1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  34 #include "runtime/arguments.hpp"
  35 #include "runtime/java.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "utilities/debug.hpp"
  38 
  39 // Different defaults for different number of GC threads
  40 // They were chosen by running GCOld and SPECjbb on debris with different
  41 //   numbers of GC threads and choosing them based on the results
  42 
  43 // all the same
  44 static double rs_length_diff_defaults[] = {
  45   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  46 };
  47 
  48 static double cost_per_card_ms_defaults[] = {
  49   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  50 };
  51 
  52 // all the same
  53 static double young_cards_per_entry_ratio_defaults[] = {
  54   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  55 };
  56 
  57 static double cost_per_entry_ms_defaults[] = {
  58   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  59 };
  60 
  61 static double cost_per_byte_ms_defaults[] = {
  62   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  63 };
  64 
  65 // these should be pretty consistent
  66 static double constant_other_time_ms_defaults[] = {
  67   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  68 };
  69 
  70 
  71 static double young_other_cost_per_region_ms_defaults[] = {
  72   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  73 };
  74 
  75 static double non_young_other_cost_per_region_ms_defaults[] = {
  76   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  77 };
  78 
  79 // Help class for avoiding interleaved logging
  80 class LineBuffer: public StackObj {
  81 
  82 private:
  83   static const int BUFFER_LEN = 1024;
  84   static const int INDENT_CHARS = 3;
  85   char _buffer[BUFFER_LEN];
  86   int _indent_level;
  87   int _cur;
  88 
  89   void vappend(const char* format, va_list ap) {
  90     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
  91     if (res != -1) {
  92       _cur += res;
  93     } else {
  94       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
  95       _buffer[BUFFER_LEN -1] = 0;
  96       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
  97     }
  98   }
  99 
 100 public:
 101   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
 102     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
 103       _buffer[_cur] = ' ';
 104     }
 105   }
 106 
 107 #ifndef PRODUCT
 108   ~LineBuffer() {
 109     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
 110   }
 111 #endif
 112 
 113   void append(const char* format, ...) {
 114     va_list ap;
 115     va_start(ap, format);
 116     vappend(format, ap);
 117     va_end(ap);
 118   }
 119 
 120   void append_and_print_cr(const char* format, ...) {
 121     va_list ap;
 122     va_start(ap, format);
 123     vappend(format, ap);
 124     va_end(ap);
 125     gclog_or_tty->print_cr("%s", _buffer);
 126     _cur = _indent_level * INDENT_CHARS;
 127   }
 128 };
 129 
 130 G1CollectorPolicy::G1CollectorPolicy() :
 131   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
 132                         ? ParallelGCThreads : 1),
 133 
 134   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 135   _all_pause_times_ms(new NumberSeq()),
 136   _stop_world_start(0.0),
 137   _all_stop_world_times_ms(new NumberSeq()),
 138   _all_yield_times_ms(new NumberSeq()),
 139 
 140   _summary(new Summary()),
 141 
 142   _cur_clear_ct_time_ms(0.0),
 143   _mark_closure_time_ms(0.0),
 144 
 145   _cur_ref_proc_time_ms(0.0),
 146   _cur_ref_enq_time_ms(0.0),
 147 
 148 #ifndef PRODUCT
 149   _min_clear_cc_time_ms(-1.0),
 150   _max_clear_cc_time_ms(-1.0),
 151   _cur_clear_cc_time_ms(0.0),
 152   _cum_clear_cc_time_ms(0.0),
 153   _num_cc_clears(0L),
 154 #endif
 155 
 156   _aux_num(10),
 157   _all_aux_times_ms(new NumberSeq[_aux_num]),
 158   _cur_aux_start_times_ms(new double[_aux_num]),
 159   _cur_aux_times_ms(new double[_aux_num]),
 160   _cur_aux_times_set(new bool[_aux_num]),
 161 
 162   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 163   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 164 
 165   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 166   _prev_collection_pause_end_ms(0.0),
 167   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 168   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 169   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 170   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 171   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 172   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 173   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 174   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 175   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 176   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 177   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 178   _non_young_other_cost_per_region_ms_seq(
 179                                          new TruncatedSeq(TruncatedSeqLength)),
 180 
 181   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 182   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 183 
 184   _pause_time_target_ms((double) MaxGCPauseMillis),
 185 
 186   _gcs_are_young(true),
 187   _young_pause_num(0),
 188   _mixed_pause_num(0),
 189 
 190   _during_marking(false),
 191   _in_marking_window(false),
 192   _in_marking_window_im(false),
 193 
 194   _known_garbage_ratio(0.0),
 195   _known_garbage_bytes(0),
 196 
 197   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
 198 
 199   _recent_prev_end_times_for_all_gcs_sec(
 200                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 201 
 202   _recent_avg_pause_time_ratio(0.0),
 203 
 204   _all_full_gc_times_ms(new NumberSeq()),
 205 
 206   _initiate_conc_mark_if_possible(false),
 207   _during_initial_mark_pause(false),
 208   _should_revert_to_young_gcs(false),
 209   _last_young_gc(false),
 210   _last_gc_was_young(false),
 211 
 212   _eden_bytes_before_gc(0),
 213   _survivor_bytes_before_gc(0),
 214   _capacity_before_gc(0),
 215 
 216   _prev_collection_pause_used_at_end_bytes(0),
 217 
 218   _eden_cset_region_length(0),
 219   _survivor_cset_region_length(0),
 220   _old_cset_region_length(0),
 221 
 222   _collection_set(NULL),
 223   _collection_set_bytes_used_before(0),
 224 
 225   // Incremental CSet attributes
 226   _inc_cset_build_state(Inactive),
 227   _inc_cset_head(NULL),
 228   _inc_cset_tail(NULL),
 229   _inc_cset_bytes_used_before(0),
 230   _inc_cset_max_finger(NULL),
 231   _inc_cset_recorded_rs_lengths(0),
 232   _inc_cset_predicted_elapsed_time_ms(0.0),
 233 
 234 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 235 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 236 #endif // _MSC_VER
 237 
 238   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 239                                                  G1YoungSurvRateNumRegionsSummary)),
 240   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 241                                               G1YoungSurvRateNumRegionsSummary)),
 242   // add here any more surv rate groups
 243   _recorded_survivor_regions(0),
 244   _recorded_survivor_head(NULL),
 245   _recorded_survivor_tail(NULL),
 246   _survivors_age_table(true),
 247 
 248   _gc_overhead_perc(0.0) {
 249 
 250   // Set up the region size and associated fields. Given that the
 251   // policy is created before the heap, we have to set this up here,
 252   // so it's done as soon as possible.
 253   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 254   HeapRegionRemSet::setup_remset_size();
 255 
 256   G1ErgoVerbose::initialize();
 257   if (PrintAdaptiveSizePolicy) {
 258     // Currently, we only use a single switch for all the heuristics.
 259     G1ErgoVerbose::set_enabled(true);
 260     // Given that we don't currently have a verboseness level
 261     // parameter, we'll hardcode this to high. This can be easily
 262     // changed in the future.
 263     G1ErgoVerbose::set_level(ErgoHigh);
 264   } else {
 265     G1ErgoVerbose::set_enabled(false);
 266   }
 267 
 268   // Verify PLAB sizes
 269   const size_t region_size = HeapRegion::GrainWords;
 270   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 271     char buffer[128];
 272     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 273                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 274     vm_exit_during_initialization(buffer);
 275   }
 276 
 277   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 278   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 279 
 280   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
 281   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
 282   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
 283 
 284   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
 285   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
 286 
 287   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
 288 
 289   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
 290 
 291   _par_last_termination_times_ms = new double[_parallel_gc_threads];
 292   _par_last_termination_attempts = new double[_parallel_gc_threads];
 293   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
 294   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
 295   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
 296 
 297   // start conservatively
 298   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
 299 
 300   int index;
 301   if (ParallelGCThreads == 0)
 302     index = 0;
 303   else if (ParallelGCThreads > 8)
 304     index = 7;
 305   else
 306     index = ParallelGCThreads - 1;
 307 
 308   _pending_card_diff_seq->add(0.0);
 309   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 310   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 311   _young_cards_per_entry_ratio_seq->add(
 312                                   young_cards_per_entry_ratio_defaults[index]);
 313   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 314   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 315   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 316   _young_other_cost_per_region_ms_seq->add(
 317                                young_other_cost_per_region_ms_defaults[index]);
 318   _non_young_other_cost_per_region_ms_seq->add(
 319                            non_young_other_cost_per_region_ms_defaults[index]);
 320 
 321   // Below, we might need to calculate the pause time target based on
 322   // the pause interval. When we do so we are going to give G1 maximum
 323   // flexibility and allow it to do pauses when it needs to. So, we'll
 324   // arrange that the pause interval to be pause time target + 1 to
 325   // ensure that a) the pause time target is maximized with respect to
 326   // the pause interval and b) we maintain the invariant that pause
 327   // time target < pause interval. If the user does not want this
 328   // maximum flexibility, they will have to set the pause interval
 329   // explicitly.
 330 
 331   // First make sure that, if either parameter is set, its value is
 332   // reasonable.
 333   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 334     if (MaxGCPauseMillis < 1) {
 335       vm_exit_during_initialization("MaxGCPauseMillis should be "
 336                                     "greater than 0");
 337     }
 338   }
 339   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 340     if (GCPauseIntervalMillis < 1) {
 341       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 342                                     "greater than 0");
 343     }
 344   }
 345 
 346   // Then, if the pause time target parameter was not set, set it to
 347   // the default value.
 348   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 349     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 350       // The default pause time target in G1 is 200ms
 351       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 352     } else {
 353       // We do not allow the pause interval to be set without the
 354       // pause time target
 355       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 356                                     "without setting MaxGCPauseMillis");
 357     }
 358   }
 359 
 360   // Then, if the interval parameter was not set, set it according to
 361   // the pause time target (this will also deal with the case when the
 362   // pause time target is the default value).
 363   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 364     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 365   }
 366 
 367   // Finally, make sure that the two parameters are consistent.
 368   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 369     char buffer[256];
 370     jio_snprintf(buffer, 256,
 371                  "MaxGCPauseMillis (%u) should be less than "
 372                  "GCPauseIntervalMillis (%u)",
 373                  MaxGCPauseMillis, GCPauseIntervalMillis);
 374     vm_exit_during_initialization(buffer);
 375   }
 376 
 377   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 378   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 379   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 380   _sigma = (double) G1ConfidencePercent / 100.0;
 381 
 382   // start conservatively (around 50ms is about right)
 383   _concurrent_mark_remark_times_ms->add(0.05);
 384   _concurrent_mark_cleanup_times_ms->add(0.20);
 385   _tenuring_threshold = MaxTenuringThreshold;
 386   // _max_survivor_regions will be calculated by
 387   // update_young_list_target_length() during initialization.
 388   _max_survivor_regions = 0;
 389 
 390   assert(GCTimeRatio > 0,
 391          "we should have set it to a default value set_g1_gc_flags() "
 392          "if a user set it to 0");
 393   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 394 
 395   uintx reserve_perc = G1ReservePercent;
 396   // Put an artificial ceiling on this so that it's not set to a silly value.
 397   if (reserve_perc > 50) {
 398     reserve_perc = 50;
 399     warning("G1ReservePercent is set to a value that is too large, "
 400             "it's been updated to %u", reserve_perc);
 401   }
 402   _reserve_factor = (double) reserve_perc / 100.0;
 403   // This will be set when the heap is expanded
 404   // for the first time during initialization.
 405   _reserve_regions = 0;
 406 
 407   initialize_all();
 408   _collectionSetChooser = new CollectionSetChooser();
 409   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 410 }
 411 
 412 void G1CollectorPolicy::initialize_flags() {
 413   set_min_alignment(HeapRegion::GrainBytes);
 414   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 415   if (SurvivorRatio < 1) {
 416     vm_exit_during_initialization("Invalid survivor ratio specified");
 417   }
 418   CollectorPolicy::initialize_flags();
 419 }
 420 
 421 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 422   assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
 423   assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
 424   assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
 425 
 426   if (FLAG_IS_CMDLINE(NewRatio)) {
 427     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 428       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 429     } else {
 430       _sizer_kind = SizerNewRatio;
 431       _adaptive_size = false;
 432       return;
 433     }
 434   }
 435 
 436   if (FLAG_IS_CMDLINE(NewSize)) {
 437      _min_desired_young_length = MAX2((size_t) 1, NewSize / HeapRegion::GrainBytes);
 438     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 439       _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
 440       _sizer_kind = SizerMaxAndNewSize;
 441       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 442     } else {
 443       _sizer_kind = SizerNewSizeOnly;
 444     }
 445   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 446     _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
 447     _sizer_kind = SizerMaxNewSizeOnly;
 448   }
 449 }
 450 
 451 size_t G1YoungGenSizer::calculate_default_min_size(size_t new_number_of_heap_regions) {
 452   size_t default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
 453   return MAX2((size_t)1, default_value);
 454 }
 455 
 456 size_t G1YoungGenSizer::calculate_default_max_size(size_t new_number_of_heap_regions) {
 457   size_t default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
 458   return MAX2((size_t)1, default_value);
 459 }
 460 
 461 void G1YoungGenSizer::heap_size_changed(size_t new_number_of_heap_regions) {
 462   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 463 
 464   switch (_sizer_kind) {
 465     case SizerDefaults:
 466       _min_desired_young_length = calculate_default_min_size(new_number_of_heap_regions);
 467       _max_desired_young_length = calculate_default_max_size(new_number_of_heap_regions);
 468       break;
 469     case SizerNewSizeOnly:
 470       _max_desired_young_length = calculate_default_max_size(new_number_of_heap_regions);
 471       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 472       break;
 473     case SizerMaxNewSizeOnly:
 474       _min_desired_young_length = calculate_default_min_size(new_number_of_heap_regions);
 475       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 476       break;
 477     case SizerMaxAndNewSize:
 478       // Do nothing. Values set on the command line, don't update them at runtime.
 479       break;
 480     case SizerNewRatio:
 481       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 482       _max_desired_young_length = _min_desired_young_length;
 483       break;
 484     default:
 485       ShouldNotReachHere();
 486   }
 487 
 488   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 489 }
 490 
 491 void G1CollectorPolicy::init() {
 492   // Set aside an initial future to_space.
 493   _g1 = G1CollectedHeap::heap();
 494 
 495   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 496 
 497   initialize_gc_policy_counters();
 498 
 499   if (adaptive_young_list_length()) {
 500     _young_list_fixed_length = 0;
 501   } else {
 502     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 503   }
 504   _free_regions_at_end_of_collection = _g1->free_regions();
 505   update_young_list_target_length();
 506   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
 507 
 508   // We may immediately start allocating regions and placing them on the
 509   // collection set list. Initialize the per-collection set info
 510   start_incremental_cset_building();
 511 }
 512 
 513 // Create the jstat counters for the policy.
 514 void G1CollectorPolicy::initialize_gc_policy_counters() {
 515   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 516 }
 517 
 518 bool G1CollectorPolicy::predict_will_fit(size_t young_length,
 519                                          double base_time_ms,
 520                                          size_t base_free_regions,
 521                                          double target_pause_time_ms) {
 522   if (young_length >= base_free_regions) {
 523     // end condition 1: not enough space for the young regions
 524     return false;
 525   }
 526 
 527   double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
 528   size_t bytes_to_copy =
 529                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 530   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 531   double young_other_time_ms = predict_young_other_time_ms(young_length);
 532   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 533   if (pause_time_ms > target_pause_time_ms) {
 534     // end condition 2: prediction is over the target pause time
 535     return false;
 536   }
 537 
 538   size_t free_bytes =
 539                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
 540   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 541     // end condition 3: out-of-space (conservatively!)
 542     return false;
 543   }
 544 
 545   // success!
 546   return true;
 547 }
 548 
 549 void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
 550   // re-calculate the necessary reserve
 551   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 552   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 553   // smaller than 1.0) we'll get 1.
 554   _reserve_regions = (size_t) ceil(reserve_regions_d);
 555 
 556   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 557 }
 558 
 559 size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
 560                                                      size_t base_min_length) {
 561   size_t desired_min_length = 0;
 562   if (adaptive_young_list_length()) {
 563     if (_alloc_rate_ms_seq->num() > 3) {
 564       double now_sec = os::elapsedTime();
 565       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 566       double alloc_rate_ms = predict_alloc_rate_ms();
 567       desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
 568     } else {
 569       // otherwise we don't have enough info to make the prediction
 570     }
 571   }
 572   desired_min_length += base_min_length;
 573   // make sure we don't go below any user-defined minimum bound
 574   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 575 }
 576 
 577 size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
 578   // Here, we might want to also take into account any additional
 579   // constraints (i.e., user-defined minimum bound). Currently, we
 580   // effectively don't set this bound.
 581   return _young_gen_sizer->max_desired_young_length();
 582 }
 583 
 584 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 585   if (rs_lengths == (size_t) -1) {
 586     // if it's set to the default value (-1), we should predict it;
 587     // otherwise, use the given value.
 588     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 589   }
 590 
 591   // Calculate the absolute and desired min bounds.
 592 
 593   // This is how many young regions we already have (currently: the survivors).
 594   size_t base_min_length = recorded_survivor_regions();
 595   // This is the absolute minimum young length, which ensures that we
 596   // can allocate one eden region in the worst-case.
 597   size_t absolute_min_length = base_min_length + 1;
 598   size_t desired_min_length =
 599                      calculate_young_list_desired_min_length(base_min_length);
 600   if (desired_min_length < absolute_min_length) {
 601     desired_min_length = absolute_min_length;
 602   }
 603 
 604   // Calculate the absolute and desired max bounds.
 605 
 606   // We will try our best not to "eat" into the reserve.
 607   size_t absolute_max_length = 0;
 608   if (_free_regions_at_end_of_collection > _reserve_regions) {
 609     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 610   }
 611   size_t desired_max_length = calculate_young_list_desired_max_length();
 612   if (desired_max_length > absolute_max_length) {
 613     desired_max_length = absolute_max_length;
 614   }
 615 
 616   size_t young_list_target_length = 0;
 617   if (adaptive_young_list_length()) {
 618     if (gcs_are_young()) {
 619       young_list_target_length =
 620                         calculate_young_list_target_length(rs_lengths,
 621                                                            base_min_length,
 622                                                            desired_min_length,
 623                                                            desired_max_length);
 624       _rs_lengths_prediction = rs_lengths;
 625     } else {
 626       // Don't calculate anything and let the code below bound it to
 627       // the desired_min_length, i.e., do the next GC as soon as
 628       // possible to maximize how many old regions we can add to it.
 629     }
 630   } else {
 631     if (gcs_are_young()) {
 632       young_list_target_length = _young_list_fixed_length;
 633     } else {
 634       // A bit arbitrary: during mixed GCs we allocate half
 635       // the young regions to try to add old regions to the CSet.
 636       young_list_target_length = _young_list_fixed_length / 2;
 637       // We choose to accept that we might go under the desired min
 638       // length given that we intentionally ask for a smaller young gen.
 639       desired_min_length = absolute_min_length;
 640     }
 641   }
 642 
 643   // Make sure we don't go over the desired max length, nor under the
 644   // desired min length. In case they clash, desired_min_length wins
 645   // which is why that test is second.
 646   if (young_list_target_length > desired_max_length) {
 647     young_list_target_length = desired_max_length;
 648   }
 649   if (young_list_target_length < desired_min_length) {
 650     young_list_target_length = desired_min_length;
 651   }
 652 
 653   assert(young_list_target_length > recorded_survivor_regions(),
 654          "we should be able to allocate at least one eden region");
 655   assert(young_list_target_length >= absolute_min_length, "post-condition");
 656   _young_list_target_length = young_list_target_length;
 657 
 658   update_max_gc_locker_expansion();
 659 }
 660 
 661 size_t
 662 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 663                                                    size_t base_min_length,
 664                                                    size_t desired_min_length,
 665                                                    size_t desired_max_length) {
 666   assert(adaptive_young_list_length(), "pre-condition");
 667   assert(gcs_are_young(), "only call this for young GCs");
 668 
 669   // In case some edge-condition makes the desired max length too small...
 670   if (desired_max_length <= desired_min_length) {
 671     return desired_min_length;
 672   }
 673 
 674   // We'll adjust min_young_length and max_young_length not to include
 675   // the already allocated young regions (i.e., so they reflect the
 676   // min and max eden regions we'll allocate). The base_min_length
 677   // will be reflected in the predictions by the
 678   // survivor_regions_evac_time prediction.
 679   assert(desired_min_length > base_min_length, "invariant");
 680   size_t min_young_length = desired_min_length - base_min_length;
 681   assert(desired_max_length > base_min_length, "invariant");
 682   size_t max_young_length = desired_max_length - base_min_length;
 683 
 684   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 685   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 686   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 687   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 688   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 689   double base_time_ms =
 690     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 691     survivor_regions_evac_time;
 692   size_t available_free_regions = _free_regions_at_end_of_collection;
 693   size_t base_free_regions = 0;
 694   if (available_free_regions > _reserve_regions) {
 695     base_free_regions = available_free_regions - _reserve_regions;
 696   }
 697 
 698   // Here, we will make sure that the shortest young length that
 699   // makes sense fits within the target pause time.
 700 
 701   if (predict_will_fit(min_young_length, base_time_ms,
 702                        base_free_regions, target_pause_time_ms)) {
 703     // The shortest young length will fit into the target pause time;
 704     // we'll now check whether the absolute maximum number of young
 705     // regions will fit in the target pause time. If not, we'll do
 706     // a binary search between min_young_length and max_young_length.
 707     if (predict_will_fit(max_young_length, base_time_ms,
 708                          base_free_regions, target_pause_time_ms)) {
 709       // The maximum young length will fit into the target pause time.
 710       // We are done so set min young length to the maximum length (as
 711       // the result is assumed to be returned in min_young_length).
 712       min_young_length = max_young_length;
 713     } else {
 714       // The maximum possible number of young regions will not fit within
 715       // the target pause time so we'll search for the optimal
 716       // length. The loop invariants are:
 717       //
 718       // min_young_length < max_young_length
 719       // min_young_length is known to fit into the target pause time
 720       // max_young_length is known not to fit into the target pause time
 721       //
 722       // Going into the loop we know the above hold as we've just
 723       // checked them. Every time around the loop we check whether
 724       // the middle value between min_young_length and
 725       // max_young_length fits into the target pause time. If it
 726       // does, it becomes the new min. If it doesn't, it becomes
 727       // the new max. This way we maintain the loop invariants.
 728 
 729       assert(min_young_length < max_young_length, "invariant");
 730       size_t diff = (max_young_length - min_young_length) / 2;
 731       while (diff > 0) {
 732         size_t young_length = min_young_length + diff;
 733         if (predict_will_fit(young_length, base_time_ms,
 734                              base_free_regions, target_pause_time_ms)) {
 735           min_young_length = young_length;
 736         } else {
 737           max_young_length = young_length;
 738         }
 739         assert(min_young_length <  max_young_length, "invariant");
 740         diff = (max_young_length - min_young_length) / 2;
 741       }
 742       // The results is min_young_length which, according to the
 743       // loop invariants, should fit within the target pause time.
 744 
 745       // These are the post-conditions of the binary search above:
 746       assert(min_young_length < max_young_length,
 747              "otherwise we should have discovered that max_young_length "
 748              "fits into the pause target and not done the binary search");
 749       assert(predict_will_fit(min_young_length, base_time_ms,
 750                               base_free_regions, target_pause_time_ms),
 751              "min_young_length, the result of the binary search, should "
 752              "fit into the pause target");
 753       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 754                                base_free_regions, target_pause_time_ms),
 755              "min_young_length, the result of the binary search, should be "
 756              "optimal, so no larger length should fit into the pause target");
 757     }
 758   } else {
 759     // Even the minimum length doesn't fit into the pause time
 760     // target, return it as the result nevertheless.
 761   }
 762   return base_min_length + min_young_length;
 763 }
 764 
 765 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 766   double survivor_regions_evac_time = 0.0;
 767   for (HeapRegion * r = _recorded_survivor_head;
 768        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 769        r = r->get_next_young_region()) {
 770     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
 771   }
 772   return survivor_regions_evac_time;
 773 }
 774 
 775 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 776   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 777 
 778   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 779   if (rs_lengths > _rs_lengths_prediction) {
 780     // add 10% to avoid having to recalculate often
 781     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 782     update_young_list_target_length(rs_lengths_prediction);
 783   }
 784 }
 785 
 786 
 787 
 788 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 789                                                bool is_tlab,
 790                                                bool* gc_overhead_limit_was_exceeded) {
 791   guarantee(false, "Not using this policy feature yet.");
 792   return NULL;
 793 }
 794 
 795 // This method controls how a collector handles one or more
 796 // of its generations being fully allocated.
 797 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 798                                                        bool is_tlab) {
 799   guarantee(false, "Not using this policy feature yet.");
 800   return NULL;
 801 }
 802 
 803 
 804 #ifndef PRODUCT
 805 bool G1CollectorPolicy::verify_young_ages() {
 806   HeapRegion* head = _g1->young_list()->first_region();
 807   return
 808     verify_young_ages(head, _short_lived_surv_rate_group);
 809   // also call verify_young_ages on any additional surv rate groups
 810 }
 811 
 812 bool
 813 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 814                                      SurvRateGroup *surv_rate_group) {
 815   guarantee( surv_rate_group != NULL, "pre-condition" );
 816 
 817   const char* name = surv_rate_group->name();
 818   bool ret = true;
 819   int prev_age = -1;
 820 
 821   for (HeapRegion* curr = head;
 822        curr != NULL;
 823        curr = curr->get_next_young_region()) {
 824     SurvRateGroup* group = curr->surv_rate_group();
 825     if (group == NULL && !curr->is_survivor()) {
 826       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 827       ret = false;
 828     }
 829 
 830     if (surv_rate_group == group) {
 831       int age = curr->age_in_surv_rate_group();
 832 
 833       if (age < 0) {
 834         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 835         ret = false;
 836       }
 837 
 838       if (age <= prev_age) {
 839         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 840                                "(%d, %d)", name, age, prev_age);
 841         ret = false;
 842       }
 843       prev_age = age;
 844     }
 845   }
 846 
 847   return ret;
 848 }
 849 #endif // PRODUCT
 850 
 851 void G1CollectorPolicy::record_full_collection_start() {
 852   _cur_collection_start_sec = os::elapsedTime();
 853   // Release the future to-space so that it is available for compaction into.
 854   _g1->set_full_collection();
 855 }
 856 
 857 void G1CollectorPolicy::record_full_collection_end() {
 858   // Consider this like a collection pause for the purposes of allocation
 859   // since last pause.
 860   double end_sec = os::elapsedTime();
 861   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
 862   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 863 
 864   _all_full_gc_times_ms->add(full_gc_time_ms);
 865 
 866   update_recent_gc_times(end_sec, full_gc_time_ms);
 867 
 868   _g1->clear_full_collection();
 869 
 870   // "Nuke" the heuristics that control the young/mixed GC
 871   // transitions and make sure we start with young GCs after the Full GC.
 872   set_gcs_are_young(true);
 873   _last_young_gc = false;
 874   _should_revert_to_young_gcs = false;
 875   clear_initiate_conc_mark_if_possible();
 876   clear_during_initial_mark_pause();
 877   _known_garbage_bytes = 0;
 878   _known_garbage_ratio = 0.0;
 879   _in_marking_window = false;
 880   _in_marking_window_im = false;
 881 
 882   _short_lived_surv_rate_group->start_adding_regions();
 883   // also call this on any additional surv rate groups
 884 
 885   record_survivor_regions(0, NULL, NULL);
 886 
 887   _free_regions_at_end_of_collection = _g1->free_regions();
 888   // Reset survivors SurvRateGroup.
 889   _survivor_surv_rate_group->reset();
 890   update_young_list_target_length();
 891   _collectionSetChooser->updateAfterFullCollection();
 892 }
 893 
 894 void G1CollectorPolicy::record_stop_world_start() {
 895   _stop_world_start = os::elapsedTime();
 896 }
 897 
 898 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
 899                                                       size_t start_used) {
 900   if (PrintGCDetails) {
 901     gclog_or_tty->stamp(PrintGCTimeStamps);
 902     gclog_or_tty->print("[GC pause");
 903     gclog_or_tty->print(" (%s)", gcs_are_young() ? "young" : "mixed");
 904   }
 905 
 906   // We only need to do this here as the policy will only be applied
 907   // to the GC we're about to start. so, no point is calculating this
 908   // every time we calculate / recalculate the target young length.
 909   update_survivors_policy();
 910 
 911   assert(_g1->used() == _g1->recalculate_used(),
 912          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 913                  _g1->used(), _g1->recalculate_used()));
 914 
 915   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 916   _all_stop_world_times_ms->add(s_w_t_ms);
 917   _stop_world_start = 0.0;
 918 
 919   _cur_collection_start_sec = start_time_sec;
 920   _cur_collection_pause_used_at_start_bytes = start_used;
 921   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
 922   _pending_cards = _g1->pending_card_num();
 923   _max_pending_cards = _g1->max_pending_card_num();
 924 
 925   _bytes_in_collection_set_before_gc = 0;
 926   _bytes_copied_during_gc = 0;
 927 
 928   YoungList* young_list = _g1->young_list();
 929   _eden_bytes_before_gc = young_list->eden_used_bytes();
 930   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
 931   _capacity_before_gc = _g1->capacity();
 932 
 933 #ifdef DEBUG
 934   // initialise these to something well known so that we can spot
 935   // if they are not set properly
 936 
 937   for (int i = 0; i < _parallel_gc_threads; ++i) {
 938     _par_last_gc_worker_start_times_ms[i] = -1234.0;
 939     _par_last_ext_root_scan_times_ms[i] = -1234.0;
 940     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
 941     _par_last_update_rs_times_ms[i] = -1234.0;
 942     _par_last_update_rs_processed_buffers[i] = -1234.0;
 943     _par_last_scan_rs_times_ms[i] = -1234.0;
 944     _par_last_obj_copy_times_ms[i] = -1234.0;
 945     _par_last_termination_times_ms[i] = -1234.0;
 946     _par_last_termination_attempts[i] = -1234.0;
 947     _par_last_gc_worker_end_times_ms[i] = -1234.0;
 948     _par_last_gc_worker_times_ms[i] = -1234.0;
 949     _par_last_gc_worker_other_times_ms[i] = -1234.0;
 950   }
 951 #endif
 952 
 953   for (int i = 0; i < _aux_num; ++i) {
 954     _cur_aux_times_ms[i] = 0.0;
 955     _cur_aux_times_set[i] = false;
 956   }
 957 
 958   // This is initialized to zero here and is set during
 959   // the evacuation pause if marking is in progress.
 960   _cur_satb_drain_time_ms = 0.0;
 961 
 962   _last_gc_was_young = false;
 963 
 964   // do that for any other surv rate groups
 965   _short_lived_surv_rate_group->stop_adding_regions();
 966   _survivors_age_table.clear();
 967 
 968   assert( verify_young_ages(), "region age verification" );
 969 }
 970 
 971 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 972                                                    mark_init_elapsed_time_ms) {
 973   _during_marking = true;
 974   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 975   clear_during_initial_mark_pause();
 976   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 977 }
 978 
 979 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 980   _mark_remark_start_sec = os::elapsedTime();
 981   _during_marking = false;
 982 }
 983 
 984 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 985   double end_time_sec = os::elapsedTime();
 986   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 987   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 988   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 989   _prev_collection_pause_end_ms += elapsed_time_ms;
 990 
 991   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 992 }
 993 
 994 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 995   _mark_cleanup_start_sec = os::elapsedTime();
 996 }
 997 
 998 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 999   _should_revert_to_young_gcs = false;
1000   _last_young_gc = true;
1001   _in_marking_window = false;
1002 }
1003 
1004 void G1CollectorPolicy::record_concurrent_pause() {
1005   if (_stop_world_start > 0.0) {
1006     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
1007     _all_yield_times_ms->add(yield_ms);
1008   }
1009 }
1010 
1011 void G1CollectorPolicy::record_concurrent_pause_end() {
1012 }
1013 
1014 template<class T>
1015 T sum_of(T* sum_arr, int start, int n, int N) {
1016   T sum = (T)0;
1017   for (int i = 0; i < n; i++) {
1018     int j = (start + i) % N;
1019     sum += sum_arr[j];
1020   }
1021   return sum;
1022 }
1023 
1024 void G1CollectorPolicy::print_par_stats(int level,
1025                                         const char* str,
1026                                         double* data) {
1027   double min = data[0], max = data[0];
1028   double total = 0.0;
1029   LineBuffer buf(level);
1030   buf.append("[%s (ms):", str);
1031   for (uint i = 0; i < no_of_gc_threads(); ++i) {
1032     double val = data[i];
1033     if (val < min)
1034       min = val;
1035     if (val > max)
1036       max = val;
1037     total += val;
1038     buf.append("  %3.1lf", val);
1039   }
1040   buf.append_and_print_cr("");
1041   double avg = total / (double) no_of_gc_threads();
1042   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
1043     avg, min, max, max - min);
1044 }
1045 
1046 void G1CollectorPolicy::print_par_sizes(int level,
1047                                         const char* str,
1048                                         double* data) {
1049   double min = data[0], max = data[0];
1050   double total = 0.0;
1051   LineBuffer buf(level);
1052   buf.append("[%s :", str);
1053   for (uint i = 0; i < no_of_gc_threads(); ++i) {
1054     double val = data[i];
1055     if (val < min)
1056       min = val;
1057     if (val > max)
1058       max = val;
1059     total += val;
1060     buf.append(" %d", (int) val);
1061   }
1062   buf.append_and_print_cr("");
1063   double avg = total / (double) no_of_gc_threads();
1064   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
1065     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
1066 }
1067 
1068 void G1CollectorPolicy::print_stats(int level,
1069                                     const char* str,
1070                                     double value) {
1071   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
1072 }
1073 
1074 void G1CollectorPolicy::print_stats(int level,
1075                                     const char* str,
1076                                     int value) {
1077   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1078 }
1079 
1080 double G1CollectorPolicy::avg_value(double* data) {
1081   if (G1CollectedHeap::use_parallel_gc_threads()) {
1082     double ret = 0.0;
1083     for (uint i = 0; i < no_of_gc_threads(); ++i) {
1084       ret += data[i];
1085     }
1086     return ret / (double) no_of_gc_threads();
1087   } else {
1088     return data[0];
1089   }
1090 }
1091 
1092 double G1CollectorPolicy::max_value(double* data) {
1093   if (G1CollectedHeap::use_parallel_gc_threads()) {
1094     double ret = data[0];
1095     for (uint i = 1; i < no_of_gc_threads(); ++i) {
1096       if (data[i] > ret) {
1097         ret = data[i];
1098       }
1099     }
1100     return ret;
1101   } else {
1102     return data[0];
1103   }
1104 }
1105 
1106 double G1CollectorPolicy::sum_of_values(double* data) {
1107   if (G1CollectedHeap::use_parallel_gc_threads()) {
1108     double sum = 0.0;
1109     for (uint i = 0; i < no_of_gc_threads(); i++) {
1110       sum += data[i];
1111     }
1112     return sum;
1113   } else {
1114     return data[0];
1115   }
1116 }
1117 
1118 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
1119   double ret = data1[0] + data2[0];
1120 
1121   if (G1CollectedHeap::use_parallel_gc_threads()) {
1122     for (uint i = 1; i < no_of_gc_threads(); ++i) {
1123       double data = data1[i] + data2[i];
1124       if (data > ret) {
1125         ret = data;
1126       }
1127     }
1128   }
1129   return ret;
1130 }
1131 
1132 // Anything below that is considered to be zero
1133 #define MIN_TIMER_GRANULARITY 0.0000001
1134 
1135 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
1136   double end_time_sec = os::elapsedTime();
1137   double elapsed_ms = _last_pause_time_ms;
1138   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1139   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
1140          "otherwise, the subtraction below does not make sense");
1141   size_t rs_size =
1142             _cur_collection_pause_used_regions_at_start - cset_region_length();
1143   size_t cur_used_bytes = _g1->used();
1144   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1145   bool last_pause_included_initial_mark = false;
1146   bool update_stats = !_g1->evacuation_failed();
1147   set_no_of_gc_threads(no_of_gc_threads);
1148 
1149 #ifndef PRODUCT
1150   if (G1YoungSurvRateVerbose) {
1151     gclog_or_tty->print_cr("");
1152     _short_lived_surv_rate_group->print();
1153     // do that for any other surv rate groups too
1154   }
1155 #endif // PRODUCT
1156 
1157   last_pause_included_initial_mark = during_initial_mark_pause();
1158   if (last_pause_included_initial_mark)
1159     record_concurrent_mark_init_end(0.0);
1160 
1161   size_t marking_initiating_used_threshold =
1162     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1163 
1164   if (!_g1->mark_in_progress() && !_last_young_gc) {
1165     assert(!last_pause_included_initial_mark, "invariant");
1166     if (cur_used_bytes > marking_initiating_used_threshold) {
1167       if (cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
1168         assert(!during_initial_mark_pause(), "we should not see this here");
1169 
1170         ergo_verbose3(ErgoConcCycles,
1171                       "request concurrent cycle initiation",
1172                       ergo_format_reason("occupancy higher than threshold")
1173                       ergo_format_byte("occupancy")
1174                       ergo_format_byte_perc("threshold"),
1175                       cur_used_bytes,
1176                       marking_initiating_used_threshold,
1177                       (double) InitiatingHeapOccupancyPercent);
1178 
1179         // Note: this might have already been set, if during the last
1180         // pause we decided to start a cycle but at the beginning of
1181         // this pause we decided to postpone it. That's OK.
1182         set_initiate_conc_mark_if_possible();
1183       } else {
1184         ergo_verbose2(ErgoConcCycles,
1185                   "do not request concurrent cycle initiation",
1186                   ergo_format_reason("occupancy lower than previous occupancy")
1187                   ergo_format_byte("occupancy")
1188                   ergo_format_byte("previous occupancy"),
1189                   cur_used_bytes,
1190                   _prev_collection_pause_used_at_end_bytes);
1191       }
1192     }
1193   }
1194 
1195   _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
1196 
1197   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
1198                           end_time_sec, false);
1199 
1200   // This assert is exempted when we're doing parallel collection pauses,
1201   // because the fragmentation caused by the parallel GC allocation buffers
1202   // can lead to more memory being used during collection than was used
1203   // before. Best leave this out until the fragmentation problem is fixed.
1204   // Pauses in which evacuation failed can also lead to negative
1205   // collections, since no space is reclaimed from a region containing an
1206   // object whose evacuation failed.
1207   // Further, we're now always doing parallel collection.  But I'm still
1208   // leaving this here as a placeholder for a more precise assertion later.
1209   // (DLD, 10/05.)
1210   assert((true || parallel) // Always using GC LABs now.
1211          || _g1->evacuation_failed()
1212          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
1213          "Negative collection");
1214 
1215   size_t freed_bytes =
1216     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
1217   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1218 
1219   double survival_fraction =
1220     (double)surviving_bytes/
1221     (double)_collection_set_bytes_used_before;
1222 
1223   // These values are used to update the summary information that is
1224   // displayed when TraceGen0Time is enabled, and are output as part
1225   // of the PrintGCDetails output, in the non-parallel case.
1226 
1227   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
1228   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
1229   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
1230   double update_rs_processed_buffers =
1231     sum_of_values(_par_last_update_rs_processed_buffers);
1232   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
1233   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
1234   double termination_time = avg_value(_par_last_termination_times_ms);
1235 
1236   double known_time = ext_root_scan_time +
1237                       mark_stack_scan_time +
1238                       update_rs_time +
1239                       scan_rs_time +
1240                       obj_copy_time;
1241 
1242   double other_time_ms = elapsed_ms;
1243 
1244   // Subtract the SATB drain time. It's initialized to zero at the
1245   // start of the pause and is updated during the pause if marking
1246   // is in progress.
1247   other_time_ms -= _cur_satb_drain_time_ms;
1248 
1249   if (parallel) {
1250     other_time_ms -= _cur_collection_par_time_ms;
1251   } else {
1252     other_time_ms -= known_time;
1253   }
1254 
1255   // Subtract the time taken to clean the card table from the
1256   // current value of "other time"
1257   other_time_ms -= _cur_clear_ct_time_ms;
1258 
1259   // Subtract the time spent completing marking in the collection
1260   // set. Note if marking is not in progress during the pause
1261   // the value of _mark_closure_time_ms will be zero.
1262   other_time_ms -= _mark_closure_time_ms;
1263 
1264   // TraceGen0Time and TraceGen1Time summary info updating.
1265   _all_pause_times_ms->add(elapsed_ms);
1266 
1267   if (update_stats) {
1268     _summary->record_total_time_ms(elapsed_ms);
1269     _summary->record_other_time_ms(other_time_ms);
1270 
1271     MainBodySummary* body_summary = _summary->main_body_summary();
1272     assert(body_summary != NULL, "should not be null!");
1273 
1274     // This will be non-zero iff marking is currently in progress (i.e.
1275     // _g1->mark_in_progress() == true) and the currrent pause was not
1276     // an initial mark pause. Since the body_summary items are NumberSeqs,
1277     // however, they have to be consistent and updated in lock-step with
1278     // each other. Therefore we unconditionally record the SATB drain
1279     // time - even if it's zero.
1280     body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
1281 
1282     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
1283     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
1284     body_summary->record_update_rs_time_ms(update_rs_time);
1285     body_summary->record_scan_rs_time_ms(scan_rs_time);
1286     body_summary->record_obj_copy_time_ms(obj_copy_time);
1287 
1288     if (parallel) {
1289       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
1290       body_summary->record_termination_time_ms(termination_time);
1291 
1292       double parallel_known_time = known_time + termination_time;
1293       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
1294       body_summary->record_parallel_other_time_ms(parallel_other_time);
1295     }
1296 
1297     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
1298     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1299 
1300     // We exempt parallel collection from this check because Alloc Buffer
1301     // fragmentation can produce negative collections.  Same with evac
1302     // failure.
1303     // Further, we're now always doing parallel collection.  But I'm still
1304     // leaving this here as a placeholder for a more precise assertion later.
1305     // (DLD, 10/05.
1306     assert((true || parallel)
1307            || _g1->evacuation_failed()
1308            || surviving_bytes <= _collection_set_bytes_used_before,
1309            "Or else negative collection!");
1310 
1311     // this is where we update the allocation rate of the application
1312     double app_time_ms =
1313       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
1314     if (app_time_ms < MIN_TIMER_GRANULARITY) {
1315       // This usually happens due to the timer not having the required
1316       // granularity. Some Linuxes are the usual culprits.
1317       // We'll just set it to something (arbitrarily) small.
1318       app_time_ms = 1.0;
1319     }
1320     // We maintain the invariant that all objects allocated by mutator
1321     // threads will be allocated out of eden regions. So, we can use
1322     // the eden region number allocated since the previous GC to
1323     // calculate the application's allocate rate. The only exception
1324     // to that is humongous objects that are allocated separately. But
1325     // given that humongous object allocations do not really affect
1326     // either the pause's duration nor when the next pause will take
1327     // place we can safely ignore them here.
1328     size_t regions_allocated = eden_cset_region_length();
1329     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1330     _alloc_rate_ms_seq->add(alloc_rate_ms);
1331 
1332     double interval_ms =
1333       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1334     update_recent_gc_times(end_time_sec, elapsed_ms);
1335     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1336     if (recent_avg_pause_time_ratio() < 0.0 ||
1337         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1338 #ifndef PRODUCT
1339       // Dump info to allow post-facto debugging
1340       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1341       gclog_or_tty->print_cr("-------------------------------------------");
1342       gclog_or_tty->print_cr("Recent GC Times (ms):");
1343       _recent_gc_times_ms->dump();
1344       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1345       _recent_prev_end_times_for_all_gcs_sec->dump();
1346       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1347                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1348       // In debug mode, terminate the JVM if the user wants to debug at this point.
1349       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1350 #endif  // !PRODUCT
1351       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1352       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1353       if (_recent_avg_pause_time_ratio < 0.0) {
1354         _recent_avg_pause_time_ratio = 0.0;
1355       } else {
1356         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1357         _recent_avg_pause_time_ratio = 1.0;
1358       }
1359     }
1360   }
1361 
1362   for (int i = 0; i < _aux_num; ++i) {
1363     if (_cur_aux_times_set[i]) {
1364       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
1365     }
1366   }
1367 
1368   // PrintGCDetails output
1369   if (PrintGCDetails) {
1370     bool print_marking_info =
1371       _g1->mark_in_progress() && !last_pause_included_initial_mark;
1372 
1373     gclog_or_tty->print_cr("%s, %1.8lf secs]",
1374                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
1375                            elapsed_ms / 1000.0);
1376 
1377     if (print_marking_info) {
1378       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
1379     }
1380 
1381     if (parallel) {
1382       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
1383       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
1384       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
1385       if (print_marking_info) {
1386         print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
1387       }
1388       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1389       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
1390       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
1391       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
1392       print_par_stats(2, "Termination", _par_last_termination_times_ms);
1393       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
1394       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
1395 
1396       for (int i = 0; i < _parallel_gc_threads; i++) {
1397         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
1398 
1399         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
1400                                    _par_last_mark_stack_scan_times_ms[i] +
1401                                    _par_last_update_rs_times_ms[i] +
1402                                    _par_last_scan_rs_times_ms[i] +
1403                                    _par_last_obj_copy_times_ms[i] +
1404                                    _par_last_termination_times_ms[i];
1405 
1406         _par_last_gc_worker_other_times_ms[i] = _cur_collection_par_time_ms - worker_known_time;
1407       }
1408       print_par_stats(2, "GC Worker", _par_last_gc_worker_times_ms);
1409       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
1410     } else {
1411       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
1412       if (print_marking_info) {
1413         print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
1414       }
1415       print_stats(1, "Update RS", update_rs_time);
1416       print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
1417       print_stats(1, "Scan RS", scan_rs_time);
1418       print_stats(1, "Object Copying", obj_copy_time);
1419     }
1420     if (print_marking_info) {
1421       print_stats(1, "Complete CSet Marking", _mark_closure_time_ms);
1422     }
1423     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1424 #ifndef PRODUCT
1425     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
1426     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
1427     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
1428     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
1429     if (_num_cc_clears > 0) {
1430       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
1431     }
1432 #endif
1433     print_stats(1, "Other", other_time_ms);
1434     print_stats(2, "Choose CSet",
1435                    (_recorded_young_cset_choice_time_ms +
1436                     _recorded_non_young_cset_choice_time_ms));
1437     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
1438     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
1439     print_stats(2, "Free CSet",
1440                    (_recorded_young_free_cset_time_ms +
1441                     _recorded_non_young_free_cset_time_ms));
1442 
1443     for (int i = 0; i < _aux_num; ++i) {
1444       if (_cur_aux_times_set[i]) {
1445         char buffer[96];
1446         sprintf(buffer, "Aux%d", i);
1447         print_stats(1, buffer, _cur_aux_times_ms[i]);
1448       }
1449     }
1450   }
1451 
1452   // Update the efficiency-since-mark vars.
1453   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
1454   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
1455     // This usually happens due to the timer not having the required
1456     // granularity. Some Linuxes are the usual culprits.
1457     // We'll just set it to something (arbitrarily) small.
1458     proc_ms = 1.0;
1459   }
1460   double cur_efficiency = (double) freed_bytes / proc_ms;
1461 
1462   bool new_in_marking_window = _in_marking_window;
1463   bool new_in_marking_window_im = false;
1464   if (during_initial_mark_pause()) {
1465     new_in_marking_window = true;
1466     new_in_marking_window_im = true;
1467   }
1468 
1469   if (_last_young_gc) {
1470     if (!last_pause_included_initial_mark) {
1471       ergo_verbose2(ErgoMixedGCs,
1472                     "start mixed GCs",
1473                     ergo_format_byte_perc("known garbage"),
1474                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
1475       set_gcs_are_young(false);
1476     } else {
1477       ergo_verbose0(ErgoMixedGCs,
1478                     "do not start mixed GCs",
1479                     ergo_format_reason("concurrent cycle is about to start"));
1480     }
1481     _last_young_gc = false;
1482   }
1483 
1484   if (!_last_gc_was_young) {
1485     if (_should_revert_to_young_gcs) {
1486       ergo_verbose2(ErgoMixedGCs,
1487                     "end mixed GCs",
1488                     ergo_format_reason("mixed GCs end requested")
1489                     ergo_format_byte_perc("known garbage"),
1490                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
1491       set_gcs_are_young(true);
1492     } else if (_known_garbage_ratio < 0.05) {
1493       ergo_verbose3(ErgoMixedGCs,
1494                "end mixed GCs",
1495                ergo_format_reason("known garbage percent lower than threshold")
1496                ergo_format_byte_perc("known garbage")
1497                ergo_format_perc("threshold"),
1498                _known_garbage_bytes, _known_garbage_ratio * 100.0,
1499                0.05 * 100.0);
1500       set_gcs_are_young(true);
1501     } else if (adaptive_young_list_length() &&
1502               (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) {
1503       ergo_verbose5(ErgoMixedGCs,
1504                     "end mixed GCs",
1505                     ergo_format_reason("current GC efficiency lower than "
1506                                        "predicted young GC efficiency")
1507                     ergo_format_double("GC efficiency factor")
1508                     ergo_format_double("current GC efficiency")
1509                     ergo_format_double("predicted young GC efficiency")
1510                     ergo_format_byte_perc("known garbage"),
1511                     get_gc_eff_factor(), cur_efficiency,
1512                     predict_young_gc_eff(),
1513                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
1514       set_gcs_are_young(true);
1515     }
1516   }
1517   _should_revert_to_young_gcs = false;
1518 
1519   if (_last_gc_was_young && !_during_marking) {
1520     _young_gc_eff_seq->add(cur_efficiency);
1521   }
1522 
1523   _short_lived_surv_rate_group->start_adding_regions();
1524   // do that for any other surv rate groupsx
1525 
1526   if (update_stats) {
1527     double pause_time_ms = elapsed_ms;
1528 
1529     size_t diff = 0;
1530     if (_max_pending_cards >= _pending_cards)
1531       diff = _max_pending_cards - _pending_cards;
1532     _pending_card_diff_seq->add((double) diff);
1533 
1534     double cost_per_card_ms = 0.0;
1535     if (_pending_cards > 0) {
1536       cost_per_card_ms = update_rs_time / (double) _pending_cards;
1537       _cost_per_card_ms_seq->add(cost_per_card_ms);
1538     }
1539 
1540     size_t cards_scanned = _g1->cards_scanned();
1541 
1542     double cost_per_entry_ms = 0.0;
1543     if (cards_scanned > 10) {
1544       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
1545       if (_last_gc_was_young) {
1546         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1547       } else {
1548         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1549       }
1550     }
1551 
1552     if (_max_rs_lengths > 0) {
1553       double cards_per_entry_ratio =
1554         (double) cards_scanned / (double) _max_rs_lengths;
1555       if (_last_gc_was_young) {
1556         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1557       } else {
1558         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1559       }
1560     }
1561 
1562     // It turns out that, sometimes, _max_rs_lengths can get smaller
1563     // than _recorded_rs_lengths which causes rs_length_diff to get
1564     // very large and mess up the RSet length predictions. We'll be
1565     // defensive until we work out why this happens.
1566     size_t rs_length_diff = 0;
1567     if (_max_rs_lengths > _recorded_rs_lengths) {
1568       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1569     }
1570     _rs_length_diff_seq->add((double) rs_length_diff);
1571 
1572     size_t copied_bytes = surviving_bytes;
1573     double cost_per_byte_ms = 0.0;
1574     if (copied_bytes > 0) {
1575       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
1576       if (_in_marking_window) {
1577         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1578       } else {
1579         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1580       }
1581     }
1582 
1583     double all_other_time_ms = pause_time_ms -
1584       (update_rs_time + scan_rs_time + obj_copy_time +
1585        _mark_closure_time_ms + termination_time);
1586 
1587     double young_other_time_ms = 0.0;
1588     if (young_cset_region_length() > 0) {
1589       young_other_time_ms =
1590         _recorded_young_cset_choice_time_ms +
1591         _recorded_young_free_cset_time_ms;
1592       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1593                                           (double) young_cset_region_length());
1594     }
1595     double non_young_other_time_ms = 0.0;
1596     if (old_cset_region_length() > 0) {
1597       non_young_other_time_ms =
1598         _recorded_non_young_cset_choice_time_ms +
1599         _recorded_non_young_free_cset_time_ms;
1600 
1601       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1602                                             (double) old_cset_region_length());
1603     }
1604 
1605     double constant_other_time_ms = all_other_time_ms -
1606       (young_other_time_ms + non_young_other_time_ms);
1607     _constant_other_time_ms_seq->add(constant_other_time_ms);
1608 
1609     double survival_ratio = 0.0;
1610     if (_bytes_in_collection_set_before_gc > 0) {
1611       survival_ratio = (double) _bytes_copied_during_gc /
1612                                    (double) _bytes_in_collection_set_before_gc;
1613     }
1614 
1615     _pending_cards_seq->add((double) _pending_cards);
1616     _rs_lengths_seq->add((double) _max_rs_lengths);
1617 
1618     double expensive_region_limit_ms =
1619       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
1620     if (expensive_region_limit_ms < 0.0) {
1621       // this means that the other time was predicted to be longer than
1622       // than the max pause time
1623       expensive_region_limit_ms = (double) MaxGCPauseMillis;
1624     }
1625     _expensive_region_limit_ms = expensive_region_limit_ms;
1626   }
1627 
1628   _in_marking_window = new_in_marking_window;
1629   _in_marking_window_im = new_in_marking_window_im;
1630   _free_regions_at_end_of_collection = _g1->free_regions();
1631   update_young_list_target_length();
1632 
1633   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1634   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1635   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1636 
1637   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
1638 }
1639 
1640 #define EXT_SIZE_FORMAT "%d%s"
1641 #define EXT_SIZE_PARAMS(bytes)                                  \
1642   byte_size_in_proper_unit((bytes)),                            \
1643   proper_unit_for_byte_size((bytes))
1644 
1645 void G1CollectorPolicy::print_heap_transition() {
1646   if (PrintGCDetails) {
1647     YoungList* young_list = _g1->young_list();
1648     size_t eden_bytes = young_list->eden_used_bytes();
1649     size_t survivor_bytes = young_list->survivor_used_bytes();
1650     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
1651     size_t used = _g1->used();
1652     size_t capacity = _g1->capacity();
1653     size_t eden_capacity =
1654       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1655 
1656     gclog_or_tty->print_cr(
1657       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1658       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1659       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1660       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1661       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
1662       EXT_SIZE_PARAMS(_prev_eden_capacity),
1663       EXT_SIZE_PARAMS(eden_bytes),
1664       EXT_SIZE_PARAMS(eden_capacity),
1665       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
1666       EXT_SIZE_PARAMS(survivor_bytes),
1667       EXT_SIZE_PARAMS(used_before_gc),
1668       EXT_SIZE_PARAMS(_capacity_before_gc),
1669       EXT_SIZE_PARAMS(used),
1670       EXT_SIZE_PARAMS(capacity));
1671 
1672     _prev_eden_capacity = eden_capacity;
1673   } else if (PrintGC) {
1674     _g1->print_size_transition(gclog_or_tty,
1675                                _cur_collection_pause_used_at_start_bytes,
1676                                _g1->used(), _g1->capacity());
1677   }
1678 }
1679 
1680 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1681                                                      double update_rs_processed_buffers,
1682                                                      double goal_ms) {
1683   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1684   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1685 
1686   if (G1UseAdaptiveConcRefinement) {
1687     const int k_gy = 3, k_gr = 6;
1688     const double inc_k = 1.1, dec_k = 0.9;
1689 
1690     int g = cg1r->green_zone();
1691     if (update_rs_time > goal_ms) {
1692       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1693     } else {
1694       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1695         g = (int)MAX2(g * inc_k, g + 1.0);
1696       }
1697     }
1698     // Change the refinement threads params
1699     cg1r->set_green_zone(g);
1700     cg1r->set_yellow_zone(g * k_gy);
1701     cg1r->set_red_zone(g * k_gr);
1702     cg1r->reinitialize_threads();
1703 
1704     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1705     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1706                                     cg1r->yellow_zone());
1707     // Change the barrier params
1708     dcqs.set_process_completed_threshold(processing_threshold);
1709     dcqs.set_max_completed_queue(cg1r->red_zone());
1710   }
1711 
1712   int curr_queue_size = dcqs.completed_buffers_num();
1713   if (curr_queue_size >= cg1r->yellow_zone()) {
1714     dcqs.set_completed_queue_padding(curr_queue_size);
1715   } else {
1716     dcqs.set_completed_queue_padding(0);
1717   }
1718   dcqs.notify_if_necessary();
1719 }
1720 
1721 double
1722 G1CollectorPolicy::
1723 predict_young_collection_elapsed_time_ms(size_t adjustment) {
1724   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
1725 
1726   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1727   size_t young_num = g1h->young_list()->length();
1728   if (young_num == 0)
1729     return 0.0;
1730 
1731   young_num += adjustment;
1732   size_t pending_cards = predict_pending_cards();
1733   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1734                       predict_rs_length_diff();
1735   size_t card_num;
1736   if (gcs_are_young()) {
1737     card_num = predict_young_card_num(rs_lengths);
1738   } else {
1739     card_num = predict_non_young_card_num(rs_lengths);
1740   }
1741   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
1742   double accum_yg_surv_rate =
1743     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
1744 
1745   size_t bytes_to_copy =
1746     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
1747 
1748   return
1749     predict_rs_update_time_ms(pending_cards) +
1750     predict_rs_scan_time_ms(card_num) +
1751     predict_object_copy_time_ms(bytes_to_copy) +
1752     predict_young_other_time_ms(young_num) +
1753     predict_constant_other_time_ms();
1754 }
1755 
1756 double
1757 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1758   size_t rs_length = predict_rs_length_diff();
1759   size_t card_num;
1760   if (gcs_are_young()) {
1761     card_num = predict_young_card_num(rs_length);
1762   } else {
1763     card_num = predict_non_young_card_num(rs_length);
1764   }
1765   return predict_base_elapsed_time_ms(pending_cards, card_num);
1766 }
1767 
1768 double
1769 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1770                                                 size_t scanned_cards) {
1771   return
1772     predict_rs_update_time_ms(pending_cards) +
1773     predict_rs_scan_time_ms(scanned_cards) +
1774     predict_constant_other_time_ms();
1775 }
1776 
1777 double
1778 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1779                                                   bool young) {
1780   size_t rs_length = hr->rem_set()->occupied();
1781   size_t card_num;
1782   if (gcs_are_young()) {
1783     card_num = predict_young_card_num(rs_length);
1784   } else {
1785     card_num = predict_non_young_card_num(rs_length);
1786   }
1787   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1788 
1789   double region_elapsed_time_ms =
1790     predict_rs_scan_time_ms(card_num) +
1791     predict_object_copy_time_ms(bytes_to_copy);
1792 
1793   if (young)
1794     region_elapsed_time_ms += predict_young_other_time_ms(1);
1795   else
1796     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1797 
1798   return region_elapsed_time_ms;
1799 }
1800 
1801 size_t
1802 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1803   size_t bytes_to_copy;
1804   if (hr->is_marked())
1805     bytes_to_copy = hr->max_live_bytes();
1806   else {
1807     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
1808                "invariant" );
1809     int age = hr->age_in_surv_rate_group();
1810     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1811     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1812   }
1813 
1814   return bytes_to_copy;
1815 }
1816 
1817 void
1818 G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length,
1819                                           size_t survivor_cset_region_length) {
1820   _eden_cset_region_length     = eden_cset_region_length;
1821   _survivor_cset_region_length = survivor_cset_region_length;
1822   _old_cset_region_length      = 0;
1823 }
1824 
1825 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1826   _recorded_rs_lengths = rs_lengths;
1827 }
1828 
1829 void G1CollectorPolicy::check_if_region_is_too_expensive(double
1830                                                            predicted_time_ms) {
1831   // I don't think we need to do this when in young GC mode since
1832   // marking will be initiated next time we hit the soft limit anyway...
1833   if (predicted_time_ms > _expensive_region_limit_ms) {
1834     ergo_verbose2(ErgoMixedGCs,
1835               "request mixed GCs end",
1836               ergo_format_reason("predicted region time higher than threshold")
1837               ergo_format_ms("predicted region time")
1838               ergo_format_ms("threshold"),
1839               predicted_time_ms, _expensive_region_limit_ms);
1840     // no point in doing another mixed GC
1841     _should_revert_to_young_gcs = true;
1842   }
1843 }
1844 
1845 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1846                                                double elapsed_ms) {
1847   _recent_gc_times_ms->add(elapsed_ms);
1848   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1849   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1850 }
1851 
1852 size_t G1CollectorPolicy::expansion_amount() {
1853   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1854   double threshold = _gc_overhead_perc;
1855   if (recent_gc_overhead > threshold) {
1856     // We will double the existing space, or take
1857     // G1ExpandByPercentOfAvailable % of the available expansion
1858     // space, whichever is smaller, bounded below by a minimum
1859     // expansion (unless that's all that's left.)
1860     const size_t min_expand_bytes = 1*M;
1861     size_t reserved_bytes = _g1->max_capacity();
1862     size_t committed_bytes = _g1->capacity();
1863     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1864     size_t expand_bytes;
1865     size_t expand_bytes_via_pct =
1866       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1867     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1868     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1869     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1870 
1871     ergo_verbose5(ErgoHeapSizing,
1872                   "attempt heap expansion",
1873                   ergo_format_reason("recent GC overhead higher than "
1874                                      "threshold after GC")
1875                   ergo_format_perc("recent GC overhead")
1876                   ergo_format_perc("threshold")
1877                   ergo_format_byte("uncommitted")
1878                   ergo_format_byte_perc("calculated expansion amount"),
1879                   recent_gc_overhead, threshold,
1880                   uncommitted_bytes,
1881                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1882 
1883     return expand_bytes;
1884   } else {
1885     return 0;
1886   }
1887 }
1888 
1889 class CountCSClosure: public HeapRegionClosure {
1890   G1CollectorPolicy* _g1_policy;
1891 public:
1892   CountCSClosure(G1CollectorPolicy* g1_policy) :
1893     _g1_policy(g1_policy) {}
1894   bool doHeapRegion(HeapRegion* r) {
1895     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
1896     return false;
1897   }
1898 };
1899 
1900 void G1CollectorPolicy::count_CS_bytes_used() {
1901   CountCSClosure cs_closure(this);
1902   _g1->collection_set_iterate(&cs_closure);
1903 }
1904 
1905 void G1CollectorPolicy::print_summary(int level,
1906                                       const char* str,
1907                                       NumberSeq* seq) const {
1908   double sum = seq->sum();
1909   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
1910                 str, sum / 1000.0, seq->avg());
1911 }
1912 
1913 void G1CollectorPolicy::print_summary_sd(int level,
1914                                          const char* str,
1915                                          NumberSeq* seq) const {
1916   print_summary(level, str, seq);
1917   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
1918                 seq->num(), seq->sd(), seq->maximum());
1919 }
1920 
1921 void G1CollectorPolicy::check_other_times(int level,
1922                                         NumberSeq* other_times_ms,
1923                                         NumberSeq* calc_other_times_ms) const {
1924   bool should_print = false;
1925   LineBuffer buf(level + 2);
1926 
1927   double max_sum = MAX2(fabs(other_times_ms->sum()),
1928                         fabs(calc_other_times_ms->sum()));
1929   double min_sum = MIN2(fabs(other_times_ms->sum()),
1930                         fabs(calc_other_times_ms->sum()));
1931   double sum_ratio = max_sum / min_sum;
1932   if (sum_ratio > 1.1) {
1933     should_print = true;
1934     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
1935   }
1936 
1937   double max_avg = MAX2(fabs(other_times_ms->avg()),
1938                         fabs(calc_other_times_ms->avg()));
1939   double min_avg = MIN2(fabs(other_times_ms->avg()),
1940                         fabs(calc_other_times_ms->avg()));
1941   double avg_ratio = max_avg / min_avg;
1942   if (avg_ratio > 1.1) {
1943     should_print = true;
1944     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
1945   }
1946 
1947   if (other_times_ms->sum() < -0.01) {
1948     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
1949   }
1950 
1951   if (other_times_ms->avg() < -0.01) {
1952     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
1953   }
1954 
1955   if (calc_other_times_ms->sum() < -0.01) {
1956     should_print = true;
1957     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
1958   }
1959 
1960   if (calc_other_times_ms->avg() < -0.01) {
1961     should_print = true;
1962     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
1963   }
1964 
1965   if (should_print)
1966     print_summary(level, "Other(Calc)", calc_other_times_ms);
1967 }
1968 
1969 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
1970   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1971   MainBodySummary*    body_summary = summary->main_body_summary();
1972   if (summary->get_total_seq()->num() > 0) {
1973     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
1974     if (body_summary != NULL) {
1975       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
1976       if (parallel) {
1977         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
1978         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
1979         print_summary(2, "Mark Stack Scanning", body_summary->get_mark_stack_scan_seq());
1980         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
1981         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
1982         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
1983         print_summary(2, "Termination", body_summary->get_termination_seq());
1984         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
1985         {
1986           NumberSeq* other_parts[] = {
1987             body_summary->get_ext_root_scan_seq(),
1988             body_summary->get_mark_stack_scan_seq(),
1989             body_summary->get_update_rs_seq(),
1990             body_summary->get_scan_rs_seq(),
1991             body_summary->get_obj_copy_seq(),
1992             body_summary->get_termination_seq()
1993           };
1994           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
1995                                         6, other_parts);
1996           check_other_times(2, body_summary->get_parallel_other_seq(),
1997                             &calc_other_times_ms);
1998         }
1999       } else {
2000         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
2001         print_summary(1, "Mark Stack Scanning", body_summary->get_mark_stack_scan_seq());
2002         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
2003         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
2004         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
2005       }
2006     }
2007     print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
2008     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
2009     print_summary(1, "Other", summary->get_other_seq());
2010     {
2011       if (body_summary != NULL) {
2012         NumberSeq calc_other_times_ms;
2013         if (parallel) {
2014           // parallel
2015           NumberSeq* other_parts[] = {
2016             body_summary->get_satb_drain_seq(),
2017             body_summary->get_parallel_seq(),
2018             body_summary->get_clear_ct_seq()
2019           };
2020           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2021                                                 3, other_parts);
2022         } else {
2023           // serial
2024           NumberSeq* other_parts[] = {
2025             body_summary->get_satb_drain_seq(),
2026             body_summary->get_update_rs_seq(),
2027             body_summary->get_ext_root_scan_seq(),
2028             body_summary->get_mark_stack_scan_seq(),
2029             body_summary->get_scan_rs_seq(),
2030             body_summary->get_obj_copy_seq()
2031           };
2032           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2033                                                 6, other_parts);
2034         }
2035         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2036       }
2037     }
2038   } else {
2039     LineBuffer(1).append_and_print_cr("none");
2040   }
2041   LineBuffer(0).append_and_print_cr("");
2042 }
2043 
2044 void G1CollectorPolicy::print_tracing_info() const {
2045   if (TraceGen0Time) {
2046     gclog_or_tty->print_cr("ALL PAUSES");
2047     print_summary_sd(0, "Total", _all_pause_times_ms);
2048     gclog_or_tty->print_cr("");
2049     gclog_or_tty->print_cr("");
2050     gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2051     gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2052     gclog_or_tty->print_cr("");
2053 
2054     gclog_or_tty->print_cr("EVACUATION PAUSES");
2055     print_summary(_summary);
2056 
2057     gclog_or_tty->print_cr("MISC");
2058     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
2059     print_summary_sd(0, "Yields", _all_yield_times_ms);
2060     for (int i = 0; i < _aux_num; ++i) {
2061       if (_all_aux_times_ms[i].num() > 0) {
2062         char buffer[96];
2063         sprintf(buffer, "Aux%d", i);
2064         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
2065       }
2066     }
2067   }
2068   if (TraceGen1Time) {
2069     if (_all_full_gc_times_ms->num() > 0) {
2070       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2071                  _all_full_gc_times_ms->num(),
2072                  _all_full_gc_times_ms->sum() / 1000.0);
2073       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
2074       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2075                     _all_full_gc_times_ms->sd(),
2076                     _all_full_gc_times_ms->maximum());
2077     }
2078   }
2079 }
2080 
2081 void G1CollectorPolicy::print_yg_surv_rate_info() const {
2082 #ifndef PRODUCT
2083   _short_lived_surv_rate_group->print_surv_rate_summary();
2084   // add this call for any other surv rate groups
2085 #endif // PRODUCT
2086 }
2087 
2088 #ifndef PRODUCT
2089 // for debugging, bit of a hack...
2090 static char*
2091 region_num_to_mbs(int length) {
2092   static char buffer[64];
2093   double bytes = (double) (length * HeapRegion::GrainBytes);
2094   double mbs = bytes / (double) (1024 * 1024);
2095   sprintf(buffer, "%7.2lfMB", mbs);
2096   return buffer;
2097 }
2098 #endif // PRODUCT
2099 
2100 size_t G1CollectorPolicy::max_regions(int purpose) {
2101   switch (purpose) {
2102     case GCAllocForSurvived:
2103       return _max_survivor_regions;
2104     case GCAllocForTenured:
2105       return REGIONS_UNLIMITED;
2106     default:
2107       ShouldNotReachHere();
2108       return REGIONS_UNLIMITED;
2109   };
2110 }
2111 
2112 void G1CollectorPolicy::update_max_gc_locker_expansion() {
2113   size_t expansion_region_num = 0;
2114   if (GCLockerEdenExpansionPercent > 0) {
2115     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
2116     double expansion_region_num_d = perc * (double) _young_list_target_length;
2117     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
2118     // less than 1.0) we'll get 1.
2119     expansion_region_num = (size_t) ceil(expansion_region_num_d);
2120   } else {
2121     assert(expansion_region_num == 0, "sanity");
2122   }
2123   _young_list_max_length = _young_list_target_length + expansion_region_num;
2124   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
2125 }
2126 
2127 // Calculates survivor space parameters.
2128 void G1CollectorPolicy::update_survivors_policy() {
2129   double max_survivor_regions_d =
2130                  (double) _young_list_target_length / (double) SurvivorRatio;
2131   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
2132   // smaller than 1.0) we'll get 1.
2133   _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);
2134 
2135   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2136         HeapRegion::GrainWords * _max_survivor_regions);
2137 }
2138 
2139 #ifndef PRODUCT
2140 class HRSortIndexIsOKClosure: public HeapRegionClosure {
2141   CollectionSetChooser* _chooser;
2142 public:
2143   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
2144     _chooser(chooser) {}
2145 
2146   bool doHeapRegion(HeapRegion* r) {
2147     if (!r->continuesHumongous()) {
2148       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
2149     }
2150     return false;
2151   }
2152 };
2153 
2154 bool G1CollectorPolicy::assertMarkedBytesDataOK() {
2155   HRSortIndexIsOKClosure cl(_collectionSetChooser);
2156   _g1->heap_region_iterate(&cl);
2157   return true;
2158 }
2159 #endif
2160 
2161 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
2162                                                      GCCause::Cause gc_cause) {
2163   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2164   if (!during_cycle) {
2165     ergo_verbose1(ErgoConcCycles,
2166                   "request concurrent cycle initiation",
2167                   ergo_format_reason("requested by GC cause")
2168                   ergo_format_str("GC cause"),
2169                   GCCause::to_string(gc_cause));
2170     set_initiate_conc_mark_if_possible();
2171     return true;
2172   } else {
2173     ergo_verbose1(ErgoConcCycles,
2174                   "do not request concurrent cycle initiation",
2175                   ergo_format_reason("concurrent cycle already in progress")
2176                   ergo_format_str("GC cause"),
2177                   GCCause::to_string(gc_cause));
2178     return false;
2179   }
2180 }
2181 
2182 void
2183 G1CollectorPolicy::decide_on_conc_mark_initiation() {
2184   // We are about to decide on whether this pause will be an
2185   // initial-mark pause.
2186 
2187   // First, during_initial_mark_pause() should not be already set. We
2188   // will set it here if we have to. However, it should be cleared by
2189   // the end of the pause (it's only set for the duration of an
2190   // initial-mark pause).
2191   assert(!during_initial_mark_pause(), "pre-condition");
2192 
2193   if (initiate_conc_mark_if_possible()) {
2194     // We had noticed on a previous pause that the heap occupancy has
2195     // gone over the initiating threshold and we should start a
2196     // concurrent marking cycle. So we might initiate one.
2197 
2198     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2199     if (!during_cycle) {
2200       // The concurrent marking thread is not "during a cycle", i.e.,
2201       // it has completed the last one. So we can go ahead and
2202       // initiate a new cycle.
2203 
2204       set_during_initial_mark_pause();
2205       // We do not allow mixed GCs during marking.
2206       if (!gcs_are_young()) {
2207         set_gcs_are_young(true);
2208         ergo_verbose0(ErgoMixedGCs,
2209                       "end mixed GCs",
2210                       ergo_format_reason("concurrent cycle is about to start"));
2211       }
2212 
2213       // And we can now clear initiate_conc_mark_if_possible() as
2214       // we've already acted on it.
2215       clear_initiate_conc_mark_if_possible();
2216 
2217       ergo_verbose0(ErgoConcCycles,
2218                   "initiate concurrent cycle",
2219                   ergo_format_reason("concurrent cycle initiation requested"));
2220     } else {
2221       // The concurrent marking thread is still finishing up the
2222       // previous cycle. If we start one right now the two cycles
2223       // overlap. In particular, the concurrent marking thread might
2224       // be in the process of clearing the next marking bitmap (which
2225       // we will use for the next cycle if we start one). Starting a
2226       // cycle now will be bad given that parts of the marking
2227       // information might get cleared by the marking thread. And we
2228       // cannot wait for the marking thread to finish the cycle as it
2229       // periodically yields while clearing the next marking bitmap
2230       // and, if it's in a yield point, it's waiting for us to
2231       // finish. So, at this point we will not start a cycle and we'll
2232       // let the concurrent marking thread complete the last one.
2233       ergo_verbose0(ErgoConcCycles,
2234                     "do not initiate concurrent cycle",
2235                     ergo_format_reason("concurrent cycle already in progress"));
2236     }
2237   }
2238 }
2239 
2240 class KnownGarbageClosure: public HeapRegionClosure {
2241   CollectionSetChooser* _hrSorted;
2242 
2243 public:
2244   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
2245     _hrSorted(hrSorted)
2246   {}
2247 
2248   bool doHeapRegion(HeapRegion* r) {
2249     // We only include humongous regions in collection
2250     // sets when concurrent mark shows that their contained object is
2251     // unreachable.
2252 
2253     // Do we have any marking information for this region?
2254     if (r->is_marked()) {
2255       // We don't include humongous regions in collection
2256       // sets because we collect them immediately at the end of a marking
2257       // cycle.  We also don't include young regions because we *must*
2258       // include them in the next collection pause.
2259       if (!r->isHumongous() && !r->is_young()) {
2260         _hrSorted->addMarkedHeapRegion(r);
2261       }
2262     }
2263     return false;
2264   }
2265 };
2266 
2267 class ParKnownGarbageHRClosure: public HeapRegionClosure {
2268   CollectionSetChooser* _hrSorted;
2269   jint _marked_regions_added;
2270   jint _chunk_size;
2271   jint _cur_chunk_idx;
2272   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
2273   int _worker;
2274   int _invokes;
2275 
2276   void get_new_chunk() {
2277     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
2278     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
2279   }
2280   void add_region(HeapRegion* r) {
2281     if (_cur_chunk_idx == _cur_chunk_end) {
2282       get_new_chunk();
2283     }
2284     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
2285     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
2286     _marked_regions_added++;
2287     _cur_chunk_idx++;
2288   }
2289 
2290 public:
2291   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
2292                            jint chunk_size,
2293                            int worker) :
2294     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
2295     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
2296     _invokes(0)
2297   {}
2298 
2299   bool doHeapRegion(HeapRegion* r) {
2300     // We only include humongous regions in collection
2301     // sets when concurrent mark shows that their contained object is
2302     // unreachable.
2303     _invokes++;
2304 
2305     // Do we have any marking information for this region?
2306     if (r->is_marked()) {
2307       // We don't include humongous regions in collection
2308       // sets because we collect them immediately at the end of a marking
2309       // cycle.
2310       // We also do not include young regions in collection sets
2311       if (!r->isHumongous() && !r->is_young()) {
2312         add_region(r);
2313       }
2314     }
2315     return false;
2316   }
2317   jint marked_regions_added() { return _marked_regions_added; }
2318   int invokes() { return _invokes; }
2319 };
2320 
2321 class ParKnownGarbageTask: public AbstractGangTask {
2322   CollectionSetChooser* _hrSorted;
2323   jint _chunk_size;
2324   G1CollectedHeap* _g1;
2325 public:
2326   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
2327     AbstractGangTask("ParKnownGarbageTask"),
2328     _hrSorted(hrSorted), _chunk_size(chunk_size),
2329     _g1(G1CollectedHeap::heap())
2330   {}
2331 
2332   void work(int i) {
2333     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
2334     // Back to zero for the claim value.
2335     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
2336                                          _g1->workers()->active_workers(),
2337                                          HeapRegion::InitialClaimValue);
2338     jint regions_added = parKnownGarbageCl.marked_regions_added();
2339     _hrSorted->incNumMarkedHeapRegions(regions_added);
2340     if (G1PrintParCleanupStats) {
2341       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
2342                  i, parKnownGarbageCl.invokes(), regions_added);
2343     }
2344   }
2345 };
2346 
2347 void
2348 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
2349   double start_sec;
2350   if (G1PrintParCleanupStats) {
2351     start_sec = os::elapsedTime();
2352   }
2353 
2354   _collectionSetChooser->clearMarkedHeapRegions();
2355   double clear_marked_end_sec;
2356   if (G1PrintParCleanupStats) {
2357     clear_marked_end_sec = os::elapsedTime();
2358     gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
2359                            (clear_marked_end_sec - start_sec) * 1000.0);
2360   }
2361 
2362   if (G1CollectedHeap::use_parallel_gc_threads()) {
2363     const size_t OverpartitionFactor = 4;
2364     size_t WorkUnit;
2365     // The use of MinChunkSize = 8 in the original code
2366     // causes some assertion failures when the total number of
2367     // region is less than 8.  The code here tries to fix that.
2368     // Should the original code also be fixed?
2369     if (no_of_gc_threads > 0) {
2370       const size_t MinWorkUnit =
2371         MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
2372       WorkUnit =
2373         MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
2374              MinWorkUnit);
2375     } else {
2376       assert(no_of_gc_threads > 0,
2377         "The active gc workers should be greater than 0");
2378       // In a product build do something reasonable to avoid a crash.
2379       const size_t MinWorkUnit =
2380         MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
2381       WorkUnit =
2382         MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
2383              MinWorkUnit);
2384     }
2385     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2386                                                              WorkUnit);
2387     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2388                                             (int) WorkUnit);
2389     _g1->workers()->run_task(&parKnownGarbageTask);
2390 
2391     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2392            "sanity check");
2393   } else {
2394     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
2395     _g1->heap_region_iterate(&knownGarbagecl);
2396   }
2397   double known_garbage_end_sec;
2398   if (G1PrintParCleanupStats) {
2399     known_garbage_end_sec = os::elapsedTime();
2400     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
2401                       (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
2402   }
2403 
2404   _collectionSetChooser->sortMarkedHeapRegions();
2405   double end_sec = os::elapsedTime();
2406   if (G1PrintParCleanupStats) {
2407     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
2408                            (end_sec - known_garbage_end_sec) * 1000.0);
2409   }
2410 
2411   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
2412   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
2413   _cur_mark_stop_world_time_ms += elapsed_time_ms;
2414   _prev_collection_pause_end_ms += elapsed_time_ms;
2415   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
2416 }
2417 
2418 // Add the heap region at the head of the non-incremental collection set
2419 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
2420   assert(_inc_cset_build_state == Active, "Precondition");
2421   assert(!hr->is_young(), "non-incremental add of young region");
2422 
2423   if (_g1->mark_in_progress())
2424     _g1->concurrent_mark()->registerCSetRegion(hr);
2425 
2426   assert(!hr->in_collection_set(), "should not already be in the CSet");
2427   hr->set_in_collection_set(true);
2428   hr->set_next_in_collection_set(_collection_set);
2429   _collection_set = hr;
2430   _collection_set_bytes_used_before += hr->used();
2431   _g1->register_region_with_in_cset_fast_test(hr);
2432   size_t rs_length = hr->rem_set()->occupied();
2433   _recorded_rs_lengths += rs_length;
2434   _old_cset_region_length += 1;
2435 }
2436 
2437 // Initialize the per-collection-set information
2438 void G1CollectorPolicy::start_incremental_cset_building() {
2439   assert(_inc_cset_build_state == Inactive, "Precondition");
2440 
2441   _inc_cset_head = NULL;
2442   _inc_cset_tail = NULL;
2443   _inc_cset_bytes_used_before = 0;
2444 
2445   _inc_cset_max_finger = 0;
2446   _inc_cset_recorded_rs_lengths = 0;
2447   _inc_cset_predicted_elapsed_time_ms = 0;
2448   _inc_cset_build_state = Active;
2449 }
2450 
2451 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
2452   // This routine is used when:
2453   // * adding survivor regions to the incremental cset at the end of an
2454   //   evacuation pause,
2455   // * adding the current allocation region to the incremental cset
2456   //   when it is retired, and
2457   // * updating existing policy information for a region in the
2458   //   incremental cset via young list RSet sampling.
2459   // Therefore this routine may be called at a safepoint by the
2460   // VM thread, or in-between safepoints by mutator threads (when
2461   // retiring the current allocation region) or a concurrent
2462   // refine thread (RSet sampling).
2463 
2464   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
2465   size_t used_bytes = hr->used();
2466 
2467   _inc_cset_recorded_rs_lengths += rs_length;
2468   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
2469 
2470   _inc_cset_bytes_used_before += used_bytes;
2471 
2472   // Cache the values we have added to the aggregated informtion
2473   // in the heap region in case we have to remove this region from
2474   // the incremental collection set, or it is updated by the
2475   // rset sampling code
2476   hr->set_recorded_rs_length(rs_length);
2477   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
2478 }
2479 
2480 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
2481   // This routine is currently only called as part of the updating of
2482   // existing policy information for regions in the incremental cset that
2483   // is performed by the concurrent refine thread(s) as part of young list
2484   // RSet sampling. Therefore we should not be at a safepoint.
2485 
2486   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
2487   assert(hr->is_young(), "it should be");
2488 
2489   size_t used_bytes = hr->used();
2490   size_t old_rs_length = hr->recorded_rs_length();
2491   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
2492 
2493   // Subtract the old recorded/predicted policy information for
2494   // the given heap region from the collection set info.
2495   _inc_cset_recorded_rs_lengths -= old_rs_length;
2496   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
2497 
2498   _inc_cset_bytes_used_before -= used_bytes;
2499 
2500   // Clear the values cached in the heap region
2501   hr->set_recorded_rs_length(0);
2502   hr->set_predicted_elapsed_time_ms(0);
2503 }
2504 
2505 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
2506   // Update the collection set information that is dependent on the new RS length
2507   assert(hr->is_young(), "Precondition");
2508 
2509   remove_from_incremental_cset_info(hr);
2510   add_to_incremental_cset_info(hr, new_rs_length);
2511 }
2512 
2513 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2514   assert(hr->is_young(), "invariant");
2515   assert(hr->young_index_in_cset() > -1, "should have already been set");
2516   assert(_inc_cset_build_state == Active, "Precondition");
2517 
2518   // We need to clear and set the cached recorded/cached collection set
2519   // information in the heap region here (before the region gets added
2520   // to the collection set). An individual heap region's cached values
2521   // are calculated, aggregated with the policy collection set info,
2522   // and cached in the heap region here (initially) and (subsequently)
2523   // by the Young List sampling code.
2524 
2525   size_t rs_length = hr->rem_set()->occupied();
2526   add_to_incremental_cset_info(hr, rs_length);
2527 
2528   HeapWord* hr_end = hr->end();
2529   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
2530 
2531   assert(!hr->in_collection_set(), "invariant");
2532   hr->set_in_collection_set(true);
2533   assert( hr->next_in_collection_set() == NULL, "invariant");
2534 
2535   _g1->register_region_with_in_cset_fast_test(hr);
2536 }
2537 
2538 // Add the region at the RHS of the incremental cset
2539 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
2540   // We should only ever be appending survivors at the end of a pause
2541   assert( hr->is_survivor(), "Logic");
2542 
2543   // Do the 'common' stuff
2544   add_region_to_incremental_cset_common(hr);
2545 
2546   // Now add the region at the right hand side
2547   if (_inc_cset_tail == NULL) {
2548     assert(_inc_cset_head == NULL, "invariant");
2549     _inc_cset_head = hr;
2550   } else {
2551     _inc_cset_tail->set_next_in_collection_set(hr);
2552   }
2553   _inc_cset_tail = hr;
2554 }
2555 
2556 // Add the region to the LHS of the incremental cset
2557 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
2558   // Survivors should be added to the RHS at the end of a pause
2559   assert(!hr->is_survivor(), "Logic");
2560 
2561   // Do the 'common' stuff
2562   add_region_to_incremental_cset_common(hr);
2563 
2564   // Add the region at the left hand side
2565   hr->set_next_in_collection_set(_inc_cset_head);
2566   if (_inc_cset_head == NULL) {
2567     assert(_inc_cset_tail == NULL, "Invariant");
2568     _inc_cset_tail = hr;
2569   }
2570   _inc_cset_head = hr;
2571 }
2572 
2573 #ifndef PRODUCT
2574 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2575   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2576 
2577   st->print_cr("\nCollection_set:");
2578   HeapRegion* csr = list_head;
2579   while (csr != NULL) {
2580     HeapRegion* next = csr->next_in_collection_set();
2581     assert(csr->in_collection_set(), "bad CS");
2582     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
2583                  "age: %4d, y: %d, surv: %d",
2584                         csr->bottom(), csr->end(),
2585                         csr->top(),
2586                         csr->prev_top_at_mark_start(),
2587                         csr->next_top_at_mark_start(),
2588                         csr->top_at_conc_mark_count(),
2589                         csr->age_in_surv_rate_group_cond(),
2590                         csr->is_young(),
2591                         csr->is_survivor());
2592     csr = next;
2593   }
2594 }
2595 #endif // !PRODUCT
2596 
2597 void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
2598   // Set this here - in case we're not doing young collections.
2599   double non_young_start_time_sec = os::elapsedTime();
2600 
2601   YoungList* young_list = _g1->young_list();
2602 
2603   guarantee(target_pause_time_ms > 0.0,
2604             err_msg("target_pause_time_ms = %1.6lf should be positive",
2605                     target_pause_time_ms));
2606   guarantee(_collection_set == NULL, "Precondition");
2607 
2608   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2609   double predicted_pause_time_ms = base_time_ms;
2610 
2611   double time_remaining_ms = target_pause_time_ms - base_time_ms;
2612 
2613   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
2614                 "start choosing CSet",
2615                 ergo_format_ms("predicted base time")
2616                 ergo_format_ms("remaining time")
2617                 ergo_format_ms("target pause time"),
2618                 base_time_ms, time_remaining_ms, target_pause_time_ms);
2619 
2620   // the 10% and 50% values are arbitrary...
2621   double threshold = 0.10 * target_pause_time_ms;
2622   if (time_remaining_ms < threshold) {
2623     double prev_time_remaining_ms = time_remaining_ms;
2624     time_remaining_ms = 0.50 * target_pause_time_ms;
2625     ergo_verbose3(ErgoCSetConstruction,
2626                   "adjust remaining time",
2627                   ergo_format_reason("remaining time lower than threshold")
2628                   ergo_format_ms("remaining time")
2629                   ergo_format_ms("threshold")
2630                   ergo_format_ms("adjusted remaining time"),
2631                   prev_time_remaining_ms, threshold, time_remaining_ms);
2632   }
2633 
2634   size_t expansion_bytes = _g1->expansion_regions() * HeapRegion::GrainBytes;
2635 
2636   HeapRegion* hr;
2637   double young_start_time_sec = os::elapsedTime();
2638 
2639   _collection_set_bytes_used_before = 0;
2640   _last_gc_was_young = gcs_are_young() ? true : false;
2641 
2642   if (_last_gc_was_young) {
2643     ++_young_pause_num;
2644   } else {
2645     ++_mixed_pause_num;
2646   }
2647 
2648   // The young list is laid with the survivor regions from the previous
2649   // pause are appended to the RHS of the young list, i.e.
2650   //   [Newly Young Regions ++ Survivors from last pause].
2651 
2652   size_t survivor_region_length = young_list->survivor_length();
2653   size_t eden_region_length = young_list->length() - survivor_region_length;
2654   init_cset_region_lengths(eden_region_length, survivor_region_length);
2655   hr = young_list->first_survivor_region();
2656   while (hr != NULL) {
2657     assert(hr->is_survivor(), "badly formed young list");
2658     hr->set_young();
2659     hr = hr->get_next_young_region();
2660   }
2661 
2662   // Clear the fields that point to the survivor list - they are all young now.
2663   young_list->clear_survivors();
2664 
2665   if (_g1->mark_in_progress())
2666     _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
2667 
2668   _collection_set = _inc_cset_head;
2669   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2670   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
2671   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2672 
2673   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
2674                 "add young regions to CSet",
2675                 ergo_format_region("eden")
2676                 ergo_format_region("survivors")
2677                 ergo_format_ms("predicted young region time"),
2678                 eden_region_length, survivor_region_length,
2679                 _inc_cset_predicted_elapsed_time_ms);
2680 
2681   // The number of recorded young regions is the incremental
2682   // collection set's current size
2683   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2684 
2685   double young_end_time_sec = os::elapsedTime();
2686   _recorded_young_cset_choice_time_ms =
2687     (young_end_time_sec - young_start_time_sec) * 1000.0;
2688 
2689   // We are doing young collections so reset this.
2690   non_young_start_time_sec = young_end_time_sec;
2691 
2692   if (!gcs_are_young()) {
2693     bool should_continue = true;
2694     NumberSeq seq;
2695     double avg_prediction = 100000000000000000.0; // something very large
2696 
2697     double prev_predicted_pause_time_ms = predicted_pause_time_ms;
2698     do {
2699       // Note that add_old_region_to_cset() increments the
2700       // _old_cset_region_length field and cset_region_length() returns the
2701       // sum of _eden_cset_region_length, _survivor_cset_region_length, and
2702       // _old_cset_region_length. So, as old regions are added to the
2703       // CSet, _old_cset_region_length will be incremented and
2704       // cset_region_length(), which is used below, will always reflect
2705       // the the total number of regions added up to this point to the CSet.
2706 
2707       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
2708                                                       avg_prediction);
2709       if (hr != NULL) {
2710         _g1->old_set_remove(hr);
2711         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
2712         time_remaining_ms -= predicted_time_ms;
2713         predicted_pause_time_ms += predicted_time_ms;
2714         add_old_region_to_cset(hr);
2715         seq.add(predicted_time_ms);
2716         avg_prediction = seq.avg() + seq.sd();
2717       }
2718 
2719       should_continue = true;
2720       if (hr == NULL) {
2721         // No need for an ergo verbose message here,
2722         // getNextMarkRegion() does this when it returns NULL.
2723         should_continue = false;
2724       } else {
2725         if (adaptive_young_list_length()) {
2726           if (time_remaining_ms < 0.0) {
2727             ergo_verbose1(ErgoCSetConstruction,
2728                           "stop adding old regions to CSet",
2729                           ergo_format_reason("remaining time is lower than 0")
2730                           ergo_format_ms("remaining time"),
2731                           time_remaining_ms);
2732             should_continue = false;
2733           }
2734         } else {
2735           if (cset_region_length() >= _young_list_fixed_length) {
2736             ergo_verbose2(ErgoCSetConstruction,
2737                           "stop adding old regions to CSet",
2738                           ergo_format_reason("CSet length reached target")
2739                           ergo_format_region("CSet")
2740                           ergo_format_region("young target"),
2741                           cset_region_length(), _young_list_fixed_length);
2742             should_continue = false;
2743           }
2744         }
2745       }
2746     } while (should_continue);
2747 
2748     if (!adaptive_young_list_length() &&
2749         cset_region_length() < _young_list_fixed_length) {
2750       ergo_verbose2(ErgoCSetConstruction,
2751                     "request mixed GCs end",
2752                     ergo_format_reason("CSet length lower than target")
2753                     ergo_format_region("CSet")
2754                     ergo_format_region("young target"),
2755                     cset_region_length(), _young_list_fixed_length);
2756       _should_revert_to_young_gcs  = true;
2757     }
2758 
2759     ergo_verbose2(ErgoCSetConstruction | ErgoHigh,
2760                   "add old regions to CSet",
2761                   ergo_format_region("old")
2762                   ergo_format_ms("predicted old region time"),
2763                   old_cset_region_length(),
2764                   predicted_pause_time_ms - prev_predicted_pause_time_ms);
2765   }
2766 
2767   stop_incremental_cset_building();
2768 
2769   count_CS_bytes_used();
2770 
2771   ergo_verbose5(ErgoCSetConstruction,
2772                 "finish choosing CSet",
2773                 ergo_format_region("eden")
2774                 ergo_format_region("survivors")
2775                 ergo_format_region("old")
2776                 ergo_format_ms("predicted pause time")
2777                 ergo_format_ms("target pause time"),
2778                 eden_region_length, survivor_region_length,
2779                 old_cset_region_length(),
2780                 predicted_pause_time_ms, target_pause_time_ms);
2781 
2782   double non_young_end_time_sec = os::elapsedTime();
2783   _recorded_non_young_cset_choice_time_ms =
2784     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
2785 }