1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "utilities/decoder.hpp"
  65 #include "utilities/defaultStream.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/growableArray.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 #ifdef _DEBUG
  71 #include <crtdbg.h>
  72 #endif
  73 
  74 
  75 #include <windows.h>
  76 #include <sys/types.h>
  77 #include <sys/stat.h>
  78 #include <sys/timeb.h>
  79 #include <objidl.h>
  80 #include <shlobj.h>
  81 
  82 #include <malloc.h>
  83 #include <signal.h>
  84 #include <direct.h>
  85 #include <errno.h>
  86 #include <fcntl.h>
  87 #include <io.h>
  88 #include <process.h>              // For _beginthreadex(), _endthreadex()
  89 #include <imagehlp.h>             // For os::dll_address_to_function_name
  90 /* for enumerating dll libraries */
  91 #include <vdmdbg.h>
  92 
  93 // for timer info max values which include all bits
  94 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  95 
  96 // For DLL loading/load error detection
  97 // Values of PE COFF
  98 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
  99 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 100 
 101 static HANDLE main_process;
 102 static HANDLE main_thread;
 103 static int    main_thread_id;
 104 
 105 static FILETIME process_creation_time;
 106 static FILETIME process_exit_time;
 107 static FILETIME process_user_time;
 108 static FILETIME process_kernel_time;
 109 
 110 #ifdef _M_IA64
 111 #define __CPU__ ia64
 112 #elif _M_AMD64
 113 #define __CPU__ amd64
 114 #else
 115 #define __CPU__ i486
 116 #endif
 117 
 118 // save DLL module handle, used by GetModuleFileName
 119 
 120 HINSTANCE vm_lib_handle;
 121 
 122 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 123   switch (reason) {
 124     case DLL_PROCESS_ATTACH:
 125       vm_lib_handle = hinst;
 126       if(ForceTimeHighResolution)
 127         timeBeginPeriod(1L);
 128       break;
 129     case DLL_PROCESS_DETACH:
 130       if(ForceTimeHighResolution)
 131         timeEndPeriod(1L);
 132       break;
 133     default:
 134       break;
 135   }
 136   return true;
 137 }
 138 
 139 static inline double fileTimeAsDouble(FILETIME* time) {
 140   const double high  = (double) ((unsigned int) ~0);
 141   const double split = 10000000.0;
 142   double result = (time->dwLowDateTime / split) +
 143                    time->dwHighDateTime * (high/split);
 144   return result;
 145 }
 146 
 147 // Implementation of os
 148 
 149 bool os::getenv(const char* name, char* buffer, int len) {
 150  int result = GetEnvironmentVariable(name, buffer, len);
 151  return result > 0 && result < len;
 152 }
 153 
 154 
 155 // No setuid programs under Windows.
 156 bool os::have_special_privileges() {
 157   return false;
 158 }
 159 
 160 
 161 // This method is  a periodic task to check for misbehaving JNI applications
 162 // under CheckJNI, we can add any periodic checks here.
 163 // For Windows at the moment does nothing
 164 void os::run_periodic_checks() {
 165   return;
 166 }
 167 
 168 #ifndef _WIN64
 169 // previous UnhandledExceptionFilter, if there is one
 170 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 171 
 172 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 173 #endif
 174 void os::init_system_properties_values() {
 175   /* sysclasspath, java_home, dll_dir */
 176   {
 177       char *home_path;
 178       char *dll_path;
 179       char *pslash;
 180       char *bin = "\\bin";
 181       char home_dir[MAX_PATH];
 182 
 183       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 184           os::jvm_path(home_dir, sizeof(home_dir));
 185           // Found the full path to jvm[_g].dll.
 186           // Now cut the path to <java_home>/jre if we can.
 187           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 188           pslash = strrchr(home_dir, '\\');
 189           if (pslash != NULL) {
 190               *pslash = '\0';                 /* get rid of \{client|server} */
 191               pslash = strrchr(home_dir, '\\');
 192               if (pslash != NULL)
 193                   *pslash = '\0';             /* get rid of \bin */
 194           }
 195       }
 196 
 197       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 198       if (home_path == NULL)
 199           return;
 200       strcpy(home_path, home_dir);
 201       Arguments::set_java_home(home_path);
 202 
 203       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 204       if (dll_path == NULL)
 205           return;
 206       strcpy(dll_path, home_dir);
 207       strcat(dll_path, bin);
 208       Arguments::set_dll_dir(dll_path);
 209 
 210       if (!set_boot_path('\\', ';'))
 211           return;
 212   }
 213 
 214   /* library_path */
 215   #define EXT_DIR "\\lib\\ext"
 216   #define BIN_DIR "\\bin"
 217   #define PACKAGE_DIR "\\Sun\\Java"
 218   {
 219     /* Win32 library search order (See the documentation for LoadLibrary):
 220      *
 221      * 1. The directory from which application is loaded.
 222      * 2. The system wide Java Extensions directory (Java only)
 223      * 3. System directory (GetSystemDirectory)
 224      * 4. Windows directory (GetWindowsDirectory)
 225      * 5. The PATH environment variable
 226      * 6. The current directory
 227      */
 228 
 229     char *library_path;
 230     char tmp[MAX_PATH];
 231     char *path_str = ::getenv("PATH");
 232 
 233     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 234         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 235 
 236     library_path[0] = '\0';
 237 
 238     GetModuleFileName(NULL, tmp, sizeof(tmp));
 239     *(strrchr(tmp, '\\')) = '\0';
 240     strcat(library_path, tmp);
 241 
 242     GetWindowsDirectory(tmp, sizeof(tmp));
 243     strcat(library_path, ";");
 244     strcat(library_path, tmp);
 245     strcat(library_path, PACKAGE_DIR BIN_DIR);
 246 
 247     GetSystemDirectory(tmp, sizeof(tmp));
 248     strcat(library_path, ";");
 249     strcat(library_path, tmp);
 250 
 251     GetWindowsDirectory(tmp, sizeof(tmp));
 252     strcat(library_path, ";");
 253     strcat(library_path, tmp);
 254 
 255     if (path_str) {
 256         strcat(library_path, ";");
 257         strcat(library_path, path_str);
 258     }
 259 
 260     strcat(library_path, ";.");
 261 
 262     Arguments::set_library_path(library_path);
 263     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 264   }
 265 
 266   /* Default extensions directory */
 267   {
 268     char path[MAX_PATH];
 269     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 270     GetWindowsDirectory(path, MAX_PATH);
 271     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 272         path, PACKAGE_DIR, EXT_DIR);
 273     Arguments::set_ext_dirs(buf);
 274   }
 275   #undef EXT_DIR
 276   #undef BIN_DIR
 277   #undef PACKAGE_DIR
 278 
 279   /* Default endorsed standards directory. */
 280   {
 281     #define ENDORSED_DIR "\\lib\\endorsed"
 282     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 283     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 284     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 285     Arguments::set_endorsed_dirs(buf);
 286     #undef ENDORSED_DIR
 287   }
 288 
 289 #ifndef _WIN64
 290   // set our UnhandledExceptionFilter and save any previous one
 291   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 292 #endif
 293 
 294   // Done
 295   return;
 296 }
 297 
 298 void os::breakpoint() {
 299   DebugBreak();
 300 }
 301 
 302 // Invoked from the BREAKPOINT Macro
 303 extern "C" void breakpoint() {
 304   os::breakpoint();
 305 }
 306 
 307 /*
 308  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 309  * So far, this method is only used by Native Memory Tracking, which is
 310  * only supported on Windows XP or later.
 311  */
 312 address os::get_caller_pc(int n) {
 313 #ifdef _NMT_NOINLINE_
 314   n ++;
 315 #endif
 316   address pc;
 317   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
 318     return pc;
 319   }
 320   return NULL;
 321 }
 322 
 323 
 324 // os::current_stack_base()
 325 //
 326 //   Returns the base of the stack, which is the stack's
 327 //   starting address.  This function must be called
 328 //   while running on the stack of the thread being queried.
 329 
 330 address os::current_stack_base() {
 331   MEMORY_BASIC_INFORMATION minfo;
 332   address stack_bottom;
 333   size_t stack_size;
 334 
 335   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 336   stack_bottom =  (address)minfo.AllocationBase;
 337   stack_size = minfo.RegionSize;
 338 
 339   // Add up the sizes of all the regions with the same
 340   // AllocationBase.
 341   while( 1 )
 342   {
 343     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 344     if ( stack_bottom == (address)minfo.AllocationBase )
 345       stack_size += minfo.RegionSize;
 346     else
 347       break;
 348   }
 349 
 350 #ifdef _M_IA64
 351   // IA64 has memory and register stacks
 352   stack_size = stack_size / 2;
 353 #endif
 354   return stack_bottom + stack_size;
 355 }
 356 
 357 size_t os::current_stack_size() {
 358   size_t sz;
 359   MEMORY_BASIC_INFORMATION minfo;
 360   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 361   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 362   return sz;
 363 }
 364 
 365 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 366   const struct tm* time_struct_ptr = localtime(clock);
 367   if (time_struct_ptr != NULL) {
 368     *res = *time_struct_ptr;
 369     return res;
 370   }
 371   return NULL;
 372 }
 373 
 374 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 375 
 376 // Thread start routine for all new Java threads
 377 static unsigned __stdcall java_start(Thread* thread) {
 378   // Try to randomize the cache line index of hot stack frames.
 379   // This helps when threads of the same stack traces evict each other's
 380   // cache lines. The threads can be either from the same JVM instance, or
 381   // from different JVM instances. The benefit is especially true for
 382   // processors with hyperthreading technology.
 383   static int counter = 0;
 384   int pid = os::current_process_id();
 385   _alloca(((pid ^ counter++) & 7) * 128);
 386 
 387   OSThread* osthr = thread->osthread();
 388   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 389 
 390   if (UseNUMA) {
 391     int lgrp_id = os::numa_get_group_id();
 392     if (lgrp_id != -1) {
 393       thread->set_lgrp_id(lgrp_id);
 394     }
 395   }
 396 
 397 
 398   // Install a win32 structured exception handler around every thread created
 399   // by VM, so VM can genrate error dump when an exception occurred in non-
 400   // Java thread (e.g. VM thread).
 401   __try {
 402      thread->run();
 403   } __except(topLevelExceptionFilter(
 404              (_EXCEPTION_POINTERS*)_exception_info())) {
 405       // Nothing to do.
 406   }
 407 
 408   // One less thread is executing
 409   // When the VMThread gets here, the main thread may have already exited
 410   // which frees the CodeHeap containing the Atomic::add code
 411   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 412     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 413   }
 414 
 415   return 0;
 416 }
 417 
 418 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 419   // Allocate the OSThread object
 420   OSThread* osthread = new OSThread(NULL, NULL);
 421   if (osthread == NULL) return NULL;
 422 
 423   // Initialize support for Java interrupts
 424   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 425   if (interrupt_event == NULL) {
 426     delete osthread;
 427     return NULL;
 428   }
 429   osthread->set_interrupt_event(interrupt_event);
 430 
 431   // Store info on the Win32 thread into the OSThread
 432   osthread->set_thread_handle(thread_handle);
 433   osthread->set_thread_id(thread_id);
 434 
 435   if (UseNUMA) {
 436     int lgrp_id = os::numa_get_group_id();
 437     if (lgrp_id != -1) {
 438       thread->set_lgrp_id(lgrp_id);
 439     }
 440   }
 441 
 442   // Initial thread state is INITIALIZED, not SUSPENDED
 443   osthread->set_state(INITIALIZED);
 444 
 445   return osthread;
 446 }
 447 
 448 
 449 bool os::create_attached_thread(JavaThread* thread) {
 450 #ifdef ASSERT
 451   thread->verify_not_published();
 452 #endif
 453   HANDLE thread_h;
 454   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 455                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 456     fatal("DuplicateHandle failed\n");
 457   }
 458   OSThread* osthread = create_os_thread(thread, thread_h,
 459                                         (int)current_thread_id());
 460   if (osthread == NULL) {
 461      return false;
 462   }
 463 
 464   // Initial thread state is RUNNABLE
 465   osthread->set_state(RUNNABLE);
 466 
 467   thread->set_osthread(osthread);
 468   return true;
 469 }
 470 
 471 bool os::create_main_thread(JavaThread* thread) {
 472 #ifdef ASSERT
 473   thread->verify_not_published();
 474 #endif
 475   if (_starting_thread == NULL) {
 476     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 477      if (_starting_thread == NULL) {
 478         return false;
 479      }
 480   }
 481 
 482   // The primordial thread is runnable from the start)
 483   _starting_thread->set_state(RUNNABLE);
 484 
 485   thread->set_osthread(_starting_thread);
 486   return true;
 487 }
 488 
 489 // Allocate and initialize a new OSThread
 490 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 491   unsigned thread_id;
 492 
 493   // Allocate the OSThread object
 494   OSThread* osthread = new OSThread(NULL, NULL);
 495   if (osthread == NULL) {
 496     return false;
 497   }
 498 
 499   // Initialize support for Java interrupts
 500   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 501   if (interrupt_event == NULL) {
 502     delete osthread;
 503     return NULL;
 504   }
 505   osthread->set_interrupt_event(interrupt_event);
 506   osthread->set_interrupted(false);
 507 
 508   thread->set_osthread(osthread);
 509 
 510   if (stack_size == 0) {
 511     switch (thr_type) {
 512     case os::java_thread:
 513       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 514       if (JavaThread::stack_size_at_create() > 0)
 515         stack_size = JavaThread::stack_size_at_create();
 516       break;
 517     case os::compiler_thread:
 518       if (CompilerThreadStackSize > 0) {
 519         stack_size = (size_t)(CompilerThreadStackSize * K);
 520         break;
 521       } // else fall through:
 522         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 523     case os::vm_thread:
 524     case os::pgc_thread:
 525     case os::cgc_thread:
 526     case os::watcher_thread:
 527       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 528       break;
 529     }
 530   }
 531 
 532   // Create the Win32 thread
 533   //
 534   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 535   // does not specify stack size. Instead, it specifies the size of
 536   // initially committed space. The stack size is determined by
 537   // PE header in the executable. If the committed "stack_size" is larger
 538   // than default value in the PE header, the stack is rounded up to the
 539   // nearest multiple of 1MB. For example if the launcher has default
 540   // stack size of 320k, specifying any size less than 320k does not
 541   // affect the actual stack size at all, it only affects the initial
 542   // commitment. On the other hand, specifying 'stack_size' larger than
 543   // default value may cause significant increase in memory usage, because
 544   // not only the stack space will be rounded up to MB, but also the
 545   // entire space is committed upfront.
 546   //
 547   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 548   // for CreateThread() that can treat 'stack_size' as stack size. However we
 549   // are not supposed to call CreateThread() directly according to MSDN
 550   // document because JVM uses C runtime library. The good news is that the
 551   // flag appears to work with _beginthredex() as well.
 552 
 553 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 554 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 555 #endif
 556 
 557   HANDLE thread_handle =
 558     (HANDLE)_beginthreadex(NULL,
 559                            (unsigned)stack_size,
 560                            (unsigned (__stdcall *)(void*)) java_start,
 561                            thread,
 562                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 563                            &thread_id);
 564   if (thread_handle == NULL) {
 565     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 566     // without the flag.
 567     thread_handle =
 568     (HANDLE)_beginthreadex(NULL,
 569                            (unsigned)stack_size,
 570                            (unsigned (__stdcall *)(void*)) java_start,
 571                            thread,
 572                            CREATE_SUSPENDED,
 573                            &thread_id);
 574   }
 575   if (thread_handle == NULL) {
 576     // Need to clean up stuff we've allocated so far
 577     CloseHandle(osthread->interrupt_event());
 578     thread->set_osthread(NULL);
 579     delete osthread;
 580     return NULL;
 581   }
 582 
 583   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 584 
 585   // Store info on the Win32 thread into the OSThread
 586   osthread->set_thread_handle(thread_handle);
 587   osthread->set_thread_id(thread_id);
 588 
 589   // Initial thread state is INITIALIZED, not SUSPENDED
 590   osthread->set_state(INITIALIZED);
 591 
 592   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 593   return true;
 594 }
 595 
 596 
 597 // Free Win32 resources related to the OSThread
 598 void os::free_thread(OSThread* osthread) {
 599   assert(osthread != NULL, "osthread not set");
 600   CloseHandle(osthread->thread_handle());
 601   CloseHandle(osthread->interrupt_event());
 602   delete osthread;
 603 }
 604 
 605 
 606 static int    has_performance_count = 0;
 607 static jlong first_filetime;
 608 static jlong initial_performance_count;
 609 static jlong performance_frequency;
 610 
 611 
 612 jlong as_long(LARGE_INTEGER x) {
 613   jlong result = 0; // initialization to avoid warning
 614   set_high(&result, x.HighPart);
 615   set_low(&result,  x.LowPart);
 616   return result;
 617 }
 618 
 619 
 620 jlong os::elapsed_counter() {
 621   LARGE_INTEGER count;
 622   if (has_performance_count) {
 623     QueryPerformanceCounter(&count);
 624     return as_long(count) - initial_performance_count;
 625   } else {
 626     FILETIME wt;
 627     GetSystemTimeAsFileTime(&wt);
 628     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 629   }
 630 }
 631 
 632 
 633 jlong os::elapsed_frequency() {
 634   if (has_performance_count) {
 635     return performance_frequency;
 636   } else {
 637    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 638    return 10000000;
 639   }
 640 }
 641 
 642 
 643 julong os::available_memory() {
 644   return win32::available_memory();
 645 }
 646 
 647 julong os::win32::available_memory() {
 648   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 649   // value if total memory is larger than 4GB
 650   MEMORYSTATUSEX ms;
 651   ms.dwLength = sizeof(ms);
 652   GlobalMemoryStatusEx(&ms);
 653 
 654   return (julong)ms.ullAvailPhys;
 655 }
 656 
 657 julong os::physical_memory() {
 658   return win32::physical_memory();
 659 }
 660 
 661 julong os::allocatable_physical_memory(julong size) {
 662 #ifdef _LP64
 663   return size;
 664 #else
 665   // Limit to 1400m because of the 2gb address space wall
 666   return MIN2(size, (julong)1400*M);
 667 #endif
 668 }
 669 
 670 // VC6 lacks DWORD_PTR
 671 #if _MSC_VER < 1300
 672 typedef UINT_PTR DWORD_PTR;
 673 #endif
 674 
 675 int os::active_processor_count() {
 676   DWORD_PTR lpProcessAffinityMask = 0;
 677   DWORD_PTR lpSystemAffinityMask = 0;
 678   int proc_count = processor_count();
 679   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 680       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 681     // Nof active processors is number of bits in process affinity mask
 682     int bitcount = 0;
 683     while (lpProcessAffinityMask != 0) {
 684       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 685       bitcount++;
 686     }
 687     return bitcount;
 688   } else {
 689     return proc_count;
 690   }
 691 }
 692 
 693 void os::set_native_thread_name(const char *name) {
 694   // Not yet implemented.
 695   return;
 696 }
 697 
 698 bool os::distribute_processes(uint length, uint* distribution) {
 699   // Not yet implemented.
 700   return false;
 701 }
 702 
 703 bool os::bind_to_processor(uint processor_id) {
 704   // Not yet implemented.
 705   return false;
 706 }
 707 
 708 static void initialize_performance_counter() {
 709   LARGE_INTEGER count;
 710   if (QueryPerformanceFrequency(&count)) {
 711     has_performance_count = 1;
 712     performance_frequency = as_long(count);
 713     QueryPerformanceCounter(&count);
 714     initial_performance_count = as_long(count);
 715   } else {
 716     has_performance_count = 0;
 717     FILETIME wt;
 718     GetSystemTimeAsFileTime(&wt);
 719     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 720   }
 721 }
 722 
 723 
 724 double os::elapsedTime() {
 725   return (double) elapsed_counter() / (double) elapsed_frequency();
 726 }
 727 
 728 
 729 // Windows format:
 730 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 731 // Java format:
 732 //   Java standards require the number of milliseconds since 1/1/1970
 733 
 734 // Constant offset - calculated using offset()
 735 static jlong  _offset   = 116444736000000000;
 736 // Fake time counter for reproducible results when debugging
 737 static jlong  fake_time = 0;
 738 
 739 #ifdef ASSERT
 740 // Just to be safe, recalculate the offset in debug mode
 741 static jlong _calculated_offset = 0;
 742 static int   _has_calculated_offset = 0;
 743 
 744 jlong offset() {
 745   if (_has_calculated_offset) return _calculated_offset;
 746   SYSTEMTIME java_origin;
 747   java_origin.wYear          = 1970;
 748   java_origin.wMonth         = 1;
 749   java_origin.wDayOfWeek     = 0; // ignored
 750   java_origin.wDay           = 1;
 751   java_origin.wHour          = 0;
 752   java_origin.wMinute        = 0;
 753   java_origin.wSecond        = 0;
 754   java_origin.wMilliseconds  = 0;
 755   FILETIME jot;
 756   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 757     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 758   }
 759   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 760   _has_calculated_offset = 1;
 761   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 762   return _calculated_offset;
 763 }
 764 #else
 765 jlong offset() {
 766   return _offset;
 767 }
 768 #endif
 769 
 770 jlong windows_to_java_time(FILETIME wt) {
 771   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 772   return (a - offset()) / 10000;
 773 }
 774 
 775 FILETIME java_to_windows_time(jlong l) {
 776   jlong a = (l * 10000) + offset();
 777   FILETIME result;
 778   result.dwHighDateTime = high(a);
 779   result.dwLowDateTime  = low(a);
 780   return result;
 781 }
 782 
 783 // For now, we say that Windows does not support vtime.  I have no idea
 784 // whether it can actually be made to (DLD, 9/13/05).
 785 
 786 bool os::supports_vtime() { return false; }
 787 bool os::enable_vtime() { return false; }
 788 bool os::vtime_enabled() { return false; }
 789 double os::elapsedVTime() {
 790   // better than nothing, but not much
 791   return elapsedTime();
 792 }
 793 
 794 jlong os::javaTimeMillis() {
 795   if (UseFakeTimers) {
 796     return fake_time++;
 797   } else {
 798     FILETIME wt;
 799     GetSystemTimeAsFileTime(&wt);
 800     return windows_to_java_time(wt);
 801   }
 802 }
 803 
 804 jlong os::javaTimeNanos() {
 805   if (!has_performance_count) {
 806     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 807   } else {
 808     LARGE_INTEGER current_count;
 809     QueryPerformanceCounter(&current_count);
 810     double current = as_long(current_count);
 811     double freq = performance_frequency;
 812     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 813     return time;
 814   }
 815 }
 816 
 817 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 818   if (!has_performance_count) {
 819     // javaTimeMillis() doesn't have much percision,
 820     // but it is not going to wrap -- so all 64 bits
 821     info_ptr->max_value = ALL_64_BITS;
 822 
 823     // this is a wall clock timer, so may skip
 824     info_ptr->may_skip_backward = true;
 825     info_ptr->may_skip_forward = true;
 826   } else {
 827     jlong freq = performance_frequency;
 828     if (freq < NANOSECS_PER_SEC) {
 829       // the performance counter is 64 bits and we will
 830       // be multiplying it -- so no wrap in 64 bits
 831       info_ptr->max_value = ALL_64_BITS;
 832     } else if (freq > NANOSECS_PER_SEC) {
 833       // use the max value the counter can reach to
 834       // determine the max value which could be returned
 835       julong max_counter = (julong)ALL_64_BITS;
 836       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 837     } else {
 838       // the performance counter is 64 bits and we will
 839       // be using it directly -- so no wrap in 64 bits
 840       info_ptr->max_value = ALL_64_BITS;
 841     }
 842 
 843     // using a counter, so no skipping
 844     info_ptr->may_skip_backward = false;
 845     info_ptr->may_skip_forward = false;
 846   }
 847   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 848 }
 849 
 850 char* os::local_time_string(char *buf, size_t buflen) {
 851   SYSTEMTIME st;
 852   GetLocalTime(&st);
 853   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 854                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 855   return buf;
 856 }
 857 
 858 bool os::getTimesSecs(double* process_real_time,
 859                      double* process_user_time,
 860                      double* process_system_time) {
 861   HANDLE h_process = GetCurrentProcess();
 862   FILETIME create_time, exit_time, kernel_time, user_time;
 863   BOOL result = GetProcessTimes(h_process,
 864                                &create_time,
 865                                &exit_time,
 866                                &kernel_time,
 867                                &user_time);
 868   if (result != 0) {
 869     FILETIME wt;
 870     GetSystemTimeAsFileTime(&wt);
 871     jlong rtc_millis = windows_to_java_time(wt);
 872     jlong user_millis = windows_to_java_time(user_time);
 873     jlong system_millis = windows_to_java_time(kernel_time);
 874     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 875     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 876     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 877     return true;
 878   } else {
 879     return false;
 880   }
 881 }
 882 
 883 void os::shutdown() {
 884 
 885   // allow PerfMemory to attempt cleanup of any persistent resources
 886   perfMemory_exit();
 887 
 888   // flush buffered output, finish log files
 889   ostream_abort();
 890 
 891   // Check for abort hook
 892   abort_hook_t abort_hook = Arguments::abort_hook();
 893   if (abort_hook != NULL) {
 894     abort_hook();
 895   }
 896 }
 897 
 898 
 899 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 900                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 901 
 902 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 903   HINSTANCE dbghelp;
 904   EXCEPTION_POINTERS ep;
 905   MINIDUMP_EXCEPTION_INFORMATION mei;
 906   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 907 
 908   HANDLE hProcess = GetCurrentProcess();
 909   DWORD processId = GetCurrentProcessId();
 910   HANDLE dumpFile;
 911   MINIDUMP_TYPE dumpType;
 912   static const char* cwd;
 913 
 914   // If running on a client version of Windows and user has not explicitly enabled dumping
 915   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 916     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 917     return;
 918     // If running on a server version of Windows and user has explictly disabled dumping
 919   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 920     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 921     return;
 922   }
 923 
 924   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 925 
 926   if (dbghelp == NULL) {
 927     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 928     return;
 929   }
 930 
 931   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 932     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 933     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 934     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 935 
 936   if (_MiniDumpWriteDump == NULL) {
 937     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 938     return;
 939   }
 940 
 941   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 942 
 943 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 944 // API_VERSION_NUMBER 11 or higher contains the ones we want though
 945 #if API_VERSION_NUMBER >= 11
 946   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
 947     MiniDumpWithUnloadedModules);
 948 #endif
 949 
 950   cwd = get_current_directory(NULL, 0);
 951   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
 952   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 953 
 954   if (dumpFile == INVALID_HANDLE_VALUE) {
 955     VMError::report_coredump_status("Failed to create file for dumping", false);
 956     return;
 957   }
 958   if (exceptionRecord != NULL && contextRecord != NULL) {
 959     ep.ContextRecord = (PCONTEXT) contextRecord;
 960     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
 961 
 962     mei.ThreadId = GetCurrentThreadId();
 963     mei.ExceptionPointers = &ep;
 964     pmei = &mei;
 965   } else {
 966     pmei = NULL;
 967   }
 968 
 969 
 970   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
 971   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
 972   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
 973       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
 974     VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
 975   } else {
 976     VMError::report_coredump_status(buffer, true);
 977   }
 978 
 979   CloseHandle(dumpFile);
 980 }
 981 
 982 
 983 
 984 void os::abort(bool dump_core)
 985 {
 986   os::shutdown();
 987   // no core dump on Windows
 988   ::exit(1);
 989 }
 990 
 991 // Die immediately, no exit hook, no abort hook, no cleanup.
 992 void os::die() {
 993   _exit(-1);
 994 }
 995 
 996 // Directory routines copied from src/win32/native/java/io/dirent_md.c
 997 //  * dirent_md.c       1.15 00/02/02
 998 //
 999 // The declarations for DIR and struct dirent are in jvm_win32.h.
1000 
1001 /* Caller must have already run dirname through JVM_NativePath, which removes
1002    duplicate slashes and converts all instances of '/' into '\\'. */
1003 
1004 DIR *
1005 os::opendir(const char *dirname)
1006 {
1007     assert(dirname != NULL, "just checking");   // hotspot change
1008     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1009     DWORD fattr;                                // hotspot change
1010     char alt_dirname[4] = { 0, 0, 0, 0 };
1011 
1012     if (dirp == 0) {
1013         errno = ENOMEM;
1014         return 0;
1015     }
1016 
1017     /*
1018      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1019      * as a directory in FindFirstFile().  We detect this case here and
1020      * prepend the current drive name.
1021      */
1022     if (dirname[1] == '\0' && dirname[0] == '\\') {
1023         alt_dirname[0] = _getdrive() + 'A' - 1;
1024         alt_dirname[1] = ':';
1025         alt_dirname[2] = '\\';
1026         alt_dirname[3] = '\0';
1027         dirname = alt_dirname;
1028     }
1029 
1030     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1031     if (dirp->path == 0) {
1032         free(dirp, mtInternal);
1033         errno = ENOMEM;
1034         return 0;
1035     }
1036     strcpy(dirp->path, dirname);
1037 
1038     fattr = GetFileAttributes(dirp->path);
1039     if (fattr == 0xffffffff) {
1040         free(dirp->path, mtInternal);
1041         free(dirp, mtInternal);
1042         errno = ENOENT;
1043         return 0;
1044     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1045         free(dirp->path, mtInternal);
1046         free(dirp, mtInternal);
1047         errno = ENOTDIR;
1048         return 0;
1049     }
1050 
1051     /* Append "*.*", or possibly "\\*.*", to path */
1052     if (dirp->path[1] == ':'
1053         && (dirp->path[2] == '\0'
1054             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1055         /* No '\\' needed for cases like "Z:" or "Z:\" */
1056         strcat(dirp->path, "*.*");
1057     } else {
1058         strcat(dirp->path, "\\*.*");
1059     }
1060 
1061     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1062     if (dirp->handle == INVALID_HANDLE_VALUE) {
1063         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1064             free(dirp->path, mtInternal);
1065             free(dirp, mtInternal);
1066             errno = EACCES;
1067             return 0;
1068         }
1069     }
1070     return dirp;
1071 }
1072 
1073 /* parameter dbuf unused on Windows */
1074 
1075 struct dirent *
1076 os::readdir(DIR *dirp, dirent *dbuf)
1077 {
1078     assert(dirp != NULL, "just checking");      // hotspot change
1079     if (dirp->handle == INVALID_HANDLE_VALUE) {
1080         return 0;
1081     }
1082 
1083     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1084 
1085     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1086         if (GetLastError() == ERROR_INVALID_HANDLE) {
1087             errno = EBADF;
1088             return 0;
1089         }
1090         FindClose(dirp->handle);
1091         dirp->handle = INVALID_HANDLE_VALUE;
1092     }
1093 
1094     return &dirp->dirent;
1095 }
1096 
1097 int
1098 os::closedir(DIR *dirp)
1099 {
1100     assert(dirp != NULL, "just checking");      // hotspot change
1101     if (dirp->handle != INVALID_HANDLE_VALUE) {
1102         if (!FindClose(dirp->handle)) {
1103             errno = EBADF;
1104             return -1;
1105         }
1106         dirp->handle = INVALID_HANDLE_VALUE;
1107     }
1108     free(dirp->path, mtInternal);
1109     free(dirp, mtInternal);
1110     return 0;
1111 }
1112 
1113 // This must be hard coded because it's the system's temporary
1114 // directory not the java application's temp directory, ala java.io.tmpdir.
1115 const char* os::get_temp_directory() {
1116   static char path_buf[MAX_PATH];
1117   if (GetTempPath(MAX_PATH, path_buf)>0)
1118     return path_buf;
1119   else{
1120     path_buf[0]='\0';
1121     return path_buf;
1122   }
1123 }
1124 
1125 static bool file_exists(const char* filename) {
1126   if (filename == NULL || strlen(filename) == 0) {
1127     return false;
1128   }
1129   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1130 }
1131 
1132 bool os::dll_build_name(char *buffer, size_t buflen,
1133                         const char* pname, const char* fname) {
1134   bool retval = false;
1135   const size_t pnamelen = pname ? strlen(pname) : 0;
1136   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1137 
1138   // Return error on buffer overflow.
1139   if (pnamelen + strlen(fname) + 10 > buflen) {
1140     return retval;
1141   }
1142 
1143   if (pnamelen == 0) {
1144     jio_snprintf(buffer, buflen, "%s.dll", fname);
1145     retval = true;
1146   } else if (c == ':' || c == '\\') {
1147     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1148     retval = true;
1149   } else if (strchr(pname, *os::path_separator()) != NULL) {
1150     int n;
1151     char** pelements = split_path(pname, &n);
1152     for (int i = 0 ; i < n ; i++) {
1153       char* path = pelements[i];
1154       // Really shouldn't be NULL, but check can't hurt
1155       size_t plen = (path == NULL) ? 0 : strlen(path);
1156       if (plen == 0) {
1157         continue; // skip the empty path values
1158       }
1159       const char lastchar = path[plen - 1];
1160       if (lastchar == ':' || lastchar == '\\') {
1161         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1162       } else {
1163         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1164       }
1165       if (file_exists(buffer)) {
1166         retval = true;
1167         break;
1168       }
1169     }
1170     // release the storage
1171     for (int i = 0 ; i < n ; i++) {
1172       if (pelements[i] != NULL) {
1173         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1174       }
1175     }
1176     if (pelements != NULL) {
1177       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1178     }
1179   } else {
1180     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1181     retval = true;
1182   }
1183   return retval;
1184 }
1185 
1186 // Needs to be in os specific directory because windows requires another
1187 // header file <direct.h>
1188 const char* os::get_current_directory(char *buf, int buflen) {
1189   return _getcwd(buf, buflen);
1190 }
1191 
1192 //-----------------------------------------------------------
1193 // Helper functions for fatal error handler
1194 #ifdef _WIN64
1195 // Helper routine which returns true if address in
1196 // within the NTDLL address space.
1197 //
1198 static bool _addr_in_ntdll( address addr )
1199 {
1200   HMODULE hmod;
1201   MODULEINFO minfo;
1202 
1203   hmod = GetModuleHandle("NTDLL.DLL");
1204   if ( hmod == NULL ) return false;
1205   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1206                                &minfo, sizeof(MODULEINFO)) )
1207     return false;
1208 
1209   if ( (addr >= minfo.lpBaseOfDll) &&
1210        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1211     return true;
1212   else
1213     return false;
1214 }
1215 #endif
1216 
1217 
1218 // Enumerate all modules for a given process ID
1219 //
1220 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1221 // different API for doing this. We use PSAPI.DLL on NT based
1222 // Windows and ToolHelp on 95/98/Me.
1223 
1224 // Callback function that is called by enumerate_modules() on
1225 // every DLL module.
1226 // Input parameters:
1227 //    int       pid,
1228 //    char*     module_file_name,
1229 //    address   module_base_addr,
1230 //    unsigned  module_size,
1231 //    void*     param
1232 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1233 
1234 // enumerate_modules for Windows NT, using PSAPI
1235 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1236 {
1237   HANDLE   hProcess ;
1238 
1239 # define MAX_NUM_MODULES 128
1240   HMODULE     modules[MAX_NUM_MODULES];
1241   static char filename[ MAX_PATH ];
1242   int         result = 0;
1243 
1244   if (!os::PSApiDll::PSApiAvailable()) {
1245     return 0;
1246   }
1247 
1248   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1249                          FALSE, pid ) ;
1250   if (hProcess == NULL) return 0;
1251 
1252   DWORD size_needed;
1253   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1254                            sizeof(modules), &size_needed)) {
1255       CloseHandle( hProcess );
1256       return 0;
1257   }
1258 
1259   // number of modules that are currently loaded
1260   int num_modules = size_needed / sizeof(HMODULE);
1261 
1262   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1263     // Get Full pathname:
1264     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1265                              filename, sizeof(filename))) {
1266         filename[0] = '\0';
1267     }
1268 
1269     MODULEINFO modinfo;
1270     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1271                                &modinfo, sizeof(modinfo))) {
1272         modinfo.lpBaseOfDll = NULL;
1273         modinfo.SizeOfImage = 0;
1274     }
1275 
1276     // Invoke callback function
1277     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1278                   modinfo.SizeOfImage, param);
1279     if (result) break;
1280   }
1281 
1282   CloseHandle( hProcess ) ;
1283   return result;
1284 }
1285 
1286 
1287 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1288 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1289 {
1290   HANDLE                hSnapShot ;
1291   static MODULEENTRY32  modentry ;
1292   int                   result = 0;
1293 
1294   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1295     return 0;
1296   }
1297 
1298   // Get a handle to a Toolhelp snapshot of the system
1299   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1300   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1301       return FALSE ;
1302   }
1303 
1304   // iterate through all modules
1305   modentry.dwSize = sizeof(MODULEENTRY32) ;
1306   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1307 
1308   while( not_done ) {
1309     // invoke the callback
1310     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1311                 modentry.modBaseSize, param);
1312     if (result) break;
1313 
1314     modentry.dwSize = sizeof(MODULEENTRY32) ;
1315     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1316   }
1317 
1318   CloseHandle(hSnapShot);
1319   return result;
1320 }
1321 
1322 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1323 {
1324   // Get current process ID if caller doesn't provide it.
1325   if (!pid) pid = os::current_process_id();
1326 
1327   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1328   else                    return _enumerate_modules_windows(pid, func, param);
1329 }
1330 
1331 struct _modinfo {
1332    address addr;
1333    char*   full_path;   // point to a char buffer
1334    int     buflen;      // size of the buffer
1335    address base_addr;
1336 };
1337 
1338 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1339                                   unsigned size, void * param) {
1340    struct _modinfo *pmod = (struct _modinfo *)param;
1341    if (!pmod) return -1;
1342 
1343    if (base_addr     <= pmod->addr &&
1344        base_addr+size > pmod->addr) {
1345      // if a buffer is provided, copy path name to the buffer
1346      if (pmod->full_path) {
1347        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1348      }
1349      pmod->base_addr = base_addr;
1350      return 1;
1351    }
1352    return 0;
1353 }
1354 
1355 bool os::dll_address_to_library_name(address addr, char* buf,
1356                                      int buflen, int* offset) {
1357 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1358 //       return the full path to the DLL file, sometimes it returns path
1359 //       to the corresponding PDB file (debug info); sometimes it only
1360 //       returns partial path, which makes life painful.
1361 
1362    struct _modinfo mi;
1363    mi.addr      = addr;
1364    mi.full_path = buf;
1365    mi.buflen    = buflen;
1366    int pid = os::current_process_id();
1367    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1368       // buf already contains path name
1369       if (offset) *offset = addr - mi.base_addr;
1370       return true;
1371    } else {
1372       if (buf) buf[0] = '\0';
1373       if (offset) *offset = -1;
1374       return false;
1375    }
1376 }
1377 
1378 bool os::dll_address_to_function_name(address addr, char *buf,
1379                                       int buflen, int *offset) {
1380   if (Decoder::decode(addr, buf, buflen, offset)) {
1381     return true;
1382   }
1383   if (offset != NULL)  *offset  = -1;
1384   if (buf != NULL) buf[0] = '\0';
1385   return false;
1386 }
1387 
1388 // save the start and end address of jvm.dll into param[0] and param[1]
1389 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1390                     unsigned size, void * param) {
1391    if (!param) return -1;
1392 
1393    if (base_addr     <= (address)_locate_jvm_dll &&
1394        base_addr+size > (address)_locate_jvm_dll) {
1395          ((address*)param)[0] = base_addr;
1396          ((address*)param)[1] = base_addr + size;
1397          return 1;
1398    }
1399    return 0;
1400 }
1401 
1402 address vm_lib_location[2];    // start and end address of jvm.dll
1403 
1404 // check if addr is inside jvm.dll
1405 bool os::address_is_in_vm(address addr) {
1406   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1407     int pid = os::current_process_id();
1408     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1409       assert(false, "Can't find jvm module.");
1410       return false;
1411     }
1412   }
1413 
1414   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1415 }
1416 
1417 // print module info; param is outputStream*
1418 static int _print_module(int pid, char* fname, address base,
1419                          unsigned size, void* param) {
1420    if (!param) return -1;
1421 
1422    outputStream* st = (outputStream*)param;
1423 
1424    address end_addr = base + size;
1425    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1426    return 0;
1427 }
1428 
1429 // Loads .dll/.so and
1430 // in case of error it checks if .dll/.so was built for the
1431 // same architecture as Hotspot is running on
1432 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1433 {
1434   void * result = LoadLibrary(name);
1435   if (result != NULL)
1436   {
1437     return result;
1438   }
1439 
1440   DWORD errcode = GetLastError();
1441   if (errcode == ERROR_MOD_NOT_FOUND) {
1442     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1443     ebuf[ebuflen-1]='\0';
1444     return NULL;
1445   }
1446 
1447   // Parsing dll below
1448   // If we can read dll-info and find that dll was built
1449   // for an architecture other than Hotspot is running in
1450   // - then print to buffer "DLL was built for a different architecture"
1451   // else call os::lasterror to obtain system error message
1452 
1453   // Read system error message into ebuf
1454   // It may or may not be overwritten below (in the for loop and just above)
1455   lasterror(ebuf, (size_t) ebuflen);
1456   ebuf[ebuflen-1]='\0';
1457   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1458   if (file_descriptor<0)
1459   {
1460     return NULL;
1461   }
1462 
1463   uint32_t signature_offset;
1464   uint16_t lib_arch=0;
1465   bool failed_to_get_lib_arch=
1466   (
1467     //Go to position 3c in the dll
1468     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1469     ||
1470     // Read loacation of signature
1471     (sizeof(signature_offset)!=
1472       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1473     ||
1474     //Go to COFF File Header in dll
1475     //that is located after"signature" (4 bytes long)
1476     (os::seek_to_file_offset(file_descriptor,
1477       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1478     ||
1479     //Read field that contains code of architecture
1480     // that dll was build for
1481     (sizeof(lib_arch)!=
1482       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1483   );
1484 
1485   ::close(file_descriptor);
1486   if (failed_to_get_lib_arch)
1487   {
1488     // file i/o error - report os::lasterror(...) msg
1489     return NULL;
1490   }
1491 
1492   typedef struct
1493   {
1494     uint16_t arch_code;
1495     char* arch_name;
1496   } arch_t;
1497 
1498   static const arch_t arch_array[]={
1499     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1500     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1501     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1502   };
1503   #if   (defined _M_IA64)
1504     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1505   #elif (defined _M_AMD64)
1506     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1507   #elif (defined _M_IX86)
1508     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1509   #else
1510     #error Method os::dll_load requires that one of following \
1511            is defined :_M_IA64,_M_AMD64 or _M_IX86
1512   #endif
1513 
1514 
1515   // Obtain a string for printf operation
1516   // lib_arch_str shall contain string what platform this .dll was built for
1517   // running_arch_str shall string contain what platform Hotspot was built for
1518   char *running_arch_str=NULL,*lib_arch_str=NULL;
1519   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1520   {
1521     if (lib_arch==arch_array[i].arch_code)
1522       lib_arch_str=arch_array[i].arch_name;
1523     if (running_arch==arch_array[i].arch_code)
1524       running_arch_str=arch_array[i].arch_name;
1525   }
1526 
1527   assert(running_arch_str,
1528     "Didn't find runing architecture code in arch_array");
1529 
1530   // If the architure is right
1531   // but some other error took place - report os::lasterror(...) msg
1532   if (lib_arch == running_arch)
1533   {
1534     return NULL;
1535   }
1536 
1537   if (lib_arch_str!=NULL)
1538   {
1539     ::_snprintf(ebuf, ebuflen-1,
1540       "Can't load %s-bit .dll on a %s-bit platform",
1541       lib_arch_str,running_arch_str);
1542   }
1543   else
1544   {
1545     // don't know what architecture this dll was build for
1546     ::_snprintf(ebuf, ebuflen-1,
1547       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1548       lib_arch,running_arch_str);
1549   }
1550 
1551   return NULL;
1552 }
1553 
1554 
1555 void os::print_dll_info(outputStream *st) {
1556    int pid = os::current_process_id();
1557    st->print_cr("Dynamic libraries:");
1558    enumerate_modules(pid, _print_module, (void *)st);
1559 }
1560 
1561 void os::print_os_info_brief(outputStream* st) {
1562   os::print_os_info(st);
1563 }
1564 
1565 void os::print_os_info(outputStream* st) {
1566   st->print("OS:");
1567 
1568   os::win32::print_windows_version(st);
1569 }
1570 
1571 void os::win32::print_windows_version(outputStream* st) {
1572   OSVERSIONINFOEX osvi;
1573   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1574   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1575 
1576   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1577     st->print_cr("N/A");
1578     return;
1579   }
1580 
1581   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1582   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1583     switch (os_vers) {
1584     case 3051: st->print(" Windows NT 3.51"); break;
1585     case 4000: st->print(" Windows NT 4.0"); break;
1586     case 5000: st->print(" Windows 2000"); break;
1587     case 5001: st->print(" Windows XP"); break;
1588     case 5002:
1589     case 6000:
1590     case 6001:
1591     case 6002: {
1592       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1593       // find out whether we are running on 64 bit processor or not.
1594       SYSTEM_INFO si;
1595       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1596         if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
1597           GetSystemInfo(&si);
1598       } else {
1599         os::Kernel32Dll::GetNativeSystemInfo(&si);
1600       }
1601       if (os_vers == 5002) {
1602         if (osvi.wProductType == VER_NT_WORKSTATION &&
1603             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1604           st->print(" Windows XP x64 Edition");
1605         else
1606             st->print(" Windows Server 2003 family");
1607       } else if (os_vers == 6000) {
1608         if (osvi.wProductType == VER_NT_WORKSTATION)
1609             st->print(" Windows Vista");
1610         else
1611             st->print(" Windows Server 2008");
1612         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1613             st->print(" , 64 bit");
1614       } else if (os_vers == 6001) {
1615         if (osvi.wProductType == VER_NT_WORKSTATION) {
1616             st->print(" Windows 7");
1617         } else {
1618             // Unrecognized windows, print out its major and minor versions
1619             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1620         }
1621         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1622             st->print(" , 64 bit");
1623       } else if (os_vers == 6002) {
1624         if (osvi.wProductType == VER_NT_WORKSTATION) {
1625             st->print(" Windows 8");
1626         } else {
1627             st->print(" Windows Server 2012");
1628         }
1629         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1630             st->print(" , 64 bit");
1631       } else { // future os
1632         // Unrecognized windows, print out its major and minor versions
1633         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1634         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1635             st->print(" , 64 bit");
1636       }
1637       break;
1638     }
1639     default: // future windows, print out its major and minor versions
1640       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1641     }
1642   } else {
1643     switch (os_vers) {
1644     case 4000: st->print(" Windows 95"); break;
1645     case 4010: st->print(" Windows 98"); break;
1646     case 4090: st->print(" Windows Me"); break;
1647     default: // future windows, print out its major and minor versions
1648       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1649     }
1650   }
1651   st->print(" Build %d", osvi.dwBuildNumber);
1652   st->print(" %s", osvi.szCSDVersion);           // service pack
1653   st->cr();
1654 }
1655 
1656 void os::pd_print_cpu_info(outputStream* st) {
1657   // Nothing to do for now.
1658 }
1659 
1660 void os::print_memory_info(outputStream* st) {
1661   st->print("Memory:");
1662   st->print(" %dk page", os::vm_page_size()>>10);
1663 
1664   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1665   // value if total memory is larger than 4GB
1666   MEMORYSTATUSEX ms;
1667   ms.dwLength = sizeof(ms);
1668   GlobalMemoryStatusEx(&ms);
1669 
1670   st->print(", physical %uk", os::physical_memory() >> 10);
1671   st->print("(%uk free)", os::available_memory() >> 10);
1672 
1673   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1674   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1675   st->cr();
1676 }
1677 
1678 void os::print_siginfo(outputStream *st, void *siginfo) {
1679   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1680   st->print("siginfo:");
1681   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1682 
1683   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1684       er->NumberParameters >= 2) {
1685       switch (er->ExceptionInformation[0]) {
1686       case 0: st->print(", reading address"); break;
1687       case 1: st->print(", writing address"); break;
1688       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1689                             er->ExceptionInformation[0]);
1690       }
1691       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1692   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1693              er->NumberParameters >= 2 && UseSharedSpaces) {
1694     FileMapInfo* mapinfo = FileMapInfo::current_info();
1695     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1696       st->print("\n\nError accessing class data sharing archive."       \
1697                 " Mapped file inaccessible during execution, "          \
1698                 " possible disk/network problem.");
1699     }
1700   } else {
1701     int num = er->NumberParameters;
1702     if (num > 0) {
1703       st->print(", ExceptionInformation=");
1704       for (int i = 0; i < num; i++) {
1705         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1706       }
1707     }
1708   }
1709   st->cr();
1710 }
1711 
1712 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1713   // do nothing
1714 }
1715 
1716 static char saved_jvm_path[MAX_PATH] = {0};
1717 
1718 // Find the full path to the current module, jvm.dll or jvm_g.dll
1719 void os::jvm_path(char *buf, jint buflen) {
1720   // Error checking.
1721   if (buflen < MAX_PATH) {
1722     assert(false, "must use a large-enough buffer");
1723     buf[0] = '\0';
1724     return;
1725   }
1726   // Lazy resolve the path to current module.
1727   if (saved_jvm_path[0] != 0) {
1728     strcpy(buf, saved_jvm_path);
1729     return;
1730   }
1731 
1732   buf[0] = '\0';
1733   if (Arguments::created_by_gamma_launcher()) {
1734      // Support for the gamma launcher. Check for an
1735      // JAVA_HOME environment variable
1736      // and fix up the path so it looks like
1737      // libjvm.so is installed there (append a fake suffix
1738      // hotspot/libjvm.so).
1739      char* java_home_var = ::getenv("JAVA_HOME");
1740      if (java_home_var != NULL && java_home_var[0] != 0) {
1741 
1742         strncpy(buf, java_home_var, buflen);
1743 
1744         // determine if this is a legacy image or modules image
1745         // modules image doesn't have "jre" subdirectory
1746         size_t len = strlen(buf);
1747         char* jrebin_p = buf + len;
1748         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1749         if (0 != _access(buf, 0)) {
1750           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1751         }
1752         len = strlen(buf);
1753         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1754      }
1755   }
1756 
1757   if(buf[0] == '\0') {
1758   GetModuleFileName(vm_lib_handle, buf, buflen);
1759   }
1760   strcpy(saved_jvm_path, buf);
1761 }
1762 
1763 
1764 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1765 #ifndef _WIN64
1766   st->print("_");
1767 #endif
1768 }
1769 
1770 
1771 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1772 #ifndef _WIN64
1773   st->print("@%d", args_size  * sizeof(int));
1774 #endif
1775 }
1776 
1777 // This method is a copy of JDK's sysGetLastErrorString
1778 // from src/windows/hpi/src/system_md.c
1779 
1780 size_t os::lasterror(char* buf, size_t len) {
1781   DWORD errval;
1782 
1783   if ((errval = GetLastError()) != 0) {
1784     // DOS error
1785     size_t n = (size_t)FormatMessage(
1786           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1787           NULL,
1788           errval,
1789           0,
1790           buf,
1791           (DWORD)len,
1792           NULL);
1793     if (n > 3) {
1794       // Drop final '.', CR, LF
1795       if (buf[n - 1] == '\n') n--;
1796       if (buf[n - 1] == '\r') n--;
1797       if (buf[n - 1] == '.') n--;
1798       buf[n] = '\0';
1799     }
1800     return n;
1801   }
1802 
1803   if (errno != 0) {
1804     // C runtime error that has no corresponding DOS error code
1805     const char* s = strerror(errno);
1806     size_t n = strlen(s);
1807     if (n >= len) n = len - 1;
1808     strncpy(buf, s, n);
1809     buf[n] = '\0';
1810     return n;
1811   }
1812 
1813   return 0;
1814 }
1815 
1816 int os::get_last_error() {
1817   DWORD error = GetLastError();
1818   if (error == 0)
1819     error = errno;
1820   return (int)error;
1821 }
1822 
1823 // sun.misc.Signal
1824 // NOTE that this is a workaround for an apparent kernel bug where if
1825 // a signal handler for SIGBREAK is installed then that signal handler
1826 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1827 // See bug 4416763.
1828 static void (*sigbreakHandler)(int) = NULL;
1829 
1830 static void UserHandler(int sig, void *siginfo, void *context) {
1831   os::signal_notify(sig);
1832   // We need to reinstate the signal handler each time...
1833   os::signal(sig, (void*)UserHandler);
1834 }
1835 
1836 void* os::user_handler() {
1837   return (void*) UserHandler;
1838 }
1839 
1840 void* os::signal(int signal_number, void* handler) {
1841   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1842     void (*oldHandler)(int) = sigbreakHandler;
1843     sigbreakHandler = (void (*)(int)) handler;
1844     return (void*) oldHandler;
1845   } else {
1846     return (void*)::signal(signal_number, (void (*)(int))handler);
1847   }
1848 }
1849 
1850 void os::signal_raise(int signal_number) {
1851   raise(signal_number);
1852 }
1853 
1854 // The Win32 C runtime library maps all console control events other than ^C
1855 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1856 // logoff, and shutdown events.  We therefore install our own console handler
1857 // that raises SIGTERM for the latter cases.
1858 //
1859 static BOOL WINAPI consoleHandler(DWORD event) {
1860   switch(event) {
1861     case CTRL_C_EVENT:
1862       if (is_error_reported()) {
1863         // Ctrl-C is pressed during error reporting, likely because the error
1864         // handler fails to abort. Let VM die immediately.
1865         os::die();
1866       }
1867 
1868       os::signal_raise(SIGINT);
1869       return TRUE;
1870       break;
1871     case CTRL_BREAK_EVENT:
1872       if (sigbreakHandler != NULL) {
1873         (*sigbreakHandler)(SIGBREAK);
1874       }
1875       return TRUE;
1876       break;
1877     case CTRL_CLOSE_EVENT:
1878     case CTRL_LOGOFF_EVENT:
1879     case CTRL_SHUTDOWN_EVENT:
1880       os::signal_raise(SIGTERM);
1881       return TRUE;
1882       break;
1883     default:
1884       break;
1885   }
1886   return FALSE;
1887 }
1888 
1889 /*
1890  * The following code is moved from os.cpp for making this
1891  * code platform specific, which it is by its very nature.
1892  */
1893 
1894 // Return maximum OS signal used + 1 for internal use only
1895 // Used as exit signal for signal_thread
1896 int os::sigexitnum_pd(){
1897   return NSIG;
1898 }
1899 
1900 // a counter for each possible signal value, including signal_thread exit signal
1901 static volatile jint pending_signals[NSIG+1] = { 0 };
1902 static HANDLE sig_sem;
1903 
1904 void os::signal_init_pd() {
1905   // Initialize signal structures
1906   memset((void*)pending_signals, 0, sizeof(pending_signals));
1907 
1908   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1909 
1910   // Programs embedding the VM do not want it to attempt to receive
1911   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1912   // shutdown hooks mechanism introduced in 1.3.  For example, when
1913   // the VM is run as part of a Windows NT service (i.e., a servlet
1914   // engine in a web server), the correct behavior is for any console
1915   // control handler to return FALSE, not TRUE, because the OS's
1916   // "final" handler for such events allows the process to continue if
1917   // it is a service (while terminating it if it is not a service).
1918   // To make this behavior uniform and the mechanism simpler, we
1919   // completely disable the VM's usage of these console events if -Xrs
1920   // (=ReduceSignalUsage) is specified.  This means, for example, that
1921   // the CTRL-BREAK thread dump mechanism is also disabled in this
1922   // case.  See bugs 4323062, 4345157, and related bugs.
1923 
1924   if (!ReduceSignalUsage) {
1925     // Add a CTRL-C handler
1926     SetConsoleCtrlHandler(consoleHandler, TRUE);
1927   }
1928 }
1929 
1930 void os::signal_notify(int signal_number) {
1931   BOOL ret;
1932 
1933   Atomic::inc(&pending_signals[signal_number]);
1934   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1935   assert(ret != 0, "ReleaseSemaphore() failed");
1936 }
1937 
1938 static int check_pending_signals(bool wait_for_signal) {
1939   DWORD ret;
1940   while (true) {
1941     for (int i = 0; i < NSIG + 1; i++) {
1942       jint n = pending_signals[i];
1943       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1944         return i;
1945       }
1946     }
1947     if (!wait_for_signal) {
1948       return -1;
1949     }
1950 
1951     JavaThread *thread = JavaThread::current();
1952 
1953     ThreadBlockInVM tbivm(thread);
1954 
1955     bool threadIsSuspended;
1956     do {
1957       thread->set_suspend_equivalent();
1958       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1959       ret = ::WaitForSingleObject(sig_sem, INFINITE);
1960       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1961 
1962       // were we externally suspended while we were waiting?
1963       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1964       if (threadIsSuspended) {
1965         //
1966         // The semaphore has been incremented, but while we were waiting
1967         // another thread suspended us. We don't want to continue running
1968         // while suspended because that would surprise the thread that
1969         // suspended us.
1970         //
1971         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1972         assert(ret != 0, "ReleaseSemaphore() failed");
1973 
1974         thread->java_suspend_self();
1975       }
1976     } while (threadIsSuspended);
1977   }
1978 }
1979 
1980 int os::signal_lookup() {
1981   return check_pending_signals(false);
1982 }
1983 
1984 int os::signal_wait() {
1985   return check_pending_signals(true);
1986 }
1987 
1988 // Implicit OS exception handling
1989 
1990 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1991   JavaThread* thread = JavaThread::current();
1992   // Save pc in thread
1993 #ifdef _M_IA64
1994   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1995   // Set pc to handler
1996   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1997 #elif _M_AMD64
1998   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1999   // Set pc to handler
2000   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2001 #else
2002   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
2003   // Set pc to handler
2004   exceptionInfo->ContextRecord->Eip = (LONG)handler;
2005 #endif
2006 
2007   // Continue the execution
2008   return EXCEPTION_CONTINUE_EXECUTION;
2009 }
2010 
2011 
2012 // Used for PostMortemDump
2013 extern "C" void safepoints();
2014 extern "C" void find(int x);
2015 extern "C" void events();
2016 
2017 // According to Windows API documentation, an illegal instruction sequence should generate
2018 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2019 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2020 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2021 
2022 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2023 
2024 // From "Execution Protection in the Windows Operating System" draft 0.35
2025 // Once a system header becomes available, the "real" define should be
2026 // included or copied here.
2027 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2028 
2029 #define def_excpt(val) #val, val
2030 
2031 struct siglabel {
2032   char *name;
2033   int   number;
2034 };
2035 
2036 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2037 // C++ compiler contain this error code. Because this is a compiler-generated
2038 // error, the code is not listed in the Win32 API header files.
2039 // The code is actually a cryptic mnemonic device, with the initial "E"
2040 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2041 // ASCII values of "msc".
2042 
2043 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2044 
2045 
2046 struct siglabel exceptlabels[] = {
2047     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2048     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2049     def_excpt(EXCEPTION_BREAKPOINT),
2050     def_excpt(EXCEPTION_SINGLE_STEP),
2051     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2052     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2053     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2054     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2055     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2056     def_excpt(EXCEPTION_FLT_OVERFLOW),
2057     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2058     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2059     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2060     def_excpt(EXCEPTION_INT_OVERFLOW),
2061     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2062     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2063     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2064     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2065     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2066     def_excpt(EXCEPTION_STACK_OVERFLOW),
2067     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2068     def_excpt(EXCEPTION_GUARD_PAGE),
2069     def_excpt(EXCEPTION_INVALID_HANDLE),
2070     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2071     NULL, 0
2072 };
2073 
2074 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2075   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2076     if (exceptlabels[i].number == exception_code) {
2077        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2078        return buf;
2079     }
2080   }
2081 
2082   return NULL;
2083 }
2084 
2085 //-----------------------------------------------------------------------------
2086 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2087   // handle exception caused by idiv; should only happen for -MinInt/-1
2088   // (division by zero is handled explicitly)
2089 #ifdef _M_IA64
2090   assert(0, "Fix Handle_IDiv_Exception");
2091 #elif _M_AMD64
2092   PCONTEXT ctx = exceptionInfo->ContextRecord;
2093   address pc = (address)ctx->Rip;
2094   assert(pc[0] == 0xF7, "not an idiv opcode");
2095   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2096   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2097   // set correct result values and continue after idiv instruction
2098   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2099   ctx->Rax = (DWORD)min_jint;      // result
2100   ctx->Rdx = (DWORD)0;             // remainder
2101   // Continue the execution
2102 #else
2103   PCONTEXT ctx = exceptionInfo->ContextRecord;
2104   address pc = (address)ctx->Eip;
2105   assert(pc[0] == 0xF7, "not an idiv opcode");
2106   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2107   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2108   // set correct result values and continue after idiv instruction
2109   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2110   ctx->Eax = (DWORD)min_jint;      // result
2111   ctx->Edx = (DWORD)0;             // remainder
2112   // Continue the execution
2113 #endif
2114   return EXCEPTION_CONTINUE_EXECUTION;
2115 }
2116 
2117 #ifndef  _WIN64
2118 //-----------------------------------------------------------------------------
2119 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2120   // handle exception caused by native method modifying control word
2121   PCONTEXT ctx = exceptionInfo->ContextRecord;
2122   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2123 
2124   switch (exception_code) {
2125     case EXCEPTION_FLT_DENORMAL_OPERAND:
2126     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2127     case EXCEPTION_FLT_INEXACT_RESULT:
2128     case EXCEPTION_FLT_INVALID_OPERATION:
2129     case EXCEPTION_FLT_OVERFLOW:
2130     case EXCEPTION_FLT_STACK_CHECK:
2131     case EXCEPTION_FLT_UNDERFLOW:
2132       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2133       if (fp_control_word != ctx->FloatSave.ControlWord) {
2134         // Restore FPCW and mask out FLT exceptions
2135         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2136         // Mask out pending FLT exceptions
2137         ctx->FloatSave.StatusWord &=  0xffffff00;
2138         return EXCEPTION_CONTINUE_EXECUTION;
2139       }
2140   }
2141 
2142   if (prev_uef_handler != NULL) {
2143     // We didn't handle this exception so pass it to the previous
2144     // UnhandledExceptionFilter.
2145     return (prev_uef_handler)(exceptionInfo);
2146   }
2147 
2148   return EXCEPTION_CONTINUE_SEARCH;
2149 }
2150 #else //_WIN64
2151 /*
2152   On Windows, the mxcsr control bits are non-volatile across calls
2153   See also CR 6192333
2154   If EXCEPTION_FLT_* happened after some native method modified
2155   mxcsr - it is not a jvm fault.
2156   However should we decide to restore of mxcsr after a faulty
2157   native method we can uncomment following code
2158       jint MxCsr = INITIAL_MXCSR;
2159         // we can't use StubRoutines::addr_mxcsr_std()
2160         // because in Win64 mxcsr is not saved there
2161       if (MxCsr != ctx->MxCsr) {
2162         ctx->MxCsr = MxCsr;
2163         return EXCEPTION_CONTINUE_EXECUTION;
2164       }
2165 
2166 */
2167 #endif //_WIN64
2168 
2169 
2170 // Fatal error reporting is single threaded so we can make this a
2171 // static and preallocated.  If it's more than MAX_PATH silently ignore
2172 // it.
2173 static char saved_error_file[MAX_PATH] = {0};
2174 
2175 void os::set_error_file(const char *logfile) {
2176   if (strlen(logfile) <= MAX_PATH) {
2177     strncpy(saved_error_file, logfile, MAX_PATH);
2178   }
2179 }
2180 
2181 static inline void report_error(Thread* t, DWORD exception_code,
2182                                 address addr, void* siginfo, void* context) {
2183   VMError err(t, exception_code, addr, siginfo, context);
2184   err.report_and_die();
2185 
2186   // If UseOsErrorReporting, this will return here and save the error file
2187   // somewhere where we can find it in the minidump.
2188 }
2189 
2190 //-----------------------------------------------------------------------------
2191 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2192   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2193   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2194 #ifdef _M_IA64
2195   address pc = (address) exceptionInfo->ContextRecord->StIIP;
2196 #elif _M_AMD64
2197   address pc = (address) exceptionInfo->ContextRecord->Rip;
2198 #else
2199   address pc = (address) exceptionInfo->ContextRecord->Eip;
2200 #endif
2201   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2202 
2203 #ifndef _WIN64
2204   // Execution protection violation - win32 running on AMD64 only
2205   // Handled first to avoid misdiagnosis as a "normal" access violation;
2206   // This is safe to do because we have a new/unique ExceptionInformation
2207   // code for this condition.
2208   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2209     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2210     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2211     address addr = (address) exceptionRecord->ExceptionInformation[1];
2212 
2213     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2214       int page_size = os::vm_page_size();
2215 
2216       // Make sure the pc and the faulting address are sane.
2217       //
2218       // If an instruction spans a page boundary, and the page containing
2219       // the beginning of the instruction is executable but the following
2220       // page is not, the pc and the faulting address might be slightly
2221       // different - we still want to unguard the 2nd page in this case.
2222       //
2223       // 15 bytes seems to be a (very) safe value for max instruction size.
2224       bool pc_is_near_addr =
2225         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2226       bool instr_spans_page_boundary =
2227         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2228                          (intptr_t) page_size) > 0);
2229 
2230       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2231         static volatile address last_addr =
2232           (address) os::non_memory_address_word();
2233 
2234         // In conservative mode, don't unguard unless the address is in the VM
2235         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2236             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2237 
2238           // Set memory to RWX and retry
2239           address page_start =
2240             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2241           bool res = os::protect_memory((char*) page_start, page_size,
2242                                         os::MEM_PROT_RWX);
2243 
2244           if (PrintMiscellaneous && Verbose) {
2245             char buf[256];
2246             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2247                          "at " INTPTR_FORMAT
2248                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2249                          page_start, (res ? "success" : strerror(errno)));
2250             tty->print_raw_cr(buf);
2251           }
2252 
2253           // Set last_addr so if we fault again at the same address, we don't
2254           // end up in an endless loop.
2255           //
2256           // There are two potential complications here.  Two threads trapping
2257           // at the same address at the same time could cause one of the
2258           // threads to think it already unguarded, and abort the VM.  Likely
2259           // very rare.
2260           //
2261           // The other race involves two threads alternately trapping at
2262           // different addresses and failing to unguard the page, resulting in
2263           // an endless loop.  This condition is probably even more unlikely
2264           // than the first.
2265           //
2266           // Although both cases could be avoided by using locks or thread
2267           // local last_addr, these solutions are unnecessary complication:
2268           // this handler is a best-effort safety net, not a complete solution.
2269           // It is disabled by default and should only be used as a workaround
2270           // in case we missed any no-execute-unsafe VM code.
2271 
2272           last_addr = addr;
2273 
2274           return EXCEPTION_CONTINUE_EXECUTION;
2275         }
2276       }
2277 
2278       // Last unguard failed or not unguarding
2279       tty->print_raw_cr("Execution protection violation");
2280       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2281                    exceptionInfo->ContextRecord);
2282       return EXCEPTION_CONTINUE_SEARCH;
2283     }
2284   }
2285 #endif // _WIN64
2286 
2287   // Check to see if we caught the safepoint code in the
2288   // process of write protecting the memory serialization page.
2289   // It write enables the page immediately after protecting it
2290   // so just return.
2291   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2292     JavaThread* thread = (JavaThread*) t;
2293     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2294     address addr = (address) exceptionRecord->ExceptionInformation[1];
2295     if ( os::is_memory_serialize_page(thread, addr) ) {
2296       // Block current thread until the memory serialize page permission restored.
2297       os::block_on_serialize_page_trap();
2298       return EXCEPTION_CONTINUE_EXECUTION;
2299     }
2300   }
2301 
2302   if (t != NULL && t->is_Java_thread()) {
2303     JavaThread* thread = (JavaThread*) t;
2304     bool in_java = thread->thread_state() == _thread_in_Java;
2305 
2306     // Handle potential stack overflows up front.
2307     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2308       if (os::uses_stack_guard_pages()) {
2309 #ifdef _M_IA64
2310         //
2311         // If it's a legal stack address continue, Windows will map it in.
2312         //
2313         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2314         address addr = (address) exceptionRecord->ExceptionInformation[1];
2315         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2316           return EXCEPTION_CONTINUE_EXECUTION;
2317 
2318         // The register save area is the same size as the memory stack
2319         // and starts at the page just above the start of the memory stack.
2320         // If we get a fault in this area, we've run out of register
2321         // stack.  If we are in java, try throwing a stack overflow exception.
2322         if (addr > thread->stack_base() &&
2323                       addr <= (thread->stack_base()+thread->stack_size()) ) {
2324           char buf[256];
2325           jio_snprintf(buf, sizeof(buf),
2326                        "Register stack overflow, addr:%p, stack_base:%p\n",
2327                        addr, thread->stack_base() );
2328           tty->print_raw_cr(buf);
2329           // If not in java code, return and hope for the best.
2330           return in_java ? Handle_Exception(exceptionInfo,
2331             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2332             :  EXCEPTION_CONTINUE_EXECUTION;
2333         }
2334 #endif
2335         if (thread->stack_yellow_zone_enabled()) {
2336           // Yellow zone violation.  The o/s has unprotected the first yellow
2337           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2338           // update the enabled status, even if the zone contains only one page.
2339           thread->disable_stack_yellow_zone();
2340           // If not in java code, return and hope for the best.
2341           return in_java ? Handle_Exception(exceptionInfo,
2342             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2343             :  EXCEPTION_CONTINUE_EXECUTION;
2344         } else {
2345           // Fatal red zone violation.
2346           thread->disable_stack_red_zone();
2347           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2348           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2349                        exceptionInfo->ContextRecord);
2350           return EXCEPTION_CONTINUE_SEARCH;
2351         }
2352       } else if (in_java) {
2353         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2354         // a one-time-only guard page, which it has released to us.  The next
2355         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2356         return Handle_Exception(exceptionInfo,
2357           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2358       } else {
2359         // Can only return and hope for the best.  Further stack growth will
2360         // result in an ACCESS_VIOLATION.
2361         return EXCEPTION_CONTINUE_EXECUTION;
2362       }
2363     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2364       // Either stack overflow or null pointer exception.
2365       if (in_java) {
2366         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2367         address addr = (address) exceptionRecord->ExceptionInformation[1];
2368         address stack_end = thread->stack_base() - thread->stack_size();
2369         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2370           // Stack overflow.
2371           assert(!os::uses_stack_guard_pages(),
2372             "should be caught by red zone code above.");
2373           return Handle_Exception(exceptionInfo,
2374             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2375         }
2376         //
2377         // Check for safepoint polling and implicit null
2378         // We only expect null pointers in the stubs (vtable)
2379         // the rest are checked explicitly now.
2380         //
2381         CodeBlob* cb = CodeCache::find_blob(pc);
2382         if (cb != NULL) {
2383           if (os::is_poll_address(addr)) {
2384             address stub = SharedRuntime::get_poll_stub(pc);
2385             return Handle_Exception(exceptionInfo, stub);
2386           }
2387         }
2388         {
2389 #ifdef _WIN64
2390           //
2391           // If it's a legal stack address map the entire region in
2392           //
2393           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2394           address addr = (address) exceptionRecord->ExceptionInformation[1];
2395           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2396                   addr = (address)((uintptr_t)addr &
2397                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2398                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2399                                     false );
2400                   return EXCEPTION_CONTINUE_EXECUTION;
2401           }
2402           else
2403 #endif
2404           {
2405             // Null pointer exception.
2406 #ifdef _M_IA64
2407             // We catch register stack overflows in compiled code by doing
2408             // an explicit compare and executing a st8(G0, G0) if the
2409             // BSP enters into our guard area.  We test for the overflow
2410             // condition and fall into the normal null pointer exception
2411             // code if BSP hasn't overflowed.
2412             if ( in_java ) {
2413               if(thread->register_stack_overflow()) {
2414                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
2415                                 thread->register_stack_limit(),
2416                                "GR7 doesn't contain register_stack_limit");
2417                 // Disable the yellow zone which sets the state that
2418                 // we've got a stack overflow problem.
2419                 if (thread->stack_yellow_zone_enabled()) {
2420                   thread->disable_stack_yellow_zone();
2421                 }
2422                 // Give us some room to process the exception
2423                 thread->disable_register_stack_guard();
2424                 // Update GR7 with the new limit so we can continue running
2425                 // compiled code.
2426                 exceptionInfo->ContextRecord->IntS3 =
2427                                (ULONGLONG)thread->register_stack_limit();
2428                 return Handle_Exception(exceptionInfo,
2429                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2430               } else {
2431                 //
2432                 // Check for implicit null
2433                 // We only expect null pointers in the stubs (vtable)
2434                 // the rest are checked explicitly now.
2435                 //
2436                 if (((uintptr_t)addr) < os::vm_page_size() ) {
2437                   // an access to the first page of VM--assume it is a null pointer
2438                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2439                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2440                 }
2441               }
2442             } // in_java
2443 
2444             // IA64 doesn't use implicit null checking yet. So we shouldn't
2445             // get here.
2446             tty->print_raw_cr("Access violation, possible null pointer exception");
2447             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2448                          exceptionInfo->ContextRecord);
2449             return EXCEPTION_CONTINUE_SEARCH;
2450 #else /* !IA64 */
2451 
2452             // Windows 98 reports faulting addresses incorrectly
2453             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2454                 !os::win32::is_nt()) {
2455               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2456               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2457             }
2458             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2459                          exceptionInfo->ContextRecord);
2460             return EXCEPTION_CONTINUE_SEARCH;
2461 #endif
2462           }
2463         }
2464       }
2465 
2466 #ifdef _WIN64
2467       // Special care for fast JNI field accessors.
2468       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2469       // in and the heap gets shrunk before the field access.
2470       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2471         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2472         if (addr != (address)-1) {
2473           return Handle_Exception(exceptionInfo, addr);
2474         }
2475       }
2476 #endif
2477 
2478       // Stack overflow or null pointer exception in native code.
2479       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2480                    exceptionInfo->ContextRecord);
2481       return EXCEPTION_CONTINUE_SEARCH;
2482     }
2483 
2484     if (in_java) {
2485       switch (exception_code) {
2486       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2487         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2488 
2489       case EXCEPTION_INT_OVERFLOW:
2490         return Handle_IDiv_Exception(exceptionInfo);
2491 
2492       } // switch
2493     }
2494 #ifndef _WIN64
2495     if (((thread->thread_state() == _thread_in_Java) ||
2496         (thread->thread_state() == _thread_in_native)) &&
2497         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2498     {
2499       LONG result=Handle_FLT_Exception(exceptionInfo);
2500       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2501     }
2502 #endif //_WIN64
2503   }
2504 
2505   if (exception_code != EXCEPTION_BREAKPOINT) {
2506     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2507                  exceptionInfo->ContextRecord);
2508   }
2509   return EXCEPTION_CONTINUE_SEARCH;
2510 }
2511 
2512 #ifndef _WIN64
2513 // Special care for fast JNI accessors.
2514 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2515 // the heap gets shrunk before the field access.
2516 // Need to install our own structured exception handler since native code may
2517 // install its own.
2518 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2519   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2520   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2521     address pc = (address) exceptionInfo->ContextRecord->Eip;
2522     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2523     if (addr != (address)-1) {
2524       return Handle_Exception(exceptionInfo, addr);
2525     }
2526   }
2527   return EXCEPTION_CONTINUE_SEARCH;
2528 }
2529 
2530 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2531 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2532   __try { \
2533     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2534   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2535   } \
2536   return 0; \
2537 }
2538 
2539 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2540 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2541 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2542 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2543 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2544 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2545 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2546 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2547 
2548 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2549   switch (type) {
2550     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2551     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2552     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2553     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2554     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2555     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2556     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2557     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2558     default:        ShouldNotReachHere();
2559   }
2560   return (address)-1;
2561 }
2562 #endif
2563 
2564 // Virtual Memory
2565 
2566 int os::vm_page_size() { return os::win32::vm_page_size(); }
2567 int os::vm_allocation_granularity() {
2568   return os::win32::vm_allocation_granularity();
2569 }
2570 
2571 // Windows large page support is available on Windows 2003. In order to use
2572 // large page memory, the administrator must first assign additional privilege
2573 // to the user:
2574 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2575 //   + select Local Policies -> User Rights Assignment
2576 //   + double click "Lock pages in memory", add users and/or groups
2577 //   + reboot
2578 // Note the above steps are needed for administrator as well, as administrators
2579 // by default do not have the privilege to lock pages in memory.
2580 //
2581 // Note about Windows 2003: although the API supports committing large page
2582 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2583 // scenario, I found through experiment it only uses large page if the entire
2584 // memory region is reserved and committed in a single VirtualAlloc() call.
2585 // This makes Windows large page support more or less like Solaris ISM, in
2586 // that the entire heap must be committed upfront. This probably will change
2587 // in the future, if so the code below needs to be revisited.
2588 
2589 #ifndef MEM_LARGE_PAGES
2590 #define MEM_LARGE_PAGES 0x20000000
2591 #endif
2592 
2593 static HANDLE    _hProcess;
2594 static HANDLE    _hToken;
2595 
2596 // Container for NUMA node list info
2597 class NUMANodeListHolder {
2598 private:
2599   int *_numa_used_node_list;  // allocated below
2600   int _numa_used_node_count;
2601 
2602   void free_node_list() {
2603     if (_numa_used_node_list != NULL) {
2604       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2605     }
2606   }
2607 
2608 public:
2609   NUMANodeListHolder() {
2610     _numa_used_node_count = 0;
2611     _numa_used_node_list = NULL;
2612     // do rest of initialization in build routine (after function pointers are set up)
2613   }
2614 
2615   ~NUMANodeListHolder() {
2616     free_node_list();
2617   }
2618 
2619   bool build() {
2620     DWORD_PTR proc_aff_mask;
2621     DWORD_PTR sys_aff_mask;
2622     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2623     ULONG highest_node_number;
2624     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2625     free_node_list();
2626     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2627     for (unsigned int i = 0; i <= highest_node_number; i++) {
2628       ULONGLONG proc_mask_numa_node;
2629       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2630       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2631         _numa_used_node_list[_numa_used_node_count++] = i;
2632       }
2633     }
2634     return (_numa_used_node_count > 1);
2635   }
2636 
2637   int get_count() {return _numa_used_node_count;}
2638   int get_node_list_entry(int n) {
2639     // for indexes out of range, returns -1
2640     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2641   }
2642 
2643 } numa_node_list_holder;
2644 
2645 
2646 
2647 static size_t _large_page_size = 0;
2648 
2649 static bool resolve_functions_for_large_page_init() {
2650   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2651     os::Advapi32Dll::AdvapiAvailable();
2652 }
2653 
2654 static bool request_lock_memory_privilege() {
2655   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2656                                 os::current_process_id());
2657 
2658   LUID luid;
2659   if (_hProcess != NULL &&
2660       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2661       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2662 
2663     TOKEN_PRIVILEGES tp;
2664     tp.PrivilegeCount = 1;
2665     tp.Privileges[0].Luid = luid;
2666     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2667 
2668     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2669     // privilege. Check GetLastError() too. See MSDN document.
2670     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2671         (GetLastError() == ERROR_SUCCESS)) {
2672       return true;
2673     }
2674   }
2675 
2676   return false;
2677 }
2678 
2679 static void cleanup_after_large_page_init() {
2680   if (_hProcess) CloseHandle(_hProcess);
2681   _hProcess = NULL;
2682   if (_hToken) CloseHandle(_hToken);
2683   _hToken = NULL;
2684 }
2685 
2686 static bool numa_interleaving_init() {
2687   bool success = false;
2688   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2689 
2690   // print a warning if UseNUMAInterleaving flag is specified on command line
2691   bool warn_on_failure = use_numa_interleaving_specified;
2692 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2693 
2694   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2695   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2696   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2697 
2698   if (os::Kernel32Dll::NumaCallsAvailable()) {
2699     if (numa_node_list_holder.build()) {
2700       if (PrintMiscellaneous && Verbose) {
2701         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2702         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2703           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2704         }
2705         tty->print("\n");
2706       }
2707       success = true;
2708     } else {
2709       WARN("Process does not cover multiple NUMA nodes.");
2710     }
2711   } else {
2712     WARN("NUMA Interleaving is not supported by the operating system.");
2713   }
2714   if (!success) {
2715     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2716   }
2717   return success;
2718 #undef WARN
2719 }
2720 
2721 // this routine is used whenever we need to reserve a contiguous VA range
2722 // but we need to make separate VirtualAlloc calls for each piece of the range
2723 // Reasons for doing this:
2724 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2725 //  * UseNUMAInterleaving requires a separate node for each piece
2726 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2727                                          bool should_inject_error=false) {
2728   char * p_buf;
2729   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2730   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2731   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2732 
2733   // first reserve enough address space in advance since we want to be
2734   // able to break a single contiguous virtual address range into multiple
2735   // large page commits but WS2003 does not allow reserving large page space
2736   // so we just use 4K pages for reserve, this gives us a legal contiguous
2737   // address space. then we will deallocate that reservation, and re alloc
2738   // using large pages
2739   const size_t size_of_reserve = bytes + chunk_size;
2740   if (bytes > size_of_reserve) {
2741     // Overflowed.
2742     return NULL;
2743   }
2744   p_buf = (char *) VirtualAlloc(addr,
2745                                 size_of_reserve,  // size of Reserve
2746                                 MEM_RESERVE,
2747                                 PAGE_READWRITE);
2748   // If reservation failed, return NULL
2749   if (p_buf == NULL) return NULL;
2750 
2751   os::release_memory(p_buf, bytes + chunk_size);
2752 
2753   // we still need to round up to a page boundary (in case we are using large pages)
2754   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2755   // instead we handle this in the bytes_to_rq computation below
2756   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2757 
2758   // now go through and allocate one chunk at a time until all bytes are
2759   // allocated
2760   size_t  bytes_remaining = bytes;
2761   // An overflow of align_size_up() would have been caught above
2762   // in the calculation of size_of_reserve.
2763   char * next_alloc_addr = p_buf;
2764   HANDLE hProc = GetCurrentProcess();
2765 
2766 #ifdef ASSERT
2767   // Variable for the failure injection
2768   long ran_num = os::random();
2769   size_t fail_after = ran_num % bytes;
2770 #endif
2771 
2772   int count=0;
2773   while (bytes_remaining) {
2774     // select bytes_to_rq to get to the next chunk_size boundary
2775 
2776     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2777     // Note allocate and commit
2778     char * p_new;
2779 
2780 #ifdef ASSERT
2781     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2782 #else
2783     const bool inject_error_now = false;
2784 #endif
2785 
2786     if (inject_error_now) {
2787       p_new = NULL;
2788     } else {
2789       if (!UseNUMAInterleaving) {
2790         p_new = (char *) VirtualAlloc(next_alloc_addr,
2791                                       bytes_to_rq,
2792                                       flags,
2793                                       prot);
2794       } else {
2795         // get the next node to use from the used_node_list
2796         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2797         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2798         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2799                                                             next_alloc_addr,
2800                                                             bytes_to_rq,
2801                                                             flags,
2802                                                             prot,
2803                                                             node);
2804       }
2805     }
2806 
2807     if (p_new == NULL) {
2808       // Free any allocated pages
2809       if (next_alloc_addr > p_buf) {
2810         // Some memory was committed so release it.
2811         size_t bytes_to_release = bytes - bytes_remaining;
2812         os::release_memory(p_buf, bytes_to_release);
2813       }
2814 #ifdef ASSERT
2815       if (should_inject_error) {
2816         if (TracePageSizes && Verbose) {
2817           tty->print_cr("Reserving pages individually failed.");
2818         }
2819       }
2820 #endif
2821       return NULL;
2822     }
2823     bytes_remaining -= bytes_to_rq;
2824     next_alloc_addr += bytes_to_rq;
2825     count++;
2826   }
2827   // made it this far, success
2828   return p_buf;
2829 }
2830 
2831 
2832 
2833 void os::large_page_init() {
2834   if (!UseLargePages) return;
2835 
2836   // print a warning if any large page related flag is specified on command line
2837   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2838                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2839   bool success = false;
2840 
2841 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2842   if (resolve_functions_for_large_page_init()) {
2843     if (request_lock_memory_privilege()) {
2844       size_t s = os::Kernel32Dll::GetLargePageMinimum();
2845       if (s) {
2846 #if defined(IA32) || defined(AMD64)
2847         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2848           WARN("JVM cannot use large pages bigger than 4mb.");
2849         } else {
2850 #endif
2851           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2852             _large_page_size = LargePageSizeInBytes;
2853           } else {
2854             _large_page_size = s;
2855           }
2856           success = true;
2857 #if defined(IA32) || defined(AMD64)
2858         }
2859 #endif
2860       } else {
2861         WARN("Large page is not supported by the processor.");
2862       }
2863     } else {
2864       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2865     }
2866   } else {
2867     WARN("Large page is not supported by the operating system.");
2868   }
2869 #undef WARN
2870 
2871   const size_t default_page_size = (size_t) vm_page_size();
2872   if (success && _large_page_size > default_page_size) {
2873     _page_sizes[0] = _large_page_size;
2874     _page_sizes[1] = default_page_size;
2875     _page_sizes[2] = 0;
2876   }
2877 
2878   cleanup_after_large_page_init();
2879   UseLargePages = success;
2880 }
2881 
2882 // On win32, one cannot release just a part of reserved memory, it's an
2883 // all or nothing deal.  When we split a reservation, we must break the
2884 // reservation into two reservations.
2885 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
2886                               bool realloc) {
2887   if (size > 0) {
2888     release_memory(base, size);
2889     if (realloc) {
2890       reserve_memory(split, base);
2891     }
2892     if (size != split) {
2893       reserve_memory(size - split, base + split);
2894     }
2895   }
2896 }
2897 
2898 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
2899   assert(alignment & (os::vm_allocation_granularity() - 1) == 0,
2900       "Alignment must be a multiple of allocation granularity (page size)");
2901   assert(size & (alignment -1) == 0, "size must be 'alignment' aligned");
2902   size_t extra_size = size + alignment;
2903   char* aligned_base = NULL;
2904 
2905   do {
2906     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
2907     if (extra_base == NULL) {
2908       return NULL;
2909     }
2910     // Do manual alignment
2911     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
2912 
2913     os::release_memory(extra_base, extra_size);
2914 
2915     aligned_base = os::reserve_memory(size, aligned_base);
2916 
2917   } while (aligned_base == NULL);
2918 
2919   return aligned_base;
2920 }
2921 
2922 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2923   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2924          "reserve alignment");
2925   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2926   char* res;
2927   // note that if UseLargePages is on, all the areas that require interleaving
2928   // will go thru reserve_memory_special rather than thru here.
2929   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
2930   if (!use_individual) {
2931     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2932   } else {
2933     elapsedTimer reserveTimer;
2934     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
2935     // in numa interleaving, we have to allocate pages individually
2936     // (well really chunks of NUMAInterleaveGranularity size)
2937     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
2938     if (res == NULL) {
2939       warning("NUMA page allocation failed");
2940     }
2941     if( Verbose && PrintMiscellaneous ) {
2942       reserveTimer.stop();
2943       tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
2944                     reserveTimer.milliseconds(), reserveTimer.ticks());
2945     }
2946   }
2947   assert(res == NULL || addr == NULL || addr == res,
2948          "Unexpected address from reserve.");
2949 
2950   return res;
2951 }
2952 
2953 // Reserve memory at an arbitrary address, only if that area is
2954 // available (and not reserved for something else).
2955 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2956   // Windows os::reserve_memory() fails of the requested address range is
2957   // not avilable.
2958   return reserve_memory(bytes, requested_addr);
2959 }
2960 
2961 size_t os::large_page_size() {
2962   return _large_page_size;
2963 }
2964 
2965 bool os::can_commit_large_page_memory() {
2966   // Windows only uses large page memory when the entire region is reserved
2967   // and committed in a single VirtualAlloc() call. This may change in the
2968   // future, but with Windows 2003 it's not possible to commit on demand.
2969   return false;
2970 }
2971 
2972 bool os::can_execute_large_page_memory() {
2973   return true;
2974 }
2975 
2976 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2977 
2978   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2979   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2980 
2981   // with large pages, there are two cases where we need to use Individual Allocation
2982   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
2983   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
2984   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
2985     if (TracePageSizes && Verbose) {
2986        tty->print_cr("Reserving large pages individually.");
2987     }
2988     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
2989     if (p_buf == NULL) {
2990       // give an appropriate warning message
2991       if (UseNUMAInterleaving) {
2992         warning("NUMA large page allocation failed, UseLargePages flag ignored");
2993       }
2994       if (UseLargePagesIndividualAllocation) {
2995         warning("Individually allocated large pages failed, "
2996                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
2997       }
2998       return NULL;
2999     }
3000 
3001     return p_buf;
3002 
3003   } else {
3004     // normal policy just allocate it all at once
3005     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3006     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
3007     return res;
3008   }
3009 }
3010 
3011 bool os::release_memory_special(char* base, size_t bytes) {
3012   return release_memory(base, bytes);
3013 }
3014 
3015 void os::print_statistics() {
3016 }
3017 
3018 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3019   if (bytes == 0) {
3020     // Don't bother the OS with noops.
3021     return true;
3022   }
3023   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3024   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3025   // Don't attempt to print anything if the OS call fails. We're
3026   // probably low on resources, so the print itself may cause crashes.
3027 
3028   // unless we have NUMAInterleaving enabled, the range of a commit
3029   // is always within a reserve covered by a single VirtualAlloc
3030   // in that case we can just do a single commit for the requested size
3031   if (!UseNUMAInterleaving) {
3032     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
3033     if (exec) {
3034       DWORD oldprot;
3035       // Windows doc says to use VirtualProtect to get execute permissions
3036       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
3037     }
3038     return true;
3039   } else {
3040 
3041     // when NUMAInterleaving is enabled, the commit might cover a range that
3042     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3043     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3044     // returns represents the number of bytes that can be committed in one step.
3045     size_t bytes_remaining = bytes;
3046     char * next_alloc_addr = addr;
3047     while (bytes_remaining > 0) {
3048       MEMORY_BASIC_INFORMATION alloc_info;
3049       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3050       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3051       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
3052         return false;
3053       if (exec) {
3054         DWORD oldprot;
3055         if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
3056           return false;
3057       }
3058       bytes_remaining -= bytes_to_rq;
3059       next_alloc_addr += bytes_to_rq;
3060     }
3061   }
3062   // if we made it this far, return true
3063   return true;
3064 }
3065 
3066 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3067                        bool exec) {
3068   return commit_memory(addr, size, exec);
3069 }
3070 
3071 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3072   if (bytes == 0) {
3073     // Don't bother the OS with noops.
3074     return true;
3075   }
3076   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3077   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3078   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3079 }
3080 
3081 bool os::pd_release_memory(char* addr, size_t bytes) {
3082   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3083 }
3084 
3085 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3086   return os::commit_memory(addr, size);
3087 }
3088 
3089 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3090   return os::uncommit_memory(addr, size);
3091 }
3092 
3093 // Set protections specified
3094 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3095                         bool is_committed) {
3096   unsigned int p = 0;
3097   switch (prot) {
3098   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3099   case MEM_PROT_READ: p = PAGE_READONLY; break;
3100   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3101   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3102   default:
3103     ShouldNotReachHere();
3104   }
3105 
3106   DWORD old_status;
3107 
3108   // Strange enough, but on Win32 one can change protection only for committed
3109   // memory, not a big deal anyway, as bytes less or equal than 64K
3110   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
3111     fatal("cannot commit protection page");
3112   }
3113   // One cannot use os::guard_memory() here, as on Win32 guard page
3114   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3115   //
3116   // Pages in the region become guard pages. Any attempt to access a guard page
3117   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3118   // the guard page status. Guard pages thus act as a one-time access alarm.
3119   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3120 }
3121 
3122 bool os::guard_memory(char* addr, size_t bytes) {
3123   DWORD old_status;
3124   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3125 }
3126 
3127 bool os::unguard_memory(char* addr, size_t bytes) {
3128   DWORD old_status;
3129   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3130 }
3131 
3132 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3133 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3134 void os::numa_make_global(char *addr, size_t bytes)    { }
3135 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3136 bool os::numa_topology_changed()                       { return false; }
3137 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3138 int os::numa_get_group_id()                            { return 0; }
3139 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3140   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3141     // Provide an answer for UMA systems
3142     ids[0] = 0;
3143     return 1;
3144   } else {
3145     // check for size bigger than actual groups_num
3146     size = MIN2(size, numa_get_groups_num());
3147     for (int i = 0; i < (int)size; i++) {
3148       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3149     }
3150     return size;
3151   }
3152 }
3153 
3154 bool os::get_page_info(char *start, page_info* info) {
3155   return false;
3156 }
3157 
3158 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3159   return end;
3160 }
3161 
3162 char* os::non_memory_address_word() {
3163   // Must never look like an address returned by reserve_memory,
3164   // even in its subfields (as defined by the CPU immediate fields,
3165   // if the CPU splits constants across multiple instructions).
3166   return (char*)-1;
3167 }
3168 
3169 #define MAX_ERROR_COUNT 100
3170 #define SYS_THREAD_ERROR 0xffffffffUL
3171 
3172 void os::pd_start_thread(Thread* thread) {
3173   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3174   // Returns previous suspend state:
3175   // 0:  Thread was not suspended
3176   // 1:  Thread is running now
3177   // >1: Thread is still suspended.
3178   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3179 }
3180 
3181 class HighResolutionInterval {
3182   // The default timer resolution seems to be 10 milliseconds.
3183   // (Where is this written down?)
3184   // If someone wants to sleep for only a fraction of the default,
3185   // then we set the timer resolution down to 1 millisecond for
3186   // the duration of their interval.
3187   // We carefully set the resolution back, since otherwise we
3188   // seem to incur an overhead (3%?) that we don't need.
3189   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3190   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3191   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3192   // timeBeginPeriod() if the relative error exceeded some threshold.
3193   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3194   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3195   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3196   // resolution timers running.
3197 private:
3198     jlong resolution;
3199 public:
3200   HighResolutionInterval(jlong ms) {
3201     resolution = ms % 10L;
3202     if (resolution != 0) {
3203       MMRESULT result = timeBeginPeriod(1L);
3204     }
3205   }
3206   ~HighResolutionInterval() {
3207     if (resolution != 0) {
3208       MMRESULT result = timeEndPeriod(1L);
3209     }
3210     resolution = 0L;
3211   }
3212 };
3213 
3214 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3215   jlong limit = (jlong) MAXDWORD;
3216 
3217   while(ms > limit) {
3218     int res;
3219     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3220       return res;
3221     ms -= limit;
3222   }
3223 
3224   assert(thread == Thread::current(),  "thread consistency check");
3225   OSThread* osthread = thread->osthread();
3226   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3227   int result;
3228   if (interruptable) {
3229     assert(thread->is_Java_thread(), "must be java thread");
3230     JavaThread *jt = (JavaThread *) thread;
3231     ThreadBlockInVM tbivm(jt);
3232 
3233     jt->set_suspend_equivalent();
3234     // cleared by handle_special_suspend_equivalent_condition() or
3235     // java_suspend_self() via check_and_wait_while_suspended()
3236 
3237     HANDLE events[1];
3238     events[0] = osthread->interrupt_event();
3239     HighResolutionInterval *phri=NULL;
3240     if(!ForceTimeHighResolution)
3241       phri = new HighResolutionInterval( ms );
3242     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3243       result = OS_TIMEOUT;
3244     } else {
3245       ResetEvent(osthread->interrupt_event());
3246       osthread->set_interrupted(false);
3247       result = OS_INTRPT;
3248     }
3249     delete phri; //if it is NULL, harmless
3250 
3251     // were we externally suspended while we were waiting?
3252     jt->check_and_wait_while_suspended();
3253   } else {
3254     assert(!thread->is_Java_thread(), "must not be java thread");
3255     Sleep((long) ms);
3256     result = OS_TIMEOUT;
3257   }
3258   return result;
3259 }
3260 
3261 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3262 void os::infinite_sleep() {
3263   while (true) {    // sleep forever ...
3264     Sleep(100000);  // ... 100 seconds at a time
3265   }
3266 }
3267 
3268 typedef BOOL (WINAPI * STTSignature)(void) ;
3269 
3270 os::YieldResult os::NakedYield() {
3271   // Use either SwitchToThread() or Sleep(0)
3272   // Consider passing back the return value from SwitchToThread().
3273   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3274     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3275   } else {
3276     Sleep(0);
3277   }
3278   return os::YIELD_UNKNOWN ;
3279 }
3280 
3281 void os::yield() {  os::NakedYield(); }
3282 
3283 void os::yield_all(int attempts) {
3284   // Yields to all threads, including threads with lower priorities
3285   Sleep(1);
3286 }
3287 
3288 // Win32 only gives you access to seven real priorities at a time,
3289 // so we compress Java's ten down to seven.  It would be better
3290 // if we dynamically adjusted relative priorities.
3291 
3292 int os::java_to_os_priority[CriticalPriority + 1] = {
3293   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3294   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3295   THREAD_PRIORITY_LOWEST,                       // 2
3296   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3297   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3298   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3299   THREAD_PRIORITY_NORMAL,                       // 6
3300   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3301   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3302   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3303   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3304   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3305 };
3306 
3307 int prio_policy1[CriticalPriority + 1] = {
3308   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3309   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3310   THREAD_PRIORITY_LOWEST,                       // 2
3311   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3312   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3313   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3314   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3315   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3316   THREAD_PRIORITY_HIGHEST,                      // 8
3317   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3318   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3319   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3320 };
3321 
3322 static int prio_init() {
3323   // If ThreadPriorityPolicy is 1, switch tables
3324   if (ThreadPriorityPolicy == 1) {
3325     int i;
3326     for (i = 0; i < CriticalPriority + 1; i++) {
3327       os::java_to_os_priority[i] = prio_policy1[i];
3328     }
3329   }
3330   if (UseCriticalJavaThreadPriority) {
3331     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3332   }
3333   return 0;
3334 }
3335 
3336 OSReturn os::set_native_priority(Thread* thread, int priority) {
3337   if (!UseThreadPriorities) return OS_OK;
3338   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3339   return ret ? OS_OK : OS_ERR;
3340 }
3341 
3342 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3343   if ( !UseThreadPriorities ) {
3344     *priority_ptr = java_to_os_priority[NormPriority];
3345     return OS_OK;
3346   }
3347   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3348   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3349     assert(false, "GetThreadPriority failed");
3350     return OS_ERR;
3351   }
3352   *priority_ptr = os_prio;
3353   return OS_OK;
3354 }
3355 
3356 
3357 // Hint to the underlying OS that a task switch would not be good.
3358 // Void return because it's a hint and can fail.
3359 void os::hint_no_preempt() {}
3360 
3361 void os::interrupt(Thread* thread) {
3362   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3363          "possibility of dangling Thread pointer");
3364 
3365   OSThread* osthread = thread->osthread();
3366   osthread->set_interrupted(true);
3367   // More than one thread can get here with the same value of osthread,
3368   // resulting in multiple notifications.  We do, however, want the store
3369   // to interrupted() to be visible to other threads before we post
3370   // the interrupt event.
3371   OrderAccess::release();
3372   SetEvent(osthread->interrupt_event());
3373   // For JSR166:  unpark after setting status
3374   if (thread->is_Java_thread())
3375     ((JavaThread*)thread)->parker()->unpark();
3376 
3377   ParkEvent * ev = thread->_ParkEvent ;
3378   if (ev != NULL) ev->unpark() ;
3379 
3380 }
3381 
3382 
3383 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3384   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3385          "possibility of dangling Thread pointer");
3386 
3387   OSThread* osthread = thread->osthread();
3388   bool interrupted = osthread->interrupted();
3389   // There is no synchronization between the setting of the interrupt
3390   // and it being cleared here. It is critical - see 6535709 - that
3391   // we only clear the interrupt state, and reset the interrupt event,
3392   // if we are going to report that we were indeed interrupted - else
3393   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3394   // depending on the timing
3395   if (interrupted && clear_interrupted) {
3396     osthread->set_interrupted(false);
3397     ResetEvent(osthread->interrupt_event());
3398   } // Otherwise leave the interrupted state alone
3399 
3400   return interrupted;
3401 }
3402 
3403 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3404 ExtendedPC os::get_thread_pc(Thread* thread) {
3405   CONTEXT context;
3406   context.ContextFlags = CONTEXT_CONTROL;
3407   HANDLE handle = thread->osthread()->thread_handle();
3408 #ifdef _M_IA64
3409   assert(0, "Fix get_thread_pc");
3410   return ExtendedPC(NULL);
3411 #else
3412   if (GetThreadContext(handle, &context)) {
3413 #ifdef _M_AMD64
3414     return ExtendedPC((address) context.Rip);
3415 #else
3416     return ExtendedPC((address) context.Eip);
3417 #endif
3418   } else {
3419     return ExtendedPC(NULL);
3420   }
3421 #endif
3422 }
3423 
3424 // GetCurrentThreadId() returns DWORD
3425 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3426 
3427 static int _initial_pid = 0;
3428 
3429 int os::current_process_id()
3430 {
3431   return (_initial_pid ? _initial_pid : _getpid());
3432 }
3433 
3434 int    os::win32::_vm_page_size       = 0;
3435 int    os::win32::_vm_allocation_granularity = 0;
3436 int    os::win32::_processor_type     = 0;
3437 // Processor level is not available on non-NT systems, use vm_version instead
3438 int    os::win32::_processor_level    = 0;
3439 julong os::win32::_physical_memory    = 0;
3440 size_t os::win32::_default_stack_size = 0;
3441 
3442          intx os::win32::_os_thread_limit    = 0;
3443 volatile intx os::win32::_os_thread_count    = 0;
3444 
3445 bool   os::win32::_is_nt              = false;
3446 bool   os::win32::_is_windows_2003    = false;
3447 bool   os::win32::_is_windows_server  = false;
3448 
3449 void os::win32::initialize_system_info() {
3450   SYSTEM_INFO si;
3451   GetSystemInfo(&si);
3452   _vm_page_size    = si.dwPageSize;
3453   _vm_allocation_granularity = si.dwAllocationGranularity;
3454   _processor_type  = si.dwProcessorType;
3455   _processor_level = si.wProcessorLevel;
3456   set_processor_count(si.dwNumberOfProcessors);
3457 
3458   MEMORYSTATUSEX ms;
3459   ms.dwLength = sizeof(ms);
3460 
3461   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3462   // dwMemoryLoad (% of memory in use)
3463   GlobalMemoryStatusEx(&ms);
3464   _physical_memory = ms.ullTotalPhys;
3465 
3466   OSVERSIONINFOEX oi;
3467   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3468   GetVersionEx((OSVERSIONINFO*)&oi);
3469   switch(oi.dwPlatformId) {
3470     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3471     case VER_PLATFORM_WIN32_NT:
3472       _is_nt = true;
3473       {
3474         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3475         if (os_vers == 5002) {
3476           _is_windows_2003 = true;
3477         }
3478         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3479           oi.wProductType == VER_NT_SERVER) {
3480             _is_windows_server = true;
3481         }
3482       }
3483       break;
3484     default: fatal("Unknown platform");
3485   }
3486 
3487   _default_stack_size = os::current_stack_size();
3488   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3489   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3490     "stack size not a multiple of page size");
3491 
3492   initialize_performance_counter();
3493 
3494   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3495   // known to deadlock the system, if the VM issues to thread operations with
3496   // a too high frequency, e.g., such as changing the priorities.
3497   // The 6000 seems to work well - no deadlocks has been notices on the test
3498   // programs that we have seen experience this problem.
3499   if (!os::win32::is_nt()) {
3500     StarvationMonitorInterval = 6000;
3501   }
3502 }
3503 
3504 
3505 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3506   char path[MAX_PATH];
3507   DWORD size;
3508   DWORD pathLen = (DWORD)sizeof(path);
3509   HINSTANCE result = NULL;
3510 
3511   // only allow library name without path component
3512   assert(strchr(name, '\\') == NULL, "path not allowed");
3513   assert(strchr(name, ':') == NULL, "path not allowed");
3514   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3515     jio_snprintf(ebuf, ebuflen,
3516       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3517     return NULL;
3518   }
3519 
3520   // search system directory
3521   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3522     strcat(path, "\\");
3523     strcat(path, name);
3524     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3525       return result;
3526     }
3527   }
3528 
3529   // try Windows directory
3530   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3531     strcat(path, "\\");
3532     strcat(path, name);
3533     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3534       return result;
3535     }
3536   }
3537 
3538   jio_snprintf(ebuf, ebuflen,
3539     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3540   return NULL;
3541 }
3542 
3543 void os::win32::setmode_streams() {
3544   _setmode(_fileno(stdin), _O_BINARY);
3545   _setmode(_fileno(stdout), _O_BINARY);
3546   _setmode(_fileno(stderr), _O_BINARY);
3547 }
3548 
3549 
3550 bool os::is_debugger_attached() {
3551   return IsDebuggerPresent() ? true : false;
3552 }
3553 
3554 
3555 void os::wait_for_keypress_at_exit(void) {
3556   if (PauseAtExit) {
3557     fprintf(stderr, "Press any key to continue...\n");
3558     fgetc(stdin);
3559   }
3560 }
3561 
3562 
3563 int os::message_box(const char* title, const char* message) {
3564   int result = MessageBox(NULL, message, title,
3565                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3566   return result == IDYES;
3567 }
3568 
3569 int os::allocate_thread_local_storage() {
3570   return TlsAlloc();
3571 }
3572 
3573 
3574 void os::free_thread_local_storage(int index) {
3575   TlsFree(index);
3576 }
3577 
3578 
3579 void os::thread_local_storage_at_put(int index, void* value) {
3580   TlsSetValue(index, value);
3581   assert(thread_local_storage_at(index) == value, "Just checking");
3582 }
3583 
3584 
3585 void* os::thread_local_storage_at(int index) {
3586   return TlsGetValue(index);
3587 }
3588 
3589 
3590 #ifndef PRODUCT
3591 #ifndef _WIN64
3592 // Helpers to check whether NX protection is enabled
3593 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3594   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3595       pex->ExceptionRecord->NumberParameters > 0 &&
3596       pex->ExceptionRecord->ExceptionInformation[0] ==
3597       EXCEPTION_INFO_EXEC_VIOLATION) {
3598     return EXCEPTION_EXECUTE_HANDLER;
3599   }
3600   return EXCEPTION_CONTINUE_SEARCH;
3601 }
3602 
3603 void nx_check_protection() {
3604   // If NX is enabled we'll get an exception calling into code on the stack
3605   char code[] = { (char)0xC3 }; // ret
3606   void *code_ptr = (void *)code;
3607   __try {
3608     __asm call code_ptr
3609   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3610     tty->print_raw_cr("NX protection detected.");
3611   }
3612 }
3613 #endif // _WIN64
3614 #endif // PRODUCT
3615 
3616 // this is called _before_ the global arguments have been parsed
3617 void os::init(void) {
3618   _initial_pid = _getpid();
3619 
3620   init_random(1234567);
3621 
3622   win32::initialize_system_info();
3623   win32::setmode_streams();
3624   init_page_sizes((size_t) win32::vm_page_size());
3625 
3626   // For better scalability on MP systems (must be called after initialize_system_info)
3627 #ifndef PRODUCT
3628   if (is_MP()) {
3629     NoYieldsInMicrolock = true;
3630   }
3631 #endif
3632   // This may be overridden later when argument processing is done.
3633   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3634     os::win32::is_windows_2003());
3635 
3636   // Initialize main_process and main_thread
3637   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3638  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3639                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3640     fatal("DuplicateHandle failed\n");
3641   }
3642   main_thread_id = (int) GetCurrentThreadId();
3643 }
3644 
3645 // To install functions for atexit processing
3646 extern "C" {
3647   static void perfMemory_exit_helper() {
3648     perfMemory_exit();
3649   }
3650 }
3651 
3652 // this is called _after_ the global arguments have been parsed
3653 jint os::init_2(void) {
3654   // Allocate a single page and mark it as readable for safepoint polling
3655   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3656   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3657 
3658   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3659   guarantee( return_page != NULL, "Commit Failed for polling page");
3660 
3661   os::set_polling_page( polling_page );
3662 
3663 #ifndef PRODUCT
3664   if( Verbose && PrintMiscellaneous )
3665     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3666 #endif
3667 
3668   if (!UseMembar) {
3669     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3670     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3671 
3672     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3673     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3674 
3675     os::set_memory_serialize_page( mem_serialize_page );
3676 
3677 #ifndef PRODUCT
3678     if(Verbose && PrintMiscellaneous)
3679       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3680 #endif
3681   }
3682 
3683   os::large_page_init();
3684 
3685   // Setup Windows Exceptions
3686 
3687   // for debugging float code generation bugs
3688   if (ForceFloatExceptions) {
3689 #ifndef  _WIN64
3690     static long fp_control_word = 0;
3691     __asm { fstcw fp_control_word }
3692     // see Intel PPro Manual, Vol. 2, p 7-16
3693     const long precision = 0x20;
3694     const long underflow = 0x10;
3695     const long overflow  = 0x08;
3696     const long zero_div  = 0x04;
3697     const long denorm    = 0x02;
3698     const long invalid   = 0x01;
3699     fp_control_word |= invalid;
3700     __asm { fldcw fp_control_word }
3701 #endif
3702   }
3703 
3704   // If stack_commit_size is 0, windows will reserve the default size,
3705   // but only commit a small portion of it.
3706   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3707   size_t default_reserve_size = os::win32::default_stack_size();
3708   size_t actual_reserve_size = stack_commit_size;
3709   if (stack_commit_size < default_reserve_size) {
3710     // If stack_commit_size == 0, we want this too
3711     actual_reserve_size = default_reserve_size;
3712   }
3713 
3714   // Check minimum allowable stack size for thread creation and to initialize
3715   // the java system classes, including StackOverflowError - depends on page
3716   // size.  Add a page for compiler2 recursion in main thread.
3717   // Add in 2*BytesPerWord times page size to account for VM stack during
3718   // class initialization depending on 32 or 64 bit VM.
3719   size_t min_stack_allowed =
3720             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3721             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3722   if (actual_reserve_size < min_stack_allowed) {
3723     tty->print_cr("\nThe stack size specified is too small, "
3724                   "Specify at least %dk",
3725                   min_stack_allowed / K);
3726     return JNI_ERR;
3727   }
3728 
3729   JavaThread::set_stack_size_at_create(stack_commit_size);
3730 
3731   // Calculate theoretical max. size of Threads to guard gainst artifical
3732   // out-of-memory situations, where all available address-space has been
3733   // reserved by thread stacks.
3734   assert(actual_reserve_size != 0, "Must have a stack");
3735 
3736   // Calculate the thread limit when we should start doing Virtual Memory
3737   // banging. Currently when the threads will have used all but 200Mb of space.
3738   //
3739   // TODO: consider performing a similar calculation for commit size instead
3740   // as reserve size, since on a 64-bit platform we'll run into that more
3741   // often than running out of virtual memory space.  We can use the
3742   // lower value of the two calculations as the os_thread_limit.
3743   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3744   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3745 
3746   // at exit methods are called in the reverse order of their registration.
3747   // there is no limit to the number of functions registered. atexit does
3748   // not set errno.
3749 
3750   if (PerfAllowAtExitRegistration) {
3751     // only register atexit functions if PerfAllowAtExitRegistration is set.
3752     // atexit functions can be delayed until process exit time, which
3753     // can be problematic for embedded VM situations. Embedded VMs should
3754     // call DestroyJavaVM() to assure that VM resources are released.
3755 
3756     // note: perfMemory_exit_helper atexit function may be removed in
3757     // the future if the appropriate cleanup code can be added to the
3758     // VM_Exit VMOperation's doit method.
3759     if (atexit(perfMemory_exit_helper) != 0) {
3760       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3761     }
3762   }
3763 
3764 #ifndef _WIN64
3765   // Print something if NX is enabled (win32 on AMD64)
3766   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3767 #endif
3768 
3769   // initialize thread priority policy
3770   prio_init();
3771 
3772   if (UseNUMA && !ForceNUMA) {
3773     UseNUMA = false; // We don't fully support this yet
3774   }
3775 
3776   if (UseNUMAInterleaving) {
3777     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
3778     bool success = numa_interleaving_init();
3779     if (!success) UseNUMAInterleaving = false;
3780   }
3781 
3782   return JNI_OK;
3783 }
3784 
3785 void os::init_3(void) {
3786   return;
3787 }
3788 
3789 // Mark the polling page as unreadable
3790 void os::make_polling_page_unreadable(void) {
3791   DWORD old_status;
3792   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3793     fatal("Could not disable polling page");
3794 };
3795 
3796 // Mark the polling page as readable
3797 void os::make_polling_page_readable(void) {
3798   DWORD old_status;
3799   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3800     fatal("Could not enable polling page");
3801 };
3802 
3803 
3804 int os::stat(const char *path, struct stat *sbuf) {
3805   char pathbuf[MAX_PATH];
3806   if (strlen(path) > MAX_PATH - 1) {
3807     errno = ENAMETOOLONG;
3808     return -1;
3809   }
3810   os::native_path(strcpy(pathbuf, path));
3811   int ret = ::stat(pathbuf, sbuf);
3812   if (sbuf != NULL && UseUTCFileTimestamp) {
3813     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3814     // the system timezone and so can return different values for the
3815     // same file if/when daylight savings time changes.  This adjustment
3816     // makes sure the same timestamp is returned regardless of the TZ.
3817     //
3818     // See:
3819     // http://msdn.microsoft.com/library/
3820     //   default.asp?url=/library/en-us/sysinfo/base/
3821     //   time_zone_information_str.asp
3822     // and
3823     // http://msdn.microsoft.com/library/default.asp?url=
3824     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3825     //
3826     // NOTE: there is a insidious bug here:  If the timezone is changed
3827     // after the call to stat() but before 'GetTimeZoneInformation()', then
3828     // the adjustment we do here will be wrong and we'll return the wrong
3829     // value (which will likely end up creating an invalid class data
3830     // archive).  Absent a better API for this, or some time zone locking
3831     // mechanism, we'll have to live with this risk.
3832     TIME_ZONE_INFORMATION tz;
3833     DWORD tzid = GetTimeZoneInformation(&tz);
3834     int daylightBias =
3835       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3836     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3837   }
3838   return ret;
3839 }
3840 
3841 
3842 #define FT2INT64(ft) \
3843   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3844 
3845 
3846 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3847 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3848 // of a thread.
3849 //
3850 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3851 // the fast estimate available on the platform.
3852 
3853 // current_thread_cpu_time() is not optimized for Windows yet
3854 jlong os::current_thread_cpu_time() {
3855   // return user + sys since the cost is the same
3856   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3857 }
3858 
3859 jlong os::thread_cpu_time(Thread* thread) {
3860   // consistent with what current_thread_cpu_time() returns.
3861   return os::thread_cpu_time(thread, true /* user+sys */);
3862 }
3863 
3864 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3865   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3866 }
3867 
3868 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3869   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3870   // If this function changes, os::is_thread_cpu_time_supported() should too
3871   if (os::win32::is_nt()) {
3872     FILETIME CreationTime;
3873     FILETIME ExitTime;
3874     FILETIME KernelTime;
3875     FILETIME UserTime;
3876 
3877     if ( GetThreadTimes(thread->osthread()->thread_handle(),
3878                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3879       return -1;
3880     else
3881       if (user_sys_cpu_time) {
3882         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3883       } else {
3884         return FT2INT64(UserTime) * 100;
3885       }
3886   } else {
3887     return (jlong) timeGetTime() * 1000000;
3888   }
3889 }
3890 
3891 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3892   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3893   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3894   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3895   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3896 }
3897 
3898 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3899   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3900   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3901   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3902   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3903 }
3904 
3905 bool os::is_thread_cpu_time_supported() {
3906   // see os::thread_cpu_time
3907   if (os::win32::is_nt()) {
3908     FILETIME CreationTime;
3909     FILETIME ExitTime;
3910     FILETIME KernelTime;
3911     FILETIME UserTime;
3912 
3913     if ( GetThreadTimes(GetCurrentThread(),
3914                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3915       return false;
3916     else
3917       return true;
3918   } else {
3919     return false;
3920   }
3921 }
3922 
3923 // Windows does't provide a loadavg primitive so this is stubbed out for now.
3924 // It does have primitives (PDH API) to get CPU usage and run queue length.
3925 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3926 // If we wanted to implement loadavg on Windows, we have a few options:
3927 //
3928 // a) Query CPU usage and run queue length and "fake" an answer by
3929 //    returning the CPU usage if it's under 100%, and the run queue
3930 //    length otherwise.  It turns out that querying is pretty slow
3931 //    on Windows, on the order of 200 microseconds on a fast machine.
3932 //    Note that on the Windows the CPU usage value is the % usage
3933 //    since the last time the API was called (and the first call
3934 //    returns 100%), so we'd have to deal with that as well.
3935 //
3936 // b) Sample the "fake" answer using a sampling thread and store
3937 //    the answer in a global variable.  The call to loadavg would
3938 //    just return the value of the global, avoiding the slow query.
3939 //
3940 // c) Sample a better answer using exponential decay to smooth the
3941 //    value.  This is basically the algorithm used by UNIX kernels.
3942 //
3943 // Note that sampling thread starvation could affect both (b) and (c).
3944 int os::loadavg(double loadavg[], int nelem) {
3945   return -1;
3946 }
3947 
3948 
3949 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3950 bool os::dont_yield() {
3951   return DontYieldALot;
3952 }
3953 
3954 // This method is a slightly reworked copy of JDK's sysOpen
3955 // from src/windows/hpi/src/sys_api_md.c
3956 
3957 int os::open(const char *path, int oflag, int mode) {
3958   char pathbuf[MAX_PATH];
3959 
3960   if (strlen(path) > MAX_PATH - 1) {
3961     errno = ENAMETOOLONG;
3962           return -1;
3963   }
3964   os::native_path(strcpy(pathbuf, path));
3965   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
3966 }
3967 
3968 // Is a (classpath) directory empty?
3969 bool os::dir_is_empty(const char* path) {
3970   WIN32_FIND_DATA fd;
3971   HANDLE f = FindFirstFile(path, &fd);
3972   if (f == INVALID_HANDLE_VALUE) {
3973     return true;
3974   }
3975   FindClose(f);
3976   return false;
3977 }
3978 
3979 // create binary file, rewriting existing file if required
3980 int os::create_binary_file(const char* path, bool rewrite_existing) {
3981   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3982   if (!rewrite_existing) {
3983     oflags |= _O_EXCL;
3984   }
3985   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3986 }
3987 
3988 // return current position of file pointer
3989 jlong os::current_file_offset(int fd) {
3990   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3991 }
3992 
3993 // move file pointer to the specified offset
3994 jlong os::seek_to_file_offset(int fd, jlong offset) {
3995   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3996 }
3997 
3998 
3999 jlong os::lseek(int fd, jlong offset, int whence) {
4000   return (jlong) ::_lseeki64(fd, offset, whence);
4001 }
4002 
4003 // This method is a slightly reworked copy of JDK's sysNativePath
4004 // from src/windows/hpi/src/path_md.c
4005 
4006 /* Convert a pathname to native format.  On win32, this involves forcing all
4007    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4008    sometimes rejects '/') and removing redundant separators.  The input path is
4009    assumed to have been converted into the character encoding used by the local
4010    system.  Because this might be a double-byte encoding, care is taken to
4011    treat double-byte lead characters correctly.
4012 
4013    This procedure modifies the given path in place, as the result is never
4014    longer than the original.  There is no error return; this operation always
4015    succeeds. */
4016 char * os::native_path(char *path) {
4017   char *src = path, *dst = path, *end = path;
4018   char *colon = NULL;           /* If a drive specifier is found, this will
4019                                         point to the colon following the drive
4020                                         letter */
4021 
4022   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4023   assert(((!::IsDBCSLeadByte('/'))
4024     && (!::IsDBCSLeadByte('\\'))
4025     && (!::IsDBCSLeadByte(':'))),
4026     "Illegal lead byte");
4027 
4028   /* Check for leading separators */
4029 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4030   while (isfilesep(*src)) {
4031     src++;
4032   }
4033 
4034   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4035     /* Remove leading separators if followed by drive specifier.  This
4036       hack is necessary to support file URLs containing drive
4037       specifiers (e.g., "file://c:/path").  As a side effect,
4038       "/c:/path" can be used as an alternative to "c:/path". */
4039     *dst++ = *src++;
4040     colon = dst;
4041     *dst++ = ':';
4042     src++;
4043   } else {
4044     src = path;
4045     if (isfilesep(src[0]) && isfilesep(src[1])) {
4046       /* UNC pathname: Retain first separator; leave src pointed at
4047          second separator so that further separators will be collapsed
4048          into the second separator.  The result will be a pathname
4049          beginning with "\\\\" followed (most likely) by a host name. */
4050       src = dst = path + 1;
4051       path[0] = '\\';     /* Force first separator to '\\' */
4052     }
4053   }
4054 
4055   end = dst;
4056 
4057   /* Remove redundant separators from remainder of path, forcing all
4058       separators to be '\\' rather than '/'. Also, single byte space
4059       characters are removed from the end of the path because those
4060       are not legal ending characters on this operating system.
4061   */
4062   while (*src != '\0') {
4063     if (isfilesep(*src)) {
4064       *dst++ = '\\'; src++;
4065       while (isfilesep(*src)) src++;
4066       if (*src == '\0') {
4067         /* Check for trailing separator */
4068         end = dst;
4069         if (colon == dst - 2) break;                      /* "z:\\" */
4070         if (dst == path + 1) break;                       /* "\\" */
4071         if (dst == path + 2 && isfilesep(path[0])) {
4072           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4073             beginning of a UNC pathname.  Even though it is not, by
4074             itself, a valid UNC pathname, we leave it as is in order
4075             to be consistent with the path canonicalizer as well
4076             as the win32 APIs, which treat this case as an invalid
4077             UNC pathname rather than as an alias for the root
4078             directory of the current drive. */
4079           break;
4080         }
4081         end = --dst;  /* Path does not denote a root directory, so
4082                                     remove trailing separator */
4083         break;
4084       }
4085       end = dst;
4086     } else {
4087       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4088         *dst++ = *src++;
4089         if (*src) *dst++ = *src++;
4090         end = dst;
4091       } else {         /* Copy a single-byte character */
4092         char c = *src++;
4093         *dst++ = c;
4094         /* Space is not a legal ending character */
4095         if (c != ' ') end = dst;
4096       }
4097     }
4098   }
4099 
4100   *end = '\0';
4101 
4102   /* For "z:", add "." to work around a bug in the C runtime library */
4103   if (colon == dst - 1) {
4104           path[2] = '.';
4105           path[3] = '\0';
4106   }
4107 
4108   #ifdef DEBUG
4109     jio_fprintf(stderr, "sysNativePath: %s\n", path);
4110   #endif DEBUG
4111   return path;
4112 }
4113 
4114 // This code is a copy of JDK's sysSetLength
4115 // from src/windows/hpi/src/sys_api_md.c
4116 
4117 int os::ftruncate(int fd, jlong length) {
4118   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4119   long high = (long)(length >> 32);
4120   DWORD ret;
4121 
4122   if (h == (HANDLE)(-1)) {
4123     return -1;
4124   }
4125 
4126   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4127   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4128       return -1;
4129   }
4130 
4131   if (::SetEndOfFile(h) == FALSE) {
4132     return -1;
4133   }
4134 
4135   return 0;
4136 }
4137 
4138 
4139 // This code is a copy of JDK's sysSync
4140 // from src/windows/hpi/src/sys_api_md.c
4141 // except for the legacy workaround for a bug in Win 98
4142 
4143 int os::fsync(int fd) {
4144   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4145 
4146   if ( (!::FlushFileBuffers(handle)) &&
4147          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4148     /* from winerror.h */
4149     return -1;
4150   }
4151   return 0;
4152 }
4153 
4154 static int nonSeekAvailable(int, long *);
4155 static int stdinAvailable(int, long *);
4156 
4157 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4158 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4159 
4160 // This code is a copy of JDK's sysAvailable
4161 // from src/windows/hpi/src/sys_api_md.c
4162 
4163 int os::available(int fd, jlong *bytes) {
4164   jlong cur, end;
4165   struct _stati64 stbuf64;
4166 
4167   if (::_fstati64(fd, &stbuf64) >= 0) {
4168     int mode = stbuf64.st_mode;
4169     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4170       int ret;
4171       long lpbytes;
4172       if (fd == 0) {
4173         ret = stdinAvailable(fd, &lpbytes);
4174       } else {
4175         ret = nonSeekAvailable(fd, &lpbytes);
4176       }
4177       (*bytes) = (jlong)(lpbytes);
4178       return ret;
4179     }
4180     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4181       return FALSE;
4182     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4183       return FALSE;
4184     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4185       return FALSE;
4186     }
4187     *bytes = end - cur;
4188     return TRUE;
4189   } else {
4190     return FALSE;
4191   }
4192 }
4193 
4194 // This code is a copy of JDK's nonSeekAvailable
4195 // from src/windows/hpi/src/sys_api_md.c
4196 
4197 static int nonSeekAvailable(int fd, long *pbytes) {
4198   /* This is used for available on non-seekable devices
4199     * (like both named and anonymous pipes, such as pipes
4200     *  connected to an exec'd process).
4201     * Standard Input is a special case.
4202     *
4203     */
4204   HANDLE han;
4205 
4206   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4207     return FALSE;
4208   }
4209 
4210   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4211         /* PeekNamedPipe fails when at EOF.  In that case we
4212          * simply make *pbytes = 0 which is consistent with the
4213          * behavior we get on Solaris when an fd is at EOF.
4214          * The only alternative is to raise an Exception,
4215          * which isn't really warranted.
4216          */
4217     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4218       return FALSE;
4219     }
4220     *pbytes = 0;
4221   }
4222   return TRUE;
4223 }
4224 
4225 #define MAX_INPUT_EVENTS 2000
4226 
4227 // This code is a copy of JDK's stdinAvailable
4228 // from src/windows/hpi/src/sys_api_md.c
4229 
4230 static int stdinAvailable(int fd, long *pbytes) {
4231   HANDLE han;
4232   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4233   DWORD numEvents = 0;  /* Number of events in buffer */
4234   DWORD i = 0;          /* Loop index */
4235   DWORD curLength = 0;  /* Position marker */
4236   DWORD actualLength = 0;       /* Number of bytes readable */
4237   BOOL error = FALSE;         /* Error holder */
4238   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4239 
4240   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4241         return FALSE;
4242   }
4243 
4244   /* Construct an array of input records in the console buffer */
4245   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4246   if (error == 0) {
4247     return nonSeekAvailable(fd, pbytes);
4248   }
4249 
4250   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4251   if (numEvents > MAX_INPUT_EVENTS) {
4252     numEvents = MAX_INPUT_EVENTS;
4253   }
4254 
4255   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4256   if (lpBuffer == NULL) {
4257     return FALSE;
4258   }
4259 
4260   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4261   if (error == 0) {
4262     os::free(lpBuffer, mtInternal);
4263     return FALSE;
4264   }
4265 
4266   /* Examine input records for the number of bytes available */
4267   for(i=0; i<numEvents; i++) {
4268     if (lpBuffer[i].EventType == KEY_EVENT) {
4269 
4270       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4271                                       &(lpBuffer[i].Event);
4272       if (keyRecord->bKeyDown == TRUE) {
4273         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4274         curLength++;
4275         if (*keyPressed == '\r') {
4276           actualLength = curLength;
4277         }
4278       }
4279     }
4280   }
4281 
4282   if(lpBuffer != NULL) {
4283     os::free(lpBuffer, mtInternal);
4284   }
4285 
4286   *pbytes = (long) actualLength;
4287   return TRUE;
4288 }
4289 
4290 // Map a block of memory.
4291 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4292                      char *addr, size_t bytes, bool read_only,
4293                      bool allow_exec) {
4294   HANDLE hFile;
4295   char* base;
4296 
4297   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4298                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4299   if (hFile == NULL) {
4300     if (PrintMiscellaneous && Verbose) {
4301       DWORD err = GetLastError();
4302       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
4303     }
4304     return NULL;
4305   }
4306 
4307   if (allow_exec) {
4308     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4309     // unless it comes from a PE image (which the shared archive is not.)
4310     // Even VirtualProtect refuses to give execute access to mapped memory
4311     // that was not previously executable.
4312     //
4313     // Instead, stick the executable region in anonymous memory.  Yuck.
4314     // Penalty is that ~4 pages will not be shareable - in the future
4315     // we might consider DLLizing the shared archive with a proper PE
4316     // header so that mapping executable + sharing is possible.
4317 
4318     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4319                                 PAGE_READWRITE);
4320     if (base == NULL) {
4321       if (PrintMiscellaneous && Verbose) {
4322         DWORD err = GetLastError();
4323         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4324       }
4325       CloseHandle(hFile);
4326       return NULL;
4327     }
4328 
4329     DWORD bytes_read;
4330     OVERLAPPED overlapped;
4331     overlapped.Offset = (DWORD)file_offset;
4332     overlapped.OffsetHigh = 0;
4333     overlapped.hEvent = NULL;
4334     // ReadFile guarantees that if the return value is true, the requested
4335     // number of bytes were read before returning.
4336     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4337     if (!res) {
4338       if (PrintMiscellaneous && Verbose) {
4339         DWORD err = GetLastError();
4340         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4341       }
4342       release_memory(base, bytes);
4343       CloseHandle(hFile);
4344       return NULL;
4345     }
4346   } else {
4347     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4348                                     NULL /*file_name*/);
4349     if (hMap == NULL) {
4350       if (PrintMiscellaneous && Verbose) {
4351         DWORD err = GetLastError();
4352         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
4353       }
4354       CloseHandle(hFile);
4355       return NULL;
4356     }
4357 
4358     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4359     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4360                                   (DWORD)bytes, addr);
4361     if (base == NULL) {
4362       if (PrintMiscellaneous && Verbose) {
4363         DWORD err = GetLastError();
4364         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4365       }
4366       CloseHandle(hMap);
4367       CloseHandle(hFile);
4368       return NULL;
4369     }
4370 
4371     if (CloseHandle(hMap) == 0) {
4372       if (PrintMiscellaneous && Verbose) {
4373         DWORD err = GetLastError();
4374         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4375       }
4376       CloseHandle(hFile);
4377       return base;
4378     }
4379   }
4380 
4381   if (allow_exec) {
4382     DWORD old_protect;
4383     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4384     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4385 
4386     if (!res) {
4387       if (PrintMiscellaneous && Verbose) {
4388         DWORD err = GetLastError();
4389         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4390       }
4391       // Don't consider this a hard error, on IA32 even if the
4392       // VirtualProtect fails, we should still be able to execute
4393       CloseHandle(hFile);
4394       return base;
4395     }
4396   }
4397 
4398   if (CloseHandle(hFile) == 0) {
4399     if (PrintMiscellaneous && Verbose) {
4400       DWORD err = GetLastError();
4401       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4402     }
4403     return base;
4404   }
4405 
4406   return base;
4407 }
4408 
4409 
4410 // Remap a block of memory.
4411 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4412                        char *addr, size_t bytes, bool read_only,
4413                        bool allow_exec) {
4414   // This OS does not allow existing memory maps to be remapped so we
4415   // have to unmap the memory before we remap it.
4416   if (!os::unmap_memory(addr, bytes)) {
4417     return NULL;
4418   }
4419 
4420   // There is a very small theoretical window between the unmap_memory()
4421   // call above and the map_memory() call below where a thread in native
4422   // code may be able to access an address that is no longer mapped.
4423 
4424   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4425            read_only, allow_exec);
4426 }
4427 
4428 
4429 // Unmap a block of memory.
4430 // Returns true=success, otherwise false.
4431 
4432 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4433   BOOL result = UnmapViewOfFile(addr);
4434   if (result == 0) {
4435     if (PrintMiscellaneous && Verbose) {
4436       DWORD err = GetLastError();
4437       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4438     }
4439     return false;
4440   }
4441   return true;
4442 }
4443 
4444 void os::pause() {
4445   char filename[MAX_PATH];
4446   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4447     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4448   } else {
4449     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4450   }
4451 
4452   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4453   if (fd != -1) {
4454     struct stat buf;
4455     ::close(fd);
4456     while (::stat(filename, &buf) == 0) {
4457       Sleep(100);
4458     }
4459   } else {
4460     jio_fprintf(stderr,
4461       "Could not open pause file '%s', continuing immediately.\n", filename);
4462   }
4463 }
4464 
4465 // An Event wraps a win32 "CreateEvent" kernel handle.
4466 //
4467 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4468 //
4469 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4470 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4471 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4472 //     In addition, an unpark() operation might fetch the handle field, but the
4473 //     event could recycle between the fetch and the SetEvent() operation.
4474 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4475 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4476 //     on an stale but recycled handle would be harmless, but in practice this might
4477 //     confuse other non-Sun code, so it's not a viable approach.
4478 //
4479 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4480 //     with the Event.  The event handle is never closed.  This could be construed
4481 //     as handle leakage, but only up to the maximum # of threads that have been extant
4482 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4483 //     permit a process to have hundreds of thousands of open handles.
4484 //
4485 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4486 //     and release unused handles.
4487 //
4488 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4489 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4490 //
4491 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4492 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4493 //
4494 // We use (2).
4495 //
4496 // TODO-FIXME:
4497 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4498 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4499 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4500 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4501 //     into a single win32 CreateEvent() handle.
4502 //
4503 // _Event transitions in park()
4504 //   -1 => -1 : illegal
4505 //    1 =>  0 : pass - return immediately
4506 //    0 => -1 : block
4507 //
4508 // _Event serves as a restricted-range semaphore :
4509 //    -1 : thread is blocked
4510 //     0 : neutral  - thread is running or ready
4511 //     1 : signaled - thread is running or ready
4512 //
4513 // Another possible encoding of _Event would be
4514 // with explicit "PARKED" and "SIGNALED" bits.
4515 
4516 int os::PlatformEvent::park (jlong Millis) {
4517     guarantee (_ParkHandle != NULL , "Invariant") ;
4518     guarantee (Millis > 0          , "Invariant") ;
4519     int v ;
4520 
4521     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4522     // the initial park() operation.
4523 
4524     for (;;) {
4525         v = _Event ;
4526         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4527     }
4528     guarantee ((v == 0) || (v == 1), "invariant") ;
4529     if (v != 0) return OS_OK ;
4530 
4531     // Do this the hard way by blocking ...
4532     // TODO: consider a brief spin here, gated on the success of recent
4533     // spin attempts by this thread.
4534     //
4535     // We decompose long timeouts into series of shorter timed waits.
4536     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4537     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4538     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4539     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4540     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4541     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4542     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4543     // for the already waited time.  This policy does not admit any new outcomes.
4544     // In the future, however, we might want to track the accumulated wait time and
4545     // adjust Millis accordingly if we encounter a spurious wakeup.
4546 
4547     const int MAXTIMEOUT = 0x10000000 ;
4548     DWORD rv = WAIT_TIMEOUT ;
4549     while (_Event < 0 && Millis > 0) {
4550        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4551        if (Millis > MAXTIMEOUT) {
4552           prd = MAXTIMEOUT ;
4553        }
4554        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4555        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4556        if (rv == WAIT_TIMEOUT) {
4557            Millis -= prd ;
4558        }
4559     }
4560     v = _Event ;
4561     _Event = 0 ;
4562     OrderAccess::fence() ;
4563     // If we encounter a nearly simultanous timeout expiry and unpark()
4564     // we return OS_OK indicating we awoke via unpark().
4565     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4566     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4567 }
4568 
4569 void os::PlatformEvent::park () {
4570     guarantee (_ParkHandle != NULL, "Invariant") ;
4571     // Invariant: Only the thread associated with the Event/PlatformEvent
4572     // may call park().
4573     int v ;
4574     for (;;) {
4575         v = _Event ;
4576         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4577     }
4578     guarantee ((v == 0) || (v == 1), "invariant") ;
4579     if (v != 0) return ;
4580 
4581     // Do this the hard way by blocking ...
4582     // TODO: consider a brief spin here, gated on the success of recent
4583     // spin attempts by this thread.
4584     while (_Event < 0) {
4585        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4586        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4587     }
4588 
4589     // Usually we'll find _Event == 0 at this point, but as
4590     // an optional optimization we clear it, just in case can
4591     // multiple unpark() operations drove _Event up to 1.
4592     _Event = 0 ;
4593     OrderAccess::fence() ;
4594     guarantee (_Event >= 0, "invariant") ;
4595 }
4596 
4597 void os::PlatformEvent::unpark() {
4598   guarantee (_ParkHandle != NULL, "Invariant") ;
4599   int v ;
4600   for (;;) {
4601       v = _Event ;      // Increment _Event if it's < 1.
4602       if (v > 0) {
4603          // If it's already signaled just return.
4604          // The LD of _Event could have reordered or be satisfied
4605          // by a read-aside from this processor's write buffer.
4606          // To avoid problems execute a barrier and then
4607          // ratify the value.  A degenerate CAS() would also work.
4608          // Viz., CAS (v+0, &_Event, v) == v).
4609          OrderAccess::fence() ;
4610          if (_Event == v) return ;
4611          continue ;
4612       }
4613       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4614   }
4615   if (v < 0) {
4616      ::SetEvent (_ParkHandle) ;
4617   }
4618 }
4619 
4620 
4621 // JSR166
4622 // -------------------------------------------------------
4623 
4624 /*
4625  * The Windows implementation of Park is very straightforward: Basic
4626  * operations on Win32 Events turn out to have the right semantics to
4627  * use them directly. We opportunistically resuse the event inherited
4628  * from Monitor.
4629  */
4630 
4631 
4632 void Parker::park(bool isAbsolute, jlong time) {
4633   guarantee (_ParkEvent != NULL, "invariant") ;
4634   // First, demultiplex/decode time arguments
4635   if (time < 0) { // don't wait
4636     return;
4637   }
4638   else if (time == 0 && !isAbsolute) {
4639     time = INFINITE;
4640   }
4641   else if  (isAbsolute) {
4642     time -= os::javaTimeMillis(); // convert to relative time
4643     if (time <= 0) // already elapsed
4644       return;
4645   }
4646   else { // relative
4647     time /= 1000000; // Must coarsen from nanos to millis
4648     if (time == 0)   // Wait for the minimal time unit if zero
4649       time = 1;
4650   }
4651 
4652   JavaThread* thread = (JavaThread*)(Thread::current());
4653   assert(thread->is_Java_thread(), "Must be JavaThread");
4654   JavaThread *jt = (JavaThread *)thread;
4655 
4656   // Don't wait if interrupted or already triggered
4657   if (Thread::is_interrupted(thread, false) ||
4658     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4659     ResetEvent(_ParkEvent);
4660     return;
4661   }
4662   else {
4663     ThreadBlockInVM tbivm(jt);
4664     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4665     jt->set_suspend_equivalent();
4666 
4667     WaitForSingleObject(_ParkEvent,  time);
4668     ResetEvent(_ParkEvent);
4669 
4670     // If externally suspended while waiting, re-suspend
4671     if (jt->handle_special_suspend_equivalent_condition()) {
4672       jt->java_suspend_self();
4673     }
4674   }
4675 }
4676 
4677 void Parker::unpark() {
4678   guarantee (_ParkEvent != NULL, "invariant") ;
4679   SetEvent(_ParkEvent);
4680 }
4681 
4682 // Run the specified command in a separate process. Return its exit value,
4683 // or -1 on failure (e.g. can't create a new process).
4684 int os::fork_and_exec(char* cmd) {
4685   STARTUPINFO si;
4686   PROCESS_INFORMATION pi;
4687 
4688   memset(&si, 0, sizeof(si));
4689   si.cb = sizeof(si);
4690   memset(&pi, 0, sizeof(pi));
4691   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4692                             cmd,    // command line
4693                             NULL,   // process security attribute
4694                             NULL,   // thread security attribute
4695                             TRUE,   // inherits system handles
4696                             0,      // no creation flags
4697                             NULL,   // use parent's environment block
4698                             NULL,   // use parent's starting directory
4699                             &si,    // (in) startup information
4700                             &pi);   // (out) process information
4701 
4702   if (rslt) {
4703     // Wait until child process exits.
4704     WaitForSingleObject(pi.hProcess, INFINITE);
4705 
4706     DWORD exit_code;
4707     GetExitCodeProcess(pi.hProcess, &exit_code);
4708 
4709     // Close process and thread handles.
4710     CloseHandle(pi.hProcess);
4711     CloseHandle(pi.hThread);
4712 
4713     return (int)exit_code;
4714   } else {
4715     return -1;
4716   }
4717 }
4718 
4719 //--------------------------------------------------------------------------------------------------
4720 // Non-product code
4721 
4722 static int mallocDebugIntervalCounter = 0;
4723 static int mallocDebugCounter = 0;
4724 bool os::check_heap(bool force) {
4725   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4726   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4727     // Note: HeapValidate executes two hardware breakpoints when it finds something
4728     // wrong; at these points, eax contains the address of the offending block (I think).
4729     // To get to the exlicit error message(s) below, just continue twice.
4730     HANDLE heap = GetProcessHeap();
4731     { HeapLock(heap);
4732       PROCESS_HEAP_ENTRY phe;
4733       phe.lpData = NULL;
4734       while (HeapWalk(heap, &phe) != 0) {
4735         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4736             !HeapValidate(heap, 0, phe.lpData)) {
4737           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4738           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4739           fatal("corrupted C heap");
4740         }
4741       }
4742       DWORD err = GetLastError();
4743       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4744         fatal(err_msg("heap walk aborted with error %d", err));
4745       }
4746       HeapUnlock(heap);
4747     }
4748     mallocDebugIntervalCounter = 0;
4749   }
4750   return true;
4751 }
4752 
4753 
4754 bool os::find(address addr, outputStream* st) {
4755   // Nothing yet
4756   return false;
4757 }
4758 
4759 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4760   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4761 
4762   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4763     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4764     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4765     address addr = (address) exceptionRecord->ExceptionInformation[1];
4766 
4767     if (os::is_memory_serialize_page(thread, addr))
4768       return EXCEPTION_CONTINUE_EXECUTION;
4769   }
4770 
4771   return EXCEPTION_CONTINUE_SEARCH;
4772 }
4773 
4774 // We don't build a headless jre for Windows
4775 bool os::is_headless_jre() { return false; }
4776 
4777 
4778 typedef CRITICAL_SECTION mutex_t;
4779 #define mutexInit(m)    InitializeCriticalSection(m)
4780 #define mutexDestroy(m) DeleteCriticalSection(m)
4781 #define mutexLock(m)    EnterCriticalSection(m)
4782 #define mutexUnlock(m)  LeaveCriticalSection(m)
4783 
4784 static bool sock_initialized = FALSE;
4785 static mutex_t sockFnTableMutex;
4786 
4787 static void initSock() {
4788   WSADATA wsadata;
4789 
4790   if (!os::WinSock2Dll::WinSock2Available()) {
4791     jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
4792       ::GetLastError());
4793     return;
4794   }
4795   if (sock_initialized == TRUE) return;
4796 
4797   ::mutexInit(&sockFnTableMutex);
4798   ::mutexLock(&sockFnTableMutex);
4799   if (os::WinSock2Dll::WSAStartup(MAKEWORD(1,1), &wsadata) != 0) {
4800       jio_fprintf(stderr, "Could not initialize Winsock\n");
4801   }
4802   sock_initialized = TRUE;
4803   ::mutexUnlock(&sockFnTableMutex);
4804 }
4805 
4806 struct hostent* os::get_host_by_name(char* name) {
4807   if (!sock_initialized) {
4808     initSock();
4809   }
4810   if (!os::WinSock2Dll::WinSock2Available()) {
4811     return NULL;
4812   }
4813   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
4814 }
4815 
4816 int os::socket_close(int fd) {
4817   return ::closesocket(fd);
4818 }
4819 
4820 int os::socket_available(int fd, jint *pbytes) {
4821   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
4822   return (ret < 0) ? 0 : 1;
4823 }
4824 
4825 int os::socket(int domain, int type, int protocol) {
4826   return ::socket(domain, type, protocol);
4827 }
4828 
4829 int os::listen(int fd, int count) {
4830   return ::listen(fd, count);
4831 }
4832 
4833 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
4834   return ::connect(fd, him, len);
4835 }
4836 
4837 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
4838   return ::accept(fd, him, len);
4839 }
4840 
4841 int os::sendto(int fd, char* buf, size_t len, uint flags,
4842                struct sockaddr* to, socklen_t tolen) {
4843 
4844   return ::sendto(fd, buf, (int)len, flags, to, tolen);
4845 }
4846 
4847 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
4848                  sockaddr* from, socklen_t* fromlen) {
4849 
4850   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
4851 }
4852 
4853 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
4854   return ::recv(fd, buf, (int)nBytes, flags);
4855 }
4856 
4857 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
4858   return ::send(fd, buf, (int)nBytes, flags);
4859 }
4860 
4861 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
4862   return ::send(fd, buf, (int)nBytes, flags);
4863 }
4864 
4865 int os::timeout(int fd, long timeout) {
4866   fd_set tbl;
4867   struct timeval t;
4868 
4869   t.tv_sec  = timeout / 1000;
4870   t.tv_usec = (timeout % 1000) * 1000;
4871 
4872   tbl.fd_count    = 1;
4873   tbl.fd_array[0] = fd;
4874 
4875   return ::select(1, &tbl, 0, 0, &t);
4876 }
4877 
4878 int os::get_host_name(char* name, int namelen) {
4879   return ::gethostname(name, namelen);
4880 }
4881 
4882 int os::socket_shutdown(int fd, int howto) {
4883   return ::shutdown(fd, howto);
4884 }
4885 
4886 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
4887   return ::bind(fd, him, len);
4888 }
4889 
4890 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
4891   return ::getsockname(fd, him, len);
4892 }
4893 
4894 int os::get_sock_opt(int fd, int level, int optname,
4895                      char* optval, socklen_t* optlen) {
4896   return ::getsockopt(fd, level, optname, optval, optlen);
4897 }
4898 
4899 int os::set_sock_opt(int fd, int level, int optname,
4900                      const char* optval, socklen_t optlen) {
4901   return ::setsockopt(fd, level, optname, optval, optlen);
4902 }
4903 
4904 
4905 // Kernel32 API
4906 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
4907 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
4908 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
4909 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
4910 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
4911 
4912 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
4913 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
4914 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
4915 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
4916 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
4917 
4918 
4919 BOOL                        os::Kernel32Dll::initialized = FALSE;
4920 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
4921   assert(initialized && _GetLargePageMinimum != NULL,
4922     "GetLargePageMinimumAvailable() not yet called");
4923   return _GetLargePageMinimum();
4924 }
4925 
4926 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
4927   if (!initialized) {
4928     initialize();
4929   }
4930   return _GetLargePageMinimum != NULL;
4931 }
4932 
4933 BOOL os::Kernel32Dll::NumaCallsAvailable() {
4934   if (!initialized) {
4935     initialize();
4936   }
4937   return _VirtualAllocExNuma != NULL;
4938 }
4939 
4940 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
4941   assert(initialized && _VirtualAllocExNuma != NULL,
4942     "NUMACallsAvailable() not yet called");
4943 
4944   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
4945 }
4946 
4947 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
4948   assert(initialized && _GetNumaHighestNodeNumber != NULL,
4949     "NUMACallsAvailable() not yet called");
4950 
4951   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
4952 }
4953 
4954 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
4955   assert(initialized && _GetNumaNodeProcessorMask != NULL,
4956     "NUMACallsAvailable() not yet called");
4957 
4958   return _GetNumaNodeProcessorMask(node, proc_mask);
4959 }
4960 
4961 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
4962   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
4963     if (!initialized) {
4964       initialize();
4965     }
4966 
4967     if (_RtlCaptureStackBackTrace != NULL) {
4968       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
4969         BackTrace, BackTraceHash);
4970     } else {
4971       return 0;
4972     }
4973 }
4974 
4975 void os::Kernel32Dll::initializeCommon() {
4976   if (!initialized) {
4977     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
4978     assert(handle != NULL, "Just check");
4979     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
4980     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
4981     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
4982     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
4983     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
4984     initialized = TRUE;
4985   }
4986 }
4987 
4988 
4989 
4990 #ifndef JDK6_OR_EARLIER
4991 
4992 void os::Kernel32Dll::initialize() {
4993   initializeCommon();
4994 }
4995 
4996 
4997 // Kernel32 API
4998 inline BOOL os::Kernel32Dll::SwitchToThread() {
4999   return ::SwitchToThread();
5000 }
5001 
5002 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5003   return true;
5004 }
5005 
5006   // Help tools
5007 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5008   return true;
5009 }
5010 
5011 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5012   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5013 }
5014 
5015 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5016   return ::Module32First(hSnapshot, lpme);
5017 }
5018 
5019 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5020   return ::Module32Next(hSnapshot, lpme);
5021 }
5022 
5023 
5024 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5025   return true;
5026 }
5027 
5028 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5029   ::GetNativeSystemInfo(lpSystemInfo);
5030 }
5031 
5032 // PSAPI API
5033 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5034   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5035 }
5036 
5037 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5038   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5039 }
5040 
5041 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5042   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5043 }
5044 
5045 inline BOOL os::PSApiDll::PSApiAvailable() {
5046   return true;
5047 }
5048 
5049 
5050 // WinSock2 API
5051 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5052   return ::WSAStartup(wVersionRequested, lpWSAData);
5053 }
5054 
5055 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5056   return ::gethostbyname(name);
5057 }
5058 
5059 inline BOOL os::WinSock2Dll::WinSock2Available() {
5060   return true;
5061 }
5062 
5063 // Advapi API
5064 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5065    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5066    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5067      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5068        BufferLength, PreviousState, ReturnLength);
5069 }
5070 
5071 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5072   PHANDLE TokenHandle) {
5073     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5074 }
5075 
5076 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5077   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5078 }
5079 
5080 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5081   return true;
5082 }
5083 
5084 #else
5085 // Kernel32 API
5086 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5087 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5088 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5089 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5090 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5091 
5092 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5093 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5094 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5095 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5096 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5097 
5098 void os::Kernel32Dll::initialize() {
5099   if (!initialized) {
5100     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5101     assert(handle != NULL, "Just check");
5102 
5103     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5104     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5105       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5106     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5107     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5108     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5109     initializeCommon();  // resolve the functions that always need resolving
5110 
5111     initialized = TRUE;
5112   }
5113 }
5114 
5115 BOOL os::Kernel32Dll::SwitchToThread() {
5116   assert(initialized && _SwitchToThread != NULL,
5117     "SwitchToThreadAvailable() not yet called");
5118   return _SwitchToThread();
5119 }
5120 
5121 
5122 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5123   if (!initialized) {
5124     initialize();
5125   }
5126   return _SwitchToThread != NULL;
5127 }
5128 
5129 // Help tools
5130 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5131   if (!initialized) {
5132     initialize();
5133   }
5134   return _CreateToolhelp32Snapshot != NULL &&
5135          _Module32First != NULL &&
5136          _Module32Next != NULL;
5137 }
5138 
5139 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5140   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5141     "HelpToolsAvailable() not yet called");
5142 
5143   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5144 }
5145 
5146 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5147   assert(initialized && _Module32First != NULL,
5148     "HelpToolsAvailable() not yet called");
5149 
5150   return _Module32First(hSnapshot, lpme);
5151 }
5152 
5153 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5154   assert(initialized && _Module32Next != NULL,
5155     "HelpToolsAvailable() not yet called");
5156 
5157   return _Module32Next(hSnapshot, lpme);
5158 }
5159 
5160 
5161 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5162   if (!initialized) {
5163     initialize();
5164   }
5165   return _GetNativeSystemInfo != NULL;
5166 }
5167 
5168 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5169   assert(initialized && _GetNativeSystemInfo != NULL,
5170     "GetNativeSystemInfoAvailable() not yet called");
5171 
5172   _GetNativeSystemInfo(lpSystemInfo);
5173 }
5174 
5175 // PSAPI API
5176 
5177 
5178 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5179 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5180 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5181 
5182 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5183 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5184 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5185 BOOL                    os::PSApiDll::initialized = FALSE;
5186 
5187 void os::PSApiDll::initialize() {
5188   if (!initialized) {
5189     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5190     if (handle != NULL) {
5191       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5192         "EnumProcessModules");
5193       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5194         "GetModuleFileNameExA");
5195       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5196         "GetModuleInformation");
5197     }
5198     initialized = TRUE;
5199   }
5200 }
5201 
5202 
5203 
5204 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5205   assert(initialized && _EnumProcessModules != NULL,
5206     "PSApiAvailable() not yet called");
5207   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5208 }
5209 
5210 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5211   assert(initialized && _GetModuleFileNameEx != NULL,
5212     "PSApiAvailable() not yet called");
5213   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5214 }
5215 
5216 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5217   assert(initialized && _GetModuleInformation != NULL,
5218     "PSApiAvailable() not yet called");
5219   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5220 }
5221 
5222 BOOL os::PSApiDll::PSApiAvailable() {
5223   if (!initialized) {
5224     initialize();
5225   }
5226   return _EnumProcessModules != NULL &&
5227     _GetModuleFileNameEx != NULL &&
5228     _GetModuleInformation != NULL;
5229 }
5230 
5231 
5232 // WinSock2 API
5233 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5234 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5235 
5236 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5237 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5238 BOOL             os::WinSock2Dll::initialized = FALSE;
5239 
5240 void os::WinSock2Dll::initialize() {
5241   if (!initialized) {
5242     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5243     if (handle != NULL) {
5244       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5245       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5246     }
5247     initialized = TRUE;
5248   }
5249 }
5250 
5251 
5252 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5253   assert(initialized && _WSAStartup != NULL,
5254     "WinSock2Available() not yet called");
5255   return _WSAStartup(wVersionRequested, lpWSAData);
5256 }
5257 
5258 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5259   assert(initialized && _gethostbyname != NULL,
5260     "WinSock2Available() not yet called");
5261   return _gethostbyname(name);
5262 }
5263 
5264 BOOL os::WinSock2Dll::WinSock2Available() {
5265   if (!initialized) {
5266     initialize();
5267   }
5268   return _WSAStartup != NULL &&
5269     _gethostbyname != NULL;
5270 }
5271 
5272 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5273 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5274 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5275 
5276 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5277 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5278 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5279 BOOL                     os::Advapi32Dll::initialized = FALSE;
5280 
5281 void os::Advapi32Dll::initialize() {
5282   if (!initialized) {
5283     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5284     if (handle != NULL) {
5285       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5286         "AdjustTokenPrivileges");
5287       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5288         "OpenProcessToken");
5289       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5290         "LookupPrivilegeValueA");
5291     }
5292     initialized = TRUE;
5293   }
5294 }
5295 
5296 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5297    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5298    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5299    assert(initialized && _AdjustTokenPrivileges != NULL,
5300      "AdvapiAvailable() not yet called");
5301    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5302        BufferLength, PreviousState, ReturnLength);
5303 }
5304 
5305 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5306   PHANDLE TokenHandle) {
5307    assert(initialized && _OpenProcessToken != NULL,
5308      "AdvapiAvailable() not yet called");
5309     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5310 }
5311 
5312 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5313    assert(initialized && _LookupPrivilegeValue != NULL,
5314      "AdvapiAvailable() not yet called");
5315   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5316 }
5317 
5318 BOOL os::Advapi32Dll::AdvapiAvailable() {
5319   if (!initialized) {
5320     initialize();
5321   }
5322   return _AdjustTokenPrivileges != NULL &&
5323     _OpenProcessToken != NULL &&
5324     _LookupPrivilegeValue != NULL;
5325 }
5326 
5327 #endif