1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 
  40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
  41 // over and over again and introducing subtle problems through small typos and
  42 // cutting and pasting mistakes. The macros below introduces a number
  43 // sequnce into the following two classes and the methods that access it.
  44 
  45 #define define_num_seq(name)                                                  \
  46 private:                                                                      \
  47   NumberSeq _all_##name##_times_ms;                                           \
  48 public:                                                                       \
  49   void record_##name##_time_ms(double ms) {                                   \
  50     _all_##name##_times_ms.add(ms);                                           \
  51   }                                                                           \
  52   NumberSeq* get_##name##_seq() {                                             \
  53     return &_all_##name##_times_ms;                                           \
  54   }
  55 
  56 class MainBodySummary;
  57 
  58 class PauseSummary: public CHeapObj {
  59   define_num_seq(total)
  60     define_num_seq(other)
  61 
  62 public:
  63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
  64 };
  65 
  66 class MainBodySummary: public CHeapObj {
  67   define_num_seq(root_region_scan_wait)
  68   define_num_seq(parallel) // parallel only
  69     define_num_seq(ext_root_scan)
  70     define_num_seq(satb_filtering)
  71     define_num_seq(update_rs)
  72     define_num_seq(scan_rs)
  73     define_num_seq(obj_copy)
  74     define_num_seq(termination) // parallel only
  75     define_num_seq(parallel_other) // parallel only
  76   define_num_seq(clear_ct)
  77 };
  78 
  79 class Summary: public PauseSummary,
  80                public MainBodySummary {
  81 public:
  82   virtual MainBodySummary*    main_body_summary()    { return this; }
  83 };
  84 
  85 // There are three command line options related to the young gen size:
  86 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
  87 // just a short form for NewSize==MaxNewSize). G1 will use its internal
  88 // heuristics to calculate the actual young gen size, so these options
  89 // basically only limit the range within which G1 can pick a young gen
  90 // size. Also, these are general options taking byte sizes. G1 will
  91 // internally work with a number of regions instead. So, some rounding
  92 // will occur.
  93 //
  94 // If nothing related to the the young gen size is set on the command
  95 // line we should allow the young gen to be between
  96 // G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
  97 // heap size. This means that every time the heap size changes the
  98 // limits for the young gen size will be updated.
  99 //
 100 // If only -XX:NewSize is set we should use the specified value as the
 101 // minimum size for young gen. Still using G1DefaultMaxNewGenPercent
 102 // of the heap as maximum.
 103 //
 104 // If only -XX:MaxNewSize is set we should use the specified value as the
 105 // maximum size for young gen. Still using G1DefaultMinNewGenPercent
 106 // of the heap as minimum.
 107 //
 108 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
 109 // No updates when the heap size changes. There is a special case when
 110 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
 111 // different heuristic for calculating the collection set when we do mixed
 112 // collection.
 113 //
 114 // If only -XX:NewRatio is set we should use the specified ratio of the heap
 115 // as both min and max. This will be interpreted as "fixed" just like the
 116 // NewSize==MaxNewSize case above. But we will update the min and max
 117 // everytime the heap size changes.
 118 //
 119 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
 120 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
 121 class G1YoungGenSizer : public CHeapObj {
 122 private:
 123   enum SizerKind {
 124     SizerDefaults,
 125     SizerNewSizeOnly,
 126     SizerMaxNewSizeOnly,
 127     SizerMaxAndNewSize,
 128     SizerNewRatio
 129   };
 130   SizerKind _sizer_kind;
 131   uint _min_desired_young_length;
 132   uint _max_desired_young_length;
 133   bool _adaptive_size;
 134   uint calculate_default_min_length(uint new_number_of_heap_regions);
 135   uint calculate_default_max_length(uint new_number_of_heap_regions);
 136 
 137 public:
 138   G1YoungGenSizer();
 139   void heap_size_changed(uint new_number_of_heap_regions);
 140   uint min_desired_young_length() {
 141     return _min_desired_young_length;
 142   }
 143   uint max_desired_young_length() {
 144     return _max_desired_young_length;
 145   }
 146   bool adaptive_young_list_length() {
 147     return _adaptive_size;
 148   }
 149 };
 150 
 151 class G1CollectorPolicy: public CollectorPolicy {
 152 private:
 153   // either equal to the number of parallel threads, if ParallelGCThreads
 154   // has been set, or 1 otherwise
 155   int _parallel_gc_threads;
 156 
 157   // The number of GC threads currently active.
 158   uintx _no_of_gc_threads;
 159 
 160   enum SomePrivateConstants {
 161     NumPrevPausesForHeuristics = 10
 162   };
 163 
 164   G1MMUTracker* _mmu_tracker;
 165 
 166   void initialize_flags();
 167 
 168   void initialize_all() {
 169     initialize_flags();
 170     initialize_size_info();
 171     initialize_perm_generation(PermGen::MarkSweepCompact);
 172   }
 173 
 174   CollectionSetChooser* _collectionSetChooser;
 175 
 176   double _cur_collection_start_sec;
 177   size_t _cur_collection_pause_used_at_start_bytes;
 178   uint   _cur_collection_pause_used_regions_at_start;
 179   double _cur_collection_par_time_ms;
 180 
 181   double _cur_collection_code_root_fixup_time_ms;
 182 
 183   double _cur_clear_ct_time_ms;
 184   double _cur_ref_proc_time_ms;
 185   double _cur_ref_enq_time_ms;
 186 
 187 #ifndef PRODUCT
 188   // Card Table Count Cache stats
 189   double _min_clear_cc_time_ms;         // min
 190   double _max_clear_cc_time_ms;         // max
 191   double _cur_clear_cc_time_ms;         // clearing time during current pause
 192   double _cum_clear_cc_time_ms;         // cummulative clearing time
 193   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 194 #endif
 195 
 196   // These exclude marking times.
 197   TruncatedSeq* _recent_gc_times_ms;
 198 
 199   TruncatedSeq* _concurrent_mark_remark_times_ms;
 200   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 201 
 202   Summary*           _summary;
 203 
 204   NumberSeq* _all_pause_times_ms;
 205   NumberSeq* _all_full_gc_times_ms;
 206   double _stop_world_start;
 207   NumberSeq* _all_stop_world_times_ms;
 208   NumberSeq* _all_yield_times_ms;
 209 
 210   int        _aux_num;
 211   NumberSeq* _all_aux_times_ms;
 212   double*    _cur_aux_start_times_ms;
 213   double*    _cur_aux_times_ms;
 214   bool*      _cur_aux_times_set;
 215 
 216   double* _par_last_gc_worker_start_times_ms;
 217   double* _par_last_ext_root_scan_times_ms;
 218   double* _par_last_satb_filtering_times_ms;
 219   double* _par_last_update_rs_times_ms;
 220   double* _par_last_update_rs_processed_buffers;
 221   double* _par_last_scan_rs_times_ms;
 222   double* _par_last_obj_copy_times_ms;
 223   double* _par_last_termination_times_ms;
 224   double* _par_last_termination_attempts;
 225   double* _par_last_gc_worker_end_times_ms;
 226   double* _par_last_gc_worker_times_ms;
 227 
 228   // Each workers 'other' time i.e. the elapsed time of the parallel
 229   // code executed by a worker minus the sum of the individual sub-phase
 230   // times for that worker thread.
 231   double* _par_last_gc_worker_other_times_ms;
 232 
 233   // indicates whether we are in young or mixed GC mode
 234   bool _gcs_are_young;
 235 
 236   uint _young_list_target_length;
 237   uint _young_list_fixed_length;
 238   size_t _prev_eden_capacity; // used for logging
 239 
 240   // The max number of regions we can extend the eden by while the GC
 241   // locker is active. This should be >= _young_list_target_length;
 242   uint _young_list_max_length;
 243 
 244   bool                  _last_gc_was_young;
 245 
 246   unsigned              _young_pause_num;
 247   unsigned              _mixed_pause_num;
 248 
 249   bool                  _during_marking;
 250   bool                  _in_marking_window;
 251   bool                  _in_marking_window_im;
 252 
 253   SurvRateGroup*        _short_lived_surv_rate_group;
 254   SurvRateGroup*        _survivor_surv_rate_group;
 255   // add here any more surv rate groups
 256 
 257   double                _gc_overhead_perc;
 258 
 259   double _reserve_factor;
 260   uint _reserve_regions;
 261 
 262   bool during_marking() {
 263     return _during_marking;
 264   }
 265 
 266 private:
 267   enum PredictionConstants {
 268     TruncatedSeqLength = 10
 269   };
 270 
 271   TruncatedSeq* _alloc_rate_ms_seq;
 272   double        _prev_collection_pause_end_ms;
 273 
 274   TruncatedSeq* _pending_card_diff_seq;
 275   TruncatedSeq* _rs_length_diff_seq;
 276   TruncatedSeq* _cost_per_card_ms_seq;
 277   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 278   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 279   TruncatedSeq* _cost_per_entry_ms_seq;
 280   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 281   TruncatedSeq* _cost_per_byte_ms_seq;
 282   TruncatedSeq* _constant_other_time_ms_seq;
 283   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 284   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 285 
 286   TruncatedSeq* _pending_cards_seq;
 287   TruncatedSeq* _rs_lengths_seq;
 288 
 289   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 290 
 291   G1YoungGenSizer* _young_gen_sizer;
 292 
 293   uint _eden_cset_region_length;
 294   uint _survivor_cset_region_length;
 295   uint _old_cset_region_length;
 296 
 297   void init_cset_region_lengths(uint eden_cset_region_length,
 298                                 uint survivor_cset_region_length);
 299 
 300   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
 301   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
 302   uint old_cset_region_length()      { return _old_cset_region_length;      }
 303 
 304   uint _free_regions_at_end_of_collection;
 305 
 306   size_t _recorded_rs_lengths;
 307   size_t _max_rs_lengths;
 308 
 309   double _recorded_young_free_cset_time_ms;
 310   double _recorded_non_young_free_cset_time_ms;
 311 
 312   double _sigma;
 313 
 314   size_t _rs_lengths_prediction;
 315 
 316   double sigma() { return _sigma; }
 317 
 318   // A function that prevents us putting too much stock in small sample
 319   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 320   // of samples.  5 or more samples yields one; fewer scales linearly from
 321   // 2.0 at 1 sample to 1.0 at 5.
 322   double confidence_factor(int samples) {
 323     if (samples > 4) return 1.0;
 324     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 325   }
 326 
 327   double get_new_neg_prediction(TruncatedSeq* seq) {
 328     return seq->davg() - sigma() * seq->dsd();
 329   }
 330 
 331 #ifndef PRODUCT
 332   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 333 #endif // PRODUCT
 334 
 335   void adjust_concurrent_refinement(double update_rs_time,
 336                                     double update_rs_processed_buffers,
 337                                     double goal_ms);
 338 
 339   uintx no_of_gc_threads() { return _no_of_gc_threads; }
 340   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
 341 
 342   double _pause_time_target_ms;
 343   double _recorded_young_cset_choice_time_ms;
 344   double _recorded_non_young_cset_choice_time_ms;
 345   size_t _pending_cards;
 346   size_t _max_pending_cards;
 347 
 348 public:
 349   // Accessors
 350 
 351   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 352     hr->set_young();
 353     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 354     hr->set_young_index_in_cset(young_index_in_cset);
 355   }
 356 
 357   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 358     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
 359     hr->install_surv_rate_group(_survivor_surv_rate_group);
 360     hr->set_young_index_in_cset(young_index_in_cset);
 361   }
 362 
 363 #ifndef PRODUCT
 364   bool verify_young_ages();
 365 #endif // PRODUCT
 366 
 367   double get_new_prediction(TruncatedSeq* seq) {
 368     return MAX2(seq->davg() + sigma() * seq->dsd(),
 369                 seq->davg() * confidence_factor(seq->num()));
 370   }
 371 
 372   void record_max_rs_lengths(size_t rs_lengths) {
 373     _max_rs_lengths = rs_lengths;
 374   }
 375 
 376   size_t predict_pending_card_diff() {
 377     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 378     if (prediction < 0.00001) {
 379       return 0;
 380     } else {
 381       return (size_t) prediction;
 382     }
 383   }
 384 
 385   size_t predict_pending_cards() {
 386     size_t max_pending_card_num = _g1->max_pending_card_num();
 387     size_t diff = predict_pending_card_diff();
 388     size_t prediction;
 389     if (diff > max_pending_card_num) {
 390       prediction = max_pending_card_num;
 391     } else {
 392       prediction = max_pending_card_num - diff;
 393     }
 394 
 395     return prediction;
 396   }
 397 
 398   size_t predict_rs_length_diff() {
 399     return (size_t) get_new_prediction(_rs_length_diff_seq);
 400   }
 401 
 402   double predict_alloc_rate_ms() {
 403     return get_new_prediction(_alloc_rate_ms_seq);
 404   }
 405 
 406   double predict_cost_per_card_ms() {
 407     return get_new_prediction(_cost_per_card_ms_seq);
 408   }
 409 
 410   double predict_rs_update_time_ms(size_t pending_cards) {
 411     return (double) pending_cards * predict_cost_per_card_ms();
 412   }
 413 
 414   double predict_young_cards_per_entry_ratio() {
 415     return get_new_prediction(_young_cards_per_entry_ratio_seq);
 416   }
 417 
 418   double predict_mixed_cards_per_entry_ratio() {
 419     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
 420       return predict_young_cards_per_entry_ratio();
 421     } else {
 422       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
 423     }
 424   }
 425 
 426   size_t predict_young_card_num(size_t rs_length) {
 427     return (size_t) ((double) rs_length *
 428                      predict_young_cards_per_entry_ratio());
 429   }
 430 
 431   size_t predict_non_young_card_num(size_t rs_length) {
 432     return (size_t) ((double) rs_length *
 433                      predict_mixed_cards_per_entry_ratio());
 434   }
 435 
 436   double predict_rs_scan_time_ms(size_t card_num) {
 437     if (gcs_are_young()) {
 438       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 439     } else {
 440       return predict_mixed_rs_scan_time_ms(card_num);
 441     }
 442   }
 443 
 444   double predict_mixed_rs_scan_time_ms(size_t card_num) {
 445     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
 446       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 447     } else {
 448       return (double) (card_num *
 449                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
 450     }
 451   }
 452 
 453   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 454     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
 455       return (1.1 * (double) bytes_to_copy) *
 456               get_new_prediction(_cost_per_byte_ms_seq);
 457     } else {
 458       return (double) bytes_to_copy *
 459              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 460     }
 461   }
 462 
 463   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 464     if (_in_marking_window && !_in_marking_window_im) {
 465       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 466     } else {
 467       return (double) bytes_to_copy *
 468               get_new_prediction(_cost_per_byte_ms_seq);
 469     }
 470   }
 471 
 472   double predict_constant_other_time_ms() {
 473     return get_new_prediction(_constant_other_time_ms_seq);
 474   }
 475 
 476   double predict_young_other_time_ms(size_t young_num) {
 477     return (double) young_num *
 478            get_new_prediction(_young_other_cost_per_region_ms_seq);
 479   }
 480 
 481   double predict_non_young_other_time_ms(size_t non_young_num) {
 482     return (double) non_young_num *
 483            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 484   }
 485 
 486   double predict_base_elapsed_time_ms(size_t pending_cards);
 487   double predict_base_elapsed_time_ms(size_t pending_cards,
 488                                       size_t scanned_cards);
 489   size_t predict_bytes_to_copy(HeapRegion* hr);
 490   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 491 
 492   void set_recorded_rs_lengths(size_t rs_lengths);
 493 
 494   uint cset_region_length()       { return young_cset_region_length() +
 495                                            old_cset_region_length(); }
 496   uint young_cset_region_length() { return eden_cset_region_length() +
 497                                            survivor_cset_region_length(); }
 498 
 499   void record_young_free_cset_time_ms(double time_ms) {
 500     _recorded_young_free_cset_time_ms = time_ms;
 501   }
 502 
 503   void record_non_young_free_cset_time_ms(double time_ms) {
 504     _recorded_non_young_free_cset_time_ms = time_ms;
 505   }
 506 
 507   double predict_survivor_regions_evac_time();
 508 
 509   void cset_regions_freed() {
 510     bool propagate = _last_gc_was_young && !_in_marking_window;
 511     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 512     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 513     // also call it on any more surv rate groups
 514   }
 515 
 516   G1MMUTracker* mmu_tracker() {
 517     return _mmu_tracker;
 518   }
 519 
 520   double max_pause_time_ms() {
 521     return _mmu_tracker->max_gc_time() * 1000.0;
 522   }
 523 
 524   double predict_remark_time_ms() {
 525     return get_new_prediction(_concurrent_mark_remark_times_ms);
 526   }
 527 
 528   double predict_cleanup_time_ms() {
 529     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 530   }
 531 
 532   // Returns an estimate of the survival rate of the region at yg-age
 533   // "yg_age".
 534   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 535     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 536     if (seq->num() == 0)
 537       gclog_or_tty->print("BARF! age is %d", age);
 538     guarantee( seq->num() > 0, "invariant" );
 539     double pred = get_new_prediction(seq);
 540     if (pred > 1.0)
 541       pred = 1.0;
 542     return pred;
 543   }
 544 
 545   double predict_yg_surv_rate(int age) {
 546     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 547   }
 548 
 549   double accum_yg_surv_rate_pred(int age) {
 550     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 551   }
 552 
 553 private:
 554   void print_stats(int level, const char* str, double value);
 555   void print_stats(int level, const char* str, double value, int workers);
 556   void print_stats(int level, const char* str, int value);
 557 
 558   void print_par_stats(int level, const char* str, double* data, bool showDecimals = true);
 559 
 560   void check_other_times(int level,
 561                          NumberSeq* other_times_ms,
 562                          NumberSeq* calc_other_times_ms) const;
 563 
 564   void print_summary (PauseSummary* stats) const;
 565 
 566   void print_summary (int level, const char* str, NumberSeq* seq) const;
 567   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
 568 
 569   double avg_value (double* data);
 570   double max_value (double* data);
 571   double sum_of_values (double* data);
 572   double max_sum (double* data1, double* data2);
 573 
 574   double _last_pause_time_ms;
 575 
 576   size_t _bytes_in_collection_set_before_gc;
 577   size_t _bytes_copied_during_gc;
 578 
 579   // Used to count used bytes in CS.
 580   friend class CountCSClosure;
 581 
 582   // Statistics kept per GC stoppage, pause or full.
 583   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 584 
 585   // Add a new GC of the given duration and end time to the record.
 586   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 587 
 588   // The head of the list (via "next_in_collection_set()") representing the
 589   // current collection set. Set from the incrementally built collection
 590   // set at the start of the pause.
 591   HeapRegion* _collection_set;
 592 
 593   // The number of bytes in the collection set before the pause. Set from
 594   // the incrementally built collection set at the start of an evacuation
 595   // pause.
 596   size_t _collection_set_bytes_used_before;
 597 
 598   // The associated information that is maintained while the incremental
 599   // collection set is being built with young regions. Used to populate
 600   // the recorded info for the evacuation pause.
 601 
 602   enum CSetBuildType {
 603     Active,             // We are actively building the collection set
 604     Inactive            // We are not actively building the collection set
 605   };
 606 
 607   CSetBuildType _inc_cset_build_state;
 608 
 609   // The head of the incrementally built collection set.
 610   HeapRegion* _inc_cset_head;
 611 
 612   // The tail of the incrementally built collection set.
 613   HeapRegion* _inc_cset_tail;
 614 
 615   // The number of bytes in the incrementally built collection set.
 616   // Used to set _collection_set_bytes_used_before at the start of
 617   // an evacuation pause.
 618   size_t _inc_cset_bytes_used_before;
 619 
 620   // Used to record the highest end of heap region in collection set
 621   HeapWord* _inc_cset_max_finger;
 622 
 623   // The RSet lengths recorded for regions in the CSet. It is updated
 624   // by the thread that adds a new region to the CSet. We assume that
 625   // only one thread can be allocating a new CSet region (currently,
 626   // it does so after taking the Heap_lock) hence no need to
 627   // synchronize updates to this field.
 628   size_t _inc_cset_recorded_rs_lengths;
 629 
 630   // A concurrent refinement thread periodcially samples the young
 631   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
 632   // the RSets grow. Instead of having to syncronize updates to that
 633   // field we accumulate them in this field and add it to
 634   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
 635   ssize_t _inc_cset_recorded_rs_lengths_diffs;
 636 
 637   // The predicted elapsed time it will take to collect the regions in
 638   // the CSet. This is updated by the thread that adds a new region to
 639   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 640   // MT-safety assumptions.
 641   double _inc_cset_predicted_elapsed_time_ms;
 642 
 643   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 644   double _inc_cset_predicted_elapsed_time_ms_diffs;
 645 
 646   // Stash a pointer to the g1 heap.
 647   G1CollectedHeap* _g1;
 648 
 649   // The ratio of gc time to elapsed time, computed over recent pauses.
 650   double _recent_avg_pause_time_ratio;
 651 
 652   double recent_avg_pause_time_ratio() {
 653     return _recent_avg_pause_time_ratio;
 654   }
 655 
 656   // At the end of a pause we check the heap occupancy and we decide
 657   // whether we will start a marking cycle during the next pause. If
 658   // we decide that we want to do that, we will set this parameter to
 659   // true. So, this parameter will stay true between the end of a
 660   // pause and the beginning of a subsequent pause (not necessarily
 661   // the next one, see the comments on the next field) when we decide
 662   // that we will indeed start a marking cycle and do the initial-mark
 663   // work.
 664   volatile bool _initiate_conc_mark_if_possible;
 665 
 666   // If initiate_conc_mark_if_possible() is set at the beginning of a
 667   // pause, it is a suggestion that the pause should start a marking
 668   // cycle by doing the initial-mark work. However, it is possible
 669   // that the concurrent marking thread is still finishing up the
 670   // previous marking cycle (e.g., clearing the next marking
 671   // bitmap). If that is the case we cannot start a new cycle and
 672   // we'll have to wait for the concurrent marking thread to finish
 673   // what it is doing. In this case we will postpone the marking cycle
 674   // initiation decision for the next pause. When we eventually decide
 675   // to start a cycle, we will set _during_initial_mark_pause which
 676   // will stay true until the end of the initial-mark pause and it's
 677   // the condition that indicates that a pause is doing the
 678   // initial-mark work.
 679   volatile bool _during_initial_mark_pause;
 680 
 681   bool _last_young_gc;
 682 
 683   // This set of variables tracks the collector efficiency, in order to
 684   // determine whether we should initiate a new marking.
 685   double _cur_mark_stop_world_time_ms;
 686   double _mark_remark_start_sec;
 687   double _mark_cleanup_start_sec;
 688   double _root_region_scan_wait_time_ms;
 689 
 690   // Update the young list target length either by setting it to the
 691   // desired fixed value or by calculating it using G1's pause
 692   // prediction model. If no rs_lengths parameter is passed, predict
 693   // the RS lengths using the prediction model, otherwise use the
 694   // given rs_lengths as the prediction.
 695   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 696 
 697   // Calculate and return the minimum desired young list target
 698   // length. This is the minimum desired young list length according
 699   // to the user's inputs.
 700   uint calculate_young_list_desired_min_length(uint base_min_length);
 701 
 702   // Calculate and return the maximum desired young list target
 703   // length. This is the maximum desired young list length according
 704   // to the user's inputs.
 705   uint calculate_young_list_desired_max_length();
 706 
 707   // Calculate and return the maximum young list target length that
 708   // can fit into the pause time goal. The parameters are: rs_lengths
 709   // represent the prediction of how large the young RSet lengths will
 710   // be, base_min_length is the alreay existing number of regions in
 711   // the young list, min_length and max_length are the desired min and
 712   // max young list length according to the user's inputs.
 713   uint calculate_young_list_target_length(size_t rs_lengths,
 714                                           uint base_min_length,
 715                                           uint desired_min_length,
 716                                           uint desired_max_length);
 717 
 718   // Check whether a given young length (young_length) fits into the
 719   // given target pause time and whether the prediction for the amount
 720   // of objects to be copied for the given length will fit into the
 721   // given free space (expressed by base_free_regions).  It is used by
 722   // calculate_young_list_target_length().
 723   bool predict_will_fit(uint young_length, double base_time_ms,
 724                         uint base_free_regions, double target_pause_time_ms);
 725 
 726   // Count the number of bytes used in the CS.
 727   void count_CS_bytes_used();
 728 
 729 public:
 730 
 731   G1CollectorPolicy();
 732 
 733   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 734 
 735   virtual CollectorPolicy::Name kind() {
 736     return CollectorPolicy::G1CollectorPolicyKind;
 737   }
 738 
 739   // Check the current value of the young list RSet lengths and
 740   // compare it against the last prediction. If the current value is
 741   // higher, recalculate the young list target length prediction.
 742   void revise_young_list_target_length_if_necessary();
 743 
 744   size_t bytes_in_collection_set() {
 745     return _bytes_in_collection_set_before_gc;
 746   }
 747 
 748   unsigned calc_gc_alloc_time_stamp() {
 749     return _all_pause_times_ms->num() + 1;
 750   }
 751 
 752   // This should be called after the heap is resized.
 753   void record_new_heap_size(uint new_number_of_regions);
 754 
 755   void init();
 756 
 757   // Create jstat counters for the policy.
 758   virtual void initialize_gc_policy_counters();
 759 
 760   virtual HeapWord* mem_allocate_work(size_t size,
 761                                       bool is_tlab,
 762                                       bool* gc_overhead_limit_was_exceeded);
 763 
 764   // This method controls how a collector handles one or more
 765   // of its generations being fully allocated.
 766   virtual HeapWord* satisfy_failed_allocation(size_t size,
 767                                               bool is_tlab);
 768 
 769   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 770 
 771   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 772 
 773   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 774 
 775   // Update the heuristic info to record a collection pause of the given
 776   // start time, where the given number of bytes were used at the start.
 777   // This may involve changing the desired size of a collection set.
 778 
 779   void record_stop_world_start();
 780 
 781   void record_collection_pause_start(double start_time_sec, size_t start_used);
 782 
 783   // Must currently be called while the world is stopped.
 784   void record_concurrent_mark_init_end(double
 785                                            mark_init_elapsed_time_ms);
 786 
 787   void record_root_region_scan_wait_time(double time_ms) {
 788     _root_region_scan_wait_time_ms = time_ms;
 789   }
 790 
 791   void record_concurrent_mark_remark_start();
 792   void record_concurrent_mark_remark_end();
 793 
 794   void record_concurrent_mark_cleanup_start();
 795   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
 796   void record_concurrent_mark_cleanup_completed();
 797 
 798   void record_concurrent_pause();
 799   void record_concurrent_pause_end();
 800 
 801   void record_collection_pause_end(int no_of_gc_threads);
 802   void print_heap_transition();
 803 
 804   // Record the fact that a full collection occurred.
 805   void record_full_collection_start();
 806   void record_full_collection_end();
 807 
 808   void record_gc_worker_start_time(int worker_i, double ms) {
 809     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 810   }
 811 
 812   void record_ext_root_scan_time(int worker_i, double ms) {
 813     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 814   }
 815 
 816   void record_satb_filtering_time(int worker_i, double ms) {
 817     _par_last_satb_filtering_times_ms[worker_i] = ms;
 818   }
 819 
 820   void record_update_rs_time(int thread, double ms) {
 821     _par_last_update_rs_times_ms[thread] = ms;
 822   }
 823 
 824   void record_update_rs_processed_buffers (int thread,
 825                                            double processed_buffers) {
 826     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 827   }
 828 
 829   void record_scan_rs_time(int thread, double ms) {
 830     _par_last_scan_rs_times_ms[thread] = ms;
 831   }
 832 
 833   void reset_obj_copy_time(int thread) {
 834     _par_last_obj_copy_times_ms[thread] = 0.0;
 835   }
 836 
 837   void reset_obj_copy_time() {
 838     reset_obj_copy_time(0);
 839   }
 840 
 841   void record_obj_copy_time(int thread, double ms) {
 842     _par_last_obj_copy_times_ms[thread] += ms;
 843   }
 844 
 845   void record_termination(int thread, double ms, size_t attempts) {
 846     _par_last_termination_times_ms[thread] = ms;
 847     _par_last_termination_attempts[thread] = (double) attempts;
 848   }
 849 
 850   void record_gc_worker_end_time(int worker_i, double ms) {
 851     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 852   }
 853 
 854   void record_pause_time_ms(double ms) {
 855     _last_pause_time_ms = ms;
 856   }
 857 
 858   void record_clear_ct_time(double ms) {
 859     _cur_clear_ct_time_ms = ms;
 860   }
 861 
 862   void record_par_time(double ms) {
 863     _cur_collection_par_time_ms = ms;
 864   }
 865 
 866   void record_code_root_fixup_time(double ms) {
 867     _cur_collection_code_root_fixup_time_ms = ms;
 868   }
 869 
 870   void record_aux_start_time(int i) {
 871     guarantee(i < _aux_num, "should be within range");
 872     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
 873   }
 874 
 875   void record_aux_end_time(int i) {
 876     guarantee(i < _aux_num, "should be within range");
 877     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
 878     _cur_aux_times_set[i] = true;
 879     _cur_aux_times_ms[i] += ms;
 880   }
 881 
 882   void record_ref_proc_time(double ms) {
 883     _cur_ref_proc_time_ms = ms;
 884   }
 885 
 886   void record_ref_enq_time(double ms) {
 887     _cur_ref_enq_time_ms = ms;
 888   }
 889 
 890 #ifndef PRODUCT
 891   void record_cc_clear_time(double ms) {
 892     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
 893       _min_clear_cc_time_ms = ms;
 894     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
 895       _max_clear_cc_time_ms = ms;
 896     _cur_clear_cc_time_ms = ms;
 897     _cum_clear_cc_time_ms += ms;
 898     _num_cc_clears++;
 899   }
 900 #endif
 901 
 902   // Record how much space we copied during a GC. This is typically
 903   // called when a GC alloc region is being retired.
 904   void record_bytes_copied_during_gc(size_t bytes) {
 905     _bytes_copied_during_gc += bytes;
 906   }
 907 
 908   // The amount of space we copied during a GC.
 909   size_t bytes_copied_during_gc() {
 910     return _bytes_copied_during_gc;
 911   }
 912 
 913   // Determine whether there are candidate regions so that the
 914   // next GC should be mixed. The two action strings are used
 915   // in the ergo output when the method returns true or false.
 916   bool next_gc_should_be_mixed(const char* true_action_str,
 917                                const char* false_action_str);
 918 
 919   // Choose a new collection set.  Marks the chosen regions as being
 920   // "in_collection_set", and links them together.  The head and number of
 921   // the collection set are available via access methods.
 922   void finalize_cset(double target_pause_time_ms);
 923 
 924   // The head of the list (via "next_in_collection_set()") representing the
 925   // current collection set.
 926   HeapRegion* collection_set() { return _collection_set; }
 927 
 928   void clear_collection_set() { _collection_set = NULL; }
 929 
 930   // Add old region "hr" to the CSet.
 931   void add_old_region_to_cset(HeapRegion* hr);
 932 
 933   // Incremental CSet Support
 934 
 935   // The head of the incrementally built collection set.
 936   HeapRegion* inc_cset_head() { return _inc_cset_head; }
 937 
 938   // The tail of the incrementally built collection set.
 939   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
 940 
 941   // Initialize incremental collection set info.
 942   void start_incremental_cset_building();
 943 
 944   // Perform any final calculations on the incremental CSet fields
 945   // before we can use them.
 946   void finalize_incremental_cset_building();
 947 
 948   void clear_incremental_cset() {
 949     _inc_cset_head = NULL;
 950     _inc_cset_tail = NULL;
 951   }
 952 
 953   // Stop adding regions to the incremental collection set
 954   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
 955 
 956   // Add information about hr to the aggregated information for the
 957   // incrementally built collection set.
 958   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
 959 
 960   // Update information about hr in the aggregated information for
 961   // the incrementally built collection set.
 962   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 963 
 964 private:
 965   // Update the incremental cset information when adding a region
 966   // (should not be called directly).
 967   void add_region_to_incremental_cset_common(HeapRegion* hr);
 968 
 969 public:
 970   // Add hr to the LHS of the incremental collection set.
 971   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 972 
 973   // Add hr to the RHS of the incremental collection set.
 974   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 975 
 976 #ifndef PRODUCT
 977   void print_collection_set(HeapRegion* list_head, outputStream* st);
 978 #endif // !PRODUCT
 979 
 980   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
 981   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
 982   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
 983 
 984   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
 985   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
 986   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
 987 
 988   // This sets the initiate_conc_mark_if_possible() flag to start a
 989   // new cycle, as long as we are not already in one. It's best if it
 990   // is called during a safepoint when the test whether a cycle is in
 991   // progress or not is stable.
 992   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 993 
 994   // This is called at the very beginning of an evacuation pause (it
 995   // has to be the first thing that the pause does). If
 996   // initiate_conc_mark_if_possible() is true, and the concurrent
 997   // marking thread has completed its work during the previous cycle,
 998   // it will set during_initial_mark_pause() to so that the pause does
 999   // the initial-mark work and start a marking cycle.
1000   void decide_on_conc_mark_initiation();
1001 
1002   // If an expansion would be appropriate, because recent GC overhead had
1003   // exceeded the desired limit, return an amount to expand by.
1004   size_t expansion_amount();
1005 
1006   // Print tracing information.
1007   void print_tracing_info() const;
1008 
1009   // Print stats on young survival ratio
1010   void print_yg_surv_rate_info() const;
1011 
1012   void finished_recalculating_age_indexes(bool is_survivors) {
1013     if (is_survivors) {
1014       _survivor_surv_rate_group->finished_recalculating_age_indexes();
1015     } else {
1016       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
1017     }
1018     // do that for any other surv rate groups
1019   }
1020 
1021   bool is_young_list_full() {
1022     uint young_list_length = _g1->young_list()->length();
1023     uint young_list_target_length = _young_list_target_length;
1024     return young_list_length >= young_list_target_length;
1025   }
1026 
1027   bool can_expand_young_list() {
1028     uint young_list_length = _g1->young_list()->length();
1029     uint young_list_max_length = _young_list_max_length;
1030     return young_list_length < young_list_max_length;
1031   }
1032 
1033   uint young_list_max_length() {
1034     return _young_list_max_length;
1035   }
1036 
1037   bool gcs_are_young() {
1038     return _gcs_are_young;
1039   }
1040   void set_gcs_are_young(bool gcs_are_young) {
1041     _gcs_are_young = gcs_are_young;
1042   }
1043 
1044   bool adaptive_young_list_length() {
1045     return _young_gen_sizer->adaptive_young_list_length();
1046   }
1047 
1048 private:
1049   //
1050   // Survivor regions policy.
1051   //
1052 
1053   // Current tenuring threshold, set to 0 if the collector reaches the
1054   // maximum amount of suvivors regions.
1055   int _tenuring_threshold;
1056 
1057   // The limit on the number of regions allocated for survivors.
1058   uint _max_survivor_regions;
1059 
1060   // For reporting purposes.
1061   size_t _eden_bytes_before_gc;
1062   size_t _survivor_bytes_before_gc;
1063   size_t _capacity_before_gc;
1064 
1065   // The amount of survor regions after a collection.
1066   uint _recorded_survivor_regions;
1067   // List of survivor regions.
1068   HeapRegion* _recorded_survivor_head;
1069   HeapRegion* _recorded_survivor_tail;
1070 
1071   ageTable _survivors_age_table;
1072 
1073 public:
1074 
1075   inline GCAllocPurpose
1076     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1077       if (age < _tenuring_threshold && src_region->is_young()) {
1078         return GCAllocForSurvived;
1079       } else {
1080         return GCAllocForTenured;
1081       }
1082   }
1083 
1084   inline bool track_object_age(GCAllocPurpose purpose) {
1085     return purpose == GCAllocForSurvived;
1086   }
1087 
1088   static const uint REGIONS_UNLIMITED = (uint) -1;
1089 
1090   uint max_regions(int purpose);
1091 
1092   // The limit on regions for a particular purpose is reached.
1093   void note_alloc_region_limit_reached(int purpose) {
1094     if (purpose == GCAllocForSurvived) {
1095       _tenuring_threshold = 0;
1096     }
1097   }
1098 
1099   void note_start_adding_survivor_regions() {
1100     _survivor_surv_rate_group->start_adding_regions();
1101   }
1102 
1103   void note_stop_adding_survivor_regions() {
1104     _survivor_surv_rate_group->stop_adding_regions();
1105   }
1106 
1107   void record_survivor_regions(uint regions,
1108                                HeapRegion* head,
1109                                HeapRegion* tail) {
1110     _recorded_survivor_regions = regions;
1111     _recorded_survivor_head    = head;
1112     _recorded_survivor_tail    = tail;
1113   }
1114 
1115   uint recorded_survivor_regions() {
1116     return _recorded_survivor_regions;
1117   }
1118 
1119   void record_thread_age_table(ageTable* age_table) {
1120     _survivors_age_table.merge_par(age_table);
1121   }
1122 
1123   void update_max_gc_locker_expansion();
1124 
1125   // Calculates survivor space parameters.
1126   void update_survivors_policy();
1127 
1128 };
1129 
1130 // This should move to some place more general...
1131 
1132 // If we have "n" measurements, and we've kept track of their "sum" and the
1133 // "sum_of_squares" of the measurements, this returns the variance of the
1134 // sequence.
1135 inline double variance(int n, double sum_of_squares, double sum) {
1136   double n_d = (double)n;
1137   double avg = sum/n_d;
1138   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1139 }
1140 
1141 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP