1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 
  40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
  41 // over and over again and introducing subtle problems through small typos and
  42 // cutting and pasting mistakes. The macros below introduces a number
  43 // sequnce into the following two classes and the methods that access it.
  44 
  45 #define define_num_seq(name)                                                  \
  46 private:                                                                      \
  47   NumberSeq _all_##name##_times_ms;                                           \
  48 public:                                                                       \
  49   void record_##name##_time_ms(double ms) {                                   \
  50     _all_##name##_times_ms.add(ms);                                           \
  51   }                                                                           \
  52   NumberSeq* get_##name##_seq() {                                             \
  53     return &_all_##name##_times_ms;                                           \
  54   }
  55 
  56 class MainBodySummary;
  57 
  58 class PauseSummary: public CHeapObj {
  59   define_num_seq(total)
  60     define_num_seq(other)
  61 
  62 public:
  63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
  64 };
  65 
  66 class MainBodySummary: public CHeapObj {
  67   define_num_seq(satb_drain) // optional
  68   define_num_seq(parallel) // parallel only
  69     define_num_seq(ext_root_scan)
  70     define_num_seq(mark_stack_scan)
  71     define_num_seq(update_rs)
  72     define_num_seq(scan_rs)
  73     define_num_seq(obj_copy)
  74     define_num_seq(termination) // parallel only
  75     define_num_seq(parallel_other) // parallel only
  76   define_num_seq(mark_closure)
  77   define_num_seq(clear_ct)
  78 };
  79 
  80 class Summary: public PauseSummary,
  81                public MainBodySummary {
  82 public:
  83   virtual MainBodySummary*    main_body_summary()    { return this; }
  84 };
  85 
  86 class G1CollectorPolicy: public CollectorPolicy {
  87 private:
  88   // either equal to the number of parallel threads, if ParallelGCThreads
  89   // has been set, or 1 otherwise
  90   int _parallel_gc_threads;
  91 
  92   // The number of GC threads currently active.
  93   uintx _no_of_gc_threads;
  94 
  95   enum SomePrivateConstants {
  96     NumPrevPausesForHeuristics = 10
  97   };
  98 
  99   G1MMUTracker* _mmu_tracker;
 100 
 101   void initialize_flags();
 102 
 103   void initialize_all() {
 104     initialize_flags();
 105     initialize_size_info();
 106     initialize_perm_generation(PermGen::MarkSweepCompact);
 107   }
 108 
 109   CollectionSetChooser* _collectionSetChooser;
 110 
 111   double _cur_collection_start_sec;
 112   size_t _cur_collection_pause_used_at_start_bytes;
 113   size_t _cur_collection_pause_used_regions_at_start;
 114   size_t _prev_collection_pause_used_at_end_bytes;
 115   double _cur_collection_par_time_ms;
 116   double _cur_satb_drain_time_ms;
 117   double _cur_clear_ct_time_ms;
 118   double _cur_ref_proc_time_ms;
 119   double _cur_ref_enq_time_ms;
 120 
 121 #ifndef PRODUCT
 122   // Card Table Count Cache stats
 123   double _min_clear_cc_time_ms;         // min
 124   double _max_clear_cc_time_ms;         // max
 125   double _cur_clear_cc_time_ms;         // clearing time during current pause
 126   double _cum_clear_cc_time_ms;         // cummulative clearing time
 127   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 128 #endif
 129 
 130   // These exclude marking times.
 131   TruncatedSeq* _recent_gc_times_ms;
 132 
 133   TruncatedSeq* _concurrent_mark_remark_times_ms;
 134   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 135 
 136   Summary*           _summary;
 137 
 138   NumberSeq* _all_pause_times_ms;
 139   NumberSeq* _all_full_gc_times_ms;
 140   double _stop_world_start;
 141   NumberSeq* _all_stop_world_times_ms;
 142   NumberSeq* _all_yield_times_ms;
 143 
 144   int        _aux_num;
 145   NumberSeq* _all_aux_times_ms;
 146   double*    _cur_aux_start_times_ms;
 147   double*    _cur_aux_times_ms;
 148   bool*      _cur_aux_times_set;
 149 
 150   double* _par_last_gc_worker_start_times_ms;
 151   double* _par_last_ext_root_scan_times_ms;
 152   double* _par_last_mark_stack_scan_times_ms;
 153   double* _par_last_update_rs_times_ms;
 154   double* _par_last_update_rs_processed_buffers;
 155   double* _par_last_scan_rs_times_ms;
 156   double* _par_last_obj_copy_times_ms;
 157   double* _par_last_termination_times_ms;
 158   double* _par_last_termination_attempts;
 159   double* _par_last_gc_worker_end_times_ms;
 160   double* _par_last_gc_worker_times_ms;
 161 
 162   // Each workers 'other' time i.e. the elapsed time of the parallel
 163   // phase of the pause minus the sum of the individual sub-phase
 164   // times for a given worker thread.
 165   double* _par_last_gc_worker_other_times_ms;
 166 
 167   // indicates whether we are in young or mixed GC mode
 168   bool _gcs_are_young;
 169 
 170   // if true, then it tries to dynamically adjust the length of the
 171   // young list
 172   bool _adaptive_young_list_length;
 173   size_t _young_list_target_length;
 174   size_t _young_list_fixed_length;
 175   size_t _prev_eden_capacity; // used for logging
 176 
 177   // The max number of regions we can extend the eden by while the GC
 178   // locker is active. This should be >= _young_list_target_length;
 179   size_t _young_list_max_length;
 180 
 181   bool                  _last_gc_was_young;
 182 
 183   unsigned              _young_pause_num;
 184   unsigned              _mixed_pause_num;
 185 
 186   bool                  _during_marking;
 187   bool                  _in_marking_window;
 188   bool                  _in_marking_window_im;
 189 
 190   SurvRateGroup*        _short_lived_surv_rate_group;
 191   SurvRateGroup*        _survivor_surv_rate_group;
 192   // add here any more surv rate groups
 193 
 194   double                _gc_overhead_perc;
 195 
 196   double _reserve_factor;
 197   size_t _reserve_regions;
 198 
 199   bool during_marking() {
 200     return _during_marking;
 201   }
 202 
 203 private:
 204   enum PredictionConstants {
 205     TruncatedSeqLength = 10
 206   };
 207 
 208   TruncatedSeq* _alloc_rate_ms_seq;
 209   double        _prev_collection_pause_end_ms;
 210 
 211   TruncatedSeq* _pending_card_diff_seq;
 212   TruncatedSeq* _rs_length_diff_seq;
 213   TruncatedSeq* _cost_per_card_ms_seq;
 214   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 215   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 216   TruncatedSeq* _cost_per_entry_ms_seq;
 217   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 218   TruncatedSeq* _cost_per_byte_ms_seq;
 219   TruncatedSeq* _constant_other_time_ms_seq;
 220   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 221   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 222 
 223   TruncatedSeq* _pending_cards_seq;
 224   TruncatedSeq* _rs_lengths_seq;
 225 
 226   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 227 
 228   TruncatedSeq* _young_gc_eff_seq;
 229 
 230   bool   _using_new_ratio_calculations;
 231   size_t _min_desired_young_length; // as set on the command line or default calculations
 232   size_t _max_desired_young_length; // as set on the command line or default calculations
 233 
 234   size_t _eden_cset_region_length;
 235   size_t _survivor_cset_region_length;
 236   size_t _old_cset_region_length;
 237 
 238   void init_cset_region_lengths(size_t eden_cset_region_length,
 239                                 size_t survivor_cset_region_length);
 240 
 241   size_t eden_cset_region_length()     { return _eden_cset_region_length;     }
 242   size_t survivor_cset_region_length() { return _survivor_cset_region_length; }
 243   size_t old_cset_region_length()      { return _old_cset_region_length;      }
 244 
 245   size_t _free_regions_at_end_of_collection;
 246 
 247   size_t _recorded_rs_lengths;
 248   size_t _max_rs_lengths;
 249 
 250   double _recorded_young_free_cset_time_ms;
 251   double _recorded_non_young_free_cset_time_ms;
 252 
 253   double _sigma;
 254   double _expensive_region_limit_ms;
 255 
 256   size_t _rs_lengths_prediction;
 257 
 258   size_t _known_garbage_bytes;
 259   double _known_garbage_ratio;
 260 
 261   double sigma() {
 262     return _sigma;
 263   }
 264 
 265   // A function that prevents us putting too much stock in small sample
 266   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 267   // of samples.  5 or more samples yields one; fewer scales linearly from
 268   // 2.0 at 1 sample to 1.0 at 5.
 269   double confidence_factor(int samples) {
 270     if (samples > 4) return 1.0;
 271     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 272   }
 273 
 274   double get_new_neg_prediction(TruncatedSeq* seq) {
 275     return seq->davg() - sigma() * seq->dsd();
 276   }
 277 
 278 #ifndef PRODUCT
 279   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 280 #endif // PRODUCT
 281 
 282   void adjust_concurrent_refinement(double update_rs_time,
 283                                     double update_rs_processed_buffers,
 284                                     double goal_ms);
 285 
 286   uintx no_of_gc_threads() { return _no_of_gc_threads; }
 287   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
 288 
 289   double _pause_time_target_ms;
 290   double _recorded_young_cset_choice_time_ms;
 291   double _recorded_non_young_cset_choice_time_ms;
 292   size_t _pending_cards;
 293   size_t _max_pending_cards;
 294 
 295 public:
 296   // Accessors
 297 
 298   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 299     hr->set_young();
 300     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 301     hr->set_young_index_in_cset(young_index_in_cset);
 302   }
 303 
 304   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 305     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
 306     hr->install_surv_rate_group(_survivor_surv_rate_group);
 307     hr->set_young_index_in_cset(young_index_in_cset);
 308   }
 309 
 310 #ifndef PRODUCT
 311   bool verify_young_ages();
 312 #endif // PRODUCT
 313 
 314   double get_new_prediction(TruncatedSeq* seq) {
 315     return MAX2(seq->davg() + sigma() * seq->dsd(),
 316                 seq->davg() * confidence_factor(seq->num()));
 317   }
 318 
 319   void record_max_rs_lengths(size_t rs_lengths) {
 320     _max_rs_lengths = rs_lengths;
 321   }
 322 
 323   size_t predict_pending_card_diff() {
 324     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 325     if (prediction < 0.00001) {
 326       return 0;
 327     } else {
 328       return (size_t) prediction;
 329     }
 330   }
 331 
 332   size_t predict_pending_cards() {
 333     size_t max_pending_card_num = _g1->max_pending_card_num();
 334     size_t diff = predict_pending_card_diff();
 335     size_t prediction;
 336     if (diff > max_pending_card_num) {
 337       prediction = max_pending_card_num;
 338     } else {
 339       prediction = max_pending_card_num - diff;
 340     }
 341 
 342     return prediction;
 343   }
 344 
 345   size_t predict_rs_length_diff() {
 346     return (size_t) get_new_prediction(_rs_length_diff_seq);
 347   }
 348 
 349   double predict_alloc_rate_ms() {
 350     return get_new_prediction(_alloc_rate_ms_seq);
 351   }
 352 
 353   double predict_cost_per_card_ms() {
 354     return get_new_prediction(_cost_per_card_ms_seq);
 355   }
 356 
 357   double predict_rs_update_time_ms(size_t pending_cards) {
 358     return (double) pending_cards * predict_cost_per_card_ms();
 359   }
 360 
 361   double predict_young_cards_per_entry_ratio() {
 362     return get_new_prediction(_young_cards_per_entry_ratio_seq);
 363   }
 364 
 365   double predict_mixed_cards_per_entry_ratio() {
 366     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
 367       return predict_young_cards_per_entry_ratio();
 368     } else {
 369       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
 370     }
 371   }
 372 
 373   size_t predict_young_card_num(size_t rs_length) {
 374     return (size_t) ((double) rs_length *
 375                      predict_young_cards_per_entry_ratio());
 376   }
 377 
 378   size_t predict_non_young_card_num(size_t rs_length) {
 379     return (size_t) ((double) rs_length *
 380                      predict_mixed_cards_per_entry_ratio());
 381   }
 382 
 383   double predict_rs_scan_time_ms(size_t card_num) {
 384     if (gcs_are_young()) {
 385       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 386     } else {
 387       return predict_mixed_rs_scan_time_ms(card_num);
 388     }
 389   }
 390 
 391   double predict_mixed_rs_scan_time_ms(size_t card_num) {
 392     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
 393       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 394     } else {
 395       return (double) (card_num *
 396                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
 397     }
 398   }
 399 
 400   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 401     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
 402       return (1.1 * (double) bytes_to_copy) *
 403               get_new_prediction(_cost_per_byte_ms_seq);
 404     } else {
 405       return (double) bytes_to_copy *
 406              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 407     }
 408   }
 409 
 410   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 411     if (_in_marking_window && !_in_marking_window_im) {
 412       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 413     } else {
 414       return (double) bytes_to_copy *
 415               get_new_prediction(_cost_per_byte_ms_seq);
 416     }
 417   }
 418 
 419   double predict_constant_other_time_ms() {
 420     return get_new_prediction(_constant_other_time_ms_seq);
 421   }
 422 
 423   double predict_young_other_time_ms(size_t young_num) {
 424     return (double) young_num *
 425            get_new_prediction(_young_other_cost_per_region_ms_seq);
 426   }
 427 
 428   double predict_non_young_other_time_ms(size_t non_young_num) {
 429     return (double) non_young_num *
 430            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 431   }
 432 
 433   void check_if_region_is_too_expensive(double predicted_time_ms);
 434 
 435   double predict_young_collection_elapsed_time_ms(size_t adjustment);
 436   double predict_base_elapsed_time_ms(size_t pending_cards);
 437   double predict_base_elapsed_time_ms(size_t pending_cards,
 438                                       size_t scanned_cards);
 439   size_t predict_bytes_to_copy(HeapRegion* hr);
 440   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 441 
 442   void set_recorded_rs_lengths(size_t rs_lengths);
 443 
 444   size_t cset_region_length()       { return young_cset_region_length() +
 445                                              old_cset_region_length(); }
 446   size_t young_cset_region_length() { return eden_cset_region_length() +
 447                                              survivor_cset_region_length(); }
 448 
 449   void record_young_free_cset_time_ms(double time_ms) {
 450     _recorded_young_free_cset_time_ms = time_ms;
 451   }
 452 
 453   void record_non_young_free_cset_time_ms(double time_ms) {
 454     _recorded_non_young_free_cset_time_ms = time_ms;
 455   }
 456 
 457   double predict_young_gc_eff() {
 458     return get_new_neg_prediction(_young_gc_eff_seq);
 459   }
 460 
 461   double predict_survivor_regions_evac_time();
 462 
 463   void cset_regions_freed() {
 464     bool propagate = _last_gc_was_young && !_in_marking_window;
 465     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 466     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 467     // also call it on any more surv rate groups
 468   }
 469 
 470   void set_known_garbage_bytes(size_t known_garbage_bytes) {
 471     _known_garbage_bytes = known_garbage_bytes;
 472     size_t heap_bytes = _g1->capacity();
 473     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 474   }
 475 
 476   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
 477     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
 478 
 479     _known_garbage_bytes -= known_garbage_bytes;
 480     size_t heap_bytes = _g1->capacity();
 481     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 482   }
 483 
 484   G1MMUTracker* mmu_tracker() {
 485     return _mmu_tracker;
 486   }
 487 
 488   double max_pause_time_ms() {
 489     return _mmu_tracker->max_gc_time() * 1000.0;
 490   }
 491 
 492   double predict_remark_time_ms() {
 493     return get_new_prediction(_concurrent_mark_remark_times_ms);
 494   }
 495 
 496   double predict_cleanup_time_ms() {
 497     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 498   }
 499 
 500   // Returns an estimate of the survival rate of the region at yg-age
 501   // "yg_age".
 502   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 503     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 504     if (seq->num() == 0)
 505       gclog_or_tty->print("BARF! age is %d", age);
 506     guarantee( seq->num() > 0, "invariant" );
 507     double pred = get_new_prediction(seq);
 508     if (pred > 1.0)
 509       pred = 1.0;
 510     return pred;
 511   }
 512 
 513   double predict_yg_surv_rate(int age) {
 514     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 515   }
 516 
 517   double accum_yg_surv_rate_pred(int age) {
 518     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 519   }
 520 
 521 private:
 522   void print_stats(int level, const char* str, double value);
 523   void print_stats(int level, const char* str, int value);
 524 
 525   void print_par_stats(int level, const char* str, double* data);
 526   void print_par_sizes(int level, const char* str, double* data);
 527 
 528   void check_other_times(int level,
 529                          NumberSeq* other_times_ms,
 530                          NumberSeq* calc_other_times_ms) const;
 531 
 532   void print_summary (PauseSummary* stats) const;
 533 
 534   void print_summary (int level, const char* str, NumberSeq* seq) const;
 535   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
 536 
 537   double avg_value (double* data);
 538   double max_value (double* data);
 539   double sum_of_values (double* data);
 540   double max_sum (double* data1, double* data2);
 541 
 542   double _last_pause_time_ms;
 543 
 544   size_t _bytes_in_collection_set_before_gc;
 545   size_t _bytes_copied_during_gc;
 546 
 547   // Used to count used bytes in CS.
 548   friend class CountCSClosure;
 549 
 550   // Statistics kept per GC stoppage, pause or full.
 551   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 552 
 553   // Add a new GC of the given duration and end time to the record.
 554   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 555 
 556   // The head of the list (via "next_in_collection_set()") representing the
 557   // current collection set. Set from the incrementally built collection
 558   // set at the start of the pause.
 559   HeapRegion* _collection_set;
 560 
 561   // The number of bytes in the collection set before the pause. Set from
 562   // the incrementally built collection set at the start of an evacuation
 563   // pause.
 564   size_t _collection_set_bytes_used_before;
 565 
 566   // The associated information that is maintained while the incremental
 567   // collection set is being built with young regions. Used to populate
 568   // the recorded info for the evacuation pause.
 569 
 570   enum CSetBuildType {
 571     Active,             // We are actively building the collection set
 572     Inactive            // We are not actively building the collection set
 573   };
 574 
 575   CSetBuildType _inc_cset_build_state;
 576 
 577   // The head of the incrementally built collection set.
 578   HeapRegion* _inc_cset_head;
 579 
 580   // The tail of the incrementally built collection set.
 581   HeapRegion* _inc_cset_tail;
 582 
 583   // The number of bytes in the incrementally built collection set.
 584   // Used to set _collection_set_bytes_used_before at the start of
 585   // an evacuation pause.
 586   size_t _inc_cset_bytes_used_before;
 587 
 588   // Used to record the highest end of heap region in collection set
 589   HeapWord* _inc_cset_max_finger;
 590 
 591   // The RSet lengths recorded for regions in the collection set
 592   // (updated by the periodic sampling of the regions in the
 593   // young list/collection set).
 594   size_t _inc_cset_recorded_rs_lengths;
 595 
 596   // The predicted elapsed time it will take to collect the regions
 597   // in the collection set (updated by the periodic sampling of the
 598   // regions in the young list/collection set).
 599   double _inc_cset_predicted_elapsed_time_ms;
 600 
 601   // Stash a pointer to the g1 heap.
 602   G1CollectedHeap* _g1;
 603 
 604   // The ratio of gc time to elapsed time, computed over recent pauses.
 605   double _recent_avg_pause_time_ratio;
 606 
 607   double recent_avg_pause_time_ratio() {
 608     return _recent_avg_pause_time_ratio;
 609   }
 610 
 611   // At the end of a pause we check the heap occupancy and we decide
 612   // whether we will start a marking cycle during the next pause. If
 613   // we decide that we want to do that, we will set this parameter to
 614   // true. So, this parameter will stay true between the end of a
 615   // pause and the beginning of a subsequent pause (not necessarily
 616   // the next one, see the comments on the next field) when we decide
 617   // that we will indeed start a marking cycle and do the initial-mark
 618   // work.
 619   volatile bool _initiate_conc_mark_if_possible;
 620 
 621   // If initiate_conc_mark_if_possible() is set at the beginning of a
 622   // pause, it is a suggestion that the pause should start a marking
 623   // cycle by doing the initial-mark work. However, it is possible
 624   // that the concurrent marking thread is still finishing up the
 625   // previous marking cycle (e.g., clearing the next marking
 626   // bitmap). If that is the case we cannot start a new cycle and
 627   // we'll have to wait for the concurrent marking thread to finish
 628   // what it is doing. In this case we will postpone the marking cycle
 629   // initiation decision for the next pause. When we eventually decide
 630   // to start a cycle, we will set _during_initial_mark_pause which
 631   // will stay true until the end of the initial-mark pause and it's
 632   // the condition that indicates that a pause is doing the
 633   // initial-mark work.
 634   volatile bool _during_initial_mark_pause;
 635 
 636   bool _should_revert_to_young_gcs;
 637   bool _last_young_gc;
 638 
 639   // This set of variables tracks the collector efficiency, in order to
 640   // determine whether we should initiate a new marking.
 641   double _cur_mark_stop_world_time_ms;
 642   double _mark_remark_start_sec;
 643   double _mark_cleanup_start_sec;
 644   double _mark_closure_time_ms;
 645 
 646   // Update the young list target length either by setting it to the
 647   // desired fixed value or by calculating it using G1's pause
 648   // prediction model. If no rs_lengths parameter is passed, predict
 649   // the RS lengths using the prediction model, otherwise use the
 650   // given rs_lengths as the prediction.
 651   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 652 
 653   // Calculate and return the minimum desired young list target
 654   // length. This is the minimum desired young list length according
 655   // to the user's inputs.
 656   size_t calculate_young_list_desired_min_length(size_t base_min_length);
 657 
 658   // Calculate and return the maximum desired young list target
 659   // length. This is the maximum desired young list length according
 660   // to the user's inputs.
 661   size_t calculate_young_list_desired_max_length();
 662 
 663   // Calculate and return the maximum young list target length that
 664   // can fit into the pause time goal. The parameters are: rs_lengths
 665   // represent the prediction of how large the young RSet lengths will
 666   // be, base_min_length is the alreay existing number of regions in
 667   // the young list, min_length and max_length are the desired min and
 668   // max young list length according to the user's inputs.
 669   size_t calculate_young_list_target_length(size_t rs_lengths,
 670                                             size_t base_min_length,
 671                                             size_t desired_min_length,
 672                                             size_t desired_max_length);
 673 
 674   // Check whether a given young length (young_length) fits into the
 675   // given target pause time and whether the prediction for the amount
 676   // of objects to be copied for the given length will fit into the
 677   // given free space (expressed by base_free_regions).  It is used by
 678   // calculate_young_list_target_length().
 679   bool predict_will_fit(size_t young_length, double base_time_ms,
 680                         size_t base_free_regions, double target_pause_time_ms);
 681 
 682   // Count the number of bytes used in the CS.
 683   void count_CS_bytes_used();
 684 
 685   void update_young_list_size_using_newratio(size_t number_of_heap_regions);
 686 
 687 public:
 688 
 689   G1CollectorPolicy();
 690 
 691   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 692 
 693   virtual CollectorPolicy::Name kind() {
 694     return CollectorPolicy::G1CollectorPolicyKind;
 695   }
 696 
 697   // Check the current value of the young list RSet lengths and
 698   // compare it against the last prediction. If the current value is
 699   // higher, recalculate the young list target length prediction.
 700   void revise_young_list_target_length_if_necessary();
 701 
 702   size_t bytes_in_collection_set() {
 703     return _bytes_in_collection_set_before_gc;
 704   }
 705 
 706   unsigned calc_gc_alloc_time_stamp() {
 707     return _all_pause_times_ms->num() + 1;
 708   }
 709 
 710   // This should be called after the heap is resized.
 711   void record_new_heap_size(size_t new_number_of_regions);
 712 
 713 public:
 714 
 715   void init();
 716 
 717   // Create jstat counters for the policy.
 718   virtual void initialize_gc_policy_counters();
 719 
 720   virtual HeapWord* mem_allocate_work(size_t size,
 721                                       bool is_tlab,
 722                                       bool* gc_overhead_limit_was_exceeded);
 723 
 724   // This method controls how a collector handles one or more
 725   // of its generations being fully allocated.
 726   virtual HeapWord* satisfy_failed_allocation(size_t size,
 727                                               bool is_tlab);
 728 
 729   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 730 
 731   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 732 
 733   // Update the heuristic info to record a collection pause of the given
 734   // start time, where the given number of bytes were used at the start.
 735   // This may involve changing the desired size of a collection set.
 736 
 737   void record_stop_world_start();
 738 
 739   void record_collection_pause_start(double start_time_sec, size_t start_used);
 740 
 741   // Must currently be called while the world is stopped.
 742   void record_concurrent_mark_init_end(double
 743                                            mark_init_elapsed_time_ms);
 744 
 745   void record_mark_closure_time(double mark_closure_time_ms) {
 746     _mark_closure_time_ms = mark_closure_time_ms;
 747   }
 748 
 749   void record_concurrent_mark_remark_start();
 750   void record_concurrent_mark_remark_end();
 751 
 752   void record_concurrent_mark_cleanup_start();
 753   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
 754   void record_concurrent_mark_cleanup_completed();
 755 
 756   void record_concurrent_pause();
 757   void record_concurrent_pause_end();
 758 
 759   void record_collection_pause_end(int no_of_gc_threads);
 760   void print_heap_transition();
 761 
 762   // Record the fact that a full collection occurred.
 763   void record_full_collection_start();
 764   void record_full_collection_end();
 765 
 766   void record_gc_worker_start_time(int worker_i, double ms) {
 767     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 768   }
 769 
 770   void record_ext_root_scan_time(int worker_i, double ms) {
 771     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 772   }
 773 
 774   void record_mark_stack_scan_time(int worker_i, double ms) {
 775     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
 776   }
 777 
 778   void record_satb_drain_time(double ms) {
 779     assert(_g1->mark_in_progress(), "shouldn't be here otherwise");
 780     _cur_satb_drain_time_ms = ms;
 781   }
 782 
 783   void record_update_rs_time(int thread, double ms) {
 784     _par_last_update_rs_times_ms[thread] = ms;
 785   }
 786 
 787   void record_update_rs_processed_buffers (int thread,
 788                                            double processed_buffers) {
 789     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 790   }
 791 
 792   void record_scan_rs_time(int thread, double ms) {
 793     _par_last_scan_rs_times_ms[thread] = ms;
 794   }
 795 
 796   void reset_obj_copy_time(int thread) {
 797     _par_last_obj_copy_times_ms[thread] = 0.0;
 798   }
 799 
 800   void reset_obj_copy_time() {
 801     reset_obj_copy_time(0);
 802   }
 803 
 804   void record_obj_copy_time(int thread, double ms) {
 805     _par_last_obj_copy_times_ms[thread] += ms;
 806   }
 807 
 808   void record_termination(int thread, double ms, size_t attempts) {
 809     _par_last_termination_times_ms[thread] = ms;
 810     _par_last_termination_attempts[thread] = (double) attempts;
 811   }
 812 
 813   void record_gc_worker_end_time(int worker_i, double ms) {
 814     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 815   }
 816 
 817   void record_pause_time_ms(double ms) {
 818     _last_pause_time_ms = ms;
 819   }
 820 
 821   void record_clear_ct_time(double ms) {
 822     _cur_clear_ct_time_ms = ms;
 823   }
 824 
 825   void record_par_time(double ms) {
 826     _cur_collection_par_time_ms = ms;
 827   }
 828 
 829   void record_aux_start_time(int i) {
 830     guarantee(i < _aux_num, "should be within range");
 831     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
 832   }
 833 
 834   void record_aux_end_time(int i) {
 835     guarantee(i < _aux_num, "should be within range");
 836     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
 837     _cur_aux_times_set[i] = true;
 838     _cur_aux_times_ms[i] += ms;
 839   }
 840 
 841   void record_ref_proc_time(double ms) {
 842     _cur_ref_proc_time_ms = ms;
 843   }
 844 
 845   void record_ref_enq_time(double ms) {
 846     _cur_ref_enq_time_ms = ms;
 847   }
 848 
 849 #ifndef PRODUCT
 850   void record_cc_clear_time(double ms) {
 851     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
 852       _min_clear_cc_time_ms = ms;
 853     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
 854       _max_clear_cc_time_ms = ms;
 855     _cur_clear_cc_time_ms = ms;
 856     _cum_clear_cc_time_ms += ms;
 857     _num_cc_clears++;
 858   }
 859 #endif
 860 
 861   // Record how much space we copied during a GC. This is typically
 862   // called when a GC alloc region is being retired.
 863   void record_bytes_copied_during_gc(size_t bytes) {
 864     _bytes_copied_during_gc += bytes;
 865   }
 866 
 867   // The amount of space we copied during a GC.
 868   size_t bytes_copied_during_gc() {
 869     return _bytes_copied_during_gc;
 870   }
 871 
 872   // Choose a new collection set.  Marks the chosen regions as being
 873   // "in_collection_set", and links them together.  The head and number of
 874   // the collection set are available via access methods.
 875   void choose_collection_set(double target_pause_time_ms);
 876 
 877   // The head of the list (via "next_in_collection_set()") representing the
 878   // current collection set.
 879   HeapRegion* collection_set() { return _collection_set; }
 880 
 881   void clear_collection_set() { _collection_set = NULL; }
 882 
 883   // Add old region "hr" to the CSet.
 884   void add_old_region_to_cset(HeapRegion* hr);
 885 
 886   // Incremental CSet Support
 887 
 888   // The head of the incrementally built collection set.
 889   HeapRegion* inc_cset_head() { return _inc_cset_head; }
 890 
 891   // The tail of the incrementally built collection set.
 892   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
 893 
 894   // Initialize incremental collection set info.
 895   void start_incremental_cset_building();
 896 
 897   void clear_incremental_cset() {
 898     _inc_cset_head = NULL;
 899     _inc_cset_tail = NULL;
 900   }
 901 
 902   // Stop adding regions to the incremental collection set
 903   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
 904 
 905   // Add/remove information about hr to the aggregated information
 906   // for the incrementally built collection set.
 907   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
 908   void remove_from_incremental_cset_info(HeapRegion* hr);
 909 
 910   // Update information about hr in the aggregated information for
 911   // the incrementally built collection set.
 912   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 913 
 914 private:
 915   // Update the incremental cset information when adding a region
 916   // (should not be called directly).
 917   void add_region_to_incremental_cset_common(HeapRegion* hr);
 918 
 919 public:
 920   // Add hr to the LHS of the incremental collection set.
 921   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 922 
 923   // Add hr to the RHS of the incremental collection set.
 924   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 925 
 926 #ifndef PRODUCT
 927   void print_collection_set(HeapRegion* list_head, outputStream* st);
 928 #endif // !PRODUCT
 929 
 930   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
 931   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
 932   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
 933 
 934   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
 935   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
 936   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
 937 
 938   // This sets the initiate_conc_mark_if_possible() flag to start a
 939   // new cycle, as long as we are not already in one. It's best if it
 940   // is called during a safepoint when the test whether a cycle is in
 941   // progress or not is stable.
 942   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 943 
 944   // This is called at the very beginning of an evacuation pause (it
 945   // has to be the first thing that the pause does). If
 946   // initiate_conc_mark_if_possible() is true, and the concurrent
 947   // marking thread has completed its work during the previous cycle,
 948   // it will set during_initial_mark_pause() to so that the pause does
 949   // the initial-mark work and start a marking cycle.
 950   void decide_on_conc_mark_initiation();
 951 
 952   // If an expansion would be appropriate, because recent GC overhead had
 953   // exceeded the desired limit, return an amount to expand by.
 954   size_t expansion_amount();
 955 
 956 #ifndef PRODUCT
 957   // Check any appropriate marked bytes info, asserting false if
 958   // something's wrong, else returning "true".
 959   bool assertMarkedBytesDataOK();
 960 #endif
 961 
 962   // Print tracing information.
 963   void print_tracing_info() const;
 964 
 965   // Print stats on young survival ratio
 966   void print_yg_surv_rate_info() const;
 967 
 968   void finished_recalculating_age_indexes(bool is_survivors) {
 969     if (is_survivors) {
 970       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 971     } else {
 972       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 973     }
 974     // do that for any other surv rate groups
 975   }
 976 
 977   bool is_young_list_full() {
 978     size_t young_list_length = _g1->young_list()->length();
 979     size_t young_list_target_length = _young_list_target_length;
 980     return young_list_length >= young_list_target_length;
 981   }
 982 
 983   bool can_expand_young_list() {
 984     size_t young_list_length = _g1->young_list()->length();
 985     size_t young_list_max_length = _young_list_max_length;
 986     return young_list_length < young_list_max_length;
 987   }
 988 
 989   size_t young_list_max_length() {
 990     return _young_list_max_length;
 991   }
 992 
 993   bool gcs_are_young() {
 994     return _gcs_are_young;
 995   }
 996   void set_gcs_are_young(bool gcs_are_young) {
 997     _gcs_are_young = gcs_are_young;
 998   }
 999 
1000   bool adaptive_young_list_length() {
1001     return _adaptive_young_list_length;
1002   }
1003   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
1004     _adaptive_young_list_length = adaptive_young_list_length;
1005   }
1006 
1007   inline double get_gc_eff_factor() {
1008     double ratio = _known_garbage_ratio;
1009 
1010     double square = ratio * ratio;
1011     // square = square * square;
1012     double ret = square * 9.0 + 1.0;
1013 #if 0
1014     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
1015 #endif // 0
1016     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
1017     return ret;
1018   }
1019 
1020 private:
1021   //
1022   // Survivor regions policy.
1023   //
1024 
1025   // Current tenuring threshold, set to 0 if the collector reaches the
1026   // maximum amount of suvivors regions.
1027   int _tenuring_threshold;
1028 
1029   // The limit on the number of regions allocated for survivors.
1030   size_t _max_survivor_regions;
1031 
1032   // For reporting purposes.
1033   size_t _eden_bytes_before_gc;
1034   size_t _survivor_bytes_before_gc;
1035   size_t _capacity_before_gc;
1036 
1037   // The amount of survor regions after a collection.
1038   size_t _recorded_survivor_regions;
1039   // List of survivor regions.
1040   HeapRegion* _recorded_survivor_head;
1041   HeapRegion* _recorded_survivor_tail;
1042 
1043   ageTable _survivors_age_table;
1044 
1045 public:
1046 
1047   inline GCAllocPurpose
1048     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1049       if (age < _tenuring_threshold && src_region->is_young()) {
1050         return GCAllocForSurvived;
1051       } else {
1052         return GCAllocForTenured;
1053       }
1054   }
1055 
1056   inline bool track_object_age(GCAllocPurpose purpose) {
1057     return purpose == GCAllocForSurvived;
1058   }
1059 
1060   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
1061 
1062   size_t max_regions(int purpose);
1063 
1064   // The limit on regions for a particular purpose is reached.
1065   void note_alloc_region_limit_reached(int purpose) {
1066     if (purpose == GCAllocForSurvived) {
1067       _tenuring_threshold = 0;
1068     }
1069   }
1070 
1071   void note_start_adding_survivor_regions() {
1072     _survivor_surv_rate_group->start_adding_regions();
1073   }
1074 
1075   void note_stop_adding_survivor_regions() {
1076     _survivor_surv_rate_group->stop_adding_regions();
1077   }
1078 
1079   void record_survivor_regions(size_t      regions,
1080                                HeapRegion* head,
1081                                HeapRegion* tail) {
1082     _recorded_survivor_regions = regions;
1083     _recorded_survivor_head    = head;
1084     _recorded_survivor_tail    = tail;
1085   }
1086 
1087   size_t recorded_survivor_regions() {
1088     return _recorded_survivor_regions;
1089   }
1090 
1091   void record_thread_age_table(ageTable* age_table)
1092   {
1093     _survivors_age_table.merge_par(age_table);
1094   }
1095 
1096   void update_max_gc_locker_expansion();
1097 
1098   // Calculates survivor space parameters.
1099   void update_survivors_policy();
1100 
1101 };
1102 
1103 // This should move to some place more general...
1104 
1105 // If we have "n" measurements, and we've kept track of their "sum" and the
1106 // "sum_of_squares" of the measurements, this returns the variance of the
1107 // sequence.
1108 inline double variance(int n, double sum_of_squares, double sum) {
1109   double n_d = (double)n;
1110   double avg = sum/n_d;
1111   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1112 }
1113 
1114 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP