrintGCDetails output, in the non-parallel case.
1265 
1266   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
1267   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
1268   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
1269   double update_rs_processed_buffers =
1270     sum_of_values(_par_last_update_rs_processed_buffers);
1271   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
1272   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
1273   double termination_time = avg_value(_par_last_termination_times_ms);
1274 
1275   double known_time = ext_root_scan_time +
1276                       mark_stack_scan_time +
1277                       update_rs_time +
1278                       scan_rs_time +
1279                       obj_copy_time;
1280 
1281   double other_time_ms = elapsed_ms;
1282 
1283   // Subtract the SATB drain time. It's initialized to zero at the
1284   // start of the pause and is updated during the pause if marking
1285   // is in progress.
1286   other_time_ms -= _cur_satb_drain_time_ms;
1287 
1288   if (parallel) {
1289     other_time_ms -= _cur_collection_par_time_ms;
1290   } else {
1291     other_time_ms -= known_time;
1292   }
1293 
1294   // Subtract the time taken to clean the card table from the
1295   // current value of "other time"
1296   other_time_ms -= _cur_clear_ct_time_ms;
1297 
1298   // TraceGen0Time and TraceGen1Time summary info updating.
1299   _all_pause_times_ms->add(elapsed_ms);
1300 
1301   if (update_stats) {
1302     _recent_rs_scan_times_ms->add(scan_rs_time);
1303     _recent_pause_times_ms->add(elapsed_ms);
1304     _recent_rs_sizes->add(rs_size);
1305 
1306     _summary->record_total_time_ms(elapsed_ms);
1307     _summary->record_other_time_ms(other_time_ms);
1308 
1309     MainBodySummary* body_summary = _summary->main_body_summary();
1310     assert(body_summary != NULL, "should not be null!");
1311 
1312     // This will be non-zero iff marking is currently in progress (i.e.
1313     // _g1->mark_in_progress() == true) and the currrent pause was not
1314     // an initial mark pause. Since the body_summary items are NumberSeqs,
1315     // however, they have to be consistent and updated in lock-step with
1316     // each other. Therefore we unconditionally record the SATB drain
1317     // time - even if it's zero.
1318     body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
1319 
1320     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
1321     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
1322     body_summary->record_update_rs_time_ms(update_rs_time);
1323     body_summary->record_scan_rs_time_ms(scan_rs_time);
1324     body_summary->record_obj_copy_time_ms(obj_copy_time);
1325 
1326     if (parallel) {
1327       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
1328       body_summary->record_termination_time_ms(termination_time);
1329 
1330       double parallel_known_time = known_time + termination_time;
1331       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
1332       body_summary->record_parallel_other_time_ms(parallel_other_time);
1333     }
1334 
1335     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
1336     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1337 
1338     // We exempt parallel collection from this check because Alloc Buffer
1339     // fragmentation can produce negative collections.  Same with evac
1340     // failure.
1341     // Further, we're now always doing parallel collection.  But I'm still
1342     // leaving this here as a placeholder for a more precise assertion later.
1343     // (DLD, 10/05.
1344     assert((true || parallel)
1345            || _g1->evacuation_failed()
1346            || surviving_bytes <= _collection_set_bytes_used_before,
1347            "Or else negative collection!");
1348 
1349     _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
1350     _recent_CS_bytes_surviving->add(surviving_bytes);
1351 
1352     // this is where we update the allocation rate of the application
1353     double app_time_ms =
1354       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
1355     if (app_time_ms < MIN_TIMER_GRANULARITY) {
1356       // This usually happens due to the timer not having the required
1357       // granularity. Some Linuxes are the usual culprits.
1358       // We'll just set it to something (arbitrarily) small.
1359       app_time_ms = 1.0;
1360     }
1361     size_t regions_allocated =
1362       (_region_num_young - _prev_region_num_young) +
1363       (_region_num_tenured - _prev_region_num_tenured);
1364     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1365     _alloc_rate_ms_seq->add(alloc_rate_ms);
1366     _prev_region_num_young   = _region_num_young;
1367     _prev_region_num_tenured = _region_num_tenured;
1368 
1369     double interval_ms =
1370       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1371     update_recent_gc_times(end_time_sec, elapsed_ms);
1372     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1373     if (recent_avg_pause_time_ratio() < 0.0 ||
1374         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1375 #ifndef PRODUCT
1376       // Dump info to allow post-facto debugging
1377       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1378       gclog_or_tty->print_cr("-------------------------------------------");
1379       gclog_or_tty->print_cr("Recent GC Times (ms):");
1380       _recent_gc_times_ms->dump();
1381       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1382       _recent_prev_end_times_for_all_gcs_sec->dump();
1383       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1384                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1385       // In debug mode, terminate the JVM if the user wants to debug at this point.
1386       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1387 #endif  // !PRODUCT
1388       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1389       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1390       if (_recent_avg_pause_time_ratio < 0.0) {
1391         _recent_avg_pause_time_ratio = 0.0;
1392       } else {
1393         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1394         _recent_avg_pause_time_ratio = 1.0;
1395       }
1396     }
1397   }
1398 
1399   for (int i = 0; i < _aux_num; ++i) {
1400     if (_cur_aux_times_set[i]) {
1401       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
1402     }
1403   }
1404 
1405 
1406   if (G1PolicyVerbose > 1) {
1407     gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
1408   }
1409 
1410   if (G1PolicyVerbose > 1) {
1411     gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
1412                            "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
1413                            "      |RS|: " SIZE_FORMAT,
1414                            elapsed_ms, recent_avg_time_for_pauses_ms(),
1415                            scan_rs_time, recent_avg_time_for_rs_scan_ms(),
1416                            rs_size);
1417 
1418     gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
1419                            "       At end " SIZE_FORMAT "K\n"
1420                            "       garbage      : " SIZE_FORMAT "K"
1421                            "       of     " SIZE_FORMAT "K\n"
1422                            "       survival     : %6.2f%%  (%6.2f%% avg)",
1423                            _cur_collection_pause_used_at_start_bytes/K,
1424                            _g1->used()/K, freed_bytes/K,
1425                            _collection_set_bytes_used_before/K,
1426                            survival_fraction*100.0,
1427                            recent_avg_survival_fraction()*100.0);
1428     gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
1429                            recent_avg_pause_time_ratio() * 100.0);
1430   }
1431 
1432   // PrintGCDetails output
1433   if (PrintGCDetails) {
1434     bool print_marking_info =
1435       _g1->mark_in_progress() && !last_pause_included_initial_mark;
1436 
1437     gclog_or_tty->print_cr("%s, %1.8lf secs]",
1438                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
1439                            elapsed_ms / 1000.0);
1440 
1441     if (print_marking_info) {
1442       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
1443       print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
1444     }
1445 
1446     if (parallel) {
1447       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
1448       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
1449       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
1450       if (print_marking_info) {
1451         print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
1452       }
1453       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1454       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
1455       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
1456       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
1457       print_par_stats(2, "Termination", _par_last_termination_times_ms);
1458       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
1459       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
1460 
1461       for (int i = 0; i < _parallel_gc_threads; i++) {
1462         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
1463 
1464         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
1465                                    _par_last_mark_stack_scan_times_ms[i] +
1466                                    _par_last_update_rs_times_ms[i] +
1467                                    _par_last_scan_rs_times_ms[i] +
1468                                    _par_last_obj_copy_times_ms[i] +
1469                                    _par_last_termination_times_ms[i];
1470 
1471         _par_last_gc_worker_other_times_ms[i] = _cur_collection_par_time_ms - worker_known_time;
1472       }
1473       print_par_stats(2, "GC Worker", _par_last_gc_worker_times_ms);
1474       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
1475     } else {
1476       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
1477       if (print_marking_info) {
1478         print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
1479       }
1480       print_stats(1, "Update RS", update_rs_time);
1481       print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
1482       print_stats(1, "Scan RS", scan_rs_time);
1483       print_stats(1, "Object Copying", obj_copy_time);
1484     }
1485     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1486 #ifndef PRODUCT
1487     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
1488     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
1489     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
1490     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
1491     if (_num_cc_clears > 0) {
1492       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
1493     }
1494 #endif
1495     print_stats(1, "Other", other_time_ms);
1496     print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
1497     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
1498     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
1499 
1500     for (int i = 0; i < _aux_num; ++i) {
1501       if (_cur_aux_times_set[i]) {
1502         char buffer[96];
1503         sprintf(buffer, "Aux%d", i);
1504         print_stats(1, buffer, _cur_aux_times_ms[i]);
1505       }
1506     }
1507   }
1508 
1509   // Update the efficiency-since-mark vars.
1510   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
1511   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
1512     // This usually happens due to the timer not having the required
1513     // granularity. Some Linuxes are the usual culprits.
1514     // We'll just set it to something (arbitrarily) small.
1515     proc_ms = 1.0;
1516   }
1517   double cur_efficiency = (double) freed_bytes / proc_ms;
1518 
1519   bool new_in_marking_window = _in_marking_window;
1520   bool new_in_marking_window_im = false;
1521   if (during_initial_mark_pause()) {
1522     new_in_marking_window = true;
1523     new_in_marking_window_im = true;
1524   }
1525 
1526   if (_last_full_young_gc) {
1527     if (!last_pause_included_initial_mark) {
1528       ergo_verbose2(ErgoPartiallyYoungGCs,
1529                     "start partially-young GCs",
1530                     ergo_format_byte_perc("known garbage"),
1531                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
1532       set_full_young_gcs(false);
1533     } else {
1534       ergo_verbose0(ErgoPartiallyYoungGCs,
1535                     "do not start partially-young GCs",
1536                     ergo_format_reason("concurrent cycle is about to start"));
1537     }
1538     _last_full_young_gc = false;
1539   }
1540 
1541   if ( !_last_young_gc_full ) {
1542     if (_should_revert_to_full_young_gcs) {
1543       ergo_verbose2(ErgoPartiallyYoungGCs,
1544                     "end partially-young GCs",
1545                     ergo_format_reason("partially-young GCs end requested")
1546                     ergo_format_byte_perc("known garbage"),
1547                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
1548       set_full_young_gcs(true);
1549     } else if (_known_garbage_ratio < 0.05) {
1550       ergo_verbose3(ErgoPartiallyYoungGCs,
1551                "end partially-young GCs",
1552                ergo_format_reason("known garbage percent lower than threshold")
1553                ergo_format_byte_perc("known garbage")
1554                ergo_format_perc("threshold"),
1555                _known_garbage_bytes, _known_garbage_ratio * 100.0,
1556                0.05 * 100.0);
1557       set_full_young_gcs(true);
1558     } else if (adaptive_young_list_length() &&
1559               (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) {
1560       ergo_verbose5(ErgoPartiallyYoungGCs,
1561                     "end partially-young GCs",
1562                     ergo_format_reason("current GC efficiency lower than "
1563                                        "predicted fully-young GC efficiency")
1564                     ergo_format_double("GC efficiency factor")
1565                     ergo_format_double("current GC efficiency")
1566                     ergo_format_double("predicted fully-young GC efficiency")
1567                     ergo_format_byte_perc("known garbage"),
1568                     get_gc_eff_factor(), cur_efficiency,
1569                     predict_young_gc_eff(),
1570                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
1571       set_full_young_gcs(true);
1572     }
1573   }
1574   _should_revert_to_full_young_gcs = false;
1575 
1576   if (_last_young_gc_full && !_during_marking) {
1577     _young_gc_eff_seq->add(cur_efficiency);
1578   }
1579 
1580   _short_lived_surv_rate_group->start_adding_regions();
1581   // do that for any other surv rate groupsx
1582 
1583   // <NEW PREDICTION>
1584 
1585   if (update_stats) {
1586     double pause_time_ms = elapsed_ms;
1587 
1588     size_t diff = 0;
1589     if (_max_pending_cards >= _pending_cards)
1590       diff = _max_pending_cards - _pending_cards;
1591     _pending_card_diff_seq->add((double) diff);
1592 
1593     double cost_per_card_ms = 0.0;
1594     if (_pending_cards > 0) {
1595       cost_per_card_ms = update_rs_time / (double) _pending_cards;
1596       _cost_per_card_ms_seq->add(cost_per_card_ms);
1597     }
1598 
1599     size_t cards_scanned = _g1->cards_scanned();
1600 
1601     double cost_per_entry_ms = 0.0;
1602     if (cards_scanned > 10) {
1603       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
1604       if (_last_young_gc_full)
1605         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1606       else
1607         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1608     }
1609 
1610     if (_max_rs_lengths > 0) {
1611       double cards_per_entry_ratio =
1612         (double) cards_scanned / (double) _max_rs_lengths;
1613       if (_last_young_gc_full)
1614         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1615       else
1616         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1617     }
1618 
1619     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1620     if (rs_length_diff >= 0)
1621       _rs_length_diff_seq->add((double) rs_length_diff);
1622 
1623     size_t copied_bytes = surviving_bytes;
1624     double cost_per_byte_ms = 0.0;
1625     if (copied_bytes > 0) {
1626       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
1627       if (_in_marking_window)
1628         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1629       else
1630         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1631     }
1632 
1633     double all_other_time_ms = pause_time_ms -
1634       (update_rs_time + scan_rs_time + obj_copy_time +
1635        _mark_closure_time_ms + termination_time);
1636 
1637     double young_other_time_ms = 0.0;
1638     if (_recorded_young_regions > 0) {
1639       young_other_time_ms =
1640         _recorded_young_cset_choice_time_ms +
1641         _recorded_young_free_cset_time_ms;
1642       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1643                                              (double) _recorded_young_regions);
1644     }
1645     double non_young_other_time_ms = 0.0;
1646     if (_recorded_non_young_regions > 0) {
1647       non_young_other_time_ms =
1648         _recorded_non_young_cset_choice_time_ms +
1649         _recorded_non_young_free_cset_time_ms;
1650 
1651       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1652                                          (double) _recorded_non_young_regions);
1653     }
1654 
1655     double constant_other_time_ms = all_other_time_ms -
1656       (young_other_time_ms + non_young_other_time_ms);
1657     _constant_other_time_ms_seq->add(constant_other_time_ms);
1658 
1659     double survival_ratio = 0.0;
1660     if (_bytes_in_collection_set_before_gc > 0) {
1661       survival_ratio = (double) _bytes_copied_during_gc /
1662                                    (double) _bytes_in_collection_set_before_gc;
1663     }
1664 
1665     _pending_cards_seq->add((double) _pending_cards);
1666     _scanned_cards_seq->add((double) cards_scanned);
1667     _rs_lengths_seq->add((double) _max_rs_lengths);
1668 
1669     double expensive_region_limit_ms =
1670       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
1671     if (expensive_region_limit_ms < 0.0) {
1672       // this means that the other time was predicted to be longer than
1673       // than the max pause time
1674       expensive_region_limit_ms = (double) MaxGCPauseMillis;
1675     }
1676     _expensive_region_limit_ms = expensive_region_limit_ms;
1677 
1678     if (PREDICTIONS_VERBOSE) {
1679       gclog_or_tty->print_cr("");
1680       gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
1681                     "REGIONS %d %d %d "
1682                     "PENDING_CARDS %d %d "
1683                     "CARDS_SCANNED %d %d "
1684                     "RS_LENGTHS %d %d "
1685                     "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
1686                     "SURVIVAL_RATIO %1.6lf %1.6lf "
1687                     "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
1688                     "OTHER_YOUNG %1.6lf %1.6lf "
1689                     "OTHER_NON_YOUNG %1.6lf %1.6lf "
1690                     "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
1691                     "ELAPSED %1.6lf %1.6lf ",
1692                     _cur_collection_start_sec,
1693                     (!_last_young_gc_full) ? 2 :
1694                     (last_pause_included_initial_mark) ? 1 : 0,
1695                     _recorded_region_num,
1696                     _recorded_young_regions,
1697                     _recorded_non_young_regions,
1698                     _predicted_pending_cards, _pending_cards,
1699                     _predicted_cards_scanned, cards_scanned,
1700                     _predicted_rs_lengths, _max_rs_lengths,
1701                     _predicted_rs_update_time_ms, update_rs_time,
1702                     _predicted_rs_scan_time_ms, scan_rs_time,
1703                     _predicted_survival_ratio, survival_ratio,
1704                     _predicted_object_copy_time_ms, obj_copy_time,
1705                     _predicted_constant_other_time_ms, constant_other_time_ms,
1706                     _predicted_young_other_time_ms, young_other_time_ms,
1707                     _predicted_non_young_other_time_ms,
1708                     non_young_other_time_ms,
1709                     _vtime_diff_ms, termination_time,
1710                     _predicted_pause_time_ms, elapsed_ms);
1711     }
1712 
1713     if (G1PolicyVerbose > 0) {
1714       gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
1715                     _predicted_pause_time_ms,
1716                     (_within_target) ? "within" : "outside",
1717                     elapsed_ms);
1718     }
1719 
1720   }
1721 
1722   _in_marking_window = new_in_marking_window;
1723   _in_marking_window_im = new_in_marking_window_im;
1724   _free_regions_at_end_of_collection = _g1->free_regions();
1725   update_young_list_target_length();
1726 
1727   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1728   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1729   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1730   // </NEW PREDICTION>
1731 
1732   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
1733 }
1734 
1735 #define EXT_SIZE_FORMAT "%d%s"
1736 #define EXT_SIZE_PARAMS(bytes)                                  \
1737   byte_size_in_proper_unit((bytes)),                            \
1738   proper_unit_for_byte_size((bytes))
1739 
1740 void G1CollectorPolicy::print_heap_transition() {
1741   if (PrintGCDetails) {
1742     YoungList* young_list = _g1->young_list();
1743     size_t eden_bytes = young_list->eden_used_bytes();
1744     size_t survivor_bytes = young_list->survivor_used_bytes();
1745     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
1746     size_t used = _g1->used();
1747     size_t capacity = _g1->capacity();
1748     size_t eden_capacity =
1749       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1750 
1751     gclog_or_tty->print_cr(
1752       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1753       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1754       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1755       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1756       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
1757       EXT_SIZE_PARAMS(_prev_eden_capacity),
1758       EXT_SIZE_PARAMS(eden_bytes),
1759       EXT_SIZE_PARAMS(eden_capacity),
1760       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
1761       EXT_SIZE_PARAMS(survivor_bytes),
1762       EXT_SIZE_PARAMS(used_before_gc),
1763       EXT_SIZE_PARAMS(_capacity_before_gc),
1764       EXT_SIZE_PARAMS(used),
1765       EXT_SIZE_PARAMS(capacity));
1766 
1767     _prev_eden_capacity = eden_capacity;
1768   } else if (PrintGC) {
1769     _g1->print_size_transition(gclog_or_tty,
1770                                _cur_collection_pause_used_at_start_bytes,
1771                                _g1->used(), _g1->capacity());
1772   }
1773 }
1774 
1775 // <NEW PREDICTION>
1776 
1777 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1778                                                      double update_rs_processed_buffers,
1779                                                      double goal_ms) {
1780   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1781   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1782 
1783   if (G1UseAdaptiveConcRefinement) {
1784     const int k_gy = 3, k_gr = 6;
1785     const double inc_k = 1.1, dec_k = 0.9;
1786 
1787     int g = cg1r->green_zone();
1788     if (update_rs_time > goal_ms) {
1789       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1790     } else {
1791       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1792         g = (int)MAX2(g * inc_k, g + 1.0);
1793       }
1794     }
1795     // Change the refinement threads params
1796     cg1r->set_green_zone(g);
1797     cg1r->set_yellow_zone(g * k_gy);
1798     cg1r->set_red_zone(g * k_gr);
1799     cg1r->reinitialize_threads();
1800 
1801     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1802     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1803                                     cg1r->yellow_zone());
1804     // Change the barrier params
1805     dcqs.set_process_completed_threshold(processing_threshold);
1806     dcqs.set_max_completed_queue(cg1r->red_zone());
1807   }
1808 
1809   int curr_queue_size = dcqs.completed_buffers_num();
1810   if (curr_queue_size >= cg1r->yellow_zone()) {
1811     dcqs.set_completed_queue_padding(curr_queue_size);
1812   } else {
1813     dcqs.set_completed_queue_padding(0);
1814   }
1815   dcqs.notify_if_necessary();
1816 }
1817 
1818 double
1819 G1CollectorPolicy::
1820 predict_young_collection_elapsed_time_ms(size_t adjustment) {
1821   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
1822 
1823   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1824   size_t young_num = g1h->young_list()->length();
1825   if (young_num == 0)
1826     return 0.0;
1827 
1828   young_num += adjustment;
1829   size_t pending_cards = predict_pending_cards();
1830   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1831                       predict_rs_length_diff();
1832   size_t card_num;
1833   if (full_young_gcs())
1834     card_num = predict_young_card_num(rs_lengths);
1835   else
1836     card_num = predict_non_young_card_num(rs_lengths);
1837   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
1838   double accum_yg_surv_rate =
1839     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
1840 
1841   size_t bytes_to_copy =
1842     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
1843 
1844   return
1845     predict_rs_update_time_ms(pending_cards) +
1846     predict_rs_scan_time_ms(card_num) +
1847     predict_object_copy_time_ms(bytes_to_copy) +
1848     predict_young_other_time_ms(young_num) +
1849     predict_constant_other_time_ms();
1850 }
1851 
1852 double
1853 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1854   size_t rs_length = predict_rs_length_diff();
1855   size_t card_num;
1856   if (full_young_gcs())
1857     card_num = predict_young_card_num(rs_length);
1858   else
1859     card_num = predict_non_young_card_num(rs_length);
1860   return predict_base_elapsed_time_ms(pending_cards, card_num);
1861 }
1862 
1863 double
1864 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1865                                                 size_t scanned_cards) {
1866   return
1867     predict_rs_update_time_ms(pending_cards) +
1868     predict_rs_scan_time_ms(scanned_cards) +
1869     predict_constant_other_time_ms();
1870 }
1871 
1872 double
1873 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1874                                                   bool young) {
1875   size_t rs_length = hr->rem_set()->occupied();
1876   size_t card_num;
1877   if (full_young_gcs())
1878     card_num = predict_young_card_num(rs_length);
1879   else
1880     card_num = predict_non_young_card_num(rs_length);
1881   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1882 
1883   double region_elapsed_time_ms =
1884     predict_rs_scan_time_ms(card_num) +
1885     predict_object_copy_time_ms(bytes_to_copy);
1886 
1887   if (young)
1888     region_elapsed_time_ms += predict_young_other_time_ms(1);
1889   else
1890     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1891 
1892   return region_elapsed_time_ms;
1893 }
1894 
1895 size_t
1896 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1897   size_t bytes_to_copy;
1898   if (hr->is_marked())
1899     bytes_to_copy = hr->max_live_bytes();
1900   else {
1901     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
1902                "invariant" );
1903     int age = hr->age_in_surv_rate_group();
1904     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1905     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1906   }
1907 
1908   return bytes_to_copy;
1909 }
1910 
1911 void
1912 G1CollectorPolicy::start_recording_regions() {
1913   _recorded_rs_lengths            = 0;
1914   _recorded_young_regions         = 0;
1915   _recorded_non_young_regions     = 0;
1916 
1917 #if PREDICTIONS_VERBOSE
1918   _recorded_marked_bytes          = 0;
1919   _recorded_young_bytes           = 0;
1920   _predicted_bytes_to_copy        = 0;
1921   _predicted_rs_lengths           = 0;
1922   _predicted_cards_scanned        = 0;
1923 #endif // PREDICTIONS_VERBOSE
1924 }
1925 
1926 void
1927 G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
1928 #if PREDICTIONS_VERBOSE
1929   if (!young) {
1930     _recorded_marked_bytes += hr->max_live_bytes();
1931   }
1932   _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
1933 #endif // PREDICTIONS_VERBOSE
1934 
1935   size_t rs_length = hr->rem_set()->occupied();
1936   _recorded_rs_lengths += rs_length;
1937 }
1938 
1939 void
1940 G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
1941   assert(!hr->is_young(), "should not call this");
1942   ++_recorded_non_young_regions;
1943   record_cset_region_info(hr, false);
1944 }
1945 
1946 void
1947 G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
1948   _recorded_young_regions = n_regions;
1949 }
1950 
1951 void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
1952 #if PREDICTIONS_VERBOSE
1953   _recorded_young_bytes = bytes;
1954 #endif // PREDICTIONS_VERBOSE
1955 }
1956 
1957 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1958   _recorded_rs_lengths = rs_lengths;
1959 }
1960 
1961 void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
1962   _predicted_bytes_to_copy = bytes;
1963 }
1964 
1965 void
1966 G1CollectorPolicy::end_recording_regions() {
1967   // The _predicted_pause_time_ms field is referenced in code
1968   // not under PREDICTIONS_VERBOSE. Let's initialize it.
1969   _predicted_pause_time_ms = -1.0;
1970 
1971 #if PREDICTIONS_VERBOSE
1972   _predicted_pending_cards = predict_pending_cards();
1973   _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
1974   if (full_young_gcs())
1975     _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
1976   else
1977     _predicted_cards_scanned +=
1978       predict_non_young_card_num(_predicted_rs_lengths);
1979   _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
1980 
1981   _predicted_rs_update_time_ms =
1982     predict_rs_update_time_ms(_g1->pending_card_num());
1983   _predicted_rs_scan_time_ms =
1984     predict_rs_scan_time_ms(_predicted_cards_scanned);
1985   _predicted_object_copy_time_ms =
1986     predict_object_copy_time_ms(_predicted_bytes_to_copy);
1987   _predicted_constant_other_time_ms =
1988     predict_constant_other_time_ms();
1989   _predicted_young_other_time_ms =
1990     predict_young_other_time_ms(_recorded_young_regions);
1991   _predicted_non_young_other_time_ms =
1992     predict_non_young_other_time_ms(_recorded_non_young_regions);
1993 
1994   _predicted_pause_time_ms =
1995     _predicted_rs_update_time_ms +
1996     _predicted_rs_scan_time_ms +
1997     _predicted_object_copy_time_ms +
1998     _predicted_constant_other_time_ms +
1999     _predicted_young_other_time_ms +
2000     _predicted_non_young_other_time_ms;
2001 #endif // PREDICTIONS_VERBOSE
2002 }
2003 
2004 void G1CollectorPolicy::check_if_region_is_too_expensive(double
2005                                                            predicted_time_ms) {
2006   // I don't think we need to do this when in young GC mode since
2007   // marking will be initiated next time we hit the soft limit anyway...
2008   if (predicted_time_ms > _expensive_region_limit_ms) {
2009     ergo_verbose2(ErgoPartiallyYoungGCs,
2010               "request partially-young GCs end",
2011               ergo_format_reason("predicted region time higher than threshold")
2012               ergo_format_ms("predicted region time")
2013               ergo_format_ms("threshold"),
2014               predicted_time_ms, _expensive_region_limit_ms);
2015     // no point in doing another partial one
2016     _should_revert_to_full_young_gcs = true;
2017   }
2018 }
2019 
2020 // </NEW PREDICTION>
2021 
2022 
2023 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
2024                                                double elapsed_ms) {
2025   _recent_gc_times_ms->add(elapsed_ms);
2026   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
2027   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
2028 }
2029 
2030 double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
2031   if (_recent_pause_times_ms->num() == 0) {
2032     return (double) MaxGCPauseMillis;
2033   }
2034   return _recent_pause_times_ms->avg();
2035 }
2036 
2037 double G1CollectorPolicy::recent_avg_time_for_rs_scan_ms() {
2038   if (_recent_rs_scan_times_ms->num() == 0) {
2039     return (double)MaxGCPauseMillis/3.0;
2040   }
2041   return _recent_rs_scan_times_ms->avg();
2042 }
2043 
2044 int G1CollectorPolicy::number_of_recent_gcs() {
2045   assert(_recent_rs_scan_times_ms->num() ==
2046          _recent_pause_times_ms->num(), "Sequence out of sync");
2047   assert(_recent_pause_times_ms->num() ==
2048          _recent_CS_bytes_used_before->num(), "Sequence out of sync");
2049   assert(_recent_CS_bytes_used_before->num() ==
2050          _recent_CS_bytes_surviving->num(), "Sequence out of sync");
2051 
2052   return _recent_pause_times_ms->num();
2053 }
2054 
2055 double G1CollectorPolicy::recent_avg_survival_fraction() {
2056   return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
2057                                            _recent_CS_bytes_used_before);
2058 }
2059 
2060 double G1CollectorPolicy::last_survival_fraction() {
2061   return last_survival_fraction_work(_recent_CS_bytes_surviving,
2062                                      _recent_CS_bytes_used_before);
2063 }
2064 
2065 double
2066 G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
2067                                                      TruncatedSeq* before) {
2068   assert(surviving->num() == before->num(), "Sequence out of sync");
2069   if (before->sum() > 0.0) {
2070       double recent_survival_rate = surviving->sum() / before->sum();
2071       // We exempt parallel collection from this check because Alloc Buffer
2072       // fragmentation can produce negative collections.
2073       // Further, we're now always doing parallel collection.  But I'm still
2074       // leaving this here as a placeholder for a more precise assertion later.
2075       // (DLD, 10/05.)
2076       assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
2077              _g1->evacuation_failed() ||
2078              recent_survival_rate <= 1.0, "Or bad frac");
2079       return recent_survival_rate;
2080   } else {
2081     return 1.0; // Be conservative.
2082   }
2083 }
2084 
2085 double
2086 G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
2087                                                TruncatedSeq* before) {
2088   assert(surviving->num() == before->num(), "Sequence out of sync");
2089   if (surviving->num() > 0 && before->last() > 0.0) {
2090     double last_survival_rate = surviving->last() / before->last();
2091     // We exempt parallel collection from this check because Alloc Buffer
2092     // fragmentation can produce negative collections.
2093     // Further, we're now always doing parallel collection.  But I'm still
2094     // leaving this here as a placeholder for a more precise assertion later.
2095     // (DLD, 10/05.)
2096     assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
2097            last_survival_rate <= 1.0, "Or bad frac");
2098     return last_survival_rate;
2099   } else {
2100     return 1.0;
2101   }
2102 }
2103 
2104 static const int survival_min_obs = 5;
2105 static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
2106 static const double min_survival_rate = 0.1;
2107 
2108 double
2109 G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
2110                                                            double latest) {
2111   double res = avg;
2112   if (number_of_recent_gcs() < survival_min_obs) {
2113     res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
2114   }
2115   res = MAX2(res, latest);
2116   res = MAX2(res, min_survival_rate);
2117   // In the parallel case, LAB fragmentation can produce "negative
2118   // collections"; so can evac failure.  Cap at 1.0
2119   res = MIN2(res, 1.0);
2120   return res;
2121 }
2122 
2123 size_t G1CollectorPolicy::expansion_amount() {
2124   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
2125   double threshold = _gc_overhead_perc;
2126   if (recent_gc_overhead > threshold) {
2127     // We will double the existing space, or take
2128     // G1ExpandByPercentOfAvailable % of the available expansion
2129     // space, whichever is smaller, bounded below by a minimum
2130     // expansion (unless that's all that's left.)
2131     const size_t min_expand_bytes = 1*M;
2132     size_t reserved_bytes = _g1->max_capacity();
2133     size_t committed_bytes = _g1->capacity();
2134     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
2135     size_t expand_bytes;
2136     size_t expand_bytes_via_pct =
2137       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
2138     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
2139     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
2140     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
2141 
2142     ergo_verbose5(ErgoHeapSizing,
2143                   "attempt heap expansion",
2144                   ergo_format_reason("recent GC overhead higher than "
2145                                      "threshold after GC")
2146                   ergo_format_perc("recent GC overhead")
2147                   ergo_format_perc("threshold")
2148                   ergo_format_byte("uncommitted")
2149                   ergo_format_byte_perc("calculated expansion amount"),
2150                   recent_gc_overhead, threshold,
2151                   uncommitted_bytes,
2152                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
2153 
2154     return expand_bytes;
2155   } else {
2156     return 0;
2157   }
2158 }
2159 
2160 class CountCSClosure: public HeapRegionClosure {
2161   G1CollectorPolicy* _g1_policy;
2162 public:
2163   CountCSClosure(G1CollectorPolicy* g1_policy) :
2164     _g1_policy(g1_policy) {}
2165   bool doHeapRegion(HeapRegion* r) {
2166     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
2167     return false;
2168   }
2169 };
2170 
2171 void G1CollectorPolicy::count_CS_bytes_used() {
2172   CountCSClosure cs_closure(this);
2173   _g1->collection_set_iterate(&cs_closure);
2174 }
2175 
2176 void G1CollectorPolicy::print_summary(int level,
2177                                       const char* str,
2178                                       NumberSeq* seq) const {
2179   double sum = seq->sum();
2180   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
2181                 str, sum / 1000.0, seq->avg());
2182 }
2183 
2184 void G1CollectorPolicy::print_summary_sd(int level,
2185                                          const char* str,
2186                                          NumberSeq* seq) const {
2187   print_summary(level, str, seq);
2188   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2189                 seq->num(), seq->sd(), seq->maximum());
2190 }
2191 
2192 void G1CollectorPolicy::check_other_times(int level,
2193                                         NumberSeq* other_times_ms,
2194                                         NumberSeq* calc_other_times_ms) const {
2195   bool should_print = false;
2196   LineBuffer buf(level + 2);
2197 
2198   double max_sum = MAX2(fabs(other_times_ms->sum()),
2199                         fabs(calc_other_times_ms->sum()));
2200   double min_sum = MIN2(fabs(other_times_ms->sum()),
2201                         fabs(calc_other_times_ms->sum()));
2202   double sum_ratio = max_sum / min_sum;
2203   if (sum_ratio > 1.1) {
2204     should_print = true;
2205     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
2206   }
2207 
2208   double max_avg = MAX2(fabs(other_times_ms->avg()),
2209                         fabs(calc_other_times_ms->avg()));
2210   double min_avg = MIN2(fabs(other_times_ms->avg()),
2211                         fabs(calc_other_times_ms->avg()));
2212   double avg_ratio = max_avg / min_avg;
2213   if (avg_ratio > 1.1) {
2214     should_print = true;
2215     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
2216   }
2217 
2218   if (other_times_ms->sum() < -0.01) {
2219     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
2220   }
2221 
2222   if (other_times_ms->avg() < -0.01) {
2223     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
2224   }
2225 
2226   if (calc_other_times_ms->sum() < -0.01) {
2227     should_print = true;
2228     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
2229   }
2230 
2231   if (calc_other_times_ms->avg() < -0.01) {
2232     should_print = true;
2233     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
2234   }
2235 
2236   if (should_print)
2237     print_summary(level, "Other(Calc)", calc_other_times_ms);
2238 }
2239 
2240 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
2241   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
2242   MainBodySummary*    body_summary = summary->main_body_summary();
2243   if (summary->get_total_seq()->num() > 0) {
2244     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
2245     if (body_summary != NULL) {
2246       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
2247       if (parallel) {
2248         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
2249         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
2250         print_summary(2, "Mark Stack Scanning", body_summary->get_mark_stack_scan_seq());
2251         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
2252         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
2253         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
2254         print_summary(2, "Termination", body_summary->get_termination_seq());
2255         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
2256         {
2257           NumberSeq* other_parts[] = {
2258             body_summary->get_ext_root_scan_seq(),
2259             body_summary->get_mark_stack_scan_seq(),
2260             body_summary->get_update_rs_seq(),
2261             body_summary->get_scan_rs_seq(),
2262             body_summary->get_obj_copy_seq(),
2263             body_summary->get_termination_seq()
2264           };
2265           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
2266                                         6, other_parts);
2267           check_other_times(2, body_summary->get_parallel_other_seq(),
2268                             &calc_other_times_ms);
2269         }
2270       } else {
2271         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
2272         print_summary(1, "Mark Stack Scanning", body_summary->get_mark_stack_scan_seq());
2273         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
2274         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
2275         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
2276       }
2277     }
2278     print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
2279     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
2280     print_summary(1, "Other", summary->get_other_seq());
2281     {
2282       if (body_summary != NULL) {
2283         NumberSeq calc_other_times_ms;
2284         if (parallel) {
2285           // parallel
2286           NumberSeq* other_parts[] = {
2287             body_summary->get_satb_drain_seq(),
2288             body_summary->get_parallel_seq(),
2289             body_summary->get_clear_ct_seq()
2290           };
2291           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2292                                                 3, other_parts);
2293         } else {
2294           // serial
2295           NumberSeq* other_parts[] = {
2296             body_summary->get_satb_drain_seq(),
2297             body_summary->get_update_rs_seq(),
2298             body_summary->get_ext_root_scan_seq(),
2299             body_summary->get_mark_stack_scan_seq(),
2300             body_summary->get_scan_rs_seq(),
2301             body_summary->get_obj_copy_seq()
2302           };
2303           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2304                                                 6, other_parts);
2305         }
2306         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2307       }
2308     }
2309   } else {
2310     LineBuffer(1).append_and_print_cr("none");
2311   }
2312   LineBuffer(0).append_and_print_cr("");
2313 }
2314 
2315 void G1CollectorPolicy::print_tracing_info() const {
2316   if (TraceGen0Time) {
2317     gclog_or_tty->print_cr("ALL PAUSES");
2318     print_summary_sd(0, "Total", _all_pause_times_ms);
2319     gclog_or_tty->print_cr("");
2320     gclog_or_tty->print_cr("");
2321     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
2322     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
2323     gclog_or_tty->print_cr("");
2324 
2325     gclog_or_tty->print_cr("EVACUATION PAUSES");
2326     print_summary(_summary);
2327 
2328     gclog_or_tty->print_cr("MISC");
2329     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
2330     print_summary_sd(0, "Yields", _all_yield_times_ms);
2331     for (int i = 0; i < _aux_num; ++i) {
2332       if (_all_aux_times_ms[i].num() > 0) {
2333         char buffer[96];
2334         sprintf(buffer, "Aux%d", i);
2335         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
2336       }
2337     }
2338 
2339     size_t all_region_num = _region_num_young + _region_num_tenured;
2340     gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
2341                "Tenured %8d (%6.2lf%%)",
2342                all_region_num,
2343                _region_num_young,
2344                (double) _region_num_young / (double) all_region_num * 100.0,
2345                _region_num_tenured,
2346                (double) _region_num_tenured / (double) all_region_num * 100.0);
2347   }
2348   if (TraceGen1Time) {
2349     if (_all_full_gc_times_ms->num() > 0) {
2350       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2351                  _all_full_gc_times_ms->num(),
2352                  _all_full_gc_times_ms->sum() / 1000.0);
2353       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
2354       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2355                     _all_full_gc_times_ms->sd(),
2356                     _all_full_gc_times_ms->maximum());
2357     }
2358   }
2359 }
2360 
2361 void G1CollectorPolicy::print_yg_surv_rate_info() const {
2362 #ifndef PRODUCT
2363   _short_lived_surv_rate_group->print_surv_rate_summary();
2364   // add this call for any other surv rate groups
2365 #endif // PRODUCT
2366 }
2367 
2368 void G1CollectorPolicy::update_region_num(bool young) {
2369   if (young) {
2370     ++_region_num_young;
2371   } else {
2372     ++_region_num_tenured;
2373   }
2374 }
2375 
2376 #ifndef PRODUCT
2377 // for debugging, bit of a hack...
2378 static char*
2379 region_num_to_mbs(int length) {
2380   static char buffer[64];
2381   double bytes = (double) (length * HeapRegion::GrainBytes);
2382   double mbs = bytes / (double) (1024 * 1024);
2383   sprintf(buffer, "%7.2lfMB", mbs);
2384   return buffer;
2385 }
2386 #endif // PRODUCT
2387 
2388 size_t G1CollectorPolicy::max_regions(int purpose) {
2389   switch (purpose) {
2390     case GCAllocForSurvived:
2391       return _max_survivor_regions;
2392     case GCAllocForTenured:
2393       return REGIONS_UNLIMITED;
2394     default:
2395       ShouldNotReachHere();
2396       return REGIONS_UNLIMITED;
2397   };
2398 }
2399 
2400 void G1CollectorPolicy::update_max_gc_locker_expansion() {
2401   size_t expansion_region_num = 0;
2402   if (GCLockerEdenExpansionPercent > 0) {
2403     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
2404     double expansion_region_num_d = perc * (double) _young_list_target_length;
2405     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
2406     // less than 1.0) we'll get 1.
2407     expansion_region_num = (size_t) ceil(expansion_region_num_d);
2408   } else {
2409     assert(expansion_region_num == 0, "sanity");
2410   }
2411   _young_list_max_length = _young_list_target_length + expansion_region_num;
2412   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
2413 }
2414 
2415 // Calculates survivor space parameters.
2416 void G1CollectorPolicy::update_survivors_policy() {
2417   double max_survivor_regions_d =
2418                  (double) _young_list_target_length / (double) SurvivorRatio;
2419   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
2420   // smaller than 1.0) we'll get 1.
2421   _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);
2422 
2423   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2424         HeapRegion::GrainWords * _max_survivor_regions);
2425 }
2426 
2427 #ifndef PRODUCT
2428 class HRSortIndexIsOKClosure: public HeapRegionClosure {
2429   CollectionSetChooser* _chooser;
2430 public:
2431   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
2432     _chooser(chooser) {}
2433 
2434   bool doHeapRegion(HeapRegion* r) {
2435     if (!r->continuesHumongous()) {
2436       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
2437     }
2438     return false;
2439   }
2440 };
2441 
2442 bool G1CollectorPolicy::assertMarkedBytesDataOK() {
2443   HRSortIndexIsOKClosure cl(_collectionSetChooser);
2444   _g1->heap_region_iterate(&cl);
2445   return true;
2446 }
2447 #endif
2448 
2449 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
2450                                                      GCCause::Cause gc_cause) {
2451   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2452   if (!during_cycle) {
2453     ergo_verbose1(ErgoConcCycles,
2454                   "request concurrent cycle initiation",
2455                   ergo_format_reason("requested by GC cause")
2456                   ergo_format_str("GC cause"),
2457                   GCCause::to_string(gc_cause));
2458     set_initiate_conc_mark_if_possible();
2459     return true;
2460   } else {
2461     ergo_verbose1(ErgoConcCycles,
2462                   "do not request concurrent cycle initiation",
2463                   ergo_format_reason("concurrent cycle already in progress")
2464                   ergo_format_str("GC cause"),
2465                   GCCause::to_string(gc_cause));
2466     return false;
2467   }
2468 }
2469 
2470 void
2471 G1CollectorPolicy::decide_on_conc_mark_initiation() {
2472   // We are about to decide on whether this pause will be an
2473   // initial-mark pause.
2474 
2475   // First, during_initial_mark_pause() should not be already set. We
2476   // will set it here if we have to. However, it should be cleared by
2477   // the end of the pause (it's only set for the duration of an
2478   // initial-mark pause).
2479   assert(!during_initial_mark_pause(), "pre-condition");
2480 
2481   if (initiate_conc_mark_if_possible()) {
2482     // We had noticed on a previous pause that the heap occupancy has
2483     // gone over the initiating threshold and we should start a
2484     // concurrent marking cycle. So we might initiate one.
2485 
2486     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2487     if (!during_cycle) {
2488       // The concurrent marking thread is not "during a cycle", i.e.,
2489       // it has completed the last one. So we can go ahead and
2490       // initiate a new cycle.
2491 
2492       set_during_initial_mark_pause();
2493       // We do not allow non-full young GCs during marking.
2494       if (!full_young_gcs()) {
2495         set_full_young_gcs(true);
2496         ergo_verbose0(ErgoPartiallyYoungGCs,
2497                       "end partially-young GCs",
2498                       ergo_format_reason("concurrent cycle is about to start"));
2499       }
2500 
2501       // And we can now clear initiate_conc_mark_if_possible() as
2502       // we've already acted on it.
2503       clear_initiate_conc_mark_if_possible();
2504 
2505       ergo_verbose0(ErgoConcCycles,
2506                   "initiate concurrent cycle",
2507                   ergo_format_reason("concurrent cycle initiation requested"));
2508     } else {
2509       // The concurrent marking thread is still finishing up the
2510       // previous cycle. If we start one right now the two cycles
2511       // overlap. In particular, the concurrent marking thread might
2512       // be in the process of clearing the next marking bitmap (which
2513       // we will use for the next cycle if we start one). Starting a
2514       // cycle now will be bad given that parts of the marking
2515       // information might get cleared by the marking thread. And we
2516       // cannot wait for the marking thread to finish the cycle as it
2517       // periodically yields while clearing the next marking bitmap
2518       // and, if it's in a yield point, it's waiting for us to
2519       // finish. So, at this point we will not start a cycle and we'll
2520       // let the concurrent marking thread complete the last one.
2521       ergo_verbose0(ErgoConcCycles,
2522                     "do not initiate concurrent cycle",
2523                     ergo_format_reason("concurrent cycle already in progress"));
2524     }
2525   }
2526 }
2527 
2528 class KnownGarbageClosure: public HeapRegionClosure {
2529   CollectionSetChooser* _hrSorted;
2530 
2531 public:
2532   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
2533     _hrSorted(hrSorted)
2534   {}
2535 
2536   bool doHeapRegion(HeapRegion* r) {
2537     // We only include humongous regions in collection
2538     // sets when concurrent mark shows that their contained object is
2539     // unreachable.
2540 
2541     // Do we have any marking information for this region?
2542     if (r->is_marked()) {
2543       // We don't include humongous regions in collection
2544       // sets because we collect them immediately at the end of a marking
2545       // cycle.  We also don't include young regions because we *must*
2546       // include them in the next collection pause.
2547       if (!r->isHumongous() && !r->is_young()) {
2548         _hrSorted->addMarkedHeapRegion(r);
2549       }
2550     }
2551     return false;
2552   }
2553 };
2554 
2555 class ParKnownGarbageHRClosure: public HeapRegionClosure {
2556   CollectionSetChooser* _hrSorted;
2557   jint _marked_regions_added;
2558   jint _chunk_size;
2559   jint _cur_chunk_idx;
2560   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
2561   int _worker;
2562   int _invokes;
2563 
2564   void get_new_chunk() {
2565     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
2566     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
2567   }
2568   void add_region(HeapRegion* r) {
2569     if (_cur_chunk_idx == _cur_chunk_end) {
2570       get_new_chunk();
2571     }
2572     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
2573     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
2574     _marked_regions_added++;
2575     _cur_chunk_idx++;
2576   }
2577 
2578 public:
2579   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
2580                            jint chunk_size,
2581                            int worker) :
2582     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
2583     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
2584     _invokes(0)
2585   {}
2586 
2587   bool doHeapRegion(HeapRegion* r) {
2588     // We only include humongous regions in collection
2589     // sets when concurrent mark shows that their contained object is
2590     // unreachable.
2591     _invokes++;
2592 
2593     // Do we have any marking information for this region?
2594     if (r->is_marked()) {
2595       // We don't include humongous regions in collection
2596       // sets because we collect them immediately at the end of a marking
2597       // cycle.
2598       // We also do not include young regions in collection sets
2599       if (!r->isHumongous() && !r->is_young()) {
2600         add_region(r);
2601       }
2602     }
2603     return false;
2604   }
2605   jint marked_regions_added() { return _marked_regions_added; }
2606   int invokes() { return _invokes; }
2607 };
2608 
2609 class ParKnownGarbageTask: public AbstractGangTask {
2610   CollectionSetChooser* _hrSorted;
2611   jint _chunk_size;
2612   G1CollectedHeap* _g1;
2613 public:
2614   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
2615     AbstractGangTask("ParKnownGarbageTask"),
2616     _hrSorted(hrSorted), _chunk_size(chunk_size),
2617     _g1(G1CollectedHeap::heap())
2618   {}
2619 
2620   void work(int i) {
2621     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
2622     // Back to zero for the claim value.
2623     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
2624                                          HeapRegion::InitialClaimValue);
2625     jint regions_added = parKnownGarbageCl.marked_regions_added();
2626     _hrSorted->incNumMarkedHeapRegions(regions_added);
2627     if (G1PrintParCleanupStats) {
2628       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
2629                  i, parKnownGarbageCl.invokes(), regions_added);
2630     }
2631   }
2632 };
2633 
2634 void
2635 G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
2636   double start_sec;
2637   if (G1PrintParCleanupStats) {
2638     start_sec = os::elapsedTime();
2639   }
2640 
2641   _collectionSetChooser->clearMarkedHeapRegions();
2642   double clear_marked_end_sec;
2643   if (G1PrintParCleanupStats) {
2644     clear_marked_end_sec = os::elapsedTime();
2645     gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
2646                            (clear_marked_end_sec - start_sec) * 1000.0);
2647   }
2648 
2649   if (G1CollectedHeap::use_parallel_gc_threads()) {
2650     const size_t OverpartitionFactor = 4;
2651     const size_t MinWorkUnit = 8;
2652     const size_t WorkUnit =
2653       MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
2654            MinWorkUnit);
2655     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2656                                                              WorkUnit);
2657     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2658                                             (int) WorkUnit);
2659     _g1->workers()->run_task(&parKnownGarbageTask);
2660 
2661     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2662            "sanity check");
2663   } else {
2664     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
2665     _g1->heap_region_iterate(&knownGarbagecl);
2666   }
2667   double known_garbage_end_sec;
2668   if (G1PrintParCleanupStats) {
2669     known_garbage_end_sec = os::elapsedTime();
2670     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
2671                       (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
2672   }
2673 
2674   _collectionSetChooser->sortMarkedHeapRegions();
2675   double end_sec = os::elapsedTime();
2676   if (G1PrintParCleanupStats) {
2677     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
2678                            (end_sec - known_garbage_end_sec) * 1000.0);
2679   }
2680 
2681   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
2682   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
2683   _cur_mark_stop_world_time_ms += elapsed_time_ms;
2684   _prev_collection_pause_end_ms += elapsed_time_ms;
2685   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
2686 }
2687 
2688 // Add the heap region at the head of the non-incremental collection set
2689 void G1CollectorPolicy::
2690 add_to_collection_set(HeapRegion* hr) {
2691   assert(_inc_cset_build_state == Active, "Precondition");
2692   assert(!hr->is_young(), "non-incremental add of young region");
2693 
2694   if (_g1->mark_in_progress())
2695     _g1->concurrent_mark()->registerCSetRegion(hr);
2696 
2697   assert(!hr->in_collection_set(), "should not already be in the CSet");
2698   hr->set_in_collection_set(true);
2699   hr->set_next_in_collection_set(_collection_set);
2700   _collection_set = hr;
2701   _collection_set_size++;
2702   _collection_set_bytes_used_before += hr->used();
2703   _g1->register_region_with_in_cset_fast_test(hr);
2704 }
2705 
2706 // Initialize the per-collection-set information
2707 void G1CollectorPolicy::start_incremental_cset_building() {
2708   assert(_inc_cset_build_state == Inactive, "Precondition");
2709 
2710   _inc_cset_head = NULL;
2711   _inc_cset_tail = NULL;
2712   _inc_cset_size = 0;
2713   _inc_cset_bytes_used_before = 0;
2714 
2715   _inc_cset_young_index = 0;
2716 
2717   _inc_cset_max_finger = 0;
2718   _inc_cset_recorded_young_bytes = 0;
2719   _inc_cset_recorded_rs_lengths = 0;
2720   _inc_cset_predicted_elapsed_time_ms = 0;
2721   _inc_cset_predicted_bytes_to_copy = 0;
2722   _inc_cset_build_state = Active;
2723 }
2724 
2725 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
2726   // This routine is used when:
2727   // * adding survivor regions to the incremental cset at the end of an
2728   //   evacuation pause,
2729   // * adding the current allocation region to the incremental cset
2730   //   when it is retired, and
2731   // * updating existing policy information for a region in the
2732   //   incremental cset via young list RSet sampling.
2733   // Therefore this routine may be called at a safepoint by the
2734   // VM thread, or in-between safepoints by mutator threads (when
2735   // retiring the current allocation region) or a concurrent
2736   // refine thread (RSet sampling).
2737 
2738   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
2739   size_t used_bytes = hr->used();
2740 
2741   _inc_cset_recorded_rs_lengths += rs_length;
2742   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
2743 
2744   _inc_cset_bytes_used_before += used_bytes;
2745 
2746   // Cache the values we have added to the aggregated informtion
2747   // in the heap region in case we have to remove this region from
2748   // the incremental collection set, or it is updated by the
2749   // rset sampling code
2750   hr->set_recorded_rs_length(rs_length);
2751   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
2752 
2753 #if PREDICTIONS_VERBOSE
2754   size_t bytes_to_copy = predict_bytes_to_copy(hr);
2755   _inc_cset_predicted_bytes_to_copy += bytes_to_copy;
2756 
2757   // Record the number of bytes used in this region
2758   _inc_cset_recorded_young_bytes += used_bytes;
2759 
2760   // Cache the values we have added to the aggregated informtion
2761   // in the heap region in case we have to remove this region from
2762   // the incremental collection set, or it is updated by the
2763   // rset sampling code
2764   hr->set_predicted_bytes_to_copy(bytes_to_copy);
2765 #endif // PREDICTIONS_VERBOSE
2766 }
2767 
2768 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
2769   // This routine is currently only called as part of the updating of
2770   // existing policy information for regions in the incremental cset that
2771   // is performed by the concurrent refine thread(s) as part of young list
2772   // RSet sampling. Therefore we should not be at a safepoint.
2773 
2774   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
2775   assert(hr->is_young(), "it should be");
2776 
2777   size_t used_bytes = hr->used();
2778   size_t old_rs_length = hr->recorded_rs_length();
2779   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
2780 
2781   // Subtract the old recorded/predicted policy information for
2782   // the given heap region from the collection set info.
2783   _inc_cset_recorded_rs_lengths -= old_rs_length;
2784   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
2785 
2786   _inc_cset_bytes_used_before -= used_bytes;
2787 
2788   // Clear the values cached in the heap region
2789   hr->set_recorded_rs_length(0);
2790   hr->set_predicted_elapsed_time_ms(0);
2791 
2792 #if PREDICTIONS_VERBOSE
2793   size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
2794   _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;
2795 
2796   // Subtract the number of bytes used in this region
2797   _inc_cset_recorded_young_bytes -= used_bytes;
2798 
2799   // Clear the values cached in the heap region
2800   hr->set_predicted_bytes_to_copy(0);
2801 #endif // PREDICTIONS_VERBOSE
2802 }
2803 
2804 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
2805   // Update the collection set information that is dependent on the new RS length
2806   assert(hr->is_young(), "Precondition");
2807 
2808   remove_from_incremental_cset_info(hr);
2809   add_to_incremental_cset_info(hr, new_rs_length);
2810 }
2811 
2812 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2813   assert( hr->is_young(), "invariant");
2814   assert( hr->young_index_in_cset() == -1, "invariant" );
2815   assert(_inc_cset_build_state == Active, "Precondition");
2816 
2817   // We need to clear and set the cached recorded/cached collection set
2818   // information in the heap region here (before the region gets added
2819   // to the collection set). An individual heap region's cached values
2820   // are calculated, aggregated with the policy collection set info,
2821   // and cached in the heap region here (initially) and (subsequently)
2822   // by the Young List sampling code.
2823 
2824   size_t rs_length = hr->rem_set()->occupied();
2825   add_to_incremental_cset_info(hr, rs_length);
2826 
2827   HeapWord* hr_end = hr->end();
2828   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
2829 
2830   assert(!hr->in_collection_set(), "invariant");
2831   hr->set_in_collection_set(true);
2832   assert( hr->next_in_collection_set() == NULL, "invariant");
2833 
2834   _inc_cset_size++;
2835   _g1->register_region_with_in_cset_fast_test(hr);
2836 
2837   hr->set_young_index_in_cset((int) _inc_cset_young_index);
2838   ++_inc_cset_young_index;
2839 }
2840 
2841 // Add the region at the RHS of the incremental cset
2842 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
2843   // We should only ever be appending survivors at the end of a pause
2844   assert( hr->is_survivor(), "Logic");
2845 
2846   // Do the 'common' stuff
2847   add_region_to_incremental_cset_common(hr);
2848 
2849   // Now add the region at the right hand side
2850   if (_inc_cset_tail == NULL) {
2851     assert(_inc_cset_head == NULL, "invariant");
2852     _inc_cset_head = hr;
2853   } else {
2854     _inc_cset_tail->set_next_in_collection_set(hr);
2855   }
2856   _inc_cset_tail = hr;
2857 }
2858 
2859 // Add the region to the LHS of the incremental cset
2860 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
2861   // Survivors should be added to the RHS at the end of a pause
2862   assert(!hr->is_survivor(), "Logic");
2863 
2864   // Do the 'common' stuff
2865   add_region_to_incremental_cset_common(hr);
2866 
2867   // Add the region at the left hand side
2868   hr->set_next_in_collection_set(_inc_cset_head);
2869   if (_inc_cset_head == NULL) {
2870     assert(_inc_cset_tail == NULL, "Invariant");
2871     _inc_cset_tail = hr;
2872   }
2873   _inc_cset_head = hr;
2874 }
2875 
2876 #ifndef PRODUCT
2877 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2878   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2879 
2880   st->print_cr("\nCollection_set:");
2881   HeapRegion* csr = list_head;
2882   while (csr != NULL) {
2883     HeapRegion* next = csr->next_in_collection_set();
2884     assert(csr->in_collection_set(), "bad CS");
2885     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
2886                  "age: %4d, y: %d, surv: %d",
2887                         csr->bottom(), csr->end(),
2888                         csr->top(),
2889                         csr->prev_top_at_mark_start(),
2890                         csr->next_top_at_mark_start(),
2891                         csr->top_at_conc_mark_count(),
2892                         csr->age_in_surv_rate_group_cond(),
2893                         csr->is_young(),
2894                         csr->is_survivor());
2895     csr = next;
2896   }
2897 }
2898 #endif // !PRODUCT
2899 
2900 void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
2901   // Set this here - in case we're not doing young collections.
2902   double non_young_start_time_sec = os::elapsedTime();
2903 
2904   YoungList* young_list = _g1->young_list();
2905 
2906   start_recording_regions();
2907 
2908   guarantee(target_pause_time_ms > 0.0,
2909             err_msg("target_pause_time_ms = %1.6lf should be positive",
2910                     target_pause_time_ms));
2911   guarantee(_collection_set == NULL, "Precondition");
2912 
2913   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2914   double predicted_pause_time_ms = base_time_ms;
2915 
2916   double time_remaining_ms = target_pause_time_ms - base_time_ms;
2917 
2918   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
2919                 "start choosing CSet",
2920                 ergo_format_ms("predicted base time")
2921                 ergo_format_ms("remaining time")
2922                 ergo_format_ms("target pause time"),
2923                 base_time_ms, time_remaining_ms, target_pause_time_ms);
2924 
2925   // the 10% and 50% values are arbitrary...
2926   double threshold = 0.10 * target_pause_time_ms;
2927   if (time_remaining_ms < threshold) {
2928     double prev_time_remaining_ms = time_remaining_ms;
2929     time_remaining_ms = 0.50 * target_pause_time_ms;
2930     _within_target = false;
2931     ergo_verbose3(ErgoCSetConstruction,
2932                   "adjust remaining time",
2933                   ergo_format_reason("remaining time lower than threshold")
2934                   ergo_format_ms("remaining time")
2935                   ergo_format_ms("threshold")
2936                   ergo_format_ms("adjusted remaining time"),
2937                   prev_time_remaining_ms, threshold, time_remaining_ms);
2938   } else {
2939     _within_target = true;
2940   }
2941 
2942   size_t expansion_bytes = _g1->expansion_regions() * HeapRegion::GrainBytes;
2943 
2944   HeapRegion* hr;
2945   double young_start_time_sec = os::elapsedTime();
2946 
2947   _collection_set_bytes_used_before = 0;
2948   _collection_set_size = 0;
2949   _young_cset_length  = 0;
2950   _last_young_gc_full = full_young_gcs() ? true : false;
2951 
2952   if (_last_young_gc_full) {
2953     ++_full_young_pause_num;
2954   } else {
2955     ++_partial_young_pause_num;
2956   }
2957 
2958   // The young list is laid with the survivor regions from the previous
2959   // pause are appended to the RHS of the young list, i.e.
2960   //   [Newly Young Regions ++ Survivors from last pause].
2961 
2962   size_t survivor_region_num = young_list->survivor_length();
2963   size_t eden_region_num = young_list->length() - survivor_region_num;
2964   size_t old_region_num = 0;
2965   hr = young_list->first_survivor_region();
2966   while (hr != NULL) {
2967     assert(hr->is_survivor(), "badly formed young list");
2968     hr->set_young();
2969     hr = hr->get_next_young_region();
2970   }
2971 
2972   // Clear the fields that point to the survivor list - they are all young now.
2973   young_list->clear_survivors();
2974 
2975   if (_g1->mark_in_progress())
2976     _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
2977 
2978   _young_cset_length = _inc_cset_young_index;
2979   _collection_set = _inc_cset_head;
2980   _collection_set_size = _inc_cset_size;
2981   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2982   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
2983   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2984 
2985   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
2986                 "add young regions to CSet",
2987                 ergo_format_region("eden")
2988                 ergo_format_region("survivors")
2989                 ergo_format_ms("predicted young region time"),
2990                 eden_region_num, survivor_region_num,
2991                 _inc_cset_predicted_elapsed_time_ms);
2992 
2993   // The number of recorded young regions is the incremental
2994   // collection set's current size
2995   set_recorded_young_regions(_inc_cset_size);
2996   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2997   set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
2998 #if PREDICTIONS_VERBOSE
2999   set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
3000 #endif // PREDICTIONS_VERBOSE
3001 
3002   assert(_inc_cset_size == young_list->length(), "Invariant");
3003 
3004   double young_end_time_sec = os::elapsedTime();
3005   _recorded_young_cset_choice_time_ms =
3006     (young_end_time_sec - young_start_time_sec) * 1000.0;
3007 
3008   // We are doing young collections so reset this.
3009   non_young_start_time_sec = young_end_time_sec;
3010 
3011   if (!full_young_gcs()) {
3012     bool should_continue = true;
3013     NumberSeq seq;
3014     double avg_prediction = 100000000000000000.0; // something very large
3015 
3016     size_t prev_collection_set_size = _collection_set_size;
3017     double prev_predicted_pause_time_ms = predicted_pause_time_ms;
3018     do {
3019       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
3020                                                       avg_prediction);
3021       if (hr != NULL) {
3022         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
3023         time_remaining_ms -= predicted_time_ms;
3024         predicted_pause_time_ms += predicted_time_ms;
3025         add_to_collection_set(hr);
3026         record_non_young_cset_region(hr);
3027         seq.add(predicted_time_ms);
3028         avg_prediction = seq.avg() + seq.sd();
3029       }
3030 
3031       should_continue = true;
3032       if (hr == NULL) {
3033         // No need for an ergo verbose message here,
3034         // getNextMarkRegion() does this when it returns NULL.
3035         should_continue = false;
3036       } else {
3037         if (adaptive_young_list_length()) {
3038           if (time_remaining_ms < 0.0) {
3039             ergo_verbose1(ErgoCSetConstruction,
3040                           "stop adding old regions to CSet",
3041                           ergo_format_reason("remaining time is lower than 0")
3042                           ergo_format_ms("remaining time"),
3043                           time_remaining_ms);
3044             should_continue = false;
3045           }
3046         } else {
3047           if (_collection_set_size >= _young_list_fixed_length) {
3048             ergo_verbose2(ErgoCSetConstruction,
3049                           "stop adding old regions to CSet",
3050                           ergo_format_reason("CSet length reached target")
3051                           ergo_format_region("CSet")
3052                           ergo_format_region("young target"),
3053                           _collection_set_size, _young_list_fixed_length);
3054             should_continue = false;
3055           }
3056         }
3057       }
3058     } while (should_continue);
3059 
3060     if (!adaptive_young_list_length() &&
3061         _collection_set_size < _young_list_fixed_length) {
3062       ergo_verbose2(ErgoCSetConstruction,
3063                     "request partially-young GCs end",
3064                     ergo_format_reason("CSet length lower than target")
3065                     ergo_format_region("CSet")
3066                     ergo_format_region("young target"),
3067                     _collection_set_size, _young_list_fixed_length);
3068       _should_revert_to_full_young_gcs  = true;
3069     }
3070 
3071     old_region_num = _collection_set_size - prev_collection_set_size;
3072 
3073     ergo_verbose2(ErgoCSetConstruction | ErgoHigh,
3074                   "add old regions to CSet",
3075                   ergo_format_region("old")
3076                   ergo_format_ms("predicted old region time"),
3077                   old_region_num,
3078                   predicted_pause_time_ms - prev_predicted_pause_time_ms);
3079   }
3080 
3081   stop_incremental_cset_building();
3082 
3083   count_CS_bytes_used();
3084 
3085   end_recording_regions();
3086 
3087   ergo_verbose5(ErgoCSetConstruction,
3088                 "finish choosing CSet",
3089                 ergo_format_region("eden")
3090                 ergo_format_region("survivors")
3091                 ergo_format_region("old")
3092                 ergo_format_ms("predicted pause time")
3093                 ergo_format_ms("target pause time"),
3094                 eden_region_num, survivor_region_num, old_region_num,
3095                 predicted_pause_time_ms, target_pause_time_ms);
3096 
3097   double non_young_end_time_sec = os::elapsedTime();
3098   _recorded_non_young_cset_choice_time_ms =
3099     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
3100 }