1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 
  40 class TraceGen0TimeData : public CHeapObj {
  41  private:
  42   unsigned  _young_pause_num;
  43   unsigned  _mixed_pause_num;
  44 
  45   NumberSeq _all_stop_world_times_ms;
  46   NumberSeq _all_yield_times_ms;
  47 
  48   NumberSeq _total;
  49   NumberSeq _other;
  50   NumberSeq _root_region_scan_wait;
  51   NumberSeq _parallel;
  52   NumberSeq _ext_root_scan;
  53   NumberSeq _satb_filtering;
  54   NumberSeq _update_rs;
  55   NumberSeq _scan_rs;
  56   NumberSeq _obj_copy;
  57   NumberSeq _termination;
  58   NumberSeq _parallel_other;
  59   NumberSeq _clear_ct;
  60 
  61   void print_summary (int level, const char* str, const NumberSeq* seq) const;
  62   void print_summary_sd (int level, const char* str, const NumberSeq* seq) const;
  63 
  64 public:
  65    TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  66   void record_start_collection(double time_to_stop_the_world_ms);
  67   void record_yield_time(double yield_time_ms);
  68   void record_end_collection(
  69      double total_ms,
  70      double other_ms,
  71      double root_region_scan_wait_ms,
  72      double parallel_ms,
  73      double ext_root_scan_ms,
  74      double satb_filtering_ms,
  75      double update_rs_ms,
  76      double scan_rs_ms,
  77      double obj_copy_ms,
  78      double termination_ms,
  79      double parallel_other_ms,
  80      double clear_ct_ms);
  81   void increment_young_collection_count();
  82   void increment_mixed_collection_count();
  83   void print() const;
  84 };
  85 
  86 class TraceGen1TimeData : public CHeapObj {
  87  private:
  88   NumberSeq _all_full_gc_times;
  89 
  90  public:
  91   void record_full_collection(double full_gc_time_ms);
  92   void print() const;
  93 };
  94 
  95 // There are three command line options related to the young gen size:
  96 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
  97 // just a short form for NewSize==MaxNewSize). G1 will use its internal
  98 // heuristics to calculate the actual young gen size, so these options
  99 // basically only limit the range within which G1 can pick a young gen
 100 // size. Also, these are general options taking byte sizes. G1 will
 101 // internally work with a number of regions instead. So, some rounding
 102 // will occur.
 103 //
 104 // If nothing related to the the young gen size is set on the command
 105 // line we should allow the young gen to be between
 106 // G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
 107 // heap size. This means that every time the heap size changes the
 108 // limits for the young gen size will be updated.
 109 //
 110 // If only -XX:NewSize is set we should use the specified value as the
 111 // minimum size for young gen. Still using G1DefaultMaxNewGenPercent
 112 // of the heap as maximum.
 113 //
 114 // If only -XX:MaxNewSize is set we should use the specified value as the
 115 // maximum size for young gen. Still using G1DefaultMinNewGenPercent
 116 // of the heap as minimum.
 117 //
 118 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
 119 // No updates when the heap size changes. There is a special case when
 120 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
 121 // different heuristic for calculating the collection set when we do mixed
 122 // collection.
 123 //
 124 // If only -XX:NewRatio is set we should use the specified ratio of the heap
 125 // as both min and max. This will be interpreted as "fixed" just like the
 126 // NewSize==MaxNewSize case above. But we will update the min and max
 127 // everytime the heap size changes.
 128 //
 129 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
 130 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
 131 class G1YoungGenSizer : public CHeapObj {
 132 private:
 133   enum SizerKind {
 134     SizerDefaults,
 135     SizerNewSizeOnly,
 136     SizerMaxNewSizeOnly,
 137     SizerMaxAndNewSize,
 138     SizerNewRatio
 139   };
 140   SizerKind _sizer_kind;
 141   uint _min_desired_young_length;
 142   uint _max_desired_young_length;
 143   bool _adaptive_size;
 144   uint calculate_default_min_length(uint new_number_of_heap_regions);
 145   uint calculate_default_max_length(uint new_number_of_heap_regions);
 146 
 147 public:
 148   G1YoungGenSizer();
 149   void heap_size_changed(uint new_number_of_heap_regions);
 150   uint min_desired_young_length() {
 151     return _min_desired_young_length;
 152   }
 153   uint max_desired_young_length() {
 154     return _max_desired_young_length;
 155   }
 156   bool adaptive_young_list_length() {
 157     return _adaptive_size;
 158   }
 159 };
 160 
 161 class G1CollectorPolicy: public CollectorPolicy {
 162 private:
 163   // either equal to the number of parallel threads, if ParallelGCThreads
 164   // has been set, or 1 otherwise
 165   int _parallel_gc_threads;
 166 
 167   // The number of GC threads currently active.
 168   uintx _no_of_gc_threads;
 169 
 170   enum SomePrivateConstants {
 171     NumPrevPausesForHeuristics = 10
 172   };
 173 
 174   G1MMUTracker* _mmu_tracker;
 175 
 176   void initialize_flags();
 177 
 178   void initialize_all() {
 179     initialize_flags();
 180     initialize_size_info();
 181     initialize_perm_generation(PermGen::MarkSweepCompact);
 182   }
 183 
 184   CollectionSetChooser* _collectionSetChooser;
 185 
 186   double _cur_collection_start_sec;
 187   size_t _cur_collection_pause_used_at_start_bytes;
 188   uint   _cur_collection_pause_used_regions_at_start;
 189   double _cur_collection_par_time_ms;
 190 
 191   double _cur_collection_code_root_fixup_time_ms;
 192 
 193   double _cur_clear_ct_time_ms;
 194   double _cur_ref_proc_time_ms;
 195   double _cur_ref_enq_time_ms;
 196 
 197 #ifndef PRODUCT
 198   // Card Table Count Cache stats
 199   double _min_clear_cc_time_ms;         // min
 200   double _max_clear_cc_time_ms;         // max
 201   double _cur_clear_cc_time_ms;         // clearing time during current pause
 202   double _cum_clear_cc_time_ms;         // cummulative clearing time
 203   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 204 #endif
 205 
 206   // These exclude marking times.
 207   TruncatedSeq* _recent_gc_times_ms;
 208 
 209   TruncatedSeq* _concurrent_mark_remark_times_ms;
 210   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 211 
 212   TraceGen0TimeData _trace_gen0_time_data;
 213   TraceGen1TimeData _trace_gen1_time_data;
 214 
 215   double _stop_world_start;
 216 
 217   double* _par_last_gc_worker_start_times_ms;
 218   double* _par_last_ext_root_scan_times_ms;
 219   double* _par_last_satb_filtering_times_ms;
 220   double* _par_last_update_rs_times_ms;
 221   double* _par_last_update_rs_processed_buffers;
 222   double* _par_last_scan_rs_times_ms;
 223   double* _par_last_obj_copy_times_ms;
 224   double* _par_last_termination_times_ms;
 225   double* _par_last_termination_attempts;
 226   double* _par_last_gc_worker_end_times_ms;
 227   double* _par_last_gc_worker_times_ms;
 228 
 229   // Each workers 'other' time i.e. the elapsed time of the parallel
 230   // code executed by a worker minus the sum of the individual sub-phase
 231   // times for that worker thread.
 232   double* _par_last_gc_worker_other_times_ms;
 233 
 234   // indicates whether we are in young or mixed GC mode
 235   bool _gcs_are_young;
 236 
 237   uint _young_list_target_length;
 238   uint _young_list_fixed_length;
 239   size_t _prev_eden_capacity; // used for logging
 240 
 241   // The max number of regions we can extend the eden by while the GC
 242   // locker is active. This should be >= _young_list_target_length;
 243   uint _young_list_max_length;
 244 
 245   bool                  _last_gc_was_young;
 246 
 247   bool                  _during_marking;
 248   bool                  _in_marking_window;
 249   bool                  _in_marking_window_im;
 250 
 251   SurvRateGroup*        _short_lived_surv_rate_group;
 252   SurvRateGroup*        _survivor_surv_rate_group;
 253   // add here any more surv rate groups
 254 
 255   double                _gc_overhead_perc;
 256 
 257   double _reserve_factor;
 258   uint _reserve_regions;
 259 
 260   bool during_marking() {
 261     return _during_marking;
 262   }
 263 
 264 private:
 265   enum PredictionConstants {
 266     TruncatedSeqLength = 10
 267   };
 268 
 269   TruncatedSeq* _alloc_rate_ms_seq;
 270   double        _prev_collection_pause_end_ms;
 271 
 272   TruncatedSeq* _pending_card_diff_seq;
 273   TruncatedSeq* _rs_length_diff_seq;
 274   TruncatedSeq* _cost_per_card_ms_seq;
 275   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 276   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 277   TruncatedSeq* _cost_per_entry_ms_seq;
 278   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 279   TruncatedSeq* _cost_per_byte_ms_seq;
 280   TruncatedSeq* _constant_other_time_ms_seq;
 281   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 282   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 283 
 284   TruncatedSeq* _pending_cards_seq;
 285   TruncatedSeq* _rs_lengths_seq;
 286 
 287   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 288 
 289   G1YoungGenSizer* _young_gen_sizer;
 290 
 291   uint _eden_cset_region_length;
 292   uint _survivor_cset_region_length;
 293   uint _old_cset_region_length;
 294 
 295   void init_cset_region_lengths(uint eden_cset_region_length,
 296                                 uint survivor_cset_region_length);
 297 
 298   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
 299   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
 300   uint old_cset_region_length()      { return _old_cset_region_length;      }
 301 
 302   uint _free_regions_at_end_of_collection;
 303 
 304   size_t _recorded_rs_lengths;
 305   size_t _max_rs_lengths;
 306 
 307   double _recorded_young_free_cset_time_ms;
 308   double _recorded_non_young_free_cset_time_ms;
 309 
 310   double _sigma;
 311 
 312   size_t _rs_lengths_prediction;
 313 
 314   double sigma() { return _sigma; }
 315 
 316   // A function that prevents us putting too much stock in small sample
 317   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 318   // of samples.  5 or more samples yields one; fewer scales linearly from
 319   // 2.0 at 1 sample to 1.0 at 5.
 320   double confidence_factor(int samples) {
 321     if (samples > 4) return 1.0;
 322     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 323   }
 324 
 325   double get_new_neg_prediction(TruncatedSeq* seq) {
 326     return seq->davg() - sigma() * seq->dsd();
 327   }
 328 
 329 #ifndef PRODUCT
 330   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 331 #endif // PRODUCT
 332 
 333   void adjust_concurrent_refinement(double update_rs_time,
 334                                     double update_rs_processed_buffers,
 335                                     double goal_ms);
 336 
 337   uintx no_of_gc_threads() { return _no_of_gc_threads; }
 338   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
 339 
 340   double _pause_time_target_ms;
 341   double _recorded_young_cset_choice_time_ms;
 342   double _recorded_non_young_cset_choice_time_ms;
 343   size_t _pending_cards;
 344   size_t _max_pending_cards;
 345 
 346 public:
 347   // Accessors
 348 
 349   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 350     hr->set_young();
 351     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 352     hr->set_young_index_in_cset(young_index_in_cset);
 353   }
 354 
 355   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 356     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
 357     hr->install_surv_rate_group(_survivor_surv_rate_group);
 358     hr->set_young_index_in_cset(young_index_in_cset);
 359   }
 360 
 361 #ifndef PRODUCT
 362   bool verify_young_ages();
 363 #endif // PRODUCT
 364 
 365   double get_new_prediction(TruncatedSeq* seq) {
 366     return MAX2(seq->davg() + sigma() * seq->dsd(),
 367                 seq->davg() * confidence_factor(seq->num()));
 368   }
 369 
 370   void record_max_rs_lengths(size_t rs_lengths) {
 371     _max_rs_lengths = rs_lengths;
 372   }
 373 
 374   size_t predict_pending_card_diff() {
 375     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 376     if (prediction < 0.00001) {
 377       return 0;
 378     } else {
 379       return (size_t) prediction;
 380     }
 381   }
 382 
 383   size_t predict_pending_cards() {
 384     size_t max_pending_card_num = _g1->max_pending_card_num();
 385     size_t diff = predict_pending_card_diff();
 386     size_t prediction;
 387     if (diff > max_pending_card_num) {
 388       prediction = max_pending_card_num;
 389     } else {
 390       prediction = max_pending_card_num - diff;
 391     }
 392 
 393     return prediction;
 394   }
 395 
 396   size_t predict_rs_length_diff() {
 397     return (size_t) get_new_prediction(_rs_length_diff_seq);
 398   }
 399 
 400   double predict_alloc_rate_ms() {
 401     return get_new_prediction(_alloc_rate_ms_seq);
 402   }
 403 
 404   double predict_cost_per_card_ms() {
 405     return get_new_prediction(_cost_per_card_ms_seq);
 406   }
 407 
 408   double predict_rs_update_time_ms(size_t pending_cards) {
 409     return (double) pending_cards * predict_cost_per_card_ms();
 410   }
 411 
 412   double predict_young_cards_per_entry_ratio() {
 413     return get_new_prediction(_young_cards_per_entry_ratio_seq);
 414   }
 415 
 416   double predict_mixed_cards_per_entry_ratio() {
 417     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
 418       return predict_young_cards_per_entry_ratio();
 419     } else {
 420       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
 421     }
 422   }
 423 
 424   size_t predict_young_card_num(size_t rs_length) {
 425     return (size_t) ((double) rs_length *
 426                      predict_young_cards_per_entry_ratio());
 427   }
 428 
 429   size_t predict_non_young_card_num(size_t rs_length) {
 430     return (size_t) ((double) rs_length *
 431                      predict_mixed_cards_per_entry_ratio());
 432   }
 433 
 434   double predict_rs_scan_time_ms(size_t card_num) {
 435     if (gcs_are_young()) {
 436       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 437     } else {
 438       return predict_mixed_rs_scan_time_ms(card_num);
 439     }
 440   }
 441 
 442   double predict_mixed_rs_scan_time_ms(size_t card_num) {
 443     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
 444       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 445     } else {
 446       return (double) (card_num *
 447                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
 448     }
 449   }
 450 
 451   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 452     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
 453       return (1.1 * (double) bytes_to_copy) *
 454               get_new_prediction(_cost_per_byte_ms_seq);
 455     } else {
 456       return (double) bytes_to_copy *
 457              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 458     }
 459   }
 460 
 461   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 462     if (_in_marking_window && !_in_marking_window_im) {
 463       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 464     } else {
 465       return (double) bytes_to_copy *
 466               get_new_prediction(_cost_per_byte_ms_seq);
 467     }
 468   }
 469 
 470   double predict_constant_other_time_ms() {
 471     return get_new_prediction(_constant_other_time_ms_seq);
 472   }
 473 
 474   double predict_young_other_time_ms(size_t young_num) {
 475     return (double) young_num *
 476            get_new_prediction(_young_other_cost_per_region_ms_seq);
 477   }
 478 
 479   double predict_non_young_other_time_ms(size_t non_young_num) {
 480     return (double) non_young_num *
 481            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 482   }
 483 
 484   double predict_base_elapsed_time_ms(size_t pending_cards);
 485   double predict_base_elapsed_time_ms(size_t pending_cards,
 486                                       size_t scanned_cards);
 487   size_t predict_bytes_to_copy(HeapRegion* hr);
 488   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 489 
 490   void set_recorded_rs_lengths(size_t rs_lengths);
 491 
 492   uint cset_region_length()       { return young_cset_region_length() +
 493                                            old_cset_region_length(); }
 494   uint young_cset_region_length() { return eden_cset_region_length() +
 495                                            survivor_cset_region_length(); }
 496 
 497   void record_young_free_cset_time_ms(double time_ms) {
 498     _recorded_young_free_cset_time_ms = time_ms;
 499   }
 500 
 501   void record_non_young_free_cset_time_ms(double time_ms) {
 502     _recorded_non_young_free_cset_time_ms = time_ms;
 503   }
 504 
 505   double predict_survivor_regions_evac_time();
 506 
 507   void cset_regions_freed() {
 508     bool propagate = _last_gc_was_young && !_in_marking_window;
 509     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 510     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 511     // also call it on any more surv rate groups
 512   }
 513 
 514   G1MMUTracker* mmu_tracker() {
 515     return _mmu_tracker;
 516   }
 517 
 518   double max_pause_time_ms() {
 519     return _mmu_tracker->max_gc_time() * 1000.0;
 520   }
 521 
 522   double predict_remark_time_ms() {
 523     return get_new_prediction(_concurrent_mark_remark_times_ms);
 524   }
 525 
 526   double predict_cleanup_time_ms() {
 527     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 528   }
 529 
 530   // Returns an estimate of the survival rate of the region at yg-age
 531   // "yg_age".
 532   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 533     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 534     if (seq->num() == 0)
 535       gclog_or_tty->print("BARF! age is %d", age);
 536     guarantee( seq->num() > 0, "invariant" );
 537     double pred = get_new_prediction(seq);
 538     if (pred > 1.0)
 539       pred = 1.0;
 540     return pred;
 541   }
 542 
 543   double predict_yg_surv_rate(int age) {
 544     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 545   }
 546 
 547   double accum_yg_surv_rate_pred(int age) {
 548     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 549   }
 550 
 551 private:
 552   void print_stats(int level, const char* str, double value);
 553   void print_stats(int level, const char* str, double value, int workers);
 554   void print_stats(int level, const char* str, int value);
 555 
 556   void print_par_stats(int level, const char* str, double* data, bool showDecimals = true);
 557 
 558   double avg_value (double* data);
 559   double max_value (double* data);
 560   double sum_of_values (double* data);
 561   double max_sum (double* data1, double* data2);
 562 
 563   double _last_pause_time_ms;
 564 
 565   size_t _bytes_in_collection_set_before_gc;
 566   size_t _bytes_copied_during_gc;
 567 
 568   // Used to count used bytes in CS.
 569   friend class CountCSClosure;
 570 
 571   // Statistics kept per GC stoppage, pause or full.
 572   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 573 
 574   // Add a new GC of the given duration and end time to the record.
 575   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 576 
 577   // The head of the list (via "next_in_collection_set()") representing the
 578   // current collection set. Set from the incrementally built collection
 579   // set at the start of the pause.
 580   HeapRegion* _collection_set;
 581 
 582   // The number of bytes in the collection set before the pause. Set from
 583   // the incrementally built collection set at the start of an evacuation
 584   // pause.
 585   size_t _collection_set_bytes_used_before;
 586 
 587   // The associated information that is maintained while the incremental
 588   // collection set is being built with young regions. Used to populate
 589   // the recorded info for the evacuation pause.
 590 
 591   enum CSetBuildType {
 592     Active,             // We are actively building the collection set
 593     Inactive            // We are not actively building the collection set
 594   };
 595 
 596   CSetBuildType _inc_cset_build_state;
 597 
 598   // The head of the incrementally built collection set.
 599   HeapRegion* _inc_cset_head;
 600 
 601   // The tail of the incrementally built collection set.
 602   HeapRegion* _inc_cset_tail;
 603 
 604   // The number of bytes in the incrementally built collection set.
 605   // Used to set _collection_set_bytes_used_before at the start of
 606   // an evacuation pause.
 607   size_t _inc_cset_bytes_used_before;
 608 
 609   // Used to record the highest end of heap region in collection set
 610   HeapWord* _inc_cset_max_finger;
 611 
 612   // The RSet lengths recorded for regions in the CSet. It is updated
 613   // by the thread that adds a new region to the CSet. We assume that
 614   // only one thread can be allocating a new CSet region (currently,
 615   // it does so after taking the Heap_lock) hence no need to
 616   // synchronize updates to this field.
 617   size_t _inc_cset_recorded_rs_lengths;
 618 
 619   // A concurrent refinement thread periodcially samples the young
 620   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
 621   // the RSets grow. Instead of having to syncronize updates to that
 622   // field we accumulate them in this field and add it to
 623   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
 624   ssize_t _inc_cset_recorded_rs_lengths_diffs;
 625 
 626   // The predicted elapsed time it will take to collect the regions in
 627   // the CSet. This is updated by the thread that adds a new region to
 628   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 629   // MT-safety assumptions.
 630   double _inc_cset_predicted_elapsed_time_ms;
 631 
 632   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 633   double _inc_cset_predicted_elapsed_time_ms_diffs;
 634 
 635   // Stash a pointer to the g1 heap.
 636   G1CollectedHeap* _g1;
 637 
 638   // The ratio of gc time to elapsed time, computed over recent pauses.
 639   double _recent_avg_pause_time_ratio;
 640 
 641   double recent_avg_pause_time_ratio() {
 642     return _recent_avg_pause_time_ratio;
 643   }
 644 
 645   // At the end of a pause we check the heap occupancy and we decide
 646   // whether we will start a marking cycle during the next pause. If
 647   // we decide that we want to do that, we will set this parameter to
 648   // true. So, this parameter will stay true between the end of a
 649   // pause and the beginning of a subsequent pause (not necessarily
 650   // the next one, see the comments on the next field) when we decide
 651   // that we will indeed start a marking cycle and do the initial-mark
 652   // work.
 653   volatile bool _initiate_conc_mark_if_possible;
 654 
 655   // If initiate_conc_mark_if_possible() is set at the beginning of a
 656   // pause, it is a suggestion that the pause should start a marking
 657   // cycle by doing the initial-mark work. However, it is possible
 658   // that the concurrent marking thread is still finishing up the
 659   // previous marking cycle (e.g., clearing the next marking
 660   // bitmap). If that is the case we cannot start a new cycle and
 661   // we'll have to wait for the concurrent marking thread to finish
 662   // what it is doing. In this case we will postpone the marking cycle
 663   // initiation decision for the next pause. When we eventually decide
 664   // to start a cycle, we will set _during_initial_mark_pause which
 665   // will stay true until the end of the initial-mark pause and it's
 666   // the condition that indicates that a pause is doing the
 667   // initial-mark work.
 668   volatile bool _during_initial_mark_pause;
 669 
 670   bool _last_young_gc;
 671 
 672   // This set of variables tracks the collector efficiency, in order to
 673   // determine whether we should initiate a new marking.
 674   double _cur_mark_stop_world_time_ms;
 675   double _mark_remark_start_sec;
 676   double _mark_cleanup_start_sec;
 677   double _root_region_scan_wait_time_ms;
 678 
 679   // Update the young list target length either by setting it to the
 680   // desired fixed value or by calculating it using G1's pause
 681   // prediction model. If no rs_lengths parameter is passed, predict
 682   // the RS lengths using the prediction model, otherwise use the
 683   // given rs_lengths as the prediction.
 684   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 685 
 686   // Calculate and return the minimum desired young list target
 687   // length. This is the minimum desired young list length according
 688   // to the user's inputs.
 689   uint calculate_young_list_desired_min_length(uint base_min_length);
 690 
 691   // Calculate and return the maximum desired young list target
 692   // length. This is the maximum desired young list length according
 693   // to the user's inputs.
 694   uint calculate_young_list_desired_max_length();
 695 
 696   // Calculate and return the maximum young list target length that
 697   // can fit into the pause time goal. The parameters are: rs_lengths
 698   // represent the prediction of how large the young RSet lengths will
 699   // be, base_min_length is the alreay existing number of regions in
 700   // the young list, min_length and max_length are the desired min and
 701   // max young list length according to the user's inputs.
 702   uint calculate_young_list_target_length(size_t rs_lengths,
 703                                           uint base_min_length,
 704                                           uint desired_min_length,
 705                                           uint desired_max_length);
 706 
 707   // Check whether a given young length (young_length) fits into the
 708   // given target pause time and whether the prediction for the amount
 709   // of objects to be copied for the given length will fit into the
 710   // given free space (expressed by base_free_regions).  It is used by
 711   // calculate_young_list_target_length().
 712   bool predict_will_fit(uint young_length, double base_time_ms,
 713                         uint base_free_regions, double target_pause_time_ms);
 714 
 715   // Count the number of bytes used in the CS.
 716   void count_CS_bytes_used();
 717 
 718 public:
 719 
 720   G1CollectorPolicy();
 721 
 722   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 723 
 724   virtual CollectorPolicy::Name kind() {
 725     return CollectorPolicy::G1CollectorPolicyKind;
 726   }
 727 
 728   // Check the current value of the young list RSet lengths and
 729   // compare it against the last prediction. If the current value is
 730   // higher, recalculate the young list target length prediction.
 731   void revise_young_list_target_length_if_necessary();
 732 
 733   size_t bytes_in_collection_set() {
 734     return _bytes_in_collection_set_before_gc;
 735   }
 736 
 737   // This should be called after the heap is resized.
 738   void record_new_heap_size(uint new_number_of_regions);
 739 
 740   void init();
 741 
 742   // Create jstat counters for the policy.
 743   virtual void initialize_gc_policy_counters();
 744 
 745   virtual HeapWord* mem_allocate_work(size_t size,
 746                                       bool is_tlab,
 747                                       bool* gc_overhead_limit_was_exceeded);
 748 
 749   // This method controls how a collector handles one or more
 750   // of its generations being fully allocated.
 751   virtual HeapWord* satisfy_failed_allocation(size_t size,
 752                                               bool is_tlab);
 753 
 754   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 755 
 756   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 757 
 758   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 759 
 760   // Update the heuristic info to record a collection pause of the given
 761   // start time, where the given number of bytes were used at the start.
 762   // This may involve changing the desired size of a collection set.
 763 
 764   void record_stop_world_start();
 765 
 766   void record_collection_pause_start(double start_time_sec, size_t start_used);
 767 
 768   // Must currently be called while the world is stopped.
 769   void record_concurrent_mark_init_end(double
 770                                            mark_init_elapsed_time_ms);
 771 
 772   void record_root_region_scan_wait_time(double time_ms) {
 773     _root_region_scan_wait_time_ms = time_ms;
 774   }
 775 
 776   void record_concurrent_mark_remark_start();
 777   void record_concurrent_mark_remark_end();
 778 
 779   void record_concurrent_mark_cleanup_start();
 780   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
 781   void record_concurrent_mark_cleanup_completed();
 782 
 783   void record_concurrent_pause();
 784   void record_concurrent_pause_end();
 785 
 786   void record_collection_pause_end(int no_of_gc_threads);
 787   void print_heap_transition();
 788 
 789   // Record the fact that a full collection occurred.
 790   void record_full_collection_start();
 791   void record_full_collection_end();
 792 
 793   void record_gc_worker_start_time(int worker_i, double ms) {
 794     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 795   }
 796 
 797   void record_ext_root_scan_time(int worker_i, double ms) {
 798     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 799   }
 800 
 801   void record_satb_filtering_time(int worker_i, double ms) {
 802     _par_last_satb_filtering_times_ms[worker_i] = ms;
 803   }
 804 
 805   void record_update_rs_time(int thread, double ms) {
 806     _par_last_update_rs_times_ms[thread] = ms;
 807   }
 808 
 809   void record_update_rs_processed_buffers (int thread,
 810                                            double processed_buffers) {
 811     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 812   }
 813 
 814   void record_scan_rs_time(int thread, double ms) {
 815     _par_last_scan_rs_times_ms[thread] = ms;
 816   }
 817 
 818   void reset_obj_copy_time(int thread) {
 819     _par_last_obj_copy_times_ms[thread] = 0.0;
 820   }
 821 
 822   void reset_obj_copy_time() {
 823     reset_obj_copy_time(0);
 824   }
 825 
 826   void record_obj_copy_time(int thread, double ms) {
 827     _par_last_obj_copy_times_ms[thread] += ms;
 828   }
 829 
 830   void record_termination(int thread, double ms, size_t attempts) {
 831     _par_last_termination_times_ms[thread] = ms;
 832     _par_last_termination_attempts[thread] = (double) attempts;
 833   }
 834 
 835   void record_gc_worker_end_time(int worker_i, double ms) {
 836     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 837   }
 838 
 839   void record_pause_time_ms(double ms) {
 840     _last_pause_time_ms = ms;
 841   }
 842 
 843   void record_clear_ct_time(double ms) {
 844     _cur_clear_ct_time_ms = ms;
 845   }
 846 
 847   void record_par_time(double ms) {
 848     _cur_collection_par_time_ms = ms;
 849   }
 850 
 851   void record_code_root_fixup_time(double ms) {
 852     _cur_collection_code_root_fixup_time_ms = ms;
 853   }
 854 
 855   void record_ref_proc_time(double ms) {
 856     _cur_ref_proc_time_ms = ms;
 857   }
 858 
 859   void record_ref_enq_time(double ms) {
 860     _cur_ref_enq_time_ms = ms;
 861   }
 862 
 863 #ifndef PRODUCT
 864   void record_cc_clear_time(double ms) {
 865     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
 866       _min_clear_cc_time_ms = ms;
 867     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
 868       _max_clear_cc_time_ms = ms;
 869     _cur_clear_cc_time_ms = ms;
 870     _cum_clear_cc_time_ms += ms;
 871     _num_cc_clears++;
 872   }
 873 #endif
 874 
 875   // Record how much space we copied during a GC. This is typically
 876   // called when a GC alloc region is being retired.
 877   void record_bytes_copied_during_gc(size_t bytes) {
 878     _bytes_copied_during_gc += bytes;
 879   }
 880 
 881   // The amount of space we copied during a GC.
 882   size_t bytes_copied_during_gc() {
 883     return _bytes_copied_during_gc;
 884   }
 885 
 886   // Determine whether there are candidate regions so that the
 887   // next GC should be mixed. The two action strings are used
 888   // in the ergo output when the method returns true or false.
 889   bool next_gc_should_be_mixed(const char* true_action_str,
 890                                const char* false_action_str);
 891 
 892   // Choose a new collection set.  Marks the chosen regions as being
 893   // "in_collection_set", and links them together.  The head and number of
 894   // the collection set are available via access methods.
 895   void finalize_cset(double target_pause_time_ms);
 896 
 897   // The head of the list (via "next_in_collection_set()") representing the
 898   // current collection set.
 899   HeapRegion* collection_set() { return _collection_set; }
 900 
 901   void clear_collection_set() { _collection_set = NULL; }
 902 
 903   // Add old region "hr" to the CSet.
 904   void add_old_region_to_cset(HeapRegion* hr);
 905 
 906   // Incremental CSet Support
 907 
 908   // The head of the incrementally built collection set.
 909   HeapRegion* inc_cset_head() { return _inc_cset_head; }
 910 
 911   // The tail of the incrementally built collection set.
 912   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
 913 
 914   // Initialize incremental collection set info.
 915   void start_incremental_cset_building();
 916 
 917   // Perform any final calculations on the incremental CSet fields
 918   // before we can use them.
 919   void finalize_incremental_cset_building();
 920 
 921   void clear_incremental_cset() {
 922     _inc_cset_head = NULL;
 923     _inc_cset_tail = NULL;
 924   }
 925 
 926   // Stop adding regions to the incremental collection set
 927   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
 928 
 929   // Add information about hr to the aggregated information for the
 930   // incrementally built collection set.
 931   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
 932 
 933   // Update information about hr in the aggregated information for
 934   // the incrementally built collection set.
 935   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 936 
 937 private:
 938   // Update the incremental cset information when adding a region
 939   // (should not be called directly).
 940   void add_region_to_incremental_cset_common(HeapRegion* hr);
 941 
 942 public:
 943   // Add hr to the LHS of the incremental collection set.
 944   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 945 
 946   // Add hr to the RHS of the incremental collection set.
 947   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 948 
 949 #ifndef PRODUCT
 950   void print_collection_set(HeapRegion* list_head, outputStream* st);
 951 #endif // !PRODUCT
 952 
 953   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
 954   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
 955   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
 956 
 957   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
 958   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
 959   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
 960 
 961   // This sets the initiate_conc_mark_if_possible() flag to start a
 962   // new cycle, as long as we are not already in one. It's best if it
 963   // is called during a safepoint when the test whether a cycle is in
 964   // progress or not is stable.
 965   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 966 
 967   // This is called at the very beginning of an evacuation pause (it
 968   // has to be the first thing that the pause does). If
 969   // initiate_conc_mark_if_possible() is true, and the concurrent
 970   // marking thread has completed its work during the previous cycle,
 971   // it will set during_initial_mark_pause() to so that the pause does
 972   // the initial-mark work and start a marking cycle.
 973   void decide_on_conc_mark_initiation();
 974 
 975   // If an expansion would be appropriate, because recent GC overhead had
 976   // exceeded the desired limit, return an amount to expand by.
 977   size_t expansion_amount();
 978 
 979   // Print tracing information.
 980   void print_tracing_info() const;
 981 
 982   // Print stats on young survival ratio
 983   void print_yg_surv_rate_info() const;
 984 
 985   void finished_recalculating_age_indexes(bool is_survivors) {
 986     if (is_survivors) {
 987       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 988     } else {
 989       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 990     }
 991     // do that for any other surv rate groups
 992   }
 993 
 994   bool is_young_list_full() {
 995     uint young_list_length = _g1->young_list()->length();
 996     uint young_list_target_length = _young_list_target_length;
 997     return young_list_length >= young_list_target_length;
 998   }
 999 
1000   bool can_expand_young_list() {
1001     uint young_list_length = _g1->young_list()->length();
1002     uint young_list_max_length = _young_list_max_length;
1003     return young_list_length < young_list_max_length;
1004   }
1005 
1006   uint young_list_max_length() {
1007     return _young_list_max_length;
1008   }
1009 
1010   bool gcs_are_young() {
1011     return _gcs_are_young;
1012   }
1013   void set_gcs_are_young(bool gcs_are_young) {
1014     _gcs_are_young = gcs_are_young;
1015   }
1016 
1017   bool adaptive_young_list_length() {
1018     return _young_gen_sizer->adaptive_young_list_length();
1019   }
1020 
1021 private:
1022   //
1023   // Survivor regions policy.
1024   //
1025 
1026   // Current tenuring threshold, set to 0 if the collector reaches the
1027   // maximum amount of suvivors regions.
1028   int _tenuring_threshold;
1029 
1030   // The limit on the number of regions allocated for survivors.
1031   uint _max_survivor_regions;
1032 
1033   // For reporting purposes.
1034   size_t _eden_bytes_before_gc;
1035   size_t _survivor_bytes_before_gc;
1036   size_t _capacity_before_gc;
1037 
1038   // The amount of survor regions after a collection.
1039   uint _recorded_survivor_regions;
1040   // List of survivor regions.
1041   HeapRegion* _recorded_survivor_head;
1042   HeapRegion* _recorded_survivor_tail;
1043 
1044   ageTable _survivors_age_table;
1045 
1046 public:
1047 
1048   inline GCAllocPurpose
1049     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1050       if (age < _tenuring_threshold && src_region->is_young()) {
1051         return GCAllocForSurvived;
1052       } else {
1053         return GCAllocForTenured;
1054       }
1055   }
1056 
1057   inline bool track_object_age(GCAllocPurpose purpose) {
1058     return purpose == GCAllocForSurvived;
1059   }
1060 
1061   static const uint REGIONS_UNLIMITED = (uint) -1;
1062 
1063   uint max_regions(int purpose);
1064 
1065   // The limit on regions for a particular purpose is reached.
1066   void note_alloc_region_limit_reached(int purpose) {
1067     if (purpose == GCAllocForSurvived) {
1068       _tenuring_threshold = 0;
1069     }
1070   }
1071 
1072   void note_start_adding_survivor_regions() {
1073     _survivor_surv_rate_group->start_adding_regions();
1074   }
1075 
1076   void note_stop_adding_survivor_regions() {
1077     _survivor_surv_rate_group->stop_adding_regions();
1078   }
1079 
1080   void record_survivor_regions(uint regions,
1081                                HeapRegion* head,
1082                                HeapRegion* tail) {
1083     _recorded_survivor_regions = regions;
1084     _recorded_survivor_head    = head;
1085     _recorded_survivor_tail    = tail;
1086   }
1087 
1088   uint recorded_survivor_regions() {
1089     return _recorded_survivor_regions;
1090   }
1091 
1092   void record_thread_age_table(ageTable* age_table) {
1093     _survivors_age_table.merge_par(age_table);
1094   }
1095 
1096   void update_max_gc_locker_expansion();
1097 
1098   // Calculates survivor space parameters.
1099   void update_survivors_policy();
1100 
1101 };
1102 
1103 // This should move to some place more general...
1104 
1105 // If we have "n" measurements, and we've kept track of their "sum" and the
1106 // "sum_of_squares" of the measurements, this returns the variance of the
1107 // sequence.
1108 inline double variance(int n, double sum_of_squares, double sum) {
1109   double n_d = (double)n;
1110   double avg = sum/n_d;
1111   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1112 }
1113 
1114 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP