1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 
  42 #include "utilities/macros.hpp"
  43 
  44 // This file holds all globally used constants & types, class (forward)
  45 // declarations and a few frequently used utility functions.
  46 
  47 //----------------------------------------------------------------------------------------------------
  48 // Constants
  49 
  50 const int LogBytesPerShort   = 1;
  51 const int LogBytesPerInt     = 2;
  52 #ifdef _LP64
  53 const int LogBytesPerWord    = 3;
  54 #else
  55 const int LogBytesPerWord    = 2;
  56 #endif
  57 const int LogBytesPerLong    = 3;
  58 
  59 const int BytesPerShort      = 1 << LogBytesPerShort;
  60 const int BytesPerInt        = 1 << LogBytesPerInt;
  61 const int BytesPerWord       = 1 << LogBytesPerWord;
  62 const int BytesPerLong       = 1 << LogBytesPerLong;
  63 
  64 const int LogBitsPerByte     = 3;
  65 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  66 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  67 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  68 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  69 
  70 const int BitsPerByte        = 1 << LogBitsPerByte;
  71 const int BitsPerShort       = 1 << LogBitsPerShort;
  72 const int BitsPerInt         = 1 << LogBitsPerInt;
  73 const int BitsPerWord        = 1 << LogBitsPerWord;
  74 const int BitsPerLong        = 1 << LogBitsPerLong;
  75 
  76 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
  77 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
  78 
  79 const int WordsPerLong       = 2;       // Number of stack entries for longs
  80 
  81 const int oopSize            = sizeof(char*); // Full-width oop
  82 extern int heapOopSize;                       // Oop within a java object
  83 const int wordSize           = sizeof(char*);
  84 const int longSize           = sizeof(jlong);
  85 const int jintSize           = sizeof(jint);
  86 const int size_tSize         = sizeof(size_t);
  87 
  88 const int BytesPerOop        = BytesPerWord;  // Full-width oop
  89 
  90 extern int LogBytesPerHeapOop;                // Oop within a java object
  91 extern int LogBitsPerHeapOop;
  92 extern int BytesPerHeapOop;
  93 extern int BitsPerHeapOop;
  94 
  95 // Oop encoding heap max
  96 extern uint64_t OopEncodingHeapMax;
  97 
  98 const int BitsPerJavaInteger = 32;
  99 const int BitsPerJavaLong    = 64;
 100 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 101 
 102 // Size of a char[] needed to represent a jint as a string in decimal.
 103 const int jintAsStringSize = 12;
 104 
 105 // In fact this should be
 106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 107 // see os::set_memory_serialize_page()
 108 #ifdef _LP64
 109 const int SerializePageShiftCount = 4;
 110 #else
 111 const int SerializePageShiftCount = 3;
 112 #endif
 113 
 114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 115 // pointer into the heap.  We require that object sizes be measured in
 116 // units of heap words, so that that
 117 //   HeapWord* hw;
 118 //   hw += oop(hw)->foo();
 119 // works, where foo is a method (like size or scavenge) that returns the
 120 // object size.
 121 class HeapWord {
 122   friend class VMStructs;
 123  private:
 124   char* i;
 125 #ifndef PRODUCT
 126  public:
 127   char* value() { return i; }
 128 #endif
 129 };
 130 
 131 // HeapWordSize must be 2^LogHeapWordSize.
 132 const int HeapWordSize        = sizeof(HeapWord);
 133 #ifdef _LP64
 134 const int LogHeapWordSize     = 3;
 135 #else
 136 const int LogHeapWordSize     = 2;
 137 #endif
 138 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 139 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 140 
 141 // The larger HeapWordSize for 64bit requires larger heaps
 142 // for the same application running in 64bit.  See bug 4967770.
 143 // The minimum alignment to a heap word size is done.  Other
 144 // parts of the memory system may required additional alignment
 145 // and are responsible for those alignments.
 146 #ifdef _LP64
 147 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 148 #else
 149 #define ScaleForWordSize(x) (x)
 150 #endif
 151 
 152 // The minimum number of native machine words necessary to contain "byte_size"
 153 // bytes.
 154 inline size_t heap_word_size(size_t byte_size) {
 155   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 156 }
 157 
 158 
 159 const size_t K                  = 1024;
 160 const size_t M                  = K*K;
 161 const size_t G                  = M*K;
 162 const size_t HWperKB            = K / sizeof(HeapWord);
 163 
 164 const size_t LOG_K              = 10;
 165 const size_t LOG_M              = 2 * LOG_K;
 166 const size_t LOG_G              = 2 * LOG_M;
 167 
 168 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 169 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 170 
 171 // Constants for converting from a base unit to milli-base units.  For
 172 // example from seconds to milliseconds and microseconds
 173 
 174 const int MILLIUNITS    = 1000;         // milli units per base unit
 175 const int MICROUNITS    = 1000000;      // micro units per base unit
 176 const int NANOUNITS     = 1000000000;   // nano units per base unit
 177 
 178 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 179 const jint  NANOSECS_PER_MILLISEC = 1000000;
 180 
 181 inline const char* proper_unit_for_byte_size(size_t s) {
 182   if (s >= 10*G) {
 183     return "G";
 184   } else if (s >= 10*M) {
 185     return "M";
 186   } else if (s >= 10*K) {
 187     return "K";
 188   } else {
 189     return "B";
 190   }
 191 }
 192 
 193 template <class T>
 194 inline T byte_size_in_proper_unit(T s) {
 195   if (s >= 10*G) {
 196     return (T)(s/G);
 197   } else if (s >= 10*M) {
 198     return (T)(s/M);
 199   } else if (s >= 10*K) {
 200     return (T)(s/K);
 201   } else {
 202     return s;
 203   }
 204 }
 205 
 206 //----------------------------------------------------------------------------------------------------
 207 // VM type definitions
 208 
 209 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 210 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 211 
 212 typedef intptr_t  intx;
 213 typedef uintptr_t uintx;
 214 
 215 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 216 const intx  max_intx  = (uintx)min_intx - 1;
 217 const uintx max_uintx = (uintx)-1;
 218 
 219 // Table of values:
 220 //      sizeof intx         4               8
 221 // min_intx             0x80000000      0x8000000000000000
 222 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 223 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 224 
 225 typedef unsigned int uint;   NEEDS_CLEANUP
 226 
 227 
 228 //----------------------------------------------------------------------------------------------------
 229 // Java type definitions
 230 
 231 // All kinds of 'plain' byte addresses
 232 typedef   signed char s_char;
 233 typedef unsigned char u_char;
 234 typedef u_char*       address;
 235 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 236                                     // except for some implementations of a C++
 237                                     // linkage pointer to function. Should never
 238                                     // need one of those to be placed in this
 239                                     // type anyway.
 240 
 241 //  Utility functions to "portably" (?) bit twiddle pointers
 242 //  Where portable means keep ANSI C++ compilers quiet
 243 
 244 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 245 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 246 
 247 //  Utility functions to "portably" make cast to/from function pointers.
 248 
 249 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 250 inline address_word  castable_address(address x)              { return address_word(x) ; }
 251 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 252 
 253 // Pointer subtraction.
 254 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 255 // the range we might need to find differences from one end of the heap
 256 // to the other.
 257 // A typical use might be:
 258 //     if (pointer_delta(end(), top()) >= size) {
 259 //       // enough room for an object of size
 260 //       ...
 261 // and then additions like
 262 //       ... top() + size ...
 263 // are safe because we know that top() is at least size below end().
 264 inline size_t pointer_delta(const void* left,
 265                             const void* right,
 266                             size_t element_size) {
 267   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 268 }
 269 // A version specialized for HeapWord*'s.
 270 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 271   return pointer_delta(left, right, sizeof(HeapWord));
 272 }
 273 
 274 //
 275 // ANSI C++ does not allow casting from one pointer type to a function pointer
 276 // directly without at best a warning. This macro accomplishes it silently
 277 // In every case that is present at this point the value be cast is a pointer
 278 // to a C linkage function. In somecase the type used for the cast reflects
 279 // that linkage and a picky compiler would not complain. In other cases because
 280 // there is no convenient place to place a typedef with extern C linkage (i.e
 281 // a platform dependent header file) it doesn't. At this point no compiler seems
 282 // picky enough to catch these instances (which are few). It is possible that
 283 // using templates could fix these for all cases. This use of templates is likely
 284 // so far from the middle of the road that it is likely to be problematic in
 285 // many C++ compilers.
 286 //
 287 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 288 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 289 
 290 // Unsigned byte types for os and stream.hpp
 291 
 292 // Unsigned one, two, four and eigth byte quantities used for describing
 293 // the .class file format. See JVM book chapter 4.
 294 
 295 typedef jubyte  u1;
 296 typedef jushort u2;
 297 typedef juint   u4;
 298 typedef julong  u8;
 299 
 300 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 301 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 302 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 303 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 304 
 305 typedef jbyte  s1;
 306 typedef jshort s2;
 307 typedef jint   s4;
 308 typedef jlong  s8;
 309 
 310 //----------------------------------------------------------------------------------------------------
 311 // JVM spec restrictions
 312 
 313 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 314 
 315 
 316 //----------------------------------------------------------------------------------------------------
 317 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 318 //
 319 // Determines whether on-the-fly class replacement and frame popping are enabled.
 320 
 321 #define HOTSWAP
 322 
 323 //----------------------------------------------------------------------------------------------------
 324 // Object alignment, in units of HeapWords.
 325 //
 326 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 327 // reference fields can be naturally aligned.
 328 
 329 extern int MinObjAlignment;
 330 extern int MinObjAlignmentInBytes;
 331 extern int MinObjAlignmentInBytesMask;
 332 
 333 extern int LogMinObjAlignment;
 334 extern int LogMinObjAlignmentInBytes;
 335 
 336 // Machine dependent stuff
 337 
 338 #ifdef TARGET_ARCH_x86
 339 # include "globalDefinitions_x86.hpp"
 340 #endif
 341 #ifdef TARGET_ARCH_sparc
 342 # include "globalDefinitions_sparc.hpp"
 343 #endif
 344 #ifdef TARGET_ARCH_zero
 345 # include "globalDefinitions_zero.hpp"
 346 #endif
 347 #ifdef TARGET_ARCH_arm
 348 # include "globalDefinitions_arm.hpp"
 349 #endif
 350 #ifdef TARGET_ARCH_ppc
 351 # include "globalDefinitions_ppc.hpp"
 352 #endif
 353 
 354 
 355 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 356 // Note: this value must be a power of 2
 357 
 358 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 359 
 360 // Signed variants of alignment helpers.  There are two versions of each, a macro
 361 // for use in places like enum definitions that require compile-time constant
 362 // expressions and a function for all other places so as to get type checking.
 363 
 364 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 365 
 366 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 367   return align_size_up_(size, alignment);
 368 }
 369 
 370 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 371 
 372 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 373   return align_size_down_(size, alignment);
 374 }
 375 
 376 // Align objects by rounding up their size, in HeapWord units.
 377 
 378 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 379 
 380 inline intptr_t align_object_size(intptr_t size) {
 381   return align_size_up(size, MinObjAlignment);
 382 }
 383 
 384 inline bool is_object_aligned(intptr_t addr) {
 385   return addr == align_object_size(addr);
 386 }
 387 
 388 // Pad out certain offsets to jlong alignment, in HeapWord units.
 389 
 390 inline intptr_t align_object_offset(intptr_t offset) {
 391   return align_size_up(offset, HeapWordsPerLong);
 392 }
 393 
 394 // The expected size in bytes of a cache line, used to pad data structures.
 395 #define DEFAULT_CACHE_LINE_SIZE 64
 396 
 397 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
 398 // expected cache line size (a power of two).  The first addend avoids sharing
 399 // when the start address is not a multiple of alignment; the second maintains
 400 // alignment of starting addresses that happen to be a multiple.
 401 #define PADDING_SIZE(type, alignment)                           \
 402   ((alignment) + align_size_up_(sizeof(type), alignment))
 403 
 404 // Templates to create a subclass padded to avoid cache line sharing.  These are
 405 // effective only when applied to derived-most (leaf) classes.
 406 
 407 // When no args are passed to the base ctor.
 408 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 409 class Padded: public T {
 410 private:
 411   char _pad_buf_[PADDING_SIZE(T, alignment)];
 412 };
 413 
 414 // When either 0 or 1 args may be passed to the base ctor.
 415 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 416 class Padded01: public T {
 417 public:
 418   Padded01(): T() { }
 419   Padded01(Arg1T arg1): T(arg1) { }
 420 private:
 421   char _pad_buf_[PADDING_SIZE(T, alignment)];
 422 };
 423 
 424 //----------------------------------------------------------------------------------------------------
 425 // Utility macros for compilers
 426 // used to silence compiler warnings
 427 
 428 #define Unused_Variable(var) var
 429 
 430 
 431 //----------------------------------------------------------------------------------------------------
 432 // Miscellaneous
 433 
 434 // 6302670 Eliminate Hotspot __fabsf dependency
 435 // All fabs() callers should call this function instead, which will implicitly
 436 // convert the operand to double, avoiding a dependency on __fabsf which
 437 // doesn't exist in early versions of Solaris 8.
 438 inline double fabsd(double value) {
 439   return fabs(value);
 440 }
 441 
 442 inline jint low (jlong value)                    { return jint(value); }
 443 inline jint high(jlong value)                    { return jint(value >> 32); }
 444 
 445 // the fancy casts are a hopefully portable way
 446 // to do unsigned 32 to 64 bit type conversion
 447 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 448                                                    *value |= (jlong)(julong)(juint)low; }
 449 
 450 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 451                                                    *value |= (jlong)high       << 32; }
 452 
 453 inline jlong jlong_from(jint h, jint l) {
 454   jlong result = 0; // initialization to avoid warning
 455   set_high(&result, h);
 456   set_low(&result,  l);
 457   return result;
 458 }
 459 
 460 union jlong_accessor {
 461   jint  words[2];
 462   jlong long_value;
 463 };
 464 
 465 void basic_types_init(); // cannot define here; uses assert
 466 
 467 
 468 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 469 enum BasicType {
 470   T_BOOLEAN  =  4,
 471   T_CHAR     =  5,
 472   T_FLOAT    =  6,
 473   T_DOUBLE   =  7,
 474   T_BYTE     =  8,
 475   T_SHORT    =  9,
 476   T_INT      = 10,
 477   T_LONG     = 11,
 478   T_OBJECT   = 12,
 479   T_ARRAY    = 13,
 480   T_VOID     = 14,
 481   T_ADDRESS  = 15,
 482   T_NARROWOOP= 16,
 483   T_CONFLICT = 17, // for stack value type with conflicting contents
 484   T_ILLEGAL  = 99
 485 };
 486 
 487 inline bool is_java_primitive(BasicType t) {
 488   return T_BOOLEAN <= t && t <= T_LONG;
 489 }
 490 
 491 inline bool is_subword_type(BasicType t) {
 492   // these guys are processed exactly like T_INT in calling sequences:
 493   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 494 }
 495 
 496 inline bool is_signed_subword_type(BasicType t) {
 497   return (t == T_BYTE || t == T_SHORT);
 498 }
 499 
 500 // Convert a char from a classfile signature to a BasicType
 501 inline BasicType char2type(char c) {
 502   switch( c ) {
 503   case 'B': return T_BYTE;
 504   case 'C': return T_CHAR;
 505   case 'D': return T_DOUBLE;
 506   case 'F': return T_FLOAT;
 507   case 'I': return T_INT;
 508   case 'J': return T_LONG;
 509   case 'S': return T_SHORT;
 510   case 'Z': return T_BOOLEAN;
 511   case 'V': return T_VOID;
 512   case 'L': return T_OBJECT;
 513   case '[': return T_ARRAY;
 514   }
 515   return T_ILLEGAL;
 516 }
 517 
 518 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 519 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 520 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 521 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 522 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 523 extern BasicType name2type(const char* name);
 524 
 525 // Auxilary math routines
 526 // least common multiple
 527 extern size_t lcm(size_t a, size_t b);
 528 
 529 
 530 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 531 enum BasicTypeSize {
 532   T_BOOLEAN_size = 1,
 533   T_CHAR_size    = 1,
 534   T_FLOAT_size   = 1,
 535   T_DOUBLE_size  = 2,
 536   T_BYTE_size    = 1,
 537   T_SHORT_size   = 1,
 538   T_INT_size     = 1,
 539   T_LONG_size    = 2,
 540   T_OBJECT_size  = 1,
 541   T_ARRAY_size   = 1,
 542   T_NARROWOOP_size = 1,
 543   T_VOID_size    = 0
 544 };
 545 
 546 
 547 // maps a BasicType to its instance field storage type:
 548 // all sub-word integral types are widened to T_INT
 549 extern BasicType type2field[T_CONFLICT+1];
 550 extern BasicType type2wfield[T_CONFLICT+1];
 551 
 552 
 553 // size in bytes
 554 enum ArrayElementSize {
 555   T_BOOLEAN_aelem_bytes = 1,
 556   T_CHAR_aelem_bytes    = 2,
 557   T_FLOAT_aelem_bytes   = 4,
 558   T_DOUBLE_aelem_bytes  = 8,
 559   T_BYTE_aelem_bytes    = 1,
 560   T_SHORT_aelem_bytes   = 2,
 561   T_INT_aelem_bytes     = 4,
 562   T_LONG_aelem_bytes    = 8,
 563 #ifdef _LP64
 564   T_OBJECT_aelem_bytes  = 8,
 565   T_ARRAY_aelem_bytes   = 8,
 566 #else
 567   T_OBJECT_aelem_bytes  = 4,
 568   T_ARRAY_aelem_bytes   = 4,
 569 #endif
 570   T_NARROWOOP_aelem_bytes = 4,
 571   T_VOID_aelem_bytes    = 0
 572 };
 573 
 574 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 575 #ifdef ASSERT
 576 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 577 #else
 578 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 579 #endif
 580 
 581 
 582 // JavaValue serves as a container for arbitrary Java values.
 583 
 584 class JavaValue {
 585 
 586  public:
 587   typedef union JavaCallValue {
 588     jfloat   f;
 589     jdouble  d;
 590     jint     i;
 591     jlong    l;
 592     jobject  h;
 593   } JavaCallValue;
 594 
 595  private:
 596   BasicType _type;
 597   JavaCallValue _value;
 598 
 599  public:
 600   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 601 
 602   JavaValue(jfloat value) {
 603     _type    = T_FLOAT;
 604     _value.f = value;
 605   }
 606 
 607   JavaValue(jdouble value) {
 608     _type    = T_DOUBLE;
 609     _value.d = value;
 610   }
 611 
 612  jfloat get_jfloat() const { return _value.f; }
 613  jdouble get_jdouble() const { return _value.d; }
 614  jint get_jint() const { return _value.i; }
 615  jlong get_jlong() const { return _value.l; }
 616  jobject get_jobject() const { return _value.h; }
 617  JavaCallValue* get_value_addr() { return &_value; }
 618  BasicType get_type() const { return _type; }
 619 
 620  void set_jfloat(jfloat f) { _value.f = f;}
 621  void set_jdouble(jdouble d) { _value.d = d;}
 622  void set_jint(jint i) { _value.i = i;}
 623  void set_jlong(jlong l) { _value.l = l;}
 624  void set_jobject(jobject h) { _value.h = h;}
 625  void set_type(BasicType t) { _type = t; }
 626 
 627  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 628  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 629  jchar get_jchar() const { return (jchar) (_value.i);}
 630  jshort get_jshort() const { return (jshort) (_value.i);}
 631 
 632 };
 633 
 634 
 635 #define STACK_BIAS      0
 636 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 637 // in order to extend the reach of the stack pointer.
 638 #if defined(SPARC) && defined(_LP64)
 639 #undef STACK_BIAS
 640 #define STACK_BIAS      0x7ff
 641 #endif
 642 
 643 
 644 // TosState describes the top-of-stack state before and after the execution of
 645 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 646 // registers. The TosState corresponds to the 'machine represention' of this cached
 647 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 648 // as well as a 5th state in case the top-of-stack value is actually on the top
 649 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 650 // state when it comes to machine representation but is used separately for (oop)
 651 // type specific operations (e.g. verification code).
 652 
 653 enum TosState {         // describes the tos cache contents
 654   btos = 0,             // byte, bool tos cached
 655   ctos = 1,             // char tos cached
 656   stos = 2,             // short tos cached
 657   itos = 3,             // int tos cached
 658   ltos = 4,             // long tos cached
 659   ftos = 5,             // float tos cached
 660   dtos = 6,             // double tos cached
 661   atos = 7,             // object cached
 662   vtos = 8,             // tos not cached
 663   number_of_states,
 664   ilgl                  // illegal state: should not occur
 665 };
 666 
 667 
 668 inline TosState as_TosState(BasicType type) {
 669   switch (type) {
 670     case T_BYTE   : return btos;
 671     case T_BOOLEAN: return btos; // FIXME: Add ztos
 672     case T_CHAR   : return ctos;
 673     case T_SHORT  : return stos;
 674     case T_INT    : return itos;
 675     case T_LONG   : return ltos;
 676     case T_FLOAT  : return ftos;
 677     case T_DOUBLE : return dtos;
 678     case T_VOID   : return vtos;
 679     case T_ARRAY  : // fall through
 680     case T_OBJECT : return atos;
 681   }
 682   return ilgl;
 683 }
 684 
 685 inline BasicType as_BasicType(TosState state) {
 686   switch (state) {
 687     //case ztos: return T_BOOLEAN;//FIXME
 688     case btos : return T_BYTE;
 689     case ctos : return T_CHAR;
 690     case stos : return T_SHORT;
 691     case itos : return T_INT;
 692     case ltos : return T_LONG;
 693     case ftos : return T_FLOAT;
 694     case dtos : return T_DOUBLE;
 695     case atos : return T_OBJECT;
 696     case vtos : return T_VOID;
 697   }
 698   return T_ILLEGAL;
 699 }
 700 
 701 
 702 // Helper function to convert BasicType info into TosState
 703 // Note: Cannot define here as it uses global constant at the time being.
 704 TosState as_TosState(BasicType type);
 705 
 706 
 707 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
 708 
 709 enum ReferenceType {
 710  REF_NONE,      // Regular class
 711  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
 712  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
 713  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
 714  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
 715  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
 716 };
 717 
 718 
 719 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 720 // information is needed by the safepoint code.
 721 //
 722 // There are 4 essential states:
 723 //
 724 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 725 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 726 //  _thread_in_vm       : Executing in the vm
 727 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 728 //
 729 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 730 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 731 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 732 //
 733 // Given a state, the xxx_trans state can always be found by adding 1.
 734 //
 735 enum JavaThreadState {
 736   _thread_uninitialized     =  0, // should never happen (missing initialization)
 737   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 738   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 739   _thread_in_native         =  4, // running in native code
 740   _thread_in_native_trans   =  5, // corresponding transition state
 741   _thread_in_vm             =  6, // running in VM
 742   _thread_in_vm_trans       =  7, // corresponding transition state
 743   _thread_in_Java           =  8, // running in Java or in stub code
 744   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 745   _thread_blocked           = 10, // blocked in vm
 746   _thread_blocked_trans     = 11, // corresponding transition state
 747   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 748 };
 749 
 750 
 751 // Handy constants for deciding which compiler mode to use.
 752 enum MethodCompilation {
 753   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 754   InvalidOSREntryBci = -2
 755 };
 756 
 757 // Enumeration to distinguish tiers of compilation
 758 enum CompLevel {
 759   CompLevel_any               = -1,
 760   CompLevel_all               = -1,
 761   CompLevel_none              = 0,         // Interpreter
 762   CompLevel_simple            = 1,         // C1
 763   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 764   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 765   CompLevel_full_optimization = 4,         // C2 or Shark
 766 
 767 #if defined(COMPILER2) || defined(SHARK)
 768   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 769 #elif defined(COMPILER1)
 770   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 771 #else
 772   CompLevel_highest_tier      = CompLevel_none,
 773 #endif
 774 
 775 #if defined(TIERED)
 776   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 777 #elif defined(COMPILER1)
 778   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 779 #elif defined(COMPILER2) || defined(SHARK)
 780   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 781 #else
 782   CompLevel_initial_compile   = CompLevel_none
 783 #endif
 784 };
 785 
 786 inline bool is_c1_compile(int comp_level) {
 787   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 788 }
 789 
 790 inline bool is_c2_compile(int comp_level) {
 791   return comp_level == CompLevel_full_optimization;
 792 }
 793 
 794 inline bool is_highest_tier_compile(int comp_level) {
 795   return comp_level == CompLevel_highest_tier;
 796 }
 797 
 798 //----------------------------------------------------------------------------------------------------
 799 // 'Forward' declarations of frequently used classes
 800 // (in order to reduce interface dependencies & reduce
 801 // number of unnecessary compilations after changes)
 802 
 803 class symbolTable;
 804 class ClassFileStream;
 805 
 806 class Event;
 807 
 808 class Thread;
 809 class  VMThread;
 810 class  JavaThread;
 811 class Threads;
 812 
 813 class VM_Operation;
 814 class VMOperationQueue;
 815 
 816 class CodeBlob;
 817 class  nmethod;
 818 class  OSRAdapter;
 819 class  I2CAdapter;
 820 class  C2IAdapter;
 821 class CompiledIC;
 822 class relocInfo;
 823 class ScopeDesc;
 824 class PcDesc;
 825 
 826 class Recompiler;
 827 class Recompilee;
 828 class RecompilationPolicy;
 829 class RFrame;
 830 class  CompiledRFrame;
 831 class  InterpretedRFrame;
 832 
 833 class frame;
 834 
 835 class vframe;
 836 class   javaVFrame;
 837 class     interpretedVFrame;
 838 class     compiledVFrame;
 839 class     deoptimizedVFrame;
 840 class   externalVFrame;
 841 class     entryVFrame;
 842 
 843 class RegisterMap;
 844 
 845 class Mutex;
 846 class Monitor;
 847 class BasicLock;
 848 class BasicObjectLock;
 849 
 850 class PeriodicTask;
 851 
 852 class JavaCallWrapper;
 853 
 854 class   oopDesc;
 855 
 856 class NativeCall;
 857 
 858 class zone;
 859 
 860 class StubQueue;
 861 
 862 class outputStream;
 863 
 864 class ResourceArea;
 865 
 866 class DebugInformationRecorder;
 867 class ScopeValue;
 868 class CompressedStream;
 869 class   DebugInfoReadStream;
 870 class   DebugInfoWriteStream;
 871 class LocationValue;
 872 class ConstantValue;
 873 class IllegalValue;
 874 
 875 class PrivilegedElement;
 876 class MonitorArray;
 877 
 878 class MonitorInfo;
 879 
 880 class OffsetClosure;
 881 class OopMapCache;
 882 class InterpreterOopMap;
 883 class OopMapCacheEntry;
 884 class OSThread;
 885 
 886 typedef int (*OSThreadStartFunc)(void*);
 887 
 888 class Space;
 889 
 890 class JavaValue;
 891 class methodHandle;
 892 class JavaCallArguments;
 893 
 894 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
 895 
 896 extern void basic_fatal(const char* msg);
 897 
 898 
 899 //----------------------------------------------------------------------------------------------------
 900 // Special constants for debugging
 901 
 902 const jint     badInt           = -3;                       // generic "bad int" value
 903 const long     badAddressVal    = -2;                       // generic "bad address" value
 904 const long     badOopVal        = -1;                       // generic "bad oop" value
 905 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 906 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 907 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 908 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 909 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 910 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
 911 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 912 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 913 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 914 
 915 
 916 // (These must be implemented as #defines because C++ compilers are
 917 // not obligated to inline non-integral constants!)
 918 #define       badAddress        ((address)::badAddressVal)
 919 #define       badOop            ((oop)::badOopVal)
 920 #define       badHeapWord       (::badHeapWordVal)
 921 #define       badJNIHandle      ((oop)::badJNIHandleVal)
 922 
 923 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 924 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 925 
 926 //----------------------------------------------------------------------------------------------------
 927 // Utility functions for bitfield manipulations
 928 
 929 const intptr_t AllBits    = ~0; // all bits set in a word
 930 const intptr_t NoBits     =  0; // no bits set in a word
 931 const jlong    NoLongBits =  0; // no bits set in a long
 932 const intptr_t OneBit     =  1; // only right_most bit set in a word
 933 
 934 // get a word with the n.th or the right-most or left-most n bits set
 935 // (note: #define used only so that they can be used in enum constant definitions)
 936 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
 937 #define right_n_bits(n)   (nth_bit(n) - 1)
 938 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
 939 
 940 // bit-operations using a mask m
 941 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 942 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 943 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 944 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 945 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 946 
 947 // bit-operations using the n.th bit
 948 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 949 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 950 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 951 
 952 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 953 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 954   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 955 }
 956 
 957 
 958 //----------------------------------------------------------------------------------------------------
 959 // Utility functions for integers
 960 
 961 // Avoid use of global min/max macros which may cause unwanted double
 962 // evaluation of arguments.
 963 #ifdef max
 964 #undef max
 965 #endif
 966 
 967 #ifdef min
 968 #undef min
 969 #endif
 970 
 971 #define max(a,b) Do_not_use_max_use_MAX2_instead
 972 #define min(a,b) Do_not_use_min_use_MIN2_instead
 973 
 974 // It is necessary to use templates here. Having normal overloaded
 975 // functions does not work because it is necessary to provide both 32-
 976 // and 64-bit overloaded functions, which does not work, and having
 977 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 978 // will be even more error-prone than macros.
 979 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 980 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 981 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 982 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 983 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 984 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 985 
 986 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 987 
 988 // true if x is a power of 2, false otherwise
 989 inline bool is_power_of_2(intptr_t x) {
 990   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 991 }
 992 
 993 // long version of is_power_of_2
 994 inline bool is_power_of_2_long(jlong x) {
 995   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 996 }
 997 
 998 //* largest i such that 2^i <= x
 999 //  A negative value of 'x' will return '31'
1000 inline int log2_intptr(intptr_t x) {
1001   int i = -1;
1002   uintptr_t p =  1;
1003   while (p != 0 && p <= (uintptr_t)x) {
1004     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1005     i++; p *= 2;
1006   }
1007   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1008   // (if p = 0 then overflow occurred and i = 31)
1009   return i;
1010 }
1011 
1012 //* largest i such that 2^i <= x
1013 //  A negative value of 'x' will return '63'
1014 inline int log2_long(jlong x) {
1015   int i = -1;
1016   julong p =  1;
1017   while (p != 0 && p <= (julong)x) {
1018     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1019     i++; p *= 2;
1020   }
1021   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1022   // (if p = 0 then overflow occurred and i = 63)
1023   return i;
1024 }
1025 
1026 //* the argument must be exactly a power of 2
1027 inline int exact_log2(intptr_t x) {
1028   #ifdef ASSERT
1029     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1030   #endif
1031   return log2_intptr(x);
1032 }
1033 
1034 //* the argument must be exactly a power of 2
1035 inline int exact_log2_long(jlong x) {
1036   #ifdef ASSERT
1037     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1038   #endif
1039   return log2_long(x);
1040 }
1041 
1042 
1043 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1044 inline intptr_t round_to(intptr_t x, uintx s) {
1045   #ifdef ASSERT
1046     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1047   #endif
1048   const uintx m = s - 1;
1049   return mask_bits(x + m, ~m);
1050 }
1051 
1052 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1053 inline intptr_t round_down(intptr_t x, uintx s) {
1054   #ifdef ASSERT
1055     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1056   #endif
1057   const uintx m = s - 1;
1058   return mask_bits(x, ~m);
1059 }
1060 
1061 
1062 inline bool is_odd (intx x) { return x & 1;      }
1063 inline bool is_even(intx x) { return !is_odd(x); }
1064 
1065 // "to" should be greater than "from."
1066 inline intx byte_size(void* from, void* to) {
1067   return (address)to - (address)from;
1068 }
1069 
1070 //----------------------------------------------------------------------------------------------------
1071 // Avoid non-portable casts with these routines (DEPRECATED)
1072 
1073 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1074 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1075 
1076 // Given sequence of four bytes, build into a 32-bit word
1077 // following the conventions used in class files.
1078 // On the 386, this could be realized with a simple address cast.
1079 //
1080 
1081 // This routine takes eight bytes:
1082 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1083   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1084        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1085        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1086        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1087        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1088        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1089        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1090        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1091 }
1092 
1093 // This routine takes four bytes:
1094 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1095   return  (( u4(c1) << 24 )  &  0xff000000)
1096        |  (( u4(c2) << 16 )  &  0x00ff0000)
1097        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1098        |  (( u4(c4) <<  0 )  &  0x000000ff);
1099 }
1100 
1101 // And this one works if the four bytes are contiguous in memory:
1102 inline u4 build_u4_from( u1* p ) {
1103   return  build_u4_from( p[0], p[1], p[2], p[3] );
1104 }
1105 
1106 // Ditto for two-byte ints:
1107 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1108   return  u2((( u2(c1) <<  8 )  &  0xff00)
1109           |  (( u2(c2) <<  0 )  &  0x00ff));
1110 }
1111 
1112 // And this one works if the two bytes are contiguous in memory:
1113 inline u2 build_u2_from( u1* p ) {
1114   return  build_u2_from( p[0], p[1] );
1115 }
1116 
1117 // Ditto for floats:
1118 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1119   u4 u = build_u4_from( c1, c2, c3, c4 );
1120   return  *(jfloat*)&u;
1121 }
1122 
1123 inline jfloat build_float_from( u1* p ) {
1124   u4 u = build_u4_from( p );
1125   return  *(jfloat*)&u;
1126 }
1127 
1128 
1129 // now (64-bit) longs
1130 
1131 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1132   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1133        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1134        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1135        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1136        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1137        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1138        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1139        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1140 }
1141 
1142 inline jlong build_long_from( u1* p ) {
1143   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1144 }
1145 
1146 
1147 // Doubles, too!
1148 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1149   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1150   return  *(jdouble*)&u;
1151 }
1152 
1153 inline jdouble build_double_from( u1* p ) {
1154   jlong u = build_long_from( p );
1155   return  *(jdouble*)&u;
1156 }
1157 
1158 
1159 // Portable routines to go the other way:
1160 
1161 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1162   c1 = u1(x >> 8);
1163   c2 = u1(x);
1164 }
1165 
1166 inline void explode_short_to( u2 x, u1* p ) {
1167   explode_short_to( x, p[0], p[1]);
1168 }
1169 
1170 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1171   c1 = u1(x >> 24);
1172   c2 = u1(x >> 16);
1173   c3 = u1(x >>  8);
1174   c4 = u1(x);
1175 }
1176 
1177 inline void explode_int_to( u4 x, u1* p ) {
1178   explode_int_to( x, p[0], p[1], p[2], p[3]);
1179 }
1180 
1181 
1182 // Pack and extract shorts to/from ints:
1183 
1184 inline int extract_low_short_from_int(jint x) {
1185   return x & 0xffff;
1186 }
1187 
1188 inline int extract_high_short_from_int(jint x) {
1189   return (x >> 16) & 0xffff;
1190 }
1191 
1192 inline int build_int_from_shorts( jushort low, jushort high ) {
1193   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1194 }
1195 
1196 // Printf-style formatters for fixed- and variable-width types as pointers and
1197 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1198 // doesn't provide appropriate definitions, they should be provided in
1199 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1200 
1201 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1202 
1203 // Format 32-bit quantities.
1204 #define INT32_FORMAT           "%" PRId32
1205 #define UINT32_FORMAT          "%" PRIu32
1206 #define INT32_FORMAT_W(width)  "%" #width PRId32
1207 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1208 
1209 #define PTR32_FORMAT           "0x%08" PRIx32
1210 
1211 // Format 64-bit quantities.
1212 #define INT64_FORMAT           "%" PRId64
1213 #define UINT64_FORMAT          "%" PRIu64
1214 #define INT64_FORMAT_W(width)  "%" #width PRId64
1215 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1216 
1217 #define PTR64_FORMAT           "0x%016" PRIx64
1218 
1219 // Format pointers which change size between 32- and 64-bit.
1220 #ifdef  _LP64
1221 #define INTPTR_FORMAT "0x%016" PRIxPTR
1222 #define PTR_FORMAT    "0x%016" PRIxPTR
1223 #else   // !_LP64
1224 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1225 #define PTR_FORMAT    "0x%08"  PRIxPTR
1226 #endif  // _LP64
1227 
1228 #define SSIZE_FORMAT          "%" PRIdPTR
1229 #define SIZE_FORMAT           "%" PRIuPTR
1230 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
1231 #define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
1232 
1233 #define INTX_FORMAT           "%" PRIdPTR
1234 #define UINTX_FORMAT          "%" PRIuPTR
1235 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1236 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1237 
1238 
1239 // Enable zap-a-lot if in debug version.
1240 
1241 # ifdef ASSERT
1242 # ifdef COMPILER2
1243 #   define ENABLE_ZAP_DEAD_LOCALS
1244 #endif /* COMPILER2 */
1245 # endif /* ASSERT */
1246 
1247 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1248 
1249 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP