1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/heapRegion.inline.hpp"
  42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  44 #include "gc_implementation/g1/vm_operations_g1.hpp"
  45 #include "gc_implementation/shared/isGCActiveMark.hpp"
  46 #include "memory/gcLocker.inline.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/generationSpec.hpp"
  49 #include "memory/referenceProcessor.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oop.pcgc.inline.hpp"
  52 #include "runtime/aprofiler.hpp"
  53 #include "runtime/vmThread.hpp"
  54 
  55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  56 
  57 // turn it on so that the contents of the young list (scan-only /
  58 // to-be-collected) are printed at "strategic" points before / during
  59 // / after the collection --- this is useful for debugging
  60 #define YOUNG_LIST_VERBOSE 0
  61 // CURRENT STATUS
  62 // This file is under construction.  Search for "FIXME".
  63 
  64 // INVARIANTS/NOTES
  65 //
  66 // All allocation activity covered by the G1CollectedHeap interface is
  67 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  68 // and allocate_new_tlab, which are the "entry" points to the
  69 // allocation code from the rest of the JVM.  (Note that this does not
  70 // apply to TLAB allocation, which is not part of this interface: it
  71 // is done by clients of this interface.)
  72 
  73 // Notes on implementation of parallelism in different tasks.
  74 //
  75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  76 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  77 // It does use run_task() which sets _n_workers in the task.
  78 // G1ParTask executes g1_process_strong_roots() ->
  79 // SharedHeap::process_strong_roots() which calls eventuall to
  80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  81 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  83 //
  84 
  85 // Local to this file.
  86 
  87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  88   SuspendibleThreadSet* _sts;
  89   G1RemSet* _g1rs;
  90   ConcurrentG1Refine* _cg1r;
  91   bool _concurrent;
  92 public:
  93   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  94                               G1RemSet* g1rs,
  95                               ConcurrentG1Refine* cg1r) :
  96     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  97   {}
  98   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  99     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && _sts->should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 117   int _calls;
 118   G1CollectedHeap* _g1h;
 119   CardTableModRefBS* _ctbs;
 120   int _histo[256];
 121 public:
 122   ClearLoggedCardTableEntryClosure() :
 123     _calls(0)
 124   {
 125     _g1h = G1CollectedHeap::heap();
 126     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 127     for (int i = 0; i < 256; i++) _histo[i] = 0;
 128   }
 129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 131       _calls++;
 132       unsigned char* ujb = (unsigned char*)card_ptr;
 133       int ind = (int)(*ujb);
 134       _histo[ind]++;
 135       *card_ptr = -1;
 136     }
 137     return true;
 138   }
 139   int calls() { return _calls; }
 140   void print_histo() {
 141     gclog_or_tty->print_cr("Card table value histogram:");
 142     for (int i = 0; i < 256; i++) {
 143       if (_histo[i] != 0) {
 144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 145       }
 146     }
 147   }
 148 };
 149 
 150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 151   int _calls;
 152   G1CollectedHeap* _g1h;
 153   CardTableModRefBS* _ctbs;
 154 public:
 155   RedirtyLoggedCardTableEntryClosure() :
 156     _calls(0)
 157   {
 158     _g1h = G1CollectedHeap::heap();
 159     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 160   }
 161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 163       _calls++;
 164       *card_ptr = 0;
 165     }
 166     return true;
 167   }
 168   int calls() { return _calls; }
 169 };
 170 
 171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 172 public:
 173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 174     *card_ptr = CardTableModRefBS::dirty_card_val();
 175     return true;
 176   }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->print_cr("");
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 void G1CollectedHeap::stop_conc_gc_threads() {
 438   _cg1r->stop();
 439   _cmThread->stop();
 440 }
 441 
 442 #ifdef ASSERT
 443 // A region is added to the collection set as it is retired
 444 // so an address p can point to a region which will be in the
 445 // collection set but has not yet been retired.  This method
 446 // therefore is only accurate during a GC pause after all
 447 // regions have been retired.  It is used for debugging
 448 // to check if an nmethod has references to objects that can
 449 // be move during a partial collection.  Though it can be
 450 // inaccurate, it is sufficient for G1 because the conservative
 451 // implementation of is_scavengable() for G1 will indicate that
 452 // all nmethods must be scanned during a partial collection.
 453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 454   HeapRegion* hr = heap_region_containing(p);
 455   return hr != NULL && hr->in_collection_set();
 456 }
 457 #endif
 458 
 459 // Returns true if the reference points to an object that
 460 // can move in an incremental collecction.
 461 bool G1CollectedHeap::is_scavengable(const void* p) {
 462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 463   G1CollectorPolicy* g1p = g1h->g1_policy();
 464   HeapRegion* hr = heap_region_containing(p);
 465   if (hr == NULL) {
 466      // null
 467      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 468      return false;
 469   } else {
 470     return !hr->isHumongous();
 471   }
 472 }
 473 
 474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 476   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 477 
 478   // Count the dirty cards at the start.
 479   CountNonCleanMemRegionClosure count1(this);
 480   ct_bs->mod_card_iterate(&count1);
 481   int orig_count = count1.n();
 482 
 483   // First clear the logged cards.
 484   ClearLoggedCardTableEntryClosure clear;
 485   dcqs.set_closure(&clear);
 486   dcqs.apply_closure_to_all_completed_buffers();
 487   dcqs.iterate_closure_all_threads(false);
 488   clear.print_histo();
 489 
 490   // Now ensure that there's no dirty cards.
 491   CountNonCleanMemRegionClosure count2(this);
 492   ct_bs->mod_card_iterate(&count2);
 493   if (count2.n() != 0) {
 494     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 495                            count2.n(), orig_count);
 496   }
 497   guarantee(count2.n() == 0, "Card table should be clean.");
 498 
 499   RedirtyLoggedCardTableEntryClosure redirty;
 500   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 501   dcqs.apply_closure_to_all_completed_buffers();
 502   dcqs.iterate_closure_all_threads(false);
 503   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 504                          clear.calls(), orig_count);
 505   guarantee(redirty.calls() == clear.calls(),
 506             "Or else mechanism is broken.");
 507 
 508   CountNonCleanMemRegionClosure count3(this);
 509   ct_bs->mod_card_iterate(&count3);
 510   if (count3.n() != orig_count) {
 511     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 512                            orig_count, count3.n());
 513     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 514   }
 515 
 516   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 517 }
 518 
 519 // Private class members.
 520 
 521 G1CollectedHeap* G1CollectedHeap::_g1h;
 522 
 523 // Private methods.
 524 
 525 HeapRegion*
 526 G1CollectedHeap::new_region_try_secondary_free_list() {
 527   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 528   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 529     if (!_secondary_free_list.is_empty()) {
 530       if (G1ConcRegionFreeingVerbose) {
 531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 532                                "secondary_free_list has %u entries",
 533                                _secondary_free_list.length());
 534       }
 535       // It looks as if there are free regions available on the
 536       // secondary_free_list. Let's move them to the free_list and try
 537       // again to allocate from it.
 538       append_secondary_free_list();
 539 
 540       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 541              "empty we should have moved at least one entry to the free_list");
 542       HeapRegion* res = _free_list.remove_head();
 543       if (G1ConcRegionFreeingVerbose) {
 544         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                                "allocated "HR_FORMAT" from secondary_free_list",
 546                                HR_FORMAT_PARAMS(res));
 547       }
 548       return res;
 549     }
 550 
 551     // Wait here until we get notifed either when (a) there are no
 552     // more free regions coming or (b) some regions have been moved on
 553     // the secondary_free_list.
 554     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 555   }
 556 
 557   if (G1ConcRegionFreeingVerbose) {
 558     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 559                            "could not allocate from secondary_free_list");
 560   }
 561   return NULL;
 562 }
 563 
 564 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 565   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 566          "the only time we use this to allocate a humongous region is "
 567          "when we are allocating a single humongous region");
 568 
 569   HeapRegion* res;
 570   if (G1StressConcRegionFreeing) {
 571     if (!_secondary_free_list.is_empty()) {
 572       if (G1ConcRegionFreeingVerbose) {
 573         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                                "forced to look at the secondary_free_list");
 575       }
 576       res = new_region_try_secondary_free_list();
 577       if (res != NULL) {
 578         return res;
 579       }
 580     }
 581   }
 582   res = _free_list.remove_head_or_null();
 583   if (res == NULL) {
 584     if (G1ConcRegionFreeingVerbose) {
 585       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 586                              "res == NULL, trying the secondary_free_list");
 587     }
 588     res = new_region_try_secondary_free_list();
 589   }
 590   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 591     // Currently, only attempts to allocate GC alloc regions set
 592     // do_expand to true. So, we should only reach here during a
 593     // safepoint. If this assumption changes we might have to
 594     // reconsider the use of _expand_heap_after_alloc_failure.
 595     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 596 
 597     ergo_verbose1(ErgoHeapSizing,
 598                   "attempt heap expansion",
 599                   ergo_format_reason("region allocation request failed")
 600                   ergo_format_byte("allocation request"),
 601                   word_size * HeapWordSize);
 602     if (expand(word_size * HeapWordSize)) {
 603       // Given that expand() succeeded in expanding the heap, and we
 604       // always expand the heap by an amount aligned to the heap
 605       // region size, the free list should in theory not be empty. So
 606       // it would probably be OK to use remove_head(). But the extra
 607       // check for NULL is unlikely to be a performance issue here (we
 608       // just expanded the heap!) so let's just be conservative and
 609       // use remove_head_or_null().
 610       res = _free_list.remove_head_or_null();
 611     } else {
 612       _expand_heap_after_alloc_failure = false;
 613     }
 614   }
 615   return res;
 616 }
 617 
 618 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 619                                                         size_t word_size) {
 620   assert(isHumongous(word_size), "word_size should be humongous");
 621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 622 
 623   uint first = G1_NULL_HRS_INDEX;
 624   if (num_regions == 1) {
 625     // Only one region to allocate, no need to go through the slower
 626     // path. The caller will attempt the expasion if this fails, so
 627     // let's not try to expand here too.
 628     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 629     if (hr != NULL) {
 630       first = hr->hrs_index();
 631     } else {
 632       first = G1_NULL_HRS_INDEX;
 633     }
 634   } else {
 635     // We can't allocate humongous regions while cleanupComplete() is
 636     // running, since some of the regions we find to be empty might not
 637     // yet be added to the free list and it is not straightforward to
 638     // know which list they are on so that we can remove them. Note
 639     // that we only need to do this if we need to allocate more than
 640     // one region to satisfy the current humongous allocation
 641     // request. If we are only allocating one region we use the common
 642     // region allocation code (see above).
 643     wait_while_free_regions_coming();
 644     append_secondary_free_list_if_not_empty_with_lock();
 645 
 646     if (free_regions() >= num_regions) {
 647       first = _hrs.find_contiguous(num_regions);
 648       if (first != G1_NULL_HRS_INDEX) {
 649         for (uint i = first; i < first + num_regions; ++i) {
 650           HeapRegion* hr = region_at(i);
 651           assert(hr->is_empty(), "sanity");
 652           assert(is_on_master_free_list(hr), "sanity");
 653           hr->set_pending_removal(true);
 654         }
 655         _free_list.remove_all_pending(num_regions);
 656       }
 657     }
 658   }
 659   return first;
 660 }
 661 
 662 HeapWord*
 663 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 664                                                            uint num_regions,
 665                                                            size_t word_size) {
 666   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 667   assert(isHumongous(word_size), "word_size should be humongous");
 668   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 669 
 670   // Index of last region in the series + 1.
 671   uint last = first + num_regions;
 672 
 673   // We need to initialize the region(s) we just discovered. This is
 674   // a bit tricky given that it can happen concurrently with
 675   // refinement threads refining cards on these regions and
 676   // potentially wanting to refine the BOT as they are scanning
 677   // those cards (this can happen shortly after a cleanup; see CR
 678   // 6991377). So we have to set up the region(s) carefully and in
 679   // a specific order.
 680 
 681   // The word size sum of all the regions we will allocate.
 682   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 683   assert(word_size <= word_size_sum, "sanity");
 684 
 685   // This will be the "starts humongous" region.
 686   HeapRegion* first_hr = region_at(first);
 687   // The header of the new object will be placed at the bottom of
 688   // the first region.
 689   HeapWord* new_obj = first_hr->bottom();
 690   // This will be the new end of the first region in the series that
 691   // should also match the end of the last region in the seriers.
 692   HeapWord* new_end = new_obj + word_size_sum;
 693   // This will be the new top of the first region that will reflect
 694   // this allocation.
 695   HeapWord* new_top = new_obj + word_size;
 696 
 697   // First, we need to zero the header of the space that we will be
 698   // allocating. When we update top further down, some refinement
 699   // threads might try to scan the region. By zeroing the header we
 700   // ensure that any thread that will try to scan the region will
 701   // come across the zero klass word and bail out.
 702   //
 703   // NOTE: It would not have been correct to have used
 704   // CollectedHeap::fill_with_object() and make the space look like
 705   // an int array. The thread that is doing the allocation will
 706   // later update the object header to a potentially different array
 707   // type and, for a very short period of time, the klass and length
 708   // fields will be inconsistent. This could cause a refinement
 709   // thread to calculate the object size incorrectly.
 710   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 711 
 712   // We will set up the first region as "starts humongous". This
 713   // will also update the BOT covering all the regions to reflect
 714   // that there is a single object that starts at the bottom of the
 715   // first region.
 716   first_hr->set_startsHumongous(new_top, new_end);
 717 
 718   // Then, if there are any, we will set up the "continues
 719   // humongous" regions.
 720   HeapRegion* hr = NULL;
 721   for (uint i = first + 1; i < last; ++i) {
 722     hr = region_at(i);
 723     hr->set_continuesHumongous(first_hr);
 724   }
 725   // If we have "continues humongous" regions (hr != NULL), then the
 726   // end of the last one should match new_end.
 727   assert(hr == NULL || hr->end() == new_end, "sanity");
 728 
 729   // Up to this point no concurrent thread would have been able to
 730   // do any scanning on any region in this series. All the top
 731   // fields still point to bottom, so the intersection between
 732   // [bottom,top] and [card_start,card_end] will be empty. Before we
 733   // update the top fields, we'll do a storestore to make sure that
 734   // no thread sees the update to top before the zeroing of the
 735   // object header and the BOT initialization.
 736   OrderAccess::storestore();
 737 
 738   // Now that the BOT and the object header have been initialized,
 739   // we can update top of the "starts humongous" region.
 740   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 741          "new_top should be in this region");
 742   first_hr->set_top(new_top);
 743   if (_hr_printer.is_active()) {
 744     HeapWord* bottom = first_hr->bottom();
 745     HeapWord* end = first_hr->orig_end();
 746     if ((first + 1) == last) {
 747       // the series has a single humongous region
 748       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 749     } else {
 750       // the series has more than one humongous regions
 751       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 752     }
 753   }
 754 
 755   // Now, we will update the top fields of the "continues humongous"
 756   // regions. The reason we need to do this is that, otherwise,
 757   // these regions would look empty and this will confuse parts of
 758   // G1. For example, the code that looks for a consecutive number
 759   // of empty regions will consider them empty and try to
 760   // re-allocate them. We can extend is_empty() to also include
 761   // !continuesHumongous(), but it is easier to just update the top
 762   // fields here. The way we set top for all regions (i.e., top ==
 763   // end for all regions but the last one, top == new_top for the
 764   // last one) is actually used when we will free up the humongous
 765   // region in free_humongous_region().
 766   hr = NULL;
 767   for (uint i = first + 1; i < last; ++i) {
 768     hr = region_at(i);
 769     if ((i + 1) == last) {
 770       // last continues humongous region
 771       assert(hr->bottom() < new_top && new_top <= hr->end(),
 772              "new_top should fall on this region");
 773       hr->set_top(new_top);
 774       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 775     } else {
 776       // not last one
 777       assert(new_top > hr->end(), "new_top should be above this region");
 778       hr->set_top(hr->end());
 779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 780     }
 781   }
 782   // If we have continues humongous regions (hr != NULL), then the
 783   // end of the last one should match new_end and its top should
 784   // match new_top.
 785   assert(hr == NULL ||
 786          (hr->end() == new_end && hr->top() == new_top), "sanity");
 787 
 788   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 789   _summary_bytes_used += first_hr->used();
 790   _humongous_set.add(first_hr);
 791 
 792   return new_obj;
 793 }
 794 
 795 // If could fit into free regions w/o expansion, try.
 796 // Otherwise, if can expand, do so.
 797 // Otherwise, if using ex regions might help, try with ex given back.
 798 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 799   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 800 
 801   verify_region_sets_optional();
 802 
 803   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 804   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 805   uint x_num = expansion_regions();
 806   uint fs = _hrs.free_suffix();
 807   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 808   if (first == G1_NULL_HRS_INDEX) {
 809     // The only thing we can do now is attempt expansion.
 810     if (fs + x_num >= num_regions) {
 811       // If the number of regions we're trying to allocate for this
 812       // object is at most the number of regions in the free suffix,
 813       // then the call to humongous_obj_allocate_find_first() above
 814       // should have succeeded and we wouldn't be here.
 815       //
 816       // We should only be trying to expand when the free suffix is
 817       // not sufficient for the object _and_ we have some expansion
 818       // room available.
 819       assert(num_regions > fs, "earlier allocation should have succeeded");
 820 
 821       ergo_verbose1(ErgoHeapSizing,
 822                     "attempt heap expansion",
 823                     ergo_format_reason("humongous allocation request failed")
 824                     ergo_format_byte("allocation request"),
 825                     word_size * HeapWordSize);
 826       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 827         // Even though the heap was expanded, it might not have
 828         // reached the desired size. So, we cannot assume that the
 829         // allocation will succeed.
 830         first = humongous_obj_allocate_find_first(num_regions, word_size);
 831       }
 832     }
 833   }
 834 
 835   HeapWord* result = NULL;
 836   if (first != G1_NULL_HRS_INDEX) {
 837     result =
 838       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 839     assert(result != NULL, "it should always return a valid result");
 840 
 841     // A successful humongous object allocation changes the used space
 842     // information of the old generation so we need to recalculate the
 843     // sizes and update the jstat counters here.
 844     g1mm()->update_sizes();
 845   }
 846 
 847   verify_region_sets_optional();
 848 
 849   return result;
 850 }
 851 
 852 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 853   assert_heap_not_locked_and_not_at_safepoint();
 854   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 855 
 856   unsigned int dummy_gc_count_before;
 857   int dummy_gclocker_retry_count = 0;
 858   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 859 }
 860 
 861 HeapWord*
 862 G1CollectedHeap::mem_allocate(size_t word_size,
 863                               bool*  gc_overhead_limit_was_exceeded) {
 864   assert_heap_not_locked_and_not_at_safepoint();
 865 
 866   // Loop until the allocation is satisified, or unsatisfied after GC.
 867   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 868     unsigned int gc_count_before;
 869 
 870     HeapWord* result = NULL;
 871     if (!isHumongous(word_size)) {
 872       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 873     } else {
 874       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 875     }
 876     if (result != NULL) {
 877       return result;
 878     }
 879 
 880     // Create the garbage collection operation...
 881     VM_G1CollectForAllocation op(gc_count_before, word_size);
 882     // ...and get the VM thread to execute it.
 883     VMThread::execute(&op);
 884 
 885     if (op.prologue_succeeded() && op.pause_succeeded()) {
 886       // If the operation was successful we'll return the result even
 887       // if it is NULL. If the allocation attempt failed immediately
 888       // after a Full GC, it's unlikely we'll be able to allocate now.
 889       HeapWord* result = op.result();
 890       if (result != NULL && !isHumongous(word_size)) {
 891         // Allocations that take place on VM operations do not do any
 892         // card dirtying and we have to do it here. We only have to do
 893         // this for non-humongous allocations, though.
 894         dirty_young_block(result, word_size);
 895       }
 896       return result;
 897     } else {
 898       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 899         return NULL;
 900       }
 901       assert(op.result() == NULL,
 902              "the result should be NULL if the VM op did not succeed");
 903     }
 904 
 905     // Give a warning if we seem to be looping forever.
 906     if ((QueuedAllocationWarningCount > 0) &&
 907         (try_count % QueuedAllocationWarningCount == 0)) {
 908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 917                                            unsigned int *gc_count_before_ret,
 918                                            int* gclocker_retry_count_ret) {
 919   // Make sure you read the note in attempt_allocation_humongous().
 920 
 921   assert_heap_not_locked_and_not_at_safepoint();
 922   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 923          "be called for humongous allocation requests");
 924 
 925   // We should only get here after the first-level allocation attempt
 926   // (attempt_allocation()) failed to allocate.
 927 
 928   // We will loop until a) we manage to successfully perform the
 929   // allocation or b) we successfully schedule a collection which
 930   // fails to perform the allocation. b) is the only case when we'll
 931   // return NULL.
 932   HeapWord* result = NULL;
 933   for (int try_count = 1; /* we'll return */; try_count += 1) {
 934     bool should_try_gc;
 935     unsigned int gc_count_before;
 936 
 937     {
 938       MutexLockerEx x(Heap_lock);
 939 
 940       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 941                                                       false /* bot_updates */);
 942       if (result != NULL) {
 943         return result;
 944       }
 945 
 946       // If we reach here, attempt_allocation_locked() above failed to
 947       // allocate a new region. So the mutator alloc region should be NULL.
 948       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 949 
 950       if (GC_locker::is_active_and_needs_gc()) {
 951         if (g1_policy()->can_expand_young_list()) {
 952           // No need for an ergo verbose message here,
 953           // can_expand_young_list() does this when it returns true.
 954           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 955                                                       false /* bot_updates */);
 956           if (result != NULL) {
 957             return result;
 958           }
 959         }
 960         should_try_gc = false;
 961       } else {
 962         // The GCLocker may not be active but the GCLocker initiated
 963         // GC may not yet have been performed (GCLocker::needs_gc()
 964         // returns true). In this case we do not try this GC and
 965         // wait until the GCLocker initiated GC is performed, and
 966         // then retry the allocation.
 967         if (GC_locker::needs_gc()) {
 968           should_try_gc = false;
 969         } else {
 970           // Read the GC count while still holding the Heap_lock.
 971           gc_count_before = total_collections();
 972           should_try_gc = true;
 973         }
 974       }
 975     }
 976 
 977     if (should_try_gc) {
 978       bool succeeded;
 979       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 980       if (result != NULL) {
 981         assert(succeeded, "only way to get back a non-NULL result");
 982         return result;
 983       }
 984 
 985       if (succeeded) {
 986         // If we get here we successfully scheduled a collection which
 987         // failed to allocate. No point in trying to allocate
 988         // further. We'll just return NULL.
 989         MutexLockerEx x(Heap_lock);
 990         *gc_count_before_ret = total_collections();
 991         return NULL;
 992       }
 993     } else {
 994       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 995         MutexLockerEx x(Heap_lock);
 996         *gc_count_before_ret = total_collections();
 997         return NULL;
 998       }
 999       // The GCLocker is either active or the GCLocker initiated
1000       // GC has not yet been performed. Stall until it is and
1001       // then retry the allocation.
1002       GC_locker::stall_until_clear();
1003       (*gclocker_retry_count_ret) += 1;
1004     }
1005 
1006     // We can reach here if we were unsuccessul in scheduling a
1007     // collection (because another thread beat us to it) or if we were
1008     // stalled due to the GC locker. In either can we should retry the
1009     // allocation attempt in case another thread successfully
1010     // performed a collection and reclaimed enough space. We do the
1011     // first attempt (without holding the Heap_lock) here and the
1012     // follow-on attempt will be at the start of the next loop
1013     // iteration (after taking the Heap_lock).
1014     result = _mutator_alloc_region.attempt_allocation(word_size,
1015                                                       false /* bot_updates */);
1016     if (result != NULL) {
1017       return result;
1018     }
1019 
1020     // Give a warning if we seem to be looping forever.
1021     if ((QueuedAllocationWarningCount > 0) &&
1022         (try_count % QueuedAllocationWarningCount == 0)) {
1023       warning("G1CollectedHeap::attempt_allocation_slow() "
1024               "retries %d times", try_count);
1025     }
1026   }
1027 
1028   ShouldNotReachHere();
1029   return NULL;
1030 }
1031 
1032 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1033                                           unsigned int * gc_count_before_ret,
1034                                           int* gclocker_retry_count_ret) {
1035   // The structure of this method has a lot of similarities to
1036   // attempt_allocation_slow(). The reason these two were not merged
1037   // into a single one is that such a method would require several "if
1038   // allocation is not humongous do this, otherwise do that"
1039   // conditional paths which would obscure its flow. In fact, an early
1040   // version of this code did use a unified method which was harder to
1041   // follow and, as a result, it had subtle bugs that were hard to
1042   // track down. So keeping these two methods separate allows each to
1043   // be more readable. It will be good to keep these two in sync as
1044   // much as possible.
1045 
1046   assert_heap_not_locked_and_not_at_safepoint();
1047   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1048          "should only be called for humongous allocations");
1049 
1050   // Humongous objects can exhaust the heap quickly, so we should check if we
1051   // need to start a marking cycle at each humongous object allocation. We do
1052   // the check before we do the actual allocation. The reason for doing it
1053   // before the allocation is that we avoid having to keep track of the newly
1054   // allocated memory while we do a GC.
1055   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1056                                            word_size)) {
1057     collect(GCCause::_g1_humongous_allocation);
1058   }
1059 
1060   // We will loop until a) we manage to successfully perform the
1061   // allocation or b) we successfully schedule a collection which
1062   // fails to perform the allocation. b) is the only case when we'll
1063   // return NULL.
1064   HeapWord* result = NULL;
1065   for (int try_count = 1; /* we'll return */; try_count += 1) {
1066     bool should_try_gc;
1067     unsigned int gc_count_before;
1068 
1069     {
1070       MutexLockerEx x(Heap_lock);
1071 
1072       // Given that humongous objects are not allocated in young
1073       // regions, we'll first try to do the allocation without doing a
1074       // collection hoping that there's enough space in the heap.
1075       result = humongous_obj_allocate(word_size);
1076       if (result != NULL) {
1077         return result;
1078       }
1079 
1080       if (GC_locker::is_active_and_needs_gc()) {
1081         should_try_gc = false;
1082       } else {
1083          // The GCLocker may not be active but the GCLocker initiated
1084         // GC may not yet have been performed (GCLocker::needs_gc()
1085         // returns true). In this case we do not try this GC and
1086         // wait until the GCLocker initiated GC is performed, and
1087         // then retry the allocation.
1088         if (GC_locker::needs_gc()) {
1089           should_try_gc = false;
1090         } else {
1091           // Read the GC count while still holding the Heap_lock.
1092           gc_count_before = total_collections();
1093           should_try_gc = true;
1094         }
1095       }
1096     }
1097 
1098     if (should_try_gc) {
1099       // If we failed to allocate the humongous object, we should try to
1100       // do a collection pause (if we're allowed) in case it reclaims
1101       // enough space for the allocation to succeed after the pause.
1102 
1103       bool succeeded;
1104       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1105       if (result != NULL) {
1106         assert(succeeded, "only way to get back a non-NULL result");
1107         return result;
1108       }
1109 
1110       if (succeeded) {
1111         // If we get here we successfully scheduled a collection which
1112         // failed to allocate. No point in trying to allocate
1113         // further. We'll just return NULL.
1114         MutexLockerEx x(Heap_lock);
1115         *gc_count_before_ret = total_collections();
1116         return NULL;
1117       }
1118     } else {
1119       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1120         MutexLockerEx x(Heap_lock);
1121         *gc_count_before_ret = total_collections();
1122         return NULL;
1123       }
1124       // The GCLocker is either active or the GCLocker initiated
1125       // GC has not yet been performed. Stall until it is and
1126       // then retry the allocation.
1127       GC_locker::stall_until_clear();
1128       (*gclocker_retry_count_ret) += 1;
1129     }
1130 
1131     // We can reach here if we were unsuccessul in scheduling a
1132     // collection (because another thread beat us to it) or if we were
1133     // stalled due to the GC locker. In either can we should retry the
1134     // allocation attempt in case another thread successfully
1135     // performed a collection and reclaimed enough space.  Give a
1136     // warning if we seem to be looping forever.
1137 
1138     if ((QueuedAllocationWarningCount > 0) &&
1139         (try_count % QueuedAllocationWarningCount == 0)) {
1140       warning("G1CollectedHeap::attempt_allocation_humongous() "
1141               "retries %d times", try_count);
1142     }
1143   }
1144 
1145   ShouldNotReachHere();
1146   return NULL;
1147 }
1148 
1149 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1150                                        bool expect_null_mutator_alloc_region) {
1151   assert_at_safepoint(true /* should_be_vm_thread */);
1152   assert(_mutator_alloc_region.get() == NULL ||
1153                                              !expect_null_mutator_alloc_region,
1154          "the current alloc region was unexpectedly found to be non-NULL");
1155 
1156   if (!isHumongous(word_size)) {
1157     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1158                                                       false /* bot_updates */);
1159   } else {
1160     HeapWord* result = humongous_obj_allocate(word_size);
1161     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1162       g1_policy()->set_initiate_conc_mark_if_possible();
1163     }
1164     return result;
1165   }
1166 
1167   ShouldNotReachHere();
1168 }
1169 
1170 class PostMCRemSetClearClosure: public HeapRegionClosure {
1171   G1CollectedHeap* _g1h;
1172   ModRefBarrierSet* _mr_bs;
1173 public:
1174   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1175     _g1h(g1h), _mr_bs(mr_bs) { }
1176   bool doHeapRegion(HeapRegion* r) {
1177     if (r->continuesHumongous()) {
1178       return false;
1179     }
1180     _g1h->reset_gc_time_stamps(r);
1181     HeapRegionRemSet* hrrs = r->rem_set();
1182     if (hrrs != NULL) hrrs->clear();
1183     // You might think here that we could clear just the cards
1184     // corresponding to the used region.  But no: if we leave a dirty card
1185     // in a region we might allocate into, then it would prevent that card
1186     // from being enqueued, and cause it to be missed.
1187     // Re: the performance cost: we shouldn't be doing full GC anyway!
1188     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1189     return false;
1190   }
1191 };
1192 
1193 void G1CollectedHeap::clear_rsets_post_compaction() {
1194   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1195   heap_region_iterate(&rs_clear);
1196 }
1197 
1198 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1199   G1CollectedHeap*   _g1h;
1200   UpdateRSOopClosure _cl;
1201   int                _worker_i;
1202 public:
1203   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1204     _cl(g1->g1_rem_set(), worker_i),
1205     _worker_i(worker_i),
1206     _g1h(g1)
1207   { }
1208 
1209   bool doHeapRegion(HeapRegion* r) {
1210     if (!r->continuesHumongous()) {
1211       _cl.set_from(r);
1212       r->oop_iterate(&_cl);
1213     }
1214     return false;
1215   }
1216 };
1217 
1218 class ParRebuildRSTask: public AbstractGangTask {
1219   G1CollectedHeap* _g1;
1220 public:
1221   ParRebuildRSTask(G1CollectedHeap* g1)
1222     : AbstractGangTask("ParRebuildRSTask"),
1223       _g1(g1)
1224   { }
1225 
1226   void work(uint worker_id) {
1227     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1228     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1229                                           _g1->workers()->active_workers(),
1230                                          HeapRegion::RebuildRSClaimValue);
1231   }
1232 };
1233 
1234 class PostCompactionPrinterClosure: public HeapRegionClosure {
1235 private:
1236   G1HRPrinter* _hr_printer;
1237 public:
1238   bool doHeapRegion(HeapRegion* hr) {
1239     assert(!hr->is_young(), "not expecting to find young regions");
1240     // We only generate output for non-empty regions.
1241     if (!hr->is_empty()) {
1242       if (!hr->isHumongous()) {
1243         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1244       } else if (hr->startsHumongous()) {
1245         if (hr->region_num() == 1) {
1246           // single humongous region
1247           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1248         } else {
1249           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1250         }
1251       } else {
1252         assert(hr->continuesHumongous(), "only way to get here");
1253         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1254       }
1255     }
1256     return false;
1257   }
1258 
1259   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1260     : _hr_printer(hr_printer) { }
1261 };
1262 
1263 void G1CollectedHeap::print_hrs_post_compaction() {
1264   PostCompactionPrinterClosure cl(hr_printer());
1265   heap_region_iterate(&cl);
1266 }
1267 
1268 double G1CollectedHeap::verify(bool guard, const char* msg) {
1269   double verify_time_ms = 0.0;
1270 
1271   if (guard && total_collections() >= VerifyGCStartAt) {
1272     double verify_start = os::elapsedTime();
1273     HandleMark hm;  // Discard invalid handles created during verification
1274     prepare_for_verify();
1275     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
1276     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1277   }
1278 
1279   return verify_time_ms;
1280 }
1281 
1282 void G1CollectedHeap::verify_before_gc() {
1283   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1284   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1285 }
1286 
1287 void G1CollectedHeap::verify_after_gc() {
1288   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1289   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1290 }
1291 
1292 bool G1CollectedHeap::do_collection(bool explicit_gc,
1293                                     bool clear_all_soft_refs,
1294                                     size_t word_size) {
1295   assert_at_safepoint(true /* should_be_vm_thread */);
1296 
1297   if (GC_locker::check_active_before_gc()) {
1298     return false;
1299   }
1300 
1301   SvcGCMarker sgcm(SvcGCMarker::FULL);
1302   ResourceMark rm;
1303 
1304   print_heap_before_gc();
1305 
1306   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1307 
1308   HRSPhaseSetter x(HRSPhaseFullGC);
1309   verify_region_sets_optional();
1310 
1311   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1312                            collector_policy()->should_clear_all_soft_refs();
1313 
1314   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1315 
1316   {
1317     IsGCActiveMark x;
1318 
1319     // Timing
1320     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1321     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1322     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1323 
1324     {
1325       TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
1326       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1327       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1328 
1329       double start = os::elapsedTime();
1330       g1_policy()->record_full_collection_start();
1331 
1332       // Note: When we have a more flexible GC logging framework that
1333       // allows us to add optional attributes to a GC log record we
1334       // could consider timing and reporting how long we wait in the
1335       // following two methods.
1336       wait_while_free_regions_coming();
1337       // If we start the compaction before the CM threads finish
1338       // scanning the root regions we might trip them over as we'll
1339       // be moving objects / updating references. So let's wait until
1340       // they are done. By telling them to abort, they should complete
1341       // early.
1342       _cm->root_regions()->abort();
1343       _cm->root_regions()->wait_until_scan_finished();
1344       append_secondary_free_list_if_not_empty_with_lock();
1345 
1346       gc_prologue(true);
1347       increment_total_collections(true /* full gc */);
1348       increment_old_marking_cycles_started();
1349 
1350       assert(used() == recalculate_used(), "Should be equal");
1351 
1352       verify_before_gc();
1353 
1354       pre_full_gc_dump();
1355 
1356       COMPILER2_PRESENT(DerivedPointerTable::clear());
1357 
1358       // Disable discovery and empty the discovered lists
1359       // for the CM ref processor.
1360       ref_processor_cm()->disable_discovery();
1361       ref_processor_cm()->abandon_partial_discovery();
1362       ref_processor_cm()->verify_no_references_recorded();
1363 
1364       // Abandon current iterations of concurrent marking and concurrent
1365       // refinement, if any are in progress. We have to do this before
1366       // wait_until_scan_finished() below.
1367       concurrent_mark()->abort();
1368 
1369       // Make sure we'll choose a new allocation region afterwards.
1370       release_mutator_alloc_region();
1371       abandon_gc_alloc_regions();
1372       g1_rem_set()->cleanupHRRS();
1373 
1374       // We should call this after we retire any currently active alloc
1375       // regions so that all the ALLOC / RETIRE events are generated
1376       // before the start GC event.
1377       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1378 
1379       // We may have added regions to the current incremental collection
1380       // set between the last GC or pause and now. We need to clear the
1381       // incremental collection set and then start rebuilding it afresh
1382       // after this full GC.
1383       abandon_collection_set(g1_policy()->inc_cset_head());
1384       g1_policy()->clear_incremental_cset();
1385       g1_policy()->stop_incremental_cset_building();
1386 
1387       tear_down_region_sets(false /* free_list_only */);
1388       g1_policy()->set_gcs_are_young(true);
1389 
1390       // See the comments in g1CollectedHeap.hpp and
1391       // G1CollectedHeap::ref_processing_init() about
1392       // how reference processing currently works in G1.
1393 
1394       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1395       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1396 
1397       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1398       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1399 
1400       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1401       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1402 
1403       // Do collection work
1404       {
1405         HandleMark hm;  // Discard invalid handles created during gc
1406         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1407       }
1408 
1409       assert(free_regions() == 0, "we should not have added any free regions");
1410       rebuild_region_sets(false /* free_list_only */);
1411 
1412       // Enqueue any discovered reference objects that have
1413       // not been removed from the discovered lists.
1414       ref_processor_stw()->enqueue_discovered_references();
1415 
1416       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1417 
1418       MemoryService::track_memory_usage();
1419 
1420       verify_after_gc();
1421 
1422       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1423       ref_processor_stw()->verify_no_references_recorded();
1424 
1425       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1426       ClassLoaderDataGraph::purge();
1427     MetaspaceAux::verify_metrics();
1428 
1429       // Note: since we've just done a full GC, concurrent
1430       // marking is no longer active. Therefore we need not
1431       // re-enable reference discovery for the CM ref processor.
1432       // That will be done at the start of the next marking cycle.
1433       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1434       ref_processor_cm()->verify_no_references_recorded();
1435 
1436       reset_gc_time_stamp();
1437       // Since everything potentially moved, we will clear all remembered
1438       // sets, and clear all cards.  Later we will rebuild remebered
1439       // sets. We will also reset the GC time stamps of the regions.
1440       clear_rsets_post_compaction();
1441       check_gc_time_stamps();
1442 
1443       // Resize the heap if necessary.
1444       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1445 
1446       if (_hr_printer.is_active()) {
1447         // We should do this after we potentially resize the heap so
1448         // that all the COMMIT / UNCOMMIT events are generated before
1449         // the end GC event.
1450 
1451         print_hrs_post_compaction();
1452         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1453       }
1454 
1455       if (_cg1r->use_cache()) {
1456         _cg1r->clear_and_record_card_counts();
1457         _cg1r->clear_hot_cache();
1458       }
1459 
1460       // Rebuild remembered sets of all regions.
1461       if (G1CollectedHeap::use_parallel_gc_threads()) {
1462         uint n_workers =
1463           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1464                                                   workers()->active_workers(),
1465                                                   Threads::number_of_non_daemon_threads());
1466         assert(UseDynamicNumberOfGCThreads ||
1467                n_workers == workers()->total_workers(),
1468                "If not dynamic should be using all the  workers");
1469         workers()->set_active_workers(n_workers);
1470         // Set parallel threads in the heap (_n_par_threads) only
1471         // before a parallel phase and always reset it to 0 after
1472         // the phase so that the number of parallel threads does
1473         // no get carried forward to a serial phase where there
1474         // may be code that is "possibly_parallel".
1475         set_par_threads(n_workers);
1476 
1477         ParRebuildRSTask rebuild_rs_task(this);
1478         assert(check_heap_region_claim_values(
1479                HeapRegion::InitialClaimValue), "sanity check");
1480         assert(UseDynamicNumberOfGCThreads ||
1481                workers()->active_workers() == workers()->total_workers(),
1482                "Unless dynamic should use total workers");
1483         // Use the most recent number of  active workers
1484         assert(workers()->active_workers() > 0,
1485                "Active workers not properly set");
1486         set_par_threads(workers()->active_workers());
1487         workers()->run_task(&rebuild_rs_task);
1488         set_par_threads(0);
1489         assert(check_heap_region_claim_values(
1490                HeapRegion::RebuildRSClaimValue), "sanity check");
1491         reset_heap_region_claim_values();
1492       } else {
1493         RebuildRSOutOfRegionClosure rebuild_rs(this);
1494         heap_region_iterate(&rebuild_rs);
1495       }
1496 
1497       if (true) { // FIXME
1498         MetaspaceGC::compute_new_size();
1499       }
1500 
1501 #ifdef TRACESPINNING
1502       ParallelTaskTerminator::print_termination_counts();
1503 #endif
1504 
1505       // Discard all rset updates
1506       JavaThread::dirty_card_queue_set().abandon_logs();
1507       assert(!G1DeferredRSUpdate
1508              || (G1DeferredRSUpdate &&
1509                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1510 
1511       _young_list->reset_sampled_info();
1512       // At this point there should be no regions in the
1513       // entire heap tagged as young.
1514       assert(check_young_list_empty(true /* check_heap */),
1515              "young list should be empty at this point");
1516 
1517       // Update the number of full collections that have been completed.
1518       increment_old_marking_cycles_completed(false /* concurrent */);
1519 
1520       _hrs.verify_optional();
1521       verify_region_sets_optional();
1522 
1523       // Start a new incremental collection set for the next pause
1524       assert(g1_policy()->collection_set() == NULL, "must be");
1525       g1_policy()->start_incremental_cset_building();
1526 
1527       // Clear the _cset_fast_test bitmap in anticipation of adding
1528       // regions to the incremental collection set for the next
1529       // evacuation pause.
1530       clear_cset_fast_test();
1531 
1532       init_mutator_alloc_region();
1533 
1534       double end = os::elapsedTime();
1535       g1_policy()->record_full_collection_end();
1536 
1537       if (G1Log::fine()) {
1538         g1_policy()->print_heap_transition();
1539       }
1540 
1541       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1542       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1543       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1544       // before any GC notifications are raised.
1545       g1mm()->update_sizes();
1546 
1547       gc_epilogue(true);
1548     }
1549 
1550     if (G1Log::finer()) {
1551       g1_policy()->print_detailed_heap_transition();
1552     }
1553 
1554     print_heap_after_gc();
1555 
1556     post_full_gc_dump();
1557   }
1558 
1559   return true;
1560 }
1561 
1562 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1563   // do_collection() will return whether it succeeded in performing
1564   // the GC. Currently, there is no facility on the
1565   // do_full_collection() API to notify the caller than the collection
1566   // did not succeed (e.g., because it was locked out by the GC
1567   // locker). So, right now, we'll ignore the return value.
1568   bool dummy = do_collection(true,                /* explicit_gc */
1569                              clear_all_soft_refs,
1570                              0                    /* word_size */);
1571 }
1572 
1573 // This code is mostly copied from TenuredGeneration.
1574 void
1575 G1CollectedHeap::
1576 resize_if_necessary_after_full_collection(size_t word_size) {
1577   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1578 
1579   // Include the current allocation, if any, and bytes that will be
1580   // pre-allocated to support collections, as "used".
1581   const size_t used_after_gc = used();
1582   const size_t capacity_after_gc = capacity();
1583   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1584 
1585   // This is enforced in arguments.cpp.
1586   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1587          "otherwise the code below doesn't make sense");
1588 
1589   // We don't have floating point command-line arguments
1590   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1591   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1592   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1593   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1594 
1595   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1596   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1597 
1598   // We have to be careful here as these two calculations can overflow
1599   // 32-bit size_t's.
1600   double used_after_gc_d = (double) used_after_gc;
1601   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1602   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1603 
1604   // Let's make sure that they are both under the max heap size, which
1605   // by default will make them fit into a size_t.
1606   double desired_capacity_upper_bound = (double) max_heap_size;
1607   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1608                                     desired_capacity_upper_bound);
1609   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1610                                     desired_capacity_upper_bound);
1611 
1612   // We can now safely turn them into size_t's.
1613   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1614   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1615 
1616   // This assert only makes sense here, before we adjust them
1617   // with respect to the min and max heap size.
1618   assert(minimum_desired_capacity <= maximum_desired_capacity,
1619          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1620                  "maximum_desired_capacity = "SIZE_FORMAT,
1621                  minimum_desired_capacity, maximum_desired_capacity));
1622 
1623   // Should not be greater than the heap max size. No need to adjust
1624   // it with respect to the heap min size as it's a lower bound (i.e.,
1625   // we'll try to make the capacity larger than it, not smaller).
1626   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1627   // Should not be less than the heap min size. No need to adjust it
1628   // with respect to the heap max size as it's an upper bound (i.e.,
1629   // we'll try to make the capacity smaller than it, not greater).
1630   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1631 
1632   if (capacity_after_gc < minimum_desired_capacity) {
1633     // Don't expand unless it's significant
1634     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1635     ergo_verbose4(ErgoHeapSizing,
1636                   "attempt heap expansion",
1637                   ergo_format_reason("capacity lower than "
1638                                      "min desired capacity after Full GC")
1639                   ergo_format_byte("capacity")
1640                   ergo_format_byte("occupancy")
1641                   ergo_format_byte_perc("min desired capacity"),
1642                   capacity_after_gc, used_after_gc,
1643                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1644     expand(expand_bytes);
1645 
1646     // No expansion, now see if we want to shrink
1647   } else if (capacity_after_gc > maximum_desired_capacity) {
1648     // Capacity too large, compute shrinking size
1649     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1650     ergo_verbose4(ErgoHeapSizing,
1651                   "attempt heap shrinking",
1652                   ergo_format_reason("capacity higher than "
1653                                      "max desired capacity after Full GC")
1654                   ergo_format_byte("capacity")
1655                   ergo_format_byte("occupancy")
1656                   ergo_format_byte_perc("max desired capacity"),
1657                   capacity_after_gc, used_after_gc,
1658                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1659     shrink(shrink_bytes);
1660   }
1661 }
1662 
1663 
1664 HeapWord*
1665 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1666                                            bool* succeeded) {
1667   assert_at_safepoint(true /* should_be_vm_thread */);
1668 
1669   *succeeded = true;
1670   // Let's attempt the allocation first.
1671   HeapWord* result =
1672     attempt_allocation_at_safepoint(word_size,
1673                                  false /* expect_null_mutator_alloc_region */);
1674   if (result != NULL) {
1675     assert(*succeeded, "sanity");
1676     return result;
1677   }
1678 
1679   // In a G1 heap, we're supposed to keep allocation from failing by
1680   // incremental pauses.  Therefore, at least for now, we'll favor
1681   // expansion over collection.  (This might change in the future if we can
1682   // do something smarter than full collection to satisfy a failed alloc.)
1683   result = expand_and_allocate(word_size);
1684   if (result != NULL) {
1685     assert(*succeeded, "sanity");
1686     return result;
1687   }
1688 
1689   // Expansion didn't work, we'll try to do a Full GC.
1690   bool gc_succeeded = do_collection(false, /* explicit_gc */
1691                                     false, /* clear_all_soft_refs */
1692                                     word_size);
1693   if (!gc_succeeded) {
1694     *succeeded = false;
1695     return NULL;
1696   }
1697 
1698   // Retry the allocation
1699   result = attempt_allocation_at_safepoint(word_size,
1700                                   true /* expect_null_mutator_alloc_region */);
1701   if (result != NULL) {
1702     assert(*succeeded, "sanity");
1703     return result;
1704   }
1705 
1706   // Then, try a Full GC that will collect all soft references.
1707   gc_succeeded = do_collection(false, /* explicit_gc */
1708                                true,  /* clear_all_soft_refs */
1709                                word_size);
1710   if (!gc_succeeded) {
1711     *succeeded = false;
1712     return NULL;
1713   }
1714 
1715   // Retry the allocation once more
1716   result = attempt_allocation_at_safepoint(word_size,
1717                                   true /* expect_null_mutator_alloc_region */);
1718   if (result != NULL) {
1719     assert(*succeeded, "sanity");
1720     return result;
1721   }
1722 
1723   assert(!collector_policy()->should_clear_all_soft_refs(),
1724          "Flag should have been handled and cleared prior to this point");
1725 
1726   // What else?  We might try synchronous finalization later.  If the total
1727   // space available is large enough for the allocation, then a more
1728   // complete compaction phase than we've tried so far might be
1729   // appropriate.
1730   assert(*succeeded, "sanity");
1731   return NULL;
1732 }
1733 
1734 // Attempting to expand the heap sufficiently
1735 // to support an allocation of the given "word_size".  If
1736 // successful, perform the allocation and return the address of the
1737 // allocated block, or else "NULL".
1738 
1739 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1740   assert_at_safepoint(true /* should_be_vm_thread */);
1741 
1742   verify_region_sets_optional();
1743 
1744   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1745   ergo_verbose1(ErgoHeapSizing,
1746                 "attempt heap expansion",
1747                 ergo_format_reason("allocation request failed")
1748                 ergo_format_byte("allocation request"),
1749                 word_size * HeapWordSize);
1750   if (expand(expand_bytes)) {
1751     _hrs.verify_optional();
1752     verify_region_sets_optional();
1753     return attempt_allocation_at_safepoint(word_size,
1754                                  false /* expect_null_mutator_alloc_region */);
1755   }
1756   return NULL;
1757 }
1758 
1759 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1760                                              HeapWord* new_end) {
1761   assert(old_end != new_end, "don't call this otherwise");
1762   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1763 
1764   // Update the committed mem region.
1765   _g1_committed.set_end(new_end);
1766   // Tell the card table about the update.
1767   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1768   // Tell the BOT about the update.
1769   _bot_shared->resize(_g1_committed.word_size());
1770 }
1771 
1772 bool G1CollectedHeap::expand(size_t expand_bytes) {
1773   size_t old_mem_size = _g1_storage.committed_size();
1774   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1775   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1776                                        HeapRegion::GrainBytes);
1777   ergo_verbose2(ErgoHeapSizing,
1778                 "expand the heap",
1779                 ergo_format_byte("requested expansion amount")
1780                 ergo_format_byte("attempted expansion amount"),
1781                 expand_bytes, aligned_expand_bytes);
1782 
1783   // First commit the memory.
1784   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1785   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1786   if (successful) {
1787     // Then propagate this update to the necessary data structures.
1788     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1789     update_committed_space(old_end, new_end);
1790 
1791     FreeRegionList expansion_list("Local Expansion List");
1792     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1793     assert(mr.start() == old_end, "post-condition");
1794     // mr might be a smaller region than what was requested if
1795     // expand_by() was unable to allocate the HeapRegion instances
1796     assert(mr.end() <= new_end, "post-condition");
1797 
1798     size_t actual_expand_bytes = mr.byte_size();
1799     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1800     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1801            "post-condition");
1802     if (actual_expand_bytes < aligned_expand_bytes) {
1803       // We could not expand _hrs to the desired size. In this case we
1804       // need to shrink the committed space accordingly.
1805       assert(mr.end() < new_end, "invariant");
1806 
1807       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1808       // First uncommit the memory.
1809       _g1_storage.shrink_by(diff_bytes);
1810       // Then propagate this update to the necessary data structures.
1811       update_committed_space(new_end, mr.end());
1812     }
1813     _free_list.add_as_tail(&expansion_list);
1814 
1815     if (_hr_printer.is_active()) {
1816       HeapWord* curr = mr.start();
1817       while (curr < mr.end()) {
1818         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1819         _hr_printer.commit(curr, curr_end);
1820         curr = curr_end;
1821       }
1822       assert(curr == mr.end(), "post-condition");
1823     }
1824     g1_policy()->record_new_heap_size(n_regions());
1825   } else {
1826     ergo_verbose0(ErgoHeapSizing,
1827                   "did not expand the heap",
1828                   ergo_format_reason("heap expansion operation failed"));
1829     // The expansion of the virtual storage space was unsuccessful.
1830     // Let's see if it was because we ran out of swap.
1831     if (G1ExitOnExpansionFailure &&
1832         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1833       // We had head room...
1834       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1835     }
1836   }
1837   return successful;
1838 }
1839 
1840 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1841   size_t old_mem_size = _g1_storage.committed_size();
1842   size_t aligned_shrink_bytes =
1843     ReservedSpace::page_align_size_down(shrink_bytes);
1844   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1845                                          HeapRegion::GrainBytes);
1846   uint num_regions_deleted = 0;
1847   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1848   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1849   assert(mr.end() == old_end, "post-condition");
1850 
1851   ergo_verbose3(ErgoHeapSizing,
1852                 "shrink the heap",
1853                 ergo_format_byte("requested shrinking amount")
1854                 ergo_format_byte("aligned shrinking amount")
1855                 ergo_format_byte("attempted shrinking amount"),
1856                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1857   if (mr.byte_size() > 0) {
1858     if (_hr_printer.is_active()) {
1859       HeapWord* curr = mr.end();
1860       while (curr > mr.start()) {
1861         HeapWord* curr_end = curr;
1862         curr -= HeapRegion::GrainWords;
1863         _hr_printer.uncommit(curr, curr_end);
1864       }
1865       assert(curr == mr.start(), "post-condition");
1866     }
1867 
1868     _g1_storage.shrink_by(mr.byte_size());
1869     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1870     assert(mr.start() == new_end, "post-condition");
1871 
1872     _expansion_regions += num_regions_deleted;
1873     update_committed_space(old_end, new_end);
1874     HeapRegionRemSet::shrink_heap(n_regions());
1875     g1_policy()->record_new_heap_size(n_regions());
1876   } else {
1877     ergo_verbose0(ErgoHeapSizing,
1878                   "did not shrink the heap",
1879                   ergo_format_reason("heap shrinking operation failed"));
1880   }
1881 }
1882 
1883 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1884   verify_region_sets_optional();
1885 
1886   // We should only reach here at the end of a Full GC which means we
1887   // should not not be holding to any GC alloc regions. The method
1888   // below will make sure of that and do any remaining clean up.
1889   abandon_gc_alloc_regions();
1890 
1891   // Instead of tearing down / rebuilding the free lists here, we
1892   // could instead use the remove_all_pending() method on free_list to
1893   // remove only the ones that we need to remove.
1894   tear_down_region_sets(true /* free_list_only */);
1895   shrink_helper(shrink_bytes);
1896   rebuild_region_sets(true /* free_list_only */);
1897 
1898   _hrs.verify_optional();
1899   verify_region_sets_optional();
1900 }
1901 
1902 // Public methods.
1903 
1904 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1905 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1906 #endif // _MSC_VER
1907 
1908 
1909 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1910   SharedHeap(policy_),
1911   _g1_policy(policy_),
1912   _dirty_card_queue_set(false),
1913   _into_cset_dirty_card_queue_set(false),
1914   _is_alive_closure_cm(this),
1915   _is_alive_closure_stw(this),
1916   _ref_processor_cm(NULL),
1917   _ref_processor_stw(NULL),
1918   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1919   _bot_shared(NULL),
1920   _evac_failure_scan_stack(NULL) ,
1921   _mark_in_progress(false),
1922   _cg1r(NULL), _summary_bytes_used(0),
1923   _g1mm(NULL),
1924   _refine_cte_cl(NULL),
1925   _full_collection(false),
1926   _free_list("Master Free List"),
1927   _secondary_free_list("Secondary Free List"),
1928   _old_set("Old Set"),
1929   _humongous_set("Master Humongous Set"),
1930   _free_regions_coming(false),
1931   _young_list(new YoungList(this)),
1932   _gc_time_stamp(0),
1933   _retained_old_gc_alloc_region(NULL),
1934   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1935   _old_plab_stats(OldPLABSize, PLABWeight),
1936   _expand_heap_after_alloc_failure(true),
1937   _surviving_young_words(NULL),
1938   _old_marking_cycles_started(0),
1939   _old_marking_cycles_completed(0),
1940   _in_cset_fast_test(NULL),
1941   _in_cset_fast_test_base(NULL),
1942   _dirty_cards_region_list(NULL),
1943   _worker_cset_start_region(NULL),
1944   _worker_cset_start_region_time_stamp(NULL) {
1945   _g1h = this; // To catch bugs.
1946   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1947     vm_exit_during_initialization("Failed necessary allocation.");
1948   }
1949 
1950   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1951 
1952   int n_queues = MAX2((int)ParallelGCThreads, 1);
1953   _task_queues = new RefToScanQueueSet(n_queues);
1954 
1955   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1956   assert(n_rem_sets > 0, "Invariant.");
1957 
1958   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1959   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1960 
1961   for (int i = 0; i < n_queues; i++) {
1962     RefToScanQueue* q = new RefToScanQueue();
1963     q->initialize();
1964     _task_queues->register_queue(i, q);
1965   }
1966 
1967   clear_cset_start_regions();
1968 
1969   // Initialize the G1EvacuationFailureALot counters and flags.
1970   NOT_PRODUCT(reset_evacuation_should_fail();)
1971 
1972   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1973 }
1974 
1975 jint G1CollectedHeap::initialize() {
1976   CollectedHeap::pre_initialize();
1977   os::enable_vtime();
1978 
1979   G1Log::init();
1980 
1981   // Necessary to satisfy locking discipline assertions.
1982 
1983   MutexLocker x(Heap_lock);
1984 
1985   // We have to initialize the printer before committing the heap, as
1986   // it will be used then.
1987   _hr_printer.set_active(G1PrintHeapRegions);
1988 
1989   // While there are no constraints in the GC code that HeapWordSize
1990   // be any particular value, there are multiple other areas in the
1991   // system which believe this to be true (e.g. oop->object_size in some
1992   // cases incorrectly returns the size in wordSize units rather than
1993   // HeapWordSize).
1994   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1995 
1996   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1997   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1998 
1999   // Ensure that the sizes are properly aligned.
2000   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2001   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2002 
2003   _cg1r = new ConcurrentG1Refine();
2004 
2005   // Reserve the maximum.
2006 
2007   // When compressed oops are enabled, the preferred heap base
2008   // is calculated by subtracting the requested size from the
2009   // 32Gb boundary and using the result as the base address for
2010   // heap reservation. If the requested size is not aligned to
2011   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2012   // into the ReservedHeapSpace constructor) then the actual
2013   // base of the reserved heap may end up differing from the
2014   // address that was requested (i.e. the preferred heap base).
2015   // If this happens then we could end up using a non-optimal
2016   // compressed oops mode.
2017 
2018   // Since max_byte_size is aligned to the size of a heap region (checked
2019   // above).
2020   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2021 
2022   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2023                                                  HeapRegion::GrainBytes);
2024 
2025   // It is important to do this in a way such that concurrent readers can't
2026   // temporarily think somethings in the heap.  (I've actually seen this
2027   // happen in asserts: DLD.)
2028   _reserved.set_word_size(0);
2029   _reserved.set_start((HeapWord*)heap_rs.base());
2030   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2031 
2032   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2033 
2034   // Create the gen rem set (and barrier set) for the entire reserved region.
2035   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2036   set_barrier_set(rem_set()->bs());
2037   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2038     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2039   } else {
2040     vm_exit_during_initialization("G1 requires a mod ref bs.");
2041     return JNI_ENOMEM;
2042   }
2043 
2044   // Also create a G1 rem set.
2045   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2046     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2047   } else {
2048     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2049     return JNI_ENOMEM;
2050   }
2051 
2052   // Carve out the G1 part of the heap.
2053 
2054   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2055   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2056                            g1_rs.size()/HeapWordSize);
2057 
2058   _g1_storage.initialize(g1_rs, 0);
2059   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2060   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2061                   (HeapWord*) _g1_reserved.end(),
2062                   _expansion_regions);
2063 
2064   // 6843694 - ensure that the maximum region index can fit
2065   // in the remembered set structures.
2066   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2067   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2068 
2069   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2070   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2071   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2072             "too many cards per region");
2073 
2074   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2075 
2076   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2077                                              heap_word_size(init_byte_size));
2078 
2079   _g1h = this;
2080 
2081    _in_cset_fast_test_length = max_regions();
2082    _in_cset_fast_test_base =
2083                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2084 
2085    // We're biasing _in_cset_fast_test to avoid subtracting the
2086    // beginning of the heap every time we want to index; basically
2087    // it's the same with what we do with the card table.
2088    _in_cset_fast_test = _in_cset_fast_test_base -
2089                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2090 
2091    // Clear the _cset_fast_test bitmap in anticipation of adding
2092    // regions to the incremental collection set for the first
2093    // evacuation pause.
2094    clear_cset_fast_test();
2095 
2096   // Create the ConcurrentMark data structure and thread.
2097   // (Must do this late, so that "max_regions" is defined.)
2098   _cm = new ConcurrentMark(this, heap_rs);
2099   if (_cm == NULL || !_cm->completed_initialization()) {
2100     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2101     return JNI_ENOMEM;
2102   }
2103   _cmThread = _cm->cmThread();
2104 
2105   // Initialize the from_card cache structure of HeapRegionRemSet.
2106   HeapRegionRemSet::init_heap(max_regions());
2107 
2108   // Now expand into the initial heap size.
2109   if (!expand(init_byte_size)) {
2110     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2111     return JNI_ENOMEM;
2112   }
2113 
2114   // Perform any initialization actions delegated to the policy.
2115   g1_policy()->init();
2116 
2117   _refine_cte_cl =
2118     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2119                                     g1_rem_set(),
2120                                     concurrent_g1_refine());
2121   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2122 
2123   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2124                                                SATB_Q_FL_lock,
2125                                                G1SATBProcessCompletedThreshold,
2126                                                Shared_SATB_Q_lock);
2127 
2128   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2129                                                 DirtyCardQ_FL_lock,
2130                                                 concurrent_g1_refine()->yellow_zone(),
2131                                                 concurrent_g1_refine()->red_zone(),
2132                                                 Shared_DirtyCardQ_lock);
2133 
2134   if (G1DeferredRSUpdate) {
2135     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2136                                       DirtyCardQ_FL_lock,
2137                                       -1, // never trigger processing
2138                                       -1, // no limit on length
2139                                       Shared_DirtyCardQ_lock,
2140                                       &JavaThread::dirty_card_queue_set());
2141   }
2142 
2143   // Initialize the card queue set used to hold cards containing
2144   // references into the collection set.
2145   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2146                                              DirtyCardQ_FL_lock,
2147                                              -1, // never trigger processing
2148                                              -1, // no limit on length
2149                                              Shared_DirtyCardQ_lock,
2150                                              &JavaThread::dirty_card_queue_set());
2151 
2152   // In case we're keeping closure specialization stats, initialize those
2153   // counts and that mechanism.
2154   SpecializationStats::clear();
2155 
2156   // Do later initialization work for concurrent refinement.
2157   _cg1r->init();
2158 
2159   // Here we allocate the dummy full region that is required by the
2160   // G1AllocRegion class. If we don't pass an address in the reserved
2161   // space here, lots of asserts fire.
2162 
2163   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2164                                              _g1_reserved.start());
2165   // We'll re-use the same region whether the alloc region will
2166   // require BOT updates or not and, if it doesn't, then a non-young
2167   // region will complain that it cannot support allocations without
2168   // BOT updates. So we'll tag the dummy region as young to avoid that.
2169   dummy_region->set_young();
2170   // Make sure it's full.
2171   dummy_region->set_top(dummy_region->end());
2172   G1AllocRegion::setup(this, dummy_region);
2173 
2174   init_mutator_alloc_region();
2175 
2176   // Do create of the monitoring and management support so that
2177   // values in the heap have been properly initialized.
2178   _g1mm = new G1MonitoringSupport(this);
2179 
2180   return JNI_OK;
2181 }
2182 
2183 void G1CollectedHeap::ref_processing_init() {
2184   // Reference processing in G1 currently works as follows:
2185   //
2186   // * There are two reference processor instances. One is
2187   //   used to record and process discovered references
2188   //   during concurrent marking; the other is used to
2189   //   record and process references during STW pauses
2190   //   (both full and incremental).
2191   // * Both ref processors need to 'span' the entire heap as
2192   //   the regions in the collection set may be dotted around.
2193   //
2194   // * For the concurrent marking ref processor:
2195   //   * Reference discovery is enabled at initial marking.
2196   //   * Reference discovery is disabled and the discovered
2197   //     references processed etc during remarking.
2198   //   * Reference discovery is MT (see below).
2199   //   * Reference discovery requires a barrier (see below).
2200   //   * Reference processing may or may not be MT
2201   //     (depending on the value of ParallelRefProcEnabled
2202   //     and ParallelGCThreads).
2203   //   * A full GC disables reference discovery by the CM
2204   //     ref processor and abandons any entries on it's
2205   //     discovered lists.
2206   //
2207   // * For the STW processor:
2208   //   * Non MT discovery is enabled at the start of a full GC.
2209   //   * Processing and enqueueing during a full GC is non-MT.
2210   //   * During a full GC, references are processed after marking.
2211   //
2212   //   * Discovery (may or may not be MT) is enabled at the start
2213   //     of an incremental evacuation pause.
2214   //   * References are processed near the end of a STW evacuation pause.
2215   //   * For both types of GC:
2216   //     * Discovery is atomic - i.e. not concurrent.
2217   //     * Reference discovery will not need a barrier.
2218 
2219   SharedHeap::ref_processing_init();
2220   MemRegion mr = reserved_region();
2221 
2222   // Concurrent Mark ref processor
2223   _ref_processor_cm =
2224     new ReferenceProcessor(mr,    // span
2225                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2226                                 // mt processing
2227                            (int) ParallelGCThreads,
2228                                 // degree of mt processing
2229                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2230                                 // mt discovery
2231                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2232                                 // degree of mt discovery
2233                            false,
2234                                 // Reference discovery is not atomic
2235                            &_is_alive_closure_cm,
2236                                 // is alive closure
2237                                 // (for efficiency/performance)
2238                            true);
2239                                 // Setting next fields of discovered
2240                                 // lists requires a barrier.
2241 
2242   // STW ref processor
2243   _ref_processor_stw =
2244     new ReferenceProcessor(mr,    // span
2245                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2246                                 // mt processing
2247                            MAX2((int)ParallelGCThreads, 1),
2248                                 // degree of mt processing
2249                            (ParallelGCThreads > 1),
2250                                 // mt discovery
2251                            MAX2((int)ParallelGCThreads, 1),
2252                                 // degree of mt discovery
2253                            true,
2254                                 // Reference discovery is atomic
2255                            &_is_alive_closure_stw,
2256                                 // is alive closure
2257                                 // (for efficiency/performance)
2258                            false);
2259                                 // Setting next fields of discovered
2260                                 // lists requires a barrier.
2261 }
2262 
2263 size_t G1CollectedHeap::capacity() const {
2264   return _g1_committed.byte_size();
2265 }
2266 
2267 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2268   assert(!hr->continuesHumongous(), "pre-condition");
2269   hr->reset_gc_time_stamp();
2270   if (hr->startsHumongous()) {
2271     uint first_index = hr->hrs_index() + 1;
2272     uint last_index = hr->last_hc_index();
2273     for (uint i = first_index; i < last_index; i += 1) {
2274       HeapRegion* chr = region_at(i);
2275       assert(chr->continuesHumongous(), "sanity");
2276       chr->reset_gc_time_stamp();
2277     }
2278   }
2279 }
2280 
2281 #ifndef PRODUCT
2282 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2283 private:
2284   unsigned _gc_time_stamp;
2285   bool _failures;
2286 
2287 public:
2288   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2289     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2290 
2291   virtual bool doHeapRegion(HeapRegion* hr) {
2292     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2293     if (_gc_time_stamp != region_gc_time_stamp) {
2294       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2295                              "expected %d", HR_FORMAT_PARAMS(hr),
2296                              region_gc_time_stamp, _gc_time_stamp);
2297       _failures = true;
2298     }
2299     return false;
2300   }
2301 
2302   bool failures() { return _failures; }
2303 };
2304 
2305 void G1CollectedHeap::check_gc_time_stamps() {
2306   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2307   heap_region_iterate(&cl);
2308   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2309 }
2310 #endif // PRODUCT
2311 
2312 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2313                                                  DirtyCardQueue* into_cset_dcq,
2314                                                  bool concurrent,
2315                                                  int worker_i) {
2316   // Clean cards in the hot card cache
2317   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2318 
2319   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2320   int n_completed_buffers = 0;
2321   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2322     n_completed_buffers++;
2323   }
2324   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2325   dcqs.clear_n_completed_buffers();
2326   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2327 }
2328 
2329 
2330 // Computes the sum of the storage used by the various regions.
2331 
2332 size_t G1CollectedHeap::used() const {
2333   assert(Heap_lock->owner() != NULL,
2334          "Should be owned on this thread's behalf.");
2335   size_t result = _summary_bytes_used;
2336   // Read only once in case it is set to NULL concurrently
2337   HeapRegion* hr = _mutator_alloc_region.get();
2338   if (hr != NULL)
2339     result += hr->used();
2340   return result;
2341 }
2342 
2343 size_t G1CollectedHeap::used_unlocked() const {
2344   size_t result = _summary_bytes_used;
2345   return result;
2346 }
2347 
2348 class SumUsedClosure: public HeapRegionClosure {
2349   size_t _used;
2350 public:
2351   SumUsedClosure() : _used(0) {}
2352   bool doHeapRegion(HeapRegion* r) {
2353     if (!r->continuesHumongous()) {
2354       _used += r->used();
2355     }
2356     return false;
2357   }
2358   size_t result() { return _used; }
2359 };
2360 
2361 size_t G1CollectedHeap::recalculate_used() const {
2362   SumUsedClosure blk;
2363   heap_region_iterate(&blk);
2364   return blk.result();
2365 }
2366 
2367 size_t G1CollectedHeap::unsafe_max_alloc() {
2368   if (free_regions() > 0) return HeapRegion::GrainBytes;
2369   // otherwise, is there space in the current allocation region?
2370 
2371   // We need to store the current allocation region in a local variable
2372   // here. The problem is that this method doesn't take any locks and
2373   // there may be other threads which overwrite the current allocation
2374   // region field. attempt_allocation(), for example, sets it to NULL
2375   // and this can happen *after* the NULL check here but before the call
2376   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2377   // to be a problem in the optimized build, since the two loads of the
2378   // current allocation region field are optimized away.
2379   HeapRegion* hr = _mutator_alloc_region.get();
2380   if (hr == NULL) {
2381     return 0;
2382   }
2383   return hr->free();
2384 }
2385 
2386 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2387   switch (cause) {
2388     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2389     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2390     case GCCause::_g1_humongous_allocation: return true;
2391     default:                                return false;
2392   }
2393 }
2394 
2395 #ifndef PRODUCT
2396 void G1CollectedHeap::allocate_dummy_regions() {
2397   // Let's fill up most of the region
2398   size_t word_size = HeapRegion::GrainWords - 1024;
2399   // And as a result the region we'll allocate will be humongous.
2400   guarantee(isHumongous(word_size), "sanity");
2401 
2402   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2403     // Let's use the existing mechanism for the allocation
2404     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2405     if (dummy_obj != NULL) {
2406       MemRegion mr(dummy_obj, word_size);
2407       CollectedHeap::fill_with_object(mr);
2408     } else {
2409       // If we can't allocate once, we probably cannot allocate
2410       // again. Let's get out of the loop.
2411       break;
2412     }
2413   }
2414 }
2415 #endif // !PRODUCT
2416 
2417 void G1CollectedHeap::increment_old_marking_cycles_started() {
2418   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2419     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2420     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2421     _old_marking_cycles_started, _old_marking_cycles_completed));
2422 
2423   _old_marking_cycles_started++;
2424 }
2425 
2426 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2427   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2428 
2429   // We assume that if concurrent == true, then the caller is a
2430   // concurrent thread that was joined the Suspendible Thread
2431   // Set. If there's ever a cheap way to check this, we should add an
2432   // assert here.
2433 
2434   // Given that this method is called at the end of a Full GC or of a
2435   // concurrent cycle, and those can be nested (i.e., a Full GC can
2436   // interrupt a concurrent cycle), the number of full collections
2437   // completed should be either one (in the case where there was no
2438   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2439   // behind the number of full collections started.
2440 
2441   // This is the case for the inner caller, i.e. a Full GC.
2442   assert(concurrent ||
2443          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2444          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2445          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2446                  "is inconsistent with _old_marking_cycles_completed = %u",
2447                  _old_marking_cycles_started, _old_marking_cycles_completed));
2448 
2449   // This is the case for the outer caller, i.e. the concurrent cycle.
2450   assert(!concurrent ||
2451          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2452          err_msg("for outer caller (concurrent cycle): "
2453                  "_old_marking_cycles_started = %u "
2454                  "is inconsistent with _old_marking_cycles_completed = %u",
2455                  _old_marking_cycles_started, _old_marking_cycles_completed));
2456 
2457   _old_marking_cycles_completed += 1;
2458 
2459   // We need to clear the "in_progress" flag in the CM thread before
2460   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2461   // is set) so that if a waiter requests another System.gc() it doesn't
2462   // incorrectly see that a marking cyle is still in progress.
2463   if (concurrent) {
2464     _cmThread->clear_in_progress();
2465   }
2466 
2467   // This notify_all() will ensure that a thread that called
2468   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2469   // and it's waiting for a full GC to finish will be woken up. It is
2470   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2471   FullGCCount_lock->notify_all();
2472 }
2473 
2474 void G1CollectedHeap::collect(GCCause::Cause cause) {
2475   assert_heap_not_locked();
2476 
2477   unsigned int gc_count_before;
2478   unsigned int old_marking_count_before;
2479   bool retry_gc;
2480 
2481   do {
2482     retry_gc = false;
2483 
2484     {
2485       MutexLocker ml(Heap_lock);
2486 
2487       // Read the GC count while holding the Heap_lock
2488       gc_count_before = total_collections();
2489       old_marking_count_before = _old_marking_cycles_started;
2490     }
2491 
2492     if (should_do_concurrent_full_gc(cause)) {
2493       // Schedule an initial-mark evacuation pause that will start a
2494       // concurrent cycle. We're setting word_size to 0 which means that
2495       // we are not requesting a post-GC allocation.
2496       VM_G1IncCollectionPause op(gc_count_before,
2497                                  0,     /* word_size */
2498                                  true,  /* should_initiate_conc_mark */
2499                                  g1_policy()->max_pause_time_ms(),
2500                                  cause);
2501 
2502       VMThread::execute(&op);
2503       if (!op.pause_succeeded()) {
2504         if (old_marking_count_before == _old_marking_cycles_started) {
2505           retry_gc = op.should_retry_gc();
2506         } else {
2507           // A Full GC happened while we were trying to schedule the
2508           // initial-mark GC. No point in starting a new cycle given
2509           // that the whole heap was collected anyway.
2510         }
2511 
2512         if (retry_gc) {
2513           if (GC_locker::is_active_and_needs_gc()) {
2514             GC_locker::stall_until_clear();
2515           }
2516         }
2517       }
2518     } else {
2519       if (cause == GCCause::_gc_locker
2520           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2521 
2522         // Schedule a standard evacuation pause. We're setting word_size
2523         // to 0 which means that we are not requesting a post-GC allocation.
2524         VM_G1IncCollectionPause op(gc_count_before,
2525                                    0,     /* word_size */
2526                                    false, /* should_initiate_conc_mark */
2527                                    g1_policy()->max_pause_time_ms(),
2528                                    cause);
2529         VMThread::execute(&op);
2530       } else {
2531         // Schedule a Full GC.
2532         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2533         VMThread::execute(&op);
2534       }
2535     }
2536   } while (retry_gc);
2537 }
2538 
2539 bool G1CollectedHeap::is_in(const void* p) const {
2540   if (_g1_committed.contains(p)) {
2541     // Given that we know that p is in the committed space,
2542     // heap_region_containing_raw() should successfully
2543     // return the containing region.
2544     HeapRegion* hr = heap_region_containing_raw(p);
2545     return hr->is_in(p);
2546   } else {
2547     return false;
2548   }
2549 }
2550 
2551 // Iteration functions.
2552 
2553 // Iterates an OopClosure over all ref-containing fields of objects
2554 // within a HeapRegion.
2555 
2556 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2557   MemRegion _mr;
2558   ExtendedOopClosure* _cl;
2559 public:
2560   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2561     : _mr(mr), _cl(cl) {}
2562   bool doHeapRegion(HeapRegion* r) {
2563     if (!r->continuesHumongous()) {
2564       r->oop_iterate(_cl);
2565     }
2566     return false;
2567   }
2568 };
2569 
2570 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2571   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2572   heap_region_iterate(&blk);
2573 }
2574 
2575 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2576   IterateOopClosureRegionClosure blk(mr, cl);
2577   heap_region_iterate(&blk);
2578 }
2579 
2580 // Iterates an ObjectClosure over all objects within a HeapRegion.
2581 
2582 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2583   ObjectClosure* _cl;
2584 public:
2585   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2586   bool doHeapRegion(HeapRegion* r) {
2587     if (! r->continuesHumongous()) {
2588       r->object_iterate(_cl);
2589     }
2590     return false;
2591   }
2592 };
2593 
2594 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2595   IterateObjectClosureRegionClosure blk(cl);
2596   heap_region_iterate(&blk);
2597 }
2598 
2599 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2600   // FIXME: is this right?
2601   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2602 }
2603 
2604 // Calls a SpaceClosure on a HeapRegion.
2605 
2606 class SpaceClosureRegionClosure: public HeapRegionClosure {
2607   SpaceClosure* _cl;
2608 public:
2609   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2610   bool doHeapRegion(HeapRegion* r) {
2611     _cl->do_space(r);
2612     return false;
2613   }
2614 };
2615 
2616 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2617   SpaceClosureRegionClosure blk(cl);
2618   heap_region_iterate(&blk);
2619 }
2620 
2621 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2622   _hrs.iterate(cl);
2623 }
2624 
2625 void
2626 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2627                                                  uint worker_id,
2628                                                  uint no_of_par_workers,
2629                                                  jint claim_value) {
2630   const uint regions = n_regions();
2631   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2632                              no_of_par_workers :
2633                              1);
2634   assert(UseDynamicNumberOfGCThreads ||
2635          no_of_par_workers == workers()->total_workers(),
2636          "Non dynamic should use fixed number of workers");
2637   // try to spread out the starting points of the workers
2638   const HeapRegion* start_hr =
2639                         start_region_for_worker(worker_id, no_of_par_workers);
2640   const uint start_index = start_hr->hrs_index();
2641 
2642   // each worker will actually look at all regions
2643   for (uint count = 0; count < regions; ++count) {
2644     const uint index = (start_index + count) % regions;
2645     assert(0 <= index && index < regions, "sanity");
2646     HeapRegion* r = region_at(index);
2647     // we'll ignore "continues humongous" regions (we'll process them
2648     // when we come across their corresponding "start humongous"
2649     // region) and regions already claimed
2650     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2651       continue;
2652     }
2653     // OK, try to claim it
2654     if (r->claimHeapRegion(claim_value)) {
2655       // success!
2656       assert(!r->continuesHumongous(), "sanity");
2657       if (r->startsHumongous()) {
2658         // If the region is "starts humongous" we'll iterate over its
2659         // "continues humongous" first; in fact we'll do them
2660         // first. The order is important. In on case, calling the
2661         // closure on the "starts humongous" region might de-allocate
2662         // and clear all its "continues humongous" regions and, as a
2663         // result, we might end up processing them twice. So, we'll do
2664         // them first (notice: most closures will ignore them anyway) and
2665         // then we'll do the "starts humongous" region.
2666         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2667           HeapRegion* chr = region_at(ch_index);
2668 
2669           // if the region has already been claimed or it's not
2670           // "continues humongous" we're done
2671           if (chr->claim_value() == claim_value ||
2672               !chr->continuesHumongous()) {
2673             break;
2674           }
2675 
2676           // Noone should have claimed it directly. We can given
2677           // that we claimed its "starts humongous" region.
2678           assert(chr->claim_value() != claim_value, "sanity");
2679           assert(chr->humongous_start_region() == r, "sanity");
2680 
2681           if (chr->claimHeapRegion(claim_value)) {
2682             // we should always be able to claim it; noone else should
2683             // be trying to claim this region
2684 
2685             bool res2 = cl->doHeapRegion(chr);
2686             assert(!res2, "Should not abort");
2687 
2688             // Right now, this holds (i.e., no closure that actually
2689             // does something with "continues humongous" regions
2690             // clears them). We might have to weaken it in the future,
2691             // but let's leave these two asserts here for extra safety.
2692             assert(chr->continuesHumongous(), "should still be the case");
2693             assert(chr->humongous_start_region() == r, "sanity");
2694           } else {
2695             guarantee(false, "we should not reach here");
2696           }
2697         }
2698       }
2699 
2700       assert(!r->continuesHumongous(), "sanity");
2701       bool res = cl->doHeapRegion(r);
2702       assert(!res, "Should not abort");
2703     }
2704   }
2705 }
2706 
2707 class ResetClaimValuesClosure: public HeapRegionClosure {
2708 public:
2709   bool doHeapRegion(HeapRegion* r) {
2710     r->set_claim_value(HeapRegion::InitialClaimValue);
2711     return false;
2712   }
2713 };
2714 
2715 void G1CollectedHeap::reset_heap_region_claim_values() {
2716   ResetClaimValuesClosure blk;
2717   heap_region_iterate(&blk);
2718 }
2719 
2720 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2721   ResetClaimValuesClosure blk;
2722   collection_set_iterate(&blk);
2723 }
2724 
2725 #ifdef ASSERT
2726 // This checks whether all regions in the heap have the correct claim
2727 // value. I also piggy-backed on this a check to ensure that the
2728 // humongous_start_region() information on "continues humongous"
2729 // regions is correct.
2730 
2731 class CheckClaimValuesClosure : public HeapRegionClosure {
2732 private:
2733   jint _claim_value;
2734   uint _failures;
2735   HeapRegion* _sh_region;
2736 
2737 public:
2738   CheckClaimValuesClosure(jint claim_value) :
2739     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2740   bool doHeapRegion(HeapRegion* r) {
2741     if (r->claim_value() != _claim_value) {
2742       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2743                              "claim value = %d, should be %d",
2744                              HR_FORMAT_PARAMS(r),
2745                              r->claim_value(), _claim_value);
2746       ++_failures;
2747     }
2748     if (!r->isHumongous()) {
2749       _sh_region = NULL;
2750     } else if (r->startsHumongous()) {
2751       _sh_region = r;
2752     } else if (r->continuesHumongous()) {
2753       if (r->humongous_start_region() != _sh_region) {
2754         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2755                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2756                                HR_FORMAT_PARAMS(r),
2757                                r->humongous_start_region(),
2758                                _sh_region);
2759         ++_failures;
2760       }
2761     }
2762     return false;
2763   }
2764   uint failures() { return _failures; }
2765 };
2766 
2767 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2768   CheckClaimValuesClosure cl(claim_value);
2769   heap_region_iterate(&cl);
2770   return cl.failures() == 0;
2771 }
2772 
2773 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2774 private:
2775   jint _claim_value;
2776   uint _failures;
2777 
2778 public:
2779   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2780     _claim_value(claim_value), _failures(0) { }
2781 
2782   uint failures() { return _failures; }
2783 
2784   bool doHeapRegion(HeapRegion* hr) {
2785     assert(hr->in_collection_set(), "how?");
2786     assert(!hr->isHumongous(), "H-region in CSet");
2787     if (hr->claim_value() != _claim_value) {
2788       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2789                              "claim value = %d, should be %d",
2790                              HR_FORMAT_PARAMS(hr),
2791                              hr->claim_value(), _claim_value);
2792       _failures += 1;
2793     }
2794     return false;
2795   }
2796 };
2797 
2798 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2799   CheckClaimValuesInCSetHRClosure cl(claim_value);
2800   collection_set_iterate(&cl);
2801   return cl.failures() == 0;
2802 }
2803 #endif // ASSERT
2804 
2805 // Clear the cached CSet starting regions and (more importantly)
2806 // the time stamps. Called when we reset the GC time stamp.
2807 void G1CollectedHeap::clear_cset_start_regions() {
2808   assert(_worker_cset_start_region != NULL, "sanity");
2809   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2810 
2811   int n_queues = MAX2((int)ParallelGCThreads, 1);
2812   for (int i = 0; i < n_queues; i++) {
2813     _worker_cset_start_region[i] = NULL;
2814     _worker_cset_start_region_time_stamp[i] = 0;
2815   }
2816 }
2817 
2818 // Given the id of a worker, obtain or calculate a suitable
2819 // starting region for iterating over the current collection set.
2820 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2821   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2822 
2823   HeapRegion* result = NULL;
2824   unsigned gc_time_stamp = get_gc_time_stamp();
2825 
2826   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2827     // Cached starting region for current worker was set
2828     // during the current pause - so it's valid.
2829     // Note: the cached starting heap region may be NULL
2830     // (when the collection set is empty).
2831     result = _worker_cset_start_region[worker_i];
2832     assert(result == NULL || result->in_collection_set(), "sanity");
2833     return result;
2834   }
2835 
2836   // The cached entry was not valid so let's calculate
2837   // a suitable starting heap region for this worker.
2838 
2839   // We want the parallel threads to start their collection
2840   // set iteration at different collection set regions to
2841   // avoid contention.
2842   // If we have:
2843   //          n collection set regions
2844   //          p threads
2845   // Then thread t will start at region floor ((t * n) / p)
2846 
2847   result = g1_policy()->collection_set();
2848   if (G1CollectedHeap::use_parallel_gc_threads()) {
2849     uint cs_size = g1_policy()->cset_region_length();
2850     uint active_workers = workers()->active_workers();
2851     assert(UseDynamicNumberOfGCThreads ||
2852              active_workers == workers()->total_workers(),
2853              "Unless dynamic should use total workers");
2854 
2855     uint end_ind   = (cs_size * worker_i) / active_workers;
2856     uint start_ind = 0;
2857 
2858     if (worker_i > 0 &&
2859         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2860       // Previous workers starting region is valid
2861       // so let's iterate from there
2862       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2863       result = _worker_cset_start_region[worker_i - 1];
2864     }
2865 
2866     for (uint i = start_ind; i < end_ind; i++) {
2867       result = result->next_in_collection_set();
2868     }
2869   }
2870 
2871   // Note: the calculated starting heap region may be NULL
2872   // (when the collection set is empty).
2873   assert(result == NULL || result->in_collection_set(), "sanity");
2874   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2875          "should be updated only once per pause");
2876   _worker_cset_start_region[worker_i] = result;
2877   OrderAccess::storestore();
2878   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2879   return result;
2880 }
2881 
2882 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2883                                                      uint no_of_par_workers) {
2884   uint worker_num =
2885            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2886   assert(UseDynamicNumberOfGCThreads ||
2887          no_of_par_workers == workers()->total_workers(),
2888          "Non dynamic should use fixed number of workers");
2889   const uint start_index = n_regions() * worker_i / worker_num;
2890   return region_at(start_index);
2891 }
2892 
2893 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2894   HeapRegion* r = g1_policy()->collection_set();
2895   while (r != NULL) {
2896     HeapRegion* next = r->next_in_collection_set();
2897     if (cl->doHeapRegion(r)) {
2898       cl->incomplete();
2899       return;
2900     }
2901     r = next;
2902   }
2903 }
2904 
2905 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2906                                                   HeapRegionClosure *cl) {
2907   if (r == NULL) {
2908     // The CSet is empty so there's nothing to do.
2909     return;
2910   }
2911 
2912   assert(r->in_collection_set(),
2913          "Start region must be a member of the collection set.");
2914   HeapRegion* cur = r;
2915   while (cur != NULL) {
2916     HeapRegion* next = cur->next_in_collection_set();
2917     if (cl->doHeapRegion(cur) && false) {
2918       cl->incomplete();
2919       return;
2920     }
2921     cur = next;
2922   }
2923   cur = g1_policy()->collection_set();
2924   while (cur != r) {
2925     HeapRegion* next = cur->next_in_collection_set();
2926     if (cl->doHeapRegion(cur) && false) {
2927       cl->incomplete();
2928       return;
2929     }
2930     cur = next;
2931   }
2932 }
2933 
2934 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2935   return n_regions() > 0 ? region_at(0) : NULL;
2936 }
2937 
2938 
2939 Space* G1CollectedHeap::space_containing(const void* addr) const {
2940   Space* res = heap_region_containing(addr);
2941   return res;
2942 }
2943 
2944 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2945   Space* sp = space_containing(addr);
2946   if (sp != NULL) {
2947     return sp->block_start(addr);
2948   }
2949   return NULL;
2950 }
2951 
2952 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2953   Space* sp = space_containing(addr);
2954   assert(sp != NULL, "block_size of address outside of heap");
2955   return sp->block_size(addr);
2956 }
2957 
2958 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2959   Space* sp = space_containing(addr);
2960   return sp->block_is_obj(addr);
2961 }
2962 
2963 bool G1CollectedHeap::supports_tlab_allocation() const {
2964   return true;
2965 }
2966 
2967 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2968   return HeapRegion::GrainBytes;
2969 }
2970 
2971 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2972   // Return the remaining space in the cur alloc region, but not less than
2973   // the min TLAB size.
2974 
2975   // Also, this value can be at most the humongous object threshold,
2976   // since we can't allow tlabs to grow big enough to accomodate
2977   // humongous objects.
2978 
2979   HeapRegion* hr = _mutator_alloc_region.get();
2980   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2981   if (hr == NULL) {
2982     return max_tlab_size;
2983   } else {
2984     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2985   }
2986 }
2987 
2988 size_t G1CollectedHeap::max_capacity() const {
2989   return _g1_reserved.byte_size();
2990 }
2991 
2992 jlong G1CollectedHeap::millis_since_last_gc() {
2993   // assert(false, "NYI");
2994   return 0;
2995 }
2996 
2997 void G1CollectedHeap::prepare_for_verify() {
2998   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2999     ensure_parsability(false);
3000   }
3001   g1_rem_set()->prepare_for_verify();
3002 }
3003 
3004 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3005                                               VerifyOption vo) {
3006   switch (vo) {
3007   case VerifyOption_G1UsePrevMarking:
3008     return hr->obj_allocated_since_prev_marking(obj);
3009   case VerifyOption_G1UseNextMarking:
3010     return hr->obj_allocated_since_next_marking(obj);
3011   case VerifyOption_G1UseMarkWord:
3012     return false;
3013   default:
3014     ShouldNotReachHere();
3015   }
3016   return false; // keep some compilers happy
3017 }
3018 
3019 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3020   switch (vo) {
3021   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3022   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3023   case VerifyOption_G1UseMarkWord:    return NULL;
3024   default:                            ShouldNotReachHere();
3025   }
3026   return NULL; // keep some compilers happy
3027 }
3028 
3029 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3030   switch (vo) {
3031   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3032   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3033   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3034   default:                            ShouldNotReachHere();
3035   }
3036   return false; // keep some compilers happy
3037 }
3038 
3039 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3040   switch (vo) {
3041   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3042   case VerifyOption_G1UseNextMarking: return "NTAMS";
3043   case VerifyOption_G1UseMarkWord:    return "NONE";
3044   default:                            ShouldNotReachHere();
3045   }
3046   return NULL; // keep some compilers happy
3047 }
3048 
3049 class VerifyLivenessOopClosure: public OopClosure {
3050   G1CollectedHeap* _g1h;
3051   VerifyOption _vo;
3052 public:
3053   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3054     _g1h(g1h), _vo(vo)
3055   { }
3056   void do_oop(narrowOop *p) { do_oop_work(p); }
3057   void do_oop(      oop *p) { do_oop_work(p); }
3058 
3059   template <class T> void do_oop_work(T *p) {
3060     oop obj = oopDesc::load_decode_heap_oop(p);
3061     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3062               "Dead object referenced by a not dead object");
3063   }
3064 };
3065 
3066 class VerifyObjsInRegionClosure: public ObjectClosure {
3067 private:
3068   G1CollectedHeap* _g1h;
3069   size_t _live_bytes;
3070   HeapRegion *_hr;
3071   VerifyOption _vo;
3072 public:
3073   // _vo == UsePrevMarking -> use "prev" marking information,
3074   // _vo == UseNextMarking -> use "next" marking information,
3075   // _vo == UseMarkWord    -> use mark word from object header.
3076   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3077     : _live_bytes(0), _hr(hr), _vo(vo) {
3078     _g1h = G1CollectedHeap::heap();
3079   }
3080   void do_object(oop o) {
3081     VerifyLivenessOopClosure isLive(_g1h, _vo);
3082     assert(o != NULL, "Huh?");
3083     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3084       // If the object is alive according to the mark word,
3085       // then verify that the marking information agrees.
3086       // Note we can't verify the contra-positive of the
3087       // above: if the object is dead (according to the mark
3088       // word), it may not be marked, or may have been marked
3089       // but has since became dead, or may have been allocated
3090       // since the last marking.
3091       if (_vo == VerifyOption_G1UseMarkWord) {
3092         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3093       }
3094 
3095       o->oop_iterate_no_header(&isLive);
3096       if (!_hr->obj_allocated_since_prev_marking(o)) {
3097         size_t obj_size = o->size();    // Make sure we don't overflow
3098         _live_bytes += (obj_size * HeapWordSize);
3099       }
3100     }
3101   }
3102   size_t live_bytes() { return _live_bytes; }
3103 };
3104 
3105 class PrintObjsInRegionClosure : public ObjectClosure {
3106   HeapRegion *_hr;
3107   G1CollectedHeap *_g1;
3108 public:
3109   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3110     _g1 = G1CollectedHeap::heap();
3111   };
3112 
3113   void do_object(oop o) {
3114     if (o != NULL) {
3115       HeapWord *start = (HeapWord *) o;
3116       size_t word_sz = o->size();
3117       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3118                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3119                           (void*) o, word_sz,
3120                           _g1->isMarkedPrev(o),
3121                           _g1->isMarkedNext(o),
3122                           _hr->obj_allocated_since_prev_marking(o));
3123       HeapWord *end = start + word_sz;
3124       HeapWord *cur;
3125       int *val;
3126       for (cur = start; cur < end; cur++) {
3127         val = (int *) cur;
3128         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3129       }
3130     }
3131   }
3132 };
3133 
3134 class VerifyRegionClosure: public HeapRegionClosure {
3135 private:
3136   bool             _par;
3137   VerifyOption     _vo;
3138   bool             _failures;
3139 public:
3140   // _vo == UsePrevMarking -> use "prev" marking information,
3141   // _vo == UseNextMarking -> use "next" marking information,
3142   // _vo == UseMarkWord    -> use mark word from object header.
3143   VerifyRegionClosure(bool par, VerifyOption vo)
3144     : _par(par),
3145       _vo(vo),
3146       _failures(false) {}
3147 
3148   bool failures() {
3149     return _failures;
3150   }
3151 
3152   bool doHeapRegion(HeapRegion* r) {
3153     if (!r->continuesHumongous()) {
3154       bool failures = false;
3155       r->verify(_vo, &failures);
3156       if (failures) {
3157         _failures = true;
3158       } else {
3159         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3160         r->object_iterate(&not_dead_yet_cl);
3161         if (_vo != VerifyOption_G1UseNextMarking) {
3162           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3163             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3164                                    "max_live_bytes "SIZE_FORMAT" "
3165                                    "< calculated "SIZE_FORMAT,
3166                                    r->bottom(), r->end(),
3167                                    r->max_live_bytes(),
3168                                  not_dead_yet_cl.live_bytes());
3169             _failures = true;
3170           }
3171         } else {
3172           // When vo == UseNextMarking we cannot currently do a sanity
3173           // check on the live bytes as the calculation has not been
3174           // finalized yet.
3175         }
3176       }
3177     }
3178     return false; // stop the region iteration if we hit a failure
3179   }
3180 };
3181 
3182 class YoungRefCounterClosure : public OopClosure {
3183   G1CollectedHeap* _g1h;
3184   int              _count;
3185  public:
3186   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3187   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3188   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3189 
3190   int count() { return _count; }
3191   void reset_count() { _count = 0; };
3192 };
3193 
3194 class VerifyKlassClosure: public KlassClosure {
3195   YoungRefCounterClosure _young_ref_counter_closure;
3196   OopClosure *_oop_closure;
3197  public:
3198   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3199   void do_klass(Klass* k) {
3200     k->oops_do(_oop_closure);
3201 
3202     _young_ref_counter_closure.reset_count();
3203     k->oops_do(&_young_ref_counter_closure);
3204     if (_young_ref_counter_closure.count() > 0) {
3205       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3206     }
3207   }
3208 };
3209 
3210 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
3211 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
3212 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
3213 //       we can change this closure to extend the simpler OopClosure.
3214 class VerifyRootsClosure: public OopsInGenClosure {
3215 private:
3216   G1CollectedHeap* _g1h;
3217   VerifyOption     _vo;
3218   bool             _failures;
3219 public:
3220   // _vo == UsePrevMarking -> use "prev" marking information,
3221   // _vo == UseNextMarking -> use "next" marking information,
3222   // _vo == UseMarkWord    -> use mark word from object header.
3223   VerifyRootsClosure(VerifyOption vo) :
3224     _g1h(G1CollectedHeap::heap()),
3225     _vo(vo),
3226     _failures(false) { }
3227 
3228   bool failures() { return _failures; }
3229 
3230   template <class T> void do_oop_nv(T* p) {
3231     T heap_oop = oopDesc::load_heap_oop(p);
3232     if (!oopDesc::is_null(heap_oop)) {
3233       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3234       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3235         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3236                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3237         if (_vo == VerifyOption_G1UseMarkWord) {
3238           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3239         }
3240         obj->print_on(gclog_or_tty);
3241         _failures = true;
3242       }
3243     }
3244   }
3245 
3246   void do_oop(oop* p)       { do_oop_nv(p); }
3247   void do_oop(narrowOop* p) { do_oop_nv(p); }
3248 };
3249 
3250 // This is the task used for parallel heap verification.
3251 
3252 class G1ParVerifyTask: public AbstractGangTask {
3253 private:
3254   G1CollectedHeap* _g1h;
3255   VerifyOption     _vo;
3256   bool             _failures;
3257 
3258 public:
3259   // _vo == UsePrevMarking -> use "prev" marking information,
3260   // _vo == UseNextMarking -> use "next" marking information,
3261   // _vo == UseMarkWord    -> use mark word from object header.
3262   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3263     AbstractGangTask("Parallel verify task"),
3264     _g1h(g1h),
3265     _vo(vo),
3266     _failures(false) { }
3267 
3268   bool failures() {
3269     return _failures;
3270   }
3271 
3272   void work(uint worker_id) {
3273     HandleMark hm;
3274     VerifyRegionClosure blk(true, _vo);
3275     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3276                                           _g1h->workers()->active_workers(),
3277                                           HeapRegion::ParVerifyClaimValue);
3278     if (blk.failures()) {
3279       _failures = true;
3280     }
3281   }
3282 };
3283 
3284 void G1CollectedHeap::verify(bool silent) {
3285   verify(silent, VerifyOption_G1UsePrevMarking);
3286 }
3287 
3288 void G1CollectedHeap::verify(bool silent,
3289                              VerifyOption vo) {
3290   if (SafepointSynchronize::is_at_safepoint()) {
3291     if (!silent) { gclog_or_tty->print("Roots "); }
3292     VerifyRootsClosure rootsCl(vo);
3293 
3294     assert(Thread::current()->is_VM_thread(),
3295            "Expected to be executed serially by the VM thread at this point");
3296 
3297     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3298     VerifyKlassClosure klassCl(this, &rootsCl);
3299 
3300     // We apply the relevant closures to all the oops in the
3301     // system dictionary, the string table and the code cache.
3302     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3303 
3304     // Need cleared claim bits for the strong roots processing
3305     ClassLoaderDataGraph::clear_claimed_marks();
3306 
3307     process_strong_roots(true,      // activate StrongRootsScope
3308                          false,     // we set "is scavenging" to false,
3309                                     // so we don't reset the dirty cards.
3310                          ScanningOption(so),  // roots scanning options
3311                          &rootsCl,
3312                          &blobsCl,
3313                          &klassCl
3314                          );
3315 
3316     bool failures = rootsCl.failures();
3317 
3318     if (vo != VerifyOption_G1UseMarkWord) {
3319       // If we're verifying during a full GC then the region sets
3320       // will have been torn down at the start of the GC. Therefore
3321       // verifying the region sets will fail. So we only verify
3322       // the region sets when not in a full GC.
3323       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3324       verify_region_sets();
3325     }
3326 
3327     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3328     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3329       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3330              "sanity check");
3331 
3332       G1ParVerifyTask task(this, vo);
3333       assert(UseDynamicNumberOfGCThreads ||
3334         workers()->active_workers() == workers()->total_workers(),
3335         "If not dynamic should be using all the workers");
3336       int n_workers = workers()->active_workers();
3337       set_par_threads(n_workers);
3338       workers()->run_task(&task);
3339       set_par_threads(0);
3340       if (task.failures()) {
3341         failures = true;
3342       }
3343 
3344       // Checks that the expected amount of parallel work was done.
3345       // The implication is that n_workers is > 0.
3346       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3347              "sanity check");
3348 
3349       reset_heap_region_claim_values();
3350 
3351       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3352              "sanity check");
3353     } else {
3354       VerifyRegionClosure blk(false, vo);
3355       heap_region_iterate(&blk);
3356       if (blk.failures()) {
3357         failures = true;
3358       }
3359     }
3360     if (!silent) gclog_or_tty->print("RemSet ");
3361     rem_set()->verify();
3362 
3363     if (failures) {
3364       gclog_or_tty->print_cr("Heap:");
3365       // It helps to have the per-region information in the output to
3366       // help us track down what went wrong. This is why we call
3367       // print_extended_on() instead of print_on().
3368       print_extended_on(gclog_or_tty);
3369       gclog_or_tty->print_cr("");
3370 #ifndef PRODUCT
3371       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3372         concurrent_mark()->print_reachable("at-verification-failure",
3373                                            vo, false /* all */);
3374       }
3375 #endif
3376       gclog_or_tty->flush();
3377     }
3378     guarantee(!failures, "there should not have been any failures");
3379   } else {
3380     if (!silent)
3381       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3382   }
3383 }
3384 
3385 class PrintRegionClosure: public HeapRegionClosure {
3386   outputStream* _st;
3387 public:
3388   PrintRegionClosure(outputStream* st) : _st(st) {}
3389   bool doHeapRegion(HeapRegion* r) {
3390     r->print_on(_st);
3391     return false;
3392   }
3393 };
3394 
3395 void G1CollectedHeap::print_on(outputStream* st) const {
3396   st->print(" %-20s", "garbage-first heap");
3397   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3398             capacity()/K, used_unlocked()/K);
3399   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3400             _g1_storage.low_boundary(),
3401             _g1_storage.high(),
3402             _g1_storage.high_boundary());
3403   st->cr();
3404   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3405   uint young_regions = _young_list->length();
3406   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3407             (size_t) young_regions * HeapRegion::GrainBytes / K);
3408   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3409   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3410             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3411   st->cr();
3412   MetaspaceAux::print_on(st);
3413 }
3414 
3415 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3416   print_on(st);
3417 
3418   // Print the per-region information.
3419   st->cr();
3420   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3421                "HS=humongous(starts), HC=humongous(continues), "
3422                "CS=collection set, F=free, TS=gc time stamp, "
3423                "PTAMS=previous top-at-mark-start, "
3424                "NTAMS=next top-at-mark-start)");
3425   PrintRegionClosure blk(st);
3426   heap_region_iterate(&blk);
3427 }
3428 
3429 void G1CollectedHeap::print_on_error(outputStream* st) const {
3430   this->CollectedHeap::print_on_error(st);
3431 
3432   if (_cm != NULL) {
3433     st->cr();
3434     _cm->print_on_error(st);
3435   }
3436 }
3437 
3438 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3439   if (G1CollectedHeap::use_parallel_gc_threads()) {
3440     workers()->print_worker_threads_on(st);
3441   }
3442   _cmThread->print_on(st);
3443   st->cr();
3444   _cm->print_worker_threads_on(st);
3445   _cg1r->print_worker_threads_on(st);
3446 }
3447 
3448 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3449   if (G1CollectedHeap::use_parallel_gc_threads()) {
3450     workers()->threads_do(tc);
3451   }
3452   tc->do_thread(_cmThread);
3453   _cg1r->threads_do(tc);
3454 }
3455 
3456 void G1CollectedHeap::print_tracing_info() const {
3457   // We'll overload this to mean "trace GC pause statistics."
3458   if (TraceGen0Time || TraceGen1Time) {
3459     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3460     // to that.
3461     g1_policy()->print_tracing_info();
3462   }
3463   if (G1SummarizeRSetStats) {
3464     g1_rem_set()->print_summary_info();
3465   }
3466   if (G1SummarizeConcMark) {
3467     concurrent_mark()->print_summary_info();
3468   }
3469   g1_policy()->print_yg_surv_rate_info();
3470   SpecializationStats::print();
3471 }
3472 
3473 #ifndef PRODUCT
3474 // Helpful for debugging RSet issues.
3475 
3476 class PrintRSetsClosure : public HeapRegionClosure {
3477 private:
3478   const char* _msg;
3479   size_t _occupied_sum;
3480 
3481 public:
3482   bool doHeapRegion(HeapRegion* r) {
3483     HeapRegionRemSet* hrrs = r->rem_set();
3484     size_t occupied = hrrs->occupied();
3485     _occupied_sum += occupied;
3486 
3487     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3488                            HR_FORMAT_PARAMS(r));
3489     if (occupied == 0) {
3490       gclog_or_tty->print_cr("  RSet is empty");
3491     } else {
3492       hrrs->print();
3493     }
3494     gclog_or_tty->print_cr("----------");
3495     return false;
3496   }
3497 
3498   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3499     gclog_or_tty->cr();
3500     gclog_or_tty->print_cr("========================================");
3501     gclog_or_tty->print_cr(msg);
3502     gclog_or_tty->cr();
3503   }
3504 
3505   ~PrintRSetsClosure() {
3506     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3507     gclog_or_tty->print_cr("========================================");
3508     gclog_or_tty->cr();
3509   }
3510 };
3511 
3512 void G1CollectedHeap::print_cset_rsets() {
3513   PrintRSetsClosure cl("Printing CSet RSets");
3514   collection_set_iterate(&cl);
3515 }
3516 
3517 void G1CollectedHeap::print_all_rsets() {
3518   PrintRSetsClosure cl("Printing All RSets");;
3519   heap_region_iterate(&cl);
3520 }
3521 #endif // PRODUCT
3522 
3523 G1CollectedHeap* G1CollectedHeap::heap() {
3524   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3525          "not a garbage-first heap");
3526   return _g1h;
3527 }
3528 
3529 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3530   // always_do_update_barrier = false;
3531   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3532   // Call allocation profiler
3533   AllocationProfiler::iterate_since_last_gc();
3534   // Fill TLAB's and such
3535   ensure_parsability(true);
3536 }
3537 
3538 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3539   // FIXME: what is this about?
3540   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3541   // is set.
3542   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3543                         "derived pointer present"));
3544   // always_do_update_barrier = true;
3545 
3546   // We have just completed a GC. Update the soft reference
3547   // policy with the new heap occupancy
3548   Universe::update_heap_info_at_gc();
3549 }
3550 
3551 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3552                                                unsigned int gc_count_before,
3553                                                bool* succeeded) {
3554   assert_heap_not_locked_and_not_at_safepoint();
3555   g1_policy()->record_stop_world_start();
3556   VM_G1IncCollectionPause op(gc_count_before,
3557                              word_size,
3558                              false, /* should_initiate_conc_mark */
3559                              g1_policy()->max_pause_time_ms(),
3560                              GCCause::_g1_inc_collection_pause);
3561   VMThread::execute(&op);
3562 
3563   HeapWord* result = op.result();
3564   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3565   assert(result == NULL || ret_succeeded,
3566          "the result should be NULL if the VM did not succeed");
3567   *succeeded = ret_succeeded;
3568 
3569   assert_heap_not_locked();
3570   return result;
3571 }
3572 
3573 void
3574 G1CollectedHeap::doConcurrentMark() {
3575   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3576   if (!_cmThread->in_progress()) {
3577     _cmThread->set_started();
3578     CGC_lock->notify();
3579   }
3580 }
3581 
3582 size_t G1CollectedHeap::pending_card_num() {
3583   size_t extra_cards = 0;
3584   JavaThread *curr = Threads::first();
3585   while (curr != NULL) {
3586     DirtyCardQueue& dcq = curr->dirty_card_queue();
3587     extra_cards += dcq.size();
3588     curr = curr->next();
3589   }
3590   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3591   size_t buffer_size = dcqs.buffer_size();
3592   size_t buffer_num = dcqs.completed_buffers_num();
3593 
3594   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3595   // in bytes - not the number of 'entries'. We need to convert
3596   // into a number of cards.
3597   return (buffer_size * buffer_num + extra_cards) / oopSize;
3598 }
3599 
3600 size_t G1CollectedHeap::cards_scanned() {
3601   return g1_rem_set()->cardsScanned();
3602 }
3603 
3604 void
3605 G1CollectedHeap::setup_surviving_young_words() {
3606   assert(_surviving_young_words == NULL, "pre-condition");
3607   uint array_length = g1_policy()->young_cset_region_length();
3608   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3609   if (_surviving_young_words == NULL) {
3610     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3611                           "Not enough space for young surv words summary.");
3612   }
3613   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3614 #ifdef ASSERT
3615   for (uint i = 0;  i < array_length; ++i) {
3616     assert( _surviving_young_words[i] == 0, "memset above" );
3617   }
3618 #endif // !ASSERT
3619 }
3620 
3621 void
3622 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3623   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3624   uint array_length = g1_policy()->young_cset_region_length();
3625   for (uint i = 0; i < array_length; ++i) {
3626     _surviving_young_words[i] += surv_young_words[i];
3627   }
3628 }
3629 
3630 void
3631 G1CollectedHeap::cleanup_surviving_young_words() {
3632   guarantee( _surviving_young_words != NULL, "pre-condition" );
3633   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3634   _surviving_young_words = NULL;
3635 }
3636 
3637 #ifdef ASSERT
3638 class VerifyCSetClosure: public HeapRegionClosure {
3639 public:
3640   bool doHeapRegion(HeapRegion* hr) {
3641     // Here we check that the CSet region's RSet is ready for parallel
3642     // iteration. The fields that we'll verify are only manipulated
3643     // when the region is part of a CSet and is collected. Afterwards,
3644     // we reset these fields when we clear the region's RSet (when the
3645     // region is freed) so they are ready when the region is
3646     // re-allocated. The only exception to this is if there's an
3647     // evacuation failure and instead of freeing the region we leave
3648     // it in the heap. In that case, we reset these fields during
3649     // evacuation failure handling.
3650     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3651 
3652     // Here's a good place to add any other checks we'd like to
3653     // perform on CSet regions.
3654     return false;
3655   }
3656 };
3657 #endif // ASSERT
3658 
3659 #if TASKQUEUE_STATS
3660 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3661   st->print_raw_cr("GC Task Stats");
3662   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3663   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3664 }
3665 
3666 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3667   print_taskqueue_stats_hdr(st);
3668 
3669   TaskQueueStats totals;
3670   const int n = workers() != NULL ? workers()->total_workers() : 1;
3671   for (int i = 0; i < n; ++i) {
3672     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3673     totals += task_queue(i)->stats;
3674   }
3675   st->print_raw("tot "); totals.print(st); st->cr();
3676 
3677   DEBUG_ONLY(totals.verify());
3678 }
3679 
3680 void G1CollectedHeap::reset_taskqueue_stats() {
3681   const int n = workers() != NULL ? workers()->total_workers() : 1;
3682   for (int i = 0; i < n; ++i) {
3683     task_queue(i)->stats.reset();
3684   }
3685 }
3686 #endif // TASKQUEUE_STATS
3687 
3688 void G1CollectedHeap::log_gc_header() {
3689   if (!G1Log::fine()) {
3690     return;
3691   }
3692 
3693   gclog_or_tty->date_stamp(PrintGCDateStamps);
3694   gclog_or_tty->stamp(PrintGCTimeStamps);
3695 
3696   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3697     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3698     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3699 
3700   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3701 }
3702 
3703 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3704   if (!G1Log::fine()) {
3705     return;
3706   }
3707 
3708   if (G1Log::finer()) {
3709     if (evacuation_failed()) {
3710       gclog_or_tty->print(" (to-space exhausted)");
3711     }
3712     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3713     g1_policy()->phase_times()->note_gc_end();
3714     g1_policy()->phase_times()->print(pause_time_sec);
3715     g1_policy()->print_detailed_heap_transition();
3716   } else {
3717     if (evacuation_failed()) {
3718       gclog_or_tty->print("--");
3719     }
3720     g1_policy()->print_heap_transition();
3721     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3722   }
3723   gclog_or_tty->flush();
3724 }
3725 
3726 bool
3727 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3728   assert_at_safepoint(true /* should_be_vm_thread */);
3729   guarantee(!is_gc_active(), "collection is not reentrant");
3730 
3731   if (GC_locker::check_active_before_gc()) {
3732     return false;
3733   }
3734 
3735   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3736   ResourceMark rm;
3737 
3738   print_heap_before_gc();
3739 
3740   HRSPhaseSetter x(HRSPhaseEvacuation);
3741   verify_region_sets_optional();
3742   verify_dirty_young_regions();
3743 
3744   // This call will decide whether this pause is an initial-mark
3745   // pause. If it is, during_initial_mark_pause() will return true
3746   // for the duration of this pause.
3747   g1_policy()->decide_on_conc_mark_initiation();
3748 
3749   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3750   assert(!g1_policy()->during_initial_mark_pause() ||
3751           g1_policy()->gcs_are_young(), "sanity");
3752 
3753   // We also do not allow mixed GCs during marking.
3754   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3755 
3756   // Record whether this pause is an initial mark. When the current
3757   // thread has completed its logging output and it's safe to signal
3758   // the CM thread, the flag's value in the policy has been reset.
3759   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3760 
3761   // Inner scope for scope based logging, timers, and stats collection
3762   {
3763     if (g1_policy()->during_initial_mark_pause()) {
3764       // We are about to start a marking cycle, so we increment the
3765       // full collection counter.
3766       increment_old_marking_cycles_started();
3767     }
3768     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3769 
3770     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3771                                 workers()->active_workers() : 1);
3772     double pause_start_sec = os::elapsedTime();
3773     g1_policy()->phase_times()->note_gc_start(active_workers);
3774     log_gc_header();
3775 
3776     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3777     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3778 
3779     // If the secondary_free_list is not empty, append it to the
3780     // free_list. No need to wait for the cleanup operation to finish;
3781     // the region allocation code will check the secondary_free_list
3782     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3783     // set, skip this step so that the region allocation code has to
3784     // get entries from the secondary_free_list.
3785     if (!G1StressConcRegionFreeing) {
3786       append_secondary_free_list_if_not_empty_with_lock();
3787     }
3788 
3789     assert(check_young_list_well_formed(),
3790       "young list should be well formed");
3791 
3792     // Don't dynamically change the number of GC threads this early.  A value of
3793     // 0 is used to indicate serial work.  When parallel work is done,
3794     // it will be set.
3795 
3796     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3797       IsGCActiveMark x;
3798 
3799       gc_prologue(false);
3800       increment_total_collections(false /* full gc */);
3801       increment_gc_time_stamp();
3802 
3803       verify_before_gc();
3804 
3805       COMPILER2_PRESENT(DerivedPointerTable::clear());
3806 
3807       // Please see comment in g1CollectedHeap.hpp and
3808       // G1CollectedHeap::ref_processing_init() to see how
3809       // reference processing currently works in G1.
3810 
3811       // Enable discovery in the STW reference processor
3812       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3813                                             true /*verify_no_refs*/);
3814 
3815       {
3816         // We want to temporarily turn off discovery by the
3817         // CM ref processor, if necessary, and turn it back on
3818         // on again later if we do. Using a scoped
3819         // NoRefDiscovery object will do this.
3820         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3821 
3822         // Forget the current alloc region (we might even choose it to be part
3823         // of the collection set!).
3824         release_mutator_alloc_region();
3825 
3826         // We should call this after we retire the mutator alloc
3827         // region(s) so that all the ALLOC / RETIRE events are generated
3828         // before the start GC event.
3829         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3830 
3831         // This timing is only used by the ergonomics to handle our pause target.
3832         // It is unclear why this should not include the full pause. We will
3833         // investigate this in CR 7178365.
3834         //
3835         // Preserving the old comment here if that helps the investigation:
3836         //
3837         // The elapsed time induced by the start time below deliberately elides
3838         // the possible verification above.
3839         double sample_start_time_sec = os::elapsedTime();
3840 
3841 #if YOUNG_LIST_VERBOSE
3842         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3843         _young_list->print();
3844         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3845 #endif // YOUNG_LIST_VERBOSE
3846 
3847         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3848 
3849         double scan_wait_start = os::elapsedTime();
3850         // We have to wait until the CM threads finish scanning the
3851         // root regions as it's the only way to ensure that all the
3852         // objects on them have been correctly scanned before we start
3853         // moving them during the GC.
3854         bool waited = _cm->root_regions()->wait_until_scan_finished();
3855         double wait_time_ms = 0.0;
3856         if (waited) {
3857           double scan_wait_end = os::elapsedTime();
3858           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3859         }
3860         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3861 
3862 #if YOUNG_LIST_VERBOSE
3863         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3864         _young_list->print();
3865 #endif // YOUNG_LIST_VERBOSE
3866 
3867         if (g1_policy()->during_initial_mark_pause()) {
3868           concurrent_mark()->checkpointRootsInitialPre();
3869         }
3870 
3871 #if YOUNG_LIST_VERBOSE
3872         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3873         _young_list->print();
3874         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3875 #endif // YOUNG_LIST_VERBOSE
3876 
3877         g1_policy()->finalize_cset(target_pause_time_ms);
3878 
3879         _cm->note_start_of_gc();
3880         // We should not verify the per-thread SATB buffers given that
3881         // we have not filtered them yet (we'll do so during the
3882         // GC). We also call this after finalize_cset() to
3883         // ensure that the CSet has been finalized.
3884         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3885                                  true  /* verify_enqueued_buffers */,
3886                                  false /* verify_thread_buffers */,
3887                                  true  /* verify_fingers */);
3888 
3889         if (_hr_printer.is_active()) {
3890           HeapRegion* hr = g1_policy()->collection_set();
3891           while (hr != NULL) {
3892             G1HRPrinter::RegionType type;
3893             if (!hr->is_young()) {
3894               type = G1HRPrinter::Old;
3895             } else if (hr->is_survivor()) {
3896               type = G1HRPrinter::Survivor;
3897             } else {
3898               type = G1HRPrinter::Eden;
3899             }
3900             _hr_printer.cset(hr);
3901             hr = hr->next_in_collection_set();
3902           }
3903         }
3904 
3905 #ifdef ASSERT
3906         VerifyCSetClosure cl;
3907         collection_set_iterate(&cl);
3908 #endif // ASSERT
3909 
3910         setup_surviving_young_words();
3911 
3912         // Initialize the GC alloc regions.
3913         init_gc_alloc_regions();
3914 
3915         // Actually do the work...
3916         evacuate_collection_set();
3917 
3918         // We do this to mainly verify the per-thread SATB buffers
3919         // (which have been filtered by now) since we didn't verify
3920         // them earlier. No point in re-checking the stacks / enqueued
3921         // buffers given that the CSet has not changed since last time
3922         // we checked.
3923         _cm->verify_no_cset_oops(false /* verify_stacks */,
3924                                  false /* verify_enqueued_buffers */,
3925                                  true  /* verify_thread_buffers */,
3926                                  true  /* verify_fingers */);
3927 
3928         free_collection_set(g1_policy()->collection_set());
3929         g1_policy()->clear_collection_set();
3930 
3931         cleanup_surviving_young_words();
3932 
3933         // Start a new incremental collection set for the next pause.
3934         g1_policy()->start_incremental_cset_building();
3935 
3936         // Clear the _cset_fast_test bitmap in anticipation of adding
3937         // regions to the incremental collection set for the next
3938         // evacuation pause.
3939         clear_cset_fast_test();
3940 
3941         _young_list->reset_sampled_info();
3942 
3943         // Don't check the whole heap at this point as the
3944         // GC alloc regions from this pause have been tagged
3945         // as survivors and moved on to the survivor list.
3946         // Survivor regions will fail the !is_young() check.
3947         assert(check_young_list_empty(false /* check_heap */),
3948           "young list should be empty");
3949 
3950 #if YOUNG_LIST_VERBOSE
3951         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3952         _young_list->print();
3953 #endif // YOUNG_LIST_VERBOSE
3954 
3955         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3956                                             _young_list->first_survivor_region(),
3957                                             _young_list->last_survivor_region());
3958 
3959         _young_list->reset_auxilary_lists();
3960 
3961         if (evacuation_failed()) {
3962           _summary_bytes_used = recalculate_used();
3963         } else {
3964           // The "used" of the the collection set have already been subtracted
3965           // when they were freed.  Add in the bytes evacuated.
3966           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3967         }
3968 
3969         if (g1_policy()->during_initial_mark_pause()) {
3970           // We have to do this before we notify the CM threads that
3971           // they can start working to make sure that all the
3972           // appropriate initialization is done on the CM object.
3973           concurrent_mark()->checkpointRootsInitialPost();
3974           set_marking_started();
3975           // Note that we don't actually trigger the CM thread at
3976           // this point. We do that later when we're sure that
3977           // the current thread has completed its logging output.
3978         }
3979 
3980         allocate_dummy_regions();
3981 
3982 #if YOUNG_LIST_VERBOSE
3983         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3984         _young_list->print();
3985         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3986 #endif // YOUNG_LIST_VERBOSE
3987 
3988         init_mutator_alloc_region();
3989 
3990         {
3991           size_t expand_bytes = g1_policy()->expansion_amount();
3992           if (expand_bytes > 0) {
3993             size_t bytes_before = capacity();
3994             // No need for an ergo verbose message here,
3995             // expansion_amount() does this when it returns a value > 0.
3996             if (!expand(expand_bytes)) {
3997               // We failed to expand the heap so let's verify that
3998               // committed/uncommitted amount match the backing store
3999               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4000               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4001             }
4002           }
4003         }
4004 
4005         // We redo the verificaiton but now wrt to the new CSet which
4006         // has just got initialized after the previous CSet was freed.
4007         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4008                                  true  /* verify_enqueued_buffers */,
4009                                  true  /* verify_thread_buffers */,
4010                                  true  /* verify_fingers */);
4011         _cm->note_end_of_gc();
4012 
4013         // This timing is only used by the ergonomics to handle our pause target.
4014         // It is unclear why this should not include the full pause. We will
4015         // investigate this in CR 7178365.
4016         double sample_end_time_sec = os::elapsedTime();
4017         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4018         g1_policy()->record_collection_pause_end(pause_time_ms);
4019 
4020         MemoryService::track_memory_usage();
4021 
4022         // In prepare_for_verify() below we'll need to scan the deferred
4023         // update buffers to bring the RSets up-to-date if
4024         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4025         // the update buffers we'll probably need to scan cards on the
4026         // regions we just allocated to (i.e., the GC alloc
4027         // regions). However, during the last GC we called
4028         // set_saved_mark() on all the GC alloc regions, so card
4029         // scanning might skip the [saved_mark_word()...top()] area of
4030         // those regions (i.e., the area we allocated objects into
4031         // during the last GC). But it shouldn't. Given that
4032         // saved_mark_word() is conditional on whether the GC time stamp
4033         // on the region is current or not, by incrementing the GC time
4034         // stamp here we invalidate all the GC time stamps on all the
4035         // regions and saved_mark_word() will simply return top() for
4036         // all the regions. This is a nicer way of ensuring this rather
4037         // than iterating over the regions and fixing them. In fact, the
4038         // GC time stamp increment here also ensures that
4039         // saved_mark_word() will return top() between pauses, i.e.,
4040         // during concurrent refinement. So we don't need the
4041         // is_gc_active() check to decided which top to use when
4042         // scanning cards (see CR 7039627).
4043         increment_gc_time_stamp();
4044 
4045         verify_after_gc();
4046 
4047         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4048         ref_processor_stw()->verify_no_references_recorded();
4049 
4050         // CM reference discovery will be re-enabled if necessary.
4051       }
4052 
4053       // We should do this after we potentially expand the heap so
4054       // that all the COMMIT events are generated before the end GC
4055       // event, and after we retire the GC alloc regions so that all
4056       // RETIRE events are generated before the end GC event.
4057       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4058 
4059       if (mark_in_progress()) {
4060         concurrent_mark()->update_g1_committed();
4061       }
4062 
4063 #ifdef TRACESPINNING
4064       ParallelTaskTerminator::print_termination_counts();
4065 #endif
4066 
4067       gc_epilogue(false);
4068     }
4069 
4070     // Print the remainder of the GC log output.
4071     log_gc_footer(os::elapsedTime() - pause_start_sec);
4072 
4073     // It is not yet to safe to tell the concurrent mark to
4074     // start as we have some optional output below. We don't want the
4075     // output from the concurrent mark thread interfering with this
4076     // logging output either.
4077 
4078     _hrs.verify_optional();
4079     verify_region_sets_optional();
4080 
4081     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4082     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4083 
4084     print_heap_after_gc();
4085 
4086     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4087     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4088     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4089     // before any GC notifications are raised.
4090     g1mm()->update_sizes();
4091   }
4092 
4093   if (G1SummarizeRSetStats &&
4094       (G1SummarizeRSetStatsPeriod > 0) &&
4095       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4096     g1_rem_set()->print_summary_info();
4097   }
4098 
4099   // It should now be safe to tell the concurrent mark thread to start
4100   // without its logging output interfering with the logging output
4101   // that came from the pause.
4102 
4103   if (should_start_conc_mark) {
4104     // CAUTION: after the doConcurrentMark() call below,
4105     // the concurrent marking thread(s) could be running
4106     // concurrently with us. Make sure that anything after
4107     // this point does not assume that we are the only GC thread
4108     // running. Note: of course, the actual marking work will
4109     // not start until the safepoint itself is released in
4110     // ConcurrentGCThread::safepoint_desynchronize().
4111     doConcurrentMark();
4112   }
4113 
4114   return true;
4115 }
4116 
4117 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4118 {
4119   size_t gclab_word_size;
4120   switch (purpose) {
4121     case GCAllocForSurvived:
4122       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4123       break;
4124     case GCAllocForTenured:
4125       gclab_word_size = _old_plab_stats.desired_plab_sz();
4126       break;
4127     default:
4128       assert(false, "unknown GCAllocPurpose");
4129       gclab_word_size = _old_plab_stats.desired_plab_sz();
4130       break;
4131   }
4132 
4133   // Prevent humongous PLAB sizes for two reasons:
4134   // * PLABs are allocated using a similar paths as oops, but should
4135   //   never be in a humongous region
4136   // * Allowing humongous PLABs needlessly churns the region free lists
4137   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4138 }
4139 
4140 void G1CollectedHeap::init_mutator_alloc_region() {
4141   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4142   _mutator_alloc_region.init();
4143 }
4144 
4145 void G1CollectedHeap::release_mutator_alloc_region() {
4146   _mutator_alloc_region.release();
4147   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4148 }
4149 
4150 void G1CollectedHeap::init_gc_alloc_regions() {
4151   assert_at_safepoint(true /* should_be_vm_thread */);
4152 
4153   _survivor_gc_alloc_region.init();
4154   _old_gc_alloc_region.init();
4155   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4156   _retained_old_gc_alloc_region = NULL;
4157 
4158   // We will discard the current GC alloc region if:
4159   // a) it's in the collection set (it can happen!),
4160   // b) it's already full (no point in using it),
4161   // c) it's empty (this means that it was emptied during
4162   // a cleanup and it should be on the free list now), or
4163   // d) it's humongous (this means that it was emptied
4164   // during a cleanup and was added to the free list, but
4165   // has been subseqently used to allocate a humongous
4166   // object that may be less than the region size).
4167   if (retained_region != NULL &&
4168       !retained_region->in_collection_set() &&
4169       !(retained_region->top() == retained_region->end()) &&
4170       !retained_region->is_empty() &&
4171       !retained_region->isHumongous()) {
4172     retained_region->set_saved_mark();
4173     // The retained region was added to the old region set when it was
4174     // retired. We have to remove it now, since we don't allow regions
4175     // we allocate to in the region sets. We'll re-add it later, when
4176     // it's retired again.
4177     _old_set.remove(retained_region);
4178     bool during_im = g1_policy()->during_initial_mark_pause();
4179     retained_region->note_start_of_copying(during_im);
4180     _old_gc_alloc_region.set(retained_region);
4181     _hr_printer.reuse(retained_region);
4182   }
4183 }
4184 
4185 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) {
4186   _survivor_gc_alloc_region.release();
4187   // If we have an old GC alloc region to release, we'll save it in
4188   // _retained_old_gc_alloc_region. If we don't
4189   // _retained_old_gc_alloc_region will become NULL. This is what we
4190   // want either way so no reason to check explicitly for either
4191   // condition.
4192   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4193 
4194   if (ResizePLAB) {
4195     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4196     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4197   }
4198 }
4199 
4200 void G1CollectedHeap::abandon_gc_alloc_regions() {
4201   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4202   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4203   _retained_old_gc_alloc_region = NULL;
4204 }
4205 
4206 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4207   _drain_in_progress = false;
4208   set_evac_failure_closure(cl);
4209   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4210 }
4211 
4212 void G1CollectedHeap::finalize_for_evac_failure() {
4213   assert(_evac_failure_scan_stack != NULL &&
4214          _evac_failure_scan_stack->length() == 0,
4215          "Postcondition");
4216   assert(!_drain_in_progress, "Postcondition");
4217   delete _evac_failure_scan_stack;
4218   _evac_failure_scan_stack = NULL;
4219 }
4220 
4221 void G1CollectedHeap::remove_self_forwarding_pointers() {
4222   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4223 
4224   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4225 
4226   if (G1CollectedHeap::use_parallel_gc_threads()) {
4227     set_par_threads();
4228     workers()->run_task(&rsfp_task);
4229     set_par_threads(0);
4230   } else {
4231     rsfp_task.work(0);
4232   }
4233 
4234   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4235 
4236   // Reset the claim values in the regions in the collection set.
4237   reset_cset_heap_region_claim_values();
4238 
4239   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4240 
4241   // Now restore saved marks, if any.
4242   assert(_objs_with_preserved_marks.size() ==
4243             _preserved_marks_of_objs.size(), "Both or none.");
4244   while (!_objs_with_preserved_marks.is_empty()) {
4245     oop obj = _objs_with_preserved_marks.pop();
4246     markOop m = _preserved_marks_of_objs.pop();
4247     obj->set_mark(m);
4248   }
4249   _objs_with_preserved_marks.clear(true);
4250   _preserved_marks_of_objs.clear(true);
4251 }
4252 
4253 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4254   _evac_failure_scan_stack->push(obj);
4255 }
4256 
4257 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4258   assert(_evac_failure_scan_stack != NULL, "precondition");
4259 
4260   while (_evac_failure_scan_stack->length() > 0) {
4261      oop obj = _evac_failure_scan_stack->pop();
4262      _evac_failure_closure->set_region(heap_region_containing(obj));
4263      obj->oop_iterate_backwards(_evac_failure_closure);
4264   }
4265 }
4266 
4267 oop
4268 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4269                                                oop old) {
4270   assert(obj_in_cs(old),
4271          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4272                  (HeapWord*) old));
4273   markOop m = old->mark();
4274   oop forward_ptr = old->forward_to_atomic(old);
4275   if (forward_ptr == NULL) {
4276     // Forward-to-self succeeded.
4277 
4278     if (_evac_failure_closure != cl) {
4279       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4280       assert(!_drain_in_progress,
4281              "Should only be true while someone holds the lock.");
4282       // Set the global evac-failure closure to the current thread's.
4283       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4284       set_evac_failure_closure(cl);
4285       // Now do the common part.
4286       handle_evacuation_failure_common(old, m);
4287       // Reset to NULL.
4288       set_evac_failure_closure(NULL);
4289     } else {
4290       // The lock is already held, and this is recursive.
4291       assert(_drain_in_progress, "This should only be the recursive case.");
4292       handle_evacuation_failure_common(old, m);
4293     }
4294     return old;
4295   } else {
4296     // Forward-to-self failed. Either someone else managed to allocate
4297     // space for this object (old != forward_ptr) or they beat us in
4298     // self-forwarding it (old == forward_ptr).
4299     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4300            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4301                    "should not be in the CSet",
4302                    (HeapWord*) old, (HeapWord*) forward_ptr));
4303     return forward_ptr;
4304   }
4305 }
4306 
4307 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4308   set_evacuation_failed(true);
4309 
4310   preserve_mark_if_necessary(old, m);
4311 
4312   HeapRegion* r = heap_region_containing(old);
4313   if (!r->evacuation_failed()) {
4314     r->set_evacuation_failed(true);
4315     _hr_printer.evac_failure(r);
4316   }
4317 
4318   push_on_evac_failure_scan_stack(old);
4319 
4320   if (!_drain_in_progress) {
4321     // prevent recursion in copy_to_survivor_space()
4322     _drain_in_progress = true;
4323     drain_evac_failure_scan_stack();
4324     _drain_in_progress = false;
4325   }
4326 }
4327 
4328 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4329   assert(evacuation_failed(), "Oversaving!");
4330   // We want to call the "for_promotion_failure" version only in the
4331   // case of a promotion failure.
4332   if (m->must_be_preserved_for_promotion_failure(obj)) {
4333     _objs_with_preserved_marks.push(obj);
4334     _preserved_marks_of_objs.push(m);
4335   }
4336 }
4337 
4338 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4339                                                   size_t word_size) {
4340   if (purpose == GCAllocForSurvived) {
4341     HeapWord* result = survivor_attempt_allocation(word_size);
4342     if (result != NULL) {
4343       return result;
4344     } else {
4345       // Let's try to allocate in the old gen in case we can fit the
4346       // object there.
4347       return old_attempt_allocation(word_size);
4348     }
4349   } else {
4350     assert(purpose ==  GCAllocForTenured, "sanity");
4351     HeapWord* result = old_attempt_allocation(word_size);
4352     if (result != NULL) {
4353       return result;
4354     } else {
4355       // Let's try to allocate in the survivors in case we can fit the
4356       // object there.
4357       return survivor_attempt_allocation(word_size);
4358     }
4359   }
4360 
4361   ShouldNotReachHere();
4362   // Trying to keep some compilers happy.
4363   return NULL;
4364 }
4365 
4366 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4367   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4368 
4369 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4370   : _g1h(g1h),
4371     _refs(g1h->task_queue(queue_num)),
4372     _dcq(&g1h->dirty_card_queue_set()),
4373     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4374     _g1_rem(g1h->g1_rem_set()),
4375     _hash_seed(17), _queue_num(queue_num),
4376     _term_attempts(0),
4377     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4378     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4379     _age_table(false),
4380     _strong_roots_time(0), _term_time(0),
4381     _alloc_buffer_waste(0), _undo_waste(0) {
4382   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4383   // we "sacrifice" entry 0 to keep track of surviving bytes for
4384   // non-young regions (where the age is -1)
4385   // We also add a few elements at the beginning and at the end in
4386   // an attempt to eliminate cache contention
4387   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4388   uint array_length = PADDING_ELEM_NUM +
4389                       real_length +
4390                       PADDING_ELEM_NUM;
4391   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4392   if (_surviving_young_words_base == NULL)
4393     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4394                           "Not enough space for young surv histo.");
4395   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4396   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4397 
4398   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4399   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4400 
4401   _start = os::elapsedTime();
4402 }
4403 
4404 void
4405 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4406 {
4407   st->print_raw_cr("GC Termination Stats");
4408   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4409                    " ------waste (KiB)------");
4410   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4411                    "  total   alloc    undo");
4412   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4413                    " ------- ------- -------");
4414 }
4415 
4416 void
4417 G1ParScanThreadState::print_termination_stats(int i,
4418                                               outputStream* const st) const
4419 {
4420   const double elapsed_ms = elapsed_time() * 1000.0;
4421   const double s_roots_ms = strong_roots_time() * 1000.0;
4422   const double term_ms    = term_time() * 1000.0;
4423   st->print_cr("%3d %9.2f %9.2f %6.2f "
4424                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4425                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4426                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4427                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4428                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4429                alloc_buffer_waste() * HeapWordSize / K,
4430                undo_waste() * HeapWordSize / K);
4431 }
4432 
4433 #ifdef ASSERT
4434 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4435   assert(ref != NULL, "invariant");
4436   assert(UseCompressedOops, "sanity");
4437   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4438   oop p = oopDesc::load_decode_heap_oop(ref);
4439   assert(_g1h->is_in_g1_reserved(p),
4440          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4441   return true;
4442 }
4443 
4444 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4445   assert(ref != NULL, "invariant");
4446   if (has_partial_array_mask(ref)) {
4447     // Must be in the collection set--it's already been copied.
4448     oop p = clear_partial_array_mask(ref);
4449     assert(_g1h->obj_in_cs(p),
4450            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4451   } else {
4452     oop p = oopDesc::load_decode_heap_oop(ref);
4453     assert(_g1h->is_in_g1_reserved(p),
4454            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4455   }
4456   return true;
4457 }
4458 
4459 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4460   if (ref.is_narrow()) {
4461     return verify_ref((narrowOop*) ref);
4462   } else {
4463     return verify_ref((oop*) ref);
4464   }
4465 }
4466 #endif // ASSERT
4467 
4468 void G1ParScanThreadState::trim_queue() {
4469   assert(_evac_cl != NULL, "not set");
4470   assert(_evac_failure_cl != NULL, "not set");
4471   assert(_partial_scan_cl != NULL, "not set");
4472 
4473   StarTask ref;
4474   do {
4475     // Drain the overflow stack first, so other threads can steal.
4476     while (refs()->pop_overflow(ref)) {
4477       deal_with_reference(ref);
4478     }
4479 
4480     while (refs()->pop_local(ref)) {
4481       deal_with_reference(ref);
4482     }
4483   } while (!refs()->is_empty());
4484 }
4485 
4486 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4487                                      G1ParScanThreadState* par_scan_state) :
4488   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4489   _par_scan_state(par_scan_state),
4490   _worker_id(par_scan_state->queue_num()),
4491   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4492   _mark_in_progress(_g1->mark_in_progress()) { }
4493 
4494 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4495 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4496 #ifdef ASSERT
4497   HeapRegion* hr = _g1->heap_region_containing(obj);
4498   assert(hr != NULL, "sanity");
4499   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4500 #endif // ASSERT
4501 
4502   // We know that the object is not moving so it's safe to read its size.
4503   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4504 }
4505 
4506 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4507 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4508   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4509 #ifdef ASSERT
4510   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4511   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4512   assert(from_obj != to_obj, "should not be self-forwarded");
4513 
4514   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4515   assert(from_hr != NULL, "sanity");
4516   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4517 
4518   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4519   assert(to_hr != NULL, "sanity");
4520   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4521 #endif // ASSERT
4522 
4523   // The object might be in the process of being copied by another
4524   // worker so we cannot trust that its to-space image is
4525   // well-formed. So we have to read its size from its from-space
4526   // image which we know should not be changing.
4527   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4528 }
4529 
4530 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4531 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4532   ::copy_to_survivor_space(oop old) {
4533   size_t word_sz = old->size();
4534   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4535   // +1 to make the -1 indexes valid...
4536   int       young_index = from_region->young_index_in_cset()+1;
4537   assert( (from_region->is_young() && young_index >  0) ||
4538          (!from_region->is_young() && young_index == 0), "invariant" );
4539   G1CollectorPolicy* g1p = _g1->g1_policy();
4540   markOop m = old->mark();
4541   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4542                                            : m->age();
4543   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4544                                                              word_sz);
4545   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4546 #ifndef PRODUCT
4547   // Should this evacuation fail?
4548   if (_g1->evacuation_should_fail()) {
4549     if (obj_ptr != NULL) {
4550       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4551       obj_ptr = NULL;
4552     }
4553   }
4554 #endif // !PRODUCT
4555 
4556   if (obj_ptr == NULL) {
4557     // This will either forward-to-self, or detect that someone else has
4558     // installed a forwarding pointer.
4559     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4560     return _g1->handle_evacuation_failure_par(cl, old);
4561   }
4562 
4563   oop obj = oop(obj_ptr);
4564 
4565   // We're going to allocate linearly, so might as well prefetch ahead.
4566   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4567 
4568   oop forward_ptr = old->forward_to_atomic(obj);
4569   if (forward_ptr == NULL) {
4570     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4571     if (g1p->track_object_age(alloc_purpose)) {
4572       // We could simply do obj->incr_age(). However, this causes a
4573       // performance issue. obj->incr_age() will first check whether
4574       // the object has a displaced mark by checking its mark word;
4575       // getting the mark word from the new location of the object
4576       // stalls. So, given that we already have the mark word and we
4577       // are about to install it anyway, it's better to increase the
4578       // age on the mark word, when the object does not have a
4579       // displaced mark word. We're not expecting many objects to have
4580       // a displaced marked word, so that case is not optimized
4581       // further (it could be...) and we simply call obj->incr_age().
4582 
4583       if (m->has_displaced_mark_helper()) {
4584         // in this case, we have to install the mark word first,
4585         // otherwise obj looks to be forwarded (the old mark word,
4586         // which contains the forward pointer, was copied)
4587         obj->set_mark(m);
4588         obj->incr_age();
4589       } else {
4590         m = m->incr_age();
4591         obj->set_mark(m);
4592       }
4593       _par_scan_state->age_table()->add(obj, word_sz);
4594     } else {
4595       obj->set_mark(m);
4596     }
4597 
4598     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4599     surv_young_words[young_index] += word_sz;
4600 
4601     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4602       // We keep track of the next start index in the length field of
4603       // the to-space object. The actual length can be found in the
4604       // length field of the from-space object.
4605       arrayOop(obj)->set_length(0);
4606       oop* old_p = set_partial_array_mask(old);
4607       _par_scan_state->push_on_queue(old_p);
4608     } else {
4609       // No point in using the slower heap_region_containing() method,
4610       // given that we know obj is in the heap.
4611       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4612       obj->oop_iterate_backwards(&_scanner);
4613     }
4614   } else {
4615     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4616     obj = forward_ptr;
4617   }
4618   return obj;
4619 }
4620 
4621 template <class T>
4622 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4623   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4624     _scanned_klass->record_modified_oops();
4625   }
4626 }
4627 
4628 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4629 template <class T>
4630 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4631 ::do_oop_work(T* p) {
4632   oop obj = oopDesc::load_decode_heap_oop(p);
4633   assert(barrier != G1BarrierRS || obj != NULL,
4634          "Precondition: G1BarrierRS implies obj is non-NULL");
4635 
4636   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4637 
4638   // here the null check is implicit in the cset_fast_test() test
4639   if (_g1->in_cset_fast_test(obj)) {
4640     oop forwardee;
4641     if (obj->is_forwarded()) {
4642       forwardee = obj->forwardee();
4643     } else {
4644       forwardee = copy_to_survivor_space(obj);
4645     }
4646     assert(forwardee != NULL, "forwardee should not be NULL");
4647     oopDesc::encode_store_heap_oop(p, forwardee);
4648     if (do_mark_object && forwardee != obj) {
4649       // If the object is self-forwarded we don't need to explicitly
4650       // mark it, the evacuation failure protocol will do so.
4651       mark_forwarded_object(obj, forwardee);
4652     }
4653 
4654     // When scanning the RS, we only care about objs in CS.
4655     if (barrier == G1BarrierRS) {
4656       _par_scan_state->update_rs(_from, p, _worker_id);
4657     } else if (barrier == G1BarrierKlass) {
4658       do_klass_barrier(p, forwardee);
4659     }
4660   } else {
4661     // The object is not in collection set. If we're a root scanning
4662     // closure during an initial mark pause (i.e. do_mark_object will
4663     // be true) then attempt to mark the object.
4664     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4665       mark_object(obj);
4666     }
4667   }
4668 
4669   if (barrier == G1BarrierEvac && obj != NULL) {
4670     _par_scan_state->update_rs(_from, p, _worker_id);
4671   }
4672 
4673   if (do_gen_barrier && obj != NULL) {
4674     par_do_barrier(p);
4675   }
4676 }
4677 
4678 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4679 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4680 
4681 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4682   assert(has_partial_array_mask(p), "invariant");
4683   oop from_obj = clear_partial_array_mask(p);
4684 
4685   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4686   assert(from_obj->is_objArray(), "must be obj array");
4687   objArrayOop from_obj_array = objArrayOop(from_obj);
4688   // The from-space object contains the real length.
4689   int length                 = from_obj_array->length();
4690 
4691   assert(from_obj->is_forwarded(), "must be forwarded");
4692   oop to_obj                 = from_obj->forwardee();
4693   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4694   objArrayOop to_obj_array   = objArrayOop(to_obj);
4695   // We keep track of the next start index in the length field of the
4696   // to-space object.
4697   int next_index             = to_obj_array->length();
4698   assert(0 <= next_index && next_index < length,
4699          err_msg("invariant, next index: %d, length: %d", next_index, length));
4700 
4701   int start                  = next_index;
4702   int end                    = length;
4703   int remainder              = end - start;
4704   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4705   if (remainder > 2 * ParGCArrayScanChunk) {
4706     end = start + ParGCArrayScanChunk;
4707     to_obj_array->set_length(end);
4708     // Push the remainder before we process the range in case another
4709     // worker has run out of things to do and can steal it.
4710     oop* from_obj_p = set_partial_array_mask(from_obj);
4711     _par_scan_state->push_on_queue(from_obj_p);
4712   } else {
4713     assert(length == end, "sanity");
4714     // We'll process the final range for this object. Restore the length
4715     // so that the heap remains parsable in case of evacuation failure.
4716     to_obj_array->set_length(end);
4717   }
4718   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4719   // Process indexes [start,end). It will also process the header
4720   // along with the first chunk (i.e., the chunk with start == 0).
4721   // Note that at this point the length field of to_obj_array is not
4722   // correct given that we are using it to keep track of the next
4723   // start index. oop_iterate_range() (thankfully!) ignores the length
4724   // field and only relies on the start / end parameters.  It does
4725   // however return the size of the object which will be incorrect. So
4726   // we have to ignore it even if we wanted to use it.
4727   to_obj_array->oop_iterate_range(&_scanner, start, end);
4728 }
4729 
4730 class G1ParEvacuateFollowersClosure : public VoidClosure {
4731 protected:
4732   G1CollectedHeap*              _g1h;
4733   G1ParScanThreadState*         _par_scan_state;
4734   RefToScanQueueSet*            _queues;
4735   ParallelTaskTerminator*       _terminator;
4736 
4737   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4738   RefToScanQueueSet*      queues()         { return _queues; }
4739   ParallelTaskTerminator* terminator()     { return _terminator; }
4740 
4741 public:
4742   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4743                                 G1ParScanThreadState* par_scan_state,
4744                                 RefToScanQueueSet* queues,
4745                                 ParallelTaskTerminator* terminator)
4746     : _g1h(g1h), _par_scan_state(par_scan_state),
4747       _queues(queues), _terminator(terminator) {}
4748 
4749   void do_void();
4750 
4751 private:
4752   inline bool offer_termination();
4753 };
4754 
4755 bool G1ParEvacuateFollowersClosure::offer_termination() {
4756   G1ParScanThreadState* const pss = par_scan_state();
4757   pss->start_term_time();
4758   const bool res = terminator()->offer_termination();
4759   pss->end_term_time();
4760   return res;
4761 }
4762 
4763 void G1ParEvacuateFollowersClosure::do_void() {
4764   StarTask stolen_task;
4765   G1ParScanThreadState* const pss = par_scan_state();
4766   pss->trim_queue();
4767 
4768   do {
4769     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4770       assert(pss->verify_task(stolen_task), "sanity");
4771       if (stolen_task.is_narrow()) {
4772         pss->deal_with_reference((narrowOop*) stolen_task);
4773       } else {
4774         pss->deal_with_reference((oop*) stolen_task);
4775       }
4776 
4777       // We've just processed a reference and we might have made
4778       // available new entries on the queues. So we have to make sure
4779       // we drain the queues as necessary.
4780       pss->trim_queue();
4781     }
4782   } while (!offer_termination());
4783 
4784   pss->retire_alloc_buffers();
4785 }
4786 
4787 class G1KlassScanClosure : public KlassClosure {
4788  G1ParCopyHelper* _closure;
4789  bool             _process_only_dirty;
4790  int              _count;
4791  public:
4792   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4793       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4794   void do_klass(Klass* klass) {
4795     // If the klass has not been dirtied we know that there's
4796     // no references into  the young gen and we can skip it.
4797    if (!_process_only_dirty || klass->has_modified_oops()) {
4798       // Clean the klass since we're going to scavenge all the metadata.
4799       klass->clear_modified_oops();
4800 
4801       // Tell the closure that this klass is the Klass to scavenge
4802       // and is the one to dirty if oops are left pointing into the young gen.
4803       _closure->set_scanned_klass(klass);
4804 
4805       klass->oops_do(_closure);
4806 
4807       _closure->set_scanned_klass(NULL);
4808     }
4809     _count++;
4810   }
4811 };
4812 
4813 class G1ParTask : public AbstractGangTask {
4814 protected:
4815   G1CollectedHeap*       _g1h;
4816   RefToScanQueueSet      *_queues;
4817   ParallelTaskTerminator _terminator;
4818   uint _n_workers;
4819 
4820   Mutex _stats_lock;
4821   Mutex* stats_lock() { return &_stats_lock; }
4822 
4823   size_t getNCards() {
4824     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4825       / G1BlockOffsetSharedArray::N_bytes;
4826   }
4827 
4828 public:
4829   G1ParTask(G1CollectedHeap* g1h,
4830             RefToScanQueueSet *task_queues)
4831     : AbstractGangTask("G1 collection"),
4832       _g1h(g1h),
4833       _queues(task_queues),
4834       _terminator(0, _queues),
4835       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4836   {}
4837 
4838   RefToScanQueueSet* queues() { return _queues; }
4839 
4840   RefToScanQueue *work_queue(int i) {
4841     return queues()->queue(i);
4842   }
4843 
4844   ParallelTaskTerminator* terminator() { return &_terminator; }
4845 
4846   virtual void set_for_termination(int active_workers) {
4847     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4848     // in the young space (_par_seq_tasks) in the G1 heap
4849     // for SequentialSubTasksDone.
4850     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4851     // both of which need setting by set_n_termination().
4852     _g1h->SharedHeap::set_n_termination(active_workers);
4853     _g1h->set_n_termination(active_workers);
4854     terminator()->reset_for_reuse(active_workers);
4855     _n_workers = active_workers;
4856   }
4857 
4858   void work(uint worker_id) {
4859     if (worker_id >= _n_workers) return;  // no work needed this round
4860 
4861     double start_time_ms = os::elapsedTime() * 1000.0;
4862     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4863 
4864     {
4865       ResourceMark rm;
4866       HandleMark   hm;
4867 
4868       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4869 
4870       G1ParScanThreadState            pss(_g1h, worker_id);
4871       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4872       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4873       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4874 
4875       pss.set_evac_closure(&scan_evac_cl);
4876       pss.set_evac_failure_closure(&evac_failure_cl);
4877       pss.set_partial_scan_closure(&partial_scan_cl);
4878 
4879       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4880       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
4881 
4882       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4883       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
4884 
4885       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
4886       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
4887       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
4888 
4889       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4890       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
4891 
4892       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4893         // We also need to mark copied objects.
4894         scan_root_cl = &scan_mark_root_cl;
4895         scan_klasses_cl = &scan_mark_klasses_cl_s;
4896       }
4897 
4898       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4899 
4900       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
4901 
4902       pss.start_strong_roots();
4903       _g1h->g1_process_strong_roots(/* is scavenging */ true,
4904                                     SharedHeap::ScanningOption(so),
4905                                     scan_root_cl,
4906                                     &push_heap_rs_cl,
4907                                     scan_klasses_cl,
4908                                     worker_id);
4909       pss.end_strong_roots();
4910 
4911       {
4912         double start = os::elapsedTime();
4913         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4914         evac.do_void();
4915         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4916         double term_ms = pss.term_time()*1000.0;
4917         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4918         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4919       }
4920       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4921       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4922 
4923       if (ParallelGCVerbose) {
4924         MutexLocker x(stats_lock());
4925         pss.print_termination_stats(worker_id);
4926       }
4927 
4928       assert(pss.refs()->is_empty(), "should be empty");
4929 
4930       // Close the inner scope so that the ResourceMark and HandleMark
4931       // destructors are executed here and are included as part of the
4932       // "GC Worker Time".
4933     }
4934 
4935     double end_time_ms = os::elapsedTime() * 1000.0;
4936     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4937   }
4938 };
4939 
4940 // *** Common G1 Evacuation Stuff
4941 
4942 // Closures that support the filtering of CodeBlobs scanned during
4943 // external root scanning.
4944 
4945 // Closure applied to reference fields in code blobs (specifically nmethods)
4946 // to determine whether an nmethod contains references that point into
4947 // the collection set. Used as a predicate when walking code roots so
4948 // that only nmethods that point into the collection set are added to the
4949 // 'marked' list.
4950 
4951 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
4952 
4953   class G1PointsIntoCSOopClosure : public OopClosure {
4954     G1CollectedHeap* _g1;
4955     bool _points_into_cs;
4956   public:
4957     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
4958       _g1(g1), _points_into_cs(false) { }
4959 
4960     bool points_into_cs() const { return _points_into_cs; }
4961 
4962     template <class T>
4963     void do_oop_nv(T* p) {
4964       if (!_points_into_cs) {
4965         T heap_oop = oopDesc::load_heap_oop(p);
4966         if (!oopDesc::is_null(heap_oop) &&
4967             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
4968           _points_into_cs = true;
4969         }
4970       }
4971     }
4972 
4973     virtual void do_oop(oop* p)        { do_oop_nv(p); }
4974     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
4975   };
4976 
4977   G1CollectedHeap* _g1;
4978 
4979 public:
4980   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
4981     CodeBlobToOopClosure(cl, true), _g1(g1) { }
4982 
4983   virtual void do_code_blob(CodeBlob* cb) {
4984     nmethod* nm = cb->as_nmethod_or_null();
4985     if (nm != NULL && !(nm->test_oops_do_mark())) {
4986       G1PointsIntoCSOopClosure predicate_cl(_g1);
4987       nm->oops_do(&predicate_cl);
4988 
4989       if (predicate_cl.points_into_cs()) {
4990         // At least one of the reference fields or the oop relocations
4991         // in the nmethod points into the collection set. We have to
4992         // 'mark' this nmethod.
4993         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
4994         // or MarkingCodeBlobClosure::do_code_blob() change.
4995         if (!nm->test_set_oops_do_mark()) {
4996           do_newly_marked_nmethod(nm);
4997         }
4998       }
4999     }
5000   }
5001 };
5002 
5003 // This method is run in a GC worker.
5004 
5005 void
5006 G1CollectedHeap::
5007 g1_process_strong_roots(bool is_scavenging,
5008                         ScanningOption so,
5009                         OopClosure* scan_non_heap_roots,
5010                         OopsInHeapRegionClosure* scan_rs,
5011                         G1KlassScanClosure* scan_klasses,
5012                         int worker_i) {
5013 
5014   // First scan the strong roots
5015   double ext_roots_start = os::elapsedTime();
5016   double closure_app_time_sec = 0.0;
5017 
5018   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5019 
5020   // Walk the code cache w/o buffering, because StarTask cannot handle
5021   // unaligned oop locations.
5022   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5023 
5024   process_strong_roots(false, // no scoping; this is parallel code
5025                        is_scavenging, so,
5026                        &buf_scan_non_heap_roots,
5027                        &eager_scan_code_roots,
5028                        scan_klasses
5029                        );
5030 
5031   // Now the CM ref_processor roots.
5032   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5033     // We need to treat the discovered reference lists of the
5034     // concurrent mark ref processor as roots and keep entries
5035     // (which are added by the marking threads) on them live
5036     // until they can be processed at the end of marking.
5037     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5038   }
5039 
5040   // Finish up any enqueued closure apps (attributed as object copy time).
5041   buf_scan_non_heap_roots.done();
5042 
5043   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5044 
5045   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5046 
5047   double ext_root_time_ms =
5048     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5049 
5050   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5051 
5052   // During conc marking we have to filter the per-thread SATB buffers
5053   // to make sure we remove any oops into the CSet (which will show up
5054   // as implicitly live).
5055   double satb_filtering_ms = 0.0;
5056   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5057     if (mark_in_progress()) {
5058       double satb_filter_start = os::elapsedTime();
5059 
5060       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5061 
5062       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5063     }
5064   }
5065   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5066 
5067   // Now scan the complement of the collection set.
5068   if (scan_rs != NULL) {
5069     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5070   }
5071   _process_strong_tasks->all_tasks_completed();
5072 }
5073 
5074 void
5075 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5076   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5077   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5078 }
5079 
5080 // Weak Reference Processing support
5081 
5082 // An always "is_alive" closure that is used to preserve referents.
5083 // If the object is non-null then it's alive.  Used in the preservation
5084 // of referent objects that are pointed to by reference objects
5085 // discovered by the CM ref processor.
5086 class G1AlwaysAliveClosure: public BoolObjectClosure {
5087   G1CollectedHeap* _g1;
5088 public:
5089   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5090   void do_object(oop p) { assert(false, "Do not call."); }
5091   bool do_object_b(oop p) {
5092     if (p != NULL) {
5093       return true;
5094     }
5095     return false;
5096   }
5097 };
5098 
5099 bool G1STWIsAliveClosure::do_object_b(oop p) {
5100   // An object is reachable if it is outside the collection set,
5101   // or is inside and copied.
5102   return !_g1->obj_in_cs(p) || p->is_forwarded();
5103 }
5104 
5105 // Non Copying Keep Alive closure
5106 class G1KeepAliveClosure: public OopClosure {
5107   G1CollectedHeap* _g1;
5108 public:
5109   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5110   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5111   void do_oop(      oop* p) {
5112     oop obj = *p;
5113 
5114     if (_g1->obj_in_cs(obj)) {
5115       assert( obj->is_forwarded(), "invariant" );
5116       *p = obj->forwardee();
5117     }
5118   }
5119 };
5120 
5121 // Copying Keep Alive closure - can be called from both
5122 // serial and parallel code as long as different worker
5123 // threads utilize different G1ParScanThreadState instances
5124 // and different queues.
5125 
5126 class G1CopyingKeepAliveClosure: public OopClosure {
5127   G1CollectedHeap*         _g1h;
5128   OopClosure*              _copy_non_heap_obj_cl;
5129   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5130   G1ParScanThreadState*    _par_scan_state;
5131 
5132 public:
5133   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5134                             OopClosure* non_heap_obj_cl,
5135                             OopsInHeapRegionClosure* metadata_obj_cl,
5136                             G1ParScanThreadState* pss):
5137     _g1h(g1h),
5138     _copy_non_heap_obj_cl(non_heap_obj_cl),
5139     _copy_metadata_obj_cl(metadata_obj_cl),
5140     _par_scan_state(pss)
5141   {}
5142 
5143   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5144   virtual void do_oop(      oop* p) { do_oop_work(p); }
5145 
5146   template <class T> void do_oop_work(T* p) {
5147     oop obj = oopDesc::load_decode_heap_oop(p);
5148 
5149     if (_g1h->obj_in_cs(obj)) {
5150       // If the referent object has been forwarded (either copied
5151       // to a new location or to itself in the event of an
5152       // evacuation failure) then we need to update the reference
5153       // field and, if both reference and referent are in the G1
5154       // heap, update the RSet for the referent.
5155       //
5156       // If the referent has not been forwarded then we have to keep
5157       // it alive by policy. Therefore we have copy the referent.
5158       //
5159       // If the reference field is in the G1 heap then we can push
5160       // on the PSS queue. When the queue is drained (after each
5161       // phase of reference processing) the object and it's followers
5162       // will be copied, the reference field set to point to the
5163       // new location, and the RSet updated. Otherwise we need to
5164       // use the the non-heap or metadata closures directly to copy
5165       // the refernt object and update the pointer, while avoiding
5166       // updating the RSet.
5167 
5168       if (_g1h->is_in_g1_reserved(p)) {
5169         _par_scan_state->push_on_queue(p);
5170       } else {
5171         assert(!ClassLoaderDataGraph::contains((address)p),
5172                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5173                               PTR_FORMAT, p));
5174           _copy_non_heap_obj_cl->do_oop(p);
5175         }
5176       }
5177     }
5178 };
5179 
5180 // Serial drain queue closure. Called as the 'complete_gc'
5181 // closure for each discovered list in some of the
5182 // reference processing phases.
5183 
5184 class G1STWDrainQueueClosure: public VoidClosure {
5185 protected:
5186   G1CollectedHeap* _g1h;
5187   G1ParScanThreadState* _par_scan_state;
5188 
5189   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5190 
5191 public:
5192   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5193     _g1h(g1h),
5194     _par_scan_state(pss)
5195   { }
5196 
5197   void do_void() {
5198     G1ParScanThreadState* const pss = par_scan_state();
5199     pss->trim_queue();
5200   }
5201 };
5202 
5203 // Parallel Reference Processing closures
5204 
5205 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5206 // processing during G1 evacuation pauses.
5207 
5208 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5209 private:
5210   G1CollectedHeap*   _g1h;
5211   RefToScanQueueSet* _queues;
5212   FlexibleWorkGang*  _workers;
5213   int                _active_workers;
5214 
5215 public:
5216   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5217                         FlexibleWorkGang* workers,
5218                         RefToScanQueueSet *task_queues,
5219                         int n_workers) :
5220     _g1h(g1h),
5221     _queues(task_queues),
5222     _workers(workers),
5223     _active_workers(n_workers)
5224   {
5225     assert(n_workers > 0, "shouldn't call this otherwise");
5226   }
5227 
5228   // Executes the given task using concurrent marking worker threads.
5229   virtual void execute(ProcessTask& task);
5230   virtual void execute(EnqueueTask& task);
5231 };
5232 
5233 // Gang task for possibly parallel reference processing
5234 
5235 class G1STWRefProcTaskProxy: public AbstractGangTask {
5236   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5237   ProcessTask&     _proc_task;
5238   G1CollectedHeap* _g1h;
5239   RefToScanQueueSet *_task_queues;
5240   ParallelTaskTerminator* _terminator;
5241 
5242 public:
5243   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5244                      G1CollectedHeap* g1h,
5245                      RefToScanQueueSet *task_queues,
5246                      ParallelTaskTerminator* terminator) :
5247     AbstractGangTask("Process reference objects in parallel"),
5248     _proc_task(proc_task),
5249     _g1h(g1h),
5250     _task_queues(task_queues),
5251     _terminator(terminator)
5252   {}
5253 
5254   virtual void work(uint worker_id) {
5255     // The reference processing task executed by a single worker.
5256     ResourceMark rm;
5257     HandleMark   hm;
5258 
5259     G1STWIsAliveClosure is_alive(_g1h);
5260 
5261     G1ParScanThreadState pss(_g1h, worker_id);
5262 
5263     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5264     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5265     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5266 
5267     pss.set_evac_closure(&scan_evac_cl);
5268     pss.set_evac_failure_closure(&evac_failure_cl);
5269     pss.set_partial_scan_closure(&partial_scan_cl);
5270 
5271     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5272     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5273 
5274     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5275     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5276 
5277     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5278     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5279 
5280     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5281       // We also need to mark copied objects.
5282       copy_non_heap_cl = &copy_mark_non_heap_cl;
5283       copy_metadata_cl = &copy_mark_metadata_cl;
5284     }
5285 
5286     // Keep alive closure.
5287     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5288 
5289     // Complete GC closure
5290     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5291 
5292     // Call the reference processing task's work routine.
5293     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5294 
5295     // Note we cannot assert that the refs array is empty here as not all
5296     // of the processing tasks (specifically phase2 - pp2_work) execute
5297     // the complete_gc closure (which ordinarily would drain the queue) so
5298     // the queue may not be empty.
5299   }
5300 };
5301 
5302 // Driver routine for parallel reference processing.
5303 // Creates an instance of the ref processing gang
5304 // task and has the worker threads execute it.
5305 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5306   assert(_workers != NULL, "Need parallel worker threads.");
5307 
5308   ParallelTaskTerminator terminator(_active_workers, _queues);
5309   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5310 
5311   _g1h->set_par_threads(_active_workers);
5312   _workers->run_task(&proc_task_proxy);
5313   _g1h->set_par_threads(0);
5314 }
5315 
5316 // Gang task for parallel reference enqueueing.
5317 
5318 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5319   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5320   EnqueueTask& _enq_task;
5321 
5322 public:
5323   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5324     AbstractGangTask("Enqueue reference objects in parallel"),
5325     _enq_task(enq_task)
5326   { }
5327 
5328   virtual void work(uint worker_id) {
5329     _enq_task.work(worker_id);
5330   }
5331 };
5332 
5333 // Driver routine for parallel reference enqueing.
5334 // Creates an instance of the ref enqueueing gang
5335 // task and has the worker threads execute it.
5336 
5337 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5338   assert(_workers != NULL, "Need parallel worker threads.");
5339 
5340   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5341 
5342   _g1h->set_par_threads(_active_workers);
5343   _workers->run_task(&enq_task_proxy);
5344   _g1h->set_par_threads(0);
5345 }
5346 
5347 // End of weak reference support closures
5348 
5349 // Abstract task used to preserve (i.e. copy) any referent objects
5350 // that are in the collection set and are pointed to by reference
5351 // objects discovered by the CM ref processor.
5352 
5353 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5354 protected:
5355   G1CollectedHeap* _g1h;
5356   RefToScanQueueSet      *_queues;
5357   ParallelTaskTerminator _terminator;
5358   uint _n_workers;
5359 
5360 public:
5361   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5362     AbstractGangTask("ParPreserveCMReferents"),
5363     _g1h(g1h),
5364     _queues(task_queues),
5365     _terminator(workers, _queues),
5366     _n_workers(workers)
5367   { }
5368 
5369   void work(uint worker_id) {
5370     ResourceMark rm;
5371     HandleMark   hm;
5372 
5373     G1ParScanThreadState            pss(_g1h, worker_id);
5374     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5375     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5376     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5377 
5378     pss.set_evac_closure(&scan_evac_cl);
5379     pss.set_evac_failure_closure(&evac_failure_cl);
5380     pss.set_partial_scan_closure(&partial_scan_cl);
5381 
5382     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5383 
5384 
5385     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5386     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5387 
5388     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5389     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5390 
5391     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5392     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5393 
5394     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5395       // We also need to mark copied objects.
5396       copy_non_heap_cl = &copy_mark_non_heap_cl;
5397       copy_metadata_cl = &copy_mark_metadata_cl;
5398     }
5399 
5400     // Is alive closure
5401     G1AlwaysAliveClosure always_alive(_g1h);
5402 
5403     // Copying keep alive closure. Applied to referent objects that need
5404     // to be copied.
5405     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5406 
5407     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5408 
5409     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5410     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5411 
5412     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5413     // So this must be true - but assert just in case someone decides to
5414     // change the worker ids.
5415     assert(0 <= worker_id && worker_id < limit, "sanity");
5416     assert(!rp->discovery_is_atomic(), "check this code");
5417 
5418     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5419     for (uint idx = worker_id; idx < limit; idx += stride) {
5420       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5421 
5422       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5423       while (iter.has_next()) {
5424         // Since discovery is not atomic for the CM ref processor, we
5425         // can see some null referent objects.
5426         iter.load_ptrs(DEBUG_ONLY(true));
5427         oop ref = iter.obj();
5428 
5429         // This will filter nulls.
5430         if (iter.is_referent_alive()) {
5431           iter.make_referent_alive();
5432         }
5433         iter.move_to_next();
5434       }
5435     }
5436 
5437     // Drain the queue - which may cause stealing
5438     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5439     drain_queue.do_void();
5440     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5441     assert(pss.refs()->is_empty(), "should be");
5442   }
5443 };
5444 
5445 // Weak Reference processing during an evacuation pause (part 1).
5446 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5447   double ref_proc_start = os::elapsedTime();
5448 
5449   ReferenceProcessor* rp = _ref_processor_stw;
5450   assert(rp->discovery_enabled(), "should have been enabled");
5451 
5452   // Any reference objects, in the collection set, that were 'discovered'
5453   // by the CM ref processor should have already been copied (either by
5454   // applying the external root copy closure to the discovered lists, or
5455   // by following an RSet entry).
5456   //
5457   // But some of the referents, that are in the collection set, that these
5458   // reference objects point to may not have been copied: the STW ref
5459   // processor would have seen that the reference object had already
5460   // been 'discovered' and would have skipped discovering the reference,
5461   // but would not have treated the reference object as a regular oop.
5462   // As a reult the copy closure would not have been applied to the
5463   // referent object.
5464   //
5465   // We need to explicitly copy these referent objects - the references
5466   // will be processed at the end of remarking.
5467   //
5468   // We also need to do this copying before we process the reference
5469   // objects discovered by the STW ref processor in case one of these
5470   // referents points to another object which is also referenced by an
5471   // object discovered by the STW ref processor.
5472 
5473   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5474            no_of_gc_workers == workers()->active_workers(),
5475            "Need to reset active GC workers");
5476 
5477   set_par_threads(no_of_gc_workers);
5478   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5479                                                  no_of_gc_workers,
5480                                                  _task_queues);
5481 
5482   if (G1CollectedHeap::use_parallel_gc_threads()) {
5483     workers()->run_task(&keep_cm_referents);
5484   } else {
5485     keep_cm_referents.work(0);
5486   }
5487 
5488   set_par_threads(0);
5489 
5490   // Closure to test whether a referent is alive.
5491   G1STWIsAliveClosure is_alive(this);
5492 
5493   // Even when parallel reference processing is enabled, the processing
5494   // of JNI refs is serial and performed serially by the current thread
5495   // rather than by a worker. The following PSS will be used for processing
5496   // JNI refs.
5497 
5498   // Use only a single queue for this PSS.
5499   G1ParScanThreadState pss(this, 0);
5500 
5501   // We do not embed a reference processor in the copying/scanning
5502   // closures while we're actually processing the discovered
5503   // reference objects.
5504   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5505   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5506   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5507 
5508   pss.set_evac_closure(&scan_evac_cl);
5509   pss.set_evac_failure_closure(&evac_failure_cl);
5510   pss.set_partial_scan_closure(&partial_scan_cl);
5511 
5512   assert(pss.refs()->is_empty(), "pre-condition");
5513 
5514   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5515   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5516 
5517   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5518   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5519 
5520   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5521   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5522 
5523   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5524     // We also need to mark copied objects.
5525     copy_non_heap_cl = &copy_mark_non_heap_cl;
5526     copy_metadata_cl = &copy_mark_metadata_cl;
5527   }
5528 
5529   // Keep alive closure.
5530   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5531 
5532   // Serial Complete GC closure
5533   G1STWDrainQueueClosure drain_queue(this, &pss);
5534 
5535   // Setup the soft refs policy...
5536   rp->setup_policy(false);
5537 
5538   if (!rp->processing_is_mt()) {
5539     // Serial reference processing...
5540     rp->process_discovered_references(&is_alive,
5541                                       &keep_alive,
5542                                       &drain_queue,
5543                                       NULL);
5544   } else {
5545     // Parallel reference processing
5546     assert(rp->num_q() == no_of_gc_workers, "sanity");
5547     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5548 
5549     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5550     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5551   }
5552 
5553   // We have completed copying any necessary live referent objects
5554   // (that were not copied during the actual pause) so we can
5555   // retire any active alloc buffers
5556   pss.retire_alloc_buffers();
5557   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5558 
5559   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5560   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5561 }
5562 
5563 // Weak Reference processing during an evacuation pause (part 2).
5564 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5565   double ref_enq_start = os::elapsedTime();
5566 
5567   ReferenceProcessor* rp = _ref_processor_stw;
5568   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5569 
5570   // Now enqueue any remaining on the discovered lists on to
5571   // the pending list.
5572   if (!rp->processing_is_mt()) {
5573     // Serial reference processing...
5574     rp->enqueue_discovered_references();
5575   } else {
5576     // Parallel reference enqueuing
5577 
5578     assert(no_of_gc_workers == workers()->active_workers(),
5579            "Need to reset active workers");
5580     assert(rp->num_q() == no_of_gc_workers, "sanity");
5581     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5582 
5583     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5584     rp->enqueue_discovered_references(&par_task_executor);
5585   }
5586 
5587   rp->verify_no_references_recorded();
5588   assert(!rp->discovery_enabled(), "should have been disabled");
5589 
5590   // FIXME
5591   // CM's reference processing also cleans up the string and symbol tables.
5592   // Should we do that here also? We could, but it is a serial operation
5593   // and could signicantly increase the pause time.
5594 
5595   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5596   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5597 }
5598 
5599 void G1CollectedHeap::evacuate_collection_set() {
5600   _expand_heap_after_alloc_failure = true;
5601   set_evacuation_failed(false);
5602 
5603   // Should G1EvacuationFailureALot be in effect for this GC?
5604   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5605 
5606   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5607   concurrent_g1_refine()->set_use_cache(false);
5608   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5609 
5610   uint n_workers;
5611   if (G1CollectedHeap::use_parallel_gc_threads()) {
5612     n_workers =
5613       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5614                                      workers()->active_workers(),
5615                                      Threads::number_of_non_daemon_threads());
5616     assert(UseDynamicNumberOfGCThreads ||
5617            n_workers == workers()->total_workers(),
5618            "If not dynamic should be using all the  workers");
5619     workers()->set_active_workers(n_workers);
5620     set_par_threads(n_workers);
5621   } else {
5622     assert(n_par_threads() == 0,
5623            "Should be the original non-parallel value");
5624     n_workers = 1;
5625   }
5626 
5627   G1ParTask g1_par_task(this, _task_queues);
5628 
5629   init_for_evac_failure(NULL);
5630 
5631   rem_set()->prepare_for_younger_refs_iterate(true);
5632 
5633   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5634   double start_par_time_sec = os::elapsedTime();
5635   double end_par_time_sec;
5636 
5637   {
5638     StrongRootsScope srs(this);
5639 
5640     if (G1CollectedHeap::use_parallel_gc_threads()) {
5641       // The individual threads will set their evac-failure closures.
5642       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5643       // These tasks use ShareHeap::_process_strong_tasks
5644       assert(UseDynamicNumberOfGCThreads ||
5645              workers()->active_workers() == workers()->total_workers(),
5646              "If not dynamic should be using all the  workers");
5647       workers()->run_task(&g1_par_task);
5648     } else {
5649       g1_par_task.set_for_termination(n_workers);
5650       g1_par_task.work(0);
5651     }
5652     end_par_time_sec = os::elapsedTime();
5653 
5654     // Closing the inner scope will execute the destructor
5655     // for the StrongRootsScope object. We record the current
5656     // elapsed time before closing the scope so that time
5657     // taken for the SRS destructor is NOT included in the
5658     // reported parallel time.
5659   }
5660 
5661   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5662   g1_policy()->phase_times()->record_par_time(par_time_ms);
5663 
5664   double code_root_fixup_time_ms =
5665         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5666   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5667 
5668   set_par_threads(0);
5669 
5670   // Process any discovered reference objects - we have
5671   // to do this _before_ we retire the GC alloc regions
5672   // as we may have to copy some 'reachable' referent
5673   // objects (and their reachable sub-graphs) that were
5674   // not copied during the pause.
5675   process_discovered_references(n_workers);
5676 
5677   // Weak root processing.
5678   // Note: when JSR 292 is enabled and code blobs can contain
5679   // non-perm oops then we will need to process the code blobs
5680   // here too.
5681   {
5682     G1STWIsAliveClosure is_alive(this);
5683     G1KeepAliveClosure keep_alive(this);
5684     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5685   }
5686 
5687   release_gc_alloc_regions(n_workers);
5688   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5689 
5690   concurrent_g1_refine()->clear_hot_cache();
5691   concurrent_g1_refine()->set_use_cache(true);
5692 
5693   finalize_for_evac_failure();
5694 
5695   if (evacuation_failed()) {
5696     remove_self_forwarding_pointers();
5697 
5698     // Reset the G1EvacuationFailureALot counters and flags
5699     // Note: the values are reset only when an actual
5700     // evacuation failure occurs.
5701     NOT_PRODUCT(reset_evacuation_should_fail();)
5702   }
5703 
5704   // Enqueue any remaining references remaining on the STW
5705   // reference processor's discovered lists. We need to do
5706   // this after the card table is cleaned (and verified) as
5707   // the act of enqueuing entries on to the pending list
5708   // will log these updates (and dirty their associated
5709   // cards). We need these updates logged to update any
5710   // RSets.
5711   enqueue_discovered_references(n_workers);
5712 
5713   if (G1DeferredRSUpdate) {
5714     RedirtyLoggedCardTableEntryFastClosure redirty;
5715     dirty_card_queue_set().set_closure(&redirty);
5716     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5717 
5718     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5719     dcq.merge_bufferlists(&dirty_card_queue_set());
5720     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5721   }
5722   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5723 }
5724 
5725 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5726                                      size_t* pre_used,
5727                                      FreeRegionList* free_list,
5728                                      OldRegionSet* old_proxy_set,
5729                                      HumongousRegionSet* humongous_proxy_set,
5730                                      HRRSCleanupTask* hrrs_cleanup_task,
5731                                      bool par) {
5732   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5733     if (hr->isHumongous()) {
5734       assert(hr->startsHumongous(), "we should only see starts humongous");
5735       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5736     } else {
5737       _old_set.remove_with_proxy(hr, old_proxy_set);
5738       free_region(hr, pre_used, free_list, par);
5739     }
5740   } else {
5741     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5742   }
5743 }
5744 
5745 void G1CollectedHeap::free_region(HeapRegion* hr,
5746                                   size_t* pre_used,
5747                                   FreeRegionList* free_list,
5748                                   bool par) {
5749   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5750   assert(!hr->is_empty(), "the region should not be empty");
5751   assert(free_list != NULL, "pre-condition");
5752 
5753   *pre_used += hr->used();
5754   hr->hr_clear(par, true /* clear_space */);
5755   free_list->add_as_head(hr);
5756 }
5757 
5758 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5759                                      size_t* pre_used,
5760                                      FreeRegionList* free_list,
5761                                      HumongousRegionSet* humongous_proxy_set,
5762                                      bool par) {
5763   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5764   assert(free_list != NULL, "pre-condition");
5765   assert(humongous_proxy_set != NULL, "pre-condition");
5766 
5767   size_t hr_used = hr->used();
5768   size_t hr_capacity = hr->capacity();
5769   size_t hr_pre_used = 0;
5770   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5771   // We need to read this before we make the region non-humongous,
5772   // otherwise the information will be gone.
5773   uint last_index = hr->last_hc_index();
5774   hr->set_notHumongous();
5775   free_region(hr, &hr_pre_used, free_list, par);
5776 
5777   uint i = hr->hrs_index() + 1;
5778   while (i < last_index) {
5779     HeapRegion* curr_hr = region_at(i);
5780     assert(curr_hr->continuesHumongous(), "invariant");
5781     curr_hr->set_notHumongous();
5782     free_region(curr_hr, &hr_pre_used, free_list, par);
5783     i += 1;
5784   }
5785   assert(hr_pre_used == hr_used,
5786          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5787                  "should be the same", hr_pre_used, hr_used));
5788   *pre_used += hr_pre_used;
5789 }
5790 
5791 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5792                                        FreeRegionList* free_list,
5793                                        OldRegionSet* old_proxy_set,
5794                                        HumongousRegionSet* humongous_proxy_set,
5795                                        bool par) {
5796   if (pre_used > 0) {
5797     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5798     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5799     assert(_summary_bytes_used >= pre_used,
5800            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5801                    "should be >= pre_used: "SIZE_FORMAT,
5802                    _summary_bytes_used, pre_used));
5803     _summary_bytes_used -= pre_used;
5804   }
5805   if (free_list != NULL && !free_list->is_empty()) {
5806     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5807     _free_list.add_as_head(free_list);
5808   }
5809   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5810     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5811     _old_set.update_from_proxy(old_proxy_set);
5812   }
5813   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5814     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5815     _humongous_set.update_from_proxy(humongous_proxy_set);
5816   }
5817 }
5818 
5819 class G1ParCleanupCTTask : public AbstractGangTask {
5820   CardTableModRefBS* _ct_bs;
5821   G1CollectedHeap* _g1h;
5822   HeapRegion* volatile _su_head;
5823 public:
5824   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5825                      G1CollectedHeap* g1h) :
5826     AbstractGangTask("G1 Par Cleanup CT Task"),
5827     _ct_bs(ct_bs), _g1h(g1h) { }
5828 
5829   void work(uint worker_id) {
5830     HeapRegion* r;
5831     while (r = _g1h->pop_dirty_cards_region()) {
5832       clear_cards(r);
5833     }
5834   }
5835 
5836   void clear_cards(HeapRegion* r) {
5837     // Cards of the survivors should have already been dirtied.
5838     if (!r->is_survivor()) {
5839       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5840     }
5841   }
5842 };
5843 
5844 #ifndef PRODUCT
5845 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5846   G1CollectedHeap* _g1h;
5847   CardTableModRefBS* _ct_bs;
5848 public:
5849   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5850     : _g1h(g1h), _ct_bs(ct_bs) { }
5851   virtual bool doHeapRegion(HeapRegion* r) {
5852     if (r->is_survivor()) {
5853       _g1h->verify_dirty_region(r);
5854     } else {
5855       _g1h->verify_not_dirty_region(r);
5856     }
5857     return false;
5858   }
5859 };
5860 
5861 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5862   // All of the region should be clean.
5863   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5864   MemRegion mr(hr->bottom(), hr->end());
5865   ct_bs->verify_not_dirty_region(mr);
5866 }
5867 
5868 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5869   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5870   // dirty allocated blocks as they allocate them. The thread that
5871   // retires each region and replaces it with a new one will do a
5872   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5873   // not dirty that area (one less thing to have to do while holding
5874   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5875   // is dirty.
5876   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5877   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5878   ct_bs->verify_dirty_region(mr);
5879 }
5880 
5881 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5882   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5883   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5884     verify_dirty_region(hr);
5885   }
5886 }
5887 
5888 void G1CollectedHeap::verify_dirty_young_regions() {
5889   verify_dirty_young_list(_young_list->first_region());
5890 }
5891 #endif
5892 
5893 void G1CollectedHeap::cleanUpCardTable() {
5894   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5895   double start = os::elapsedTime();
5896 
5897   {
5898     // Iterate over the dirty cards region list.
5899     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5900 
5901     if (G1CollectedHeap::use_parallel_gc_threads()) {
5902       set_par_threads();
5903       workers()->run_task(&cleanup_task);
5904       set_par_threads(0);
5905     } else {
5906       while (_dirty_cards_region_list) {
5907         HeapRegion* r = _dirty_cards_region_list;
5908         cleanup_task.clear_cards(r);
5909         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5910         if (_dirty_cards_region_list == r) {
5911           // The last region.
5912           _dirty_cards_region_list = NULL;
5913         }
5914         r->set_next_dirty_cards_region(NULL);
5915       }
5916     }
5917 #ifndef PRODUCT
5918     if (G1VerifyCTCleanup || VerifyAfterGC) {
5919       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5920       heap_region_iterate(&cleanup_verifier);
5921     }
5922 #endif
5923   }
5924 
5925   double elapsed = os::elapsedTime() - start;
5926   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5927 }
5928 
5929 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5930   size_t pre_used = 0;
5931   FreeRegionList local_free_list("Local List for CSet Freeing");
5932 
5933   double young_time_ms     = 0.0;
5934   double non_young_time_ms = 0.0;
5935 
5936   // Since the collection set is a superset of the the young list,
5937   // all we need to do to clear the young list is clear its
5938   // head and length, and unlink any young regions in the code below
5939   _young_list->clear();
5940 
5941   G1CollectorPolicy* policy = g1_policy();
5942 
5943   double start_sec = os::elapsedTime();
5944   bool non_young = true;
5945 
5946   HeapRegion* cur = cs_head;
5947   int age_bound = -1;
5948   size_t rs_lengths = 0;
5949 
5950   while (cur != NULL) {
5951     assert(!is_on_master_free_list(cur), "sanity");
5952     if (non_young) {
5953       if (cur->is_young()) {
5954         double end_sec = os::elapsedTime();
5955         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5956         non_young_time_ms += elapsed_ms;
5957 
5958         start_sec = os::elapsedTime();
5959         non_young = false;
5960       }
5961     } else {
5962       if (!cur->is_young()) {
5963         double end_sec = os::elapsedTime();
5964         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5965         young_time_ms += elapsed_ms;
5966 
5967         start_sec = os::elapsedTime();
5968         non_young = true;
5969       }
5970     }
5971 
5972     rs_lengths += cur->rem_set()->occupied();
5973 
5974     HeapRegion* next = cur->next_in_collection_set();
5975     assert(cur->in_collection_set(), "bad CS");
5976     cur->set_next_in_collection_set(NULL);
5977     cur->set_in_collection_set(false);
5978 
5979     if (cur->is_young()) {
5980       int index = cur->young_index_in_cset();
5981       assert(index != -1, "invariant");
5982       assert((uint) index < policy->young_cset_region_length(), "invariant");
5983       size_t words_survived = _surviving_young_words[index];
5984       cur->record_surv_words_in_group(words_survived);
5985 
5986       // At this point the we have 'popped' cur from the collection set
5987       // (linked via next_in_collection_set()) but it is still in the
5988       // young list (linked via next_young_region()). Clear the
5989       // _next_young_region field.
5990       cur->set_next_young_region(NULL);
5991     } else {
5992       int index = cur->young_index_in_cset();
5993       assert(index == -1, "invariant");
5994     }
5995 
5996     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5997             (!cur->is_young() && cur->young_index_in_cset() == -1),
5998             "invariant" );
5999 
6000     if (!cur->evacuation_failed()) {
6001       MemRegion used_mr = cur->used_region();
6002 
6003       // And the region is empty.
6004       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6005       free_region(cur, &pre_used, &local_free_list, false /* par */);
6006     } else {
6007       cur->uninstall_surv_rate_group();
6008       if (cur->is_young()) {
6009         cur->set_young_index_in_cset(-1);
6010       }
6011       cur->set_not_young();
6012       cur->set_evacuation_failed(false);
6013       // The region is now considered to be old.
6014       _old_set.add(cur);
6015     }
6016     cur = next;
6017   }
6018 
6019   policy->record_max_rs_lengths(rs_lengths);
6020   policy->cset_regions_freed();
6021 
6022   double end_sec = os::elapsedTime();
6023   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6024 
6025   if (non_young) {
6026     non_young_time_ms += elapsed_ms;
6027   } else {
6028     young_time_ms += elapsed_ms;
6029   }
6030 
6031   update_sets_after_freeing_regions(pre_used, &local_free_list,
6032                                     NULL /* old_proxy_set */,
6033                                     NULL /* humongous_proxy_set */,
6034                                     false /* par */);
6035   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6036   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6037 }
6038 
6039 // This routine is similar to the above but does not record
6040 // any policy statistics or update free lists; we are abandoning
6041 // the current incremental collection set in preparation of a
6042 // full collection. After the full GC we will start to build up
6043 // the incremental collection set again.
6044 // This is only called when we're doing a full collection
6045 // and is immediately followed by the tearing down of the young list.
6046 
6047 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6048   HeapRegion* cur = cs_head;
6049 
6050   while (cur != NULL) {
6051     HeapRegion* next = cur->next_in_collection_set();
6052     assert(cur->in_collection_set(), "bad CS");
6053     cur->set_next_in_collection_set(NULL);
6054     cur->set_in_collection_set(false);
6055     cur->set_young_index_in_cset(-1);
6056     cur = next;
6057   }
6058 }
6059 
6060 void G1CollectedHeap::set_free_regions_coming() {
6061   if (G1ConcRegionFreeingVerbose) {
6062     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6063                            "setting free regions coming");
6064   }
6065 
6066   assert(!free_regions_coming(), "pre-condition");
6067   _free_regions_coming = true;
6068 }
6069 
6070 void G1CollectedHeap::reset_free_regions_coming() {
6071   assert(free_regions_coming(), "pre-condition");
6072 
6073   {
6074     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6075     _free_regions_coming = false;
6076     SecondaryFreeList_lock->notify_all();
6077   }
6078 
6079   if (G1ConcRegionFreeingVerbose) {
6080     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6081                            "reset free regions coming");
6082   }
6083 }
6084 
6085 void G1CollectedHeap::wait_while_free_regions_coming() {
6086   // Most of the time we won't have to wait, so let's do a quick test
6087   // first before we take the lock.
6088   if (!free_regions_coming()) {
6089     return;
6090   }
6091 
6092   if (G1ConcRegionFreeingVerbose) {
6093     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6094                            "waiting for free regions");
6095   }
6096 
6097   {
6098     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6099     while (free_regions_coming()) {
6100       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6101     }
6102   }
6103 
6104   if (G1ConcRegionFreeingVerbose) {
6105     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6106                            "done waiting for free regions");
6107   }
6108 }
6109 
6110 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6111   assert(heap_lock_held_for_gc(),
6112               "the heap lock should already be held by or for this thread");
6113   _young_list->push_region(hr);
6114 }
6115 
6116 class NoYoungRegionsClosure: public HeapRegionClosure {
6117 private:
6118   bool _success;
6119 public:
6120   NoYoungRegionsClosure() : _success(true) { }
6121   bool doHeapRegion(HeapRegion* r) {
6122     if (r->is_young()) {
6123       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6124                              r->bottom(), r->end());
6125       _success = false;
6126     }
6127     return false;
6128   }
6129   bool success() { return _success; }
6130 };
6131 
6132 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6133   bool ret = _young_list->check_list_empty(check_sample);
6134 
6135   if (check_heap) {
6136     NoYoungRegionsClosure closure;
6137     heap_region_iterate(&closure);
6138     ret = ret && closure.success();
6139   }
6140 
6141   return ret;
6142 }
6143 
6144 class TearDownRegionSetsClosure : public HeapRegionClosure {
6145 private:
6146   OldRegionSet *_old_set;
6147 
6148 public:
6149   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6150 
6151   bool doHeapRegion(HeapRegion* r) {
6152     if (r->is_empty()) {
6153       // We ignore empty regions, we'll empty the free list afterwards
6154     } else if (r->is_young()) {
6155       // We ignore young regions, we'll empty the young list afterwards
6156     } else if (r->isHumongous()) {
6157       // We ignore humongous regions, we're not tearing down the
6158       // humongous region set
6159     } else {
6160       // The rest should be old
6161       _old_set->remove(r);
6162     }
6163     return false;
6164   }
6165 
6166   ~TearDownRegionSetsClosure() {
6167     assert(_old_set->is_empty(), "post-condition");
6168   }
6169 };
6170 
6171 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6172   assert_at_safepoint(true /* should_be_vm_thread */);
6173 
6174   if (!free_list_only) {
6175     TearDownRegionSetsClosure cl(&_old_set);
6176     heap_region_iterate(&cl);
6177 
6178     // Need to do this after the heap iteration to be able to
6179     // recognize the young regions and ignore them during the iteration.
6180     _young_list->empty_list();
6181   }
6182   _free_list.remove_all();
6183 }
6184 
6185 class RebuildRegionSetsClosure : public HeapRegionClosure {
6186 private:
6187   bool            _free_list_only;
6188   OldRegionSet*   _old_set;
6189   FreeRegionList* _free_list;
6190   size_t          _total_used;
6191 
6192 public:
6193   RebuildRegionSetsClosure(bool free_list_only,
6194                            OldRegionSet* old_set, FreeRegionList* free_list) :
6195     _free_list_only(free_list_only),
6196     _old_set(old_set), _free_list(free_list), _total_used(0) {
6197     assert(_free_list->is_empty(), "pre-condition");
6198     if (!free_list_only) {
6199       assert(_old_set->is_empty(), "pre-condition");
6200     }
6201   }
6202 
6203   bool doHeapRegion(HeapRegion* r) {
6204     if (r->continuesHumongous()) {
6205       return false;
6206     }
6207 
6208     if (r->is_empty()) {
6209       // Add free regions to the free list
6210       _free_list->add_as_tail(r);
6211     } else if (!_free_list_only) {
6212       assert(!r->is_young(), "we should not come across young regions");
6213 
6214       if (r->isHumongous()) {
6215         // We ignore humongous regions, we left the humongous set unchanged
6216       } else {
6217         // The rest should be old, add them to the old set
6218         _old_set->add(r);
6219       }
6220       _total_used += r->used();
6221     }
6222 
6223     return false;
6224   }
6225 
6226   size_t total_used() {
6227     return _total_used;
6228   }
6229 };
6230 
6231 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6232   assert_at_safepoint(true /* should_be_vm_thread */);
6233 
6234   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6235   heap_region_iterate(&cl);
6236 
6237   if (!free_list_only) {
6238     _summary_bytes_used = cl.total_used();
6239   }
6240   assert(_summary_bytes_used == recalculate_used(),
6241          err_msg("inconsistent _summary_bytes_used, "
6242                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6243                  _summary_bytes_used, recalculate_used()));
6244 }
6245 
6246 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6247   _refine_cte_cl->set_concurrent(concurrent);
6248 }
6249 
6250 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6251   HeapRegion* hr = heap_region_containing(p);
6252   if (hr == NULL) {
6253     return false;
6254   } else {
6255     return hr->is_in(p);
6256   }
6257 }
6258 
6259 // Methods for the mutator alloc region
6260 
6261 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6262                                                       bool force) {
6263   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6264   assert(!force || g1_policy()->can_expand_young_list(),
6265          "if force is true we should be able to expand the young list");
6266   bool young_list_full = g1_policy()->is_young_list_full();
6267   if (force || !young_list_full) {
6268     HeapRegion* new_alloc_region = new_region(word_size,
6269                                               false /* do_expand */);
6270     if (new_alloc_region != NULL) {
6271       set_region_short_lived_locked(new_alloc_region);
6272       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6273       return new_alloc_region;
6274     }
6275   }
6276   return NULL;
6277 }
6278 
6279 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6280                                                   size_t allocated_bytes) {
6281   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6282   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6283 
6284   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6285   _summary_bytes_used += allocated_bytes;
6286   _hr_printer.retire(alloc_region);
6287   // We update the eden sizes here, when the region is retired,
6288   // instead of when it's allocated, since this is the point that its
6289   // used space has been recored in _summary_bytes_used.
6290   g1mm()->update_eden_size();
6291 }
6292 
6293 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6294                                                     bool force) {
6295   return _g1h->new_mutator_alloc_region(word_size, force);
6296 }
6297 
6298 void G1CollectedHeap::set_par_threads() {
6299   // Don't change the number of workers.  Use the value previously set
6300   // in the workgroup.
6301   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6302   uint n_workers = workers()->active_workers();
6303   assert(UseDynamicNumberOfGCThreads ||
6304            n_workers == workers()->total_workers(),
6305       "Otherwise should be using the total number of workers");
6306   if (n_workers == 0) {
6307     assert(false, "Should have been set in prior evacuation pause.");
6308     n_workers = ParallelGCThreads;
6309     workers()->set_active_workers(n_workers);
6310   }
6311   set_par_threads(n_workers);
6312 }
6313 
6314 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6315                                        size_t allocated_bytes) {
6316   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6317 }
6318 
6319 // Methods for the GC alloc regions
6320 
6321 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6322                                                  uint count,
6323                                                  GCAllocPurpose ap) {
6324   assert(FreeList_lock->owned_by_self(), "pre-condition");
6325 
6326   if (count < g1_policy()->max_regions(ap)) {
6327     HeapRegion* new_alloc_region = new_region(word_size,
6328                                               true /* do_expand */);
6329     if (new_alloc_region != NULL) {
6330       // We really only need to do this for old regions given that we
6331       // should never scan survivors. But it doesn't hurt to do it
6332       // for survivors too.
6333       new_alloc_region->set_saved_mark();
6334       if (ap == GCAllocForSurvived) {
6335         new_alloc_region->set_survivor();
6336         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6337       } else {
6338         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6339       }
6340       bool during_im = g1_policy()->during_initial_mark_pause();
6341       new_alloc_region->note_start_of_copying(during_im);
6342       return new_alloc_region;
6343     } else {
6344       g1_policy()->note_alloc_region_limit_reached(ap);
6345     }
6346   }
6347   return NULL;
6348 }
6349 
6350 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6351                                              size_t allocated_bytes,
6352                                              GCAllocPurpose ap) {
6353   bool during_im = g1_policy()->during_initial_mark_pause();
6354   alloc_region->note_end_of_copying(during_im);
6355   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6356   if (ap == GCAllocForSurvived) {
6357     young_list()->add_survivor_region(alloc_region);
6358   } else {
6359     _old_set.add(alloc_region);
6360   }
6361   _hr_printer.retire(alloc_region);
6362 }
6363 
6364 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6365                                                        bool force) {
6366   assert(!force, "not supported for GC alloc regions");
6367   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6368 }
6369 
6370 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6371                                           size_t allocated_bytes) {
6372   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6373                                GCAllocForSurvived);
6374 }
6375 
6376 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6377                                                   bool force) {
6378   assert(!force, "not supported for GC alloc regions");
6379   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6380 }
6381 
6382 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6383                                      size_t allocated_bytes) {
6384   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6385                                GCAllocForTenured);
6386 }
6387 // Heap region set verification
6388 
6389 class VerifyRegionListsClosure : public HeapRegionClosure {
6390 private:
6391   FreeRegionList*     _free_list;
6392   OldRegionSet*       _old_set;
6393   HumongousRegionSet* _humongous_set;
6394   uint                _region_count;
6395 
6396 public:
6397   VerifyRegionListsClosure(OldRegionSet* old_set,
6398                            HumongousRegionSet* humongous_set,
6399                            FreeRegionList* free_list) :
6400     _old_set(old_set), _humongous_set(humongous_set),
6401     _free_list(free_list), _region_count(0) { }
6402 
6403   uint region_count() { return _region_count; }
6404 
6405   bool doHeapRegion(HeapRegion* hr) {
6406     _region_count += 1;
6407 
6408     if (hr->continuesHumongous()) {
6409       return false;
6410     }
6411 
6412     if (hr->is_young()) {
6413       // TODO
6414     } else if (hr->startsHumongous()) {
6415       _humongous_set->verify_next_region(hr);
6416     } else if (hr->is_empty()) {
6417       _free_list->verify_next_region(hr);
6418     } else {
6419       _old_set->verify_next_region(hr);
6420     }
6421     return false;
6422   }
6423 };
6424 
6425 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6426                                              HeapWord* bottom) {
6427   HeapWord* end = bottom + HeapRegion::GrainWords;
6428   MemRegion mr(bottom, end);
6429   assert(_g1_reserved.contains(mr), "invariant");
6430   // This might return NULL if the allocation fails
6431   return new HeapRegion(hrs_index, _bot_shared, mr);
6432 }
6433 
6434 void G1CollectedHeap::verify_region_sets() {
6435   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6436 
6437   // First, check the explicit lists.
6438   _free_list.verify();
6439   {
6440     // Given that a concurrent operation might be adding regions to
6441     // the secondary free list we have to take the lock before
6442     // verifying it.
6443     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6444     _secondary_free_list.verify();
6445   }
6446   _old_set.verify();
6447   _humongous_set.verify();
6448 
6449   // If a concurrent region freeing operation is in progress it will
6450   // be difficult to correctly attributed any free regions we come
6451   // across to the correct free list given that they might belong to
6452   // one of several (free_list, secondary_free_list, any local lists,
6453   // etc.). So, if that's the case we will skip the rest of the
6454   // verification operation. Alternatively, waiting for the concurrent
6455   // operation to complete will have a non-trivial effect on the GC's
6456   // operation (no concurrent operation will last longer than the
6457   // interval between two calls to verification) and it might hide
6458   // any issues that we would like to catch during testing.
6459   if (free_regions_coming()) {
6460     return;
6461   }
6462 
6463   // Make sure we append the secondary_free_list on the free_list so
6464   // that all free regions we will come across can be safely
6465   // attributed to the free_list.
6466   append_secondary_free_list_if_not_empty_with_lock();
6467 
6468   // Finally, make sure that the region accounting in the lists is
6469   // consistent with what we see in the heap.
6470   _old_set.verify_start();
6471   _humongous_set.verify_start();
6472   _free_list.verify_start();
6473 
6474   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6475   heap_region_iterate(&cl);
6476 
6477   _old_set.verify_end();
6478   _humongous_set.verify_end();
6479   _free_list.verify_end();
6480 }