1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "utilities/decoder.hpp"
  65 #include "utilities/defaultStream.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/growableArray.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 #ifdef _DEBUG
  71 #include <crtdbg.h>
  72 #endif
  73 
  74 
  75 #include <windows.h>
  76 #include <sys/types.h>
  77 #include <sys/stat.h>
  78 #include <sys/timeb.h>
  79 #include <objidl.h>
  80 #include <shlobj.h>
  81 
  82 #include <malloc.h>
  83 #include <signal.h>
  84 #include <direct.h>
  85 #include <errno.h>
  86 #include <fcntl.h>
  87 #include <io.h>
  88 #include <process.h>              // For _beginthreadex(), _endthreadex()
  89 #include <imagehlp.h>             // For os::dll_address_to_function_name
  90 /* for enumerating dll libraries */
  91 #include <vdmdbg.h>
  92 
  93 // for timer info max values which include all bits
  94 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  95 
  96 // For DLL loading/load error detection
  97 // Values of PE COFF
  98 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
  99 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 100 
 101 static HANDLE main_process;
 102 static HANDLE main_thread;
 103 static int    main_thread_id;
 104 
 105 static FILETIME process_creation_time;
 106 static FILETIME process_exit_time;
 107 static FILETIME process_user_time;
 108 static FILETIME process_kernel_time;
 109 
 110 #ifdef _M_IA64
 111 #define __CPU__ ia64
 112 #elif _M_AMD64
 113 #define __CPU__ amd64
 114 #else
 115 #define __CPU__ i486
 116 #endif
 117 
 118 // save DLL module handle, used by GetModuleFileName
 119 
 120 HINSTANCE vm_lib_handle;
 121 
 122 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 123   switch (reason) {
 124     case DLL_PROCESS_ATTACH:
 125       vm_lib_handle = hinst;
 126       if(ForceTimeHighResolution)
 127         timeBeginPeriod(1L);
 128       break;
 129     case DLL_PROCESS_DETACH:
 130       if(ForceTimeHighResolution)
 131         timeEndPeriod(1L);
 132       break;
 133     default:
 134       break;
 135   }
 136   return true;
 137 }
 138 
 139 static inline double fileTimeAsDouble(FILETIME* time) {
 140   const double high  = (double) ((unsigned int) ~0);
 141   const double split = 10000000.0;
 142   double result = (time->dwLowDateTime / split) +
 143                    time->dwHighDateTime * (high/split);
 144   return result;
 145 }
 146 
 147 // Implementation of os
 148 
 149 bool os::getenv(const char* name, char* buffer, int len) {
 150  int result = GetEnvironmentVariable(name, buffer, len);
 151  return result > 0 && result < len;
 152 }
 153 
 154 
 155 // No setuid programs under Windows.
 156 bool os::have_special_privileges() {
 157   return false;
 158 }
 159 
 160 
 161 // This method is  a periodic task to check for misbehaving JNI applications
 162 // under CheckJNI, we can add any periodic checks here.
 163 // For Windows at the moment does nothing
 164 void os::run_periodic_checks() {
 165   return;
 166 }
 167 
 168 #ifndef _WIN64
 169 // previous UnhandledExceptionFilter, if there is one
 170 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 171 
 172 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 173 #endif
 174 void os::init_system_properties_values() {
 175   /* sysclasspath, java_home, dll_dir */
 176   {
 177       char *home_path;
 178       char *dll_path;
 179       char *pslash;
 180       char *bin = "\\bin";
 181       char home_dir[MAX_PATH];
 182 
 183       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 184           os::jvm_path(home_dir, sizeof(home_dir));
 185           // Found the full path to jvm[_g].dll.
 186           // Now cut the path to <java_home>/jre if we can.
 187           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 188           pslash = strrchr(home_dir, '\\');
 189           if (pslash != NULL) {
 190               *pslash = '\0';                 /* get rid of \{client|server} */
 191               pslash = strrchr(home_dir, '\\');
 192               if (pslash != NULL)
 193                   *pslash = '\0';             /* get rid of \bin */
 194           }
 195       }
 196 
 197       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 198       if (home_path == NULL)
 199           return;
 200       strcpy(home_path, home_dir);
 201       Arguments::set_java_home(home_path);
 202 
 203       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 204       if (dll_path == NULL)
 205           return;
 206       strcpy(dll_path, home_dir);
 207       strcat(dll_path, bin);
 208       Arguments::set_dll_dir(dll_path);
 209 
 210       if (!set_boot_path('\\', ';'))
 211           return;
 212   }
 213 
 214   /* library_path */
 215   #define EXT_DIR "\\lib\\ext"
 216   #define BIN_DIR "\\bin"
 217   #define PACKAGE_DIR "\\Sun\\Java"
 218   {
 219     /* Win32 library search order (See the documentation for LoadLibrary):
 220      *
 221      * 1. The directory from which application is loaded.
 222      * 2. The system wide Java Extensions directory (Java only)
 223      * 3. System directory (GetSystemDirectory)
 224      * 4. Windows directory (GetWindowsDirectory)
 225      * 5. The PATH environment variable
 226      * 6. The current directory
 227      */
 228 
 229     char *library_path;
 230     char tmp[MAX_PATH];
 231     char *path_str = ::getenv("PATH");
 232 
 233     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 234         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 235 
 236     library_path[0] = '\0';
 237 
 238     GetModuleFileName(NULL, tmp, sizeof(tmp));
 239     *(strrchr(tmp, '\\')) = '\0';
 240     strcat(library_path, tmp);
 241 
 242     GetWindowsDirectory(tmp, sizeof(tmp));
 243     strcat(library_path, ";");
 244     strcat(library_path, tmp);
 245     strcat(library_path, PACKAGE_DIR BIN_DIR);
 246 
 247     GetSystemDirectory(tmp, sizeof(tmp));
 248     strcat(library_path, ";");
 249     strcat(library_path, tmp);
 250 
 251     GetWindowsDirectory(tmp, sizeof(tmp));
 252     strcat(library_path, ";");
 253     strcat(library_path, tmp);
 254 
 255     if (path_str) {
 256         strcat(library_path, ";");
 257         strcat(library_path, path_str);
 258     }
 259 
 260     strcat(library_path, ";.");
 261 
 262     Arguments::set_library_path(library_path);
 263     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 264   }
 265 
 266   /* Default extensions directory */
 267   {
 268     char path[MAX_PATH];
 269     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 270     GetWindowsDirectory(path, MAX_PATH);
 271     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 272         path, PACKAGE_DIR, EXT_DIR);
 273     Arguments::set_ext_dirs(buf);
 274   }
 275   #undef EXT_DIR
 276   #undef BIN_DIR
 277   #undef PACKAGE_DIR
 278 
 279   /* Default endorsed standards directory. */
 280   {
 281     #define ENDORSED_DIR "\\lib\\endorsed"
 282     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 283     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 284     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 285     Arguments::set_endorsed_dirs(buf);
 286     #undef ENDORSED_DIR
 287   }
 288 
 289 #ifndef _WIN64
 290   // set our UnhandledExceptionFilter and save any previous one
 291   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 292 #endif
 293 
 294   // Done
 295   return;
 296 }
 297 
 298 void os::breakpoint() {
 299   DebugBreak();
 300 }
 301 
 302 // Invoked from the BREAKPOINT Macro
 303 extern "C" void breakpoint() {
 304   os::breakpoint();
 305 }
 306 
 307 /*
 308  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 309  * So far, this method is only used by Native Memory Tracking, which is
 310  * only supported on Windows XP or later.
 311  */
 312 address os::get_caller_pc(int n) {
 313 #ifdef _NMT_NOINLINE_
 314   n ++;
 315 #endif
 316   address pc;
 317   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
 318     return pc;
 319   }
 320   return NULL;
 321 }
 322 
 323 
 324 // os::current_stack_base()
 325 //
 326 //   Returns the base of the stack, which is the stack's
 327 //   starting address.  This function must be called
 328 //   while running on the stack of the thread being queried.
 329 
 330 address os::current_stack_base() {
 331   MEMORY_BASIC_INFORMATION minfo;
 332   address stack_bottom;
 333   size_t stack_size;
 334 
 335   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 336   stack_bottom =  (address)minfo.AllocationBase;
 337   stack_size = minfo.RegionSize;
 338 
 339   // Add up the sizes of all the regions with the same
 340   // AllocationBase.
 341   while( 1 )
 342   {
 343     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 344     if ( stack_bottom == (address)minfo.AllocationBase )
 345       stack_size += minfo.RegionSize;
 346     else
 347       break;
 348   }
 349 
 350 #ifdef _M_IA64
 351   // IA64 has memory and register stacks
 352   stack_size = stack_size / 2;
 353 #endif
 354   return stack_bottom + stack_size;
 355 }
 356 
 357 size_t os::current_stack_size() {
 358   size_t sz;
 359   MEMORY_BASIC_INFORMATION minfo;
 360   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 361   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 362   return sz;
 363 }
 364 
 365 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 366   const struct tm* time_struct_ptr = localtime(clock);
 367   if (time_struct_ptr != NULL) {
 368     *res = *time_struct_ptr;
 369     return res;
 370   }
 371   return NULL;
 372 }
 373 
 374 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 375 
 376 // Thread start routine for all new Java threads
 377 static unsigned __stdcall java_start(Thread* thread) {
 378   // Try to randomize the cache line index of hot stack frames.
 379   // This helps when threads of the same stack traces evict each other's
 380   // cache lines. The threads can be either from the same JVM instance, or
 381   // from different JVM instances. The benefit is especially true for
 382   // processors with hyperthreading technology.
 383   static int counter = 0;
 384   int pid = os::current_process_id();
 385   _alloca(((pid ^ counter++) & 7) * 128);
 386 
 387   OSThread* osthr = thread->osthread();
 388   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 389 
 390   if (UseNUMA) {
 391     int lgrp_id = os::numa_get_group_id();
 392     if (lgrp_id != -1) {
 393       thread->set_lgrp_id(lgrp_id);
 394     }
 395   }
 396 
 397 
 398   // Install a win32 structured exception handler around every thread created
 399   // by VM, so VM can genrate error dump when an exception occurred in non-
 400   // Java thread (e.g. VM thread).
 401   __try {
 402      thread->run();
 403   } __except(topLevelExceptionFilter(
 404              (_EXCEPTION_POINTERS*)_exception_info())) {
 405       // Nothing to do.
 406   }
 407 
 408   // One less thread is executing
 409   // When the VMThread gets here, the main thread may have already exited
 410   // which frees the CodeHeap containing the Atomic::add code
 411   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 412     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 413   }
 414 
 415   return 0;
 416 }
 417 
 418 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 419   // Allocate the OSThread object
 420   OSThread* osthread = new OSThread(NULL, NULL);
 421   if (osthread == NULL) return NULL;
 422 
 423   // Initialize support for Java interrupts
 424   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 425   if (interrupt_event == NULL) {
 426     delete osthread;
 427     return NULL;
 428   }
 429   osthread->set_interrupt_event(interrupt_event);
 430 
 431   // Store info on the Win32 thread into the OSThread
 432   osthread->set_thread_handle(thread_handle);
 433   osthread->set_thread_id(thread_id);
 434 
 435   if (UseNUMA) {
 436     int lgrp_id = os::numa_get_group_id();
 437     if (lgrp_id != -1) {
 438       thread->set_lgrp_id(lgrp_id);
 439     }
 440   }
 441 
 442   // Initial thread state is INITIALIZED, not SUSPENDED
 443   osthread->set_state(INITIALIZED);
 444 
 445   return osthread;
 446 }
 447 
 448 
 449 bool os::create_attached_thread(JavaThread* thread) {
 450 #ifdef ASSERT
 451   thread->verify_not_published();
 452 #endif
 453   HANDLE thread_h;
 454   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 455                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 456     fatal("DuplicateHandle failed\n");
 457   }
 458   OSThread* osthread = create_os_thread(thread, thread_h,
 459                                         (int)current_thread_id());
 460   if (osthread == NULL) {
 461      return false;
 462   }
 463 
 464   // Initial thread state is RUNNABLE
 465   osthread->set_state(RUNNABLE);
 466 
 467   thread->set_osthread(osthread);
 468   return true;
 469 }
 470 
 471 bool os::create_main_thread(JavaThread* thread) {
 472 #ifdef ASSERT
 473   thread->verify_not_published();
 474 #endif
 475   if (_starting_thread == NULL) {
 476     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 477      if (_starting_thread == NULL) {
 478         return false;
 479      }
 480   }
 481 
 482   // The primordial thread is runnable from the start)
 483   _starting_thread->set_state(RUNNABLE);
 484 
 485   thread->set_osthread(_starting_thread);
 486   return true;
 487 }
 488 
 489 // Allocate and initialize a new OSThread
 490 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 491   unsigned thread_id;
 492 
 493   // Allocate the OSThread object
 494   OSThread* osthread = new OSThread(NULL, NULL);
 495   if (osthread == NULL) {
 496     return false;
 497   }
 498 
 499   // Initialize support for Java interrupts
 500   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 501   if (interrupt_event == NULL) {
 502     delete osthread;
 503     return NULL;
 504   }
 505   osthread->set_interrupt_event(interrupt_event);
 506   osthread->set_interrupted(false);
 507 
 508   thread->set_osthread(osthread);
 509 
 510   if (stack_size == 0) {
 511     switch (thr_type) {
 512     case os::java_thread:
 513       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 514       if (JavaThread::stack_size_at_create() > 0)
 515         stack_size = JavaThread::stack_size_at_create();
 516       break;
 517     case os::compiler_thread:
 518       if (CompilerThreadStackSize > 0) {
 519         stack_size = (size_t)(CompilerThreadStackSize * K);
 520         break;
 521       } // else fall through:
 522         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 523     case os::vm_thread:
 524     case os::pgc_thread:
 525     case os::cgc_thread:
 526     case os::watcher_thread:
 527       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 528       break;
 529     }
 530   }
 531 
 532   // Create the Win32 thread
 533   //
 534   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 535   // does not specify stack size. Instead, it specifies the size of
 536   // initially committed space. The stack size is determined by
 537   // PE header in the executable. If the committed "stack_size" is larger
 538   // than default value in the PE header, the stack is rounded up to the
 539   // nearest multiple of 1MB. For example if the launcher has default
 540   // stack size of 320k, specifying any size less than 320k does not
 541   // affect the actual stack size at all, it only affects the initial
 542   // commitment. On the other hand, specifying 'stack_size' larger than
 543   // default value may cause significant increase in memory usage, because
 544   // not only the stack space will be rounded up to MB, but also the
 545   // entire space is committed upfront.
 546   //
 547   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 548   // for CreateThread() that can treat 'stack_size' as stack size. However we
 549   // are not supposed to call CreateThread() directly according to MSDN
 550   // document because JVM uses C runtime library. The good news is that the
 551   // flag appears to work with _beginthredex() as well.
 552 
 553 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 554 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 555 #endif
 556 
 557   HANDLE thread_handle =
 558     (HANDLE)_beginthreadex(NULL,
 559                            (unsigned)stack_size,
 560                            (unsigned (__stdcall *)(void*)) java_start,
 561                            thread,
 562                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 563                            &thread_id);
 564   if (thread_handle == NULL) {
 565     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 566     // without the flag.
 567     thread_handle =
 568     (HANDLE)_beginthreadex(NULL,
 569                            (unsigned)stack_size,
 570                            (unsigned (__stdcall *)(void*)) java_start,
 571                            thread,
 572                            CREATE_SUSPENDED,
 573                            &thread_id);
 574   }
 575   if (thread_handle == NULL) {
 576     // Need to clean up stuff we've allocated so far
 577     CloseHandle(osthread->interrupt_event());
 578     thread->set_osthread(NULL);
 579     delete osthread;
 580     return NULL;
 581   }
 582 
 583   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 584 
 585   // Store info on the Win32 thread into the OSThread
 586   osthread->set_thread_handle(thread_handle);
 587   osthread->set_thread_id(thread_id);
 588 
 589   // Initial thread state is INITIALIZED, not SUSPENDED
 590   osthread->set_state(INITIALIZED);
 591 
 592   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 593   return true;
 594 }
 595 
 596 
 597 // Free Win32 resources related to the OSThread
 598 void os::free_thread(OSThread* osthread) {
 599   assert(osthread != NULL, "osthread not set");
 600   CloseHandle(osthread->thread_handle());
 601   CloseHandle(osthread->interrupt_event());
 602   delete osthread;
 603 }
 604 
 605 
 606 static int    has_performance_count = 0;
 607 static jlong first_filetime;
 608 static jlong initial_performance_count;
 609 static jlong performance_frequency;
 610 
 611 
 612 jlong as_long(LARGE_INTEGER x) {
 613   jlong result = 0; // initialization to avoid warning
 614   set_high(&result, x.HighPart);
 615   set_low(&result,  x.LowPart);
 616   return result;
 617 }
 618 
 619 
 620 jlong os::elapsed_counter() {
 621   LARGE_INTEGER count;
 622   if (has_performance_count) {
 623     QueryPerformanceCounter(&count);
 624     return as_long(count) - initial_performance_count;
 625   } else {
 626     FILETIME wt;
 627     GetSystemTimeAsFileTime(&wt);
 628     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 629   }
 630 }
 631 
 632 
 633 jlong os::elapsed_frequency() {
 634   if (has_performance_count) {
 635     return performance_frequency;
 636   } else {
 637    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 638    return 10000000;
 639   }
 640 }
 641 
 642 
 643 julong os::available_memory() {
 644   return win32::available_memory();
 645 }
 646 
 647 julong os::win32::available_memory() {
 648   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 649   // value if total memory is larger than 4GB
 650   MEMORYSTATUSEX ms;
 651   ms.dwLength = sizeof(ms);
 652   GlobalMemoryStatusEx(&ms);
 653 
 654   return (julong)ms.ullAvailPhys;
 655 }
 656 
 657 julong os::physical_memory() {
 658   return win32::physical_memory();
 659 }
 660 
 661 julong os::allocatable_physical_memory(julong size) {
 662 #ifdef _LP64
 663   return size;
 664 #else
 665   // Limit to 1400m because of the 2gb address space wall
 666   return MIN2(size, (julong)1400*M);
 667 #endif
 668 }
 669 
 670 // VC6 lacks DWORD_PTR
 671 #if _MSC_VER < 1300
 672 typedef UINT_PTR DWORD_PTR;
 673 #endif
 674 
 675 int os::active_processor_count() {
 676   DWORD_PTR lpProcessAffinityMask = 0;
 677   DWORD_PTR lpSystemAffinityMask = 0;
 678   int proc_count = processor_count();
 679   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 680       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 681     // Nof active processors is number of bits in process affinity mask
 682     int bitcount = 0;
 683     while (lpProcessAffinityMask != 0) {
 684       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 685       bitcount++;
 686     }
 687     return bitcount;
 688   } else {
 689     return proc_count;
 690   }
 691 }
 692 
 693 void os::set_native_thread_name(const char *name) {
 694   // Not yet implemented.
 695   return;
 696 }
 697 
 698 bool os::distribute_processes(uint length, uint* distribution) {
 699   // Not yet implemented.
 700   return false;
 701 }
 702 
 703 bool os::bind_to_processor(uint processor_id) {
 704   // Not yet implemented.
 705   return false;
 706 }
 707 
 708 static void initialize_performance_counter() {
 709   LARGE_INTEGER count;
 710   if (QueryPerformanceFrequency(&count)) {
 711     has_performance_count = 1;
 712     performance_frequency = as_long(count);
 713     QueryPerformanceCounter(&count);
 714     initial_performance_count = as_long(count);
 715   } else {
 716     has_performance_count = 0;
 717     FILETIME wt;
 718     GetSystemTimeAsFileTime(&wt);
 719     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 720   }
 721 }
 722 
 723 
 724 double os::elapsedTime() {
 725   return (double) elapsed_counter() / (double) elapsed_frequency();
 726 }
 727 
 728 
 729 // Windows format:
 730 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 731 // Java format:
 732 //   Java standards require the number of milliseconds since 1/1/1970
 733 
 734 // Constant offset - calculated using offset()
 735 static jlong  _offset   = 116444736000000000;
 736 // Fake time counter for reproducible results when debugging
 737 static jlong  fake_time = 0;
 738 
 739 #ifdef ASSERT
 740 // Just to be safe, recalculate the offset in debug mode
 741 static jlong _calculated_offset = 0;
 742 static int   _has_calculated_offset = 0;
 743 
 744 jlong offset() {
 745   if (_has_calculated_offset) return _calculated_offset;
 746   SYSTEMTIME java_origin;
 747   java_origin.wYear          = 1970;
 748   java_origin.wMonth         = 1;
 749   java_origin.wDayOfWeek     = 0; // ignored
 750   java_origin.wDay           = 1;
 751   java_origin.wHour          = 0;
 752   java_origin.wMinute        = 0;
 753   java_origin.wSecond        = 0;
 754   java_origin.wMilliseconds  = 0;
 755   FILETIME jot;
 756   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 757     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 758   }
 759   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 760   _has_calculated_offset = 1;
 761   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 762   return _calculated_offset;
 763 }
 764 #else
 765 jlong offset() {
 766   return _offset;
 767 }
 768 #endif
 769 
 770 jlong windows_to_java_time(FILETIME wt) {
 771   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 772   return (a - offset()) / 10000;
 773 }
 774 
 775 FILETIME java_to_windows_time(jlong l) {
 776   jlong a = (l * 10000) + offset();
 777   FILETIME result;
 778   result.dwHighDateTime = high(a);
 779   result.dwLowDateTime  = low(a);
 780   return result;
 781 }
 782 
 783 // For now, we say that Windows does not support vtime.  I have no idea
 784 // whether it can actually be made to (DLD, 9/13/05).
 785 
 786 bool os::supports_vtime() { return false; }
 787 bool os::enable_vtime() { return false; }
 788 bool os::vtime_enabled() { return false; }
 789 double os::elapsedVTime() {
 790   // better than nothing, but not much
 791   return elapsedTime();
 792 }
 793 
 794 jlong os::javaTimeMillis() {
 795   if (UseFakeTimers) {
 796     return fake_time++;
 797   } else {
 798     FILETIME wt;
 799     GetSystemTimeAsFileTime(&wt);
 800     return windows_to_java_time(wt);
 801   }
 802 }
 803 
 804 jlong os::javaTimeNanos() {
 805   if (!has_performance_count) {
 806     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 807   } else {
 808     LARGE_INTEGER current_count;
 809     QueryPerformanceCounter(&current_count);
 810     double current = as_long(current_count);
 811     double freq = performance_frequency;
 812     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 813     return time;
 814   }
 815 }
 816 
 817 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 818   if (!has_performance_count) {
 819     // javaTimeMillis() doesn't have much percision,
 820     // but it is not going to wrap -- so all 64 bits
 821     info_ptr->max_value = ALL_64_BITS;
 822 
 823     // this is a wall clock timer, so may skip
 824     info_ptr->may_skip_backward = true;
 825     info_ptr->may_skip_forward = true;
 826   } else {
 827     jlong freq = performance_frequency;
 828     if (freq < NANOSECS_PER_SEC) {
 829       // the performance counter is 64 bits and we will
 830       // be multiplying it -- so no wrap in 64 bits
 831       info_ptr->max_value = ALL_64_BITS;
 832     } else if (freq > NANOSECS_PER_SEC) {
 833       // use the max value the counter can reach to
 834       // determine the max value which could be returned
 835       julong max_counter = (julong)ALL_64_BITS;
 836       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 837     } else {
 838       // the performance counter is 64 bits and we will
 839       // be using it directly -- so no wrap in 64 bits
 840       info_ptr->max_value = ALL_64_BITS;
 841     }
 842 
 843     // using a counter, so no skipping
 844     info_ptr->may_skip_backward = false;
 845     info_ptr->may_skip_forward = false;
 846   }
 847   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 848 }
 849 
 850 char* os::local_time_string(char *buf, size_t buflen) {
 851   SYSTEMTIME st;
 852   GetLocalTime(&st);
 853   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 854                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 855   return buf;
 856 }
 857 
 858 bool os::getTimesSecs(double* process_real_time,
 859                      double* process_user_time,
 860                      double* process_system_time) {
 861   HANDLE h_process = GetCurrentProcess();
 862   FILETIME create_time, exit_time, kernel_time, user_time;
 863   BOOL result = GetProcessTimes(h_process,
 864                                &create_time,
 865                                &exit_time,
 866                                &kernel_time,
 867                                &user_time);
 868   if (result != 0) {
 869     FILETIME wt;
 870     GetSystemTimeAsFileTime(&wt);
 871     jlong rtc_millis = windows_to_java_time(wt);
 872     jlong user_millis = windows_to_java_time(user_time);
 873     jlong system_millis = windows_to_java_time(kernel_time);
 874     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 875     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 876     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 877     return true;
 878   } else {
 879     return false;
 880   }
 881 }
 882 
 883 void os::shutdown() {
 884 
 885   // allow PerfMemory to attempt cleanup of any persistent resources
 886   perfMemory_exit();
 887 
 888   // flush buffered output, finish log files
 889   ostream_abort();
 890 
 891   // Check for abort hook
 892   abort_hook_t abort_hook = Arguments::abort_hook();
 893   if (abort_hook != NULL) {
 894     abort_hook();
 895   }
 896 }
 897 
 898 
 899 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 900                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 901 
 902 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 903   HINSTANCE dbghelp;
 904   EXCEPTION_POINTERS ep;
 905   MINIDUMP_EXCEPTION_INFORMATION mei;
 906   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 907 
 908   HANDLE hProcess = GetCurrentProcess();
 909   DWORD processId = GetCurrentProcessId();
 910   HANDLE dumpFile;
 911   MINIDUMP_TYPE dumpType;
 912   static const char* cwd;
 913 
 914   // If running on a client version of Windows and user has not explicitly enabled dumping
 915   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 916     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 917     return;
 918     // If running on a server version of Windows and user has explictly disabled dumping
 919   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 920     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 921     return;
 922   }
 923 
 924   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 925 
 926   if (dbghelp == NULL) {
 927     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 928     return;
 929   }
 930 
 931   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 932     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 933     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 934     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 935 
 936   if (_MiniDumpWriteDump == NULL) {
 937     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 938     return;
 939   }
 940 
 941   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 942 
 943 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 944 // API_VERSION_NUMBER 11 or higher contains the ones we want though
 945 #if API_VERSION_NUMBER >= 11
 946   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
 947     MiniDumpWithUnloadedModules);
 948 #endif
 949 
 950   cwd = get_current_directory(NULL, 0);
 951   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
 952   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 953 
 954   if (dumpFile == INVALID_HANDLE_VALUE) {
 955     VMError::report_coredump_status("Failed to create file for dumping", false);
 956     return;
 957   }
 958   if (exceptionRecord != NULL && contextRecord != NULL) {
 959     ep.ContextRecord = (PCONTEXT) contextRecord;
 960     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
 961 
 962     mei.ThreadId = GetCurrentThreadId();
 963     mei.ExceptionPointers = &ep;
 964     pmei = &mei;
 965   } else {
 966     pmei = NULL;
 967   }
 968 
 969 
 970   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
 971   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
 972   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
 973       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
 974     VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
 975   } else {
 976     VMError::report_coredump_status(buffer, true);
 977   }
 978 
 979   CloseHandle(dumpFile);
 980 }
 981 
 982 
 983 
 984 void os::abort(bool dump_core)
 985 {
 986   os::shutdown();
 987   // no core dump on Windows
 988   ::exit(1);
 989 }
 990 
 991 // Die immediately, no exit hook, no abort hook, no cleanup.
 992 void os::die() {
 993   _exit(-1);
 994 }
 995 
 996 // Directory routines copied from src/win32/native/java/io/dirent_md.c
 997 //  * dirent_md.c       1.15 00/02/02
 998 //
 999 // The declarations for DIR and struct dirent are in jvm_win32.h.
1000 
1001 /* Caller must have already run dirname through JVM_NativePath, which removes
1002    duplicate slashes and converts all instances of '/' into '\\'. */
1003 
1004 DIR *
1005 os::opendir(const char *dirname)
1006 {
1007     assert(dirname != NULL, "just checking");   // hotspot change
1008     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1009     DWORD fattr;                                // hotspot change
1010     char alt_dirname[4] = { 0, 0, 0, 0 };
1011 
1012     if (dirp == 0) {
1013         errno = ENOMEM;
1014         return 0;
1015     }
1016 
1017     /*
1018      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1019      * as a directory in FindFirstFile().  We detect this case here and
1020      * prepend the current drive name.
1021      */
1022     if (dirname[1] == '\0' && dirname[0] == '\\') {
1023         alt_dirname[0] = _getdrive() + 'A' - 1;
1024         alt_dirname[1] = ':';
1025         alt_dirname[2] = '\\';
1026         alt_dirname[3] = '\0';
1027         dirname = alt_dirname;
1028     }
1029 
1030     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1031     if (dirp->path == 0) {
1032         free(dirp, mtInternal);
1033         errno = ENOMEM;
1034         return 0;
1035     }
1036     strcpy(dirp->path, dirname);
1037 
1038     fattr = GetFileAttributes(dirp->path);
1039     if (fattr == 0xffffffff) {
1040         free(dirp->path, mtInternal);
1041         free(dirp, mtInternal);
1042         errno = ENOENT;
1043         return 0;
1044     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1045         free(dirp->path, mtInternal);
1046         free(dirp, mtInternal);
1047         errno = ENOTDIR;
1048         return 0;
1049     }
1050 
1051     /* Append "*.*", or possibly "\\*.*", to path */
1052     if (dirp->path[1] == ':'
1053         && (dirp->path[2] == '\0'
1054             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1055         /* No '\\' needed for cases like "Z:" or "Z:\" */
1056         strcat(dirp->path, "*.*");
1057     } else {
1058         strcat(dirp->path, "\\*.*");
1059     }
1060 
1061     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1062     if (dirp->handle == INVALID_HANDLE_VALUE) {
1063         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1064             free(dirp->path, mtInternal);
1065             free(dirp, mtInternal);
1066             errno = EACCES;
1067             return 0;
1068         }
1069     }
1070     return dirp;
1071 }
1072 
1073 /* parameter dbuf unused on Windows */
1074 
1075 struct dirent *
1076 os::readdir(DIR *dirp, dirent *dbuf)
1077 {
1078     assert(dirp != NULL, "just checking");      // hotspot change
1079     if (dirp->handle == INVALID_HANDLE_VALUE) {
1080         return 0;
1081     }
1082 
1083     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1084 
1085     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1086         if (GetLastError() == ERROR_INVALID_HANDLE) {
1087             errno = EBADF;
1088             return 0;
1089         }
1090         FindClose(dirp->handle);
1091         dirp->handle = INVALID_HANDLE_VALUE;
1092     }
1093 
1094     return &dirp->dirent;
1095 }
1096 
1097 int
1098 os::closedir(DIR *dirp)
1099 {
1100     assert(dirp != NULL, "just checking");      // hotspot change
1101     if (dirp->handle != INVALID_HANDLE_VALUE) {
1102         if (!FindClose(dirp->handle)) {
1103             errno = EBADF;
1104             return -1;
1105         }
1106         dirp->handle = INVALID_HANDLE_VALUE;
1107     }
1108     free(dirp->path, mtInternal);
1109     free(dirp, mtInternal);
1110     return 0;
1111 }
1112 
1113 // This must be hard coded because it's the system's temporary
1114 // directory not the java application's temp directory, ala java.io.tmpdir.
1115 const char* os::get_temp_directory() {
1116   static char path_buf[MAX_PATH];
1117   if (GetTempPath(MAX_PATH, path_buf)>0)
1118     return path_buf;
1119   else{
1120     path_buf[0]='\0';
1121     return path_buf;
1122   }
1123 }
1124 
1125 static bool file_exists(const char* filename) {
1126   if (filename == NULL || strlen(filename) == 0) {
1127     return false;
1128   }
1129   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1130 }
1131 
1132 bool os::dll_build_name(char *buffer, size_t buflen,
1133                         const char* pname, const char* fname) {
1134   bool retval = false;
1135   const size_t pnamelen = pname ? strlen(pname) : 0;
1136   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1137 
1138   // Return error on buffer overflow.
1139   if (pnamelen + strlen(fname) + 10 > buflen) {
1140     return retval;
1141   }
1142 
1143   if (pnamelen == 0) {
1144     jio_snprintf(buffer, buflen, "%s.dll", fname);
1145     retval = true;
1146   } else if (c == ':' || c == '\\') {
1147     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1148     retval = true;
1149   } else if (strchr(pname, *os::path_separator()) != NULL) {
1150     int n;
1151     char** pelements = split_path(pname, &n);
1152     for (int i = 0 ; i < n ; i++) {
1153       char* path = pelements[i];
1154       // Really shouldn't be NULL, but check can't hurt
1155       size_t plen = (path == NULL) ? 0 : strlen(path);
1156       if (plen == 0) {
1157         continue; // skip the empty path values
1158       }
1159       const char lastchar = path[plen - 1];
1160       if (lastchar == ':' || lastchar == '\\') {
1161         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1162       } else {
1163         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1164       }
1165       if (file_exists(buffer)) {
1166         retval = true;
1167         break;
1168       }
1169     }
1170     // release the storage
1171     for (int i = 0 ; i < n ; i++) {
1172       if (pelements[i] != NULL) {
1173         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1174       }
1175     }
1176     if (pelements != NULL) {
1177       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1178     }
1179   } else {
1180     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1181     retval = true;
1182   }
1183   return retval;
1184 }
1185 
1186 // Needs to be in os specific directory because windows requires another
1187 // header file <direct.h>
1188 const char* os::get_current_directory(char *buf, int buflen) {
1189   return _getcwd(buf, buflen);
1190 }
1191 
1192 //-----------------------------------------------------------
1193 // Helper functions for fatal error handler
1194 #ifdef _WIN64
1195 // Helper routine which returns true if address in
1196 // within the NTDLL address space.
1197 //
1198 static bool _addr_in_ntdll( address addr )
1199 {
1200   HMODULE hmod;
1201   MODULEINFO minfo;
1202 
1203   hmod = GetModuleHandle("NTDLL.DLL");
1204   if ( hmod == NULL ) return false;
1205   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1206                                &minfo, sizeof(MODULEINFO)) )
1207     return false;
1208 
1209   if ( (addr >= minfo.lpBaseOfDll) &&
1210        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1211     return true;
1212   else
1213     return false;
1214 }
1215 #endif
1216 
1217 
1218 // Enumerate all modules for a given process ID
1219 //
1220 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1221 // different API for doing this. We use PSAPI.DLL on NT based
1222 // Windows and ToolHelp on 95/98/Me.
1223 
1224 // Callback function that is called by enumerate_modules() on
1225 // every DLL module.
1226 // Input parameters:
1227 //    int       pid,
1228 //    char*     module_file_name,
1229 //    address   module_base_addr,
1230 //    unsigned  module_size,
1231 //    void*     param
1232 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1233 
1234 // enumerate_modules for Windows NT, using PSAPI
1235 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1236 {
1237   HANDLE   hProcess ;
1238 
1239 # define MAX_NUM_MODULES 128
1240   HMODULE     modules[MAX_NUM_MODULES];
1241   static char filename[ MAX_PATH ];
1242   int         result = 0;
1243 
1244   if (!os::PSApiDll::PSApiAvailable()) {
1245     return 0;
1246   }
1247 
1248   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1249                          FALSE, pid ) ;
1250   if (hProcess == NULL) return 0;
1251 
1252   DWORD size_needed;
1253   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1254                            sizeof(modules), &size_needed)) {
1255       CloseHandle( hProcess );
1256       return 0;
1257   }
1258 
1259   // number of modules that are currently loaded
1260   int num_modules = size_needed / sizeof(HMODULE);
1261 
1262   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1263     // Get Full pathname:
1264     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1265                              filename, sizeof(filename))) {
1266         filename[0] = '\0';
1267     }
1268 
1269     MODULEINFO modinfo;
1270     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1271                                &modinfo, sizeof(modinfo))) {
1272         modinfo.lpBaseOfDll = NULL;
1273         modinfo.SizeOfImage = 0;
1274     }
1275 
1276     // Invoke callback function
1277     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1278                   modinfo.SizeOfImage, param);
1279     if (result) break;
1280   }
1281 
1282   CloseHandle( hProcess ) ;
1283   return result;
1284 }
1285 
1286 
1287 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1288 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1289 {
1290   HANDLE                hSnapShot ;
1291   static MODULEENTRY32  modentry ;
1292   int                   result = 0;
1293 
1294   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1295     return 0;
1296   }
1297 
1298   // Get a handle to a Toolhelp snapshot of the system
1299   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1300   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1301       return FALSE ;
1302   }
1303 
1304   // iterate through all modules
1305   modentry.dwSize = sizeof(MODULEENTRY32) ;
1306   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1307 
1308   while( not_done ) {
1309     // invoke the callback
1310     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1311                 modentry.modBaseSize, param);
1312     if (result) break;
1313 
1314     modentry.dwSize = sizeof(MODULEENTRY32) ;
1315     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1316   }
1317 
1318   CloseHandle(hSnapShot);
1319   return result;
1320 }
1321 
1322 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1323 {
1324   // Get current process ID if caller doesn't provide it.
1325   if (!pid) pid = os::current_process_id();
1326 
1327   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1328   else                    return _enumerate_modules_windows(pid, func, param);
1329 }
1330 
1331 struct _modinfo {
1332    address addr;
1333    char*   full_path;   // point to a char buffer
1334    int     buflen;      // size of the buffer
1335    address base_addr;
1336 };
1337 
1338 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1339                                   unsigned size, void * param) {
1340    struct _modinfo *pmod = (struct _modinfo *)param;
1341    if (!pmod) return -1;
1342 
1343    if (base_addr     <= pmod->addr &&
1344        base_addr+size > pmod->addr) {
1345      // if a buffer is provided, copy path name to the buffer
1346      if (pmod->full_path) {
1347        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1348      }
1349      pmod->base_addr = base_addr;
1350      return 1;
1351    }
1352    return 0;
1353 }
1354 
1355 bool os::dll_address_to_library_name(address addr, char* buf,
1356                                      int buflen, int* offset) {
1357 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1358 //       return the full path to the DLL file, sometimes it returns path
1359 //       to the corresponding PDB file (debug info); sometimes it only
1360 //       returns partial path, which makes life painful.
1361 
1362    struct _modinfo mi;
1363    mi.addr      = addr;
1364    mi.full_path = buf;
1365    mi.buflen    = buflen;
1366    int pid = os::current_process_id();
1367    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1368       // buf already contains path name
1369       if (offset) *offset = addr - mi.base_addr;
1370       return true;
1371    } else {
1372       if (buf) buf[0] = '\0';
1373       if (offset) *offset = -1;
1374       return false;
1375    }
1376 }
1377 
1378 bool os::dll_address_to_function_name(address addr, char *buf,
1379                                       int buflen, int *offset) {
1380   if (Decoder::decode(addr, buf, buflen, offset)) {
1381     return true;
1382   }
1383   if (offset != NULL)  *offset  = -1;
1384   if (buf != NULL) buf[0] = '\0';
1385   return false;
1386 }
1387 
1388 // save the start and end address of jvm.dll into param[0] and param[1]
1389 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1390                     unsigned size, void * param) {
1391    if (!param) return -1;
1392 
1393    if (base_addr     <= (address)_locate_jvm_dll &&
1394        base_addr+size > (address)_locate_jvm_dll) {
1395          ((address*)param)[0] = base_addr;
1396          ((address*)param)[1] = base_addr + size;
1397          return 1;
1398    }
1399    return 0;
1400 }
1401 
1402 address vm_lib_location[2];    // start and end address of jvm.dll
1403 
1404 // check if addr is inside jvm.dll
1405 bool os::address_is_in_vm(address addr) {
1406   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1407     int pid = os::current_process_id();
1408     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1409       assert(false, "Can't find jvm module.");
1410       return false;
1411     }
1412   }
1413 
1414   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1415 }
1416 
1417 // print module info; param is outputStream*
1418 static int _print_module(int pid, char* fname, address base,
1419                          unsigned size, void* param) {
1420    if (!param) return -1;
1421 
1422    outputStream* st = (outputStream*)param;
1423 
1424    address end_addr = base + size;
1425    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1426    return 0;
1427 }
1428 
1429 // Loads .dll/.so and
1430 // in case of error it checks if .dll/.so was built for the
1431 // same architecture as Hotspot is running on
1432 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1433 {
1434   void * result = LoadLibrary(name);
1435   if (result != NULL)
1436   {
1437     return result;
1438   }
1439 
1440   DWORD errcode = GetLastError();
1441   if (errcode == ERROR_MOD_NOT_FOUND) {
1442     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1443     ebuf[ebuflen-1]='\0';
1444     return NULL;
1445   }
1446 
1447   // Parsing dll below
1448   // If we can read dll-info and find that dll was built
1449   // for an architecture other than Hotspot is running in
1450   // - then print to buffer "DLL was built for a different architecture"
1451   // else call os::lasterror to obtain system error message
1452 
1453   // Read system error message into ebuf
1454   // It may or may not be overwritten below (in the for loop and just above)
1455   lasterror(ebuf, (size_t) ebuflen);
1456   ebuf[ebuflen-1]='\0';
1457   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1458   if (file_descriptor<0)
1459   {
1460     return NULL;
1461   }
1462 
1463   uint32_t signature_offset;
1464   uint16_t lib_arch=0;
1465   bool failed_to_get_lib_arch=
1466   (
1467     //Go to position 3c in the dll
1468     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1469     ||
1470     // Read loacation of signature
1471     (sizeof(signature_offset)!=
1472       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1473     ||
1474     //Go to COFF File Header in dll
1475     //that is located after"signature" (4 bytes long)
1476     (os::seek_to_file_offset(file_descriptor,
1477       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1478     ||
1479     //Read field that contains code of architecture
1480     // that dll was build for
1481     (sizeof(lib_arch)!=
1482       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1483   );
1484 
1485   ::close(file_descriptor);
1486   if (failed_to_get_lib_arch)
1487   {
1488     // file i/o error - report os::lasterror(...) msg
1489     return NULL;
1490   }
1491 
1492   typedef struct
1493   {
1494     uint16_t arch_code;
1495     char* arch_name;
1496   } arch_t;
1497 
1498   static const arch_t arch_array[]={
1499     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1500     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1501     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1502   };
1503   #if   (defined _M_IA64)
1504     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1505   #elif (defined _M_AMD64)
1506     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1507   #elif (defined _M_IX86)
1508     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1509   #else
1510     #error Method os::dll_load requires that one of following \
1511            is defined :_M_IA64,_M_AMD64 or _M_IX86
1512   #endif
1513 
1514 
1515   // Obtain a string for printf operation
1516   // lib_arch_str shall contain string what platform this .dll was built for
1517   // running_arch_str shall string contain what platform Hotspot was built for
1518   char *running_arch_str=NULL,*lib_arch_str=NULL;
1519   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1520   {
1521     if (lib_arch==arch_array[i].arch_code)
1522       lib_arch_str=arch_array[i].arch_name;
1523     if (running_arch==arch_array[i].arch_code)
1524       running_arch_str=arch_array[i].arch_name;
1525   }
1526 
1527   assert(running_arch_str,
1528     "Didn't find runing architecture code in arch_array");
1529 
1530   // If the architure is right
1531   // but some other error took place - report os::lasterror(...) msg
1532   if (lib_arch == running_arch)
1533   {
1534     return NULL;
1535   }
1536 
1537   if (lib_arch_str!=NULL)
1538   {
1539     ::_snprintf(ebuf, ebuflen-1,
1540       "Can't load %s-bit .dll on a %s-bit platform",
1541       lib_arch_str,running_arch_str);
1542   }
1543   else
1544   {
1545     // don't know what architecture this dll was build for
1546     ::_snprintf(ebuf, ebuflen-1,
1547       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1548       lib_arch,running_arch_str);
1549   }
1550 
1551   return NULL;
1552 }
1553 
1554 
1555 void os::print_dll_info(outputStream *st) {
1556    int pid = os::current_process_id();
1557    st->print_cr("Dynamic libraries:");
1558    enumerate_modules(pid, _print_module, (void *)st);
1559 }
1560 
1561 void os::print_os_info_brief(outputStream* st) {
1562   os::print_os_info(st);
1563 }
1564 
1565 void os::print_os_info(outputStream* st) {
1566   st->print("OS:");
1567 
1568   os::win32::print_windows_version(st);
1569 }
1570 
1571 void os::win32::print_windows_version(outputStream* st) {
1572   OSVERSIONINFOEX osvi;
1573   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1574   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1575 
1576   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1577     st->print_cr("N/A");
1578     return;
1579   }
1580 
1581   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1582   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1583     switch (os_vers) {
1584     case 3051: st->print(" Windows NT 3.51"); break;
1585     case 4000: st->print(" Windows NT 4.0"); break;
1586     case 5000: st->print(" Windows 2000"); break;
1587     case 5001: st->print(" Windows XP"); break;
1588     case 5002:
1589     case 6000:
1590     case 6001:
1591     case 6002: {
1592       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1593       // find out whether we are running on 64 bit processor or not.
1594       SYSTEM_INFO si;
1595       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1596         if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
1597           GetSystemInfo(&si);
1598       } else {
1599         os::Kernel32Dll::GetNativeSystemInfo(&si);
1600       }
1601       if (os_vers == 5002) {
1602         if (osvi.wProductType == VER_NT_WORKSTATION &&
1603             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1604           st->print(" Windows XP x64 Edition");
1605         else
1606             st->print(" Windows Server 2003 family");
1607       } else if (os_vers == 6000) {
1608         if (osvi.wProductType == VER_NT_WORKSTATION)
1609             st->print(" Windows Vista");
1610         else
1611             st->print(" Windows Server 2008");
1612         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1613             st->print(" , 64 bit");
1614       } else if (os_vers == 6001) {
1615         if (osvi.wProductType == VER_NT_WORKSTATION) {
1616             st->print(" Windows 7");
1617         } else {
1618             // Unrecognized windows, print out its major and minor versions
1619             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1620         }
1621         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1622             st->print(" , 64 bit");
1623       } else if (os_vers == 6002) {
1624         if (osvi.wProductType == VER_NT_WORKSTATION) {
1625             st->print(" Windows 8");
1626         } else {
1627             st->print(" Windows Server 2012");
1628         }
1629         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1630             st->print(" , 64 bit");
1631       } else { // future os
1632         // Unrecognized windows, print out its major and minor versions
1633         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1634         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1635             st->print(" , 64 bit");
1636       }
1637       break;
1638     }
1639     default: // future windows, print out its major and minor versions
1640       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1641     }
1642   } else {
1643     switch (os_vers) {
1644     case 4000: st->print(" Windows 95"); break;
1645     case 4010: st->print(" Windows 98"); break;
1646     case 4090: st->print(" Windows Me"); break;
1647     default: // future windows, print out its major and minor versions
1648       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1649     }
1650   }
1651   st->print(" Build %d", osvi.dwBuildNumber);
1652   st->print(" %s", osvi.szCSDVersion);           // service pack
1653   st->cr();
1654 }
1655 
1656 void os::pd_print_cpu_info(outputStream* st) {
1657   // Nothing to do for now.
1658 }
1659 
1660 void os::print_memory_info(outputStream* st) {
1661   st->print("Memory:");
1662   st->print(" %dk page", os::vm_page_size()>>10);
1663 
1664   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1665   // value if total memory is larger than 4GB
1666   MEMORYSTATUSEX ms;
1667   ms.dwLength = sizeof(ms);
1668   GlobalMemoryStatusEx(&ms);
1669 
1670   st->print(", physical %uk", os::physical_memory() >> 10);
1671   st->print("(%uk free)", os::available_memory() >> 10);
1672 
1673   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1674   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1675   st->cr();
1676 }
1677 
1678 void os::print_siginfo(outputStream *st, void *siginfo) {
1679   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1680   st->print("siginfo:");
1681   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1682 
1683   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1684       er->NumberParameters >= 2) {
1685       switch (er->ExceptionInformation[0]) {
1686       case 0: st->print(", reading address"); break;
1687       case 1: st->print(", writing address"); break;
1688       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1689                             er->ExceptionInformation[0]);
1690       }
1691       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1692   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1693              er->NumberParameters >= 2 && UseSharedSpaces) {
1694     FileMapInfo* mapinfo = FileMapInfo::current_info();
1695     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1696       st->print("\n\nError accessing class data sharing archive."       \
1697                 " Mapped file inaccessible during execution, "          \
1698                 " possible disk/network problem.");
1699     }
1700   } else {
1701     int num = er->NumberParameters;
1702     if (num > 0) {
1703       st->print(", ExceptionInformation=");
1704       for (int i = 0; i < num; i++) {
1705         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1706       }
1707     }
1708   }
1709   st->cr();
1710 }
1711 
1712 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1713   // do nothing
1714 }
1715 
1716 static char saved_jvm_path[MAX_PATH] = {0};
1717 
1718 // Find the full path to the current module, jvm.dll or jvm_g.dll
1719 void os::jvm_path(char *buf, jint buflen) {
1720   // Error checking.
1721   if (buflen < MAX_PATH) {
1722     assert(false, "must use a large-enough buffer");
1723     buf[0] = '\0';
1724     return;
1725   }
1726   // Lazy resolve the path to current module.
1727   if (saved_jvm_path[0] != 0) {
1728     strcpy(buf, saved_jvm_path);
1729     return;
1730   }
1731 
1732   buf[0] = '\0';
1733   if (Arguments::created_by_gamma_launcher()) {
1734      // Support for the gamma launcher. Check for an
1735      // JAVA_HOME environment variable
1736      // and fix up the path so it looks like
1737      // libjvm.so is installed there (append a fake suffix
1738      // hotspot/libjvm.so).
1739      char* java_home_var = ::getenv("JAVA_HOME");
1740      if (java_home_var != NULL && java_home_var[0] != 0) {
1741 
1742         strncpy(buf, java_home_var, buflen);
1743 
1744         // determine if this is a legacy image or modules image
1745         // modules image doesn't have "jre" subdirectory
1746         size_t len = strlen(buf);
1747         char* jrebin_p = buf + len;
1748         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1749         if (0 != _access(buf, 0)) {
1750           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1751         }
1752         len = strlen(buf);
1753         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1754      }
1755   }
1756 
1757   if(buf[0] == '\0') {
1758   GetModuleFileName(vm_lib_handle, buf, buflen);
1759   }
1760   strcpy(saved_jvm_path, buf);
1761 }
1762 
1763 
1764 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1765 #ifndef _WIN64
1766   st->print("_");
1767 #endif
1768 }
1769 
1770 
1771 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1772 #ifndef _WIN64
1773   st->print("@%d", args_size  * sizeof(int));
1774 #endif
1775 }
1776 
1777 // This method is a copy of JDK's sysGetLastErrorString
1778 // from src/windows/hpi/src/system_md.c
1779 
1780 size_t os::lasterror(char* buf, size_t len) {
1781   DWORD errval;
1782 
1783   if ((errval = GetLastError()) != 0) {
1784     // DOS error
1785     size_t n = (size_t)FormatMessage(
1786           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1787           NULL,
1788           errval,
1789           0,
1790           buf,
1791           (DWORD)len,
1792           NULL);
1793     if (n > 3) {
1794       // Drop final '.', CR, LF
1795       if (buf[n - 1] == '\n') n--;
1796       if (buf[n - 1] == '\r') n--;
1797       if (buf[n - 1] == '.') n--;
1798       buf[n] = '\0';
1799     }
1800     return n;
1801   }
1802 
1803   if (errno != 0) {
1804     // C runtime error that has no corresponding DOS error code
1805     const char* s = strerror(errno);
1806     size_t n = strlen(s);
1807     if (n >= len) n = len - 1;
1808     strncpy(buf, s, n);
1809     buf[n] = '\0';
1810     return n;
1811   }
1812 
1813   return 0;
1814 }
1815 
1816 int os::get_last_error() {
1817   DWORD error = GetLastError();
1818   if (error == 0)
1819     error = errno;
1820   return (int)error;
1821 }
1822 
1823 // sun.misc.Signal
1824 // NOTE that this is a workaround for an apparent kernel bug where if
1825 // a signal handler for SIGBREAK is installed then that signal handler
1826 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1827 // See bug 4416763.
1828 static void (*sigbreakHandler)(int) = NULL;
1829 
1830 static void UserHandler(int sig, void *siginfo, void *context) {
1831   os::signal_notify(sig);
1832   // We need to reinstate the signal handler each time...
1833   os::signal(sig, (void*)UserHandler);
1834 }
1835 
1836 void* os::user_handler() {
1837   return (void*) UserHandler;
1838 }
1839 
1840 void* os::signal(int signal_number, void* handler) {
1841   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1842     void (*oldHandler)(int) = sigbreakHandler;
1843     sigbreakHandler = (void (*)(int)) handler;
1844     return (void*) oldHandler;
1845   } else {
1846     return (void*)::signal(signal_number, (void (*)(int))handler);
1847   }
1848 }
1849 
1850 void os::signal_raise(int signal_number) {
1851   raise(signal_number);
1852 }
1853 
1854 // The Win32 C runtime library maps all console control events other than ^C
1855 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1856 // logoff, and shutdown events.  We therefore install our own console handler
1857 // that raises SIGTERM for the latter cases.
1858 //
1859 static BOOL WINAPI consoleHandler(DWORD event) {
1860   switch(event) {
1861     case CTRL_C_EVENT:
1862       if (is_error_reported()) {
1863         // Ctrl-C is pressed during error reporting, likely because the error
1864         // handler fails to abort. Let VM die immediately.
1865         os::die();
1866       }
1867 
1868       os::signal_raise(SIGINT);
1869       return TRUE;
1870       break;
1871     case CTRL_BREAK_EVENT:
1872       if (sigbreakHandler != NULL) {
1873         (*sigbreakHandler)(SIGBREAK);
1874       }
1875       return TRUE;
1876       break;
1877     case CTRL_CLOSE_EVENT:
1878     case CTRL_LOGOFF_EVENT:
1879     case CTRL_SHUTDOWN_EVENT:
1880       os::signal_raise(SIGTERM);
1881       return TRUE;
1882       break;
1883     default:
1884       break;
1885   }
1886   return FALSE;
1887 }
1888 
1889 /*
1890  * The following code is moved from os.cpp for making this
1891  * code platform specific, which it is by its very nature.
1892  */
1893 
1894 // Return maximum OS signal used + 1 for internal use only
1895 // Used as exit signal for signal_thread
1896 int os::sigexitnum_pd(){
1897   return NSIG;
1898 }
1899 
1900 // a counter for each possible signal value, including signal_thread exit signal
1901 static volatile jint pending_signals[NSIG+1] = { 0 };
1902 static HANDLE sig_sem;
1903 
1904 void os::signal_init_pd() {
1905   // Initialize signal structures
1906   memset((void*)pending_signals, 0, sizeof(pending_signals));
1907 
1908   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1909 
1910   // Programs embedding the VM do not want it to attempt to receive
1911   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1912   // shutdown hooks mechanism introduced in 1.3.  For example, when
1913   // the VM is run as part of a Windows NT service (i.e., a servlet
1914   // engine in a web server), the correct behavior is for any console
1915   // control handler to return FALSE, not TRUE, because the OS's
1916   // "final" handler for such events allows the process to continue if
1917   // it is a service (while terminating it if it is not a service).
1918   // To make this behavior uniform and the mechanism simpler, we
1919   // completely disable the VM's usage of these console events if -Xrs
1920   // (=ReduceSignalUsage) is specified.  This means, for example, that
1921   // the CTRL-BREAK thread dump mechanism is also disabled in this
1922   // case.  See bugs 4323062, 4345157, and related bugs.
1923 
1924   if (!ReduceSignalUsage) {
1925     // Add a CTRL-C handler
1926     SetConsoleCtrlHandler(consoleHandler, TRUE);
1927   }
1928 }
1929 
1930 void os::signal_notify(int signal_number) {
1931   BOOL ret;
1932 
1933   Atomic::inc(&pending_signals[signal_number]);
1934   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1935   assert(ret != 0, "ReleaseSemaphore() failed");
1936 }
1937 
1938 static int check_pending_signals(bool wait_for_signal) {
1939   DWORD ret;
1940   while (true) {
1941     for (int i = 0; i < NSIG + 1; i++) {
1942       jint n = pending_signals[i];
1943       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1944         return i;
1945       }
1946     }
1947     if (!wait_for_signal) {
1948       return -1;
1949     }
1950 
1951     JavaThread *thread = JavaThread::current();
1952 
1953     ThreadBlockInVM tbivm(thread);
1954 
1955     bool threadIsSuspended;
1956     do {
1957       thread->set_suspend_equivalent();
1958       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1959       ret = ::WaitForSingleObject(sig_sem, INFINITE);
1960       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1961 
1962       // were we externally suspended while we were waiting?
1963       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1964       if (threadIsSuspended) {
1965         //
1966         // The semaphore has been incremented, but while we were waiting
1967         // another thread suspended us. We don't want to continue running
1968         // while suspended because that would surprise the thread that
1969         // suspended us.
1970         //
1971         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1972         assert(ret != 0, "ReleaseSemaphore() failed");
1973 
1974         thread->java_suspend_self();
1975       }
1976     } while (threadIsSuspended);
1977   }
1978 }
1979 
1980 int os::signal_lookup() {
1981   return check_pending_signals(false);
1982 }
1983 
1984 int os::signal_wait() {
1985   return check_pending_signals(true);
1986 }
1987 
1988 // Implicit OS exception handling
1989 
1990 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1991   JavaThread* thread = JavaThread::current();
1992   // Save pc in thread
1993 #ifdef _M_IA64
1994   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1995   // Set pc to handler
1996   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1997 #elif _M_AMD64
1998   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1999   // Set pc to handler
2000   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2001 #else
2002   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
2003   // Set pc to handler
2004   exceptionInfo->ContextRecord->Eip = (LONG)handler;
2005 #endif
2006 
2007   // Continue the execution
2008   return EXCEPTION_CONTINUE_EXECUTION;
2009 }
2010 
2011 
2012 // Used for PostMortemDump
2013 extern "C" void safepoints();
2014 extern "C" void find(int x);
2015 extern "C" void events();
2016 
2017 // According to Windows API documentation, an illegal instruction sequence should generate
2018 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2019 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2020 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2021 
2022 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2023 
2024 // From "Execution Protection in the Windows Operating System" draft 0.35
2025 // Once a system header becomes available, the "real" define should be
2026 // included or copied here.
2027 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2028 
2029 #define def_excpt(val) #val, val
2030 
2031 struct siglabel {
2032   char *name;
2033   int   number;
2034 };
2035 
2036 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2037 // C++ compiler contain this error code. Because this is a compiler-generated
2038 // error, the code is not listed in the Win32 API header files.
2039 // The code is actually a cryptic mnemonic device, with the initial "E"
2040 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2041 // ASCII values of "msc".
2042 
2043 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2044 
2045 
2046 struct siglabel exceptlabels[] = {
2047     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2048     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2049     def_excpt(EXCEPTION_BREAKPOINT),
2050     def_excpt(EXCEPTION_SINGLE_STEP),
2051     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2052     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2053     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2054     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2055     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2056     def_excpt(EXCEPTION_FLT_OVERFLOW),
2057     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2058     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2059     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2060     def_excpt(EXCEPTION_INT_OVERFLOW),
2061     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2062     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2063     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2064     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2065     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2066     def_excpt(EXCEPTION_STACK_OVERFLOW),
2067     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2068     def_excpt(EXCEPTION_GUARD_PAGE),
2069     def_excpt(EXCEPTION_INVALID_HANDLE),
2070     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2071     NULL, 0
2072 };
2073 
2074 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2075   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2076     if (exceptlabels[i].number == exception_code) {
2077        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2078        return buf;
2079     }
2080   }
2081 
2082   return NULL;
2083 }
2084 
2085 //-----------------------------------------------------------------------------
2086 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2087   // handle exception caused by idiv; should only happen for -MinInt/-1
2088   // (division by zero is handled explicitly)
2089 #ifdef _M_IA64
2090   assert(0, "Fix Handle_IDiv_Exception");
2091 #elif _M_AMD64
2092   PCONTEXT ctx = exceptionInfo->ContextRecord;
2093   address pc = (address)ctx->Rip;
2094   assert(pc[0] == 0xF7, "not an idiv opcode");
2095   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2096   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2097   // set correct result values and continue after idiv instruction
2098   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2099   ctx->Rax = (DWORD)min_jint;      // result
2100   ctx->Rdx = (DWORD)0;             // remainder
2101   // Continue the execution
2102 #else
2103   PCONTEXT ctx = exceptionInfo->ContextRecord;
2104   address pc = (address)ctx->Eip;
2105   assert(pc[0] == 0xF7, "not an idiv opcode");
2106   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2107   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2108   // set correct result values and continue after idiv instruction
2109   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2110   ctx->Eax = (DWORD)min_jint;      // result
2111   ctx->Edx = (DWORD)0;             // remainder
2112   // Continue the execution
2113 #endif
2114   return EXCEPTION_CONTINUE_EXECUTION;
2115 }
2116 
2117 #ifndef  _WIN64
2118 //-----------------------------------------------------------------------------
2119 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2120   // handle exception caused by native method modifying control word
2121   PCONTEXT ctx = exceptionInfo->ContextRecord;
2122   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2123 
2124   switch (exception_code) {
2125     case EXCEPTION_FLT_DENORMAL_OPERAND:
2126     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2127     case EXCEPTION_FLT_INEXACT_RESULT:
2128     case EXCEPTION_FLT_INVALID_OPERATION:
2129     case EXCEPTION_FLT_OVERFLOW:
2130     case EXCEPTION_FLT_STACK_CHECK:
2131     case EXCEPTION_FLT_UNDERFLOW:
2132       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2133       if (fp_control_word != ctx->FloatSave.ControlWord) {
2134         // Restore FPCW and mask out FLT exceptions
2135         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2136         // Mask out pending FLT exceptions
2137         ctx->FloatSave.StatusWord &=  0xffffff00;
2138         return EXCEPTION_CONTINUE_EXECUTION;
2139       }
2140   }
2141 
2142   if (prev_uef_handler != NULL) {
2143     // We didn't handle this exception so pass it to the previous
2144     // UnhandledExceptionFilter.
2145     return (prev_uef_handler)(exceptionInfo);
2146   }
2147 
2148   return EXCEPTION_CONTINUE_SEARCH;
2149 }
2150 #else //_WIN64
2151 /*
2152   On Windows, the mxcsr control bits are non-volatile across calls
2153   See also CR 6192333
2154   If EXCEPTION_FLT_* happened after some native method modified
2155   mxcsr - it is not a jvm fault.
2156   However should we decide to restore of mxcsr after a faulty
2157   native method we can uncomment following code
2158       jint MxCsr = INITIAL_MXCSR;
2159         // we can't use StubRoutines::addr_mxcsr_std()
2160         // because in Win64 mxcsr is not saved there
2161       if (MxCsr != ctx->MxCsr) {
2162         ctx->MxCsr = MxCsr;
2163         return EXCEPTION_CONTINUE_EXECUTION;
2164       }
2165 
2166 */
2167 #endif //_WIN64
2168 
2169 
2170 // Fatal error reporting is single threaded so we can make this a
2171 // static and preallocated.  If it's more than MAX_PATH silently ignore
2172 // it.
2173 static char saved_error_file[MAX_PATH] = {0};
2174 
2175 void os::set_error_file(const char *logfile) {
2176   if (strlen(logfile) <= MAX_PATH) {
2177     strncpy(saved_error_file, logfile, MAX_PATH);
2178   }
2179 }
2180 
2181 static inline void report_error(Thread* t, DWORD exception_code,
2182                                 address addr, void* siginfo, void* context) {
2183   VMError err(t, exception_code, addr, siginfo, context);
2184   err.report_and_die();
2185 
2186   // If UseOsErrorReporting, this will return here and save the error file
2187   // somewhere where we can find it in the minidump.
2188 }
2189 
2190 //-----------------------------------------------------------------------------
2191 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2192   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2193   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2194 #ifdef _M_IA64
2195   address pc = (address) exceptionInfo->ContextRecord->StIIP;
2196 #elif _M_AMD64
2197   address pc = (address) exceptionInfo->ContextRecord->Rip;
2198 #else
2199   address pc = (address) exceptionInfo->ContextRecord->Eip;
2200 #endif
2201   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2202 
2203 #ifndef _WIN64
2204   // Execution protection violation - win32 running on AMD64 only
2205   // Handled first to avoid misdiagnosis as a "normal" access violation;
2206   // This is safe to do because we have a new/unique ExceptionInformation
2207   // code for this condition.
2208   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2209     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2210     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2211     address addr = (address) exceptionRecord->ExceptionInformation[1];
2212 
2213     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2214       int page_size = os::vm_page_size();
2215 
2216       // Make sure the pc and the faulting address are sane.
2217       //
2218       // If an instruction spans a page boundary, and the page containing
2219       // the beginning of the instruction is executable but the following
2220       // page is not, the pc and the faulting address might be slightly
2221       // different - we still want to unguard the 2nd page in this case.
2222       //
2223       // 15 bytes seems to be a (very) safe value for max instruction size.
2224       bool pc_is_near_addr =
2225         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2226       bool instr_spans_page_boundary =
2227         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2228                          (intptr_t) page_size) > 0);
2229 
2230       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2231         static volatile address last_addr =
2232           (address) os::non_memory_address_word();
2233 
2234         // In conservative mode, don't unguard unless the address is in the VM
2235         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2236             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2237 
2238           // Set memory to RWX and retry
2239           address page_start =
2240             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2241           bool res = os::protect_memory((char*) page_start, page_size,
2242                                         os::MEM_PROT_RWX);
2243 
2244           if (PrintMiscellaneous && Verbose) {
2245             char buf[256];
2246             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2247                          "at " INTPTR_FORMAT
2248                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2249                          page_start, (res ? "success" : strerror(errno)));
2250             tty->print_raw_cr(buf);
2251           }
2252 
2253           // Set last_addr so if we fault again at the same address, we don't
2254           // end up in an endless loop.
2255           //
2256           // There are two potential complications here.  Two threads trapping
2257           // at the same address at the same time could cause one of the
2258           // threads to think it already unguarded, and abort the VM.  Likely
2259           // very rare.
2260           //
2261           // The other race involves two threads alternately trapping at
2262           // different addresses and failing to unguard the page, resulting in
2263           // an endless loop.  This condition is probably even more unlikely
2264           // than the first.
2265           //
2266           // Although both cases could be avoided by using locks or thread
2267           // local last_addr, these solutions are unnecessary complication:
2268           // this handler is a best-effort safety net, not a complete solution.
2269           // It is disabled by default and should only be used as a workaround
2270           // in case we missed any no-execute-unsafe VM code.
2271 
2272           last_addr = addr;
2273 
2274           return EXCEPTION_CONTINUE_EXECUTION;
2275         }
2276       }
2277 
2278       // Last unguard failed or not unguarding
2279       tty->print_raw_cr("Execution protection violation");
2280       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2281                    exceptionInfo->ContextRecord);
2282       return EXCEPTION_CONTINUE_SEARCH;
2283     }
2284   }
2285 #endif // _WIN64
2286 
2287   // Check to see if we caught the safepoint code in the
2288   // process of write protecting the memory serialization page.
2289   // It write enables the page immediately after protecting it
2290   // so just return.
2291   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2292     JavaThread* thread = (JavaThread*) t;
2293     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2294     address addr = (address) exceptionRecord->ExceptionInformation[1];
2295     if ( os::is_memory_serialize_page(thread, addr) ) {
2296       // Block current thread until the memory serialize page permission restored.
2297       os::block_on_serialize_page_trap();
2298       return EXCEPTION_CONTINUE_EXECUTION;
2299     }
2300   }
2301 
2302   if (t != NULL && t->is_Java_thread()) {
2303     JavaThread* thread = (JavaThread*) t;
2304     bool in_java = thread->thread_state() == _thread_in_Java;
2305 
2306     // Handle potential stack overflows up front.
2307     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2308       if (os::uses_stack_guard_pages()) {
2309 #ifdef _M_IA64
2310         //
2311         // If it's a legal stack address continue, Windows will map it in.
2312         //
2313         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2314         address addr = (address) exceptionRecord->ExceptionInformation[1];
2315         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2316           return EXCEPTION_CONTINUE_EXECUTION;
2317 
2318         // The register save area is the same size as the memory stack
2319         // and starts at the page just above the start of the memory stack.
2320         // If we get a fault in this area, we've run out of register
2321         // stack.  If we are in java, try throwing a stack overflow exception.
2322         if (addr > thread->stack_base() &&
2323                       addr <= (thread->stack_base()+thread->stack_size()) ) {
2324           char buf[256];
2325           jio_snprintf(buf, sizeof(buf),
2326                        "Register stack overflow, addr:%p, stack_base:%p\n",
2327                        addr, thread->stack_base() );
2328           tty->print_raw_cr(buf);
2329           // If not in java code, return and hope for the best.
2330           return in_java ? Handle_Exception(exceptionInfo,
2331             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2332             :  EXCEPTION_CONTINUE_EXECUTION;
2333         }
2334 #endif
2335         if (thread->stack_yellow_zone_enabled()) {
2336           // Yellow zone violation.  The o/s has unprotected the first yellow
2337           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2338           // update the enabled status, even if the zone contains only one page.
2339           thread->disable_stack_yellow_zone();
2340           // If not in java code, return and hope for the best.
2341           return in_java ? Handle_Exception(exceptionInfo,
2342             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2343             :  EXCEPTION_CONTINUE_EXECUTION;
2344         } else {
2345           // Fatal red zone violation.
2346           thread->disable_stack_red_zone();
2347           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2348           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2349                        exceptionInfo->ContextRecord);
2350           return EXCEPTION_CONTINUE_SEARCH;
2351         }
2352       } else if (in_java) {
2353         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2354         // a one-time-only guard page, which it has released to us.  The next
2355         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2356         return Handle_Exception(exceptionInfo,
2357           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2358       } else {
2359         // Can only return and hope for the best.  Further stack growth will
2360         // result in an ACCESS_VIOLATION.
2361         return EXCEPTION_CONTINUE_EXECUTION;
2362       }
2363     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2364       // Either stack overflow or null pointer exception.
2365       if (in_java) {
2366         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2367         address addr = (address) exceptionRecord->ExceptionInformation[1];
2368         address stack_end = thread->stack_base() - thread->stack_size();
2369         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2370           // Stack overflow.
2371           assert(!os::uses_stack_guard_pages(),
2372             "should be caught by red zone code above.");
2373           return Handle_Exception(exceptionInfo,
2374             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2375         }
2376         //
2377         // Check for safepoint polling and implicit null
2378         // We only expect null pointers in the stubs (vtable)
2379         // the rest are checked explicitly now.
2380         //
2381         CodeBlob* cb = CodeCache::find_blob(pc);
2382         if (cb != NULL) {
2383           if (os::is_poll_address(addr)) {
2384             address stub = SharedRuntime::get_poll_stub(pc);
2385             return Handle_Exception(exceptionInfo, stub);
2386           }
2387         }
2388         {
2389 #ifdef _WIN64
2390           //
2391           // If it's a legal stack address map the entire region in
2392           //
2393           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2394           address addr = (address) exceptionRecord->ExceptionInformation[1];
2395           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2396                   addr = (address)((uintptr_t)addr &
2397                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2398                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2399                                     false );
2400                   return EXCEPTION_CONTINUE_EXECUTION;
2401           }
2402           else
2403 #endif
2404           {
2405             // Null pointer exception.
2406 #ifdef _M_IA64
2407             // We catch register stack overflows in compiled code by doing
2408             // an explicit compare and executing a st8(G0, G0) if the
2409             // BSP enters into our guard area.  We test for the overflow
2410             // condition and fall into the normal null pointer exception
2411             // code if BSP hasn't overflowed.
2412             if ( in_java ) {
2413               if(thread->register_stack_overflow()) {
2414                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
2415                                 thread->register_stack_limit(),
2416                                "GR7 doesn't contain register_stack_limit");
2417                 // Disable the yellow zone which sets the state that
2418                 // we've got a stack overflow problem.
2419                 if (thread->stack_yellow_zone_enabled()) {
2420                   thread->disable_stack_yellow_zone();
2421                 }
2422                 // Give us some room to process the exception
2423                 thread->disable_register_stack_guard();
2424                 // Update GR7 with the new limit so we can continue running
2425                 // compiled code.
2426                 exceptionInfo->ContextRecord->IntS3 =
2427                                (ULONGLONG)thread->register_stack_limit();
2428                 return Handle_Exception(exceptionInfo,
2429                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2430               } else {
2431                 //
2432                 // Check for implicit null
2433                 // We only expect null pointers in the stubs (vtable)
2434                 // the rest are checked explicitly now.
2435                 //
2436                 if (((uintptr_t)addr) < os::vm_page_size() ) {
2437                   // an access to the first page of VM--assume it is a null pointer
2438                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2439                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2440                 }
2441               }
2442             } // in_java
2443 
2444             // IA64 doesn't use implicit null checking yet. So we shouldn't
2445             // get here.
2446             tty->print_raw_cr("Access violation, possible null pointer exception");
2447             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2448                          exceptionInfo->ContextRecord);
2449             return EXCEPTION_CONTINUE_SEARCH;
2450 #else /* !IA64 */
2451 
2452             // Windows 98 reports faulting addresses incorrectly
2453             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2454                 !os::win32::is_nt()) {
2455               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2456               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2457             }
2458             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2459                          exceptionInfo->ContextRecord);
2460             return EXCEPTION_CONTINUE_SEARCH;
2461 #endif
2462           }
2463         }
2464       }
2465 
2466 #ifdef _WIN64
2467       // Special care for fast JNI field accessors.
2468       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2469       // in and the heap gets shrunk before the field access.
2470       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2471         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2472         if (addr != (address)-1) {
2473           return Handle_Exception(exceptionInfo, addr);
2474         }
2475       }
2476 #endif
2477 
2478       // Stack overflow or null pointer exception in native code.
2479       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2480                    exceptionInfo->ContextRecord);
2481       return EXCEPTION_CONTINUE_SEARCH;
2482     }
2483 
2484     if (in_java) {
2485       switch (exception_code) {
2486       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2487         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2488 
2489       case EXCEPTION_INT_OVERFLOW:
2490         return Handle_IDiv_Exception(exceptionInfo);
2491 
2492       } // switch
2493     }
2494 #ifndef _WIN64
2495     if (((thread->thread_state() == _thread_in_Java) ||
2496         (thread->thread_state() == _thread_in_native)) &&
2497         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2498     {
2499       LONG result=Handle_FLT_Exception(exceptionInfo);
2500       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2501     }
2502 #endif //_WIN64
2503   }
2504 
2505   if (exception_code != EXCEPTION_BREAKPOINT) {
2506     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2507                  exceptionInfo->ContextRecord);
2508   }
2509   return EXCEPTION_CONTINUE_SEARCH;
2510 }
2511 
2512 #ifndef _WIN64
2513 // Special care for fast JNI accessors.
2514 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2515 // the heap gets shrunk before the field access.
2516 // Need to install our own structured exception handler since native code may
2517 // install its own.
2518 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2519   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2520   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2521     address pc = (address) exceptionInfo->ContextRecord->Eip;
2522     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2523     if (addr != (address)-1) {
2524       return Handle_Exception(exceptionInfo, addr);
2525     }
2526   }
2527   return EXCEPTION_CONTINUE_SEARCH;
2528 }
2529 
2530 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2531 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2532   __try { \
2533     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2534   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2535   } \
2536   return 0; \
2537 }
2538 
2539 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2540 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2541 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2542 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2543 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2544 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2545 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2546 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2547 
2548 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2549   switch (type) {
2550     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2551     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2552     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2553     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2554     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2555     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2556     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2557     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2558     default:        ShouldNotReachHere();
2559   }
2560   return (address)-1;
2561 }
2562 #endif
2563 
2564 // Virtual Memory
2565 
2566 int os::vm_page_size() { return os::win32::vm_page_size(); }
2567 int os::vm_allocation_granularity() {
2568   return os::win32::vm_allocation_granularity();
2569 }
2570 
2571 // Windows large page support is available on Windows 2003. In order to use
2572 // large page memory, the administrator must first assign additional privilege
2573 // to the user:
2574 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2575 //   + select Local Policies -> User Rights Assignment
2576 //   + double click "Lock pages in memory", add users and/or groups
2577 //   + reboot
2578 // Note the above steps are needed for administrator as well, as administrators
2579 // by default do not have the privilege to lock pages in memory.
2580 //
2581 // Note about Windows 2003: although the API supports committing large page
2582 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2583 // scenario, I found through experiment it only uses large page if the entire
2584 // memory region is reserved and committed in a single VirtualAlloc() call.
2585 // This makes Windows large page support more or less like Solaris ISM, in
2586 // that the entire heap must be committed upfront. This probably will change
2587 // in the future, if so the code below needs to be revisited.
2588 
2589 #ifndef MEM_LARGE_PAGES
2590 #define MEM_LARGE_PAGES 0x20000000
2591 #endif
2592 
2593 static HANDLE    _hProcess;
2594 static HANDLE    _hToken;
2595 
2596 // Container for NUMA node list info
2597 class NUMANodeListHolder {
2598 private:
2599   int *_numa_used_node_list;  // allocated below
2600   int _numa_used_node_count;
2601 
2602   void free_node_list() {
2603     if (_numa_used_node_list != NULL) {
2604       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2605     }
2606   }
2607 
2608 public:
2609   NUMANodeListHolder() {
2610     _numa_used_node_count = 0;
2611     _numa_used_node_list = NULL;
2612     // do rest of initialization in build routine (after function pointers are set up)
2613   }
2614 
2615   ~NUMANodeListHolder() {
2616     free_node_list();
2617   }
2618 
2619   bool build() {
2620     DWORD_PTR proc_aff_mask;
2621     DWORD_PTR sys_aff_mask;
2622     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2623     ULONG highest_node_number;
2624     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2625     free_node_list();
2626     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2627     for (unsigned int i = 0; i <= highest_node_number; i++) {
2628       ULONGLONG proc_mask_numa_node;
2629       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2630       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2631         _numa_used_node_list[_numa_used_node_count++] = i;
2632       }
2633     }
2634     return (_numa_used_node_count > 1);
2635   }
2636 
2637   int get_count() {return _numa_used_node_count;}
2638   int get_node_list_entry(int n) {
2639     // for indexes out of range, returns -1
2640     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2641   }
2642 
2643 } numa_node_list_holder;
2644 
2645 
2646 
2647 static size_t _large_page_size = 0;
2648 
2649 static bool resolve_functions_for_large_page_init() {
2650   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2651     os::Advapi32Dll::AdvapiAvailable();
2652 }
2653 
2654 static bool request_lock_memory_privilege() {
2655   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2656                                 os::current_process_id());
2657 
2658   LUID luid;
2659   if (_hProcess != NULL &&
2660       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2661       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2662 
2663     TOKEN_PRIVILEGES tp;
2664     tp.PrivilegeCount = 1;
2665     tp.Privileges[0].Luid = luid;
2666     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2667 
2668     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2669     // privilege. Check GetLastError() too. See MSDN document.
2670     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2671         (GetLastError() == ERROR_SUCCESS)) {
2672       return true;
2673     }
2674   }
2675 
2676   return false;
2677 }
2678 
2679 static void cleanup_after_large_page_init() {
2680   if (_hProcess) CloseHandle(_hProcess);
2681   _hProcess = NULL;
2682   if (_hToken) CloseHandle(_hToken);
2683   _hToken = NULL;
2684 }
2685 
2686 static bool numa_interleaving_init() {
2687   bool success = false;
2688   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2689 
2690   // print a warning if UseNUMAInterleaving flag is specified on command line
2691   bool warn_on_failure = use_numa_interleaving_specified;
2692 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2693 
2694   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2695   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2696   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2697 
2698   if (os::Kernel32Dll::NumaCallsAvailable()) {
2699     if (numa_node_list_holder.build()) {
2700       if (PrintMiscellaneous && Verbose) {
2701         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2702         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2703           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2704         }
2705         tty->print("\n");
2706       }
2707       success = true;
2708     } else {
2709       WARN("Process does not cover multiple NUMA nodes.");
2710     }
2711   } else {
2712     WARN("NUMA Interleaving is not supported by the operating system.");
2713   }
2714   if (!success) {
2715     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2716   }
2717   return success;
2718 #undef WARN
2719 }
2720 
2721 // this routine is used whenever we need to reserve a contiguous VA range
2722 // but we need to make separate VirtualAlloc calls for each piece of the range
2723 // Reasons for doing this:
2724 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2725 //  * UseNUMAInterleaving requires a separate node for each piece
2726 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2727                                          bool should_inject_error=false) {
2728   char * p_buf;
2729   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2730   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2731   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2732 
2733   // first reserve enough address space in advance since we want to be
2734   // able to break a single contiguous virtual address range into multiple
2735   // large page commits but WS2003 does not allow reserving large page space
2736   // so we just use 4K pages for reserve, this gives us a legal contiguous
2737   // address space. then we will deallocate that reservation, and re alloc
2738   // using large pages
2739   const size_t size_of_reserve = bytes + chunk_size;
2740   if (bytes > size_of_reserve) {
2741     // Overflowed.
2742     return NULL;
2743   }
2744   p_buf = (char *) VirtualAlloc(addr,
2745                                 size_of_reserve,  // size of Reserve
2746                                 MEM_RESERVE,
2747                                 PAGE_READWRITE);
2748   // If reservation failed, return NULL
2749   if (p_buf == NULL) return NULL;
2750 
2751   os::release_memory(p_buf, bytes + chunk_size);
2752 
2753   // we still need to round up to a page boundary (in case we are using large pages)
2754   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2755   // instead we handle this in the bytes_to_rq computation below
2756   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2757 
2758   // now go through and allocate one chunk at a time until all bytes are
2759   // allocated
2760   size_t  bytes_remaining = bytes;
2761   // An overflow of align_size_up() would have been caught above
2762   // in the calculation of size_of_reserve.
2763   char * next_alloc_addr = p_buf;
2764   HANDLE hProc = GetCurrentProcess();
2765 
2766 #ifdef ASSERT
2767   // Variable for the failure injection
2768   long ran_num = os::random();
2769   size_t fail_after = ran_num % bytes;
2770 #endif
2771 
2772   int count=0;
2773   while (bytes_remaining) {
2774     // select bytes_to_rq to get to the next chunk_size boundary
2775 
2776     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2777     // Note allocate and commit
2778     char * p_new;
2779 
2780 #ifdef ASSERT
2781     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2782 #else
2783     const bool inject_error_now = false;
2784 #endif
2785 
2786     if (inject_error_now) {
2787       p_new = NULL;
2788     } else {
2789       if (!UseNUMAInterleaving) {
2790         p_new = (char *) VirtualAlloc(next_alloc_addr,
2791                                       bytes_to_rq,
2792                                       flags,
2793                                       prot);
2794       } else {
2795         // get the next node to use from the used_node_list
2796         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2797         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2798         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2799                                                             next_alloc_addr,
2800                                                             bytes_to_rq,
2801                                                             flags,
2802                                                             prot,
2803                                                             node);
2804       }
2805     }
2806 
2807     if (p_new == NULL) {
2808       // Free any allocated pages
2809       if (next_alloc_addr > p_buf) {
2810         // Some memory was committed so release it.
2811         size_t bytes_to_release = bytes - bytes_remaining;
2812         os::release_memory(p_buf, bytes_to_release);
2813       }
2814 #ifdef ASSERT
2815       if (should_inject_error) {
2816         if (TracePageSizes && Verbose) {
2817           tty->print_cr("Reserving pages individually failed.");
2818         }
2819       }
2820 #endif
2821       return NULL;
2822     }
2823     bytes_remaining -= bytes_to_rq;
2824     next_alloc_addr += bytes_to_rq;
2825     count++;
2826   }
2827   // made it this far, success
2828   return p_buf;
2829 }
2830 
2831 
2832 
2833 void os::large_page_init() {
2834   if (!UseLargePages) return;
2835 
2836   // print a warning if any large page related flag is specified on command line
2837   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2838                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2839   bool success = false;
2840 
2841 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2842   if (resolve_functions_for_large_page_init()) {
2843     if (request_lock_memory_privilege()) {
2844       size_t s = os::Kernel32Dll::GetLargePageMinimum();
2845       if (s) {
2846 #if defined(IA32) || defined(AMD64)
2847         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2848           WARN("JVM cannot use large pages bigger than 4mb.");
2849         } else {
2850 #endif
2851           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2852             _large_page_size = LargePageSizeInBytes;
2853           } else {
2854             _large_page_size = s;
2855           }
2856           success = true;
2857 #if defined(IA32) || defined(AMD64)
2858         }
2859 #endif
2860       } else {
2861         WARN("Large page is not supported by the processor.");
2862       }
2863     } else {
2864       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2865     }
2866   } else {
2867     WARN("Large page is not supported by the operating system.");
2868   }
2869 #undef WARN
2870 
2871   const size_t default_page_size = (size_t) vm_page_size();
2872   if (success && _large_page_size > default_page_size) {
2873     _page_sizes[0] = _large_page_size;
2874     _page_sizes[1] = default_page_size;
2875     _page_sizes[2] = 0;
2876   }
2877 
2878   cleanup_after_large_page_init();
2879   UseLargePages = success;
2880 }
2881 
2882 // On win32, one cannot release just a part of reserved memory, it's an
2883 // all or nothing deal.  When we split a reservation, we must break the
2884 // reservation into two reservations.
2885 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
2886                               bool realloc) {
2887   if (size > 0) {
2888     release_memory(base, size);
2889     if (realloc) {
2890       reserve_memory(split, base);
2891     }
2892     if (size != split) {
2893       reserve_memory(size - split, base + split);
2894     }
2895   }
2896 }
2897 
2898 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2899   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2900          "reserve alignment");
2901   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2902   char* res;
2903   // note that if UseLargePages is on, all the areas that require interleaving
2904   // will go thru reserve_memory_special rather than thru here.
2905   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
2906   if (!use_individual) {
2907     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2908   } else {
2909     elapsedTimer reserveTimer;
2910     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
2911     // in numa interleaving, we have to allocate pages individually
2912     // (well really chunks of NUMAInterleaveGranularity size)
2913     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
2914     if (res == NULL) {
2915       warning("NUMA page allocation failed");
2916     }
2917     if( Verbose && PrintMiscellaneous ) {
2918       reserveTimer.stop();
2919       tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
2920                     reserveTimer.milliseconds(), reserveTimer.ticks());
2921     }
2922   }
2923   assert(res == NULL || addr == NULL || addr == res,
2924          "Unexpected address from reserve.");
2925 
2926   return res;
2927 }
2928 
2929 // Reserve memory at an arbitrary address, only if that area is
2930 // available (and not reserved for something else).
2931 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2932   // Windows os::reserve_memory() fails of the requested address range is
2933   // not avilable.
2934   return reserve_memory(bytes, requested_addr);
2935 }
2936 
2937 size_t os::large_page_size() {
2938   return _large_page_size;
2939 }
2940 
2941 bool os::can_commit_large_page_memory() {
2942   // Windows only uses large page memory when the entire region is reserved
2943   // and committed in a single VirtualAlloc() call. This may change in the
2944   // future, but with Windows 2003 it's not possible to commit on demand.
2945   return false;
2946 }
2947 
2948 bool os::can_execute_large_page_memory() {
2949   return true;
2950 }
2951 
2952 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2953 
2954   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2955   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2956 
2957   // with large pages, there are two cases where we need to use Individual Allocation
2958   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
2959   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
2960   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
2961     if (TracePageSizes && Verbose) {
2962        tty->print_cr("Reserving large pages individually.");
2963     }
2964     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
2965     if (p_buf == NULL) {
2966       // give an appropriate warning message
2967       if (UseNUMAInterleaving) {
2968         warning("NUMA large page allocation failed, UseLargePages flag ignored");
2969       }
2970       if (UseLargePagesIndividualAllocation) {
2971         warning("Individually allocated large pages failed, "
2972                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
2973       }
2974       return NULL;
2975     }
2976 
2977     return p_buf;
2978 
2979   } else {
2980     // normal policy just allocate it all at once
2981     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2982     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2983     return res;
2984   }
2985 }
2986 
2987 bool os::release_memory_special(char* base, size_t bytes) {
2988   return release_memory(base, bytes);
2989 }
2990 
2991 void os::print_statistics() {
2992 }
2993 
2994 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2995   if (bytes == 0) {
2996     // Don't bother the OS with noops.
2997     return true;
2998   }
2999   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3000   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3001   // Don't attempt to print anything if the OS call fails. We're
3002   // probably low on resources, so the print itself may cause crashes.
3003 
3004   // unless we have NUMAInterleaving enabled, the range of a commit
3005   // is always within a reserve covered by a single VirtualAlloc
3006   // in that case we can just do a single commit for the requested size
3007   if (!UseNUMAInterleaving) {
3008     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
3009     if (exec) {
3010       DWORD oldprot;
3011       // Windows doc says to use VirtualProtect to get execute permissions
3012       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
3013     }
3014     return true;
3015   } else {
3016 
3017     // when NUMAInterleaving is enabled, the commit might cover a range that
3018     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3019     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3020     // returns represents the number of bytes that can be committed in one step.
3021     size_t bytes_remaining = bytes;
3022     char * next_alloc_addr = addr;
3023     while (bytes_remaining > 0) {
3024       MEMORY_BASIC_INFORMATION alloc_info;
3025       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3026       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3027       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
3028         return false;
3029       if (exec) {
3030         DWORD oldprot;
3031         if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
3032           return false;
3033       }
3034       bytes_remaining -= bytes_to_rq;
3035       next_alloc_addr += bytes_to_rq;
3036     }
3037   }
3038   // if we made it this far, return true
3039   return true;
3040 }
3041 
3042 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3043                        bool exec) {
3044   return commit_memory(addr, size, exec);
3045 }
3046 
3047 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3048   if (bytes == 0) {
3049     // Don't bother the OS with noops.
3050     return true;
3051   }
3052   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3053   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3054   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3055 }
3056 
3057 bool os::pd_release_memory(char* addr, size_t bytes) {
3058   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3059 }
3060 
3061 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3062   return os::commit_memory(addr, size);
3063 }
3064 
3065 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3066   return os::uncommit_memory(addr, size);
3067 }
3068 
3069 // Set protections specified
3070 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3071                         bool is_committed) {
3072   unsigned int p = 0;
3073   switch (prot) {
3074   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3075   case MEM_PROT_READ: p = PAGE_READONLY; break;
3076   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3077   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3078   default:
3079     ShouldNotReachHere();
3080   }
3081 
3082   DWORD old_status;
3083 
3084   // Strange enough, but on Win32 one can change protection only for committed
3085   // memory, not a big deal anyway, as bytes less or equal than 64K
3086   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
3087     fatal("cannot commit protection page");
3088   }
3089   // One cannot use os::guard_memory() here, as on Win32 guard page
3090   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3091   //
3092   // Pages in the region become guard pages. Any attempt to access a guard page
3093   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3094   // the guard page status. Guard pages thus act as a one-time access alarm.
3095   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3096 }
3097 
3098 bool os::guard_memory(char* addr, size_t bytes) {
3099   DWORD old_status;
3100   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3101 }
3102 
3103 bool os::unguard_memory(char* addr, size_t bytes) {
3104   DWORD old_status;
3105   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3106 }
3107 
3108 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3109 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3110 void os::numa_make_global(char *addr, size_t bytes)    { }
3111 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3112 bool os::numa_topology_changed()                       { return false; }
3113 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3114 int os::numa_get_group_id()                            { return 0; }
3115 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3116   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3117     // Provide an answer for UMA systems
3118     ids[0] = 0;
3119     return 1;
3120   } else {
3121     // check for size bigger than actual groups_num
3122     size = MIN2(size, numa_get_groups_num());
3123     for (int i = 0; i < (int)size; i++) {
3124       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3125     }
3126     return size;
3127   }
3128 }
3129 
3130 bool os::get_page_info(char *start, page_info* info) {
3131   return false;
3132 }
3133 
3134 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3135   return end;
3136 }
3137 
3138 char* os::non_memory_address_word() {
3139   // Must never look like an address returned by reserve_memory,
3140   // even in its subfields (as defined by the CPU immediate fields,
3141   // if the CPU splits constants across multiple instructions).
3142   return (char*)-1;
3143 }
3144 
3145 #define MAX_ERROR_COUNT 100
3146 #define SYS_THREAD_ERROR 0xffffffffUL
3147 
3148 void os::pd_start_thread(Thread* thread) {
3149   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3150   // Returns previous suspend state:
3151   // 0:  Thread was not suspended
3152   // 1:  Thread is running now
3153   // >1: Thread is still suspended.
3154   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3155 }
3156 
3157 class HighResolutionInterval {
3158   // The default timer resolution seems to be 10 milliseconds.
3159   // (Where is this written down?)
3160   // If someone wants to sleep for only a fraction of the default,
3161   // then we set the timer resolution down to 1 millisecond for
3162   // the duration of their interval.
3163   // We carefully set the resolution back, since otherwise we
3164   // seem to incur an overhead (3%?) that we don't need.
3165   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3166   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3167   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3168   // timeBeginPeriod() if the relative error exceeded some threshold.
3169   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3170   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3171   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3172   // resolution timers running.
3173 private:
3174     jlong resolution;
3175 public:
3176   HighResolutionInterval(jlong ms) {
3177     resolution = ms % 10L;
3178     if (resolution != 0) {
3179       MMRESULT result = timeBeginPeriod(1L);
3180     }
3181   }
3182   ~HighResolutionInterval() {
3183     if (resolution != 0) {
3184       MMRESULT result = timeEndPeriod(1L);
3185     }
3186     resolution = 0L;
3187   }
3188 };
3189 
3190 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3191   jlong limit = (jlong) MAXDWORD;
3192 
3193   while(ms > limit) {
3194     int res;
3195     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3196       return res;
3197     ms -= limit;
3198   }
3199 
3200   assert(thread == Thread::current(),  "thread consistency check");
3201   OSThread* osthread = thread->osthread();
3202   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3203   int result;
3204   if (interruptable) {
3205     assert(thread->is_Java_thread(), "must be java thread");
3206     JavaThread *jt = (JavaThread *) thread;
3207     ThreadBlockInVM tbivm(jt);
3208 
3209     jt->set_suspend_equivalent();
3210     // cleared by handle_special_suspend_equivalent_condition() or
3211     // java_suspend_self() via check_and_wait_while_suspended()
3212 
3213     HANDLE events[1];
3214     events[0] = osthread->interrupt_event();
3215     HighResolutionInterval *phri=NULL;
3216     if(!ForceTimeHighResolution)
3217       phri = new HighResolutionInterval( ms );
3218     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3219       result = OS_TIMEOUT;
3220     } else {
3221       ResetEvent(osthread->interrupt_event());
3222       osthread->set_interrupted(false);
3223       result = OS_INTRPT;
3224     }
3225     delete phri; //if it is NULL, harmless
3226 
3227     // were we externally suspended while we were waiting?
3228     jt->check_and_wait_while_suspended();
3229   } else {
3230     assert(!thread->is_Java_thread(), "must not be java thread");
3231     Sleep((long) ms);
3232     result = OS_TIMEOUT;
3233   }
3234   return result;
3235 }
3236 
3237 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3238 void os::infinite_sleep() {
3239   while (true) {    // sleep forever ...
3240     Sleep(100000);  // ... 100 seconds at a time
3241   }
3242 }
3243 
3244 typedef BOOL (WINAPI * STTSignature)(void) ;
3245 
3246 os::YieldResult os::NakedYield() {
3247   // Use either SwitchToThread() or Sleep(0)
3248   // Consider passing back the return value from SwitchToThread().
3249   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3250     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3251   } else {
3252     Sleep(0);
3253   }
3254   return os::YIELD_UNKNOWN ;
3255 }
3256 
3257 void os::yield() {  os::NakedYield(); }
3258 
3259 void os::yield_all(int attempts) {
3260   // Yields to all threads, including threads with lower priorities
3261   Sleep(1);
3262 }
3263 
3264 // Win32 only gives you access to seven real priorities at a time,
3265 // so we compress Java's ten down to seven.  It would be better
3266 // if we dynamically adjusted relative priorities.
3267 
3268 int os::java_to_os_priority[CriticalPriority + 1] = {
3269   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3270   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3271   THREAD_PRIORITY_LOWEST,                       // 2
3272   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3273   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3274   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3275   THREAD_PRIORITY_NORMAL,                       // 6
3276   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3277   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3278   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3279   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3280   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3281 };
3282 
3283 int prio_policy1[CriticalPriority + 1] = {
3284   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3285   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3286   THREAD_PRIORITY_LOWEST,                       // 2
3287   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3288   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3289   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3290   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3291   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3292   THREAD_PRIORITY_HIGHEST,                      // 8
3293   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3294   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3295   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3296 };
3297 
3298 static int prio_init() {
3299   // If ThreadPriorityPolicy is 1, switch tables
3300   if (ThreadPriorityPolicy == 1) {
3301     int i;
3302     for (i = 0; i < CriticalPriority + 1; i++) {
3303       os::java_to_os_priority[i] = prio_policy1[i];
3304     }
3305   }
3306   if (UseCriticalJavaThreadPriority) {
3307     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3308   }
3309   return 0;
3310 }
3311 
3312 OSReturn os::set_native_priority(Thread* thread, int priority) {
3313   if (!UseThreadPriorities) return OS_OK;
3314   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3315   return ret ? OS_OK : OS_ERR;
3316 }
3317 
3318 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3319   if ( !UseThreadPriorities ) {
3320     *priority_ptr = java_to_os_priority[NormPriority];
3321     return OS_OK;
3322   }
3323   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3324   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3325     assert(false, "GetThreadPriority failed");
3326     return OS_ERR;
3327   }
3328   *priority_ptr = os_prio;
3329   return OS_OK;
3330 }
3331 
3332 
3333 // Hint to the underlying OS that a task switch would not be good.
3334 // Void return because it's a hint and can fail.
3335 void os::hint_no_preempt() {}
3336 
3337 void os::interrupt(Thread* thread) {
3338   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3339          "possibility of dangling Thread pointer");
3340 
3341   OSThread* osthread = thread->osthread();
3342   osthread->set_interrupted(true);
3343   // More than one thread can get here with the same value of osthread,
3344   // resulting in multiple notifications.  We do, however, want the store
3345   // to interrupted() to be visible to other threads before we post
3346   // the interrupt event.
3347   OrderAccess::release();
3348   SetEvent(osthread->interrupt_event());
3349   // For JSR166:  unpark after setting status
3350   if (thread->is_Java_thread())
3351     ((JavaThread*)thread)->parker()->unpark();
3352 
3353   ParkEvent * ev = thread->_ParkEvent ;
3354   if (ev != NULL) ev->unpark() ;
3355 
3356 }
3357 
3358 
3359 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3360   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3361          "possibility of dangling Thread pointer");
3362 
3363   OSThread* osthread = thread->osthread();
3364   bool interrupted = osthread->interrupted();
3365   // There is no synchronization between the setting of the interrupt
3366   // and it being cleared here. It is critical - see 6535709 - that
3367   // we only clear the interrupt state, and reset the interrupt event,
3368   // if we are going to report that we were indeed interrupted - else
3369   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3370   // depending on the timing
3371   if (interrupted && clear_interrupted) {
3372     osthread->set_interrupted(false);
3373     ResetEvent(osthread->interrupt_event());
3374   } // Otherwise leave the interrupted state alone
3375 
3376   return interrupted;
3377 }
3378 
3379 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3380 ExtendedPC os::get_thread_pc(Thread* thread) {
3381   CONTEXT context;
3382   context.ContextFlags = CONTEXT_CONTROL;
3383   HANDLE handle = thread->osthread()->thread_handle();
3384 #ifdef _M_IA64
3385   assert(0, "Fix get_thread_pc");
3386   return ExtendedPC(NULL);
3387 #else
3388   if (GetThreadContext(handle, &context)) {
3389 #ifdef _M_AMD64
3390     return ExtendedPC((address) context.Rip);
3391 #else
3392     return ExtendedPC((address) context.Eip);
3393 #endif
3394   } else {
3395     return ExtendedPC(NULL);
3396   }
3397 #endif
3398 }
3399 
3400 // GetCurrentThreadId() returns DWORD
3401 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3402 
3403 static int _initial_pid = 0;
3404 
3405 int os::current_process_id()
3406 {
3407   return (_initial_pid ? _initial_pid : _getpid());
3408 }
3409 
3410 int    os::win32::_vm_page_size       = 0;
3411 int    os::win32::_vm_allocation_granularity = 0;
3412 int    os::win32::_processor_type     = 0;
3413 // Processor level is not available on non-NT systems, use vm_version instead
3414 int    os::win32::_processor_level    = 0;
3415 julong os::win32::_physical_memory    = 0;
3416 size_t os::win32::_default_stack_size = 0;
3417 
3418          intx os::win32::_os_thread_limit    = 0;
3419 volatile intx os::win32::_os_thread_count    = 0;
3420 
3421 bool   os::win32::_is_nt              = false;
3422 bool   os::win32::_is_windows_2003    = false;
3423 bool   os::win32::_is_windows_server  = false;
3424 
3425 void os::win32::initialize_system_info() {
3426   SYSTEM_INFO si;
3427   GetSystemInfo(&si);
3428   _vm_page_size    = si.dwPageSize;
3429   _vm_allocation_granularity = si.dwAllocationGranularity;
3430   _processor_type  = si.dwProcessorType;
3431   _processor_level = si.wProcessorLevel;
3432   set_processor_count(si.dwNumberOfProcessors);
3433 
3434   MEMORYSTATUSEX ms;
3435   ms.dwLength = sizeof(ms);
3436 
3437   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3438   // dwMemoryLoad (% of memory in use)
3439   GlobalMemoryStatusEx(&ms);
3440   _physical_memory = ms.ullTotalPhys;
3441 
3442   OSVERSIONINFOEX oi;
3443   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3444   GetVersionEx((OSVERSIONINFO*)&oi);
3445   switch(oi.dwPlatformId) {
3446     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3447     case VER_PLATFORM_WIN32_NT:
3448       _is_nt = true;
3449       {
3450         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3451         if (os_vers == 5002) {
3452           _is_windows_2003 = true;
3453         }
3454         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3455           oi.wProductType == VER_NT_SERVER) {
3456             _is_windows_server = true;
3457         }
3458       }
3459       break;
3460     default: fatal("Unknown platform");
3461   }
3462 
3463   _default_stack_size = os::current_stack_size();
3464   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3465   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3466     "stack size not a multiple of page size");
3467 
3468   initialize_performance_counter();
3469 
3470   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3471   // known to deadlock the system, if the VM issues to thread operations with
3472   // a too high frequency, e.g., such as changing the priorities.
3473   // The 6000 seems to work well - no deadlocks has been notices on the test
3474   // programs that we have seen experience this problem.
3475   if (!os::win32::is_nt()) {
3476     StarvationMonitorInterval = 6000;
3477   }
3478 }
3479 
3480 
3481 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3482   char path[MAX_PATH];
3483   DWORD size;
3484   DWORD pathLen = (DWORD)sizeof(path);
3485   HINSTANCE result = NULL;
3486 
3487   // only allow library name without path component
3488   assert(strchr(name, '\\') == NULL, "path not allowed");
3489   assert(strchr(name, ':') == NULL, "path not allowed");
3490   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3491     jio_snprintf(ebuf, ebuflen,
3492       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3493     return NULL;
3494   }
3495 
3496   // search system directory
3497   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3498     strcat(path, "\\");
3499     strcat(path, name);
3500     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3501       return result;
3502     }
3503   }
3504 
3505   // try Windows directory
3506   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3507     strcat(path, "\\");
3508     strcat(path, name);
3509     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3510       return result;
3511     }
3512   }
3513 
3514   jio_snprintf(ebuf, ebuflen,
3515     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3516   return NULL;
3517 }
3518 
3519 void os::win32::setmode_streams() {
3520   _setmode(_fileno(stdin), _O_BINARY);
3521   _setmode(_fileno(stdout), _O_BINARY);
3522   _setmode(_fileno(stderr), _O_BINARY);
3523 }
3524 
3525 
3526 bool os::is_debugger_attached() {
3527   return IsDebuggerPresent() ? true : false;
3528 }
3529 
3530 
3531 void os::wait_for_keypress_at_exit(void) {
3532   if (PauseAtExit) {
3533     fprintf(stderr, "Press any key to continue...\n");
3534     fgetc(stdin);
3535   }
3536 }
3537 
3538 
3539 int os::message_box(const char* title, const char* message) {
3540   int result = MessageBox(NULL, message, title,
3541                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3542   return result == IDYES;
3543 }
3544 
3545 int os::allocate_thread_local_storage() {
3546   return TlsAlloc();
3547 }
3548 
3549 
3550 void os::free_thread_local_storage(int index) {
3551   TlsFree(index);
3552 }
3553 
3554 
3555 void os::thread_local_storage_at_put(int index, void* value) {
3556   TlsSetValue(index, value);
3557   assert(thread_local_storage_at(index) == value, "Just checking");
3558 }
3559 
3560 
3561 void* os::thread_local_storage_at(int index) {
3562   return TlsGetValue(index);
3563 }
3564 
3565 
3566 #ifndef PRODUCT
3567 #ifndef _WIN64
3568 // Helpers to check whether NX protection is enabled
3569 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3570   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3571       pex->ExceptionRecord->NumberParameters > 0 &&
3572       pex->ExceptionRecord->ExceptionInformation[0] ==
3573       EXCEPTION_INFO_EXEC_VIOLATION) {
3574     return EXCEPTION_EXECUTE_HANDLER;
3575   }
3576   return EXCEPTION_CONTINUE_SEARCH;
3577 }
3578 
3579 void nx_check_protection() {
3580   // If NX is enabled we'll get an exception calling into code on the stack
3581   char code[] = { (char)0xC3 }; // ret
3582   void *code_ptr = (void *)code;
3583   __try {
3584     __asm call code_ptr
3585   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3586     tty->print_raw_cr("NX protection detected.");
3587   }
3588 }
3589 #endif // _WIN64
3590 #endif // PRODUCT
3591 
3592 // this is called _before_ the global arguments have been parsed
3593 void os::init(void) {
3594   _initial_pid = _getpid();
3595 
3596   init_random(1234567);
3597 
3598   win32::initialize_system_info();
3599   win32::setmode_streams();
3600   init_page_sizes((size_t) win32::vm_page_size());
3601 
3602   // For better scalability on MP systems (must be called after initialize_system_info)
3603 #ifndef PRODUCT
3604   if (is_MP()) {
3605     NoYieldsInMicrolock = true;
3606   }
3607 #endif
3608   // This may be overridden later when argument processing is done.
3609   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3610     os::win32::is_windows_2003());
3611 
3612   // Initialize main_process and main_thread
3613   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3614  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3615                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3616     fatal("DuplicateHandle failed\n");
3617   }
3618   main_thread_id = (int) GetCurrentThreadId();
3619 }
3620 
3621 // To install functions for atexit processing
3622 extern "C" {
3623   static void perfMemory_exit_helper() {
3624     perfMemory_exit();
3625   }
3626 }
3627 
3628 // this is called _after_ the global arguments have been parsed
3629 jint os::init_2(void) {
3630   // Allocate a single page and mark it as readable for safepoint polling
3631   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3632   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3633 
3634   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3635   guarantee( return_page != NULL, "Commit Failed for polling page");
3636 
3637   os::set_polling_page( polling_page );
3638 
3639 #ifndef PRODUCT
3640   if( Verbose && PrintMiscellaneous )
3641     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3642 #endif
3643 
3644   if (!UseMembar) {
3645     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3646     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3647 
3648     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3649     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3650 
3651     os::set_memory_serialize_page( mem_serialize_page );
3652 
3653 #ifndef PRODUCT
3654     if(Verbose && PrintMiscellaneous)
3655       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3656 #endif
3657   }
3658 
3659   os::large_page_init();
3660 
3661   // Setup Windows Exceptions
3662 
3663   // for debugging float code generation bugs
3664   if (ForceFloatExceptions) {
3665 #ifndef  _WIN64
3666     static long fp_control_word = 0;
3667     __asm { fstcw fp_control_word }
3668     // see Intel PPro Manual, Vol. 2, p 7-16
3669     const long precision = 0x20;
3670     const long underflow = 0x10;
3671     const long overflow  = 0x08;
3672     const long zero_div  = 0x04;
3673     const long denorm    = 0x02;
3674     const long invalid   = 0x01;
3675     fp_control_word |= invalid;
3676     __asm { fldcw fp_control_word }
3677 #endif
3678   }
3679 
3680   // If stack_commit_size is 0, windows will reserve the default size,
3681   // but only commit a small portion of it.
3682   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3683   size_t default_reserve_size = os::win32::default_stack_size();
3684   size_t actual_reserve_size = stack_commit_size;
3685   if (stack_commit_size < default_reserve_size) {
3686     // If stack_commit_size == 0, we want this too
3687     actual_reserve_size = default_reserve_size;
3688   }
3689 
3690   // Check minimum allowable stack size for thread creation and to initialize
3691   // the java system classes, including StackOverflowError - depends on page
3692   // size.  Add a page for compiler2 recursion in main thread.
3693   // Add in 2*BytesPerWord times page size to account for VM stack during
3694   // class initialization depending on 32 or 64 bit VM.
3695   size_t min_stack_allowed =
3696             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3697             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3698   if (actual_reserve_size < min_stack_allowed) {
3699     tty->print_cr("\nThe stack size specified is too small, "
3700                   "Specify at least %dk",
3701                   min_stack_allowed / K);
3702     return JNI_ERR;
3703   }
3704 
3705   JavaThread::set_stack_size_at_create(stack_commit_size);
3706 
3707   // Calculate theoretical max. size of Threads to guard gainst artifical
3708   // out-of-memory situations, where all available address-space has been
3709   // reserved by thread stacks.
3710   assert(actual_reserve_size != 0, "Must have a stack");
3711 
3712   // Calculate the thread limit when we should start doing Virtual Memory
3713   // banging. Currently when the threads will have used all but 200Mb of space.
3714   //
3715   // TODO: consider performing a similar calculation for commit size instead
3716   // as reserve size, since on a 64-bit platform we'll run into that more
3717   // often than running out of virtual memory space.  We can use the
3718   // lower value of the two calculations as the os_thread_limit.
3719   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3720   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3721 
3722   // at exit methods are called in the reverse order of their registration.
3723   // there is no limit to the number of functions registered. atexit does
3724   // not set errno.
3725 
3726   if (PerfAllowAtExitRegistration) {
3727     // only register atexit functions if PerfAllowAtExitRegistration is set.
3728     // atexit functions can be delayed until process exit time, which
3729     // can be problematic for embedded VM situations. Embedded VMs should
3730     // call DestroyJavaVM() to assure that VM resources are released.
3731 
3732     // note: perfMemory_exit_helper atexit function may be removed in
3733     // the future if the appropriate cleanup code can be added to the
3734     // VM_Exit VMOperation's doit method.
3735     if (atexit(perfMemory_exit_helper) != 0) {
3736       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3737     }
3738   }
3739 
3740 #ifndef _WIN64
3741   // Print something if NX is enabled (win32 on AMD64)
3742   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3743 #endif
3744 
3745   // initialize thread priority policy
3746   prio_init();
3747 
3748   if (UseNUMA && !ForceNUMA) {
3749     UseNUMA = false; // We don't fully support this yet
3750   }
3751 
3752   if (UseNUMAInterleaving) {
3753     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
3754     bool success = numa_interleaving_init();
3755     if (!success) UseNUMAInterleaving = false;
3756   }
3757 
3758   return JNI_OK;
3759 }
3760 
3761 void os::init_3(void) {
3762   return;
3763 }
3764 
3765 // Mark the polling page as unreadable
3766 void os::make_polling_page_unreadable(void) {
3767   DWORD old_status;
3768   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3769     fatal("Could not disable polling page");
3770 };
3771 
3772 // Mark the polling page as readable
3773 void os::make_polling_page_readable(void) {
3774   DWORD old_status;
3775   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3776     fatal("Could not enable polling page");
3777 };
3778 
3779 
3780 int os::stat(const char *path, struct stat *sbuf) {
3781   char pathbuf[MAX_PATH];
3782   if (strlen(path) > MAX_PATH - 1) {
3783     errno = ENAMETOOLONG;
3784     return -1;
3785   }
3786   os::native_path(strcpy(pathbuf, path));
3787   int ret = ::stat(pathbuf, sbuf);
3788   if (sbuf != NULL && UseUTCFileTimestamp) {
3789     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3790     // the system timezone and so can return different values for the
3791     // same file if/when daylight savings time changes.  This adjustment
3792     // makes sure the same timestamp is returned regardless of the TZ.
3793     //
3794     // See:
3795     // http://msdn.microsoft.com/library/
3796     //   default.asp?url=/library/en-us/sysinfo/base/
3797     //   time_zone_information_str.asp
3798     // and
3799     // http://msdn.microsoft.com/library/default.asp?url=
3800     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3801     //
3802     // NOTE: there is a insidious bug here:  If the timezone is changed
3803     // after the call to stat() but before 'GetTimeZoneInformation()', then
3804     // the adjustment we do here will be wrong and we'll return the wrong
3805     // value (which will likely end up creating an invalid class data
3806     // archive).  Absent a better API for this, or some time zone locking
3807     // mechanism, we'll have to live with this risk.
3808     TIME_ZONE_INFORMATION tz;
3809     DWORD tzid = GetTimeZoneInformation(&tz);
3810     int daylightBias =
3811       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3812     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3813   }
3814   return ret;
3815 }
3816 
3817 
3818 #define FT2INT64(ft) \
3819   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3820 
3821 
3822 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3823 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3824 // of a thread.
3825 //
3826 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3827 // the fast estimate available on the platform.
3828 
3829 // current_thread_cpu_time() is not optimized for Windows yet
3830 jlong os::current_thread_cpu_time() {
3831   // return user + sys since the cost is the same
3832   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3833 }
3834 
3835 jlong os::thread_cpu_time(Thread* thread) {
3836   // consistent with what current_thread_cpu_time() returns.
3837   return os::thread_cpu_time(thread, true /* user+sys */);
3838 }
3839 
3840 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3841   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3842 }
3843 
3844 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3845   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3846   // If this function changes, os::is_thread_cpu_time_supported() should too
3847   if (os::win32::is_nt()) {
3848     FILETIME CreationTime;
3849     FILETIME ExitTime;
3850     FILETIME KernelTime;
3851     FILETIME UserTime;
3852 
3853     if ( GetThreadTimes(thread->osthread()->thread_handle(),
3854                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3855       return -1;
3856     else
3857       if (user_sys_cpu_time) {
3858         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3859       } else {
3860         return FT2INT64(UserTime) * 100;
3861       }
3862   } else {
3863     return (jlong) timeGetTime() * 1000000;
3864   }
3865 }
3866 
3867 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3868   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3869   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3870   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3871   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3872 }
3873 
3874 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3875   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3876   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3877   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3878   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3879 }
3880 
3881 bool os::is_thread_cpu_time_supported() {
3882   // see os::thread_cpu_time
3883   if (os::win32::is_nt()) {
3884     FILETIME CreationTime;
3885     FILETIME ExitTime;
3886     FILETIME KernelTime;
3887     FILETIME UserTime;
3888 
3889     if ( GetThreadTimes(GetCurrentThread(),
3890                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3891       return false;
3892     else
3893       return true;
3894   } else {
3895     return false;
3896   }
3897 }
3898 
3899 // Windows does't provide a loadavg primitive so this is stubbed out for now.
3900 // It does have primitives (PDH API) to get CPU usage and run queue length.
3901 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3902 // If we wanted to implement loadavg on Windows, we have a few options:
3903 //
3904 // a) Query CPU usage and run queue length and "fake" an answer by
3905 //    returning the CPU usage if it's under 100%, and the run queue
3906 //    length otherwise.  It turns out that querying is pretty slow
3907 //    on Windows, on the order of 200 microseconds on a fast machine.
3908 //    Note that on the Windows the CPU usage value is the % usage
3909 //    since the last time the API was called (and the first call
3910 //    returns 100%), so we'd have to deal with that as well.
3911 //
3912 // b) Sample the "fake" answer using a sampling thread and store
3913 //    the answer in a global variable.  The call to loadavg would
3914 //    just return the value of the global, avoiding the slow query.
3915 //
3916 // c) Sample a better answer using exponential decay to smooth the
3917 //    value.  This is basically the algorithm used by UNIX kernels.
3918 //
3919 // Note that sampling thread starvation could affect both (b) and (c).
3920 int os::loadavg(double loadavg[], int nelem) {
3921   return -1;
3922 }
3923 
3924 
3925 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3926 bool os::dont_yield() {
3927   return DontYieldALot;
3928 }
3929 
3930 // This method is a slightly reworked copy of JDK's sysOpen
3931 // from src/windows/hpi/src/sys_api_md.c
3932 
3933 int os::open(const char *path, int oflag, int mode) {
3934   char pathbuf[MAX_PATH];
3935 
3936   if (strlen(path) > MAX_PATH - 1) {
3937     errno = ENAMETOOLONG;
3938           return -1;
3939   }
3940   os::native_path(strcpy(pathbuf, path));
3941   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
3942 }
3943 
3944 // Is a (classpath) directory empty?
3945 bool os::dir_is_empty(const char* path) {
3946   WIN32_FIND_DATA fd;
3947   HANDLE f = FindFirstFile(path, &fd);
3948   if (f == INVALID_HANDLE_VALUE) {
3949     return true;
3950   }
3951   FindClose(f);
3952   return false;
3953 }
3954 
3955 // create binary file, rewriting existing file if required
3956 int os::create_binary_file(const char* path, bool rewrite_existing) {
3957   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3958   if (!rewrite_existing) {
3959     oflags |= _O_EXCL;
3960   }
3961   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3962 }
3963 
3964 // return current position of file pointer
3965 jlong os::current_file_offset(int fd) {
3966   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3967 }
3968 
3969 // move file pointer to the specified offset
3970 jlong os::seek_to_file_offset(int fd, jlong offset) {
3971   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3972 }
3973 
3974 
3975 jlong os::lseek(int fd, jlong offset, int whence) {
3976   return (jlong) ::_lseeki64(fd, offset, whence);
3977 }
3978 
3979 // This method is a slightly reworked copy of JDK's sysNativePath
3980 // from src/windows/hpi/src/path_md.c
3981 
3982 /* Convert a pathname to native format.  On win32, this involves forcing all
3983    separators to be '\\' rather than '/' (both are legal inputs, but Win95
3984    sometimes rejects '/') and removing redundant separators.  The input path is
3985    assumed to have been converted into the character encoding used by the local
3986    system.  Because this might be a double-byte encoding, care is taken to
3987    treat double-byte lead characters correctly.
3988 
3989    This procedure modifies the given path in place, as the result is never
3990    longer than the original.  There is no error return; this operation always
3991    succeeds. */
3992 char * os::native_path(char *path) {
3993   char *src = path, *dst = path, *end = path;
3994   char *colon = NULL;           /* If a drive specifier is found, this will
3995                                         point to the colon following the drive
3996                                         letter */
3997 
3998   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
3999   assert(((!::IsDBCSLeadByte('/'))
4000     && (!::IsDBCSLeadByte('\\'))
4001     && (!::IsDBCSLeadByte(':'))),
4002     "Illegal lead byte");
4003 
4004   /* Check for leading separators */
4005 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4006   while (isfilesep(*src)) {
4007     src++;
4008   }
4009 
4010   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4011     /* Remove leading separators if followed by drive specifier.  This
4012       hack is necessary to support file URLs containing drive
4013       specifiers (e.g., "file://c:/path").  As a side effect,
4014       "/c:/path" can be used as an alternative to "c:/path". */
4015     *dst++ = *src++;
4016     colon = dst;
4017     *dst++ = ':';
4018     src++;
4019   } else {
4020     src = path;
4021     if (isfilesep(src[0]) && isfilesep(src[1])) {
4022       /* UNC pathname: Retain first separator; leave src pointed at
4023          second separator so that further separators will be collapsed
4024          into the second separator.  The result will be a pathname
4025          beginning with "\\\\" followed (most likely) by a host name. */
4026       src = dst = path + 1;
4027       path[0] = '\\';     /* Force first separator to '\\' */
4028     }
4029   }
4030 
4031   end = dst;
4032 
4033   /* Remove redundant separators from remainder of path, forcing all
4034       separators to be '\\' rather than '/'. Also, single byte space
4035       characters are removed from the end of the path because those
4036       are not legal ending characters on this operating system.
4037   */
4038   while (*src != '\0') {
4039     if (isfilesep(*src)) {
4040       *dst++ = '\\'; src++;
4041       while (isfilesep(*src)) src++;
4042       if (*src == '\0') {
4043         /* Check for trailing separator */
4044         end = dst;
4045         if (colon == dst - 2) break;                      /* "z:\\" */
4046         if (dst == path + 1) break;                       /* "\\" */
4047         if (dst == path + 2 && isfilesep(path[0])) {
4048           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4049             beginning of a UNC pathname.  Even though it is not, by
4050             itself, a valid UNC pathname, we leave it as is in order
4051             to be consistent with the path canonicalizer as well
4052             as the win32 APIs, which treat this case as an invalid
4053             UNC pathname rather than as an alias for the root
4054             directory of the current drive. */
4055           break;
4056         }
4057         end = --dst;  /* Path does not denote a root directory, so
4058                                     remove trailing separator */
4059         break;
4060       }
4061       end = dst;
4062     } else {
4063       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4064         *dst++ = *src++;
4065         if (*src) *dst++ = *src++;
4066         end = dst;
4067       } else {         /* Copy a single-byte character */
4068         char c = *src++;
4069         *dst++ = c;
4070         /* Space is not a legal ending character */
4071         if (c != ' ') end = dst;
4072       }
4073     }
4074   }
4075 
4076   *end = '\0';
4077 
4078   /* For "z:", add "." to work around a bug in the C runtime library */
4079   if (colon == dst - 1) {
4080           path[2] = '.';
4081           path[3] = '\0';
4082   }
4083 
4084   #ifdef DEBUG
4085     jio_fprintf(stderr, "sysNativePath: %s\n", path);
4086   #endif DEBUG
4087   return path;
4088 }
4089 
4090 // This code is a copy of JDK's sysSetLength
4091 // from src/windows/hpi/src/sys_api_md.c
4092 
4093 int os::ftruncate(int fd, jlong length) {
4094   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4095   long high = (long)(length >> 32);
4096   DWORD ret;
4097 
4098   if (h == (HANDLE)(-1)) {
4099     return -1;
4100   }
4101 
4102   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4103   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4104       return -1;
4105   }
4106 
4107   if (::SetEndOfFile(h) == FALSE) {
4108     return -1;
4109   }
4110 
4111   return 0;
4112 }
4113 
4114 
4115 // This code is a copy of JDK's sysSync
4116 // from src/windows/hpi/src/sys_api_md.c
4117 // except for the legacy workaround for a bug in Win 98
4118 
4119 int os::fsync(int fd) {
4120   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4121 
4122   if ( (!::FlushFileBuffers(handle)) &&
4123          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4124     /* from winerror.h */
4125     return -1;
4126   }
4127   return 0;
4128 }
4129 
4130 static int nonSeekAvailable(int, long *);
4131 static int stdinAvailable(int, long *);
4132 
4133 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4134 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4135 
4136 // This code is a copy of JDK's sysAvailable
4137 // from src/windows/hpi/src/sys_api_md.c
4138 
4139 int os::available(int fd, jlong *bytes) {
4140   jlong cur, end;
4141   struct _stati64 stbuf64;
4142 
4143   if (::_fstati64(fd, &stbuf64) >= 0) {
4144     int mode = stbuf64.st_mode;
4145     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4146       int ret;
4147       long lpbytes;
4148       if (fd == 0) {
4149         ret = stdinAvailable(fd, &lpbytes);
4150       } else {
4151         ret = nonSeekAvailable(fd, &lpbytes);
4152       }
4153       (*bytes) = (jlong)(lpbytes);
4154       return ret;
4155     }
4156     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4157       return FALSE;
4158     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4159       return FALSE;
4160     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4161       return FALSE;
4162     }
4163     *bytes = end - cur;
4164     return TRUE;
4165   } else {
4166     return FALSE;
4167   }
4168 }
4169 
4170 // This code is a copy of JDK's nonSeekAvailable
4171 // from src/windows/hpi/src/sys_api_md.c
4172 
4173 static int nonSeekAvailable(int fd, long *pbytes) {
4174   /* This is used for available on non-seekable devices
4175     * (like both named and anonymous pipes, such as pipes
4176     *  connected to an exec'd process).
4177     * Standard Input is a special case.
4178     *
4179     */
4180   HANDLE han;
4181 
4182   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4183     return FALSE;
4184   }
4185 
4186   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4187         /* PeekNamedPipe fails when at EOF.  In that case we
4188          * simply make *pbytes = 0 which is consistent with the
4189          * behavior we get on Solaris when an fd is at EOF.
4190          * The only alternative is to raise an Exception,
4191          * which isn't really warranted.
4192          */
4193     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4194       return FALSE;
4195     }
4196     *pbytes = 0;
4197   }
4198   return TRUE;
4199 }
4200 
4201 #define MAX_INPUT_EVENTS 2000
4202 
4203 // This code is a copy of JDK's stdinAvailable
4204 // from src/windows/hpi/src/sys_api_md.c
4205 
4206 static int stdinAvailable(int fd, long *pbytes) {
4207   HANDLE han;
4208   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4209   DWORD numEvents = 0;  /* Number of events in buffer */
4210   DWORD i = 0;          /* Loop index */
4211   DWORD curLength = 0;  /* Position marker */
4212   DWORD actualLength = 0;       /* Number of bytes readable */
4213   BOOL error = FALSE;         /* Error holder */
4214   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4215 
4216   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4217         return FALSE;
4218   }
4219 
4220   /* Construct an array of input records in the console buffer */
4221   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4222   if (error == 0) {
4223     return nonSeekAvailable(fd, pbytes);
4224   }
4225 
4226   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4227   if (numEvents > MAX_INPUT_EVENTS) {
4228     numEvents = MAX_INPUT_EVENTS;
4229   }
4230 
4231   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4232   if (lpBuffer == NULL) {
4233     return FALSE;
4234   }
4235 
4236   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4237   if (error == 0) {
4238     os::free(lpBuffer, mtInternal);
4239     return FALSE;
4240   }
4241 
4242   /* Examine input records for the number of bytes available */
4243   for(i=0; i<numEvents; i++) {
4244     if (lpBuffer[i].EventType == KEY_EVENT) {
4245 
4246       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4247                                       &(lpBuffer[i].Event);
4248       if (keyRecord->bKeyDown == TRUE) {
4249         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4250         curLength++;
4251         if (*keyPressed == '\r') {
4252           actualLength = curLength;
4253         }
4254       }
4255     }
4256   }
4257 
4258   if(lpBuffer != NULL) {
4259     os::free(lpBuffer, mtInternal);
4260   }
4261 
4262   *pbytes = (long) actualLength;
4263   return TRUE;
4264 }
4265 
4266 // Map a block of memory.
4267 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4268                      char *addr, size_t bytes, bool read_only,
4269                      bool allow_exec) {
4270   HANDLE hFile;
4271   char* base;
4272 
4273   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4274                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4275   if (hFile == NULL) {
4276     if (PrintMiscellaneous && Verbose) {
4277       DWORD err = GetLastError();
4278       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
4279     }
4280     return NULL;
4281   }
4282 
4283   if (allow_exec) {
4284     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4285     // unless it comes from a PE image (which the shared archive is not.)
4286     // Even VirtualProtect refuses to give execute access to mapped memory
4287     // that was not previously executable.
4288     //
4289     // Instead, stick the executable region in anonymous memory.  Yuck.
4290     // Penalty is that ~4 pages will not be shareable - in the future
4291     // we might consider DLLizing the shared archive with a proper PE
4292     // header so that mapping executable + sharing is possible.
4293 
4294     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4295                                 PAGE_READWRITE);
4296     if (base == NULL) {
4297       if (PrintMiscellaneous && Verbose) {
4298         DWORD err = GetLastError();
4299         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4300       }
4301       CloseHandle(hFile);
4302       return NULL;
4303     }
4304 
4305     DWORD bytes_read;
4306     OVERLAPPED overlapped;
4307     overlapped.Offset = (DWORD)file_offset;
4308     overlapped.OffsetHigh = 0;
4309     overlapped.hEvent = NULL;
4310     // ReadFile guarantees that if the return value is true, the requested
4311     // number of bytes were read before returning.
4312     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4313     if (!res) {
4314       if (PrintMiscellaneous && Verbose) {
4315         DWORD err = GetLastError();
4316         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4317       }
4318       release_memory(base, bytes);
4319       CloseHandle(hFile);
4320       return NULL;
4321     }
4322   } else {
4323     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4324                                     NULL /*file_name*/);
4325     if (hMap == NULL) {
4326       if (PrintMiscellaneous && Verbose) {
4327         DWORD err = GetLastError();
4328         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
4329       }
4330       CloseHandle(hFile);
4331       return NULL;
4332     }
4333 
4334     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4335     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4336                                   (DWORD)bytes, addr);
4337     if (base == NULL) {
4338       if (PrintMiscellaneous && Verbose) {
4339         DWORD err = GetLastError();
4340         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4341       }
4342       CloseHandle(hMap);
4343       CloseHandle(hFile);
4344       return NULL;
4345     }
4346 
4347     if (CloseHandle(hMap) == 0) {
4348       if (PrintMiscellaneous && Verbose) {
4349         DWORD err = GetLastError();
4350         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4351       }
4352       CloseHandle(hFile);
4353       return base;
4354     }
4355   }
4356 
4357   if (allow_exec) {
4358     DWORD old_protect;
4359     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4360     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4361 
4362     if (!res) {
4363       if (PrintMiscellaneous && Verbose) {
4364         DWORD err = GetLastError();
4365         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4366       }
4367       // Don't consider this a hard error, on IA32 even if the
4368       // VirtualProtect fails, we should still be able to execute
4369       CloseHandle(hFile);
4370       return base;
4371     }
4372   }
4373 
4374   if (CloseHandle(hFile) == 0) {
4375     if (PrintMiscellaneous && Verbose) {
4376       DWORD err = GetLastError();
4377       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4378     }
4379     return base;
4380   }
4381 
4382   return base;
4383 }
4384 
4385 
4386 // Remap a block of memory.
4387 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4388                        char *addr, size_t bytes, bool read_only,
4389                        bool allow_exec) {
4390   // This OS does not allow existing memory maps to be remapped so we
4391   // have to unmap the memory before we remap it.
4392   if (!os::unmap_memory(addr, bytes)) {
4393     return NULL;
4394   }
4395 
4396   // There is a very small theoretical window between the unmap_memory()
4397   // call above and the map_memory() call below where a thread in native
4398   // code may be able to access an address that is no longer mapped.
4399 
4400   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4401            read_only, allow_exec);
4402 }
4403 
4404 
4405 // Unmap a block of memory.
4406 // Returns true=success, otherwise false.
4407 
4408 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4409   BOOL result = UnmapViewOfFile(addr);
4410   if (result == 0) {
4411     if (PrintMiscellaneous && Verbose) {
4412       DWORD err = GetLastError();
4413       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4414     }
4415     return false;
4416   }
4417   return true;
4418 }
4419 
4420 void os::pause() {
4421   char filename[MAX_PATH];
4422   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4423     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4424   } else {
4425     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4426   }
4427 
4428   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4429   if (fd != -1) {
4430     struct stat buf;
4431     ::close(fd);
4432     while (::stat(filename, &buf) == 0) {
4433       Sleep(100);
4434     }
4435   } else {
4436     jio_fprintf(stderr,
4437       "Could not open pause file '%s', continuing immediately.\n", filename);
4438   }
4439 }
4440 
4441 // An Event wraps a win32 "CreateEvent" kernel handle.
4442 //
4443 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4444 //
4445 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4446 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4447 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4448 //     In addition, an unpark() operation might fetch the handle field, but the
4449 //     event could recycle between the fetch and the SetEvent() operation.
4450 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4451 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4452 //     on an stale but recycled handle would be harmless, but in practice this might
4453 //     confuse other non-Sun code, so it's not a viable approach.
4454 //
4455 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4456 //     with the Event.  The event handle is never closed.  This could be construed
4457 //     as handle leakage, but only up to the maximum # of threads that have been extant
4458 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4459 //     permit a process to have hundreds of thousands of open handles.
4460 //
4461 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4462 //     and release unused handles.
4463 //
4464 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4465 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4466 //
4467 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4468 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4469 //
4470 // We use (2).
4471 //
4472 // TODO-FIXME:
4473 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4474 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4475 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4476 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4477 //     into a single win32 CreateEvent() handle.
4478 //
4479 // _Event transitions in park()
4480 //   -1 => -1 : illegal
4481 //    1 =>  0 : pass - return immediately
4482 //    0 => -1 : block
4483 //
4484 // _Event serves as a restricted-range semaphore :
4485 //    -1 : thread is blocked
4486 //     0 : neutral  - thread is running or ready
4487 //     1 : signaled - thread is running or ready
4488 //
4489 // Another possible encoding of _Event would be
4490 // with explicit "PARKED" and "SIGNALED" bits.
4491 
4492 int os::PlatformEvent::park (jlong Millis) {
4493     guarantee (_ParkHandle != NULL , "Invariant") ;
4494     guarantee (Millis > 0          , "Invariant") ;
4495     int v ;
4496 
4497     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4498     // the initial park() operation.
4499 
4500     for (;;) {
4501         v = _Event ;
4502         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4503     }
4504     guarantee ((v == 0) || (v == 1), "invariant") ;
4505     if (v != 0) return OS_OK ;
4506 
4507     // Do this the hard way by blocking ...
4508     // TODO: consider a brief spin here, gated on the success of recent
4509     // spin attempts by this thread.
4510     //
4511     // We decompose long timeouts into series of shorter timed waits.
4512     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4513     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4514     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4515     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4516     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4517     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4518     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4519     // for the already waited time.  This policy does not admit any new outcomes.
4520     // In the future, however, we might want to track the accumulated wait time and
4521     // adjust Millis accordingly if we encounter a spurious wakeup.
4522 
4523     const int MAXTIMEOUT = 0x10000000 ;
4524     DWORD rv = WAIT_TIMEOUT ;
4525     while (_Event < 0 && Millis > 0) {
4526        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4527        if (Millis > MAXTIMEOUT) {
4528           prd = MAXTIMEOUT ;
4529        }
4530        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4531        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4532        if (rv == WAIT_TIMEOUT) {
4533            Millis -= prd ;
4534        }
4535     }
4536     v = _Event ;
4537     _Event = 0 ;
4538     OrderAccess::fence() ;
4539     // If we encounter a nearly simultanous timeout expiry and unpark()
4540     // we return OS_OK indicating we awoke via unpark().
4541     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4542     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4543 }
4544 
4545 void os::PlatformEvent::park () {
4546     guarantee (_ParkHandle != NULL, "Invariant") ;
4547     // Invariant: Only the thread associated with the Event/PlatformEvent
4548     // may call park().
4549     int v ;
4550     for (;;) {
4551         v = _Event ;
4552         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4553     }
4554     guarantee ((v == 0) || (v == 1), "invariant") ;
4555     if (v != 0) return ;
4556 
4557     // Do this the hard way by blocking ...
4558     // TODO: consider a brief spin here, gated on the success of recent
4559     // spin attempts by this thread.
4560     while (_Event < 0) {
4561        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4562        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4563     }
4564 
4565     // Usually we'll find _Event == 0 at this point, but as
4566     // an optional optimization we clear it, just in case can
4567     // multiple unpark() operations drove _Event up to 1.
4568     _Event = 0 ;
4569     OrderAccess::fence() ;
4570     guarantee (_Event >= 0, "invariant") ;
4571 }
4572 
4573 void os::PlatformEvent::unpark() {
4574   guarantee (_ParkHandle != NULL, "Invariant") ;
4575   int v ;
4576   for (;;) {
4577       v = _Event ;      // Increment _Event if it's < 1.
4578       if (v > 0) {
4579          // If it's already signaled just return.
4580          // The LD of _Event could have reordered or be satisfied
4581          // by a read-aside from this processor's write buffer.
4582          // To avoid problems execute a barrier and then
4583          // ratify the value.  A degenerate CAS() would also work.
4584          // Viz., CAS (v+0, &_Event, v) == v).
4585          OrderAccess::fence() ;
4586          if (_Event == v) return ;
4587          continue ;
4588       }
4589       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4590   }
4591   if (v < 0) {
4592      ::SetEvent (_ParkHandle) ;
4593   }
4594 }
4595 
4596 
4597 // JSR166
4598 // -------------------------------------------------------
4599 
4600 /*
4601  * The Windows implementation of Park is very straightforward: Basic
4602  * operations on Win32 Events turn out to have the right semantics to
4603  * use them directly. We opportunistically resuse the event inherited
4604  * from Monitor.
4605  */
4606 
4607 
4608 void Parker::park(bool isAbsolute, jlong time) {
4609   guarantee (_ParkEvent != NULL, "invariant") ;
4610   // First, demultiplex/decode time arguments
4611   if (time < 0) { // don't wait
4612     return;
4613   }
4614   else if (time == 0 && !isAbsolute) {
4615     time = INFINITE;
4616   }
4617   else if  (isAbsolute) {
4618     time -= os::javaTimeMillis(); // convert to relative time
4619     if (time <= 0) // already elapsed
4620       return;
4621   }
4622   else { // relative
4623     time /= 1000000; // Must coarsen from nanos to millis
4624     if (time == 0)   // Wait for the minimal time unit if zero
4625       time = 1;
4626   }
4627 
4628   JavaThread* thread = (JavaThread*)(Thread::current());
4629   assert(thread->is_Java_thread(), "Must be JavaThread");
4630   JavaThread *jt = (JavaThread *)thread;
4631 
4632   // Don't wait if interrupted or already triggered
4633   if (Thread::is_interrupted(thread, false) ||
4634     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4635     ResetEvent(_ParkEvent);
4636     return;
4637   }
4638   else {
4639     ThreadBlockInVM tbivm(jt);
4640     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4641     jt->set_suspend_equivalent();
4642 
4643     WaitForSingleObject(_ParkEvent,  time);
4644     ResetEvent(_ParkEvent);
4645 
4646     // If externally suspended while waiting, re-suspend
4647     if (jt->handle_special_suspend_equivalent_condition()) {
4648       jt->java_suspend_self();
4649     }
4650   }
4651 }
4652 
4653 void Parker::unpark() {
4654   guarantee (_ParkEvent != NULL, "invariant") ;
4655   SetEvent(_ParkEvent);
4656 }
4657 
4658 // Run the specified command in a separate process. Return its exit value,
4659 // or -1 on failure (e.g. can't create a new process).
4660 int os::fork_and_exec(char* cmd) {
4661   STARTUPINFO si;
4662   PROCESS_INFORMATION pi;
4663 
4664   memset(&si, 0, sizeof(si));
4665   si.cb = sizeof(si);
4666   memset(&pi, 0, sizeof(pi));
4667   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4668                             cmd,    // command line
4669                             NULL,   // process security attribute
4670                             NULL,   // thread security attribute
4671                             TRUE,   // inherits system handles
4672                             0,      // no creation flags
4673                             NULL,   // use parent's environment block
4674                             NULL,   // use parent's starting directory
4675                             &si,    // (in) startup information
4676                             &pi);   // (out) process information
4677 
4678   if (rslt) {
4679     // Wait until child process exits.
4680     WaitForSingleObject(pi.hProcess, INFINITE);
4681 
4682     DWORD exit_code;
4683     GetExitCodeProcess(pi.hProcess, &exit_code);
4684 
4685     // Close process and thread handles.
4686     CloseHandle(pi.hProcess);
4687     CloseHandle(pi.hThread);
4688 
4689     return (int)exit_code;
4690   } else {
4691     return -1;
4692   }
4693 }
4694 
4695 //--------------------------------------------------------------------------------------------------
4696 // Non-product code
4697 
4698 static int mallocDebugIntervalCounter = 0;
4699 static int mallocDebugCounter = 0;
4700 bool os::check_heap(bool force) {
4701   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4702   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4703     // Note: HeapValidate executes two hardware breakpoints when it finds something
4704     // wrong; at these points, eax contains the address of the offending block (I think).
4705     // To get to the exlicit error message(s) below, just continue twice.
4706     HANDLE heap = GetProcessHeap();
4707     { HeapLock(heap);
4708       PROCESS_HEAP_ENTRY phe;
4709       phe.lpData = NULL;
4710       while (HeapWalk(heap, &phe) != 0) {
4711         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4712             !HeapValidate(heap, 0, phe.lpData)) {
4713           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4714           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4715           fatal("corrupted C heap");
4716         }
4717       }
4718       DWORD err = GetLastError();
4719       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4720         fatal(err_msg("heap walk aborted with error %d", err));
4721       }
4722       HeapUnlock(heap);
4723     }
4724     mallocDebugIntervalCounter = 0;
4725   }
4726   return true;
4727 }
4728 
4729 
4730 bool os::find(address addr, outputStream* st) {
4731   // Nothing yet
4732   return false;
4733 }
4734 
4735 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4736   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4737 
4738   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4739     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4740     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4741     address addr = (address) exceptionRecord->ExceptionInformation[1];
4742 
4743     if (os::is_memory_serialize_page(thread, addr))
4744       return EXCEPTION_CONTINUE_EXECUTION;
4745   }
4746 
4747   return EXCEPTION_CONTINUE_SEARCH;
4748 }
4749 
4750 // We don't build a headless jre for Windows
4751 bool os::is_headless_jre() { return false; }
4752 
4753 
4754 typedef CRITICAL_SECTION mutex_t;
4755 #define mutexInit(m)    InitializeCriticalSection(m)
4756 #define mutexDestroy(m) DeleteCriticalSection(m)
4757 #define mutexLock(m)    EnterCriticalSection(m)
4758 #define mutexUnlock(m)  LeaveCriticalSection(m)
4759 
4760 static bool sock_initialized = FALSE;
4761 static mutex_t sockFnTableMutex;
4762 
4763 static void initSock() {
4764   WSADATA wsadata;
4765 
4766   if (!os::WinSock2Dll::WinSock2Available()) {
4767     jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
4768       ::GetLastError());
4769     return;
4770   }
4771   if (sock_initialized == TRUE) return;
4772 
4773   ::mutexInit(&sockFnTableMutex);
4774   ::mutexLock(&sockFnTableMutex);
4775   if (os::WinSock2Dll::WSAStartup(MAKEWORD(1,1), &wsadata) != 0) {
4776       jio_fprintf(stderr, "Could not initialize Winsock\n");
4777   }
4778   sock_initialized = TRUE;
4779   ::mutexUnlock(&sockFnTableMutex);
4780 }
4781 
4782 struct hostent* os::get_host_by_name(char* name) {
4783   if (!sock_initialized) {
4784     initSock();
4785   }
4786   if (!os::WinSock2Dll::WinSock2Available()) {
4787     return NULL;
4788   }
4789   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
4790 }
4791 
4792 int os::socket_close(int fd) {
4793   return ::closesocket(fd);
4794 }
4795 
4796 int os::socket_available(int fd, jint *pbytes) {
4797   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
4798   return (ret < 0) ? 0 : 1;
4799 }
4800 
4801 int os::socket(int domain, int type, int protocol) {
4802   return ::socket(domain, type, protocol);
4803 }
4804 
4805 int os::listen(int fd, int count) {
4806   return ::listen(fd, count);
4807 }
4808 
4809 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
4810   return ::connect(fd, him, len);
4811 }
4812 
4813 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
4814   return ::accept(fd, him, len);
4815 }
4816 
4817 int os::sendto(int fd, char* buf, size_t len, uint flags,
4818                struct sockaddr* to, socklen_t tolen) {
4819 
4820   return ::sendto(fd, buf, (int)len, flags, to, tolen);
4821 }
4822 
4823 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
4824                  sockaddr* from, socklen_t* fromlen) {
4825 
4826   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
4827 }
4828 
4829 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
4830   return ::recv(fd, buf, (int)nBytes, flags);
4831 }
4832 
4833 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
4834   return ::send(fd, buf, (int)nBytes, flags);
4835 }
4836 
4837 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
4838   return ::send(fd, buf, (int)nBytes, flags);
4839 }
4840 
4841 int os::timeout(int fd, long timeout) {
4842   fd_set tbl;
4843   struct timeval t;
4844 
4845   t.tv_sec  = timeout / 1000;
4846   t.tv_usec = (timeout % 1000) * 1000;
4847 
4848   tbl.fd_count    = 1;
4849   tbl.fd_array[0] = fd;
4850 
4851   return ::select(1, &tbl, 0, 0, &t);
4852 }
4853 
4854 int os::get_host_name(char* name, int namelen) {
4855   return ::gethostname(name, namelen);
4856 }
4857 
4858 int os::socket_shutdown(int fd, int howto) {
4859   return ::shutdown(fd, howto);
4860 }
4861 
4862 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
4863   return ::bind(fd, him, len);
4864 }
4865 
4866 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
4867   return ::getsockname(fd, him, len);
4868 }
4869 
4870 int os::get_sock_opt(int fd, int level, int optname,
4871                      char* optval, socklen_t* optlen) {
4872   return ::getsockopt(fd, level, optname, optval, optlen);
4873 }
4874 
4875 int os::set_sock_opt(int fd, int level, int optname,
4876                      const char* optval, socklen_t optlen) {
4877   return ::setsockopt(fd, level, optname, optval, optlen);
4878 }
4879 
4880 
4881 // Kernel32 API
4882 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
4883 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
4884 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
4885 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
4886 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
4887 
4888 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
4889 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
4890 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
4891 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
4892 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
4893 
4894 
4895 BOOL                        os::Kernel32Dll::initialized = FALSE;
4896 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
4897   assert(initialized && _GetLargePageMinimum != NULL,
4898     "GetLargePageMinimumAvailable() not yet called");
4899   return _GetLargePageMinimum();
4900 }
4901 
4902 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
4903   if (!initialized) {
4904     initialize();
4905   }
4906   return _GetLargePageMinimum != NULL;
4907 }
4908 
4909 BOOL os::Kernel32Dll::NumaCallsAvailable() {
4910   if (!initialized) {
4911     initialize();
4912   }
4913   return _VirtualAllocExNuma != NULL;
4914 }
4915 
4916 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
4917   assert(initialized && _VirtualAllocExNuma != NULL,
4918     "NUMACallsAvailable() not yet called");
4919 
4920   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
4921 }
4922 
4923 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
4924   assert(initialized && _GetNumaHighestNodeNumber != NULL,
4925     "NUMACallsAvailable() not yet called");
4926 
4927   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
4928 }
4929 
4930 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
4931   assert(initialized && _GetNumaNodeProcessorMask != NULL,
4932     "NUMACallsAvailable() not yet called");
4933 
4934   return _GetNumaNodeProcessorMask(node, proc_mask);
4935 }
4936 
4937 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
4938   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
4939     if (!initialized) {
4940       initialize();
4941     }
4942 
4943     if (_RtlCaptureStackBackTrace != NULL) {
4944       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
4945         BackTrace, BackTraceHash);
4946     } else {
4947       return 0;
4948     }
4949 }
4950 
4951 void os::Kernel32Dll::initializeCommon() {
4952   if (!initialized) {
4953     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
4954     assert(handle != NULL, "Just check");
4955     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
4956     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
4957     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
4958     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
4959     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
4960     initialized = TRUE;
4961   }
4962 }
4963 
4964 
4965 
4966 #ifndef JDK6_OR_EARLIER
4967 
4968 void os::Kernel32Dll::initialize() {
4969   initializeCommon();
4970 }
4971 
4972 
4973 // Kernel32 API
4974 inline BOOL os::Kernel32Dll::SwitchToThread() {
4975   return ::SwitchToThread();
4976 }
4977 
4978 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
4979   return true;
4980 }
4981 
4982   // Help tools
4983 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
4984   return true;
4985 }
4986 
4987 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
4988   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
4989 }
4990 
4991 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
4992   return ::Module32First(hSnapshot, lpme);
4993 }
4994 
4995 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
4996   return ::Module32Next(hSnapshot, lpme);
4997 }
4998 
4999 
5000 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5001   return true;
5002 }
5003 
5004 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5005   ::GetNativeSystemInfo(lpSystemInfo);
5006 }
5007 
5008 // PSAPI API
5009 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5010   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5011 }
5012 
5013 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5014   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5015 }
5016 
5017 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5018   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5019 }
5020 
5021 inline BOOL os::PSApiDll::PSApiAvailable() {
5022   return true;
5023 }
5024 
5025 
5026 // WinSock2 API
5027 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5028   return ::WSAStartup(wVersionRequested, lpWSAData);
5029 }
5030 
5031 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5032   return ::gethostbyname(name);
5033 }
5034 
5035 inline BOOL os::WinSock2Dll::WinSock2Available() {
5036   return true;
5037 }
5038 
5039 // Advapi API
5040 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5041    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5042    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5043      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5044        BufferLength, PreviousState, ReturnLength);
5045 }
5046 
5047 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5048   PHANDLE TokenHandle) {
5049     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5050 }
5051 
5052 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5053   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5054 }
5055 
5056 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5057   return true;
5058 }
5059 
5060 #else
5061 // Kernel32 API
5062 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5063 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5064 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5065 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5066 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5067 
5068 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5069 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5070 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5071 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5072 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5073 
5074 void os::Kernel32Dll::initialize() {
5075   if (!initialized) {
5076     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5077     assert(handle != NULL, "Just check");
5078 
5079     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5080     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5081       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5082     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5083     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5084     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5085     initializeCommon();  // resolve the functions that always need resolving
5086 
5087     initialized = TRUE;
5088   }
5089 }
5090 
5091 BOOL os::Kernel32Dll::SwitchToThread() {
5092   assert(initialized && _SwitchToThread != NULL,
5093     "SwitchToThreadAvailable() not yet called");
5094   return _SwitchToThread();
5095 }
5096 
5097 
5098 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5099   if (!initialized) {
5100     initialize();
5101   }
5102   return _SwitchToThread != NULL;
5103 }
5104 
5105 // Help tools
5106 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5107   if (!initialized) {
5108     initialize();
5109   }
5110   return _CreateToolhelp32Snapshot != NULL &&
5111          _Module32First != NULL &&
5112          _Module32Next != NULL;
5113 }
5114 
5115 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5116   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5117     "HelpToolsAvailable() not yet called");
5118 
5119   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5120 }
5121 
5122 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5123   assert(initialized && _Module32First != NULL,
5124     "HelpToolsAvailable() not yet called");
5125 
5126   return _Module32First(hSnapshot, lpme);
5127 }
5128 
5129 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5130   assert(initialized && _Module32Next != NULL,
5131     "HelpToolsAvailable() not yet called");
5132 
5133   return _Module32Next(hSnapshot, lpme);
5134 }
5135 
5136 
5137 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5138   if (!initialized) {
5139     initialize();
5140   }
5141   return _GetNativeSystemInfo != NULL;
5142 }
5143 
5144 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5145   assert(initialized && _GetNativeSystemInfo != NULL,
5146     "GetNativeSystemInfoAvailable() not yet called");
5147 
5148   _GetNativeSystemInfo(lpSystemInfo);
5149 }
5150 
5151 // PSAPI API
5152 
5153 
5154 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5155 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5156 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5157 
5158 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5159 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5160 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5161 BOOL                    os::PSApiDll::initialized = FALSE;
5162 
5163 void os::PSApiDll::initialize() {
5164   if (!initialized) {
5165     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5166     if (handle != NULL) {
5167       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5168         "EnumProcessModules");
5169       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5170         "GetModuleFileNameExA");
5171       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5172         "GetModuleInformation");
5173     }
5174     initialized = TRUE;
5175   }
5176 }
5177 
5178 
5179 
5180 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5181   assert(initialized && _EnumProcessModules != NULL,
5182     "PSApiAvailable() not yet called");
5183   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5184 }
5185 
5186 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5187   assert(initialized && _GetModuleFileNameEx != NULL,
5188     "PSApiAvailable() not yet called");
5189   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5190 }
5191 
5192 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5193   assert(initialized && _GetModuleInformation != NULL,
5194     "PSApiAvailable() not yet called");
5195   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5196 }
5197 
5198 BOOL os::PSApiDll::PSApiAvailable() {
5199   if (!initialized) {
5200     initialize();
5201   }
5202   return _EnumProcessModules != NULL &&
5203     _GetModuleFileNameEx != NULL &&
5204     _GetModuleInformation != NULL;
5205 }
5206 
5207 
5208 // WinSock2 API
5209 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5210 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5211 
5212 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5213 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5214 BOOL             os::WinSock2Dll::initialized = FALSE;
5215 
5216 void os::WinSock2Dll::initialize() {
5217   if (!initialized) {
5218     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5219     if (handle != NULL) {
5220       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5221       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5222     }
5223     initialized = TRUE;
5224   }
5225 }
5226 
5227 
5228 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5229   assert(initialized && _WSAStartup != NULL,
5230     "WinSock2Available() not yet called");
5231   return _WSAStartup(wVersionRequested, lpWSAData);
5232 }
5233 
5234 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5235   assert(initialized && _gethostbyname != NULL,
5236     "WinSock2Available() not yet called");
5237   return _gethostbyname(name);
5238 }
5239 
5240 BOOL os::WinSock2Dll::WinSock2Available() {
5241   if (!initialized) {
5242     initialize();
5243   }
5244   return _WSAStartup != NULL &&
5245     _gethostbyname != NULL;
5246 }
5247 
5248 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5249 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5250 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5251 
5252 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5253 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5254 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5255 BOOL                     os::Advapi32Dll::initialized = FALSE;
5256 
5257 void os::Advapi32Dll::initialize() {
5258   if (!initialized) {
5259     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5260     if (handle != NULL) {
5261       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5262         "AdjustTokenPrivileges");
5263       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5264         "OpenProcessToken");
5265       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5266         "LookupPrivilegeValueA");
5267     }
5268     initialized = TRUE;
5269   }
5270 }
5271 
5272 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5273    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5274    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5275    assert(initialized && _AdjustTokenPrivileges != NULL,
5276      "AdvapiAvailable() not yet called");
5277    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5278        BufferLength, PreviousState, ReturnLength);
5279 }
5280 
5281 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5282   PHANDLE TokenHandle) {
5283    assert(initialized && _OpenProcessToken != NULL,
5284      "AdvapiAvailable() not yet called");
5285     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5286 }
5287 
5288 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5289    assert(initialized && _LookupPrivilegeValue != NULL,
5290      "AdvapiAvailable() not yet called");
5291   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5292 }
5293 
5294 BOOL os::Advapi32Dll::AdvapiAvailable() {
5295   if (!initialized) {
5296     initialize();
5297   }
5298   return _AdjustTokenPrivileges != NULL &&
5299     _OpenProcessToken != NULL &&
5300     _LookupPrivilegeValue != NULL;
5301 }
5302 
5303 #endif