1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 
  40 class TraceGen0TimeData : public CHeapObj {
  41  private:
  42   unsigned  _young_pause_num;
  43   unsigned  _mixed_pause_num;
  44 
  45   NumberSeq _all_stop_world_times_ms;
  46   NumberSeq _all_yield_times_ms;
  47 
  48   NumberSeq _total;
  49   NumberSeq _other;
  50   NumberSeq _root_region_scan_wait;
  51   NumberSeq _parallel;
  52   NumberSeq _ext_root_scan;
  53   NumberSeq _satb_filtering;
  54   NumberSeq _update_rs;
  55   NumberSeq _scan_rs;
  56   NumberSeq _obj_copy;
  57   NumberSeq _termination;
  58   NumberSeq _parallel_other;
  59   NumberSeq _clear_ct;
  60 
  61   void print_summary (int level, const char* str, const NumberSeq* seq) const;
  62   void print_summary_sd (int level, const char* str, const NumberSeq* seq) const;
  63 
  64 public:
  65    TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  66   void record_start_collection(double time_to_stop_the_world_ms);
  67   void record_yield_time(double yield_time_ms);
  68   void record_end_collection(
  69      double total_ms,
  70      double other_ms,
  71      double root_region_scan_wait_ms,
  72      double parallel_ms,
  73      double ext_root_scan_ms,
  74      double satb_filtering_ms,
  75      double update_rs_ms,
  76      double scan_rs_ms,
  77      double obj_copy_ms,
  78      double termination_ms,
  79      double parallel_other_ms,
  80      double clear_ct_ms);
  81   void increment_collection_count(bool mixed);
  82   void print() const;
  83 };
  84 
  85 class TraceGen1TimeData : public CHeapObj {
  86  private:
  87   NumberSeq _all_full_gc_times;
  88 
  89  public:
  90   void record_full_collection(double full_gc_time_ms);
  91   void print() const;
  92 };
  93 
  94 // There are three command line options related to the young gen size:
  95 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
  96 // just a short form for NewSize==MaxNewSize). G1 will use its internal
  97 // heuristics to calculate the actual young gen size, so these options
  98 // basically only limit the range within which G1 can pick a young gen
  99 // size. Also, these are general options taking byte sizes. G1 will
 100 // internally work with a number of regions instead. So, some rounding
 101 // will occur.
 102 //
 103 // If nothing related to the the young gen size is set on the command
 104 // line we should allow the young gen to be between
 105 // G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
 106 // heap size. This means that every time the heap size changes the
 107 // limits for the young gen size will be updated.
 108 //
 109 // If only -XX:NewSize is set we should use the specified value as the
 110 // minimum size for young gen. Still using G1DefaultMaxNewGenPercent
 111 // of the heap as maximum.
 112 //
 113 // If only -XX:MaxNewSize is set we should use the specified value as the
 114 // maximum size for young gen. Still using G1DefaultMinNewGenPercent
 115 // of the heap as minimum.
 116 //
 117 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
 118 // No updates when the heap size changes. There is a special case when
 119 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
 120 // different heuristic for calculating the collection set when we do mixed
 121 // collection.
 122 //
 123 // If only -XX:NewRatio is set we should use the specified ratio of the heap
 124 // as both min and max. This will be interpreted as "fixed" just like the
 125 // NewSize==MaxNewSize case above. But we will update the min and max
 126 // everytime the heap size changes.
 127 //
 128 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
 129 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
 130 class G1YoungGenSizer : public CHeapObj {
 131 private:
 132   enum SizerKind {
 133     SizerDefaults,
 134     SizerNewSizeOnly,
 135     SizerMaxNewSizeOnly,
 136     SizerMaxAndNewSize,
 137     SizerNewRatio
 138   };
 139   SizerKind _sizer_kind;
 140   uint _min_desired_young_length;
 141   uint _max_desired_young_length;
 142   bool _adaptive_size;
 143   uint calculate_default_min_length(uint new_number_of_heap_regions);
 144   uint calculate_default_max_length(uint new_number_of_heap_regions);
 145 
 146 public:
 147   G1YoungGenSizer();
 148   void heap_size_changed(uint new_number_of_heap_regions);
 149   uint min_desired_young_length() {
 150     return _min_desired_young_length;
 151   }
 152   uint max_desired_young_length() {
 153     return _max_desired_young_length;
 154   }
 155   bool adaptive_young_list_length() {
 156     return _adaptive_size;
 157   }
 158 };
 159 
 160 class G1CollectorPolicy: public CollectorPolicy {
 161 private:
 162   // either equal to the number of parallel threads, if ParallelGCThreads
 163   // has been set, or 1 otherwise
 164   int _parallel_gc_threads;
 165 
 166   // The number of GC threads currently active.
 167   uintx _no_of_gc_threads;
 168 
 169   enum SomePrivateConstants {
 170     NumPrevPausesForHeuristics = 10
 171   };
 172 
 173   G1MMUTracker* _mmu_tracker;
 174 
 175   void initialize_flags();
 176 
 177   void initialize_all() {
 178     initialize_flags();
 179     initialize_size_info();
 180     initialize_perm_generation(PermGen::MarkSweepCompact);
 181   }
 182 
 183   CollectionSetChooser* _collectionSetChooser;
 184 
 185   double _cur_collection_start_sec;
 186   size_t _cur_collection_pause_used_at_start_bytes;
 187   uint   _cur_collection_pause_used_regions_at_start;
 188   double _cur_collection_par_time_ms;
 189 
 190   double _cur_collection_code_root_fixup_time_ms;
 191 
 192   double _cur_clear_ct_time_ms;
 193   double _cur_ref_proc_time_ms;
 194   double _cur_ref_enq_time_ms;
 195 
 196 #ifndef PRODUCT
 197   // Card Table Count Cache stats
 198   double _min_clear_cc_time_ms;         // min
 199   double _max_clear_cc_time_ms;         // max
 200   double _cur_clear_cc_time_ms;         // clearing time during current pause
 201   double _cum_clear_cc_time_ms;         // cummulative clearing time
 202   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 203 #endif
 204 
 205   // These exclude marking times.
 206   TruncatedSeq* _recent_gc_times_ms;
 207 
 208   TruncatedSeq* _concurrent_mark_remark_times_ms;
 209   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 210 
 211   TraceGen0TimeData _trace_gen0_time_data;
 212   TraceGen1TimeData _trace_gen1_time_data;
 213 
 214   double _stop_world_start;
 215 
 216   double* _par_last_gc_worker_start_times_ms;
 217   double* _par_last_ext_root_scan_times_ms;
 218   double* _par_last_satb_filtering_times_ms;
 219   double* _par_last_update_rs_times_ms;
 220   double* _par_last_update_rs_processed_buffers;
 221   double* _par_last_scan_rs_times_ms;
 222   double* _par_last_obj_copy_times_ms;
 223   double* _par_last_termination_times_ms;
 224   double* _par_last_termination_attempts;
 225   double* _par_last_gc_worker_end_times_ms;
 226   double* _par_last_gc_worker_times_ms;
 227 
 228   // Each workers 'other' time i.e. the elapsed time of the parallel
 229   // code executed by a worker minus the sum of the individual sub-phase
 230   // times for that worker thread.
 231   double* _par_last_gc_worker_other_times_ms;
 232 
 233   // indicates whether we are in young or mixed GC mode
 234   bool _gcs_are_young;
 235 
 236   uint _young_list_target_length;
 237   uint _young_list_fixed_length;
 238   size_t _prev_eden_capacity; // used for logging
 239 
 240   // The max number of regions we can extend the eden by while the GC
 241   // locker is active. This should be >= _young_list_target_length;
 242   uint _young_list_max_length;
 243 
 244   bool                  _last_gc_was_young;
 245 
 246   unsigned              _young_pause_num;
 247   unsigned              _mixed_pause_num;
 248 
 249   bool                  _during_marking;
 250   bool                  _in_marking_window;
 251   bool                  _in_marking_window_im;
 252 
 253   SurvRateGroup*        _short_lived_surv_rate_group;
 254   SurvRateGroup*        _survivor_surv_rate_group;
 255   // add here any more surv rate groups
 256 
 257   double                _gc_overhead_perc;
 258 
 259   double _reserve_factor;
 260   uint _reserve_regions;
 261 
 262   bool during_marking() {
 263     return _during_marking;
 264   }
 265 
 266 private:
 267   enum PredictionConstants {
 268     TruncatedSeqLength = 10
 269   };
 270 
 271   TruncatedSeq* _alloc_rate_ms_seq;
 272   double        _prev_collection_pause_end_ms;
 273 
 274   TruncatedSeq* _pending_card_diff_seq;
 275   TruncatedSeq* _rs_length_diff_seq;
 276   TruncatedSeq* _cost_per_card_ms_seq;
 277   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 278   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 279   TruncatedSeq* _cost_per_entry_ms_seq;
 280   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 281   TruncatedSeq* _cost_per_byte_ms_seq;
 282   TruncatedSeq* _constant_other_time_ms_seq;
 283   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 284   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 285 
 286   TruncatedSeq* _pending_cards_seq;
 287   TruncatedSeq* _rs_lengths_seq;
 288 
 289   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 290 
 291   G1YoungGenSizer* _young_gen_sizer;
 292 
 293   uint _eden_cset_region_length;
 294   uint _survivor_cset_region_length;
 295   uint _old_cset_region_length;
 296 
 297   void init_cset_region_lengths(uint eden_cset_region_length,
 298                                 uint survivor_cset_region_length);
 299 
 300   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
 301   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
 302   uint old_cset_region_length()      { return _old_cset_region_length;      }
 303 
 304   uint _free_regions_at_end_of_collection;
 305 
 306   size_t _recorded_rs_lengths;
 307   size_t _max_rs_lengths;
 308 
 309   double _recorded_young_free_cset_time_ms;
 310   double _recorded_non_young_free_cset_time_ms;
 311 
 312   double _sigma;
 313 
 314   size_t _rs_lengths_prediction;
 315 
 316   double sigma() { return _sigma; }
 317 
 318   // A function that prevents us putting too much stock in small sample
 319   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 320   // of samples.  5 or more samples yields one; fewer scales linearly from
 321   // 2.0 at 1 sample to 1.0 at 5.
 322   double confidence_factor(int samples) {
 323     if (samples > 4) return 1.0;
 324     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 325   }
 326 
 327   double get_new_neg_prediction(TruncatedSeq* seq) {
 328     return seq->davg() - sigma() * seq->dsd();
 329   }
 330 
 331 #ifndef PRODUCT
 332   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 333 #endif // PRODUCT
 334 
 335   void adjust_concurrent_refinement(double update_rs_time,
 336                                     double update_rs_processed_buffers,
 337                                     double goal_ms);
 338 
 339   uintx no_of_gc_threads() { return _no_of_gc_threads; }
 340   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
 341 
 342   double _pause_time_target_ms;
 343   double _recorded_young_cset_choice_time_ms;
 344   double _recorded_non_young_cset_choice_time_ms;
 345   size_t _pending_cards;
 346   size_t _max_pending_cards;
 347 
 348 public:
 349   // Accessors
 350 
 351   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 352     hr->set_young();
 353     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 354     hr->set_young_index_in_cset(young_index_in_cset);
 355   }
 356 
 357   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 358     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
 359     hr->install_surv_rate_group(_survivor_surv_rate_group);
 360     hr->set_young_index_in_cset(young_index_in_cset);
 361   }
 362 
 363 #ifndef PRODUCT
 364   bool verify_young_ages();
 365 #endif // PRODUCT
 366 
 367   double get_new_prediction(TruncatedSeq* seq) {
 368     return MAX2(seq->davg() + sigma() * seq->dsd(),
 369                 seq->davg() * confidence_factor(seq->num()));
 370   }
 371 
 372   void record_max_rs_lengths(size_t rs_lengths) {
 373     _max_rs_lengths = rs_lengths;
 374   }
 375 
 376   size_t predict_pending_card_diff() {
 377     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 378     if (prediction < 0.00001) {
 379       return 0;
 380     } else {
 381       return (size_t) prediction;
 382     }
 383   }
 384 
 385   size_t predict_pending_cards() {
 386     size_t max_pending_card_num = _g1->max_pending_card_num();
 387     size_t diff = predict_pending_card_diff();
 388     size_t prediction;
 389     if (diff > max_pending_card_num) {
 390       prediction = max_pending_card_num;
 391     } else {
 392       prediction = max_pending_card_num - diff;
 393     }
 394 
 395     return prediction;
 396   }
 397 
 398   size_t predict_rs_length_diff() {
 399     return (size_t) get_new_prediction(_rs_length_diff_seq);
 400   }
 401 
 402   double predict_alloc_rate_ms() {
 403     return get_new_prediction(_alloc_rate_ms_seq);
 404   }
 405 
 406   double predict_cost_per_card_ms() {
 407     return get_new_prediction(_cost_per_card_ms_seq);
 408   }
 409 
 410   double predict_rs_update_time_ms(size_t pending_cards) {
 411     return (double) pending_cards * predict_cost_per_card_ms();
 412   }
 413 
 414   double predict_young_cards_per_entry_ratio() {
 415     return get_new_prediction(_young_cards_per_entry_ratio_seq);
 416   }
 417 
 418   double predict_mixed_cards_per_entry_ratio() {
 419     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
 420       return predict_young_cards_per_entry_ratio();
 421     } else {
 422       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
 423     }
 424   }
 425 
 426   size_t predict_young_card_num(size_t rs_length) {
 427     return (size_t) ((double) rs_length *
 428                      predict_young_cards_per_entry_ratio());
 429   }
 430 
 431   size_t predict_non_young_card_num(size_t rs_length) {
 432     return (size_t) ((double) rs_length *
 433                      predict_mixed_cards_per_entry_ratio());
 434   }
 435 
 436   double predict_rs_scan_time_ms(size_t card_num) {
 437     if (gcs_are_young()) {
 438       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 439     } else {
 440       return predict_mixed_rs_scan_time_ms(card_num);
 441     }
 442   }
 443 
 444   double predict_mixed_rs_scan_time_ms(size_t card_num) {
 445     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
 446       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 447     } else {
 448       return (double) (card_num *
 449                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
 450     }
 451   }
 452 
 453   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 454     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
 455       return (1.1 * (double) bytes_to_copy) *
 456               get_new_prediction(_cost_per_byte_ms_seq);
 457     } else {
 458       return (double) bytes_to_copy *
 459              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 460     }
 461   }
 462 
 463   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 464     if (_in_marking_window && !_in_marking_window_im) {
 465       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 466     } else {
 467       return (double) bytes_to_copy *
 468               get_new_prediction(_cost_per_byte_ms_seq);
 469     }
 470   }
 471 
 472   double predict_constant_other_time_ms() {
 473     return get_new_prediction(_constant_other_time_ms_seq);
 474   }
 475 
 476   double predict_young_other_time_ms(size_t young_num) {
 477     return (double) young_num *
 478            get_new_prediction(_young_other_cost_per_region_ms_seq);
 479   }
 480 
 481   double predict_non_young_other_time_ms(size_t non_young_num) {
 482     return (double) non_young_num *
 483            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 484   }
 485 
 486   double predict_base_elapsed_time_ms(size_t pending_cards);
 487   double predict_base_elapsed_time_ms(size_t pending_cards,
 488                                       size_t scanned_cards);
 489   size_t predict_bytes_to_copy(HeapRegion* hr);
 490   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 491 
 492   void set_recorded_rs_lengths(size_t rs_lengths);
 493 
 494   uint cset_region_length()       { return young_cset_region_length() +
 495                                            old_cset_region_length(); }
 496   uint young_cset_region_length() { return eden_cset_region_length() +
 497                                            survivor_cset_region_length(); }
 498 
 499   void record_young_free_cset_time_ms(double time_ms) {
 500     _recorded_young_free_cset_time_ms = time_ms;
 501   }
 502 
 503   void record_non_young_free_cset_time_ms(double time_ms) {
 504     _recorded_non_young_free_cset_time_ms = time_ms;
 505   }
 506 
 507   double predict_survivor_regions_evac_time();
 508 
 509   void cset_regions_freed() {
 510     bool propagate = _last_gc_was_young && !_in_marking_window;
 511     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 512     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 513     // also call it on any more surv rate groups
 514   }
 515 
 516   G1MMUTracker* mmu_tracker() {
 517     return _mmu_tracker;
 518   }
 519 
 520   double max_pause_time_ms() {
 521     return _mmu_tracker->max_gc_time() * 1000.0;
 522   }
 523 
 524   double predict_remark_time_ms() {
 525     return get_new_prediction(_concurrent_mark_remark_times_ms);
 526   }
 527 
 528   double predict_cleanup_time_ms() {
 529     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 530   }
 531 
 532   // Returns an estimate of the survival rate of the region at yg-age
 533   // "yg_age".
 534   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 535     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 536     if (seq->num() == 0)
 537       gclog_or_tty->print("BARF! age is %d", age);
 538     guarantee( seq->num() > 0, "invariant" );
 539     double pred = get_new_prediction(seq);
 540     if (pred > 1.0)
 541       pred = 1.0;
 542     return pred;
 543   }
 544 
 545   double predict_yg_surv_rate(int age) {
 546     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 547   }
 548 
 549   double accum_yg_surv_rate_pred(int age) {
 550     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 551   }
 552 
 553 private:
 554   void print_stats(int level, const char* str, double value);
 555   void print_stats(int level, const char* str, double value, int workers);
 556   void print_stats(int level, const char* str, int value);
 557 
 558   void print_par_stats(int level, const char* str, double* data, bool showDecimals = true);
 559 
 560   double avg_value (double* data);
 561   double max_value (double* data);
 562   double sum_of_values (double* data);
 563   double max_sum (double* data1, double* data2);
 564 
 565   double _last_pause_time_ms;
 566 
 567   size_t _bytes_in_collection_set_before_gc;
 568   size_t _bytes_copied_during_gc;
 569 
 570   // Used to count used bytes in CS.
 571   friend class CountCSClosure;
 572 
 573   // Statistics kept per GC stoppage, pause or full.
 574   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 575 
 576   // Add a new GC of the given duration and end time to the record.
 577   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 578 
 579   // The head of the list (via "next_in_collection_set()") representing the
 580   // current collection set. Set from the incrementally built collection
 581   // set at the start of the pause.
 582   HeapRegion* _collection_set;
 583 
 584   // The number of bytes in the collection set before the pause. Set from
 585   // the incrementally built collection set at the start of an evacuation
 586   // pause.
 587   size_t _collection_set_bytes_used_before;
 588 
 589   // The associated information that is maintained while the incremental
 590   // collection set is being built with young regions. Used to populate
 591   // the recorded info for the evacuation pause.
 592 
 593   enum CSetBuildType {
 594     Active,             // We are actively building the collection set
 595     Inactive            // We are not actively building the collection set
 596   };
 597 
 598   CSetBuildType _inc_cset_build_state;
 599 
 600   // The head of the incrementally built collection set.
 601   HeapRegion* _inc_cset_head;
 602 
 603   // The tail of the incrementally built collection set.
 604   HeapRegion* _inc_cset_tail;
 605 
 606   // The number of bytes in the incrementally built collection set.
 607   // Used to set _collection_set_bytes_used_before at the start of
 608   // an evacuation pause.
 609   size_t _inc_cset_bytes_used_before;
 610 
 611   // Used to record the highest end of heap region in collection set
 612   HeapWord* _inc_cset_max_finger;
 613 
 614   // The RSet lengths recorded for regions in the CSet. It is updated
 615   // by the thread that adds a new region to the CSet. We assume that
 616   // only one thread can be allocating a new CSet region (currently,
 617   // it does so after taking the Heap_lock) hence no need to
 618   // synchronize updates to this field.
 619   size_t _inc_cset_recorded_rs_lengths;
 620 
 621   // A concurrent refinement thread periodcially samples the young
 622   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
 623   // the RSets grow. Instead of having to syncronize updates to that
 624   // field we accumulate them in this field and add it to
 625   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
 626   ssize_t _inc_cset_recorded_rs_lengths_diffs;
 627 
 628   // The predicted elapsed time it will take to collect the regions in
 629   // the CSet. This is updated by the thread that adds a new region to
 630   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 631   // MT-safety assumptions.
 632   double _inc_cset_predicted_elapsed_time_ms;
 633 
 634   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 635   double _inc_cset_predicted_elapsed_time_ms_diffs;
 636 
 637   // Stash a pointer to the g1 heap.
 638   G1CollectedHeap* _g1;
 639 
 640   // The ratio of gc time to elapsed time, computed over recent pauses.
 641   double _recent_avg_pause_time_ratio;
 642 
 643   double recent_avg_pause_time_ratio() {
 644     return _recent_avg_pause_time_ratio;
 645   }
 646 
 647   // At the end of a pause we check the heap occupancy and we decide
 648   // whether we will start a marking cycle during the next pause. If
 649   // we decide that we want to do that, we will set this parameter to
 650   // true. So, this parameter will stay true between the end of a
 651   // pause and the beginning of a subsequent pause (not necessarily
 652   // the next one, see the comments on the next field) when we decide
 653   // that we will indeed start a marking cycle and do the initial-mark
 654   // work.
 655   volatile bool _initiate_conc_mark_if_possible;
 656 
 657   // If initiate_conc_mark_if_possible() is set at the beginning of a
 658   // pause, it is a suggestion that the pause should start a marking
 659   // cycle by doing the initial-mark work. However, it is possible
 660   // that the concurrent marking thread is still finishing up the
 661   // previous marking cycle (e.g., clearing the next marking
 662   // bitmap). If that is the case we cannot start a new cycle and
 663   // we'll have to wait for the concurrent marking thread to finish
 664   // what it is doing. In this case we will postpone the marking cycle
 665   // initiation decision for the next pause. When we eventually decide
 666   // to start a cycle, we will set _during_initial_mark_pause which
 667   // will stay true until the end of the initial-mark pause and it's
 668   // the condition that indicates that a pause is doing the
 669   // initial-mark work.
 670   volatile bool _during_initial_mark_pause;
 671 
 672   bool _last_young_gc;
 673 
 674   // This set of variables tracks the collector efficiency, in order to
 675   // determine whether we should initiate a new marking.
 676   double _cur_mark_stop_world_time_ms;
 677   double _mark_remark_start_sec;
 678   double _mark_cleanup_start_sec;
 679   double _root_region_scan_wait_time_ms;
 680 
 681   // Update the young list target length either by setting it to the
 682   // desired fixed value or by calculating it using G1's pause
 683   // prediction model. If no rs_lengths parameter is passed, predict
 684   // the RS lengths using the prediction model, otherwise use the
 685   // given rs_lengths as the prediction.
 686   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 687 
 688   // Calculate and return the minimum desired young list target
 689   // length. This is the minimum desired young list length according
 690   // to the user's inputs.
 691   uint calculate_young_list_desired_min_length(uint base_min_length);
 692 
 693   // Calculate and return the maximum desired young list target
 694   // length. This is the maximum desired young list length according
 695   // to the user's inputs.
 696   uint calculate_young_list_desired_max_length();
 697 
 698   // Calculate and return the maximum young list target length that
 699   // can fit into the pause time goal. The parameters are: rs_lengths
 700   // represent the prediction of how large the young RSet lengths will
 701   // be, base_min_length is the alreay existing number of regions in
 702   // the young list, min_length and max_length are the desired min and
 703   // max young list length according to the user's inputs.
 704   uint calculate_young_list_target_length(size_t rs_lengths,
 705                                           uint base_min_length,
 706                                           uint desired_min_length,
 707                                           uint desired_max_length);
 708 
 709   // Check whether a given young length (young_length) fits into the
 710   // given target pause time and whether the prediction for the amount
 711   // of objects to be copied for the given length will fit into the
 712   // given free space (expressed by base_free_regions).  It is used by
 713   // calculate_young_list_target_length().
 714   bool predict_will_fit(uint young_length, double base_time_ms,
 715                         uint base_free_regions, double target_pause_time_ms);
 716 
 717   // Count the number of bytes used in the CS.
 718   void count_CS_bytes_used();
 719 
 720 public:
 721 
 722   G1CollectorPolicy();
 723 
 724   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 725 
 726   virtual CollectorPolicy::Name kind() {
 727     return CollectorPolicy::G1CollectorPolicyKind;
 728   }
 729 
 730   // Check the current value of the young list RSet lengths and
 731   // compare it against the last prediction. If the current value is
 732   // higher, recalculate the young list target length prediction.
 733   void revise_young_list_target_length_if_necessary();
 734 
 735   size_t bytes_in_collection_set() {
 736     return _bytes_in_collection_set_before_gc;
 737   }
 738 
 739   // This should be called after the heap is resized.
 740   void record_new_heap_size(uint new_number_of_regions);
 741 
 742   void init();
 743 
 744   // Create jstat counters for the policy.
 745   virtual void initialize_gc_policy_counters();
 746 
 747   virtual HeapWord* mem_allocate_work(size_t size,
 748                                       bool is_tlab,
 749                                       bool* gc_overhead_limit_was_exceeded);
 750 
 751   // This method controls how a collector handles one or more
 752   // of its generations being fully allocated.
 753   virtual HeapWord* satisfy_failed_allocation(size_t size,
 754                                               bool is_tlab);
 755 
 756   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 757 
 758   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 759 
 760   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 761 
 762   // Update the heuristic info to record a collection pause of the given
 763   // start time, where the given number of bytes were used at the start.
 764   // This may involve changing the desired size of a collection set.
 765 
 766   void record_stop_world_start();
 767 
 768   void record_collection_pause_start(double start_time_sec, size_t start_used);
 769 
 770   // Must currently be called while the world is stopped.
 771   void record_concurrent_mark_init_end(double
 772                                            mark_init_elapsed_time_ms);
 773 
 774   void record_root_region_scan_wait_time(double time_ms) {
 775     _root_region_scan_wait_time_ms = time_ms;
 776   }
 777 
 778   void record_concurrent_mark_remark_start();
 779   void record_concurrent_mark_remark_end();
 780 
 781   void record_concurrent_mark_cleanup_start();
 782   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
 783   void record_concurrent_mark_cleanup_completed();
 784 
 785   void record_concurrent_pause();
 786   void record_concurrent_pause_end();
 787 
 788   void record_collection_pause_end(int no_of_gc_threads);
 789   void print_heap_transition();
 790 
 791   // Record the fact that a full collection occurred.
 792   void record_full_collection_start();
 793   void record_full_collection_end();
 794 
 795   void record_gc_worker_start_time(int worker_i, double ms) {
 796     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 797   }
 798 
 799   void record_ext_root_scan_time(int worker_i, double ms) {
 800     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 801   }
 802 
 803   void record_satb_filtering_time(int worker_i, double ms) {
 804     _par_last_satb_filtering_times_ms[worker_i] = ms;
 805   }
 806 
 807   void record_update_rs_time(int thread, double ms) {
 808     _par_last_update_rs_times_ms[thread] = ms;
 809   }
 810 
 811   void record_update_rs_processed_buffers (int thread,
 812                                            double processed_buffers) {
 813     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 814   }
 815 
 816   void record_scan_rs_time(int thread, double ms) {
 817     _par_last_scan_rs_times_ms[thread] = ms;
 818   }
 819 
 820   void reset_obj_copy_time(int thread) {
 821     _par_last_obj_copy_times_ms[thread] = 0.0;
 822   }
 823 
 824   void reset_obj_copy_time() {
 825     reset_obj_copy_time(0);
 826   }
 827 
 828   void record_obj_copy_time(int thread, double ms) {
 829     _par_last_obj_copy_times_ms[thread] += ms;
 830   }
 831 
 832   void record_termination(int thread, double ms, size_t attempts) {
 833     _par_last_termination_times_ms[thread] = ms;
 834     _par_last_termination_attempts[thread] = (double) attempts;
 835   }
 836 
 837   void record_gc_worker_end_time(int worker_i, double ms) {
 838     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 839   }
 840 
 841   void record_pause_time_ms(double ms) {
 842     _last_pause_time_ms = ms;
 843   }
 844 
 845   void record_clear_ct_time(double ms) {
 846     _cur_clear_ct_time_ms = ms;
 847   }
 848 
 849   void record_par_time(double ms) {
 850     _cur_collection_par_time_ms = ms;
 851   }
 852 
 853   void record_code_root_fixup_time(double ms) {
 854     _cur_collection_code_root_fixup_time_ms = ms;
 855   }
 856 
 857   void record_ref_proc_time(double ms) {
 858     _cur_ref_proc_time_ms = ms;
 859   }
 860 
 861   void record_ref_enq_time(double ms) {
 862     _cur_ref_enq_time_ms = ms;
 863   }
 864 
 865 #ifndef PRODUCT
 866   void record_cc_clear_time(double ms) {
 867     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
 868       _min_clear_cc_time_ms = ms;
 869     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
 870       _max_clear_cc_time_ms = ms;
 871     _cur_clear_cc_time_ms = ms;
 872     _cum_clear_cc_time_ms += ms;
 873     _num_cc_clears++;
 874   }
 875 #endif
 876 
 877   // Record how much space we copied during a GC. This is typically
 878   // called when a GC alloc region is being retired.
 879   void record_bytes_copied_during_gc(size_t bytes) {
 880     _bytes_copied_during_gc += bytes;
 881   }
 882 
 883   // The amount of space we copied during a GC.
 884   size_t bytes_copied_during_gc() {
 885     return _bytes_copied_during_gc;
 886   }
 887 
 888   // Determine whether there are candidate regions so that the
 889   // next GC should be mixed. The two action strings are used
 890   // in the ergo output when the method returns true or false.
 891   bool next_gc_should_be_mixed(const char* true_action_str,
 892                                const char* false_action_str);
 893 
 894   // Choose a new collection set.  Marks the chosen regions as being
 895   // "in_collection_set", and links them together.  The head and number of
 896   // the collection set are available via access methods.
 897   void finalize_cset(double target_pause_time_ms);
 898 
 899   // The head of the list (via "next_in_collection_set()") representing the
 900   // current collection set.
 901   HeapRegion* collection_set() { return _collection_set; }
 902 
 903   void clear_collection_set() { _collection_set = NULL; }
 904 
 905   // Add old region "hr" to the CSet.
 906   void add_old_region_to_cset(HeapRegion* hr);
 907 
 908   // Incremental CSet Support
 909 
 910   // The head of the incrementally built collection set.
 911   HeapRegion* inc_cset_head() { return _inc_cset_head; }
 912 
 913   // The tail of the incrementally built collection set.
 914   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
 915 
 916   // Initialize incremental collection set info.
 917   void start_incremental_cset_building();
 918 
 919   // Perform any final calculations on the incremental CSet fields
 920   // before we can use them.
 921   void finalize_incremental_cset_building();
 922 
 923   void clear_incremental_cset() {
 924     _inc_cset_head = NULL;
 925     _inc_cset_tail = NULL;
 926   }
 927 
 928   // Stop adding regions to the incremental collection set
 929   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
 930 
 931   // Add information about hr to the aggregated information for the
 932   // incrementally built collection set.
 933   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
 934 
 935   // Update information about hr in the aggregated information for
 936   // the incrementally built collection set.
 937   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 938 
 939 private:
 940   // Update the incremental cset information when adding a region
 941   // (should not be called directly).
 942   void add_region_to_incremental_cset_common(HeapRegion* hr);
 943 
 944 public:
 945   // Add hr to the LHS of the incremental collection set.
 946   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 947 
 948   // Add hr to the RHS of the incremental collection set.
 949   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 950 
 951 #ifndef PRODUCT
 952   void print_collection_set(HeapRegion* list_head, outputStream* st);
 953 #endif // !PRODUCT
 954 
 955   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
 956   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
 957   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
 958 
 959   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
 960   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
 961   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
 962 
 963   // This sets the initiate_conc_mark_if_possible() flag to start a
 964   // new cycle, as long as we are not already in one. It's best if it
 965   // is called during a safepoint when the test whether a cycle is in
 966   // progress or not is stable.
 967   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 968 
 969   // This is called at the very beginning of an evacuation pause (it
 970   // has to be the first thing that the pause does). If
 971   // initiate_conc_mark_if_possible() is true, and the concurrent
 972   // marking thread has completed its work during the previous cycle,
 973   // it will set during_initial_mark_pause() to so that the pause does
 974   // the initial-mark work and start a marking cycle.
 975   void decide_on_conc_mark_initiation();
 976 
 977   // If an expansion would be appropriate, because recent GC overhead had
 978   // exceeded the desired limit, return an amount to expand by.
 979   size_t expansion_amount();
 980 
 981   // Print tracing information.
 982   void print_tracing_info() const;
 983 
 984   // Print stats on young survival ratio
 985   void print_yg_surv_rate_info() const;
 986 
 987   void finished_recalculating_age_indexes(bool is_survivors) {
 988     if (is_survivors) {
 989       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 990     } else {
 991       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 992     }
 993     // do that for any other surv rate groups
 994   }
 995 
 996   bool is_young_list_full() {
 997     uint young_list_length = _g1->young_list()->length();
 998     uint young_list_target_length = _young_list_target_length;
 999     return young_list_length >= young_list_target_length;
1000   }
1001 
1002   bool can_expand_young_list() {
1003     uint young_list_length = _g1->young_list()->length();
1004     uint young_list_max_length = _young_list_max_length;
1005     return young_list_length < young_list_max_length;
1006   }
1007 
1008   uint young_list_max_length() {
1009     return _young_list_max_length;
1010   }
1011 
1012   bool gcs_are_young() {
1013     return _gcs_are_young;
1014   }
1015   void set_gcs_are_young(bool gcs_are_young) {
1016     _gcs_are_young = gcs_are_young;
1017   }
1018 
1019   bool adaptive_young_list_length() {
1020     return _young_gen_sizer->adaptive_young_list_length();
1021   }
1022 
1023 private:
1024   //
1025   // Survivor regions policy.
1026   //
1027 
1028   // Current tenuring threshold, set to 0 if the collector reaches the
1029   // maximum amount of suvivors regions.
1030   int _tenuring_threshold;
1031 
1032   // The limit on the number of regions allocated for survivors.
1033   uint _max_survivor_regions;
1034 
1035   // For reporting purposes.
1036   size_t _eden_bytes_before_gc;
1037   size_t _survivor_bytes_before_gc;
1038   size_t _capacity_before_gc;
1039 
1040   // The amount of survor regions after a collection.
1041   uint _recorded_survivor_regions;
1042   // List of survivor regions.
1043   HeapRegion* _recorded_survivor_head;
1044   HeapRegion* _recorded_survivor_tail;
1045 
1046   ageTable _survivors_age_table;
1047 
1048 public:
1049 
1050   inline GCAllocPurpose
1051     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1052       if (age < _tenuring_threshold && src_region->is_young()) {
1053         return GCAllocForSurvived;
1054       } else {
1055         return GCAllocForTenured;
1056       }
1057   }
1058 
1059   inline bool track_object_age(GCAllocPurpose purpose) {
1060     return purpose == GCAllocForSurvived;
1061   }
1062 
1063   static const uint REGIONS_UNLIMITED = (uint) -1;
1064 
1065   uint max_regions(int purpose);
1066 
1067   // The limit on regions for a particular purpose is reached.
1068   void note_alloc_region_limit_reached(int purpose) {
1069     if (purpose == GCAllocForSurvived) {
1070       _tenuring_threshold = 0;
1071     }
1072   }
1073 
1074   void note_start_adding_survivor_regions() {
1075     _survivor_surv_rate_group->start_adding_regions();
1076   }
1077 
1078   void note_stop_adding_survivor_regions() {
1079     _survivor_surv_rate_group->stop_adding_regions();
1080   }
1081 
1082   void record_survivor_regions(uint regions,
1083                                HeapRegion* head,
1084                                HeapRegion* tail) {
1085     _recorded_survivor_regions = regions;
1086     _recorded_survivor_head    = head;
1087     _recorded_survivor_tail    = tail;
1088   }
1089 
1090   uint recorded_survivor_regions() {
1091     return _recorded_survivor_regions;
1092   }
1093 
1094   void record_thread_age_table(ageTable* age_table) {
1095     _survivors_age_table.merge_par(age_table);
1096   }
1097 
1098   void update_max_gc_locker_expansion();
1099 
1100   // Calculates survivor space parameters.
1101   void update_survivors_policy();
1102 
1103 };
1104 
1105 // This should move to some place more general...
1106 
1107 // If we have "n" measurements, and we've kept track of their "sum" and the
1108 // "sum_of_squares" of the measurements, this returns the variance of the
1109 // sequence.
1110 inline double variance(int n, double sum_of_squares, double sum) {
1111   double n_d = (double)n;
1112   double avg = sum/n_d;
1113   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1114 }
1115 
1116 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP