1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1Log.hpp"
  37 #include "gc_implementation/g1/g1MarkSweep.hpp"
  38 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  39 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  40 #include "gc_implementation/g1/heapRegion.inline.hpp"
  41 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  42 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  43 #include "gc_implementation/g1/vm_operations_g1.hpp"
  44 #include "gc_implementation/shared/isGCActiveMark.hpp"
  45 #include "memory/gcLocker.inline.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/generationSpec.hpp"
  48 #include "memory/referenceProcessor.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/oop.pcgc.inline.hpp"
  51 #include "runtime/aprofiler.hpp"
  52 #include "runtime/vmThread.hpp"
  53 
  54 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  55 
  56 // turn it on so that the contents of the young list (scan-only /
  57 // to-be-collected) are printed at "strategic" points before / during
  58 // / after the collection --- this is useful for debugging
  59 #define YOUNG_LIST_VERBOSE 0
  60 // CURRENT STATUS
  61 // This file is under construction.  Search for "FIXME".
  62 
  63 // INVARIANTS/NOTES
  64 //
  65 // All allocation activity covered by the G1CollectedHeap interface is
  66 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  67 // and allocate_new_tlab, which are the "entry" points to the
  68 // allocation code from the rest of the JVM.  (Note that this does not
  69 // apply to TLAB allocation, which is not part of this interface: it
  70 // is done by clients of this interface.)
  71 
  72 // Notes on implementation of parallelism in different tasks.
  73 //
  74 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  75 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  76 // It does use run_task() which sets _n_workers in the task.
  77 // G1ParTask executes g1_process_strong_roots() ->
  78 // SharedHeap::process_strong_roots() which calls eventuall to
  79 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  80 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  81 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  82 //
  83 
  84 // Local to this file.
  85 
  86 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  87   SuspendibleThreadSet* _sts;
  88   G1RemSet* _g1rs;
  89   ConcurrentG1Refine* _cg1r;
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  93                               G1RemSet* g1rs,
  94                               ConcurrentG1Refine* cg1r) :
  95     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  96   {}
  97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  98     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && _sts->should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111   void set_concurrent(bool b) { _concurrent = b; }
 112 };
 113 
 114 
 115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 116   int _calls;
 117   G1CollectedHeap* _g1h;
 118   CardTableModRefBS* _ctbs;
 119   int _histo[256];
 120 public:
 121   ClearLoggedCardTableEntryClosure() :
 122     _calls(0)
 123   {
 124     _g1h = G1CollectedHeap::heap();
 125     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 126     for (int i = 0; i < 256; i++) _histo[i] = 0;
 127   }
 128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 129     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 130       _calls++;
 131       unsigned char* ujb = (unsigned char*)card_ptr;
 132       int ind = (int)(*ujb);
 133       _histo[ind]++;
 134       *card_ptr = -1;
 135     }
 136     return true;
 137   }
 138   int calls() { return _calls; }
 139   void print_histo() {
 140     gclog_or_tty->print_cr("Card table value histogram:");
 141     for (int i = 0; i < 256; i++) {
 142       if (_histo[i] != 0) {
 143         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 144       }
 145     }
 146   }
 147 };
 148 
 149 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 150   int _calls;
 151   G1CollectedHeap* _g1h;
 152   CardTableModRefBS* _ctbs;
 153 public:
 154   RedirtyLoggedCardTableEntryClosure() :
 155     _calls(0)
 156   {
 157     _g1h = G1CollectedHeap::heap();
 158     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 159   }
 160   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 161     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 162       _calls++;
 163       *card_ptr = 0;
 164     }
 165     return true;
 166   }
 167   int calls() { return _calls; }
 168 };
 169 
 170 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 171 public:
 172   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 173     *card_ptr = CardTableModRefBS::dirty_card_val();
 174     return true;
 175   }
 176 };
 177 
 178 YoungList::YoungList(G1CollectedHeap* g1h) :
 179     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 180     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 181   guarantee(check_list_empty(false), "just making sure...");
 182 }
 183 
 184 void YoungList::push_region(HeapRegion *hr) {
 185   assert(!hr->is_young(), "should not already be young");
 186   assert(hr->get_next_young_region() == NULL, "cause it should!");
 187 
 188   hr->set_next_young_region(_head);
 189   _head = hr;
 190 
 191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 192   ++_length;
 193 }
 194 
 195 void YoungList::add_survivor_region(HeapRegion* hr) {
 196   assert(hr->is_survivor(), "should be flagged as survivor region");
 197   assert(hr->get_next_young_region() == NULL, "cause it should!");
 198 
 199   hr->set_next_young_region(_survivor_head);
 200   if (_survivor_head == NULL) {
 201     _survivor_tail = hr;
 202   }
 203   _survivor_head = hr;
 204   ++_survivor_length;
 205 }
 206 
 207 void YoungList::empty_list(HeapRegion* list) {
 208   while (list != NULL) {
 209     HeapRegion* next = list->get_next_young_region();
 210     list->set_next_young_region(NULL);
 211     list->uninstall_surv_rate_group();
 212     list->set_not_young();
 213     list = next;
 214   }
 215 }
 216 
 217 void YoungList::empty_list() {
 218   assert(check_list_well_formed(), "young list should be well formed");
 219 
 220   empty_list(_head);
 221   _head = NULL;
 222   _length = 0;
 223 
 224   empty_list(_survivor_head);
 225   _survivor_head = NULL;
 226   _survivor_tail = NULL;
 227   _survivor_length = 0;
 228 
 229   _last_sampled_rs_lengths = 0;
 230 
 231   assert(check_list_empty(false), "just making sure...");
 232 }
 233 
 234 bool YoungList::check_list_well_formed() {
 235   bool ret = true;
 236 
 237   uint length = 0;
 238   HeapRegion* curr = _head;
 239   HeapRegion* last = NULL;
 240   while (curr != NULL) {
 241     if (!curr->is_young()) {
 242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 243                              "incorrectly tagged (y: %d, surv: %d)",
 244                              curr->bottom(), curr->end(),
 245                              curr->is_young(), curr->is_survivor());
 246       ret = false;
 247     }
 248     ++length;
 249     last = curr;
 250     curr = curr->get_next_young_region();
 251   }
 252   ret = ret && (length == _length);
 253 
 254   if (!ret) {
 255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 256     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 257                            length, _length);
 258   }
 259 
 260   return ret;
 261 }
 262 
 263 bool YoungList::check_list_empty(bool check_sample) {
 264   bool ret = true;
 265 
 266   if (_length != 0) {
 267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 268                   _length);
 269     ret = false;
 270   }
 271   if (check_sample && _last_sampled_rs_lengths != 0) {
 272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 273     ret = false;
 274   }
 275   if (_head != NULL) {
 276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 277     ret = false;
 278   }
 279   if (!ret) {
 280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 281   }
 282 
 283   return ret;
 284 }
 285 
 286 void
 287 YoungList::rs_length_sampling_init() {
 288   _sampled_rs_lengths = 0;
 289   _curr               = _head;
 290 }
 291 
 292 bool
 293 YoungList::rs_length_sampling_more() {
 294   return _curr != NULL;
 295 }
 296 
 297 void
 298 YoungList::rs_length_sampling_next() {
 299   assert( _curr != NULL, "invariant" );
 300   size_t rs_length = _curr->rem_set()->occupied();
 301 
 302   _sampled_rs_lengths += rs_length;
 303 
 304   // The current region may not yet have been added to the
 305   // incremental collection set (it gets added when it is
 306   // retired as the current allocation region).
 307   if (_curr->in_collection_set()) {
 308     // Update the collection set policy information for this region
 309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 310   }
 311 
 312   _curr = _curr->get_next_young_region();
 313   if (_curr == NULL) {
 314     _last_sampled_rs_lengths = _sampled_rs_lengths;
 315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 316   }
 317 }
 318 
 319 void
 320 YoungList::reset_auxilary_lists() {
 321   guarantee( is_empty(), "young list should be empty" );
 322   assert(check_list_well_formed(), "young list should be well formed");
 323 
 324   // Add survivor regions to SurvRateGroup.
 325   _g1h->g1_policy()->note_start_adding_survivor_regions();
 326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 327 
 328   int young_index_in_cset = 0;
 329   for (HeapRegion* curr = _survivor_head;
 330        curr != NULL;
 331        curr = curr->get_next_young_region()) {
 332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 333 
 334     // The region is a non-empty survivor so let's add it to
 335     // the incremental collection set for the next evacuation
 336     // pause.
 337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 338     young_index_in_cset += 1;
 339   }
 340   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 341   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 342 
 343   _head   = _survivor_head;
 344   _length = _survivor_length;
 345   if (_survivor_head != NULL) {
 346     assert(_survivor_tail != NULL, "cause it shouldn't be");
 347     assert(_survivor_length > 0, "invariant");
 348     _survivor_tail->set_next_young_region(NULL);
 349   }
 350 
 351   // Don't clear the survivor list handles until the start of
 352   // the next evacuation pause - we need it in order to re-tag
 353   // the survivor regions from this evacuation pause as 'young'
 354   // at the start of the next.
 355 
 356   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 357 
 358   assert(check_list_well_formed(), "young list should be well formed");
 359 }
 360 
 361 void YoungList::print() {
 362   HeapRegion* lists[] = {_head,   _survivor_head};
 363   const char* names[] = {"YOUNG", "SURVIVOR"};
 364 
 365   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 366     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 367     HeapRegion *curr = lists[list];
 368     if (curr == NULL)
 369       gclog_or_tty->print_cr("  empty");
 370     while (curr != NULL) {
 371       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 372                              "age: %4d, y: %d, surv: %d",
 373                              curr->bottom(), curr->end(),
 374                              curr->top(),
 375                              curr->prev_top_at_mark_start(),
 376                              curr->next_top_at_mark_start(),
 377                              curr->top_at_conc_mark_count(),
 378                              curr->age_in_surv_rate_group_cond(),
 379                              curr->is_young(),
 380                              curr->is_survivor());
 381       curr = curr->get_next_young_region();
 382     }
 383   }
 384 
 385   gclog_or_tty->print_cr("");
 386 }
 387 
 388 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 389 {
 390   // Claim the right to put the region on the dirty cards region list
 391   // by installing a self pointer.
 392   HeapRegion* next = hr->get_next_dirty_cards_region();
 393   if (next == NULL) {
 394     HeapRegion* res = (HeapRegion*)
 395       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 396                           NULL);
 397     if (res == NULL) {
 398       HeapRegion* head;
 399       do {
 400         // Put the region to the dirty cards region list.
 401         head = _dirty_cards_region_list;
 402         next = (HeapRegion*)
 403           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 404         if (next == head) {
 405           assert(hr->get_next_dirty_cards_region() == hr,
 406                  "hr->get_next_dirty_cards_region() != hr");
 407           if (next == NULL) {
 408             // The last region in the list points to itself.
 409             hr->set_next_dirty_cards_region(hr);
 410           } else {
 411             hr->set_next_dirty_cards_region(next);
 412           }
 413         }
 414       } while (next != head);
 415     }
 416   }
 417 }
 418 
 419 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 420 {
 421   HeapRegion* head;
 422   HeapRegion* hr;
 423   do {
 424     head = _dirty_cards_region_list;
 425     if (head == NULL) {
 426       return NULL;
 427     }
 428     HeapRegion* new_head = head->get_next_dirty_cards_region();
 429     if (head == new_head) {
 430       // The last region.
 431       new_head = NULL;
 432     }
 433     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 434                                           head);
 435   } while (hr != head);
 436   assert(hr != NULL, "invariant");
 437   hr->set_next_dirty_cards_region(NULL);
 438   return hr;
 439 }
 440 
 441 void G1CollectedHeap::stop_conc_gc_threads() {
 442   _cg1r->stop();
 443   _cmThread->stop();
 444 }
 445 
 446 #ifdef ASSERT
 447 // A region is added to the collection set as it is retired
 448 // so an address p can point to a region which will be in the
 449 // collection set but has not yet been retired.  This method
 450 // therefore is only accurate during a GC pause after all
 451 // regions have been retired.  It is used for debugging
 452 // to check if an nmethod has references to objects that can
 453 // be move during a partial collection.  Though it can be
 454 // inaccurate, it is sufficient for G1 because the conservative
 455 // implementation of is_scavengable() for G1 will indicate that
 456 // all nmethods must be scanned during a partial collection.
 457 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 458   HeapRegion* hr = heap_region_containing(p);
 459   return hr != NULL && hr->in_collection_set();
 460 }
 461 #endif
 462 
 463 // Returns true if the reference points to an object that
 464 // can move in an incremental collecction.
 465 bool G1CollectedHeap::is_scavengable(const void* p) {
 466   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 467   G1CollectorPolicy* g1p = g1h->g1_policy();
 468   HeapRegion* hr = heap_region_containing(p);
 469   if (hr == NULL) {
 470      // perm gen (or null)
 471      return false;
 472   } else {
 473     return !hr->isHumongous();
 474   }
 475 }
 476 
 477 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 478   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 479   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 480 
 481   // Count the dirty cards at the start.
 482   CountNonCleanMemRegionClosure count1(this);
 483   ct_bs->mod_card_iterate(&count1);
 484   int orig_count = count1.n();
 485 
 486   // First clear the logged cards.
 487   ClearLoggedCardTableEntryClosure clear;
 488   dcqs.set_closure(&clear);
 489   dcqs.apply_closure_to_all_completed_buffers();
 490   dcqs.iterate_closure_all_threads(false);
 491   clear.print_histo();
 492 
 493   // Now ensure that there's no dirty cards.
 494   CountNonCleanMemRegionClosure count2(this);
 495   ct_bs->mod_card_iterate(&count2);
 496   if (count2.n() != 0) {
 497     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 498                            count2.n(), orig_count);
 499   }
 500   guarantee(count2.n() == 0, "Card table should be clean.");
 501 
 502   RedirtyLoggedCardTableEntryClosure redirty;
 503   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 504   dcqs.apply_closure_to_all_completed_buffers();
 505   dcqs.iterate_closure_all_threads(false);
 506   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 507                          clear.calls(), orig_count);
 508   guarantee(redirty.calls() == clear.calls(),
 509             "Or else mechanism is broken.");
 510 
 511   CountNonCleanMemRegionClosure count3(this);
 512   ct_bs->mod_card_iterate(&count3);
 513   if (count3.n() != orig_count) {
 514     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 515                            orig_count, count3.n());
 516     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 517   }
 518 
 519   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 520 }
 521 
 522 // Private class members.
 523 
 524 G1CollectedHeap* G1CollectedHeap::_g1h;
 525 
 526 // Private methods.
 527 
 528 HeapRegion*
 529 G1CollectedHeap::new_region_try_secondary_free_list() {
 530   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 531   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 532     if (!_secondary_free_list.is_empty()) {
 533       if (G1ConcRegionFreeingVerbose) {
 534         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 535                                "secondary_free_list has %u entries",
 536                                _secondary_free_list.length());
 537       }
 538       // It looks as if there are free regions available on the
 539       // secondary_free_list. Let's move them to the free_list and try
 540       // again to allocate from it.
 541       append_secondary_free_list();
 542 
 543       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 544              "empty we should have moved at least one entry to the free_list");
 545       HeapRegion* res = _free_list.remove_head();
 546       if (G1ConcRegionFreeingVerbose) {
 547         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 548                                "allocated "HR_FORMAT" from secondary_free_list",
 549                                HR_FORMAT_PARAMS(res));
 550       }
 551       return res;
 552     }
 553 
 554     // Wait here until we get notifed either when (a) there are no
 555     // more free regions coming or (b) some regions have been moved on
 556     // the secondary_free_list.
 557     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 558   }
 559 
 560   if (G1ConcRegionFreeingVerbose) {
 561     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 562                            "could not allocate from secondary_free_list");
 563   }
 564   return NULL;
 565 }
 566 
 567 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 568   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 569          "the only time we use this to allocate a humongous region is "
 570          "when we are allocating a single humongous region");
 571 
 572   HeapRegion* res;
 573   if (G1StressConcRegionFreeing) {
 574     if (!_secondary_free_list.is_empty()) {
 575       if (G1ConcRegionFreeingVerbose) {
 576         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 577                                "forced to look at the secondary_free_list");
 578       }
 579       res = new_region_try_secondary_free_list();
 580       if (res != NULL) {
 581         return res;
 582       }
 583     }
 584   }
 585   res = _free_list.remove_head_or_null();
 586   if (res == NULL) {
 587     if (G1ConcRegionFreeingVerbose) {
 588       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 589                              "res == NULL, trying the secondary_free_list");
 590     }
 591     res = new_region_try_secondary_free_list();
 592   }
 593   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 594     // Currently, only attempts to allocate GC alloc regions set
 595     // do_expand to true. So, we should only reach here during a
 596     // safepoint. If this assumption changes we might have to
 597     // reconsider the use of _expand_heap_after_alloc_failure.
 598     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 599 
 600     ergo_verbose1(ErgoHeapSizing,
 601                   "attempt heap expansion",
 602                   ergo_format_reason("region allocation request failed")
 603                   ergo_format_byte("allocation request"),
 604                   word_size * HeapWordSize);
 605     if (expand(word_size * HeapWordSize)) {
 606       // Given that expand() succeeded in expanding the heap, and we
 607       // always expand the heap by an amount aligned to the heap
 608       // region size, the free list should in theory not be empty. So
 609       // it would probably be OK to use remove_head(). But the extra
 610       // check for NULL is unlikely to be a performance issue here (we
 611       // just expanded the heap!) so let's just be conservative and
 612       // use remove_head_or_null().
 613       res = _free_list.remove_head_or_null();
 614     } else {
 615       _expand_heap_after_alloc_failure = false;
 616     }
 617   }
 618   return res;
 619 }
 620 
 621 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 622                                                         size_t word_size) {
 623   assert(isHumongous(word_size), "word_size should be humongous");
 624   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 625 
 626   uint first = G1_NULL_HRS_INDEX;
 627   if (num_regions == 1) {
 628     // Only one region to allocate, no need to go through the slower
 629     // path. The caller will attempt the expasion if this fails, so
 630     // let's not try to expand here too.
 631     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 632     if (hr != NULL) {
 633       first = hr->hrs_index();
 634     } else {
 635       first = G1_NULL_HRS_INDEX;
 636     }
 637   } else {
 638     // We can't allocate humongous regions while cleanupComplete() is
 639     // running, since some of the regions we find to be empty might not
 640     // yet be added to the free list and it is not straightforward to
 641     // know which list they are on so that we can remove them. Note
 642     // that we only need to do this if we need to allocate more than
 643     // one region to satisfy the current humongous allocation
 644     // request. If we are only allocating one region we use the common
 645     // region allocation code (see above).
 646     wait_while_free_regions_coming();
 647     append_secondary_free_list_if_not_empty_with_lock();
 648 
 649     if (free_regions() >= num_regions) {
 650       first = _hrs.find_contiguous(num_regions);
 651       if (first != G1_NULL_HRS_INDEX) {
 652         for (uint i = first; i < first + num_regions; ++i) {
 653           HeapRegion* hr = region_at(i);
 654           assert(hr->is_empty(), "sanity");
 655           assert(is_on_master_free_list(hr), "sanity");
 656           hr->set_pending_removal(true);
 657         }
 658         _free_list.remove_all_pending(num_regions);
 659       }
 660     }
 661   }
 662   return first;
 663 }
 664 
 665 HeapWord*
 666 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 667                                                            uint num_regions,
 668                                                            size_t word_size) {
 669   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 670   assert(isHumongous(word_size), "word_size should be humongous");
 671   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 672 
 673   // Index of last region in the series + 1.
 674   uint last = first + num_regions;
 675 
 676   // We need to initialize the region(s) we just discovered. This is
 677   // a bit tricky given that it can happen concurrently with
 678   // refinement threads refining cards on these regions and
 679   // potentially wanting to refine the BOT as they are scanning
 680   // those cards (this can happen shortly after a cleanup; see CR
 681   // 6991377). So we have to set up the region(s) carefully and in
 682   // a specific order.
 683 
 684   // The word size sum of all the regions we will allocate.
 685   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 686   assert(word_size <= word_size_sum, "sanity");
 687 
 688   // This will be the "starts humongous" region.
 689   HeapRegion* first_hr = region_at(first);
 690   // The header of the new object will be placed at the bottom of
 691   // the first region.
 692   HeapWord* new_obj = first_hr->bottom();
 693   // This will be the new end of the first region in the series that
 694   // should also match the end of the last region in the seriers.
 695   HeapWord* new_end = new_obj + word_size_sum;
 696   // This will be the new top of the first region that will reflect
 697   // this allocation.
 698   HeapWord* new_top = new_obj + word_size;
 699 
 700   // First, we need to zero the header of the space that we will be
 701   // allocating. When we update top further down, some refinement
 702   // threads might try to scan the region. By zeroing the header we
 703   // ensure that any thread that will try to scan the region will
 704   // come across the zero klass word and bail out.
 705   //
 706   // NOTE: It would not have been correct to have used
 707   // CollectedHeap::fill_with_object() and make the space look like
 708   // an int array. The thread that is doing the allocation will
 709   // later update the object header to a potentially different array
 710   // type and, for a very short period of time, the klass and length
 711   // fields will be inconsistent. This could cause a refinement
 712   // thread to calculate the object size incorrectly.
 713   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 714 
 715   // We will set up the first region as "starts humongous". This
 716   // will also update the BOT covering all the regions to reflect
 717   // that there is a single object that starts at the bottom of the
 718   // first region.
 719   first_hr->set_startsHumongous(new_top, new_end);
 720 
 721   // Then, if there are any, we will set up the "continues
 722   // humongous" regions.
 723   HeapRegion* hr = NULL;
 724   for (uint i = first + 1; i < last; ++i) {
 725     hr = region_at(i);
 726     hr->set_continuesHumongous(first_hr);
 727   }
 728   // If we have "continues humongous" regions (hr != NULL), then the
 729   // end of the last one should match new_end.
 730   assert(hr == NULL || hr->end() == new_end, "sanity");
 731 
 732   // Up to this point no concurrent thread would have been able to
 733   // do any scanning on any region in this series. All the top
 734   // fields still point to bottom, so the intersection between
 735   // [bottom,top] and [card_start,card_end] will be empty. Before we
 736   // update the top fields, we'll do a storestore to make sure that
 737   // no thread sees the update to top before the zeroing of the
 738   // object header and the BOT initialization.
 739   OrderAccess::storestore();
 740 
 741   // Now that the BOT and the object header have been initialized,
 742   // we can update top of the "starts humongous" region.
 743   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 744          "new_top should be in this region");
 745   first_hr->set_top(new_top);
 746   if (_hr_printer.is_active()) {
 747     HeapWord* bottom = first_hr->bottom();
 748     HeapWord* end = first_hr->orig_end();
 749     if ((first + 1) == last) {
 750       // the series has a single humongous region
 751       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 752     } else {
 753       // the series has more than one humongous regions
 754       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 755     }
 756   }
 757 
 758   // Now, we will update the top fields of the "continues humongous"
 759   // regions. The reason we need to do this is that, otherwise,
 760   // these regions would look empty and this will confuse parts of
 761   // G1. For example, the code that looks for a consecutive number
 762   // of empty regions will consider them empty and try to
 763   // re-allocate them. We can extend is_empty() to also include
 764   // !continuesHumongous(), but it is easier to just update the top
 765   // fields here. The way we set top for all regions (i.e., top ==
 766   // end for all regions but the last one, top == new_top for the
 767   // last one) is actually used when we will free up the humongous
 768   // region in free_humongous_region().
 769   hr = NULL;
 770   for (uint i = first + 1; i < last; ++i) {
 771     hr = region_at(i);
 772     if ((i + 1) == last) {
 773       // last continues humongous region
 774       assert(hr->bottom() < new_top && new_top <= hr->end(),
 775              "new_top should fall on this region");
 776       hr->set_top(new_top);
 777       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 778     } else {
 779       // not last one
 780       assert(new_top > hr->end(), "new_top should be above this region");
 781       hr->set_top(hr->end());
 782       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 783     }
 784   }
 785   // If we have continues humongous regions (hr != NULL), then the
 786   // end of the last one should match new_end and its top should
 787   // match new_top.
 788   assert(hr == NULL ||
 789          (hr->end() == new_end && hr->top() == new_top), "sanity");
 790 
 791   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 792   _summary_bytes_used += first_hr->used();
 793   _humongous_set.add(first_hr);
 794 
 795   return new_obj;
 796 }
 797 
 798 // If could fit into free regions w/o expansion, try.
 799 // Otherwise, if can expand, do so.
 800 // Otherwise, if using ex regions might help, try with ex given back.
 801 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 802   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 803 
 804   verify_region_sets_optional();
 805 
 806   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 807   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 808   uint x_num = expansion_regions();
 809   uint fs = _hrs.free_suffix();
 810   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 811   if (first == G1_NULL_HRS_INDEX) {
 812     // The only thing we can do now is attempt expansion.
 813     if (fs + x_num >= num_regions) {
 814       // If the number of regions we're trying to allocate for this
 815       // object is at most the number of regions in the free suffix,
 816       // then the call to humongous_obj_allocate_find_first() above
 817       // should have succeeded and we wouldn't be here.
 818       //
 819       // We should only be trying to expand when the free suffix is
 820       // not sufficient for the object _and_ we have some expansion
 821       // room available.
 822       assert(num_regions > fs, "earlier allocation should have succeeded");
 823 
 824       ergo_verbose1(ErgoHeapSizing,
 825                     "attempt heap expansion",
 826                     ergo_format_reason("humongous allocation request failed")
 827                     ergo_format_byte("allocation request"),
 828                     word_size * HeapWordSize);
 829       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 830         // Even though the heap was expanded, it might not have
 831         // reached the desired size. So, we cannot assume that the
 832         // allocation will succeed.
 833         first = humongous_obj_allocate_find_first(num_regions, word_size);
 834       }
 835     }
 836   }
 837 
 838   HeapWord* result = NULL;
 839   if (first != G1_NULL_HRS_INDEX) {
 840     result =
 841       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 842     assert(result != NULL, "it should always return a valid result");
 843 
 844     // A successful humongous object allocation changes the used space
 845     // information of the old generation so we need to recalculate the
 846     // sizes and update the jstat counters here.
 847     g1mm()->update_sizes();
 848   }
 849 
 850   verify_region_sets_optional();
 851 
 852   return result;
 853 }
 854 
 855 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 856   assert_heap_not_locked_and_not_at_safepoint();
 857   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 858 
 859   unsigned int dummy_gc_count_before;
 860   return attempt_allocation(word_size, &dummy_gc_count_before);
 861 }
 862 
 863 HeapWord*
 864 G1CollectedHeap::mem_allocate(size_t word_size,
 865                               bool*  gc_overhead_limit_was_exceeded) {
 866   assert_heap_not_locked_and_not_at_safepoint();
 867 
 868   // Loop until the allocation is satisified, or unsatisfied after GC.
 869   for (int try_count = 1; /* we'll return */; try_count += 1) {
 870     unsigned int gc_count_before;
 871 
 872     HeapWord* result = NULL;
 873     if (!isHumongous(word_size)) {
 874       result = attempt_allocation(word_size, &gc_count_before);
 875     } else {
 876       result = attempt_allocation_humongous(word_size, &gc_count_before);
 877     }
 878     if (result != NULL) {
 879       return result;
 880     }
 881 
 882     // Create the garbage collection operation...
 883     VM_G1CollectForAllocation op(gc_count_before, word_size);
 884     // ...and get the VM thread to execute it.
 885     VMThread::execute(&op);
 886 
 887     if (op.prologue_succeeded() && op.pause_succeeded()) {
 888       // If the operation was successful we'll return the result even
 889       // if it is NULL. If the allocation attempt failed immediately
 890       // after a Full GC, it's unlikely we'll be able to allocate now.
 891       HeapWord* result = op.result();
 892       if (result != NULL && !isHumongous(word_size)) {
 893         // Allocations that take place on VM operations do not do any
 894         // card dirtying and we have to do it here. We only have to do
 895         // this for non-humongous allocations, though.
 896         dirty_young_block(result, word_size);
 897       }
 898       return result;
 899     } else {
 900       assert(op.result() == NULL,
 901              "the result should be NULL if the VM op did not succeed");
 902     }
 903 
 904     // Give a warning if we seem to be looping forever.
 905     if ((QueuedAllocationWarningCount > 0) &&
 906         (try_count % QueuedAllocationWarningCount == 0)) {
 907       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 908     }
 909   }
 910 
 911   ShouldNotReachHere();
 912   return NULL;
 913 }
 914 
 915 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 916                                            unsigned int *gc_count_before_ret) {
 917   // Make sure you read the note in attempt_allocation_humongous().
 918 
 919   assert_heap_not_locked_and_not_at_safepoint();
 920   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 921          "be called for humongous allocation requests");
 922 
 923   // We should only get here after the first-level allocation attempt
 924   // (attempt_allocation()) failed to allocate.
 925 
 926   // We will loop until a) we manage to successfully perform the
 927   // allocation or b) we successfully schedule a collection which
 928   // fails to perform the allocation. b) is the only case when we'll
 929   // return NULL.
 930   HeapWord* result = NULL;
 931   for (int try_count = 1; /* we'll return */; try_count += 1) {
 932     bool should_try_gc;
 933     unsigned int gc_count_before;
 934 
 935     {
 936       MutexLockerEx x(Heap_lock);
 937 
 938       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 939                                                       false /* bot_updates */);
 940       if (result != NULL) {
 941         return result;
 942       }
 943 
 944       // If we reach here, attempt_allocation_locked() above failed to
 945       // allocate a new region. So the mutator alloc region should be NULL.
 946       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 947 
 948       if (GC_locker::is_active_and_needs_gc()) {
 949         if (g1_policy()->can_expand_young_list()) {
 950           // No need for an ergo verbose message here,
 951           // can_expand_young_list() does this when it returns true.
 952           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 953                                                       false /* bot_updates */);
 954           if (result != NULL) {
 955             return result;
 956           }
 957         }
 958         should_try_gc = false;
 959       } else {
 960         // Read the GC count while still holding the Heap_lock.
 961         gc_count_before = total_collections();
 962         should_try_gc = true;
 963       }
 964     }
 965 
 966     if (should_try_gc) {
 967       bool succeeded;
 968       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 969       if (result != NULL) {
 970         assert(succeeded, "only way to get back a non-NULL result");
 971         return result;
 972       }
 973 
 974       if (succeeded) {
 975         // If we get here we successfully scheduled a collection which
 976         // failed to allocate. No point in trying to allocate
 977         // further. We'll just return NULL.
 978         MutexLockerEx x(Heap_lock);
 979         *gc_count_before_ret = total_collections();
 980         return NULL;
 981       }
 982     } else {
 983       GC_locker::stall_until_clear();
 984     }
 985 
 986     // We can reach here if we were unsuccessul in scheduling a
 987     // collection (because another thread beat us to it) or if we were
 988     // stalled due to the GC locker. In either can we should retry the
 989     // allocation attempt in case another thread successfully
 990     // performed a collection and reclaimed enough space. We do the
 991     // first attempt (without holding the Heap_lock) here and the
 992     // follow-on attempt will be at the start of the next loop
 993     // iteration (after taking the Heap_lock).
 994     result = _mutator_alloc_region.attempt_allocation(word_size,
 995                                                       false /* bot_updates */);
 996     if (result != NULL) {
 997       return result;
 998     }
 999 
1000     // Give a warning if we seem to be looping forever.
1001     if ((QueuedAllocationWarningCount > 0) &&
1002         (try_count % QueuedAllocationWarningCount == 0)) {
1003       warning("G1CollectedHeap::attempt_allocation_slow() "
1004               "retries %d times", try_count);
1005     }
1006   }
1007 
1008   ShouldNotReachHere();
1009   return NULL;
1010 }
1011 
1012 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1013                                           unsigned int * gc_count_before_ret) {
1014   // The structure of this method has a lot of similarities to
1015   // attempt_allocation_slow(). The reason these two were not merged
1016   // into a single one is that such a method would require several "if
1017   // allocation is not humongous do this, otherwise do that"
1018   // conditional paths which would obscure its flow. In fact, an early
1019   // version of this code did use a unified method which was harder to
1020   // follow and, as a result, it had subtle bugs that were hard to
1021   // track down. So keeping these two methods separate allows each to
1022   // be more readable. It will be good to keep these two in sync as
1023   // much as possible.
1024 
1025   assert_heap_not_locked_and_not_at_safepoint();
1026   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1027          "should only be called for humongous allocations");
1028 
1029   // Humongous objects can exhaust the heap quickly, so we should check if we
1030   // need to start a marking cycle at each humongous object allocation. We do
1031   // the check before we do the actual allocation. The reason for doing it
1032   // before the allocation is that we avoid having to keep track of the newly
1033   // allocated memory while we do a GC.
1034   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1035                                            word_size)) {
1036     collect(GCCause::_g1_humongous_allocation);
1037   }
1038 
1039   // We will loop until a) we manage to successfully perform the
1040   // allocation or b) we successfully schedule a collection which
1041   // fails to perform the allocation. b) is the only case when we'll
1042   // return NULL.
1043   HeapWord* result = NULL;
1044   for (int try_count = 1; /* we'll return */; try_count += 1) {
1045     bool should_try_gc;
1046     unsigned int gc_count_before;
1047 
1048     {
1049       MutexLockerEx x(Heap_lock);
1050 
1051       // Given that humongous objects are not allocated in young
1052       // regions, we'll first try to do the allocation without doing a
1053       // collection hoping that there's enough space in the heap.
1054       result = humongous_obj_allocate(word_size);
1055       if (result != NULL) {
1056         return result;
1057       }
1058 
1059       if (GC_locker::is_active_and_needs_gc()) {
1060         should_try_gc = false;
1061       } else {
1062         // Read the GC count while still holding the Heap_lock.
1063         gc_count_before = total_collections();
1064         should_try_gc = true;
1065       }
1066     }
1067 
1068     if (should_try_gc) {
1069       // If we failed to allocate the humongous object, we should try to
1070       // do a collection pause (if we're allowed) in case it reclaims
1071       // enough space for the allocation to succeed after the pause.
1072 
1073       bool succeeded;
1074       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1075       if (result != NULL) {
1076         assert(succeeded, "only way to get back a non-NULL result");
1077         return result;
1078       }
1079 
1080       if (succeeded) {
1081         // If we get here we successfully scheduled a collection which
1082         // failed to allocate. No point in trying to allocate
1083         // further. We'll just return NULL.
1084         MutexLockerEx x(Heap_lock);
1085         *gc_count_before_ret = total_collections();
1086         return NULL;
1087       }
1088     } else {
1089       GC_locker::stall_until_clear();
1090     }
1091 
1092     // We can reach here if we were unsuccessul in scheduling a
1093     // collection (because another thread beat us to it) or if we were
1094     // stalled due to the GC locker. In either can we should retry the
1095     // allocation attempt in case another thread successfully
1096     // performed a collection and reclaimed enough space.  Give a
1097     // warning if we seem to be looping forever.
1098 
1099     if ((QueuedAllocationWarningCount > 0) &&
1100         (try_count % QueuedAllocationWarningCount == 0)) {
1101       warning("G1CollectedHeap::attempt_allocation_humongous() "
1102               "retries %d times", try_count);
1103     }
1104   }
1105 
1106   ShouldNotReachHere();
1107   return NULL;
1108 }
1109 
1110 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1111                                        bool expect_null_mutator_alloc_region) {
1112   assert_at_safepoint(true /* should_be_vm_thread */);
1113   assert(_mutator_alloc_region.get() == NULL ||
1114                                              !expect_null_mutator_alloc_region,
1115          "the current alloc region was unexpectedly found to be non-NULL");
1116 
1117   if (!isHumongous(word_size)) {
1118     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1119                                                       false /* bot_updates */);
1120   } else {
1121     HeapWord* result = humongous_obj_allocate(word_size);
1122     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1123       g1_policy()->set_initiate_conc_mark_if_possible();
1124     }
1125     return result;
1126   }
1127 
1128   ShouldNotReachHere();
1129 }
1130 
1131 class PostMCRemSetClearClosure: public HeapRegionClosure {
1132   ModRefBarrierSet* _mr_bs;
1133 public:
1134   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1135   bool doHeapRegion(HeapRegion* r) {
1136     r->reset_gc_time_stamp();
1137     if (r->continuesHumongous())
1138       return false;
1139     HeapRegionRemSet* hrrs = r->rem_set();
1140     if (hrrs != NULL) hrrs->clear();
1141     // You might think here that we could clear just the cards
1142     // corresponding to the used region.  But no: if we leave a dirty card
1143     // in a region we might allocate into, then it would prevent that card
1144     // from being enqueued, and cause it to be missed.
1145     // Re: the performance cost: we shouldn't be doing full GC anyway!
1146     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1147     return false;
1148   }
1149 };
1150 
1151 
1152 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1153   ModRefBarrierSet* _mr_bs;
1154 public:
1155   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1156   bool doHeapRegion(HeapRegion* r) {
1157     if (r->continuesHumongous()) return false;
1158     if (r->used_region().word_size() != 0) {
1159       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1160     }
1161     return false;
1162   }
1163 };
1164 
1165 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1166   G1CollectedHeap*   _g1h;
1167   UpdateRSOopClosure _cl;
1168   int                _worker_i;
1169 public:
1170   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1171     _cl(g1->g1_rem_set(), worker_i),
1172     _worker_i(worker_i),
1173     _g1h(g1)
1174   { }
1175 
1176   bool doHeapRegion(HeapRegion* r) {
1177     if (!r->continuesHumongous()) {
1178       _cl.set_from(r);
1179       r->oop_iterate(&_cl);
1180     }
1181     return false;
1182   }
1183 };
1184 
1185 class ParRebuildRSTask: public AbstractGangTask {
1186   G1CollectedHeap* _g1;
1187 public:
1188   ParRebuildRSTask(G1CollectedHeap* g1)
1189     : AbstractGangTask("ParRebuildRSTask"),
1190       _g1(g1)
1191   { }
1192 
1193   void work(uint worker_id) {
1194     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1195     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1196                                           _g1->workers()->active_workers(),
1197                                          HeapRegion::RebuildRSClaimValue);
1198   }
1199 };
1200 
1201 class PostCompactionPrinterClosure: public HeapRegionClosure {
1202 private:
1203   G1HRPrinter* _hr_printer;
1204 public:
1205   bool doHeapRegion(HeapRegion* hr) {
1206     assert(!hr->is_young(), "not expecting to find young regions");
1207     // We only generate output for non-empty regions.
1208     if (!hr->is_empty()) {
1209       if (!hr->isHumongous()) {
1210         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1211       } else if (hr->startsHumongous()) {
1212         if (hr->capacity() == HeapRegion::GrainBytes) {
1213           // single humongous region
1214           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1215         } else {
1216           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1217         }
1218       } else {
1219         assert(hr->continuesHumongous(), "only way to get here");
1220         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1221       }
1222     }
1223     return false;
1224   }
1225 
1226   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1227     : _hr_printer(hr_printer) { }
1228 };
1229 
1230 bool G1CollectedHeap::do_collection(bool explicit_gc,
1231                                     bool clear_all_soft_refs,
1232                                     size_t word_size) {
1233   assert_at_safepoint(true /* should_be_vm_thread */);
1234 
1235   if (GC_locker::check_active_before_gc()) {
1236     return false;
1237   }
1238 
1239   SvcGCMarker sgcm(SvcGCMarker::FULL);
1240   ResourceMark rm;
1241 
1242   print_heap_before_gc();
1243 
1244   HRSPhaseSetter x(HRSPhaseFullGC);
1245   verify_region_sets_optional();
1246 
1247   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1248                            collector_policy()->should_clear_all_soft_refs();
1249 
1250   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1251 
1252   {
1253     IsGCActiveMark x;
1254 
1255     // Timing
1256     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
1257     assert(!system_gc || explicit_gc, "invariant");
1258     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1259     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1260     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1261                 G1Log::fine(), true, gclog_or_tty);
1262 
1263     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1264     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1265 
1266     double start = os::elapsedTime();
1267     g1_policy()->record_full_collection_start();
1268 
1269     // Note: When we have a more flexible GC logging framework that
1270     // allows us to add optional attributes to a GC log record we
1271     // could consider timing and reporting how long we wait in the
1272     // following two methods.
1273     wait_while_free_regions_coming();
1274     // If we start the compaction before the CM threads finish
1275     // scanning the root regions we might trip them over as we'll
1276     // be moving objects / updating references. So let's wait until
1277     // they are done. By telling them to abort, they should complete
1278     // early.
1279     _cm->root_regions()->abort();
1280     _cm->root_regions()->wait_until_scan_finished();
1281     append_secondary_free_list_if_not_empty_with_lock();
1282 
1283     gc_prologue(true);
1284     increment_total_collections(true /* full gc */);
1285 
1286     size_t g1h_prev_used = used();
1287     assert(used() == recalculate_used(), "Should be equal");
1288 
1289     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1290       HandleMark hm;  // Discard invalid handles created during verification
1291       gclog_or_tty->print(" VerifyBeforeGC:");
1292       prepare_for_verify();
1293       Universe::verify(/* silent      */ false,
1294                        /* option      */ VerifyOption_G1UsePrevMarking);
1295 
1296     }
1297     pre_full_gc_dump();
1298 
1299     COMPILER2_PRESENT(DerivedPointerTable::clear());
1300 
1301     // Disable discovery and empty the discovered lists
1302     // for the CM ref processor.
1303     ref_processor_cm()->disable_discovery();
1304     ref_processor_cm()->abandon_partial_discovery();
1305     ref_processor_cm()->verify_no_references_recorded();
1306 
1307     // Abandon current iterations of concurrent marking and concurrent
1308     // refinement, if any are in progress. We have to do this before
1309     // wait_until_scan_finished() below.
1310     concurrent_mark()->abort();
1311 
1312     // Make sure we'll choose a new allocation region afterwards.
1313     release_mutator_alloc_region();
1314     abandon_gc_alloc_regions();
1315     g1_rem_set()->cleanupHRRS();
1316 
1317     // We should call this after we retire any currently active alloc
1318     // regions so that all the ALLOC / RETIRE events are generated
1319     // before the start GC event.
1320     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1321 
1322     // We may have added regions to the current incremental collection
1323     // set between the last GC or pause and now. We need to clear the
1324     // incremental collection set and then start rebuilding it afresh
1325     // after this full GC.
1326     abandon_collection_set(g1_policy()->inc_cset_head());
1327     g1_policy()->clear_incremental_cset();
1328     g1_policy()->stop_incremental_cset_building();
1329 
1330     tear_down_region_sets(false /* free_list_only */);
1331     g1_policy()->set_gcs_are_young(true);
1332 
1333     // See the comments in g1CollectedHeap.hpp and
1334     // G1CollectedHeap::ref_processing_init() about
1335     // how reference processing currently works in G1.
1336 
1337     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1338     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1339 
1340     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1341     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1342 
1343     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1344     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1345 
1346     // Do collection work
1347     {
1348       HandleMark hm;  // Discard invalid handles created during gc
1349       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1350     }
1351 
1352     assert(free_regions() == 0, "we should not have added any free regions");
1353     rebuild_region_sets(false /* free_list_only */);
1354 
1355     // Enqueue any discovered reference objects that have
1356     // not been removed from the discovered lists.
1357     ref_processor_stw()->enqueue_discovered_references();
1358 
1359     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1360 
1361     MemoryService::track_memory_usage();
1362 
1363     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1364       HandleMark hm;  // Discard invalid handles created during verification
1365       gclog_or_tty->print(" VerifyAfterGC:");
1366       prepare_for_verify();
1367       Universe::verify(/* silent      */ false,
1368                        /* option      */ VerifyOption_G1UsePrevMarking);
1369 
1370     }
1371 
1372     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1373     ref_processor_stw()->verify_no_references_recorded();
1374 
1375     // Note: since we've just done a full GC, concurrent
1376     // marking is no longer active. Therefore we need not
1377     // re-enable reference discovery for the CM ref processor.
1378     // That will be done at the start of the next marking cycle.
1379     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1380     ref_processor_cm()->verify_no_references_recorded();
1381 
1382     reset_gc_time_stamp();
1383     // Since everything potentially moved, we will clear all remembered
1384     // sets, and clear all cards.  Later we will rebuild remebered
1385     // sets. We will also reset the GC time stamps of the regions.
1386     PostMCRemSetClearClosure rs_clear(mr_bs());
1387     heap_region_iterate(&rs_clear);
1388 
1389     // Resize the heap if necessary.
1390     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1391 
1392     if (_hr_printer.is_active()) {
1393       // We should do this after we potentially resize the heap so
1394       // that all the COMMIT / UNCOMMIT events are generated before
1395       // the end GC event.
1396 
1397       PostCompactionPrinterClosure cl(hr_printer());
1398       heap_region_iterate(&cl);
1399 
1400       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1401     }
1402 
1403     if (_cg1r->use_cache()) {
1404       _cg1r->clear_and_record_card_counts();
1405       _cg1r->clear_hot_cache();
1406     }
1407 
1408     // Rebuild remembered sets of all regions.
1409     if (G1CollectedHeap::use_parallel_gc_threads()) {
1410       uint n_workers =
1411         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1412                                        workers()->active_workers(),
1413                                        Threads::number_of_non_daemon_threads());
1414       assert(UseDynamicNumberOfGCThreads ||
1415              n_workers == workers()->total_workers(),
1416              "If not dynamic should be using all the  workers");
1417       workers()->set_active_workers(n_workers);
1418       // Set parallel threads in the heap (_n_par_threads) only
1419       // before a parallel phase and always reset it to 0 after
1420       // the phase so that the number of parallel threads does
1421       // no get carried forward to a serial phase where there
1422       // may be code that is "possibly_parallel".
1423       set_par_threads(n_workers);
1424 
1425       ParRebuildRSTask rebuild_rs_task(this);
1426       assert(check_heap_region_claim_values(
1427              HeapRegion::InitialClaimValue), "sanity check");
1428       assert(UseDynamicNumberOfGCThreads ||
1429              workers()->active_workers() == workers()->total_workers(),
1430         "Unless dynamic should use total workers");
1431       // Use the most recent number of  active workers
1432       assert(workers()->active_workers() > 0,
1433         "Active workers not properly set");
1434       set_par_threads(workers()->active_workers());
1435       workers()->run_task(&rebuild_rs_task);
1436       set_par_threads(0);
1437       assert(check_heap_region_claim_values(
1438              HeapRegion::RebuildRSClaimValue), "sanity check");
1439       reset_heap_region_claim_values();
1440     } else {
1441       RebuildRSOutOfRegionClosure rebuild_rs(this);
1442       heap_region_iterate(&rebuild_rs);
1443     }
1444 
1445     if (G1Log::fine()) {
1446       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1447     }
1448 
1449     if (true) { // FIXME
1450       // Ask the permanent generation to adjust size for full collections
1451       perm()->compute_new_size();
1452     }
1453 
1454     // Start a new incremental collection set for the next pause
1455     assert(g1_policy()->collection_set() == NULL, "must be");
1456     g1_policy()->start_incremental_cset_building();
1457 
1458     // Clear the _cset_fast_test bitmap in anticipation of adding
1459     // regions to the incremental collection set for the next
1460     // evacuation pause.
1461     clear_cset_fast_test();
1462 
1463     init_mutator_alloc_region();
1464 
1465     double end = os::elapsedTime();
1466     g1_policy()->record_full_collection_end();
1467 
1468 #ifdef TRACESPINNING
1469     ParallelTaskTerminator::print_termination_counts();
1470 #endif
1471 
1472     gc_epilogue(true);
1473 
1474     // Discard all rset updates
1475     JavaThread::dirty_card_queue_set().abandon_logs();
1476     assert(!G1DeferredRSUpdate
1477            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1478   }
1479 
1480   _young_list->reset_sampled_info();
1481   // At this point there should be no regions in the
1482   // entire heap tagged as young.
1483   assert( check_young_list_empty(true /* check_heap */),
1484     "young list should be empty at this point");
1485 
1486   // Update the number of full collections that have been completed.
1487   increment_full_collections_completed(false /* concurrent */);
1488 
1489   _hrs.verify_optional();
1490   verify_region_sets_optional();
1491 
1492   print_heap_after_gc();
1493   g1mm()->update_sizes();
1494   post_full_gc_dump();
1495 
1496   return true;
1497 }
1498 
1499 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1500   // do_collection() will return whether it succeeded in performing
1501   // the GC. Currently, there is no facility on the
1502   // do_full_collection() API to notify the caller than the collection
1503   // did not succeed (e.g., because it was locked out by the GC
1504   // locker). So, right now, we'll ignore the return value.
1505   bool dummy = do_collection(true,                /* explicit_gc */
1506                              clear_all_soft_refs,
1507                              0                    /* word_size */);
1508 }
1509 
1510 // This code is mostly copied from TenuredGeneration.
1511 void
1512 G1CollectedHeap::
1513 resize_if_necessary_after_full_collection(size_t word_size) {
1514   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1515 
1516   // Include the current allocation, if any, and bytes that will be
1517   // pre-allocated to support collections, as "used".
1518   const size_t used_after_gc = used();
1519   const size_t capacity_after_gc = capacity();
1520   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1521 
1522   // This is enforced in arguments.cpp.
1523   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1524          "otherwise the code below doesn't make sense");
1525 
1526   // We don't have floating point command-line arguments
1527   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1528   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1529   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1530   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1531 
1532   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1533   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1534 
1535   // We have to be careful here as these two calculations can overflow
1536   // 32-bit size_t's.
1537   double used_after_gc_d = (double) used_after_gc;
1538   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1539   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1540 
1541   // Let's make sure that they are both under the max heap size, which
1542   // by default will make them fit into a size_t.
1543   double desired_capacity_upper_bound = (double) max_heap_size;
1544   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1545                                     desired_capacity_upper_bound);
1546   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1547                                     desired_capacity_upper_bound);
1548 
1549   // We can now safely turn them into size_t's.
1550   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1551   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1552 
1553   // This assert only makes sense here, before we adjust them
1554   // with respect to the min and max heap size.
1555   assert(minimum_desired_capacity <= maximum_desired_capacity,
1556          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1557                  "maximum_desired_capacity = "SIZE_FORMAT,
1558                  minimum_desired_capacity, maximum_desired_capacity));
1559 
1560   // Should not be greater than the heap max size. No need to adjust
1561   // it with respect to the heap min size as it's a lower bound (i.e.,
1562   // we'll try to make the capacity larger than it, not smaller).
1563   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1564   // Should not be less than the heap min size. No need to adjust it
1565   // with respect to the heap max size as it's an upper bound (i.e.,
1566   // we'll try to make the capacity smaller than it, not greater).
1567   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1568 
1569   if (capacity_after_gc < minimum_desired_capacity) {
1570     // Don't expand unless it's significant
1571     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1572     ergo_verbose4(ErgoHeapSizing,
1573                   "attempt heap expansion",
1574                   ergo_format_reason("capacity lower than "
1575                                      "min desired capacity after Full GC")
1576                   ergo_format_byte("capacity")
1577                   ergo_format_byte("occupancy")
1578                   ergo_format_byte_perc("min desired capacity"),
1579                   capacity_after_gc, used_after_gc,
1580                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1581     expand(expand_bytes);
1582 
1583     // No expansion, now see if we want to shrink
1584   } else if (capacity_after_gc > maximum_desired_capacity) {
1585     // Capacity too large, compute shrinking size
1586     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1587     ergo_verbose4(ErgoHeapSizing,
1588                   "attempt heap shrinking",
1589                   ergo_format_reason("capacity higher than "
1590                                      "max desired capacity after Full GC")
1591                   ergo_format_byte("capacity")
1592                   ergo_format_byte("occupancy")
1593                   ergo_format_byte_perc("max desired capacity"),
1594                   capacity_after_gc, used_after_gc,
1595                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1596     shrink(shrink_bytes);
1597   }
1598 }
1599 
1600 
1601 HeapWord*
1602 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1603                                            bool* succeeded) {
1604   assert_at_safepoint(true /* should_be_vm_thread */);
1605 
1606   *succeeded = true;
1607   // Let's attempt the allocation first.
1608   HeapWord* result =
1609     attempt_allocation_at_safepoint(word_size,
1610                                  false /* expect_null_mutator_alloc_region */);
1611   if (result != NULL) {
1612     assert(*succeeded, "sanity");
1613     return result;
1614   }
1615 
1616   // In a G1 heap, we're supposed to keep allocation from failing by
1617   // incremental pauses.  Therefore, at least for now, we'll favor
1618   // expansion over collection.  (This might change in the future if we can
1619   // do something smarter than full collection to satisfy a failed alloc.)
1620   result = expand_and_allocate(word_size);
1621   if (result != NULL) {
1622     assert(*succeeded, "sanity");
1623     return result;
1624   }
1625 
1626   // Expansion didn't work, we'll try to do a Full GC.
1627   bool gc_succeeded = do_collection(false, /* explicit_gc */
1628                                     false, /* clear_all_soft_refs */
1629                                     word_size);
1630   if (!gc_succeeded) {
1631     *succeeded = false;
1632     return NULL;
1633   }
1634 
1635   // Retry the allocation
1636   result = attempt_allocation_at_safepoint(word_size,
1637                                   true /* expect_null_mutator_alloc_region */);
1638   if (result != NULL) {
1639     assert(*succeeded, "sanity");
1640     return result;
1641   }
1642 
1643   // Then, try a Full GC that will collect all soft references.
1644   gc_succeeded = do_collection(false, /* explicit_gc */
1645                                true,  /* clear_all_soft_refs */
1646                                word_size);
1647   if (!gc_succeeded) {
1648     *succeeded = false;
1649     return NULL;
1650   }
1651 
1652   // Retry the allocation once more
1653   result = attempt_allocation_at_safepoint(word_size,
1654                                   true /* expect_null_mutator_alloc_region */);
1655   if (result != NULL) {
1656     assert(*succeeded, "sanity");
1657     return result;
1658   }
1659 
1660   assert(!collector_policy()->should_clear_all_soft_refs(),
1661          "Flag should have been handled and cleared prior to this point");
1662 
1663   // What else?  We might try synchronous finalization later.  If the total
1664   // space available is large enough for the allocation, then a more
1665   // complete compaction phase than we've tried so far might be
1666   // appropriate.
1667   assert(*succeeded, "sanity");
1668   return NULL;
1669 }
1670 
1671 // Attempting to expand the heap sufficiently
1672 // to support an allocation of the given "word_size".  If
1673 // successful, perform the allocation and return the address of the
1674 // allocated block, or else "NULL".
1675 
1676 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1677   assert_at_safepoint(true /* should_be_vm_thread */);
1678 
1679   verify_region_sets_optional();
1680 
1681   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1682   ergo_verbose1(ErgoHeapSizing,
1683                 "attempt heap expansion",
1684                 ergo_format_reason("allocation request failed")
1685                 ergo_format_byte("allocation request"),
1686                 word_size * HeapWordSize);
1687   if (expand(expand_bytes)) {
1688     _hrs.verify_optional();
1689     verify_region_sets_optional();
1690     return attempt_allocation_at_safepoint(word_size,
1691                                  false /* expect_null_mutator_alloc_region */);
1692   }
1693   return NULL;
1694 }
1695 
1696 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1697                                              HeapWord* new_end) {
1698   assert(old_end != new_end, "don't call this otherwise");
1699   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1700 
1701   // Update the committed mem region.
1702   _g1_committed.set_end(new_end);
1703   // Tell the card table about the update.
1704   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1705   // Tell the BOT about the update.
1706   _bot_shared->resize(_g1_committed.word_size());
1707 }
1708 
1709 bool G1CollectedHeap::expand(size_t expand_bytes) {
1710   size_t old_mem_size = _g1_storage.committed_size();
1711   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1712   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1713                                        HeapRegion::GrainBytes);
1714   ergo_verbose2(ErgoHeapSizing,
1715                 "expand the heap",
1716                 ergo_format_byte("requested expansion amount")
1717                 ergo_format_byte("attempted expansion amount"),
1718                 expand_bytes, aligned_expand_bytes);
1719 
1720   // First commit the memory.
1721   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1722   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1723   if (successful) {
1724     // Then propagate this update to the necessary data structures.
1725     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1726     update_committed_space(old_end, new_end);
1727 
1728     FreeRegionList expansion_list("Local Expansion List");
1729     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1730     assert(mr.start() == old_end, "post-condition");
1731     // mr might be a smaller region than what was requested if
1732     // expand_by() was unable to allocate the HeapRegion instances
1733     assert(mr.end() <= new_end, "post-condition");
1734 
1735     size_t actual_expand_bytes = mr.byte_size();
1736     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1737     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1738            "post-condition");
1739     if (actual_expand_bytes < aligned_expand_bytes) {
1740       // We could not expand _hrs to the desired size. In this case we
1741       // need to shrink the committed space accordingly.
1742       assert(mr.end() < new_end, "invariant");
1743 
1744       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1745       // First uncommit the memory.
1746       _g1_storage.shrink_by(diff_bytes);
1747       // Then propagate this update to the necessary data structures.
1748       update_committed_space(new_end, mr.end());
1749     }
1750     _free_list.add_as_tail(&expansion_list);
1751 
1752     if (_hr_printer.is_active()) {
1753       HeapWord* curr = mr.start();
1754       while (curr < mr.end()) {
1755         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1756         _hr_printer.commit(curr, curr_end);
1757         curr = curr_end;
1758       }
1759       assert(curr == mr.end(), "post-condition");
1760     }
1761     g1_policy()->record_new_heap_size(n_regions());
1762   } else {
1763     ergo_verbose0(ErgoHeapSizing,
1764                   "did not expand the heap",
1765                   ergo_format_reason("heap expansion operation failed"));
1766     // The expansion of the virtual storage space was unsuccessful.
1767     // Let's see if it was because we ran out of swap.
1768     if (G1ExitOnExpansionFailure &&
1769         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1770       // We had head room...
1771       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1772     }
1773   }
1774   return successful;
1775 }
1776 
1777 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1778   size_t old_mem_size = _g1_storage.committed_size();
1779   size_t aligned_shrink_bytes =
1780     ReservedSpace::page_align_size_down(shrink_bytes);
1781   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1782                                          HeapRegion::GrainBytes);
1783   uint num_regions_deleted = 0;
1784   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1785   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1786   assert(mr.end() == old_end, "post-condition");
1787 
1788   ergo_verbose3(ErgoHeapSizing,
1789                 "shrink the heap",
1790                 ergo_format_byte("requested shrinking amount")
1791                 ergo_format_byte("aligned shrinking amount")
1792                 ergo_format_byte("attempted shrinking amount"),
1793                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1794   if (mr.byte_size() > 0) {
1795     if (_hr_printer.is_active()) {
1796       HeapWord* curr = mr.end();
1797       while (curr > mr.start()) {
1798         HeapWord* curr_end = curr;
1799         curr -= HeapRegion::GrainWords;
1800         _hr_printer.uncommit(curr, curr_end);
1801       }
1802       assert(curr == mr.start(), "post-condition");
1803     }
1804 
1805     _g1_storage.shrink_by(mr.byte_size());
1806     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1807     assert(mr.start() == new_end, "post-condition");
1808 
1809     _expansion_regions += num_regions_deleted;
1810     update_committed_space(old_end, new_end);
1811     HeapRegionRemSet::shrink_heap(n_regions());
1812     g1_policy()->record_new_heap_size(n_regions());
1813   } else {
1814     ergo_verbose0(ErgoHeapSizing,
1815                   "did not shrink the heap",
1816                   ergo_format_reason("heap shrinking operation failed"));
1817   }
1818 }
1819 
1820 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1821   verify_region_sets_optional();
1822 
1823   // We should only reach here at the end of a Full GC which means we
1824   // should not not be holding to any GC alloc regions. The method
1825   // below will make sure of that and do any remaining clean up.
1826   abandon_gc_alloc_regions();
1827 
1828   // Instead of tearing down / rebuilding the free lists here, we
1829   // could instead use the remove_all_pending() method on free_list to
1830   // remove only the ones that we need to remove.
1831   tear_down_region_sets(true /* free_list_only */);
1832   shrink_helper(shrink_bytes);
1833   rebuild_region_sets(true /* free_list_only */);
1834 
1835   _hrs.verify_optional();
1836   verify_region_sets_optional();
1837 }
1838 
1839 // Public methods.
1840 
1841 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1842 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1843 #endif // _MSC_VER
1844 
1845 
1846 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1847   SharedHeap(policy_),
1848   _g1_policy(policy_),
1849   _dirty_card_queue_set(false),
1850   _into_cset_dirty_card_queue_set(false),
1851   _is_alive_closure_cm(this),
1852   _is_alive_closure_stw(this),
1853   _ref_processor_cm(NULL),
1854   _ref_processor_stw(NULL),
1855   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1856   _bot_shared(NULL),
1857   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1858   _evac_failure_scan_stack(NULL) ,
1859   _mark_in_progress(false),
1860   _cg1r(NULL), _summary_bytes_used(0),
1861   _g1mm(NULL),
1862   _refine_cte_cl(NULL),
1863   _full_collection(false),
1864   _free_list("Master Free List"),
1865   _secondary_free_list("Secondary Free List"),
1866   _old_set("Old Set"),
1867   _humongous_set("Master Humongous Set"),
1868   _free_regions_coming(false),
1869   _young_list(new YoungList(this)),
1870   _gc_time_stamp(0),
1871   _retained_old_gc_alloc_region(NULL),
1872   _expand_heap_after_alloc_failure(true),
1873   _surviving_young_words(NULL),
1874   _full_collections_completed(0),
1875   _in_cset_fast_test(NULL),
1876   _in_cset_fast_test_base(NULL),
1877   _dirty_cards_region_list(NULL),
1878   _worker_cset_start_region(NULL),
1879   _worker_cset_start_region_time_stamp(NULL) {
1880   _g1h = this; // To catch bugs.
1881   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1882     vm_exit_during_initialization("Failed necessary allocation.");
1883   }
1884 
1885   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1886 
1887   int n_queues = MAX2((int)ParallelGCThreads, 1);
1888   _task_queues = new RefToScanQueueSet(n_queues);
1889 
1890   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1891   assert(n_rem_sets > 0, "Invariant.");
1892 
1893   HeapRegionRemSetIterator** iter_arr =
1894     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1895   for (int i = 0; i < n_queues; i++) {
1896     iter_arr[i] = new HeapRegionRemSetIterator();
1897   }
1898   _rem_set_iterator = iter_arr;
1899 
1900   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
1901   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
1902 
1903   for (int i = 0; i < n_queues; i++) {
1904     RefToScanQueue* q = new RefToScanQueue();
1905     q->initialize();
1906     _task_queues->register_queue(i, q);
1907   }
1908 
1909   clear_cset_start_regions();
1910 
1911   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1912 }
1913 
1914 jint G1CollectedHeap::initialize() {
1915   CollectedHeap::pre_initialize();
1916   os::enable_vtime();
1917 
1918   G1Log::init();
1919 
1920   // Necessary to satisfy locking discipline assertions.
1921 
1922   MutexLocker x(Heap_lock);
1923 
1924   // We have to initialize the printer before committing the heap, as
1925   // it will be used then.
1926   _hr_printer.set_active(G1PrintHeapRegions);
1927 
1928   // While there are no constraints in the GC code that HeapWordSize
1929   // be any particular value, there are multiple other areas in the
1930   // system which believe this to be true (e.g. oop->object_size in some
1931   // cases incorrectly returns the size in wordSize units rather than
1932   // HeapWordSize).
1933   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1934 
1935   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1936   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1937 
1938   // Ensure that the sizes are properly aligned.
1939   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1940   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1941 
1942   _cg1r = new ConcurrentG1Refine();
1943 
1944   // Reserve the maximum.
1945   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1946   // Includes the perm-gen.
1947 
1948   // When compressed oops are enabled, the preferred heap base
1949   // is calculated by subtracting the requested size from the
1950   // 32Gb boundary and using the result as the base address for
1951   // heap reservation. If the requested size is not aligned to
1952   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1953   // into the ReservedHeapSpace constructor) then the actual
1954   // base of the reserved heap may end up differing from the
1955   // address that was requested (i.e. the preferred heap base).
1956   // If this happens then we could end up using a non-optimal
1957   // compressed oops mode.
1958 
1959   // Since max_byte_size is aligned to the size of a heap region (checked
1960   // above), we also need to align the perm gen size as it might not be.
1961   const size_t total_reserved = max_byte_size +
1962                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1963   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1964 
1965   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1966 
1967   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1968                             UseLargePages, addr);
1969 
1970   if (UseCompressedOops) {
1971     if (addr != NULL && !heap_rs.is_reserved()) {
1972       // Failed to reserve at specified address - the requested memory
1973       // region is taken already, for example, by 'java' launcher.
1974       // Try again to reserver heap higher.
1975       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1976 
1977       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1978                                  UseLargePages, addr);
1979 
1980       if (addr != NULL && !heap_rs0.is_reserved()) {
1981         // Failed to reserve at specified address again - give up.
1982         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1983         assert(addr == NULL, "");
1984 
1985         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1986                                    UseLargePages, addr);
1987         heap_rs = heap_rs1;
1988       } else {
1989         heap_rs = heap_rs0;
1990       }
1991     }
1992   }
1993 
1994   if (!heap_rs.is_reserved()) {
1995     vm_exit_during_initialization("Could not reserve enough space for object heap");
1996     return JNI_ENOMEM;
1997   }
1998 
1999   // It is important to do this in a way such that concurrent readers can't
2000   // temporarily think somethings in the heap.  (I've actually seen this
2001   // happen in asserts: DLD.)
2002   _reserved.set_word_size(0);
2003   _reserved.set_start((HeapWord*)heap_rs.base());
2004   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2005 
2006   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2007 
2008   // Create the gen rem set (and barrier set) for the entire reserved region.
2009   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2010   set_barrier_set(rem_set()->bs());
2011   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2012     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2013   } else {
2014     vm_exit_during_initialization("G1 requires a mod ref bs.");
2015     return JNI_ENOMEM;
2016   }
2017 
2018   // Also create a G1 rem set.
2019   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2020     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2021   } else {
2022     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2023     return JNI_ENOMEM;
2024   }
2025 
2026   // Carve out the G1 part of the heap.
2027 
2028   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2029   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2030                            g1_rs.size()/HeapWordSize);
2031   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2032 
2033   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2034 
2035   _g1_storage.initialize(g1_rs, 0);
2036   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2037   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2038                   (HeapWord*) _g1_reserved.end(),
2039                   _expansion_regions);
2040 
2041   // 6843694 - ensure that the maximum region index can fit
2042   // in the remembered set structures.
2043   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2044   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2045 
2046   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2047   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2048   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2049             "too many cards per region");
2050 
2051   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2052 
2053   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2054                                              heap_word_size(init_byte_size));
2055 
2056   _g1h = this;
2057 
2058    _in_cset_fast_test_length = max_regions();
2059    _in_cset_fast_test_base =
2060                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length);
2061 
2062    // We're biasing _in_cset_fast_test to avoid subtracting the
2063    // beginning of the heap every time we want to index; basically
2064    // it's the same with what we do with the card table.
2065    _in_cset_fast_test = _in_cset_fast_test_base -
2066                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2067 
2068    // Clear the _cset_fast_test bitmap in anticipation of adding
2069    // regions to the incremental collection set for the first
2070    // evacuation pause.
2071    clear_cset_fast_test();
2072 
2073   // Create the ConcurrentMark data structure and thread.
2074   // (Must do this late, so that "max_regions" is defined.)
2075   _cm       = new ConcurrentMark(heap_rs, max_regions());
2076   _cmThread = _cm->cmThread();
2077 
2078   // Initialize the from_card cache structure of HeapRegionRemSet.
2079   HeapRegionRemSet::init_heap(max_regions());
2080 
2081   // Now expand into the initial heap size.
2082   if (!expand(init_byte_size)) {
2083     vm_exit_during_initialization("Failed to allocate initial heap.");
2084     return JNI_ENOMEM;
2085   }
2086 
2087   // Perform any initialization actions delegated to the policy.
2088   g1_policy()->init();
2089 
2090   _refine_cte_cl =
2091     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2092                                     g1_rem_set(),
2093                                     concurrent_g1_refine());
2094   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2095 
2096   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2097                                                SATB_Q_FL_lock,
2098                                                G1SATBProcessCompletedThreshold,
2099                                                Shared_SATB_Q_lock);
2100 
2101   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2102                                                 DirtyCardQ_FL_lock,
2103                                                 concurrent_g1_refine()->yellow_zone(),
2104                                                 concurrent_g1_refine()->red_zone(),
2105                                                 Shared_DirtyCardQ_lock);
2106 
2107   if (G1DeferredRSUpdate) {
2108     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2109                                       DirtyCardQ_FL_lock,
2110                                       -1, // never trigger processing
2111                                       -1, // no limit on length
2112                                       Shared_DirtyCardQ_lock,
2113                                       &JavaThread::dirty_card_queue_set());
2114   }
2115 
2116   // Initialize the card queue set used to hold cards containing
2117   // references into the collection set.
2118   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2119                                              DirtyCardQ_FL_lock,
2120                                              -1, // never trigger processing
2121                                              -1, // no limit on length
2122                                              Shared_DirtyCardQ_lock,
2123                                              &JavaThread::dirty_card_queue_set());
2124 
2125   // In case we're keeping closure specialization stats, initialize those
2126   // counts and that mechanism.
2127   SpecializationStats::clear();
2128 
2129   // Do later initialization work for concurrent refinement.
2130   _cg1r->init();
2131 
2132   // Here we allocate the dummy full region that is required by the
2133   // G1AllocRegion class. If we don't pass an address in the reserved
2134   // space here, lots of asserts fire.
2135 
2136   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2137                                              _g1_reserved.start());
2138   // We'll re-use the same region whether the alloc region will
2139   // require BOT updates or not and, if it doesn't, then a non-young
2140   // region will complain that it cannot support allocations without
2141   // BOT updates. So we'll tag the dummy region as young to avoid that.
2142   dummy_region->set_young();
2143   // Make sure it's full.
2144   dummy_region->set_top(dummy_region->end());
2145   G1AllocRegion::setup(this, dummy_region);
2146 
2147   init_mutator_alloc_region();
2148 
2149   // Do create of the monitoring and management support so that
2150   // values in the heap have been properly initialized.
2151   _g1mm = new G1MonitoringSupport(this);
2152 
2153   return JNI_OK;
2154 }
2155 
2156 void G1CollectedHeap::ref_processing_init() {
2157   // Reference processing in G1 currently works as follows:
2158   //
2159   // * There are two reference processor instances. One is
2160   //   used to record and process discovered references
2161   //   during concurrent marking; the other is used to
2162   //   record and process references during STW pauses
2163   //   (both full and incremental).
2164   // * Both ref processors need to 'span' the entire heap as
2165   //   the regions in the collection set may be dotted around.
2166   //
2167   // * For the concurrent marking ref processor:
2168   //   * Reference discovery is enabled at initial marking.
2169   //   * Reference discovery is disabled and the discovered
2170   //     references processed etc during remarking.
2171   //   * Reference discovery is MT (see below).
2172   //   * Reference discovery requires a barrier (see below).
2173   //   * Reference processing may or may not be MT
2174   //     (depending on the value of ParallelRefProcEnabled
2175   //     and ParallelGCThreads).
2176   //   * A full GC disables reference discovery by the CM
2177   //     ref processor and abandons any entries on it's
2178   //     discovered lists.
2179   //
2180   // * For the STW processor:
2181   //   * Non MT discovery is enabled at the start of a full GC.
2182   //   * Processing and enqueueing during a full GC is non-MT.
2183   //   * During a full GC, references are processed after marking.
2184   //
2185   //   * Discovery (may or may not be MT) is enabled at the start
2186   //     of an incremental evacuation pause.
2187   //   * References are processed near the end of a STW evacuation pause.
2188   //   * For both types of GC:
2189   //     * Discovery is atomic - i.e. not concurrent.
2190   //     * Reference discovery will not need a barrier.
2191 
2192   SharedHeap::ref_processing_init();
2193   MemRegion mr = reserved_region();
2194 
2195   // Concurrent Mark ref processor
2196   _ref_processor_cm =
2197     new ReferenceProcessor(mr,    // span
2198                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2199                                 // mt processing
2200                            (int) ParallelGCThreads,
2201                                 // degree of mt processing
2202                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2203                                 // mt discovery
2204                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2205                                 // degree of mt discovery
2206                            false,
2207                                 // Reference discovery is not atomic
2208                            &_is_alive_closure_cm,
2209                                 // is alive closure
2210                                 // (for efficiency/performance)
2211                            true);
2212                                 // Setting next fields of discovered
2213                                 // lists requires a barrier.
2214 
2215   // STW ref processor
2216   _ref_processor_stw =
2217     new ReferenceProcessor(mr,    // span
2218                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2219                                 // mt processing
2220                            MAX2((int)ParallelGCThreads, 1),
2221                                 // degree of mt processing
2222                            (ParallelGCThreads > 1),
2223                                 // mt discovery
2224                            MAX2((int)ParallelGCThreads, 1),
2225                                 // degree of mt discovery
2226                            true,
2227                                 // Reference discovery is atomic
2228                            &_is_alive_closure_stw,
2229                                 // is alive closure
2230                                 // (for efficiency/performance)
2231                            false);
2232                                 // Setting next fields of discovered
2233                                 // lists requires a barrier.
2234 }
2235 
2236 size_t G1CollectedHeap::capacity() const {
2237   return _g1_committed.byte_size();
2238 }
2239 
2240 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2241                                                  DirtyCardQueue* into_cset_dcq,
2242                                                  bool concurrent,
2243                                                  int worker_i) {
2244   // Clean cards in the hot card cache
2245   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2246 
2247   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2248   int n_completed_buffers = 0;
2249   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2250     n_completed_buffers++;
2251   }
2252   g1_policy()->record_update_rs_processed_buffers(worker_i,
2253                                                   (double) n_completed_buffers);
2254   dcqs.clear_n_completed_buffers();
2255   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2256 }
2257 
2258 
2259 // Computes the sum of the storage used by the various regions.
2260 
2261 size_t G1CollectedHeap::used() const {
2262   assert(Heap_lock->owner() != NULL,
2263          "Should be owned on this thread's behalf.");
2264   size_t result = _summary_bytes_used;
2265   // Read only once in case it is set to NULL concurrently
2266   HeapRegion* hr = _mutator_alloc_region.get();
2267   if (hr != NULL)
2268     result += hr->used();
2269   return result;
2270 }
2271 
2272 size_t G1CollectedHeap::used_unlocked() const {
2273   size_t result = _summary_bytes_used;
2274   return result;
2275 }
2276 
2277 class SumUsedClosure: public HeapRegionClosure {
2278   size_t _used;
2279 public:
2280   SumUsedClosure() : _used(0) {}
2281   bool doHeapRegion(HeapRegion* r) {
2282     if (!r->continuesHumongous()) {
2283       _used += r->used();
2284     }
2285     return false;
2286   }
2287   size_t result() { return _used; }
2288 };
2289 
2290 size_t G1CollectedHeap::recalculate_used() const {
2291   SumUsedClosure blk;
2292   heap_region_iterate(&blk);
2293   return blk.result();
2294 }
2295 
2296 size_t G1CollectedHeap::unsafe_max_alloc() {
2297   if (free_regions() > 0) return HeapRegion::GrainBytes;
2298   // otherwise, is there space in the current allocation region?
2299 
2300   // We need to store the current allocation region in a local variable
2301   // here. The problem is that this method doesn't take any locks and
2302   // there may be other threads which overwrite the current allocation
2303   // region field. attempt_allocation(), for example, sets it to NULL
2304   // and this can happen *after* the NULL check here but before the call
2305   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2306   // to be a problem in the optimized build, since the two loads of the
2307   // current allocation region field are optimized away.
2308   HeapRegion* hr = _mutator_alloc_region.get();
2309   if (hr == NULL) {
2310     return 0;
2311   }
2312   return hr->free();
2313 }
2314 
2315 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2316   switch (cause) {
2317     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2318     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2319     case GCCause::_g1_humongous_allocation: return true;
2320     default:                                return false;
2321   }
2322 }
2323 
2324 #ifndef PRODUCT
2325 void G1CollectedHeap::allocate_dummy_regions() {
2326   // Let's fill up most of the region
2327   size_t word_size = HeapRegion::GrainWords - 1024;
2328   // And as a result the region we'll allocate will be humongous.
2329   guarantee(isHumongous(word_size), "sanity");
2330 
2331   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2332     // Let's use the existing mechanism for the allocation
2333     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2334     if (dummy_obj != NULL) {
2335       MemRegion mr(dummy_obj, word_size);
2336       CollectedHeap::fill_with_object(mr);
2337     } else {
2338       // If we can't allocate once, we probably cannot allocate
2339       // again. Let's get out of the loop.
2340       break;
2341     }
2342   }
2343 }
2344 #endif // !PRODUCT
2345 
2346 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2347   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2348 
2349   // We assume that if concurrent == true, then the caller is a
2350   // concurrent thread that was joined the Suspendible Thread
2351   // Set. If there's ever a cheap way to check this, we should add an
2352   // assert here.
2353 
2354   // We have already incremented _total_full_collections at the start
2355   // of the GC, so total_full_collections() represents how many full
2356   // collections have been started.
2357   unsigned int full_collections_started = total_full_collections();
2358 
2359   // Given that this method is called at the end of a Full GC or of a
2360   // concurrent cycle, and those can be nested (i.e., a Full GC can
2361   // interrupt a concurrent cycle), the number of full collections
2362   // completed should be either one (in the case where there was no
2363   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2364   // behind the number of full collections started.
2365 
2366   // This is the case for the inner caller, i.e. a Full GC.
2367   assert(concurrent ||
2368          (full_collections_started == _full_collections_completed + 1) ||
2369          (full_collections_started == _full_collections_completed + 2),
2370          err_msg("for inner caller (Full GC): full_collections_started = %u "
2371                  "is inconsistent with _full_collections_completed = %u",
2372                  full_collections_started, _full_collections_completed));
2373 
2374   // This is the case for the outer caller, i.e. the concurrent cycle.
2375   assert(!concurrent ||
2376          (full_collections_started == _full_collections_completed + 1),
2377          err_msg("for outer caller (concurrent cycle): "
2378                  "full_collections_started = %u "
2379                  "is inconsistent with _full_collections_completed = %u",
2380                  full_collections_started, _full_collections_completed));
2381 
2382   _full_collections_completed += 1;
2383 
2384   // We need to clear the "in_progress" flag in the CM thread before
2385   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2386   // is set) so that if a waiter requests another System.gc() it doesn't
2387   // incorrectly see that a marking cyle is still in progress.
2388   if (concurrent) {
2389     _cmThread->clear_in_progress();
2390   }
2391 
2392   // This notify_all() will ensure that a thread that called
2393   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2394   // and it's waiting for a full GC to finish will be woken up. It is
2395   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2396   FullGCCount_lock->notify_all();
2397 }
2398 
2399 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2400   assert_at_safepoint(true /* should_be_vm_thread */);
2401   GCCauseSetter gcs(this, cause);
2402   switch (cause) {
2403     case GCCause::_heap_inspection:
2404     case GCCause::_heap_dump: {
2405       HandleMark hm;
2406       do_full_collection(false);         // don't clear all soft refs
2407       break;
2408     }
2409     default: // XXX FIX ME
2410       ShouldNotReachHere(); // Unexpected use of this function
2411   }
2412 }
2413 
2414 void G1CollectedHeap::collect(GCCause::Cause cause) {
2415   assert_heap_not_locked();
2416 
2417   unsigned int gc_count_before;
2418   unsigned int full_gc_count_before;
2419   bool retry_gc;
2420 
2421   do {
2422     retry_gc = false;
2423 
2424     {
2425       MutexLocker ml(Heap_lock);
2426 
2427       // Read the GC count while holding the Heap_lock
2428       gc_count_before = total_collections();
2429       full_gc_count_before = total_full_collections();
2430     }
2431 
2432     if (should_do_concurrent_full_gc(cause)) {
2433       // Schedule an initial-mark evacuation pause that will start a
2434       // concurrent cycle. We're setting word_size to 0 which means that
2435       // we are not requesting a post-GC allocation.
2436       VM_G1IncCollectionPause op(gc_count_before,
2437                                  0,     /* word_size */
2438                                  true,  /* should_initiate_conc_mark */
2439                                  g1_policy()->max_pause_time_ms(),
2440                                  cause);
2441 
2442       VMThread::execute(&op);
2443       if (!op.pause_succeeded()) {
2444         if (full_gc_count_before == total_full_collections()) {
2445           retry_gc = op.should_retry_gc();
2446         } else {
2447           // A Full GC happened while we were trying to schedule the
2448           // initial-mark GC. No point in starting a new cycle given
2449           // that the whole heap was collected anyway.
2450         }
2451 
2452         if (retry_gc) {
2453           if (GC_locker::is_active_and_needs_gc()) {
2454             GC_locker::stall_until_clear();
2455           }
2456         }
2457       }
2458     } else {
2459       if (cause == GCCause::_gc_locker
2460           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2461 
2462         // Schedule a standard evacuation pause. We're setting word_size
2463         // to 0 which means that we are not requesting a post-GC allocation.
2464         VM_G1IncCollectionPause op(gc_count_before,
2465                                    0,     /* word_size */
2466                                    false, /* should_initiate_conc_mark */
2467                                    g1_policy()->max_pause_time_ms(),
2468                                    cause);
2469         VMThread::execute(&op);
2470       } else {
2471         // Schedule a Full GC.
2472         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2473         VMThread::execute(&op);
2474       }
2475     }
2476   } while (retry_gc);
2477 }
2478 
2479 bool G1CollectedHeap::is_in(const void* p) const {
2480   if (_g1_committed.contains(p)) {
2481     // Given that we know that p is in the committed space,
2482     // heap_region_containing_raw() should successfully
2483     // return the containing region.
2484     HeapRegion* hr = heap_region_containing_raw(p);
2485     return hr->is_in(p);
2486   } else {
2487     return _perm_gen->as_gen()->is_in(p);
2488   }
2489 }
2490 
2491 // Iteration functions.
2492 
2493 // Iterates an OopClosure over all ref-containing fields of objects
2494 // within a HeapRegion.
2495 
2496 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2497   MemRegion _mr;
2498   OopClosure* _cl;
2499 public:
2500   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2501     : _mr(mr), _cl(cl) {}
2502   bool doHeapRegion(HeapRegion* r) {
2503     if (! r->continuesHumongous()) {
2504       r->oop_iterate(_cl);
2505     }
2506     return false;
2507   }
2508 };
2509 
2510 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2511   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2512   heap_region_iterate(&blk);
2513   if (do_perm) {
2514     perm_gen()->oop_iterate(cl);
2515   }
2516 }
2517 
2518 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2519   IterateOopClosureRegionClosure blk(mr, cl);
2520   heap_region_iterate(&blk);
2521   if (do_perm) {
2522     perm_gen()->oop_iterate(cl);
2523   }
2524 }
2525 
2526 // Iterates an ObjectClosure over all objects within a HeapRegion.
2527 
2528 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2529   ObjectClosure* _cl;
2530 public:
2531   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2532   bool doHeapRegion(HeapRegion* r) {
2533     if (! r->continuesHumongous()) {
2534       r->object_iterate(_cl);
2535     }
2536     return false;
2537   }
2538 };
2539 
2540 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2541   IterateObjectClosureRegionClosure blk(cl);
2542   heap_region_iterate(&blk);
2543   if (do_perm) {
2544     perm_gen()->object_iterate(cl);
2545   }
2546 }
2547 
2548 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2549   // FIXME: is this right?
2550   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2551 }
2552 
2553 // Calls a SpaceClosure on a HeapRegion.
2554 
2555 class SpaceClosureRegionClosure: public HeapRegionClosure {
2556   SpaceClosure* _cl;
2557 public:
2558   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2559   bool doHeapRegion(HeapRegion* r) {
2560     _cl->do_space(r);
2561     return false;
2562   }
2563 };
2564 
2565 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2566   SpaceClosureRegionClosure blk(cl);
2567   heap_region_iterate(&blk);
2568 }
2569 
2570 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2571   _hrs.iterate(cl);
2572 }
2573 
2574 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2575                                                HeapRegionClosure* cl) const {
2576   _hrs.iterate_from(r, cl);
2577 }
2578 
2579 void
2580 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2581                                                  uint worker,
2582                                                  uint no_of_par_workers,
2583                                                  jint claim_value) {
2584   const uint regions = n_regions();
2585   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2586                              no_of_par_workers :
2587                              1);
2588   assert(UseDynamicNumberOfGCThreads ||
2589          no_of_par_workers == workers()->total_workers(),
2590          "Non dynamic should use fixed number of workers");
2591   // try to spread out the starting points of the workers
2592   const uint start_index = regions / max_workers * worker;
2593 
2594   // each worker will actually look at all regions
2595   for (uint count = 0; count < regions; ++count) {
2596     const uint index = (start_index + count) % regions;
2597     assert(0 <= index && index < regions, "sanity");
2598     HeapRegion* r = region_at(index);
2599     // we'll ignore "continues humongous" regions (we'll process them
2600     // when we come across their corresponding "start humongous"
2601     // region) and regions already claimed
2602     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2603       continue;
2604     }
2605     // OK, try to claim it
2606     if (r->claimHeapRegion(claim_value)) {
2607       // success!
2608       assert(!r->continuesHumongous(), "sanity");
2609       if (r->startsHumongous()) {
2610         // If the region is "starts humongous" we'll iterate over its
2611         // "continues humongous" first; in fact we'll do them
2612         // first. The order is important. In on case, calling the
2613         // closure on the "starts humongous" region might de-allocate
2614         // and clear all its "continues humongous" regions and, as a
2615         // result, we might end up processing them twice. So, we'll do
2616         // them first (notice: most closures will ignore them anyway) and
2617         // then we'll do the "starts humongous" region.
2618         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2619           HeapRegion* chr = region_at(ch_index);
2620 
2621           // if the region has already been claimed or it's not
2622           // "continues humongous" we're done
2623           if (chr->claim_value() == claim_value ||
2624               !chr->continuesHumongous()) {
2625             break;
2626           }
2627 
2628           // Noone should have claimed it directly. We can given
2629           // that we claimed its "starts humongous" region.
2630           assert(chr->claim_value() != claim_value, "sanity");
2631           assert(chr->humongous_start_region() == r, "sanity");
2632 
2633           if (chr->claimHeapRegion(claim_value)) {
2634             // we should always be able to claim it; noone else should
2635             // be trying to claim this region
2636 
2637             bool res2 = cl->doHeapRegion(chr);
2638             assert(!res2, "Should not abort");
2639 
2640             // Right now, this holds (i.e., no closure that actually
2641             // does something with "continues humongous" regions
2642             // clears them). We might have to weaken it in the future,
2643             // but let's leave these two asserts here for extra safety.
2644             assert(chr->continuesHumongous(), "should still be the case");
2645             assert(chr->humongous_start_region() == r, "sanity");
2646           } else {
2647             guarantee(false, "we should not reach here");
2648           }
2649         }
2650       }
2651 
2652       assert(!r->continuesHumongous(), "sanity");
2653       bool res = cl->doHeapRegion(r);
2654       assert(!res, "Should not abort");
2655     }
2656   }
2657 }
2658 
2659 class ResetClaimValuesClosure: public HeapRegionClosure {
2660 public:
2661   bool doHeapRegion(HeapRegion* r) {
2662     r->set_claim_value(HeapRegion::InitialClaimValue);
2663     return false;
2664   }
2665 };
2666 
2667 void G1CollectedHeap::reset_heap_region_claim_values() {
2668   ResetClaimValuesClosure blk;
2669   heap_region_iterate(&blk);
2670 }
2671 
2672 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2673   ResetClaimValuesClosure blk;
2674   collection_set_iterate(&blk);
2675 }
2676 
2677 #ifdef ASSERT
2678 // This checks whether all regions in the heap have the correct claim
2679 // value. I also piggy-backed on this a check to ensure that the
2680 // humongous_start_region() information on "continues humongous"
2681 // regions is correct.
2682 
2683 class CheckClaimValuesClosure : public HeapRegionClosure {
2684 private:
2685   jint _claim_value;
2686   uint _failures;
2687   HeapRegion* _sh_region;
2688 
2689 public:
2690   CheckClaimValuesClosure(jint claim_value) :
2691     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2692   bool doHeapRegion(HeapRegion* r) {
2693     if (r->claim_value() != _claim_value) {
2694       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2695                              "claim value = %d, should be %d",
2696                              HR_FORMAT_PARAMS(r),
2697                              r->claim_value(), _claim_value);
2698       ++_failures;
2699     }
2700     if (!r->isHumongous()) {
2701       _sh_region = NULL;
2702     } else if (r->startsHumongous()) {
2703       _sh_region = r;
2704     } else if (r->continuesHumongous()) {
2705       if (r->humongous_start_region() != _sh_region) {
2706         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2707                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2708                                HR_FORMAT_PARAMS(r),
2709                                r->humongous_start_region(),
2710                                _sh_region);
2711         ++_failures;
2712       }
2713     }
2714     return false;
2715   }
2716   uint failures() { return _failures; }
2717 };
2718 
2719 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2720   CheckClaimValuesClosure cl(claim_value);
2721   heap_region_iterate(&cl);
2722   return cl.failures() == 0;
2723 }
2724 
2725 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2726 private:
2727   jint _claim_value;
2728   uint _failures;
2729 
2730 public:
2731   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2732     _claim_value(claim_value), _failures(0) { }
2733 
2734   uint failures() { return _failures; }
2735 
2736   bool doHeapRegion(HeapRegion* hr) {
2737     assert(hr->in_collection_set(), "how?");
2738     assert(!hr->isHumongous(), "H-region in CSet");
2739     if (hr->claim_value() != _claim_value) {
2740       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2741                              "claim value = %d, should be %d",
2742                              HR_FORMAT_PARAMS(hr),
2743                              hr->claim_value(), _claim_value);
2744       _failures += 1;
2745     }
2746     return false;
2747   }
2748 };
2749 
2750 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2751   CheckClaimValuesInCSetHRClosure cl(claim_value);
2752   collection_set_iterate(&cl);
2753   return cl.failures() == 0;
2754 }
2755 #endif // ASSERT
2756 
2757 // Clear the cached CSet starting regions and (more importantly)
2758 // the time stamps. Called when we reset the GC time stamp.
2759 void G1CollectedHeap::clear_cset_start_regions() {
2760   assert(_worker_cset_start_region != NULL, "sanity");
2761   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2762 
2763   int n_queues = MAX2((int)ParallelGCThreads, 1);
2764   for (int i = 0; i < n_queues; i++) {
2765     _worker_cset_start_region[i] = NULL;
2766     _worker_cset_start_region_time_stamp[i] = 0;
2767   }
2768 }
2769 
2770 // Given the id of a worker, obtain or calculate a suitable
2771 // starting region for iterating over the current collection set.
2772 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2773   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2774 
2775   HeapRegion* result = NULL;
2776   unsigned gc_time_stamp = get_gc_time_stamp();
2777 
2778   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2779     // Cached starting region for current worker was set
2780     // during the current pause - so it's valid.
2781     // Note: the cached starting heap region may be NULL
2782     // (when the collection set is empty).
2783     result = _worker_cset_start_region[worker_i];
2784     assert(result == NULL || result->in_collection_set(), "sanity");
2785     return result;
2786   }
2787 
2788   // The cached entry was not valid so let's calculate
2789   // a suitable starting heap region for this worker.
2790 
2791   // We want the parallel threads to start their collection
2792   // set iteration at different collection set regions to
2793   // avoid contention.
2794   // If we have:
2795   //          n collection set regions
2796   //          p threads
2797   // Then thread t will start at region floor ((t * n) / p)
2798 
2799   result = g1_policy()->collection_set();
2800   if (G1CollectedHeap::use_parallel_gc_threads()) {
2801     uint cs_size = g1_policy()->cset_region_length();
2802     uint active_workers = workers()->active_workers();
2803     assert(UseDynamicNumberOfGCThreads ||
2804              active_workers == workers()->total_workers(),
2805              "Unless dynamic should use total workers");
2806 
2807     uint end_ind   = (cs_size * worker_i) / active_workers;
2808     uint start_ind = 0;
2809 
2810     if (worker_i > 0 &&
2811         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2812       // Previous workers starting region is valid
2813       // so let's iterate from there
2814       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2815       result = _worker_cset_start_region[worker_i - 1];
2816     }
2817 
2818     for (uint i = start_ind; i < end_ind; i++) {
2819       result = result->next_in_collection_set();
2820     }
2821   }
2822 
2823   // Note: the calculated starting heap region may be NULL
2824   // (when the collection set is empty).
2825   assert(result == NULL || result->in_collection_set(), "sanity");
2826   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2827          "should be updated only once per pause");
2828   _worker_cset_start_region[worker_i] = result;
2829   OrderAccess::storestore();
2830   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2831   return result;
2832 }
2833 
2834 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2835   HeapRegion* r = g1_policy()->collection_set();
2836   while (r != NULL) {
2837     HeapRegion* next = r->next_in_collection_set();
2838     if (cl->doHeapRegion(r)) {
2839       cl->incomplete();
2840       return;
2841     }
2842     r = next;
2843   }
2844 }
2845 
2846 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2847                                                   HeapRegionClosure *cl) {
2848   if (r == NULL) {
2849     // The CSet is empty so there's nothing to do.
2850     return;
2851   }
2852 
2853   assert(r->in_collection_set(),
2854          "Start region must be a member of the collection set.");
2855   HeapRegion* cur = r;
2856   while (cur != NULL) {
2857     HeapRegion* next = cur->next_in_collection_set();
2858     if (cl->doHeapRegion(cur) && false) {
2859       cl->incomplete();
2860       return;
2861     }
2862     cur = next;
2863   }
2864   cur = g1_policy()->collection_set();
2865   while (cur != r) {
2866     HeapRegion* next = cur->next_in_collection_set();
2867     if (cl->doHeapRegion(cur) && false) {
2868       cl->incomplete();
2869       return;
2870     }
2871     cur = next;
2872   }
2873 }
2874 
2875 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2876   return n_regions() > 0 ? region_at(0) : NULL;
2877 }
2878 
2879 
2880 Space* G1CollectedHeap::space_containing(const void* addr) const {
2881   Space* res = heap_region_containing(addr);
2882   if (res == NULL)
2883     res = perm_gen()->space_containing(addr);
2884   return res;
2885 }
2886 
2887 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2888   Space* sp = space_containing(addr);
2889   if (sp != NULL) {
2890     return sp->block_start(addr);
2891   }
2892   return NULL;
2893 }
2894 
2895 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2896   Space* sp = space_containing(addr);
2897   assert(sp != NULL, "block_size of address outside of heap");
2898   return sp->block_size(addr);
2899 }
2900 
2901 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2902   Space* sp = space_containing(addr);
2903   return sp->block_is_obj(addr);
2904 }
2905 
2906 bool G1CollectedHeap::supports_tlab_allocation() const {
2907   return true;
2908 }
2909 
2910 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2911   return HeapRegion::GrainBytes;
2912 }
2913 
2914 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2915   // Return the remaining space in the cur alloc region, but not less than
2916   // the min TLAB size.
2917 
2918   // Also, this value can be at most the humongous object threshold,
2919   // since we can't allow tlabs to grow big enough to accomodate
2920   // humongous objects.
2921 
2922   HeapRegion* hr = _mutator_alloc_region.get();
2923   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2924   if (hr == NULL) {
2925     return max_tlab_size;
2926   } else {
2927     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2928   }
2929 }
2930 
2931 size_t G1CollectedHeap::max_capacity() const {
2932   return _g1_reserved.byte_size();
2933 }
2934 
2935 jlong G1CollectedHeap::millis_since_last_gc() {
2936   // assert(false, "NYI");
2937   return 0;
2938 }
2939 
2940 void G1CollectedHeap::prepare_for_verify() {
2941   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2942     ensure_parsability(false);
2943   }
2944   g1_rem_set()->prepare_for_verify();
2945 }
2946 
2947 class VerifyLivenessOopClosure: public OopClosure {
2948   G1CollectedHeap* _g1h;
2949   VerifyOption _vo;
2950 public:
2951   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2952     _g1h(g1h), _vo(vo)
2953   { }
2954   void do_oop(narrowOop *p) { do_oop_work(p); }
2955   void do_oop(      oop *p) { do_oop_work(p); }
2956 
2957   template <class T> void do_oop_work(T *p) {
2958     oop obj = oopDesc::load_decode_heap_oop(p);
2959     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2960               "Dead object referenced by a not dead object");
2961   }
2962 };
2963 
2964 class VerifyObjsInRegionClosure: public ObjectClosure {
2965 private:
2966   G1CollectedHeap* _g1h;
2967   size_t _live_bytes;
2968   HeapRegion *_hr;
2969   VerifyOption _vo;
2970 public:
2971   // _vo == UsePrevMarking -> use "prev" marking information,
2972   // _vo == UseNextMarking -> use "next" marking information,
2973   // _vo == UseMarkWord    -> use mark word from object header.
2974   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2975     : _live_bytes(0), _hr(hr), _vo(vo) {
2976     _g1h = G1CollectedHeap::heap();
2977   }
2978   void do_object(oop o) {
2979     VerifyLivenessOopClosure isLive(_g1h, _vo);
2980     assert(o != NULL, "Huh?");
2981     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2982       // If the object is alive according to the mark word,
2983       // then verify that the marking information agrees.
2984       // Note we can't verify the contra-positive of the
2985       // above: if the object is dead (according to the mark
2986       // word), it may not be marked, or may have been marked
2987       // but has since became dead, or may have been allocated
2988       // since the last marking.
2989       if (_vo == VerifyOption_G1UseMarkWord) {
2990         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2991       }
2992 
2993       o->oop_iterate(&isLive);
2994       if (!_hr->obj_allocated_since_prev_marking(o)) {
2995         size_t obj_size = o->size();    // Make sure we don't overflow
2996         _live_bytes += (obj_size * HeapWordSize);
2997       }
2998     }
2999   }
3000   size_t live_bytes() { return _live_bytes; }
3001 };
3002 
3003 class PrintObjsInRegionClosure : public ObjectClosure {
3004   HeapRegion *_hr;
3005   G1CollectedHeap *_g1;
3006 public:
3007   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3008     _g1 = G1CollectedHeap::heap();
3009   };
3010 
3011   void do_object(oop o) {
3012     if (o != NULL) {
3013       HeapWord *start = (HeapWord *) o;
3014       size_t word_sz = o->size();
3015       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3016                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3017                           (void*) o, word_sz,
3018                           _g1->isMarkedPrev(o),
3019                           _g1->isMarkedNext(o),
3020                           _hr->obj_allocated_since_prev_marking(o));
3021       HeapWord *end = start + word_sz;
3022       HeapWord *cur;
3023       int *val;
3024       for (cur = start; cur < end; cur++) {
3025         val = (int *) cur;
3026         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3027       }
3028     }
3029   }
3030 };
3031 
3032 class VerifyRegionClosure: public HeapRegionClosure {
3033 private:
3034   bool         _par;
3035   VerifyOption _vo;
3036   bool         _failures;
3037 public:
3038   // _vo == UsePrevMarking -> use "prev" marking information,
3039   // _vo == UseNextMarking -> use "next" marking information,
3040   // _vo == UseMarkWord    -> use mark word from object header.
3041   VerifyRegionClosure(bool par, VerifyOption vo)
3042     : _par(par),
3043       _vo(vo),
3044       _failures(false) {}
3045 
3046   bool failures() {
3047     return _failures;
3048   }
3049 
3050   bool doHeapRegion(HeapRegion* r) {
3051     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
3052               "Should be unclaimed at verify points.");
3053     if (!r->continuesHumongous()) {
3054       bool failures = false;
3055       r->verify(_vo, &failures);
3056       if (failures) {
3057         _failures = true;
3058       } else {
3059         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3060         r->object_iterate(&not_dead_yet_cl);
3061         if (_vo != VerifyOption_G1UseNextMarking) {
3062           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3063             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3064                                    "max_live_bytes "SIZE_FORMAT" "
3065                                    "< calculated "SIZE_FORMAT,
3066                                    r->bottom(), r->end(),
3067                                    r->max_live_bytes(),
3068                                  not_dead_yet_cl.live_bytes());
3069             _failures = true;
3070           }
3071         } else {
3072           // When vo == UseNextMarking we cannot currently do a sanity
3073           // check on the live bytes as the calculation has not been
3074           // finalized yet.
3075         }
3076       }
3077     }
3078     return false; // stop the region iteration if we hit a failure
3079   }
3080 };
3081 
3082 class VerifyRootsClosure: public OopsInGenClosure {
3083 private:
3084   G1CollectedHeap* _g1h;
3085   VerifyOption     _vo;
3086   bool             _failures;
3087 public:
3088   // _vo == UsePrevMarking -> use "prev" marking information,
3089   // _vo == UseNextMarking -> use "next" marking information,
3090   // _vo == UseMarkWord    -> use mark word from object header.
3091   VerifyRootsClosure(VerifyOption vo) :
3092     _g1h(G1CollectedHeap::heap()),
3093     _vo(vo),
3094     _failures(false) { }
3095 
3096   bool failures() { return _failures; }
3097 
3098   template <class T> void do_oop_nv(T* p) {
3099     T heap_oop = oopDesc::load_heap_oop(p);
3100     if (!oopDesc::is_null(heap_oop)) {
3101       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3102       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3103         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3104                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3105         if (_vo == VerifyOption_G1UseMarkWord) {
3106           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3107         }
3108         obj->print_on(gclog_or_tty);
3109         _failures = true;
3110       }
3111     }
3112   }
3113 
3114   void do_oop(oop* p)       { do_oop_nv(p); }
3115   void do_oop(narrowOop* p) { do_oop_nv(p); }
3116 };
3117 
3118 // This is the task used for parallel heap verification.
3119 
3120 class G1ParVerifyTask: public AbstractGangTask {
3121 private:
3122   G1CollectedHeap* _g1h;
3123   VerifyOption     _vo;
3124   bool             _failures;
3125 
3126 public:
3127   // _vo == UsePrevMarking -> use "prev" marking information,
3128   // _vo == UseNextMarking -> use "next" marking information,
3129   // _vo == UseMarkWord    -> use mark word from object header.
3130   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3131     AbstractGangTask("Parallel verify task"),
3132     _g1h(g1h),
3133     _vo(vo),
3134     _failures(false) { }
3135 
3136   bool failures() {
3137     return _failures;
3138   }
3139 
3140   void work(uint worker_id) {
3141     HandleMark hm;
3142     VerifyRegionClosure blk(true, _vo);
3143     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3144                                           _g1h->workers()->active_workers(),
3145                                           HeapRegion::ParVerifyClaimValue);
3146     if (blk.failures()) {
3147       _failures = true;
3148     }
3149   }
3150 };
3151 
3152 void G1CollectedHeap::verify(bool silent) {
3153   verify(silent, VerifyOption_G1UsePrevMarking);
3154 }
3155 
3156 void G1CollectedHeap::verify(bool silent,
3157                              VerifyOption vo) {
3158   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3159     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3160     VerifyRootsClosure rootsCl(vo);
3161 
3162     assert(Thread::current()->is_VM_thread(),
3163       "Expected to be executed serially by the VM thread at this point");
3164 
3165     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3166 
3167     // We apply the relevant closures to all the oops in the
3168     // system dictionary, the string table and the code cache.
3169     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3170 
3171     process_strong_roots(true,      // activate StrongRootsScope
3172                          true,      // we set "collecting perm gen" to true,
3173                                     // so we don't reset the dirty cards in the perm gen.
3174                          ScanningOption(so),  // roots scanning options
3175                          &rootsCl,
3176                          &blobsCl,
3177                          &rootsCl);
3178 
3179     // If we're verifying after the marking phase of a Full GC then we can't
3180     // treat the perm gen as roots into the G1 heap. Some of the objects in
3181     // the perm gen may be dead and hence not marked. If one of these dead
3182     // objects is considered to be a root then we may end up with a false
3183     // "Root location <x> points to dead ob <y>" failure.
3184     if (vo != VerifyOption_G1UseMarkWord) {
3185       // Since we used "collecting_perm_gen" == true above, we will not have
3186       // checked the refs from perm into the G1-collected heap. We check those
3187       // references explicitly below. Whether the relevant cards are dirty
3188       // is checked further below in the rem set verification.
3189       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3190       perm_gen()->oop_iterate(&rootsCl);
3191     }
3192     bool failures = rootsCl.failures();
3193 
3194     if (vo != VerifyOption_G1UseMarkWord) {
3195       // If we're verifying during a full GC then the region sets
3196       // will have been torn down at the start of the GC. Therefore
3197       // verifying the region sets will fail. So we only verify
3198       // the region sets when not in a full GC.
3199       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3200       verify_region_sets();
3201     }
3202 
3203     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3204     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3205       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3206              "sanity check");
3207 
3208       G1ParVerifyTask task(this, vo);
3209       assert(UseDynamicNumberOfGCThreads ||
3210         workers()->active_workers() == workers()->total_workers(),
3211         "If not dynamic should be using all the workers");
3212       int n_workers = workers()->active_workers();
3213       set_par_threads(n_workers);
3214       workers()->run_task(&task);
3215       set_par_threads(0);
3216       if (task.failures()) {
3217         failures = true;
3218       }
3219 
3220       // Checks that the expected amount of parallel work was done.
3221       // The implication is that n_workers is > 0.
3222       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3223              "sanity check");
3224 
3225       reset_heap_region_claim_values();
3226 
3227       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3228              "sanity check");
3229     } else {
3230       VerifyRegionClosure blk(false, vo);
3231       heap_region_iterate(&blk);
3232       if (blk.failures()) {
3233         failures = true;
3234       }
3235     }
3236     if (!silent) gclog_or_tty->print("RemSet ");
3237     rem_set()->verify();
3238 
3239     if (failures) {
3240       gclog_or_tty->print_cr("Heap:");
3241       // It helps to have the per-region information in the output to
3242       // help us track down what went wrong. This is why we call
3243       // print_extended_on() instead of print_on().
3244       print_extended_on(gclog_or_tty);
3245       gclog_or_tty->print_cr("");
3246 #ifndef PRODUCT
3247       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3248         concurrent_mark()->print_reachable("at-verification-failure",
3249                                            vo, false /* all */);
3250       }
3251 #endif
3252       gclog_or_tty->flush();
3253     }
3254     guarantee(!failures, "there should not have been any failures");
3255   } else {
3256     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3257   }
3258 }
3259 
3260 class PrintRegionClosure: public HeapRegionClosure {
3261   outputStream* _st;
3262 public:
3263   PrintRegionClosure(outputStream* st) : _st(st) {}
3264   bool doHeapRegion(HeapRegion* r) {
3265     r->print_on(_st);
3266     return false;
3267   }
3268 };
3269 
3270 void G1CollectedHeap::print_on(outputStream* st) const {
3271   st->print(" %-20s", "garbage-first heap");
3272   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3273             capacity()/K, used_unlocked()/K);
3274   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3275             _g1_storage.low_boundary(),
3276             _g1_storage.high(),
3277             _g1_storage.high_boundary());
3278   st->cr();
3279   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3280   uint young_regions = _young_list->length();
3281   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3282             (size_t) young_regions * HeapRegion::GrainBytes / K);
3283   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3284   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3285             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3286   st->cr();
3287   perm()->as_gen()->print_on(st);
3288 }
3289 
3290 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3291   print_on(st);
3292 
3293   // Print the per-region information.
3294   st->cr();
3295   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3296                "HS=humongous(starts), HC=humongous(continues), "
3297                "CS=collection set, F=free, TS=gc time stamp, "
3298                "PTAMS=previous top-at-mark-start, "
3299                "NTAMS=next top-at-mark-start)");
3300   PrintRegionClosure blk(st);
3301   heap_region_iterate(&blk);
3302 }
3303 
3304 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3305   if (G1CollectedHeap::use_parallel_gc_threads()) {
3306     workers()->print_worker_threads_on(st);
3307   }
3308   _cmThread->print_on(st);
3309   st->cr();
3310   _cm->print_worker_threads_on(st);
3311   _cg1r->print_worker_threads_on(st);
3312   st->cr();
3313 }
3314 
3315 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3316   if (G1CollectedHeap::use_parallel_gc_threads()) {
3317     workers()->threads_do(tc);
3318   }
3319   tc->do_thread(_cmThread);
3320   _cg1r->threads_do(tc);
3321 }
3322 
3323 void G1CollectedHeap::print_tracing_info() const {
3324   // We'll overload this to mean "trace GC pause statistics."
3325   if (TraceGen0Time || TraceGen1Time) {
3326     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3327     // to that.
3328     g1_policy()->print_tracing_info();
3329   }
3330   if (G1SummarizeRSetStats) {
3331     g1_rem_set()->print_summary_info();
3332   }
3333   if (G1SummarizeConcMark) {
3334     concurrent_mark()->print_summary_info();
3335   }
3336   g1_policy()->print_yg_surv_rate_info();
3337   SpecializationStats::print();
3338 }
3339 
3340 #ifndef PRODUCT
3341 // Helpful for debugging RSet issues.
3342 
3343 class PrintRSetsClosure : public HeapRegionClosure {
3344 private:
3345   const char* _msg;
3346   size_t _occupied_sum;
3347 
3348 public:
3349   bool doHeapRegion(HeapRegion* r) {
3350     HeapRegionRemSet* hrrs = r->rem_set();
3351     size_t occupied = hrrs->occupied();
3352     _occupied_sum += occupied;
3353 
3354     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3355                            HR_FORMAT_PARAMS(r));
3356     if (occupied == 0) {
3357       gclog_or_tty->print_cr("  RSet is empty");
3358     } else {
3359       hrrs->print();
3360     }
3361     gclog_or_tty->print_cr("----------");
3362     return false;
3363   }
3364 
3365   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3366     gclog_or_tty->cr();
3367     gclog_or_tty->print_cr("========================================");
3368     gclog_or_tty->print_cr(msg);
3369     gclog_or_tty->cr();
3370   }
3371 
3372   ~PrintRSetsClosure() {
3373     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3374     gclog_or_tty->print_cr("========================================");
3375     gclog_or_tty->cr();
3376   }
3377 };
3378 
3379 void G1CollectedHeap::print_cset_rsets() {
3380   PrintRSetsClosure cl("Printing CSet RSets");
3381   collection_set_iterate(&cl);
3382 }
3383 
3384 void G1CollectedHeap::print_all_rsets() {
3385   PrintRSetsClosure cl("Printing All RSets");;
3386   heap_region_iterate(&cl);
3387 }
3388 #endif // PRODUCT
3389 
3390 G1CollectedHeap* G1CollectedHeap::heap() {
3391   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3392          "not a garbage-first heap");
3393   return _g1h;
3394 }
3395 
3396 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3397   // always_do_update_barrier = false;
3398   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3399   // Call allocation profiler
3400   AllocationProfiler::iterate_since_last_gc();
3401   // Fill TLAB's and such
3402   ensure_parsability(true);
3403 }
3404 
3405 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3406   // FIXME: what is this about?
3407   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3408   // is set.
3409   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3410                         "derived pointer present"));
3411   // always_do_update_barrier = true;
3412 
3413   // We have just completed a GC. Update the soft reference
3414   // policy with the new heap occupancy
3415   Universe::update_heap_info_at_gc();
3416 }
3417 
3418 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3419                                                unsigned int gc_count_before,
3420                                                bool* succeeded) {
3421   assert_heap_not_locked_and_not_at_safepoint();
3422   g1_policy()->record_stop_world_start();
3423   VM_G1IncCollectionPause op(gc_count_before,
3424                              word_size,
3425                              false, /* should_initiate_conc_mark */
3426                              g1_policy()->max_pause_time_ms(),
3427                              GCCause::_g1_inc_collection_pause);
3428   VMThread::execute(&op);
3429 
3430   HeapWord* result = op.result();
3431   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3432   assert(result == NULL || ret_succeeded,
3433          "the result should be NULL if the VM did not succeed");
3434   *succeeded = ret_succeeded;
3435 
3436   assert_heap_not_locked();
3437   return result;
3438 }
3439 
3440 void
3441 G1CollectedHeap::doConcurrentMark() {
3442   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3443   if (!_cmThread->in_progress()) {
3444     _cmThread->set_started();
3445     CGC_lock->notify();
3446   }
3447 }
3448 
3449 size_t G1CollectedHeap::pending_card_num() {
3450   size_t extra_cards = 0;
3451   JavaThread *curr = Threads::first();
3452   while (curr != NULL) {
3453     DirtyCardQueue& dcq = curr->dirty_card_queue();
3454     extra_cards += dcq.size();
3455     curr = curr->next();
3456   }
3457   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3458   size_t buffer_size = dcqs.buffer_size();
3459   size_t buffer_num = dcqs.completed_buffers_num();
3460   return buffer_size * buffer_num + extra_cards;
3461 }
3462 
3463 size_t G1CollectedHeap::max_pending_card_num() {
3464   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3465   size_t buffer_size = dcqs.buffer_size();
3466   size_t buffer_num  = dcqs.completed_buffers_num();
3467   int thread_num  = Threads::number_of_threads();
3468   return (buffer_num + thread_num) * buffer_size;
3469 }
3470 
3471 size_t G1CollectedHeap::cards_scanned() {
3472   return g1_rem_set()->cardsScanned();
3473 }
3474 
3475 void
3476 G1CollectedHeap::setup_surviving_young_words() {
3477   assert(_surviving_young_words == NULL, "pre-condition");
3478   uint array_length = g1_policy()->young_cset_region_length();
3479   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length);
3480   if (_surviving_young_words == NULL) {
3481     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3482                           "Not enough space for young surv words summary.");
3483   }
3484   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3485 #ifdef ASSERT
3486   for (uint i = 0;  i < array_length; ++i) {
3487     assert( _surviving_young_words[i] == 0, "memset above" );
3488   }
3489 #endif // !ASSERT
3490 }
3491 
3492 void
3493 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3494   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3495   uint array_length = g1_policy()->young_cset_region_length();
3496   for (uint i = 0; i < array_length; ++i) {
3497     _surviving_young_words[i] += surv_young_words[i];
3498   }
3499 }
3500 
3501 void
3502 G1CollectedHeap::cleanup_surviving_young_words() {
3503   guarantee( _surviving_young_words != NULL, "pre-condition" );
3504   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3505   _surviving_young_words = NULL;
3506 }
3507 
3508 #ifdef ASSERT
3509 class VerifyCSetClosure: public HeapRegionClosure {
3510 public:
3511   bool doHeapRegion(HeapRegion* hr) {
3512     // Here we check that the CSet region's RSet is ready for parallel
3513     // iteration. The fields that we'll verify are only manipulated
3514     // when the region is part of a CSet and is collected. Afterwards,
3515     // we reset these fields when we clear the region's RSet (when the
3516     // region is freed) so they are ready when the region is
3517     // re-allocated. The only exception to this is if there's an
3518     // evacuation failure and instead of freeing the region we leave
3519     // it in the heap. In that case, we reset these fields during
3520     // evacuation failure handling.
3521     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3522 
3523     // Here's a good place to add any other checks we'd like to
3524     // perform on CSet regions.
3525     return false;
3526   }
3527 };
3528 #endif // ASSERT
3529 
3530 #if TASKQUEUE_STATS
3531 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3532   st->print_raw_cr("GC Task Stats");
3533   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3534   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3535 }
3536 
3537 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3538   print_taskqueue_stats_hdr(st);
3539 
3540   TaskQueueStats totals;
3541   const int n = workers() != NULL ? workers()->total_workers() : 1;
3542   for (int i = 0; i < n; ++i) {
3543     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3544     totals += task_queue(i)->stats;
3545   }
3546   st->print_raw("tot "); totals.print(st); st->cr();
3547 
3548   DEBUG_ONLY(totals.verify());
3549 }
3550 
3551 void G1CollectedHeap::reset_taskqueue_stats() {
3552   const int n = workers() != NULL ? workers()->total_workers() : 1;
3553   for (int i = 0; i < n; ++i) {
3554     task_queue(i)->stats.reset();
3555   }
3556 }
3557 #endif // TASKQUEUE_STATS
3558 
3559 bool
3560 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3561   assert_at_safepoint(true /* should_be_vm_thread */);
3562   guarantee(!is_gc_active(), "collection is not reentrant");
3563 
3564   if (GC_locker::check_active_before_gc()) {
3565     return false;
3566   }
3567 
3568   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3569   ResourceMark rm;
3570 
3571   print_heap_before_gc();
3572 
3573   HRSPhaseSetter x(HRSPhaseEvacuation);
3574   verify_region_sets_optional();
3575   verify_dirty_young_regions();
3576 
3577   // This call will decide whether this pause is an initial-mark
3578   // pause. If it is, during_initial_mark_pause() will return true
3579   // for the duration of this pause.
3580   g1_policy()->decide_on_conc_mark_initiation();
3581 
3582   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3583   assert(!g1_policy()->during_initial_mark_pause() ||
3584           g1_policy()->gcs_are_young(), "sanity");
3585 
3586   // We also do not allow mixed GCs during marking.
3587   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3588 
3589   // Record whether this pause is an initial mark. When the current
3590   // thread has completed its logging output and it's safe to signal
3591   // the CM thread, the flag's value in the policy has been reset.
3592   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3593 
3594   // Inner scope for scope based logging, timers, and stats collection
3595   {
3596     char verbose_str[128];
3597     sprintf(verbose_str, "GC pause ");
3598     if (g1_policy()->gcs_are_young()) {
3599       strcat(verbose_str, "(young)");
3600     } else {
3601       strcat(verbose_str, "(mixed)");
3602     }
3603     if (g1_policy()->during_initial_mark_pause()) {
3604       strcat(verbose_str, " (initial-mark)");
3605       // We are about to start a marking cycle, so we increment the
3606       // full collection counter.
3607       increment_total_full_collections();
3608     }
3609 
3610     // if the log level is "finer" is on, we'll print long statistics information
3611     // in the collector policy code, so let's not print this as the output
3612     // is messy if we do.
3613     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
3614     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3615     TraceTime t(verbose_str, G1Log::fine() && !G1Log::finer(), true, gclog_or_tty);
3616 
3617     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3618     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3619 
3620     // If the secondary_free_list is not empty, append it to the
3621     // free_list. No need to wait for the cleanup operation to finish;
3622     // the region allocation code will check the secondary_free_list
3623     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3624     // set, skip this step so that the region allocation code has to
3625     // get entries from the secondary_free_list.
3626     if (!G1StressConcRegionFreeing) {
3627       append_secondary_free_list_if_not_empty_with_lock();
3628     }
3629 
3630     assert(check_young_list_well_formed(),
3631       "young list should be well formed");
3632 
3633     // Don't dynamically change the number of GC threads this early.  A value of
3634     // 0 is used to indicate serial work.  When parallel work is done,
3635     // it will be set.
3636 
3637     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3638       IsGCActiveMark x;
3639 
3640       gc_prologue(false);
3641       increment_total_collections(false /* full gc */);
3642       increment_gc_time_stamp();
3643 
3644       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3645         HandleMark hm;  // Discard invalid handles created during verification
3646         gclog_or_tty->print(" VerifyBeforeGC:");
3647         prepare_for_verify();
3648         Universe::verify(/* silent      */ false,
3649                          /* option      */ VerifyOption_G1UsePrevMarking);
3650       }
3651 
3652       COMPILER2_PRESENT(DerivedPointerTable::clear());
3653 
3654       // Please see comment in g1CollectedHeap.hpp and
3655       // G1CollectedHeap::ref_processing_init() to see how
3656       // reference processing currently works in G1.
3657 
3658       // Enable discovery in the STW reference processor
3659       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3660                                             true /*verify_no_refs*/);
3661 
3662       {
3663         // We want to temporarily turn off discovery by the
3664         // CM ref processor, if necessary, and turn it back on
3665         // on again later if we do. Using a scoped
3666         // NoRefDiscovery object will do this.
3667         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3668 
3669         // Forget the current alloc region (we might even choose it to be part
3670         // of the collection set!).
3671         release_mutator_alloc_region();
3672 
3673         // We should call this after we retire the mutator alloc
3674         // region(s) so that all the ALLOC / RETIRE events are generated
3675         // before the start GC event.
3676         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3677 
3678         // The elapsed time induced by the start time below deliberately elides
3679         // the possible verification above.
3680         double start_time_sec = os::elapsedTime();
3681         size_t start_used_bytes = used();
3682 
3683 #if YOUNG_LIST_VERBOSE
3684         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3685         _young_list->print();
3686         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3687 #endif // YOUNG_LIST_VERBOSE
3688 
3689         g1_policy()->record_collection_pause_start(start_time_sec,
3690                                                    start_used_bytes);
3691 
3692         double scan_wait_start = os::elapsedTime();
3693         // We have to wait until the CM threads finish scanning the
3694         // root regions as it's the only way to ensure that all the
3695         // objects on them have been correctly scanned before we start
3696         // moving them during the GC.
3697         bool waited = _cm->root_regions()->wait_until_scan_finished();
3698         if (waited) {
3699           double scan_wait_end = os::elapsedTime();
3700           double wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3701           g1_policy()->record_root_region_scan_wait_time(wait_time_ms);
3702         }
3703 
3704 #if YOUNG_LIST_VERBOSE
3705         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3706         _young_list->print();
3707 #endif // YOUNG_LIST_VERBOSE
3708 
3709         if (g1_policy()->during_initial_mark_pause()) {
3710           concurrent_mark()->checkpointRootsInitialPre();
3711         }
3712         perm_gen()->save_marks();
3713 
3714 #if YOUNG_LIST_VERBOSE
3715         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3716         _young_list->print();
3717         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3718 #endif // YOUNG_LIST_VERBOSE
3719 
3720         g1_policy()->finalize_cset(target_pause_time_ms);
3721 
3722         _cm->note_start_of_gc();
3723         // We should not verify the per-thread SATB buffers given that
3724         // we have not filtered them yet (we'll do so during the
3725         // GC). We also call this after finalize_cset() to
3726         // ensure that the CSet has been finalized.
3727         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3728                                  true  /* verify_enqueued_buffers */,
3729                                  false /* verify_thread_buffers */,
3730                                  true  /* verify_fingers */);
3731 
3732         if (_hr_printer.is_active()) {
3733           HeapRegion* hr = g1_policy()->collection_set();
3734           while (hr != NULL) {
3735             G1HRPrinter::RegionType type;
3736             if (!hr->is_young()) {
3737               type = G1HRPrinter::Old;
3738             } else if (hr->is_survivor()) {
3739               type = G1HRPrinter::Survivor;
3740             } else {
3741               type = G1HRPrinter::Eden;
3742             }
3743             _hr_printer.cset(hr);
3744             hr = hr->next_in_collection_set();
3745           }
3746         }
3747 
3748 #ifdef ASSERT
3749         VerifyCSetClosure cl;
3750         collection_set_iterate(&cl);
3751 #endif // ASSERT
3752 
3753         setup_surviving_young_words();
3754 
3755         // Initialize the GC alloc regions.
3756         init_gc_alloc_regions();
3757 
3758         // Actually do the work...
3759         evacuate_collection_set();
3760 
3761         // We do this to mainly verify the per-thread SATB buffers
3762         // (which have been filtered by now) since we didn't verify
3763         // them earlier. No point in re-checking the stacks / enqueued
3764         // buffers given that the CSet has not changed since last time
3765         // we checked.
3766         _cm->verify_no_cset_oops(false /* verify_stacks */,
3767                                  false /* verify_enqueued_buffers */,
3768                                  true  /* verify_thread_buffers */,
3769                                  true  /* verify_fingers */);
3770 
3771         free_collection_set(g1_policy()->collection_set());
3772         g1_policy()->clear_collection_set();
3773 
3774         cleanup_surviving_young_words();
3775 
3776         // Start a new incremental collection set for the next pause.
3777         g1_policy()->start_incremental_cset_building();
3778 
3779         // Clear the _cset_fast_test bitmap in anticipation of adding
3780         // regions to the incremental collection set for the next
3781         // evacuation pause.
3782         clear_cset_fast_test();
3783 
3784         _young_list->reset_sampled_info();
3785 
3786         // Don't check the whole heap at this point as the
3787         // GC alloc regions from this pause have been tagged
3788         // as survivors and moved on to the survivor list.
3789         // Survivor regions will fail the !is_young() check.
3790         assert(check_young_list_empty(false /* check_heap */),
3791           "young list should be empty");
3792 
3793 #if YOUNG_LIST_VERBOSE
3794         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3795         _young_list->print();
3796 #endif // YOUNG_LIST_VERBOSE
3797 
3798         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3799                                             _young_list->first_survivor_region(),
3800                                             _young_list->last_survivor_region());
3801 
3802         _young_list->reset_auxilary_lists();
3803 
3804         if (evacuation_failed()) {
3805           _summary_bytes_used = recalculate_used();
3806         } else {
3807           // The "used" of the the collection set have already been subtracted
3808           // when they were freed.  Add in the bytes evacuated.
3809           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3810         }
3811 
3812         if (g1_policy()->during_initial_mark_pause()) {
3813           // We have to do this before we notify the CM threads that
3814           // they can start working to make sure that all the
3815           // appropriate initialization is done on the CM object.
3816           concurrent_mark()->checkpointRootsInitialPost();
3817           set_marking_started();
3818           // Note that we don't actually trigger the CM thread at
3819           // this point. We do that later when we're sure that
3820           // the current thread has completed its logging output.
3821         }
3822 
3823         allocate_dummy_regions();
3824 
3825 #if YOUNG_LIST_VERBOSE
3826         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3827         _young_list->print();
3828         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3829 #endif // YOUNG_LIST_VERBOSE
3830 
3831         init_mutator_alloc_region();
3832 
3833         {
3834           size_t expand_bytes = g1_policy()->expansion_amount();
3835           if (expand_bytes > 0) {
3836             size_t bytes_before = capacity();
3837             // No need for an ergo verbose message here,
3838             // expansion_amount() does this when it returns a value > 0.
3839             if (!expand(expand_bytes)) {
3840               // We failed to expand the heap so let's verify that
3841               // committed/uncommitted amount match the backing store
3842               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3843               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3844             }
3845           }
3846         }
3847 
3848         // We redo the verificaiton but now wrt to the new CSet which
3849         // has just got initialized after the previous CSet was freed.
3850         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3851                                  true  /* verify_enqueued_buffers */,
3852                                  true  /* verify_thread_buffers */,
3853                                  true  /* verify_fingers */);
3854         _cm->note_end_of_gc();
3855 
3856         double end_time_sec = os::elapsedTime();
3857         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3858         g1_policy()->record_pause_time_ms(pause_time_ms);
3859         int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3860                                 workers()->active_workers() : 1);
3861         g1_policy()->record_collection_pause_end(active_workers);
3862 
3863         MemoryService::track_memory_usage();
3864 
3865         // In prepare_for_verify() below we'll need to scan the deferred
3866         // update buffers to bring the RSets up-to-date if
3867         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3868         // the update buffers we'll probably need to scan cards on the
3869         // regions we just allocated to (i.e., the GC alloc
3870         // regions). However, during the last GC we called
3871         // set_saved_mark() on all the GC alloc regions, so card
3872         // scanning might skip the [saved_mark_word()...top()] area of
3873         // those regions (i.e., the area we allocated objects into
3874         // during the last GC). But it shouldn't. Given that
3875         // saved_mark_word() is conditional on whether the GC time stamp
3876         // on the region is current or not, by incrementing the GC time
3877         // stamp here we invalidate all the GC time stamps on all the
3878         // regions and saved_mark_word() will simply return top() for
3879         // all the regions. This is a nicer way of ensuring this rather
3880         // than iterating over the regions and fixing them. In fact, the
3881         // GC time stamp increment here also ensures that
3882         // saved_mark_word() will return top() between pauses, i.e.,
3883         // during concurrent refinement. So we don't need the
3884         // is_gc_active() check to decided which top to use when
3885         // scanning cards (see CR 7039627).
3886         increment_gc_time_stamp();
3887 
3888         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3889           HandleMark hm;  // Discard invalid handles created during verification
3890           gclog_or_tty->print(" VerifyAfterGC:");
3891           prepare_for_verify();
3892           Universe::verify(/* silent      */ false,
3893                            /* option      */ VerifyOption_G1UsePrevMarking);
3894         }
3895 
3896         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3897         ref_processor_stw()->verify_no_references_recorded();
3898 
3899         // CM reference discovery will be re-enabled if necessary.
3900       }
3901 
3902       // We should do this after we potentially expand the heap so
3903       // that all the COMMIT events are generated before the end GC
3904       // event, and after we retire the GC alloc regions so that all
3905       // RETIRE events are generated before the end GC event.
3906       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3907 
3908       // We have to do this after we decide whether to expand the heap or not.
3909       g1_policy()->print_heap_transition();
3910 
3911       if (mark_in_progress()) {
3912         concurrent_mark()->update_g1_committed();
3913       }
3914 
3915 #ifdef TRACESPINNING
3916       ParallelTaskTerminator::print_termination_counts();
3917 #endif
3918 
3919       gc_epilogue(false);
3920     }
3921 
3922     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3923       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3924       print_tracing_info();
3925       vm_exit(-1);
3926     }
3927   }
3928 
3929   // The closing of the inner scope, immediately above, will complete
3930   // logging at the "fine" level. The record_collection_pause_end() call
3931   // above will complete logging at the "finer" level.
3932   //
3933   // It is not yet to safe, however, to tell the concurrent mark to
3934   // start as we have some optional output below. We don't want the
3935   // output from the concurrent mark thread interfering with this
3936   // logging output either.
3937 
3938   _hrs.verify_optional();
3939   verify_region_sets_optional();
3940 
3941   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3942   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3943 
3944   print_heap_after_gc();
3945   g1mm()->update_sizes();
3946 
3947   if (G1SummarizeRSetStats &&
3948       (G1SummarizeRSetStatsPeriod > 0) &&
3949       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3950     g1_rem_set()->print_summary_info();
3951   }
3952 
3953   // It should now be safe to tell the concurrent mark thread to start
3954   // without its logging output interfering with the logging output
3955   // that came from the pause.
3956 
3957   if (should_start_conc_mark) {
3958     // CAUTION: after the doConcurrentMark() call below,
3959     // the concurrent marking thread(s) could be running
3960     // concurrently with us. Make sure that anything after
3961     // this point does not assume that we are the only GC thread
3962     // running. Note: of course, the actual marking work will
3963     // not start until the safepoint itself is released in
3964     // ConcurrentGCThread::safepoint_desynchronize().
3965     doConcurrentMark();
3966   }
3967 
3968   return true;
3969 }
3970 
3971 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3972 {
3973   size_t gclab_word_size;
3974   switch (purpose) {
3975     case GCAllocForSurvived:
3976       gclab_word_size = YoungPLABSize;
3977       break;
3978     case GCAllocForTenured:
3979       gclab_word_size = OldPLABSize;
3980       break;
3981     default:
3982       assert(false, "unknown GCAllocPurpose");
3983       gclab_word_size = OldPLABSize;
3984       break;
3985   }
3986   return gclab_word_size;
3987 }
3988 
3989 void G1CollectedHeap::init_mutator_alloc_region() {
3990   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3991   _mutator_alloc_region.init();
3992 }
3993 
3994 void G1CollectedHeap::release_mutator_alloc_region() {
3995   _mutator_alloc_region.release();
3996   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3997 }
3998 
3999 void G1CollectedHeap::init_gc_alloc_regions() {
4000   assert_at_safepoint(true /* should_be_vm_thread */);
4001 
4002   _survivor_gc_alloc_region.init();
4003   _old_gc_alloc_region.init();
4004   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4005   _retained_old_gc_alloc_region = NULL;
4006 
4007   // We will discard the current GC alloc region if:
4008   // a) it's in the collection set (it can happen!),
4009   // b) it's already full (no point in using it),
4010   // c) it's empty (this means that it was emptied during
4011   // a cleanup and it should be on the free list now), or
4012   // d) it's humongous (this means that it was emptied
4013   // during a cleanup and was added to the free list, but
4014   // has been subseqently used to allocate a humongous
4015   // object that may be less than the region size).
4016   if (retained_region != NULL &&
4017       !retained_region->in_collection_set() &&
4018       !(retained_region->top() == retained_region->end()) &&
4019       !retained_region->is_empty() &&
4020       !retained_region->isHumongous()) {
4021     retained_region->set_saved_mark();
4022     // The retained region was added to the old region set when it was
4023     // retired. We have to remove it now, since we don't allow regions
4024     // we allocate to in the region sets. We'll re-add it later, when
4025     // it's retired again.
4026     _old_set.remove(retained_region);
4027     bool during_im = g1_policy()->during_initial_mark_pause();
4028     retained_region->note_start_of_copying(during_im);
4029     _old_gc_alloc_region.set(retained_region);
4030     _hr_printer.reuse(retained_region);
4031   }
4032 }
4033 
4034 void G1CollectedHeap::release_gc_alloc_regions() {
4035   _survivor_gc_alloc_region.release();
4036   // If we have an old GC alloc region to release, we'll save it in
4037   // _retained_old_gc_alloc_region. If we don't
4038   // _retained_old_gc_alloc_region will become NULL. This is what we
4039   // want either way so no reason to check explicitly for either
4040   // condition.
4041   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4042 }
4043 
4044 void G1CollectedHeap::abandon_gc_alloc_regions() {
4045   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4046   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4047   _retained_old_gc_alloc_region = NULL;
4048 }
4049 
4050 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4051   _drain_in_progress = false;
4052   set_evac_failure_closure(cl);
4053   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4054 }
4055 
4056 void G1CollectedHeap::finalize_for_evac_failure() {
4057   assert(_evac_failure_scan_stack != NULL &&
4058          _evac_failure_scan_stack->length() == 0,
4059          "Postcondition");
4060   assert(!_drain_in_progress, "Postcondition");
4061   delete _evac_failure_scan_stack;
4062   _evac_failure_scan_stack = NULL;
4063 }
4064 
4065 void G1CollectedHeap::remove_self_forwarding_pointers() {
4066   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4067 
4068   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4069 
4070   if (G1CollectedHeap::use_parallel_gc_threads()) {
4071     set_par_threads();
4072     workers()->run_task(&rsfp_task);
4073     set_par_threads(0);
4074   } else {
4075     rsfp_task.work(0);
4076   }
4077 
4078   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4079 
4080   // Reset the claim values in the regions in the collection set.
4081   reset_cset_heap_region_claim_values();
4082 
4083   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4084 
4085   // Now restore saved marks, if any.
4086   if (_objs_with_preserved_marks != NULL) {
4087     assert(_preserved_marks_of_objs != NULL, "Both or none.");
4088     guarantee(_objs_with_preserved_marks->length() ==
4089               _preserved_marks_of_objs->length(), "Both or none.");
4090     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
4091       oop obj   = _objs_with_preserved_marks->at(i);
4092       markOop m = _preserved_marks_of_objs->at(i);
4093       obj->set_mark(m);
4094     }
4095 
4096     // Delete the preserved marks growable arrays (allocated on the C heap).
4097     delete _objs_with_preserved_marks;
4098     delete _preserved_marks_of_objs;
4099     _objs_with_preserved_marks = NULL;
4100     _preserved_marks_of_objs = NULL;
4101   }
4102 }
4103 
4104 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4105   _evac_failure_scan_stack->push(obj);
4106 }
4107 
4108 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4109   assert(_evac_failure_scan_stack != NULL, "precondition");
4110 
4111   while (_evac_failure_scan_stack->length() > 0) {
4112      oop obj = _evac_failure_scan_stack->pop();
4113      _evac_failure_closure->set_region(heap_region_containing(obj));
4114      obj->oop_iterate_backwards(_evac_failure_closure);
4115   }
4116 }
4117 
4118 oop
4119 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4120                                                oop old) {
4121   assert(obj_in_cs(old),
4122          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4123                  (HeapWord*) old));
4124   markOop m = old->mark();
4125   oop forward_ptr = old->forward_to_atomic(old);
4126   if (forward_ptr == NULL) {
4127     // Forward-to-self succeeded.
4128 
4129     if (_evac_failure_closure != cl) {
4130       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4131       assert(!_drain_in_progress,
4132              "Should only be true while someone holds the lock.");
4133       // Set the global evac-failure closure to the current thread's.
4134       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4135       set_evac_failure_closure(cl);
4136       // Now do the common part.
4137       handle_evacuation_failure_common(old, m);
4138       // Reset to NULL.
4139       set_evac_failure_closure(NULL);
4140     } else {
4141       // The lock is already held, and this is recursive.
4142       assert(_drain_in_progress, "This should only be the recursive case.");
4143       handle_evacuation_failure_common(old, m);
4144     }
4145     return old;
4146   } else {
4147     // Forward-to-self failed. Either someone else managed to allocate
4148     // space for this object (old != forward_ptr) or they beat us in
4149     // self-forwarding it (old == forward_ptr).
4150     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4151            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4152                    "should not be in the CSet",
4153                    (HeapWord*) old, (HeapWord*) forward_ptr));
4154     return forward_ptr;
4155   }
4156 }
4157 
4158 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4159   set_evacuation_failed(true);
4160 
4161   preserve_mark_if_necessary(old, m);
4162 
4163   HeapRegion* r = heap_region_containing(old);
4164   if (!r->evacuation_failed()) {
4165     r->set_evacuation_failed(true);
4166     _hr_printer.evac_failure(r);
4167   }
4168 
4169   push_on_evac_failure_scan_stack(old);
4170 
4171   if (!_drain_in_progress) {
4172     // prevent recursion in copy_to_survivor_space()
4173     _drain_in_progress = true;
4174     drain_evac_failure_scan_stack();
4175     _drain_in_progress = false;
4176   }
4177 }
4178 
4179 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4180   assert(evacuation_failed(), "Oversaving!");
4181   // We want to call the "for_promotion_failure" version only in the
4182   // case of a promotion failure.
4183   if (m->must_be_preserved_for_promotion_failure(obj)) {
4184     if (_objs_with_preserved_marks == NULL) {
4185       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4186       _objs_with_preserved_marks =
4187         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4188       _preserved_marks_of_objs =
4189         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4190     }
4191     _objs_with_preserved_marks->push(obj);
4192     _preserved_marks_of_objs->push(m);
4193   }
4194 }
4195 
4196 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4197                                                   size_t word_size) {
4198   if (purpose == GCAllocForSurvived) {
4199     HeapWord* result = survivor_attempt_allocation(word_size);
4200     if (result != NULL) {
4201       return result;
4202     } else {
4203       // Let's try to allocate in the old gen in case we can fit the
4204       // object there.
4205       return old_attempt_allocation(word_size);
4206     }
4207   } else {
4208     assert(purpose ==  GCAllocForTenured, "sanity");
4209     HeapWord* result = old_attempt_allocation(word_size);
4210     if (result != NULL) {
4211       return result;
4212     } else {
4213       // Let's try to allocate in the survivors in case we can fit the
4214       // object there.
4215       return survivor_attempt_allocation(word_size);
4216     }
4217   }
4218 
4219   ShouldNotReachHere();
4220   // Trying to keep some compilers happy.
4221   return NULL;
4222 }
4223 
4224 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4225   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4226 
4227 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4228   : _g1h(g1h),
4229     _refs(g1h->task_queue(queue_num)),
4230     _dcq(&g1h->dirty_card_queue_set()),
4231     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4232     _g1_rem(g1h->g1_rem_set()),
4233     _hash_seed(17), _queue_num(queue_num),
4234     _term_attempts(0),
4235     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4236     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4237     _age_table(false),
4238     _strong_roots_time(0), _term_time(0),
4239     _alloc_buffer_waste(0), _undo_waste(0) {
4240   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4241   // we "sacrifice" entry 0 to keep track of surviving bytes for
4242   // non-young regions (where the age is -1)
4243   // We also add a few elements at the beginning and at the end in
4244   // an attempt to eliminate cache contention
4245   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4246   uint array_length = PADDING_ELEM_NUM +
4247                       real_length +
4248                       PADDING_ELEM_NUM;
4249   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4250   if (_surviving_young_words_base == NULL)
4251     vm_exit_out_of_memory(array_length * sizeof(size_t),
4252                           "Not enough space for young surv histo.");
4253   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4254   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4255 
4256   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4257   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4258 
4259   _start = os::elapsedTime();
4260 }
4261 
4262 void
4263 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4264 {
4265   st->print_raw_cr("GC Termination Stats");
4266   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4267                    " ------waste (KiB)------");
4268   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4269                    "  total   alloc    undo");
4270   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4271                    " ------- ------- -------");
4272 }
4273 
4274 void
4275 G1ParScanThreadState::print_termination_stats(int i,
4276                                               outputStream* const st) const
4277 {
4278   const double elapsed_ms = elapsed_time() * 1000.0;
4279   const double s_roots_ms = strong_roots_time() * 1000.0;
4280   const double term_ms    = term_time() * 1000.0;
4281   st->print_cr("%3d %9.2f %9.2f %6.2f "
4282                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4283                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4284                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4285                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4286                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4287                alloc_buffer_waste() * HeapWordSize / K,
4288                undo_waste() * HeapWordSize / K);
4289 }
4290 
4291 #ifdef ASSERT
4292 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4293   assert(ref != NULL, "invariant");
4294   assert(UseCompressedOops, "sanity");
4295   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4296   oop p = oopDesc::load_decode_heap_oop(ref);
4297   assert(_g1h->is_in_g1_reserved(p),
4298          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4299   return true;
4300 }
4301 
4302 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4303   assert(ref != NULL, "invariant");
4304   if (has_partial_array_mask(ref)) {
4305     // Must be in the collection set--it's already been copied.
4306     oop p = clear_partial_array_mask(ref);
4307     assert(_g1h->obj_in_cs(p),
4308            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4309   } else {
4310     oop p = oopDesc::load_decode_heap_oop(ref);
4311     assert(_g1h->is_in_g1_reserved(p),
4312            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4313   }
4314   return true;
4315 }
4316 
4317 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4318   if (ref.is_narrow()) {
4319     return verify_ref((narrowOop*) ref);
4320   } else {
4321     return verify_ref((oop*) ref);
4322   }
4323 }
4324 #endif // ASSERT
4325 
4326 void G1ParScanThreadState::trim_queue() {
4327   assert(_evac_cl != NULL, "not set");
4328   assert(_evac_failure_cl != NULL, "not set");
4329   assert(_partial_scan_cl != NULL, "not set");
4330 
4331   StarTask ref;
4332   do {
4333     // Drain the overflow stack first, so other threads can steal.
4334     while (refs()->pop_overflow(ref)) {
4335       deal_with_reference(ref);
4336     }
4337 
4338     while (refs()->pop_local(ref)) {
4339       deal_with_reference(ref);
4340     }
4341   } while (!refs()->is_empty());
4342 }
4343 
4344 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4345                                      G1ParScanThreadState* par_scan_state) :
4346   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4347   _par_scan_state(par_scan_state),
4348   _worker_id(par_scan_state->queue_num()),
4349   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4350   _mark_in_progress(_g1->mark_in_progress()) { }
4351 
4352 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4353 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4354 #ifdef ASSERT
4355   HeapRegion* hr = _g1->heap_region_containing(obj);
4356   assert(hr != NULL, "sanity");
4357   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4358 #endif // ASSERT
4359 
4360   // We know that the object is not moving so it's safe to read its size.
4361   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4362 }
4363 
4364 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4365 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4366   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4367 #ifdef ASSERT
4368   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4369   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4370   assert(from_obj != to_obj, "should not be self-forwarded");
4371 
4372   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4373   assert(from_hr != NULL, "sanity");
4374   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4375 
4376   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4377   assert(to_hr != NULL, "sanity");
4378   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4379 #endif // ASSERT
4380 
4381   // The object might be in the process of being copied by another
4382   // worker so we cannot trust that its to-space image is
4383   // well-formed. So we have to read its size from its from-space
4384   // image which we know should not be changing.
4385   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4386 }
4387 
4388 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4389 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4390   ::copy_to_survivor_space(oop old) {
4391   size_t word_sz = old->size();
4392   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4393   // +1 to make the -1 indexes valid...
4394   int       young_index = from_region->young_index_in_cset()+1;
4395   assert( (from_region->is_young() && young_index >  0) ||
4396          (!from_region->is_young() && young_index == 0), "invariant" );
4397   G1CollectorPolicy* g1p = _g1->g1_policy();
4398   markOop m = old->mark();
4399   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4400                                            : m->age();
4401   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4402                                                              word_sz);
4403   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4404   oop       obj     = oop(obj_ptr);
4405 
4406   if (obj_ptr == NULL) {
4407     // This will either forward-to-self, or detect that someone else has
4408     // installed a forwarding pointer.
4409     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4410     return _g1->handle_evacuation_failure_par(cl, old);
4411   }
4412 
4413   // We're going to allocate linearly, so might as well prefetch ahead.
4414   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4415 
4416   oop forward_ptr = old->forward_to_atomic(obj);
4417   if (forward_ptr == NULL) {
4418     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4419     if (g1p->track_object_age(alloc_purpose)) {
4420       // We could simply do obj->incr_age(). However, this causes a
4421       // performance issue. obj->incr_age() will first check whether
4422       // the object has a displaced mark by checking its mark word;
4423       // getting the mark word from the new location of the object
4424       // stalls. So, given that we already have the mark word and we
4425       // are about to install it anyway, it's better to increase the
4426       // age on the mark word, when the object does not have a
4427       // displaced mark word. We're not expecting many objects to have
4428       // a displaced marked word, so that case is not optimized
4429       // further (it could be...) and we simply call obj->incr_age().
4430 
4431       if (m->has_displaced_mark_helper()) {
4432         // in this case, we have to install the mark word first,
4433         // otherwise obj looks to be forwarded (the old mark word,
4434         // which contains the forward pointer, was copied)
4435         obj->set_mark(m);
4436         obj->incr_age();
4437       } else {
4438         m = m->incr_age();
4439         obj->set_mark(m);
4440       }
4441       _par_scan_state->age_table()->add(obj, word_sz);
4442     } else {
4443       obj->set_mark(m);
4444     }
4445 
4446     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4447     surv_young_words[young_index] += word_sz;
4448 
4449     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4450       // We keep track of the next start index in the length field of
4451       // the to-space object. The actual length can be found in the
4452       // length field of the from-space object.
4453       arrayOop(obj)->set_length(0);
4454       oop* old_p = set_partial_array_mask(old);
4455       _par_scan_state->push_on_queue(old_p);
4456     } else {
4457       // No point in using the slower heap_region_containing() method,
4458       // given that we know obj is in the heap.
4459       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4460       obj->oop_iterate_backwards(&_scanner);
4461     }
4462   } else {
4463     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4464     obj = forward_ptr;
4465   }
4466   return obj;
4467 }
4468 
4469 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4470 template <class T>
4471 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4472 ::do_oop_work(T* p) {
4473   oop obj = oopDesc::load_decode_heap_oop(p);
4474   assert(barrier != G1BarrierRS || obj != NULL,
4475          "Precondition: G1BarrierRS implies obj is non-NULL");
4476 
4477   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4478 
4479   // here the null check is implicit in the cset_fast_test() test
4480   if (_g1->in_cset_fast_test(obj)) {
4481     oop forwardee;
4482     if (obj->is_forwarded()) {
4483       forwardee = obj->forwardee();
4484     } else {
4485       forwardee = copy_to_survivor_space(obj);
4486     }
4487     assert(forwardee != NULL, "forwardee should not be NULL");
4488     oopDesc::encode_store_heap_oop(p, forwardee);
4489     if (do_mark_object && forwardee != obj) {
4490       // If the object is self-forwarded we don't need to explicitly
4491       // mark it, the evacuation failure protocol will do so.
4492       mark_forwarded_object(obj, forwardee);
4493     }
4494 
4495     // When scanning the RS, we only care about objs in CS.
4496     if (barrier == G1BarrierRS) {
4497       _par_scan_state->update_rs(_from, p, _worker_id);
4498     }
4499   } else {
4500     // The object is not in collection set. If we're a root scanning
4501     // closure during an initial mark pause (i.e. do_mark_object will
4502     // be true) then attempt to mark the object.
4503     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4504       mark_object(obj);
4505     }
4506   }
4507 
4508   if (barrier == G1BarrierEvac && obj != NULL) {
4509     _par_scan_state->update_rs(_from, p, _worker_id);
4510   }
4511 
4512   if (do_gen_barrier && obj != NULL) {
4513     par_do_barrier(p);
4514   }
4515 }
4516 
4517 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4518 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4519 
4520 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4521   assert(has_partial_array_mask(p), "invariant");
4522   oop from_obj = clear_partial_array_mask(p);
4523 
4524   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4525   assert(from_obj->is_objArray(), "must be obj array");
4526   objArrayOop from_obj_array = objArrayOop(from_obj);
4527   // The from-space object contains the real length.
4528   int length                 = from_obj_array->length();
4529 
4530   assert(from_obj->is_forwarded(), "must be forwarded");
4531   oop to_obj                 = from_obj->forwardee();
4532   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4533   objArrayOop to_obj_array   = objArrayOop(to_obj);
4534   // We keep track of the next start index in the length field of the
4535   // to-space object.
4536   int next_index             = to_obj_array->length();
4537   assert(0 <= next_index && next_index < length,
4538          err_msg("invariant, next index: %d, length: %d", next_index, length));
4539 
4540   int start                  = next_index;
4541   int end                    = length;
4542   int remainder              = end - start;
4543   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4544   if (remainder > 2 * ParGCArrayScanChunk) {
4545     end = start + ParGCArrayScanChunk;
4546     to_obj_array->set_length(end);
4547     // Push the remainder before we process the range in case another
4548     // worker has run out of things to do and can steal it.
4549     oop* from_obj_p = set_partial_array_mask(from_obj);
4550     _par_scan_state->push_on_queue(from_obj_p);
4551   } else {
4552     assert(length == end, "sanity");
4553     // We'll process the final range for this object. Restore the length
4554     // so that the heap remains parsable in case of evacuation failure.
4555     to_obj_array->set_length(end);
4556   }
4557   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4558   // Process indexes [start,end). It will also process the header
4559   // along with the first chunk (i.e., the chunk with start == 0).
4560   // Note that at this point the length field of to_obj_array is not
4561   // correct given that we are using it to keep track of the next
4562   // start index. oop_iterate_range() (thankfully!) ignores the length
4563   // field and only relies on the start / end parameters.  It does
4564   // however return the size of the object which will be incorrect. So
4565   // we have to ignore it even if we wanted to use it.
4566   to_obj_array->oop_iterate_range(&_scanner, start, end);
4567 }
4568 
4569 class G1ParEvacuateFollowersClosure : public VoidClosure {
4570 protected:
4571   G1CollectedHeap*              _g1h;
4572   G1ParScanThreadState*         _par_scan_state;
4573   RefToScanQueueSet*            _queues;
4574   ParallelTaskTerminator*       _terminator;
4575 
4576   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4577   RefToScanQueueSet*      queues()         { return _queues; }
4578   ParallelTaskTerminator* terminator()     { return _terminator; }
4579 
4580 public:
4581   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4582                                 G1ParScanThreadState* par_scan_state,
4583                                 RefToScanQueueSet* queues,
4584                                 ParallelTaskTerminator* terminator)
4585     : _g1h(g1h), _par_scan_state(par_scan_state),
4586       _queues(queues), _terminator(terminator) {}
4587 
4588   void do_void();
4589 
4590 private:
4591   inline bool offer_termination();
4592 };
4593 
4594 bool G1ParEvacuateFollowersClosure::offer_termination() {
4595   G1ParScanThreadState* const pss = par_scan_state();
4596   pss->start_term_time();
4597   const bool res = terminator()->offer_termination();
4598   pss->end_term_time();
4599   return res;
4600 }
4601 
4602 void G1ParEvacuateFollowersClosure::do_void() {
4603   StarTask stolen_task;
4604   G1ParScanThreadState* const pss = par_scan_state();
4605   pss->trim_queue();
4606 
4607   do {
4608     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4609       assert(pss->verify_task(stolen_task), "sanity");
4610       if (stolen_task.is_narrow()) {
4611         pss->deal_with_reference((narrowOop*) stolen_task);
4612       } else {
4613         pss->deal_with_reference((oop*) stolen_task);
4614       }
4615 
4616       // We've just processed a reference and we might have made
4617       // available new entries on the queues. So we have to make sure
4618       // we drain the queues as necessary.
4619       pss->trim_queue();
4620     }
4621   } while (!offer_termination());
4622 
4623   pss->retire_alloc_buffers();
4624 }
4625 
4626 class G1ParTask : public AbstractGangTask {
4627 protected:
4628   G1CollectedHeap*       _g1h;
4629   RefToScanQueueSet      *_queues;
4630   ParallelTaskTerminator _terminator;
4631   uint _n_workers;
4632 
4633   Mutex _stats_lock;
4634   Mutex* stats_lock() { return &_stats_lock; }
4635 
4636   size_t getNCards() {
4637     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4638       / G1BlockOffsetSharedArray::N_bytes;
4639   }
4640 
4641 public:
4642   G1ParTask(G1CollectedHeap* g1h,
4643             RefToScanQueueSet *task_queues)
4644     : AbstractGangTask("G1 collection"),
4645       _g1h(g1h),
4646       _queues(task_queues),
4647       _terminator(0, _queues),
4648       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4649   {}
4650 
4651   RefToScanQueueSet* queues() { return _queues; }
4652 
4653   RefToScanQueue *work_queue(int i) {
4654     return queues()->queue(i);
4655   }
4656 
4657   ParallelTaskTerminator* terminator() { return &_terminator; }
4658 
4659   virtual void set_for_termination(int active_workers) {
4660     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4661     // in the young space (_par_seq_tasks) in the G1 heap
4662     // for SequentialSubTasksDone.
4663     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4664     // both of which need setting by set_n_termination().
4665     _g1h->SharedHeap::set_n_termination(active_workers);
4666     _g1h->set_n_termination(active_workers);
4667     terminator()->reset_for_reuse(active_workers);
4668     _n_workers = active_workers;
4669   }
4670 
4671   void work(uint worker_id) {
4672     if (worker_id >= _n_workers) return;  // no work needed this round
4673 
4674     double start_time_ms = os::elapsedTime() * 1000.0;
4675     _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
4676 
4677     {
4678       ResourceMark rm;
4679       HandleMark   hm;
4680 
4681       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4682 
4683       G1ParScanThreadState            pss(_g1h, worker_id);
4684       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4685       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4686       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4687 
4688       pss.set_evac_closure(&scan_evac_cl);
4689       pss.set_evac_failure_closure(&evac_failure_cl);
4690       pss.set_partial_scan_closure(&partial_scan_cl);
4691 
4692       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4693       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4694 
4695       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4696       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4697 
4698       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4699       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4700 
4701       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4702         // We also need to mark copied objects.
4703         scan_root_cl = &scan_mark_root_cl;
4704         scan_perm_cl = &scan_mark_perm_cl;
4705       }
4706 
4707       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4708 
4709       pss.start_strong_roots();
4710       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4711                                     SharedHeap::SO_AllClasses,
4712                                     scan_root_cl,
4713                                     &push_heap_rs_cl,
4714                                     scan_perm_cl,
4715                                     worker_id);
4716       pss.end_strong_roots();
4717 
4718       {
4719         double start = os::elapsedTime();
4720         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4721         evac.do_void();
4722         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4723         double term_ms = pss.term_time()*1000.0;
4724         _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
4725         _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
4726       }
4727       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4728       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4729 
4730       // Clean up any par-expanded rem sets.
4731       HeapRegionRemSet::par_cleanup();
4732 
4733       if (ParallelGCVerbose) {
4734         MutexLocker x(stats_lock());
4735         pss.print_termination_stats(worker_id);
4736       }
4737 
4738       assert(pss.refs()->is_empty(), "should be empty");
4739 
4740       // Close the inner scope so that the ResourceMark and HandleMark
4741       // destructors are executed here and are included as part of the
4742       // "GC Worker Time".
4743     }
4744 
4745     double end_time_ms = os::elapsedTime() * 1000.0;
4746     _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
4747   }
4748 };
4749 
4750 // *** Common G1 Evacuation Stuff
4751 
4752 // Closures that support the filtering of CodeBlobs scanned during
4753 // external root scanning.
4754 
4755 // Closure applied to reference fields in code blobs (specifically nmethods)
4756 // to determine whether an nmethod contains references that point into
4757 // the collection set. Used as a predicate when walking code roots so
4758 // that only nmethods that point into the collection set are added to the
4759 // 'marked' list.
4760 
4761 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
4762 
4763   class G1PointsIntoCSOopClosure : public OopClosure {
4764     G1CollectedHeap* _g1;
4765     bool _points_into_cs;
4766   public:
4767     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
4768       _g1(g1), _points_into_cs(false) { }
4769 
4770     bool points_into_cs() const { return _points_into_cs; }
4771 
4772     template <class T>
4773     void do_oop_nv(T* p) {
4774       if (!_points_into_cs) {
4775         T heap_oop = oopDesc::load_heap_oop(p);
4776         if (!oopDesc::is_null(heap_oop) &&
4777             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
4778           _points_into_cs = true;
4779         }
4780       }
4781     }
4782 
4783     virtual void do_oop(oop* p)        { do_oop_nv(p); }
4784     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
4785   };
4786 
4787   G1CollectedHeap* _g1;
4788 
4789 public:
4790   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
4791     CodeBlobToOopClosure(cl, true), _g1(g1) { }
4792 
4793   virtual void do_code_blob(CodeBlob* cb) {
4794     nmethod* nm = cb->as_nmethod_or_null();
4795     if (nm != NULL && !(nm->test_oops_do_mark())) {
4796       G1PointsIntoCSOopClosure predicate_cl(_g1);
4797       nm->oops_do(&predicate_cl);
4798 
4799       if (predicate_cl.points_into_cs()) {
4800         // At least one of the reference fields or the oop relocations
4801         // in the nmethod points into the collection set. We have to
4802         // 'mark' this nmethod.
4803         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
4804         // or MarkingCodeBlobClosure::do_code_blob() change.
4805         if (!nm->test_set_oops_do_mark()) {
4806           do_newly_marked_nmethod(nm);
4807         }
4808       }
4809     }
4810   }
4811 };
4812 
4813 // This method is run in a GC worker.
4814 
4815 void
4816 G1CollectedHeap::
4817 g1_process_strong_roots(bool collecting_perm_gen,
4818                         ScanningOption so,
4819                         OopClosure* scan_non_heap_roots,
4820                         OopsInHeapRegionClosure* scan_rs,
4821                         OopsInGenClosure* scan_perm,
4822                         int worker_i) {
4823 
4824   // First scan the strong roots, including the perm gen.
4825   double ext_roots_start = os::elapsedTime();
4826   double closure_app_time_sec = 0.0;
4827 
4828   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4829   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4830   buf_scan_perm.set_generation(perm_gen());
4831 
4832   // Walk the code cache w/o buffering, because StarTask cannot handle
4833   // unaligned oop locations.
4834   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
4835 
4836   process_strong_roots(false, // no scoping; this is parallel code
4837                        collecting_perm_gen, so,
4838                        &buf_scan_non_heap_roots,
4839                        &eager_scan_code_roots,
4840                        &buf_scan_perm);
4841 
4842   // Now the CM ref_processor roots.
4843   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4844     // We need to treat the discovered reference lists of the
4845     // concurrent mark ref processor as roots and keep entries
4846     // (which are added by the marking threads) on them live
4847     // until they can be processed at the end of marking.
4848     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4849   }
4850 
4851   // Finish up any enqueued closure apps (attributed as object copy time).
4852   buf_scan_non_heap_roots.done();
4853   buf_scan_perm.done();
4854 
4855   double ext_roots_end = os::elapsedTime();
4856 
4857   g1_policy()->reset_obj_copy_time(worker_i);
4858   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4859                                 buf_scan_non_heap_roots.closure_app_seconds();
4860   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4861 
4862   double ext_root_time_ms =
4863     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4864 
4865   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4866 
4867   // During conc marking we have to filter the per-thread SATB buffers
4868   // to make sure we remove any oops into the CSet (which will show up
4869   // as implicitly live).
4870   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4871     if (mark_in_progress()) {
4872       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4873     }
4874   }
4875   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4876   g1_policy()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4877 
4878   // Now scan the complement of the collection set.
4879   if (scan_rs != NULL) {
4880     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4881   }
4882 
4883   _process_strong_tasks->all_tasks_completed();
4884 }
4885 
4886 void
4887 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4888                                        OopClosure* non_root_closure) {
4889   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4890   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4891 }
4892 
4893 // Weak Reference Processing support
4894 
4895 // An always "is_alive" closure that is used to preserve referents.
4896 // If the object is non-null then it's alive.  Used in the preservation
4897 // of referent objects that are pointed to by reference objects
4898 // discovered by the CM ref processor.
4899 class G1AlwaysAliveClosure: public BoolObjectClosure {
4900   G1CollectedHeap* _g1;
4901 public:
4902   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4903   void do_object(oop p) { assert(false, "Do not call."); }
4904   bool do_object_b(oop p) {
4905     if (p != NULL) {
4906       return true;
4907     }
4908     return false;
4909   }
4910 };
4911 
4912 bool G1STWIsAliveClosure::do_object_b(oop p) {
4913   // An object is reachable if it is outside the collection set,
4914   // or is inside and copied.
4915   return !_g1->obj_in_cs(p) || p->is_forwarded();
4916 }
4917 
4918 // Non Copying Keep Alive closure
4919 class G1KeepAliveClosure: public OopClosure {
4920   G1CollectedHeap* _g1;
4921 public:
4922   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4923   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4924   void do_oop(      oop* p) {
4925     oop obj = *p;
4926 
4927     if (_g1->obj_in_cs(obj)) {
4928       assert( obj->is_forwarded(), "invariant" );
4929       *p = obj->forwardee();
4930     }
4931   }
4932 };
4933 
4934 // Copying Keep Alive closure - can be called from both
4935 // serial and parallel code as long as different worker
4936 // threads utilize different G1ParScanThreadState instances
4937 // and different queues.
4938 
4939 class G1CopyingKeepAliveClosure: public OopClosure {
4940   G1CollectedHeap*         _g1h;
4941   OopClosure*              _copy_non_heap_obj_cl;
4942   OopsInHeapRegionClosure* _copy_perm_obj_cl;
4943   G1ParScanThreadState*    _par_scan_state;
4944 
4945 public:
4946   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4947                             OopClosure* non_heap_obj_cl,
4948                             OopsInHeapRegionClosure* perm_obj_cl,
4949                             G1ParScanThreadState* pss):
4950     _g1h(g1h),
4951     _copy_non_heap_obj_cl(non_heap_obj_cl),
4952     _copy_perm_obj_cl(perm_obj_cl),
4953     _par_scan_state(pss)
4954   {}
4955 
4956   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4957   virtual void do_oop(      oop* p) { do_oop_work(p); }
4958 
4959   template <class T> void do_oop_work(T* p) {
4960     oop obj = oopDesc::load_decode_heap_oop(p);
4961 
4962     if (_g1h->obj_in_cs(obj)) {
4963       // If the referent object has been forwarded (either copied
4964       // to a new location or to itself in the event of an
4965       // evacuation failure) then we need to update the reference
4966       // field and, if both reference and referent are in the G1
4967       // heap, update the RSet for the referent.
4968       //
4969       // If the referent has not been forwarded then we have to keep
4970       // it alive by policy. Therefore we have copy the referent.
4971       //
4972       // If the reference field is in the G1 heap then we can push
4973       // on the PSS queue. When the queue is drained (after each
4974       // phase of reference processing) the object and it's followers
4975       // will be copied, the reference field set to point to the
4976       // new location, and the RSet updated. Otherwise we need to
4977       // use the the non-heap or perm closures directly to copy
4978       // the refernt object and update the pointer, while avoiding
4979       // updating the RSet.
4980 
4981       if (_g1h->is_in_g1_reserved(p)) {
4982         _par_scan_state->push_on_queue(p);
4983       } else {
4984         // The reference field is not in the G1 heap.
4985         if (_g1h->perm_gen()->is_in(p)) {
4986           _copy_perm_obj_cl->do_oop(p);
4987         } else {
4988           _copy_non_heap_obj_cl->do_oop(p);
4989         }
4990       }
4991     }
4992   }
4993 };
4994 
4995 // Serial drain queue closure. Called as the 'complete_gc'
4996 // closure for each discovered list in some of the
4997 // reference processing phases.
4998 
4999 class G1STWDrainQueueClosure: public VoidClosure {
5000 protected:
5001   G1CollectedHeap* _g1h;
5002   G1ParScanThreadState* _par_scan_state;
5003 
5004   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5005 
5006 public:
5007   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5008     _g1h(g1h),
5009     _par_scan_state(pss)
5010   { }
5011 
5012   void do_void() {
5013     G1ParScanThreadState* const pss = par_scan_state();
5014     pss->trim_queue();
5015   }
5016 };
5017 
5018 // Parallel Reference Processing closures
5019 
5020 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5021 // processing during G1 evacuation pauses.
5022 
5023 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5024 private:
5025   G1CollectedHeap*   _g1h;
5026   RefToScanQueueSet* _queues;
5027   FlexibleWorkGang*  _workers;
5028   int                _active_workers;
5029 
5030 public:
5031   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5032                         FlexibleWorkGang* workers,
5033                         RefToScanQueueSet *task_queues,
5034                         int n_workers) :
5035     _g1h(g1h),
5036     _queues(task_queues),
5037     _workers(workers),
5038     _active_workers(n_workers)
5039   {
5040     assert(n_workers > 0, "shouldn't call this otherwise");
5041   }
5042 
5043   // Executes the given task using concurrent marking worker threads.
5044   virtual void execute(ProcessTask& task);
5045   virtual void execute(EnqueueTask& task);
5046 };
5047 
5048 // Gang task for possibly parallel reference processing
5049 
5050 class G1STWRefProcTaskProxy: public AbstractGangTask {
5051   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5052   ProcessTask&     _proc_task;
5053   G1CollectedHeap* _g1h;
5054   RefToScanQueueSet *_task_queues;
5055   ParallelTaskTerminator* _terminator;
5056 
5057 public:
5058   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5059                      G1CollectedHeap* g1h,
5060                      RefToScanQueueSet *task_queues,
5061                      ParallelTaskTerminator* terminator) :
5062     AbstractGangTask("Process reference objects in parallel"),
5063     _proc_task(proc_task),
5064     _g1h(g1h),
5065     _task_queues(task_queues),
5066     _terminator(terminator)
5067   {}
5068 
5069   virtual void work(uint worker_id) {
5070     // The reference processing task executed by a single worker.
5071     ResourceMark rm;
5072     HandleMark   hm;
5073 
5074     G1STWIsAliveClosure is_alive(_g1h);
5075 
5076     G1ParScanThreadState pss(_g1h, worker_id);
5077 
5078     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5079     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5080     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5081 
5082     pss.set_evac_closure(&scan_evac_cl);
5083     pss.set_evac_failure_closure(&evac_failure_cl);
5084     pss.set_partial_scan_closure(&partial_scan_cl);
5085 
5086     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5087     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5088 
5089     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5090     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5091 
5092     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5093     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5094 
5095     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5096       // We also need to mark copied objects.
5097       copy_non_heap_cl = &copy_mark_non_heap_cl;
5098       copy_perm_cl = &copy_mark_perm_cl;
5099     }
5100 
5101     // Keep alive closure.
5102     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5103 
5104     // Complete GC closure
5105     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5106 
5107     // Call the reference processing task's work routine.
5108     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5109 
5110     // Note we cannot assert that the refs array is empty here as not all
5111     // of the processing tasks (specifically phase2 - pp2_work) execute
5112     // the complete_gc closure (which ordinarily would drain the queue) so
5113     // the queue may not be empty.
5114   }
5115 };
5116 
5117 // Driver routine for parallel reference processing.
5118 // Creates an instance of the ref processing gang
5119 // task and has the worker threads execute it.
5120 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5121   assert(_workers != NULL, "Need parallel worker threads.");
5122 
5123   ParallelTaskTerminator terminator(_active_workers, _queues);
5124   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5125 
5126   _g1h->set_par_threads(_active_workers);
5127   _workers->run_task(&proc_task_proxy);
5128   _g1h->set_par_threads(0);
5129 }
5130 
5131 // Gang task for parallel reference enqueueing.
5132 
5133 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5134   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5135   EnqueueTask& _enq_task;
5136 
5137 public:
5138   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5139     AbstractGangTask("Enqueue reference objects in parallel"),
5140     _enq_task(enq_task)
5141   { }
5142 
5143   virtual void work(uint worker_id) {
5144     _enq_task.work(worker_id);
5145   }
5146 };
5147 
5148 // Driver routine for parallel reference enqueing.
5149 // Creates an instance of the ref enqueueing gang
5150 // task and has the worker threads execute it.
5151 
5152 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5153   assert(_workers != NULL, "Need parallel worker threads.");
5154 
5155   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5156 
5157   _g1h->set_par_threads(_active_workers);
5158   _workers->run_task(&enq_task_proxy);
5159   _g1h->set_par_threads(0);
5160 }
5161 
5162 // End of weak reference support closures
5163 
5164 // Abstract task used to preserve (i.e. copy) any referent objects
5165 // that are in the collection set and are pointed to by reference
5166 // objects discovered by the CM ref processor.
5167 
5168 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5169 protected:
5170   G1CollectedHeap* _g1h;
5171   RefToScanQueueSet      *_queues;
5172   ParallelTaskTerminator _terminator;
5173   uint _n_workers;
5174 
5175 public:
5176   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5177     AbstractGangTask("ParPreserveCMReferents"),
5178     _g1h(g1h),
5179     _queues(task_queues),
5180     _terminator(workers, _queues),
5181     _n_workers(workers)
5182   { }
5183 
5184   void work(uint worker_id) {
5185     ResourceMark rm;
5186     HandleMark   hm;
5187 
5188     G1ParScanThreadState            pss(_g1h, worker_id);
5189     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5190     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5191     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5192 
5193     pss.set_evac_closure(&scan_evac_cl);
5194     pss.set_evac_failure_closure(&evac_failure_cl);
5195     pss.set_partial_scan_closure(&partial_scan_cl);
5196 
5197     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5198 
5199 
5200     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5201     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5202 
5203     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5204     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5205 
5206     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5207     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5208 
5209     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5210       // We also need to mark copied objects.
5211       copy_non_heap_cl = &copy_mark_non_heap_cl;
5212       copy_perm_cl = &copy_mark_perm_cl;
5213     }
5214 
5215     // Is alive closure
5216     G1AlwaysAliveClosure always_alive(_g1h);
5217 
5218     // Copying keep alive closure. Applied to referent objects that need
5219     // to be copied.
5220     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5221 
5222     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5223 
5224     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5225     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5226 
5227     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5228     // So this must be true - but assert just in case someone decides to
5229     // change the worker ids.
5230     assert(0 <= worker_id && worker_id < limit, "sanity");
5231     assert(!rp->discovery_is_atomic(), "check this code");
5232 
5233     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5234     for (uint idx = worker_id; idx < limit; idx += stride) {
5235       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5236 
5237       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5238       while (iter.has_next()) {
5239         // Since discovery is not atomic for the CM ref processor, we
5240         // can see some null referent objects.
5241         iter.load_ptrs(DEBUG_ONLY(true));
5242         oop ref = iter.obj();
5243 
5244         // This will filter nulls.
5245         if (iter.is_referent_alive()) {
5246           iter.make_referent_alive();
5247         }
5248         iter.move_to_next();
5249       }
5250     }
5251 
5252     // Drain the queue - which may cause stealing
5253     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5254     drain_queue.do_void();
5255     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5256     assert(pss.refs()->is_empty(), "should be");
5257   }
5258 };
5259 
5260 // Weak Reference processing during an evacuation pause (part 1).
5261 void G1CollectedHeap::process_discovered_references() {
5262   double ref_proc_start = os::elapsedTime();
5263 
5264   ReferenceProcessor* rp = _ref_processor_stw;
5265   assert(rp->discovery_enabled(), "should have been enabled");
5266 
5267   // Any reference objects, in the collection set, that were 'discovered'
5268   // by the CM ref processor should have already been copied (either by
5269   // applying the external root copy closure to the discovered lists, or
5270   // by following an RSet entry).
5271   //
5272   // But some of the referents, that are in the collection set, that these
5273   // reference objects point to may not have been copied: the STW ref
5274   // processor would have seen that the reference object had already
5275   // been 'discovered' and would have skipped discovering the reference,
5276   // but would not have treated the reference object as a regular oop.
5277   // As a reult the copy closure would not have been applied to the
5278   // referent object.
5279   //
5280   // We need to explicitly copy these referent objects - the references
5281   // will be processed at the end of remarking.
5282   //
5283   // We also need to do this copying before we process the reference
5284   // objects discovered by the STW ref processor in case one of these
5285   // referents points to another object which is also referenced by an
5286   // object discovered by the STW ref processor.
5287 
5288   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5289                         workers()->active_workers() : 1);
5290 
5291   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5292            active_workers == workers()->active_workers(),
5293            "Need to reset active_workers");
5294 
5295   set_par_threads(active_workers);
5296   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
5297 
5298   if (G1CollectedHeap::use_parallel_gc_threads()) {
5299     workers()->run_task(&keep_cm_referents);
5300   } else {
5301     keep_cm_referents.work(0);
5302   }
5303 
5304   set_par_threads(0);
5305 
5306   // Closure to test whether a referent is alive.
5307   G1STWIsAliveClosure is_alive(this);
5308 
5309   // Even when parallel reference processing is enabled, the processing
5310   // of JNI refs is serial and performed serially by the current thread
5311   // rather than by a worker. The following PSS will be used for processing
5312   // JNI refs.
5313 
5314   // Use only a single queue for this PSS.
5315   G1ParScanThreadState pss(this, 0);
5316 
5317   // We do not embed a reference processor in the copying/scanning
5318   // closures while we're actually processing the discovered
5319   // reference objects.
5320   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5321   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5322   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5323 
5324   pss.set_evac_closure(&scan_evac_cl);
5325   pss.set_evac_failure_closure(&evac_failure_cl);
5326   pss.set_partial_scan_closure(&partial_scan_cl);
5327 
5328   assert(pss.refs()->is_empty(), "pre-condition");
5329 
5330   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5331   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5332 
5333   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5334   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5335 
5336   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5337   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5338 
5339   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5340     // We also need to mark copied objects.
5341     copy_non_heap_cl = &copy_mark_non_heap_cl;
5342     copy_perm_cl = &copy_mark_perm_cl;
5343   }
5344 
5345   // Keep alive closure.
5346   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5347 
5348   // Serial Complete GC closure
5349   G1STWDrainQueueClosure drain_queue(this, &pss);
5350 
5351   // Setup the soft refs policy...
5352   rp->setup_policy(false);
5353 
5354   if (!rp->processing_is_mt()) {
5355     // Serial reference processing...
5356     rp->process_discovered_references(&is_alive,
5357                                       &keep_alive,
5358                                       &drain_queue,
5359                                       NULL);
5360   } else {
5361     // Parallel reference processing
5362     assert(rp->num_q() == active_workers, "sanity");
5363     assert(active_workers <= rp->max_num_q(), "sanity");
5364 
5365     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5366     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5367   }
5368 
5369   // We have completed copying any necessary live referent objects
5370   // (that were not copied during the actual pause) so we can
5371   // retire any active alloc buffers
5372   pss.retire_alloc_buffers();
5373   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5374 
5375   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5376   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
5377 }
5378 
5379 // Weak Reference processing during an evacuation pause (part 2).
5380 void G1CollectedHeap::enqueue_discovered_references() {
5381   double ref_enq_start = os::elapsedTime();
5382 
5383   ReferenceProcessor* rp = _ref_processor_stw;
5384   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5385 
5386   // Now enqueue any remaining on the discovered lists on to
5387   // the pending list.
5388   if (!rp->processing_is_mt()) {
5389     // Serial reference processing...
5390     rp->enqueue_discovered_references();
5391   } else {
5392     // Parallel reference enqueuing
5393 
5394     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
5395     assert(active_workers == workers()->active_workers(),
5396            "Need to reset active_workers");
5397     assert(rp->num_q() == active_workers, "sanity");
5398     assert(active_workers <= rp->max_num_q(), "sanity");
5399 
5400     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5401     rp->enqueue_discovered_references(&par_task_executor);
5402   }
5403 
5404   rp->verify_no_references_recorded();
5405   assert(!rp->discovery_enabled(), "should have been disabled");
5406 
5407   // FIXME
5408   // CM's reference processing also cleans up the string and symbol tables.
5409   // Should we do that here also? We could, but it is a serial operation
5410   // and could signicantly increase the pause time.
5411 
5412   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5413   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
5414 }
5415 
5416 void G1CollectedHeap::evacuate_collection_set() {
5417   _expand_heap_after_alloc_failure = true;
5418   set_evacuation_failed(false);
5419 
5420   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5421   concurrent_g1_refine()->set_use_cache(false);
5422   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5423 
5424   uint n_workers;
5425   if (G1CollectedHeap::use_parallel_gc_threads()) {
5426     n_workers =
5427       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5428                                      workers()->active_workers(),
5429                                      Threads::number_of_non_daemon_threads());
5430     assert(UseDynamicNumberOfGCThreads ||
5431            n_workers == workers()->total_workers(),
5432            "If not dynamic should be using all the  workers");
5433     workers()->set_active_workers(n_workers);
5434     set_par_threads(n_workers);
5435   } else {
5436     assert(n_par_threads() == 0,
5437            "Should be the original non-parallel value");
5438     n_workers = 1;
5439   }
5440 
5441   G1ParTask g1_par_task(this, _task_queues);
5442 
5443   init_for_evac_failure(NULL);
5444 
5445   rem_set()->prepare_for_younger_refs_iterate(true);
5446 
5447   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5448   double start_par_time_sec = os::elapsedTime();
5449   double end_par_time_sec;
5450 
5451   {
5452     StrongRootsScope srs(this);
5453 
5454     if (G1CollectedHeap::use_parallel_gc_threads()) {
5455       // The individual threads will set their evac-failure closures.
5456       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5457       // These tasks use ShareHeap::_process_strong_tasks
5458       assert(UseDynamicNumberOfGCThreads ||
5459              workers()->active_workers() == workers()->total_workers(),
5460              "If not dynamic should be using all the  workers");
5461       workers()->run_task(&g1_par_task);
5462     } else {
5463       g1_par_task.set_for_termination(n_workers);
5464       g1_par_task.work(0);
5465     }
5466     end_par_time_sec = os::elapsedTime();
5467 
5468     // Closing the inner scope will execute the destructor
5469     // for the StrongRootsScope object. We record the current
5470     // elapsed time before closing the scope so that time
5471     // taken for the SRS destructor is NOT included in the
5472     // reported parallel time.
5473   }
5474 
5475   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5476   g1_policy()->record_par_time(par_time_ms);
5477 
5478   double code_root_fixup_time_ms =
5479         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5480   g1_policy()->record_code_root_fixup_time(code_root_fixup_time_ms);
5481 
5482   set_par_threads(0);
5483 
5484   // Process any discovered reference objects - we have
5485   // to do this _before_ we retire the GC alloc regions
5486   // as we may have to copy some 'reachable' referent
5487   // objects (and their reachable sub-graphs) that were
5488   // not copied during the pause.
5489   process_discovered_references();
5490 
5491   // Weak root processing.
5492   // Note: when JSR 292 is enabled and code blobs can contain
5493   // non-perm oops then we will need to process the code blobs
5494   // here too.
5495   {
5496     G1STWIsAliveClosure is_alive(this);
5497     G1KeepAliveClosure keep_alive(this);
5498     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5499   }
5500 
5501   release_gc_alloc_regions();
5502   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5503 
5504   concurrent_g1_refine()->clear_hot_cache();
5505   concurrent_g1_refine()->set_use_cache(true);
5506 
5507   finalize_for_evac_failure();
5508 
5509   if (evacuation_failed()) {
5510     remove_self_forwarding_pointers();
5511     if (G1Log::finer()) {
5512       gclog_or_tty->print(" (to-space exhausted)");
5513     } else if (G1Log::fine()) {
5514       gclog_or_tty->print("--");
5515     }
5516   }
5517 
5518   // Enqueue any remaining references remaining on the STW
5519   // reference processor's discovered lists. We need to do
5520   // this after the card table is cleaned (and verified) as
5521   // the act of enqueuing entries on to the pending list
5522   // will log these updates (and dirty their associated
5523   // cards). We need these updates logged to update any
5524   // RSets.
5525   enqueue_discovered_references();
5526 
5527   if (G1DeferredRSUpdate) {
5528     RedirtyLoggedCardTableEntryFastClosure redirty;
5529     dirty_card_queue_set().set_closure(&redirty);
5530     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5531 
5532     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5533     dcq.merge_bufferlists(&dirty_card_queue_set());
5534     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5535   }
5536   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5537 }
5538 
5539 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5540                                      size_t* pre_used,
5541                                      FreeRegionList* free_list,
5542                                      OldRegionSet* old_proxy_set,
5543                                      HumongousRegionSet* humongous_proxy_set,
5544                                      HRRSCleanupTask* hrrs_cleanup_task,
5545                                      bool par) {
5546   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5547     if (hr->isHumongous()) {
5548       assert(hr->startsHumongous(), "we should only see starts humongous");
5549       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5550     } else {
5551       _old_set.remove_with_proxy(hr, old_proxy_set);
5552       free_region(hr, pre_used, free_list, par);
5553     }
5554   } else {
5555     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5556   }
5557 }
5558 
5559 void G1CollectedHeap::free_region(HeapRegion* hr,
5560                                   size_t* pre_used,
5561                                   FreeRegionList* free_list,
5562                                   bool par) {
5563   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5564   assert(!hr->is_empty(), "the region should not be empty");
5565   assert(free_list != NULL, "pre-condition");
5566 
5567   *pre_used += hr->used();
5568   hr->hr_clear(par, true /* clear_space */);
5569   free_list->add_as_head(hr);
5570 }
5571 
5572 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5573                                      size_t* pre_used,
5574                                      FreeRegionList* free_list,
5575                                      HumongousRegionSet* humongous_proxy_set,
5576                                      bool par) {
5577   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5578   assert(free_list != NULL, "pre-condition");
5579   assert(humongous_proxy_set != NULL, "pre-condition");
5580 
5581   size_t hr_used = hr->used();
5582   size_t hr_capacity = hr->capacity();
5583   size_t hr_pre_used = 0;
5584   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5585   hr->set_notHumongous();
5586   free_region(hr, &hr_pre_used, free_list, par);
5587 
5588   uint i = hr->hrs_index() + 1;
5589   uint num = 1;
5590   while (i < n_regions()) {
5591     HeapRegion* curr_hr = region_at(i);
5592     if (!curr_hr->continuesHumongous()) {
5593       break;
5594     }
5595     curr_hr->set_notHumongous();
5596     free_region(curr_hr, &hr_pre_used, free_list, par);
5597     num += 1;
5598     i += 1;
5599   }
5600   assert(hr_pre_used == hr_used,
5601          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5602                  "should be the same", hr_pre_used, hr_used));
5603   *pre_used += hr_pre_used;
5604 }
5605 
5606 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5607                                        FreeRegionList* free_list,
5608                                        OldRegionSet* old_proxy_set,
5609                                        HumongousRegionSet* humongous_proxy_set,
5610                                        bool par) {
5611   if (pre_used > 0) {
5612     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5613     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5614     assert(_summary_bytes_used >= pre_used,
5615            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5616                    "should be >= pre_used: "SIZE_FORMAT,
5617                    _summary_bytes_used, pre_used));
5618     _summary_bytes_used -= pre_used;
5619   }
5620   if (free_list != NULL && !free_list->is_empty()) {
5621     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5622     _free_list.add_as_head(free_list);
5623   }
5624   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5625     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5626     _old_set.update_from_proxy(old_proxy_set);
5627   }
5628   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5629     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5630     _humongous_set.update_from_proxy(humongous_proxy_set);
5631   }
5632 }
5633 
5634 class G1ParCleanupCTTask : public AbstractGangTask {
5635   CardTableModRefBS* _ct_bs;
5636   G1CollectedHeap* _g1h;
5637   HeapRegion* volatile _su_head;
5638 public:
5639   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5640                      G1CollectedHeap* g1h) :
5641     AbstractGangTask("G1 Par Cleanup CT Task"),
5642     _ct_bs(ct_bs), _g1h(g1h) { }
5643 
5644   void work(uint worker_id) {
5645     HeapRegion* r;
5646     while (r = _g1h->pop_dirty_cards_region()) {
5647       clear_cards(r);
5648     }
5649   }
5650 
5651   void clear_cards(HeapRegion* r) {
5652     // Cards of the survivors should have already been dirtied.
5653     if (!r->is_survivor()) {
5654       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5655     }
5656   }
5657 };
5658 
5659 #ifndef PRODUCT
5660 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5661   G1CollectedHeap* _g1h;
5662   CardTableModRefBS* _ct_bs;
5663 public:
5664   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5665     : _g1h(g1h), _ct_bs(ct_bs) { }
5666   virtual bool doHeapRegion(HeapRegion* r) {
5667     if (r->is_survivor()) {
5668       _g1h->verify_dirty_region(r);
5669     } else {
5670       _g1h->verify_not_dirty_region(r);
5671     }
5672     return false;
5673   }
5674 };
5675 
5676 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5677   // All of the region should be clean.
5678   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5679   MemRegion mr(hr->bottom(), hr->end());
5680   ct_bs->verify_not_dirty_region(mr);
5681 }
5682 
5683 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5684   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5685   // dirty allocated blocks as they allocate them. The thread that
5686   // retires each region and replaces it with a new one will do a
5687   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5688   // not dirty that area (one less thing to have to do while holding
5689   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5690   // is dirty.
5691   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5692   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5693   ct_bs->verify_dirty_region(mr);
5694 }
5695 
5696 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5697   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5698   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5699     verify_dirty_region(hr);
5700   }
5701 }
5702 
5703 void G1CollectedHeap::verify_dirty_young_regions() {
5704   verify_dirty_young_list(_young_list->first_region());
5705   verify_dirty_young_list(_young_list->first_survivor_region());
5706 }
5707 #endif
5708 
5709 void G1CollectedHeap::cleanUpCardTable() {
5710   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5711   double start = os::elapsedTime();
5712 
5713   {
5714     // Iterate over the dirty cards region list.
5715     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5716 
5717     if (G1CollectedHeap::use_parallel_gc_threads()) {
5718       set_par_threads();
5719       workers()->run_task(&cleanup_task);
5720       set_par_threads(0);
5721     } else {
5722       while (_dirty_cards_region_list) {
5723         HeapRegion* r = _dirty_cards_region_list;
5724         cleanup_task.clear_cards(r);
5725         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5726         if (_dirty_cards_region_list == r) {
5727           // The last region.
5728           _dirty_cards_region_list = NULL;
5729         }
5730         r->set_next_dirty_cards_region(NULL);
5731       }
5732     }
5733 #ifndef PRODUCT
5734     if (G1VerifyCTCleanup || VerifyAfterGC) {
5735       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5736       heap_region_iterate(&cleanup_verifier);
5737     }
5738 #endif
5739   }
5740 
5741   double elapsed = os::elapsedTime() - start;
5742   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
5743 }
5744 
5745 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5746   size_t pre_used = 0;
5747   FreeRegionList local_free_list("Local List for CSet Freeing");
5748 
5749   double young_time_ms     = 0.0;
5750   double non_young_time_ms = 0.0;
5751 
5752   // Since the collection set is a superset of the the young list,
5753   // all we need to do to clear the young list is clear its
5754   // head and length, and unlink any young regions in the code below
5755   _young_list->clear();
5756 
5757   G1CollectorPolicy* policy = g1_policy();
5758 
5759   double start_sec = os::elapsedTime();
5760   bool non_young = true;
5761 
5762   HeapRegion* cur = cs_head;
5763   int age_bound = -1;
5764   size_t rs_lengths = 0;
5765 
5766   while (cur != NULL) {
5767     assert(!is_on_master_free_list(cur), "sanity");
5768     if (non_young) {
5769       if (cur->is_young()) {
5770         double end_sec = os::elapsedTime();
5771         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5772         non_young_time_ms += elapsed_ms;
5773 
5774         start_sec = os::elapsedTime();
5775         non_young = false;
5776       }
5777     } else {
5778       if (!cur->is_young()) {
5779         double end_sec = os::elapsedTime();
5780         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5781         young_time_ms += elapsed_ms;
5782 
5783         start_sec = os::elapsedTime();
5784         non_young = true;
5785       }
5786     }
5787 
5788     rs_lengths += cur->rem_set()->occupied();
5789 
5790     HeapRegion* next = cur->next_in_collection_set();
5791     assert(cur->in_collection_set(), "bad CS");
5792     cur->set_next_in_collection_set(NULL);
5793     cur->set_in_collection_set(false);
5794 
5795     if (cur->is_young()) {
5796       int index = cur->young_index_in_cset();
5797       assert(index != -1, "invariant");
5798       assert((uint) index < policy->young_cset_region_length(), "invariant");
5799       size_t words_survived = _surviving_young_words[index];
5800       cur->record_surv_words_in_group(words_survived);
5801 
5802       // At this point the we have 'popped' cur from the collection set
5803       // (linked via next_in_collection_set()) but it is still in the
5804       // young list (linked via next_young_region()). Clear the
5805       // _next_young_region field.
5806       cur->set_next_young_region(NULL);
5807     } else {
5808       int index = cur->young_index_in_cset();
5809       assert(index == -1, "invariant");
5810     }
5811 
5812     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5813             (!cur->is_young() && cur->young_index_in_cset() == -1),
5814             "invariant" );
5815 
5816     if (!cur->evacuation_failed()) {
5817       MemRegion used_mr = cur->used_region();
5818 
5819       // And the region is empty.
5820       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5821       free_region(cur, &pre_used, &local_free_list, false /* par */);
5822     } else {
5823       cur->uninstall_surv_rate_group();
5824       if (cur->is_young()) {
5825         cur->set_young_index_in_cset(-1);
5826       }
5827       cur->set_not_young();
5828       cur->set_evacuation_failed(false);
5829       // The region is now considered to be old.
5830       _old_set.add(cur);
5831     }
5832     cur = next;
5833   }
5834 
5835   policy->record_max_rs_lengths(rs_lengths);
5836   policy->cset_regions_freed();
5837 
5838   double end_sec = os::elapsedTime();
5839   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5840 
5841   if (non_young) {
5842     non_young_time_ms += elapsed_ms;
5843   } else {
5844     young_time_ms += elapsed_ms;
5845   }
5846 
5847   update_sets_after_freeing_regions(pre_used, &local_free_list,
5848                                     NULL /* old_proxy_set */,
5849                                     NULL /* humongous_proxy_set */,
5850                                     false /* par */);
5851   policy->record_young_free_cset_time_ms(young_time_ms);
5852   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
5853 }
5854 
5855 // This routine is similar to the above but does not record
5856 // any policy statistics or update free lists; we are abandoning
5857 // the current incremental collection set in preparation of a
5858 // full collection. After the full GC we will start to build up
5859 // the incremental collection set again.
5860 // This is only called when we're doing a full collection
5861 // and is immediately followed by the tearing down of the young list.
5862 
5863 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5864   HeapRegion* cur = cs_head;
5865 
5866   while (cur != NULL) {
5867     HeapRegion* next = cur->next_in_collection_set();
5868     assert(cur->in_collection_set(), "bad CS");
5869     cur->set_next_in_collection_set(NULL);
5870     cur->set_in_collection_set(false);
5871     cur->set_young_index_in_cset(-1);
5872     cur = next;
5873   }
5874 }
5875 
5876 void G1CollectedHeap::set_free_regions_coming() {
5877   if (G1ConcRegionFreeingVerbose) {
5878     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5879                            "setting free regions coming");
5880   }
5881 
5882   assert(!free_regions_coming(), "pre-condition");
5883   _free_regions_coming = true;
5884 }
5885 
5886 void G1CollectedHeap::reset_free_regions_coming() {
5887   assert(free_regions_coming(), "pre-condition");
5888 
5889   {
5890     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5891     _free_regions_coming = false;
5892     SecondaryFreeList_lock->notify_all();
5893   }
5894 
5895   if (G1ConcRegionFreeingVerbose) {
5896     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5897                            "reset free regions coming");
5898   }
5899 }
5900 
5901 void G1CollectedHeap::wait_while_free_regions_coming() {
5902   // Most of the time we won't have to wait, so let's do a quick test
5903   // first before we take the lock.
5904   if (!free_regions_coming()) {
5905     return;
5906   }
5907 
5908   if (G1ConcRegionFreeingVerbose) {
5909     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5910                            "waiting for free regions");
5911   }
5912 
5913   {
5914     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5915     while (free_regions_coming()) {
5916       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5917     }
5918   }
5919 
5920   if (G1ConcRegionFreeingVerbose) {
5921     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5922                            "done waiting for free regions");
5923   }
5924 }
5925 
5926 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5927   assert(heap_lock_held_for_gc(),
5928               "the heap lock should already be held by or for this thread");
5929   _young_list->push_region(hr);
5930 }
5931 
5932 class NoYoungRegionsClosure: public HeapRegionClosure {
5933 private:
5934   bool _success;
5935 public:
5936   NoYoungRegionsClosure() : _success(true) { }
5937   bool doHeapRegion(HeapRegion* r) {
5938     if (r->is_young()) {
5939       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5940                              r->bottom(), r->end());
5941       _success = false;
5942     }
5943     return false;
5944   }
5945   bool success() { return _success; }
5946 };
5947 
5948 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5949   bool ret = _young_list->check_list_empty(check_sample);
5950 
5951   if (check_heap) {
5952     NoYoungRegionsClosure closure;
5953     heap_region_iterate(&closure);
5954     ret = ret && closure.success();
5955   }
5956 
5957   return ret;
5958 }
5959 
5960 class TearDownRegionSetsClosure : public HeapRegionClosure {
5961 private:
5962   OldRegionSet *_old_set;
5963 
5964 public:
5965   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
5966 
5967   bool doHeapRegion(HeapRegion* r) {
5968     if (r->is_empty()) {
5969       // We ignore empty regions, we'll empty the free list afterwards
5970     } else if (r->is_young()) {
5971       // We ignore young regions, we'll empty the young list afterwards
5972     } else if (r->isHumongous()) {
5973       // We ignore humongous regions, we're not tearing down the
5974       // humongous region set
5975     } else {
5976       // The rest should be old
5977       _old_set->remove(r);
5978     }
5979     return false;
5980   }
5981 
5982   ~TearDownRegionSetsClosure() {
5983     assert(_old_set->is_empty(), "post-condition");
5984   }
5985 };
5986 
5987 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5988   assert_at_safepoint(true /* should_be_vm_thread */);
5989 
5990   if (!free_list_only) {
5991     TearDownRegionSetsClosure cl(&_old_set);
5992     heap_region_iterate(&cl);
5993 
5994     // Need to do this after the heap iteration to be able to
5995     // recognize the young regions and ignore them during the iteration.
5996     _young_list->empty_list();
5997   }
5998   _free_list.remove_all();
5999 }
6000 
6001 class RebuildRegionSetsClosure : public HeapRegionClosure {
6002 private:
6003   bool            _free_list_only;
6004   OldRegionSet*   _old_set;
6005   FreeRegionList* _free_list;
6006   size_t          _total_used;
6007 
6008 public:
6009   RebuildRegionSetsClosure(bool free_list_only,
6010                            OldRegionSet* old_set, FreeRegionList* free_list) :
6011     _free_list_only(free_list_only),
6012     _old_set(old_set), _free_list(free_list), _total_used(0) {
6013     assert(_free_list->is_empty(), "pre-condition");
6014     if (!free_list_only) {
6015       assert(_old_set->is_empty(), "pre-condition");
6016     }
6017   }
6018 
6019   bool doHeapRegion(HeapRegion* r) {
6020     if (r->continuesHumongous()) {
6021       return false;
6022     }
6023 
6024     if (r->is_empty()) {
6025       // Add free regions to the free list
6026       _free_list->add_as_tail(r);
6027     } else if (!_free_list_only) {
6028       assert(!r->is_young(), "we should not come across young regions");
6029 
6030       if (r->isHumongous()) {
6031         // We ignore humongous regions, we left the humongous set unchanged
6032       } else {
6033         // The rest should be old, add them to the old set
6034         _old_set->add(r);
6035       }
6036       _total_used += r->used();
6037     }
6038 
6039     return false;
6040   }
6041 
6042   size_t total_used() {
6043     return _total_used;
6044   }
6045 };
6046 
6047 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6048   assert_at_safepoint(true /* should_be_vm_thread */);
6049 
6050   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6051   heap_region_iterate(&cl);
6052 
6053   if (!free_list_only) {
6054     _summary_bytes_used = cl.total_used();
6055   }
6056   assert(_summary_bytes_used == recalculate_used(),
6057          err_msg("inconsistent _summary_bytes_used, "
6058                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6059                  _summary_bytes_used, recalculate_used()));
6060 }
6061 
6062 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6063   _refine_cte_cl->set_concurrent(concurrent);
6064 }
6065 
6066 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6067   HeapRegion* hr = heap_region_containing(p);
6068   if (hr == NULL) {
6069     return is_in_permanent(p);
6070   } else {
6071     return hr->is_in(p);
6072   }
6073 }
6074 
6075 // Methods for the mutator alloc region
6076 
6077 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6078                                                       bool force) {
6079   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6080   assert(!force || g1_policy()->can_expand_young_list(),
6081          "if force is true we should be able to expand the young list");
6082   bool young_list_full = g1_policy()->is_young_list_full();
6083   if (force || !young_list_full) {
6084     HeapRegion* new_alloc_region = new_region(word_size,
6085                                               false /* do_expand */);
6086     if (new_alloc_region != NULL) {
6087       set_region_short_lived_locked(new_alloc_region);
6088       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6089       return new_alloc_region;
6090     }
6091   }
6092   return NULL;
6093 }
6094 
6095 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6096                                                   size_t allocated_bytes) {
6097   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6098   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6099 
6100   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6101   _summary_bytes_used += allocated_bytes;
6102   _hr_printer.retire(alloc_region);
6103   // We update the eden sizes here, when the region is retired,
6104   // instead of when it's allocated, since this is the point that its
6105   // used space has been recored in _summary_bytes_used.
6106   g1mm()->update_eden_size();
6107 }
6108 
6109 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6110                                                     bool force) {
6111   return _g1h->new_mutator_alloc_region(word_size, force);
6112 }
6113 
6114 void G1CollectedHeap::set_par_threads() {
6115   // Don't change the number of workers.  Use the value previously set
6116   // in the workgroup.
6117   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6118   uint n_workers = workers()->active_workers();
6119   assert(UseDynamicNumberOfGCThreads ||
6120            n_workers == workers()->total_workers(),
6121       "Otherwise should be using the total number of workers");
6122   if (n_workers == 0) {
6123     assert(false, "Should have been set in prior evacuation pause.");
6124     n_workers = ParallelGCThreads;
6125     workers()->set_active_workers(n_workers);
6126   }
6127   set_par_threads(n_workers);
6128 }
6129 
6130 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6131                                        size_t allocated_bytes) {
6132   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6133 }
6134 
6135 // Methods for the GC alloc regions
6136 
6137 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6138                                                  uint count,
6139                                                  GCAllocPurpose ap) {
6140   assert(FreeList_lock->owned_by_self(), "pre-condition");
6141 
6142   if (count < g1_policy()->max_regions(ap)) {
6143     HeapRegion* new_alloc_region = new_region(word_size,
6144                                               true /* do_expand */);
6145     if (new_alloc_region != NULL) {
6146       // We really only need to do this for old regions given that we
6147       // should never scan survivors. But it doesn't hurt to do it
6148       // for survivors too.
6149       new_alloc_region->set_saved_mark();
6150       if (ap == GCAllocForSurvived) {
6151         new_alloc_region->set_survivor();
6152         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6153       } else {
6154         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6155       }
6156       bool during_im = g1_policy()->during_initial_mark_pause();
6157       new_alloc_region->note_start_of_copying(during_im);
6158       return new_alloc_region;
6159     } else {
6160       g1_policy()->note_alloc_region_limit_reached(ap);
6161     }
6162   }
6163   return NULL;
6164 }
6165 
6166 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6167                                              size_t allocated_bytes,
6168                                              GCAllocPurpose ap) {
6169   bool during_im = g1_policy()->during_initial_mark_pause();
6170   alloc_region->note_end_of_copying(during_im);
6171   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6172   if (ap == GCAllocForSurvived) {
6173     young_list()->add_survivor_region(alloc_region);
6174   } else {
6175     _old_set.add(alloc_region);
6176   }
6177   _hr_printer.retire(alloc_region);
6178 }
6179 
6180 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6181                                                        bool force) {
6182   assert(!force, "not supported for GC alloc regions");
6183   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6184 }
6185 
6186 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6187                                           size_t allocated_bytes) {
6188   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6189                                GCAllocForSurvived);
6190 }
6191 
6192 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6193                                                   bool force) {
6194   assert(!force, "not supported for GC alloc regions");
6195   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6196 }
6197 
6198 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6199                                      size_t allocated_bytes) {
6200   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6201                                GCAllocForTenured);
6202 }
6203 // Heap region set verification
6204 
6205 class VerifyRegionListsClosure : public HeapRegionClosure {
6206 private:
6207   FreeRegionList*     _free_list;
6208   OldRegionSet*       _old_set;
6209   HumongousRegionSet* _humongous_set;
6210   uint                _region_count;
6211 
6212 public:
6213   VerifyRegionListsClosure(OldRegionSet* old_set,
6214                            HumongousRegionSet* humongous_set,
6215                            FreeRegionList* free_list) :
6216     _old_set(old_set), _humongous_set(humongous_set),
6217     _free_list(free_list), _region_count(0) { }
6218 
6219   uint region_count() { return _region_count; }
6220 
6221   bool doHeapRegion(HeapRegion* hr) {
6222     _region_count += 1;
6223 
6224     if (hr->continuesHumongous()) {
6225       return false;
6226     }
6227 
6228     if (hr->is_young()) {
6229       // TODO
6230     } else if (hr->startsHumongous()) {
6231       _humongous_set->verify_next_region(hr);
6232     } else if (hr->is_empty()) {
6233       _free_list->verify_next_region(hr);
6234     } else {
6235       _old_set->verify_next_region(hr);
6236     }
6237     return false;
6238   }
6239 };
6240 
6241 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6242                                              HeapWord* bottom) {
6243   HeapWord* end = bottom + HeapRegion::GrainWords;
6244   MemRegion mr(bottom, end);
6245   assert(_g1_reserved.contains(mr), "invariant");
6246   // This might return NULL if the allocation fails
6247   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6248 }
6249 
6250 void G1CollectedHeap::verify_region_sets() {
6251   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6252 
6253   // First, check the explicit lists.
6254   _free_list.verify();
6255   {
6256     // Given that a concurrent operation might be adding regions to
6257     // the secondary free list we have to take the lock before
6258     // verifying it.
6259     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6260     _secondary_free_list.verify();
6261   }
6262   _old_set.verify();
6263   _humongous_set.verify();
6264 
6265   // If a concurrent region freeing operation is in progress it will
6266   // be difficult to correctly attributed any free regions we come
6267   // across to the correct free list given that they might belong to
6268   // one of several (free_list, secondary_free_list, any local lists,
6269   // etc.). So, if that's the case we will skip the rest of the
6270   // verification operation. Alternatively, waiting for the concurrent
6271   // operation to complete will have a non-trivial effect on the GC's
6272   // operation (no concurrent operation will last longer than the
6273   // interval between two calls to verification) and it might hide
6274   // any issues that we would like to catch during testing.
6275   if (free_regions_coming()) {
6276     return;
6277   }
6278 
6279   // Make sure we append the secondary_free_list on the free_list so
6280   // that all free regions we will come across can be safely
6281   // attributed to the free_list.
6282   append_secondary_free_list_if_not_empty_with_lock();
6283 
6284   // Finally, make sure that the region accounting in the lists is
6285   // consistent with what we see in the heap.
6286   _old_set.verify_start();
6287   _humongous_set.verify_start();
6288   _free_list.verify_start();
6289 
6290   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6291   heap_region_iterate(&cl);
6292 
6293   _old_set.verify_end();
6294   _humongous_set.verify_end();
6295   _free_list.verify_end();
6296 }