1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  83                         ? ParallelGCThreads : 1),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _gcs_are_young(true),
 112 
 113   _during_marking(false),
 114   _in_marking_window(false),
 115   _in_marking_window_im(false),
 116 
 117   _recent_prev_end_times_for_all_gcs_sec(
 118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 119 
 120   _recent_avg_pause_time_ratio(0.0),
 121 
 122   _initiate_conc_mark_if_possible(false),
 123   _during_initial_mark_pause(false),
 124   _last_young_gc(false),
 125   _last_gc_was_young(false),
 126 
 127   _eden_used_bytes_before_gc(0),
 128   _survivor_used_bytes_before_gc(0),
 129   _heap_used_bytes_before_gc(0),
 130   _metaspace_used_bytes_before_gc(0),
 131   _eden_capacity_bytes_before_gc(0),
 132   _heap_capacity_bytes_before_gc(0),
 133 
 134   _eden_cset_region_length(0),
 135   _survivor_cset_region_length(0),
 136   _old_cset_region_length(0),
 137 
 138   _collection_set(NULL),
 139   _collection_set_bytes_used_before(0),
 140 
 141   // Incremental CSet attributes
 142   _inc_cset_build_state(Inactive),
 143   _inc_cset_head(NULL),
 144   _inc_cset_tail(NULL),
 145   _inc_cset_bytes_used_before(0),
 146   _inc_cset_max_finger(NULL),
 147   _inc_cset_recorded_rs_lengths(0),
 148   _inc_cset_recorded_rs_lengths_diffs(0),
 149   _inc_cset_predicted_elapsed_time_ms(0.0),
 150   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 151 
 152 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 153 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 154 #endif // _MSC_VER
 155 
 156   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 157                                                  G1YoungSurvRateNumRegionsSummary)),
 158   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 159                                               G1YoungSurvRateNumRegionsSummary)),
 160   // add here any more surv rate groups
 161   _recorded_survivor_regions(0),
 162   _recorded_survivor_head(NULL),
 163   _recorded_survivor_tail(NULL),
 164   _survivors_age_table(true),
 165 
 166   _gc_overhead_perc(0.0) {
 167 
 168   // Set up the region size and associated fields. Given that the
 169   // policy is created before the heap, we have to set this up here,
 170   // so it's done as soon as possible
 171 
 172   // It would have been natural to pass initial_heap_byte_size() and
 173   // max_heap_byte_size() to setup_heap_region_size() but those have
 174   // not been set up at this point since they should be aligned with
 175   // the region size. So, there is a circular dependency here. We base
 176   // the region size on the heap size, but the heap size should be
 177   // aligned with the region size. To get around this we use the
 178   // unaligned values for the heap.
 179   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 180   HeapRegionRemSet::setup_remset_size();
 181 
 182   G1ErgoVerbose::initialize();
 183   if (PrintAdaptiveSizePolicy) {
 184     // Currently, we only use a single switch for all the heuristics.
 185     G1ErgoVerbose::set_enabled(true);
 186     // Given that we don't currently have a verboseness level
 187     // parameter, we'll hardcode this to high. This can be easily
 188     // changed in the future.
 189     G1ErgoVerbose::set_level(ErgoHigh);
 190   } else {
 191     G1ErgoVerbose::set_enabled(false);
 192   }
 193 
 194   // Verify PLAB sizes
 195   const size_t region_size = HeapRegion::GrainWords;
 196   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 197     char buffer[128];
 198     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 199                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 200     vm_exit_during_initialization(buffer);
 201   }
 202 
 203   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 204   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 205 
 206   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 207 
 208   int index = MIN2(_parallel_gc_threads - 1, 7);
 209 
 210   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 211   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 212   _young_cards_per_entry_ratio_seq->add(
 213                                   young_cards_per_entry_ratio_defaults[index]);
 214   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 215   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 216   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 217   _young_other_cost_per_region_ms_seq->add(
 218                                young_other_cost_per_region_ms_defaults[index]);
 219   _non_young_other_cost_per_region_ms_seq->add(
 220                            non_young_other_cost_per_region_ms_defaults[index]);
 221 
 222   // Below, we might need to calculate the pause time target based on
 223   // the pause interval. When we do so we are going to give G1 maximum
 224   // flexibility and allow it to do pauses when it needs to. So, we'll
 225   // arrange that the pause interval to be pause time target + 1 to
 226   // ensure that a) the pause time target is maximized with respect to
 227   // the pause interval and b) we maintain the invariant that pause
 228   // time target < pause interval. If the user does not want this
 229   // maximum flexibility, they will have to set the pause interval
 230   // explicitly.
 231 
 232   // First make sure that, if either parameter is set, its value is
 233   // reasonable.
 234   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 235     if (MaxGCPauseMillis < 1) {
 236       vm_exit_during_initialization("MaxGCPauseMillis should be "
 237                                     "greater than 0");
 238     }
 239   }
 240   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 241     if (GCPauseIntervalMillis < 1) {
 242       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 243                                     "greater than 0");
 244     }
 245   }
 246 
 247   // Then, if the pause time target parameter was not set, set it to
 248   // the default value.
 249   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 250     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 251       // The default pause time target in G1 is 200ms
 252       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 253     } else {
 254       // We do not allow the pause interval to be set without the
 255       // pause time target
 256       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 257                                     "without setting MaxGCPauseMillis");
 258     }
 259   }
 260 
 261   // Then, if the interval parameter was not set, set it according to
 262   // the pause time target (this will also deal with the case when the
 263   // pause time target is the default value).
 264   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 265     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 266   }
 267 
 268   // Finally, make sure that the two parameters are consistent.
 269   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 270     char buffer[256];
 271     jio_snprintf(buffer, 256,
 272                  "MaxGCPauseMillis (%u) should be less than "
 273                  "GCPauseIntervalMillis (%u)",
 274                  MaxGCPauseMillis, GCPauseIntervalMillis);
 275     vm_exit_during_initialization(buffer);
 276   }
 277 
 278   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 279   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 280   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 281 
 282   uintx confidence_perc = G1ConfidencePercent;
 283   // Put an artificial ceiling on this so that it's not set to a silly value.
 284   if (confidence_perc > 100) {
 285     confidence_perc = 100;
 286     warning("G1ConfidencePercent is set to a value that is too large, "
 287             "it's been updated to %u", confidence_perc);
 288   }
 289   _sigma = (double) confidence_perc / 100.0;
 290 
 291   // start conservatively (around 50ms is about right)
 292   _concurrent_mark_remark_times_ms->add(0.05);
 293   _concurrent_mark_cleanup_times_ms->add(0.20);
 294   _tenuring_threshold = MaxTenuringThreshold;
 295   // _max_survivor_regions will be calculated by
 296   // update_young_list_target_length() during initialization.
 297   _max_survivor_regions = 0;
 298 
 299   assert(GCTimeRatio > 0,
 300          "we should have set it to a default value set_g1_gc_flags() "
 301          "if a user set it to 0");
 302   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 303 
 304   uintx reserve_perc = G1ReservePercent;
 305   // Put an artificial ceiling on this so that it's not set to a silly value.
 306   if (reserve_perc > 50) {
 307     reserve_perc = 50;
 308     warning("G1ReservePercent is set to a value that is too large, "
 309             "it's been updated to %u", reserve_perc);
 310   }
 311   _reserve_factor = (double) reserve_perc / 100.0;
 312   // This will be set when the heap is expanded
 313   // for the first time during initialization.
 314   _reserve_regions = 0;
 315 
 316   initialize_all();
 317   _collectionSetChooser = new CollectionSetChooser();
 318   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 319 }
 320 
 321 void G1CollectorPolicy::initialize_flags() {
 322   set_min_alignment(HeapRegion::GrainBytes);
 323   size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 324   set_max_alignment(MAX2(card_table_alignment, min_alignment()));
 325   if (SurvivorRatio < 1) {
 326     vm_exit_during_initialization("Invalid survivor ratio specified");
 327   }
 328   CollectorPolicy::initialize_flags();
 329 }
 330 
 331 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 332   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
 333   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
 334   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
 335 
 336   if (FLAG_IS_CMDLINE(NewRatio)) {
 337     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 338       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 339     } else {
 340       _sizer_kind = SizerNewRatio;
 341       _adaptive_size = false;
 342       return;
 343     }
 344   }
 345 
 346   if (FLAG_IS_CMDLINE(NewSize)) {
 347     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 348                                      1U);
 349     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 350       _max_desired_young_length =
 351                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 352                                   1U);
 353       _sizer_kind = SizerMaxAndNewSize;
 354       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 355     } else {
 356       _sizer_kind = SizerNewSizeOnly;
 357     }
 358   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 359     _max_desired_young_length =
 360                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 361                                   1U);
 362     _sizer_kind = SizerMaxNewSizeOnly;
 363   }
 364 }
 365 
 366 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 367   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 368   return MAX2(1U, default_value);
 369 }
 370 
 371 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 372   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 373   return MAX2(1U, default_value);
 374 }
 375 
 376 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 377   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 378 
 379   switch (_sizer_kind) {
 380     case SizerDefaults:
 381       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 382       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 383       break;
 384     case SizerNewSizeOnly:
 385       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 386       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 387       break;
 388     case SizerMaxNewSizeOnly:
 389       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 390       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 391       break;
 392     case SizerMaxAndNewSize:
 393       // Do nothing. Values set on the command line, don't update them at runtime.
 394       break;
 395     case SizerNewRatio:
 396       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 397       _max_desired_young_length = _min_desired_young_length;
 398       break;
 399     default:
 400       ShouldNotReachHere();
 401   }
 402 
 403   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 404 }
 405 
 406 void G1CollectorPolicy::init() {
 407   // Set aside an initial future to_space.
 408   _g1 = G1CollectedHeap::heap();
 409 
 410   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 411 
 412   initialize_gc_policy_counters();
 413 
 414   if (adaptive_young_list_length()) {
 415     _young_list_fixed_length = 0;
 416   } else {
 417     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 418   }
 419   _free_regions_at_end_of_collection = _g1->free_regions();
 420   update_young_list_target_length();
 421 
 422   // We may immediately start allocating regions and placing them on the
 423   // collection set list. Initialize the per-collection set info
 424   start_incremental_cset_building();
 425 }
 426 
 427 // Create the jstat counters for the policy.
 428 void G1CollectorPolicy::initialize_gc_policy_counters() {
 429   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 430 }
 431 
 432 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 433                                          double base_time_ms,
 434                                          uint base_free_regions,
 435                                          double target_pause_time_ms) {
 436   if (young_length >= base_free_regions) {
 437     // end condition 1: not enough space for the young regions
 438     return false;
 439   }
 440 
 441   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 442   size_t bytes_to_copy =
 443                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 444   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 445   double young_other_time_ms = predict_young_other_time_ms(young_length);
 446   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 447   if (pause_time_ms > target_pause_time_ms) {
 448     // end condition 2: prediction is over the target pause time
 449     return false;
 450   }
 451 
 452   size_t free_bytes =
 453                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 454   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 455     // end condition 3: out-of-space (conservatively!)
 456     return false;
 457   }
 458 
 459   // success!
 460   return true;
 461 }
 462 
 463 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 464   // re-calculate the necessary reserve
 465   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 466   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 467   // smaller than 1.0) we'll get 1.
 468   _reserve_regions = (uint) ceil(reserve_regions_d);
 469 
 470   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 471 }
 472 
 473 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 474                                                        uint base_min_length) {
 475   uint desired_min_length = 0;
 476   if (adaptive_young_list_length()) {
 477     if (_alloc_rate_ms_seq->num() > 3) {
 478       double now_sec = os::elapsedTime();
 479       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 480       double alloc_rate_ms = predict_alloc_rate_ms();
 481       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 482     } else {
 483       // otherwise we don't have enough info to make the prediction
 484     }
 485   }
 486   desired_min_length += base_min_length;
 487   // make sure we don't go below any user-defined minimum bound
 488   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 489 }
 490 
 491 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 492   // Here, we might want to also take into account any additional
 493   // constraints (i.e., user-defined minimum bound). Currently, we
 494   // effectively don't set this bound.
 495   return _young_gen_sizer->max_desired_young_length();
 496 }
 497 
 498 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 499   if (rs_lengths == (size_t) -1) {
 500     // if it's set to the default value (-1), we should predict it;
 501     // otherwise, use the given value.
 502     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 503   }
 504 
 505   // Calculate the absolute and desired min bounds.
 506 
 507   // This is how many young regions we already have (currently: the survivors).
 508   uint base_min_length = recorded_survivor_regions();
 509   // This is the absolute minimum young length, which ensures that we
 510   // can allocate one eden region in the worst-case.
 511   uint absolute_min_length = base_min_length + 1;
 512   uint desired_min_length =
 513                      calculate_young_list_desired_min_length(base_min_length);
 514   if (desired_min_length < absolute_min_length) {
 515     desired_min_length = absolute_min_length;
 516   }
 517 
 518   // Calculate the absolute and desired max bounds.
 519 
 520   // We will try our best not to "eat" into the reserve.
 521   uint absolute_max_length = 0;
 522   if (_free_regions_at_end_of_collection > _reserve_regions) {
 523     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 524   }
 525   uint desired_max_length = calculate_young_list_desired_max_length();
 526   if (desired_max_length > absolute_max_length) {
 527     desired_max_length = absolute_max_length;
 528   }
 529 
 530   uint young_list_target_length = 0;
 531   if (adaptive_young_list_length()) {
 532     if (gcs_are_young()) {
 533       young_list_target_length =
 534                         calculate_young_list_target_length(rs_lengths,
 535                                                            base_min_length,
 536                                                            desired_min_length,
 537                                                            desired_max_length);
 538       _rs_lengths_prediction = rs_lengths;
 539     } else {
 540       // Don't calculate anything and let the code below bound it to
 541       // the desired_min_length, i.e., do the next GC as soon as
 542       // possible to maximize how many old regions we can add to it.
 543     }
 544   } else {
 545     // The user asked for a fixed young gen so we'll fix the young gen
 546     // whether the next GC is young or mixed.
 547     young_list_target_length = _young_list_fixed_length;
 548   }
 549 
 550   // Make sure we don't go over the desired max length, nor under the
 551   // desired min length. In case they clash, desired_min_length wins
 552   // which is why that test is second.
 553   if (young_list_target_length > desired_max_length) {
 554     young_list_target_length = desired_max_length;
 555   }
 556   if (young_list_target_length < desired_min_length) {
 557     young_list_target_length = desired_min_length;
 558   }
 559 
 560   assert(young_list_target_length > recorded_survivor_regions(),
 561          "we should be able to allocate at least one eden region");
 562   assert(young_list_target_length >= absolute_min_length, "post-condition");
 563   _young_list_target_length = young_list_target_length;
 564 
 565   update_max_gc_locker_expansion();
 566 }
 567 
 568 uint
 569 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 570                                                      uint base_min_length,
 571                                                      uint desired_min_length,
 572                                                      uint desired_max_length) {
 573   assert(adaptive_young_list_length(), "pre-condition");
 574   assert(gcs_are_young(), "only call this for young GCs");
 575 
 576   // In case some edge-condition makes the desired max length too small...
 577   if (desired_max_length <= desired_min_length) {
 578     return desired_min_length;
 579   }
 580 
 581   // We'll adjust min_young_length and max_young_length not to include
 582   // the already allocated young regions (i.e., so they reflect the
 583   // min and max eden regions we'll allocate). The base_min_length
 584   // will be reflected in the predictions by the
 585   // survivor_regions_evac_time prediction.
 586   assert(desired_min_length > base_min_length, "invariant");
 587   uint min_young_length = desired_min_length - base_min_length;
 588   assert(desired_max_length > base_min_length, "invariant");
 589   uint max_young_length = desired_max_length - base_min_length;
 590 
 591   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 592   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 593   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 594   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 595   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 596   double base_time_ms =
 597     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 598     survivor_regions_evac_time;
 599   uint available_free_regions = _free_regions_at_end_of_collection;
 600   uint base_free_regions = 0;
 601   if (available_free_regions > _reserve_regions) {
 602     base_free_regions = available_free_regions - _reserve_regions;
 603   }
 604 
 605   // Here, we will make sure that the shortest young length that
 606   // makes sense fits within the target pause time.
 607 
 608   if (predict_will_fit(min_young_length, base_time_ms,
 609                        base_free_regions, target_pause_time_ms)) {
 610     // The shortest young length will fit into the target pause time;
 611     // we'll now check whether the absolute maximum number of young
 612     // regions will fit in the target pause time. If not, we'll do
 613     // a binary search between min_young_length and max_young_length.
 614     if (predict_will_fit(max_young_length, base_time_ms,
 615                          base_free_regions, target_pause_time_ms)) {
 616       // The maximum young length will fit into the target pause time.
 617       // We are done so set min young length to the maximum length (as
 618       // the result is assumed to be returned in min_young_length).
 619       min_young_length = max_young_length;
 620     } else {
 621       // The maximum possible number of young regions will not fit within
 622       // the target pause time so we'll search for the optimal
 623       // length. The loop invariants are:
 624       //
 625       // min_young_length < max_young_length
 626       // min_young_length is known to fit into the target pause time
 627       // max_young_length is known not to fit into the target pause time
 628       //
 629       // Going into the loop we know the above hold as we've just
 630       // checked them. Every time around the loop we check whether
 631       // the middle value between min_young_length and
 632       // max_young_length fits into the target pause time. If it
 633       // does, it becomes the new min. If it doesn't, it becomes
 634       // the new max. This way we maintain the loop invariants.
 635 
 636       assert(min_young_length < max_young_length, "invariant");
 637       uint diff = (max_young_length - min_young_length) / 2;
 638       while (diff > 0) {
 639         uint young_length = min_young_length + diff;
 640         if (predict_will_fit(young_length, base_time_ms,
 641                              base_free_regions, target_pause_time_ms)) {
 642           min_young_length = young_length;
 643         } else {
 644           max_young_length = young_length;
 645         }
 646         assert(min_young_length <  max_young_length, "invariant");
 647         diff = (max_young_length - min_young_length) / 2;
 648       }
 649       // The results is min_young_length which, according to the
 650       // loop invariants, should fit within the target pause time.
 651 
 652       // These are the post-conditions of the binary search above:
 653       assert(min_young_length < max_young_length,
 654              "otherwise we should have discovered that max_young_length "
 655              "fits into the pause target and not done the binary search");
 656       assert(predict_will_fit(min_young_length, base_time_ms,
 657                               base_free_regions, target_pause_time_ms),
 658              "min_young_length, the result of the binary search, should "
 659              "fit into the pause target");
 660       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 661                                base_free_regions, target_pause_time_ms),
 662              "min_young_length, the result of the binary search, should be "
 663              "optimal, so no larger length should fit into the pause target");
 664     }
 665   } else {
 666     // Even the minimum length doesn't fit into the pause time
 667     // target, return it as the result nevertheless.
 668   }
 669   return base_min_length + min_young_length;
 670 }
 671 
 672 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 673   double survivor_regions_evac_time = 0.0;
 674   for (HeapRegion * r = _recorded_survivor_head;
 675        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 676        r = r->get_next_young_region()) {
 677     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 678   }
 679   return survivor_regions_evac_time;
 680 }
 681 
 682 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 683   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 684 
 685   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 686   if (rs_lengths > _rs_lengths_prediction) {
 687     // add 10% to avoid having to recalculate often
 688     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 689     update_young_list_target_length(rs_lengths_prediction);
 690   }
 691 }
 692 
 693 
 694 
 695 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 696                                                bool is_tlab,
 697                                                bool* gc_overhead_limit_was_exceeded) {
 698   guarantee(false, "Not using this policy feature yet.");
 699   return NULL;
 700 }
 701 
 702 // This method controls how a collector handles one or more
 703 // of its generations being fully allocated.
 704 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 705                                                        bool is_tlab) {
 706   guarantee(false, "Not using this policy feature yet.");
 707   return NULL;
 708 }
 709 
 710 
 711 #ifndef PRODUCT
 712 bool G1CollectorPolicy::verify_young_ages() {
 713   HeapRegion* head = _g1->young_list()->first_region();
 714   return
 715     verify_young_ages(head, _short_lived_surv_rate_group);
 716   // also call verify_young_ages on any additional surv rate groups
 717 }
 718 
 719 bool
 720 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 721                                      SurvRateGroup *surv_rate_group) {
 722   guarantee( surv_rate_group != NULL, "pre-condition" );
 723 
 724   const char* name = surv_rate_group->name();
 725   bool ret = true;
 726   int prev_age = -1;
 727 
 728   for (HeapRegion* curr = head;
 729        curr != NULL;
 730        curr = curr->get_next_young_region()) {
 731     SurvRateGroup* group = curr->surv_rate_group();
 732     if (group == NULL && !curr->is_survivor()) {
 733       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 734       ret = false;
 735     }
 736 
 737     if (surv_rate_group == group) {
 738       int age = curr->age_in_surv_rate_group();
 739 
 740       if (age < 0) {
 741         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 742         ret = false;
 743       }
 744 
 745       if (age <= prev_age) {
 746         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 747                                "(%d, %d)", name, age, prev_age);
 748         ret = false;
 749       }
 750       prev_age = age;
 751     }
 752   }
 753 
 754   return ret;
 755 }
 756 #endif // PRODUCT
 757 
 758 void G1CollectorPolicy::record_full_collection_start() {
 759   _full_collection_start_sec = os::elapsedTime();
 760   record_heap_size_info_at_start(true /* full */);
 761   // Release the future to-space so that it is available for compaction into.
 762   _g1->set_full_collection();
 763 }
 764 
 765 void G1CollectorPolicy::record_full_collection_end() {
 766   // Consider this like a collection pause for the purposes of allocation
 767   // since last pause.
 768   double end_sec = os::elapsedTime();
 769   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 770   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 771 
 772   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
 773 
 774   update_recent_gc_times(end_sec, full_gc_time_ms);
 775 
 776   _g1->clear_full_collection();
 777 
 778   // "Nuke" the heuristics that control the young/mixed GC
 779   // transitions and make sure we start with young GCs after the Full GC.
 780   set_gcs_are_young(true);
 781   _last_young_gc = false;
 782   clear_initiate_conc_mark_if_possible();
 783   clear_during_initial_mark_pause();
 784   _in_marking_window = false;
 785   _in_marking_window_im = false;
 786 
 787   _short_lived_surv_rate_group->start_adding_regions();
 788   // also call this on any additional surv rate groups
 789 
 790   record_survivor_regions(0, NULL, NULL);
 791 
 792   _free_regions_at_end_of_collection = _g1->free_regions();
 793   // Reset survivors SurvRateGroup.
 794   _survivor_surv_rate_group->reset();
 795   update_young_list_target_length();
 796   _collectionSetChooser->clear();
 797 }
 798 
 799 void G1CollectorPolicy::record_stop_world_start() {
 800   _stop_world_start = os::elapsedTime();
 801 }
 802 
 803 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 804   // We only need to do this here as the policy will only be applied
 805   // to the GC we're about to start. so, no point is calculating this
 806   // every time we calculate / recalculate the target young length.
 807   update_survivors_policy();
 808 
 809   assert(_g1->used() == _g1->recalculate_used(),
 810          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 811                  _g1->used(), _g1->recalculate_used()));
 812 
 813   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 814   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
 815   _stop_world_start = 0.0;
 816 
 817   record_heap_size_info_at_start(false /* full */);
 818 
 819   phase_times()->record_cur_collection_start_sec(start_time_sec);
 820   _pending_cards = _g1->pending_card_num();
 821 
 822   _collection_set_bytes_used_before = 0;
 823   _bytes_copied_during_gc = 0;
 824 
 825   _last_gc_was_young = false;
 826 
 827   // do that for any other surv rate groups
 828   _short_lived_surv_rate_group->stop_adding_regions();
 829   _survivors_age_table.clear();
 830 
 831   assert( verify_young_ages(), "region age verification" );
 832 }
 833 
 834 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 835                                                    mark_init_elapsed_time_ms) {
 836   _during_marking = true;
 837   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 838   clear_during_initial_mark_pause();
 839   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 840 }
 841 
 842 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 843   _mark_remark_start_sec = os::elapsedTime();
 844   _during_marking = false;
 845 }
 846 
 847 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 848   double end_time_sec = os::elapsedTime();
 849   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 850   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 851   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 852   _prev_collection_pause_end_ms += elapsed_time_ms;
 853 
 854   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 855 }
 856 
 857 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 858   _mark_cleanup_start_sec = os::elapsedTime();
 859 }
 860 
 861 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 862   _last_young_gc = true;
 863   _in_marking_window = false;
 864 }
 865 
 866 void G1CollectorPolicy::record_concurrent_pause() {
 867   if (_stop_world_start > 0.0) {
 868     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 869     _trace_gen0_time_data.record_yield_time(yield_ms);
 870   }
 871 }
 872 
 873 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 874   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 875     return false;
 876   }
 877 
 878   size_t marking_initiating_used_threshold =
 879     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 880   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 881   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 882 
 883   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 884     if (gcs_are_young() && !_last_young_gc) {
 885       ergo_verbose5(ErgoConcCycles,
 886         "request concurrent cycle initiation",
 887         ergo_format_reason("occupancy higher than threshold")
 888         ergo_format_byte("occupancy")
 889         ergo_format_byte("allocation request")
 890         ergo_format_byte_perc("threshold")
 891         ergo_format_str("source"),
 892         cur_used_bytes,
 893         alloc_byte_size,
 894         marking_initiating_used_threshold,
 895         (double) InitiatingHeapOccupancyPercent,
 896         source);
 897       return true;
 898     } else {
 899       ergo_verbose5(ErgoConcCycles,
 900         "do not request concurrent cycle initiation",
 901         ergo_format_reason("still doing mixed collections")
 902         ergo_format_byte("occupancy")
 903         ergo_format_byte("allocation request")
 904         ergo_format_byte_perc("threshold")
 905         ergo_format_str("source"),
 906         cur_used_bytes,
 907         alloc_byte_size,
 908         marking_initiating_used_threshold,
 909         (double) InitiatingHeapOccupancyPercent,
 910         source);
 911     }
 912   }
 913 
 914   return false;
 915 }
 916 
 917 // Anything below that is considered to be zero
 918 #define MIN_TIMER_GRANULARITY 0.0000001
 919 
 920 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 921   double end_time_sec = os::elapsedTime();
 922   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 923          "otherwise, the subtraction below does not make sense");
 924   size_t rs_size =
 925             _cur_collection_pause_used_regions_at_start - cset_region_length();
 926   size_t cur_used_bytes = _g1->used();
 927   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 928   bool last_pause_included_initial_mark = false;
 929   bool update_stats = !_g1->evacuation_failed();
 930 
 931 #ifndef PRODUCT
 932   if (G1YoungSurvRateVerbose) {
 933     gclog_or_tty->print_cr("");
 934     _short_lived_surv_rate_group->print();
 935     // do that for any other surv rate groups too
 936   }
 937 #endif // PRODUCT
 938 
 939   last_pause_included_initial_mark = during_initial_mark_pause();
 940   if (last_pause_included_initial_mark) {
 941     record_concurrent_mark_init_end(0.0);
 942   } else if (need_to_start_conc_mark("end of GC")) {
 943     // Note: this might have already been set, if during the last
 944     // pause we decided to start a cycle but at the beginning of
 945     // this pause we decided to postpone it. That's OK.
 946     set_initiate_conc_mark_if_possible();
 947   }
 948 
 949   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 950                           end_time_sec, false);
 951 
 952   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 953   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 954 
 955   if (update_stats) {
 956     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
 957     // this is where we update the allocation rate of the application
 958     double app_time_ms =
 959       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 960     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 961       // This usually happens due to the timer not having the required
 962       // granularity. Some Linuxes are the usual culprits.
 963       // We'll just set it to something (arbitrarily) small.
 964       app_time_ms = 1.0;
 965     }
 966     // We maintain the invariant that all objects allocated by mutator
 967     // threads will be allocated out of eden regions. So, we can use
 968     // the eden region number allocated since the previous GC to
 969     // calculate the application's allocate rate. The only exception
 970     // to that is humongous objects that are allocated separately. But
 971     // given that humongous object allocations do not really affect
 972     // either the pause's duration nor when the next pause will take
 973     // place we can safely ignore them here.
 974     uint regions_allocated = eden_cset_region_length();
 975     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 976     _alloc_rate_ms_seq->add(alloc_rate_ms);
 977 
 978     double interval_ms =
 979       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 980     update_recent_gc_times(end_time_sec, pause_time_ms);
 981     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 982     if (recent_avg_pause_time_ratio() < 0.0 ||
 983         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 984 #ifndef PRODUCT
 985       // Dump info to allow post-facto debugging
 986       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
 987       gclog_or_tty->print_cr("-------------------------------------------");
 988       gclog_or_tty->print_cr("Recent GC Times (ms):");
 989       _recent_gc_times_ms->dump();
 990       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
 991       _recent_prev_end_times_for_all_gcs_sec->dump();
 992       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
 993                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
 994       // In debug mode, terminate the JVM if the user wants to debug at this point.
 995       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
 996 #endif  // !PRODUCT
 997       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 998       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 999       if (_recent_avg_pause_time_ratio < 0.0) {
1000         _recent_avg_pause_time_ratio = 0.0;
1001       } else {
1002         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1003         _recent_avg_pause_time_ratio = 1.0;
1004       }
1005     }
1006   }
1007 
1008   bool new_in_marking_window = _in_marking_window;
1009   bool new_in_marking_window_im = false;
1010   if (during_initial_mark_pause()) {
1011     new_in_marking_window = true;
1012     new_in_marking_window_im = true;
1013   }
1014 
1015   if (_last_young_gc) {
1016     // This is supposed to to be the "last young GC" before we start
1017     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1018 
1019     if (!last_pause_included_initial_mark) {
1020       if (next_gc_should_be_mixed("start mixed GCs",
1021                                   "do not start mixed GCs")) {
1022         set_gcs_are_young(false);
1023       }
1024     } else {
1025       ergo_verbose0(ErgoMixedGCs,
1026                     "do not start mixed GCs",
1027                     ergo_format_reason("concurrent cycle is about to start"));
1028     }
1029     _last_young_gc = false;
1030   }
1031 
1032   if (!_last_gc_was_young) {
1033     // This is a mixed GC. Here we decide whether to continue doing
1034     // mixed GCs or not.
1035 
1036     if (!next_gc_should_be_mixed("continue mixed GCs",
1037                                  "do not continue mixed GCs")) {
1038       set_gcs_are_young(true);
1039     }
1040   }
1041 
1042   _short_lived_surv_rate_group->start_adding_regions();
1043   // do that for any other surv rate groupsx
1044 
1045   if (update_stats) {
1046     double cost_per_card_ms = 0.0;
1047     if (_pending_cards > 0) {
1048       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1049       _cost_per_card_ms_seq->add(cost_per_card_ms);
1050     }
1051 
1052     size_t cards_scanned = _g1->cards_scanned();
1053 
1054     double cost_per_entry_ms = 0.0;
1055     if (cards_scanned > 10) {
1056       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1057       if (_last_gc_was_young) {
1058         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1059       } else {
1060         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1061       }
1062     }
1063 
1064     if (_max_rs_lengths > 0) {
1065       double cards_per_entry_ratio =
1066         (double) cards_scanned / (double) _max_rs_lengths;
1067       if (_last_gc_was_young) {
1068         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1069       } else {
1070         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1071       }
1072     }
1073 
1074     // This is defensive. For a while _max_rs_lengths could get
1075     // smaller than _recorded_rs_lengths which was causing
1076     // rs_length_diff to get very large and mess up the RSet length
1077     // predictions. The reason was unsafe concurrent updates to the
1078     // _inc_cset_recorded_rs_lengths field which the code below guards
1079     // against (see CR 7118202). This bug has now been fixed (see CR
1080     // 7119027). However, I'm still worried that
1081     // _inc_cset_recorded_rs_lengths might still end up somewhat
1082     // inaccurate. The concurrent refinement thread calculates an
1083     // RSet's length concurrently with other CR threads updating it
1084     // which might cause it to calculate the length incorrectly (if,
1085     // say, it's in mid-coarsening). So I'll leave in the defensive
1086     // conditional below just in case.
1087     size_t rs_length_diff = 0;
1088     if (_max_rs_lengths > _recorded_rs_lengths) {
1089       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1090     }
1091     _rs_length_diff_seq->add((double) rs_length_diff);
1092 
1093     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1094     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1095     double cost_per_byte_ms = 0.0;
1096 
1097     if (copied_bytes > 0) {
1098       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1099       if (_in_marking_window) {
1100         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1101       } else {
1102         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1103       }
1104     }
1105 
1106     double all_other_time_ms = pause_time_ms -
1107       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1108       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1109 
1110     double young_other_time_ms = 0.0;
1111     if (young_cset_region_length() > 0) {
1112       young_other_time_ms =
1113         phase_times()->young_cset_choice_time_ms() +
1114         phase_times()->young_free_cset_time_ms();
1115       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1116                                           (double) young_cset_region_length());
1117     }
1118     double non_young_other_time_ms = 0.0;
1119     if (old_cset_region_length() > 0) {
1120       non_young_other_time_ms =
1121         phase_times()->non_young_cset_choice_time_ms() +
1122         phase_times()->non_young_free_cset_time_ms();
1123 
1124       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1125                                             (double) old_cset_region_length());
1126     }
1127 
1128     double constant_other_time_ms = all_other_time_ms -
1129       (young_other_time_ms + non_young_other_time_ms);
1130     _constant_other_time_ms_seq->add(constant_other_time_ms);
1131 
1132     double survival_ratio = 0.0;
1133     if (_collection_set_bytes_used_before > 0) {
1134       survival_ratio = (double) _bytes_copied_during_gc /
1135                                    (double) _collection_set_bytes_used_before;
1136     }
1137 
1138     _pending_cards_seq->add((double) _pending_cards);
1139     _rs_lengths_seq->add((double) _max_rs_lengths);
1140   }
1141 
1142   _in_marking_window = new_in_marking_window;
1143   _in_marking_window_im = new_in_marking_window_im;
1144   _free_regions_at_end_of_collection = _g1->free_regions();
1145   update_young_list_target_length();
1146 
1147   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1148   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1149   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1150                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1151 
1152   _collectionSetChooser->verify();
1153 }
1154 
1155 #define EXT_SIZE_FORMAT "%.1f%s"
1156 #define EXT_SIZE_PARAMS(bytes)                                  \
1157   byte_size_in_proper_unit((double)(bytes)),                    \
1158   proper_unit_for_byte_size((bytes))
1159 
1160 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1161   YoungList* young_list = _g1->young_list();
1162   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1163   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1164   _heap_capacity_bytes_before_gc = _g1->capacity();
1165   _heap_used_bytes_before_gc = _g1->used();
1166   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
1167 
1168   _eden_capacity_bytes_before_gc =
1169          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1170 
1171   if (full) {
1172     _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
1173   }
1174 }
1175 
1176 void G1CollectorPolicy::print_heap_transition() {
1177   _g1->print_size_transition(gclog_or_tty,
1178                              _heap_used_bytes_before_gc,
1179                              _g1->used(),
1180                              _g1->capacity());
1181 }
1182 
1183 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1184   YoungList* young_list = _g1->young_list();
1185 
1186   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1187   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1188   size_t heap_used_bytes_after_gc = _g1->used();
1189 
1190   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1191   size_t eden_capacity_bytes_after_gc =
1192     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1193 
1194   gclog_or_tty->print(
1195     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1196     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1197     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1198     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1199     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1200     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1201     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1202     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1203     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1204     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1205     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1206     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1207     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1208     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1209 
1210   if (full) {
1211     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1212   }
1213 
1214   gclog_or_tty->cr();
1215 }
1216 
1217 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1218                                                      double update_rs_processed_buffers,
1219                                                      double goal_ms) {
1220   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1221   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1222 
1223   if (G1UseAdaptiveConcRefinement) {
1224     const int k_gy = 3, k_gr = 6;
1225     const double inc_k = 1.1, dec_k = 0.9;
1226 
1227     int g = cg1r->green_zone();
1228     if (update_rs_time > goal_ms) {
1229       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1230     } else {
1231       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1232         g = (int)MAX2(g * inc_k, g + 1.0);
1233       }
1234     }
1235     // Change the refinement threads params
1236     cg1r->set_green_zone(g);
1237     cg1r->set_yellow_zone(g * k_gy);
1238     cg1r->set_red_zone(g * k_gr);
1239     cg1r->reinitialize_threads();
1240 
1241     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1242     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1243                                     cg1r->yellow_zone());
1244     // Change the barrier params
1245     dcqs.set_process_completed_threshold(processing_threshold);
1246     dcqs.set_max_completed_queue(cg1r->red_zone());
1247   }
1248 
1249   int curr_queue_size = dcqs.completed_buffers_num();
1250   if (curr_queue_size >= cg1r->yellow_zone()) {
1251     dcqs.set_completed_queue_padding(curr_queue_size);
1252   } else {
1253     dcqs.set_completed_queue_padding(0);
1254   }
1255   dcqs.notify_if_necessary();
1256 }
1257 
1258 double
1259 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1260                                                 size_t scanned_cards) {
1261   return
1262     predict_rs_update_time_ms(pending_cards) +
1263     predict_rs_scan_time_ms(scanned_cards) +
1264     predict_constant_other_time_ms();
1265 }
1266 
1267 double
1268 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1269   size_t rs_length = predict_rs_length_diff();
1270   size_t card_num;
1271   if (gcs_are_young()) {
1272     card_num = predict_young_card_num(rs_length);
1273   } else {
1274     card_num = predict_non_young_card_num(rs_length);
1275   }
1276   return predict_base_elapsed_time_ms(pending_cards, card_num);
1277 }
1278 
1279 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1280   size_t bytes_to_copy;
1281   if (hr->is_marked())
1282     bytes_to_copy = hr->max_live_bytes();
1283   else {
1284     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1285     int age = hr->age_in_surv_rate_group();
1286     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1287     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1288   }
1289   return bytes_to_copy;
1290 }
1291 
1292 double
1293 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1294                                                   bool for_young_gc) {
1295   size_t rs_length = hr->rem_set()->occupied();
1296   size_t card_num;
1297 
1298   // Predicting the number of cards is based on which type of GC
1299   // we're predicting for.
1300   if (for_young_gc) {
1301     card_num = predict_young_card_num(rs_length);
1302   } else {
1303     card_num = predict_non_young_card_num(rs_length);
1304   }
1305   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1306 
1307   double region_elapsed_time_ms =
1308     predict_rs_scan_time_ms(card_num) +
1309     predict_object_copy_time_ms(bytes_to_copy);
1310 
1311   // The prediction of the "other" time for this region is based
1312   // upon the region type and NOT the GC type.
1313   if (hr->is_young()) {
1314     region_elapsed_time_ms += predict_young_other_time_ms(1);
1315   } else {
1316     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1317   }
1318   return region_elapsed_time_ms;
1319 }
1320 
1321 void
1322 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1323                                             uint survivor_cset_region_length) {
1324   _eden_cset_region_length     = eden_cset_region_length;
1325   _survivor_cset_region_length = survivor_cset_region_length;
1326   _old_cset_region_length      = 0;
1327 }
1328 
1329 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1330   _recorded_rs_lengths = rs_lengths;
1331 }
1332 
1333 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1334                                                double elapsed_ms) {
1335   _recent_gc_times_ms->add(elapsed_ms);
1336   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1337   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1338 }
1339 
1340 size_t G1CollectorPolicy::expansion_amount() {
1341   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1342   double threshold = _gc_overhead_perc;
1343   if (recent_gc_overhead > threshold) {
1344     // We will double the existing space, or take
1345     // G1ExpandByPercentOfAvailable % of the available expansion
1346     // space, whichever is smaller, bounded below by a minimum
1347     // expansion (unless that's all that's left.)
1348     const size_t min_expand_bytes = 1*M;
1349     size_t reserved_bytes = _g1->max_capacity();
1350     size_t committed_bytes = _g1->capacity();
1351     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1352     size_t expand_bytes;
1353     size_t expand_bytes_via_pct =
1354       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1355     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1356     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1357     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1358 
1359     ergo_verbose5(ErgoHeapSizing,
1360                   "attempt heap expansion",
1361                   ergo_format_reason("recent GC overhead higher than "
1362                                      "threshold after GC")
1363                   ergo_format_perc("recent GC overhead")
1364                   ergo_format_perc("threshold")
1365                   ergo_format_byte("uncommitted")
1366                   ergo_format_byte_perc("calculated expansion amount"),
1367                   recent_gc_overhead, threshold,
1368                   uncommitted_bytes,
1369                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1370 
1371     return expand_bytes;
1372   } else {
1373     return 0;
1374   }
1375 }
1376 
1377 void G1CollectorPolicy::print_tracing_info() const {
1378   _trace_gen0_time_data.print();
1379   _trace_gen1_time_data.print();
1380 }
1381 
1382 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1383 #ifndef PRODUCT
1384   _short_lived_surv_rate_group->print_surv_rate_summary();
1385   // add this call for any other surv rate groups
1386 #endif // PRODUCT
1387 }
1388 
1389 uint G1CollectorPolicy::max_regions(int purpose) {
1390   switch (purpose) {
1391     case GCAllocForSurvived:
1392       return _max_survivor_regions;
1393     case GCAllocForTenured:
1394       return REGIONS_UNLIMITED;
1395     default:
1396       ShouldNotReachHere();
1397       return REGIONS_UNLIMITED;
1398   };
1399 }
1400 
1401 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1402   uint expansion_region_num = 0;
1403   if (GCLockerEdenExpansionPercent > 0) {
1404     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1405     double expansion_region_num_d = perc * (double) _young_list_target_length;
1406     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1407     // less than 1.0) we'll get 1.
1408     expansion_region_num = (uint) ceil(expansion_region_num_d);
1409   } else {
1410     assert(expansion_region_num == 0, "sanity");
1411   }
1412   _young_list_max_length = _young_list_target_length + expansion_region_num;
1413   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1414 }
1415 
1416 // Calculates survivor space parameters.
1417 void G1CollectorPolicy::update_survivors_policy() {
1418   double max_survivor_regions_d =
1419                  (double) _young_list_target_length / (double) SurvivorRatio;
1420   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1421   // smaller than 1.0) we'll get 1.
1422   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1423 
1424   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1425         HeapRegion::GrainWords * _max_survivor_regions);
1426 }
1427 
1428 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1429                                                      GCCause::Cause gc_cause) {
1430   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1431   if (!during_cycle) {
1432     ergo_verbose1(ErgoConcCycles,
1433                   "request concurrent cycle initiation",
1434                   ergo_format_reason("requested by GC cause")
1435                   ergo_format_str("GC cause"),
1436                   GCCause::to_string(gc_cause));
1437     set_initiate_conc_mark_if_possible();
1438     return true;
1439   } else {
1440     ergo_verbose1(ErgoConcCycles,
1441                   "do not request concurrent cycle initiation",
1442                   ergo_format_reason("concurrent cycle already in progress")
1443                   ergo_format_str("GC cause"),
1444                   GCCause::to_string(gc_cause));
1445     return false;
1446   }
1447 }
1448 
1449 void
1450 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1451   // We are about to decide on whether this pause will be an
1452   // initial-mark pause.
1453 
1454   // First, during_initial_mark_pause() should not be already set. We
1455   // will set it here if we have to. However, it should be cleared by
1456   // the end of the pause (it's only set for the duration of an
1457   // initial-mark pause).
1458   assert(!during_initial_mark_pause(), "pre-condition");
1459 
1460   if (initiate_conc_mark_if_possible()) {
1461     // We had noticed on a previous pause that the heap occupancy has
1462     // gone over the initiating threshold and we should start a
1463     // concurrent marking cycle. So we might initiate one.
1464 
1465     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1466     if (!during_cycle) {
1467       // The concurrent marking thread is not "during a cycle", i.e.,
1468       // it has completed the last one. So we can go ahead and
1469       // initiate a new cycle.
1470 
1471       set_during_initial_mark_pause();
1472       // We do not allow mixed GCs during marking.
1473       if (!gcs_are_young()) {
1474         set_gcs_are_young(true);
1475         ergo_verbose0(ErgoMixedGCs,
1476                       "end mixed GCs",
1477                       ergo_format_reason("concurrent cycle is about to start"));
1478       }
1479 
1480       // And we can now clear initiate_conc_mark_if_possible() as
1481       // we've already acted on it.
1482       clear_initiate_conc_mark_if_possible();
1483 
1484       ergo_verbose0(ErgoConcCycles,
1485                   "initiate concurrent cycle",
1486                   ergo_format_reason("concurrent cycle initiation requested"));
1487     } else {
1488       // The concurrent marking thread is still finishing up the
1489       // previous cycle. If we start one right now the two cycles
1490       // overlap. In particular, the concurrent marking thread might
1491       // be in the process of clearing the next marking bitmap (which
1492       // we will use for the next cycle if we start one). Starting a
1493       // cycle now will be bad given that parts of the marking
1494       // information might get cleared by the marking thread. And we
1495       // cannot wait for the marking thread to finish the cycle as it
1496       // periodically yields while clearing the next marking bitmap
1497       // and, if it's in a yield point, it's waiting for us to
1498       // finish. So, at this point we will not start a cycle and we'll
1499       // let the concurrent marking thread complete the last one.
1500       ergo_verbose0(ErgoConcCycles,
1501                     "do not initiate concurrent cycle",
1502                     ergo_format_reason("concurrent cycle already in progress"));
1503     }
1504   }
1505 }
1506 
1507 class KnownGarbageClosure: public HeapRegionClosure {
1508   G1CollectedHeap* _g1h;
1509   CollectionSetChooser* _hrSorted;
1510 
1511 public:
1512   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1513     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1514 
1515   bool doHeapRegion(HeapRegion* r) {
1516     // We only include humongous regions in collection
1517     // sets when concurrent mark shows that their contained object is
1518     // unreachable.
1519 
1520     // Do we have any marking information for this region?
1521     if (r->is_marked()) {
1522       // We will skip any region that's currently used as an old GC
1523       // alloc region (we should not consider those for collection
1524       // before we fill them up).
1525       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1526         _hrSorted->add_region(r);
1527       }
1528     }
1529     return false;
1530   }
1531 };
1532 
1533 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1534   G1CollectedHeap* _g1h;
1535   CSetChooserParUpdater _cset_updater;
1536 
1537 public:
1538   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1539                            uint chunk_size) :
1540     _g1h(G1CollectedHeap::heap()),
1541     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1542 
1543   bool doHeapRegion(HeapRegion* r) {
1544     // Do we have any marking information for this region?
1545     if (r->is_marked()) {
1546       // We will skip any region that's currently used as an old GC
1547       // alloc region (we should not consider those for collection
1548       // before we fill them up).
1549       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1550         _cset_updater.add_region(r);
1551       }
1552     }
1553     return false;
1554   }
1555 };
1556 
1557 class ParKnownGarbageTask: public AbstractGangTask {
1558   CollectionSetChooser* _hrSorted;
1559   uint _chunk_size;
1560   G1CollectedHeap* _g1;
1561 public:
1562   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1563     AbstractGangTask("ParKnownGarbageTask"),
1564     _hrSorted(hrSorted), _chunk_size(chunk_size),
1565     _g1(G1CollectedHeap::heap()) { }
1566 
1567   void work(uint worker_id) {
1568     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1569 
1570     // Back to zero for the claim value.
1571     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1572                                          _g1->workers()->active_workers(),
1573                                          HeapRegion::InitialClaimValue);
1574   }
1575 };
1576 
1577 void
1578 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1579   _collectionSetChooser->clear();
1580 
1581   uint region_num = _g1->n_regions();
1582   if (G1CollectedHeap::use_parallel_gc_threads()) {
1583     const uint OverpartitionFactor = 4;
1584     uint WorkUnit;
1585     // The use of MinChunkSize = 8 in the original code
1586     // causes some assertion failures when the total number of
1587     // region is less than 8.  The code here tries to fix that.
1588     // Should the original code also be fixed?
1589     if (no_of_gc_threads > 0) {
1590       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1591       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1592                       MinWorkUnit);
1593     } else {
1594       assert(no_of_gc_threads > 0,
1595         "The active gc workers should be greater than 0");
1596       // In a product build do something reasonable to avoid a crash.
1597       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1598       WorkUnit =
1599         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1600              MinWorkUnit);
1601     }
1602     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
1603                                                            WorkUnit);
1604     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1605                                             (int) WorkUnit);
1606     _g1->workers()->run_task(&parKnownGarbageTask);
1607 
1608     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1609            "sanity check");
1610   } else {
1611     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1612     _g1->heap_region_iterate(&knownGarbagecl);
1613   }
1614 
1615   _collectionSetChooser->sort_regions();
1616 
1617   double end_sec = os::elapsedTime();
1618   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1619   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1620   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1621   _prev_collection_pause_end_ms += elapsed_time_ms;
1622   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1623 }
1624 
1625 // Add the heap region at the head of the non-incremental collection set
1626 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1627   assert(_inc_cset_build_state == Active, "Precondition");
1628   assert(!hr->is_young(), "non-incremental add of young region");
1629 
1630   assert(!hr->in_collection_set(), "should not already be in the CSet");
1631   hr->set_in_collection_set(true);
1632   hr->set_next_in_collection_set(_collection_set);
1633   _collection_set = hr;
1634   _collection_set_bytes_used_before += hr->used();
1635   _g1->register_region_with_in_cset_fast_test(hr);
1636   size_t rs_length = hr->rem_set()->occupied();
1637   _recorded_rs_lengths += rs_length;
1638   _old_cset_region_length += 1;
1639 }
1640 
1641 // Initialize the per-collection-set information
1642 void G1CollectorPolicy::start_incremental_cset_building() {
1643   assert(_inc_cset_build_state == Inactive, "Precondition");
1644 
1645   _inc_cset_head = NULL;
1646   _inc_cset_tail = NULL;
1647   _inc_cset_bytes_used_before = 0;
1648 
1649   _inc_cset_max_finger = 0;
1650   _inc_cset_recorded_rs_lengths = 0;
1651   _inc_cset_recorded_rs_lengths_diffs = 0;
1652   _inc_cset_predicted_elapsed_time_ms = 0.0;
1653   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1654   _inc_cset_build_state = Active;
1655 }
1656 
1657 void G1CollectorPolicy::finalize_incremental_cset_building() {
1658   assert(_inc_cset_build_state == Active, "Precondition");
1659   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1660 
1661   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1662   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1663   // that adds a new region to the CSet. Further updates by the
1664   // concurrent refinement thread that samples the young RSet lengths
1665   // are accumulated in the *_diffs fields. Here we add the diffs to
1666   // the "main" fields.
1667 
1668   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1669     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1670   } else {
1671     // This is defensive. The diff should in theory be always positive
1672     // as RSets can only grow between GCs. However, given that we
1673     // sample their size concurrently with other threads updating them
1674     // it's possible that we might get the wrong size back, which
1675     // could make the calculations somewhat inaccurate.
1676     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1677     if (_inc_cset_recorded_rs_lengths >= diffs) {
1678       _inc_cset_recorded_rs_lengths -= diffs;
1679     } else {
1680       _inc_cset_recorded_rs_lengths = 0;
1681     }
1682   }
1683   _inc_cset_predicted_elapsed_time_ms +=
1684                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1685 
1686   _inc_cset_recorded_rs_lengths_diffs = 0;
1687   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1688 }
1689 
1690 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1691   // This routine is used when:
1692   // * adding survivor regions to the incremental cset at the end of an
1693   //   evacuation pause,
1694   // * adding the current allocation region to the incremental cset
1695   //   when it is retired, and
1696   // * updating existing policy information for a region in the
1697   //   incremental cset via young list RSet sampling.
1698   // Therefore this routine may be called at a safepoint by the
1699   // VM thread, or in-between safepoints by mutator threads (when
1700   // retiring the current allocation region) or a concurrent
1701   // refine thread (RSet sampling).
1702 
1703   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1704   size_t used_bytes = hr->used();
1705   _inc_cset_recorded_rs_lengths += rs_length;
1706   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1707   _inc_cset_bytes_used_before += used_bytes;
1708 
1709   // Cache the values we have added to the aggregated informtion
1710   // in the heap region in case we have to remove this region from
1711   // the incremental collection set, or it is updated by the
1712   // rset sampling code
1713   hr->set_recorded_rs_length(rs_length);
1714   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1715 }
1716 
1717 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1718                                                      size_t new_rs_length) {
1719   // Update the CSet information that is dependent on the new RS length
1720   assert(hr->is_young(), "Precondition");
1721   assert(!SafepointSynchronize::is_at_safepoint(),
1722                                                "should not be at a safepoint");
1723 
1724   // We could have updated _inc_cset_recorded_rs_lengths and
1725   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1726   // that atomically, as this code is executed by a concurrent
1727   // refinement thread, potentially concurrently with a mutator thread
1728   // allocating a new region and also updating the same fields. To
1729   // avoid the atomic operations we accumulate these updates on two
1730   // separate fields (*_diffs) and we'll just add them to the "main"
1731   // fields at the start of a GC.
1732 
1733   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1734   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1735   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1736 
1737   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1738   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1739   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1740   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1741 
1742   hr->set_recorded_rs_length(new_rs_length);
1743   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1744 }
1745 
1746 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1747   assert(hr->is_young(), "invariant");
1748   assert(hr->young_index_in_cset() > -1, "should have already been set");
1749   assert(_inc_cset_build_state == Active, "Precondition");
1750 
1751   // We need to clear and set the cached recorded/cached collection set
1752   // information in the heap region here (before the region gets added
1753   // to the collection set). An individual heap region's cached values
1754   // are calculated, aggregated with the policy collection set info,
1755   // and cached in the heap region here (initially) and (subsequently)
1756   // by the Young List sampling code.
1757 
1758   size_t rs_length = hr->rem_set()->occupied();
1759   add_to_incremental_cset_info(hr, rs_length);
1760 
1761   HeapWord* hr_end = hr->end();
1762   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1763 
1764   assert(!hr->in_collection_set(), "invariant");
1765   hr->set_in_collection_set(true);
1766   assert( hr->next_in_collection_set() == NULL, "invariant");
1767 
1768   _g1->register_region_with_in_cset_fast_test(hr);
1769 }
1770 
1771 // Add the region at the RHS of the incremental cset
1772 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1773   // We should only ever be appending survivors at the end of a pause
1774   assert( hr->is_survivor(), "Logic");
1775 
1776   // Do the 'common' stuff
1777   add_region_to_incremental_cset_common(hr);
1778 
1779   // Now add the region at the right hand side
1780   if (_inc_cset_tail == NULL) {
1781     assert(_inc_cset_head == NULL, "invariant");
1782     _inc_cset_head = hr;
1783   } else {
1784     _inc_cset_tail->set_next_in_collection_set(hr);
1785   }
1786   _inc_cset_tail = hr;
1787 }
1788 
1789 // Add the region to the LHS of the incremental cset
1790 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1791   // Survivors should be added to the RHS at the end of a pause
1792   assert(!hr->is_survivor(), "Logic");
1793 
1794   // Do the 'common' stuff
1795   add_region_to_incremental_cset_common(hr);
1796 
1797   // Add the region at the left hand side
1798   hr->set_next_in_collection_set(_inc_cset_head);
1799   if (_inc_cset_head == NULL) {
1800     assert(_inc_cset_tail == NULL, "Invariant");
1801     _inc_cset_tail = hr;
1802   }
1803   _inc_cset_head = hr;
1804 }
1805 
1806 #ifndef PRODUCT
1807 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1808   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1809 
1810   st->print_cr("\nCollection_set:");
1811   HeapRegion* csr = list_head;
1812   while (csr != NULL) {
1813     HeapRegion* next = csr->next_in_collection_set();
1814     assert(csr->in_collection_set(), "bad CS");
1815     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1816                  HR_FORMAT_PARAMS(csr),
1817                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1818                  csr->age_in_surv_rate_group_cond());
1819     csr = next;
1820   }
1821 }
1822 #endif // !PRODUCT
1823 
1824 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1825   // Returns the given amount of reclaimable bytes (that represents
1826   // the amount of reclaimable space still to be collected) as a
1827   // percentage of the current heap capacity.
1828   size_t capacity_bytes = _g1->capacity();
1829   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1830 }
1831 
1832 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1833                                                 const char* false_action_str) {
1834   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1835   if (cset_chooser->is_empty()) {
1836     ergo_verbose0(ErgoMixedGCs,
1837                   false_action_str,
1838                   ergo_format_reason("candidate old regions not available"));
1839     return false;
1840   }
1841 
1842   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1843   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1844   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1845   double threshold = (double) G1HeapWastePercent;
1846   if (reclaimable_perc <= threshold) {
1847     ergo_verbose4(ErgoMixedGCs,
1848               false_action_str,
1849               ergo_format_reason("reclaimable percentage not over threshold")
1850               ergo_format_region("candidate old regions")
1851               ergo_format_byte_perc("reclaimable")
1852               ergo_format_perc("threshold"),
1853               cset_chooser->remaining_regions(),
1854               reclaimable_bytes,
1855               reclaimable_perc, threshold);
1856     return false;
1857   }
1858 
1859   ergo_verbose4(ErgoMixedGCs,
1860                 true_action_str,
1861                 ergo_format_reason("candidate old regions available")
1862                 ergo_format_region("candidate old regions")
1863                 ergo_format_byte_perc("reclaimable")
1864                 ergo_format_perc("threshold"),
1865                 cset_chooser->remaining_regions(),
1866                 reclaimable_bytes,
1867                 reclaimable_perc, threshold);
1868   return true;
1869 }
1870 
1871 uint G1CollectorPolicy::calc_min_old_cset_length() {
1872   // The min old CSet region bound is based on the maximum desired
1873   // number of mixed GCs after a cycle. I.e., even if some old regions
1874   // look expensive, we should add them to the CSet anyway to make
1875   // sure we go through the available old regions in no more than the
1876   // maximum desired number of mixed GCs.
1877   //
1878   // The calculation is based on the number of marked regions we added
1879   // to the CSet chooser in the first place, not how many remain, so
1880   // that the result is the same during all mixed GCs that follow a cycle.
1881 
1882   const size_t region_num = (size_t) _collectionSetChooser->length();
1883   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1884   size_t result = region_num / gc_num;
1885   // emulate ceiling
1886   if (result * gc_num < region_num) {
1887     result += 1;
1888   }
1889   return (uint) result;
1890 }
1891 
1892 uint G1CollectorPolicy::calc_max_old_cset_length() {
1893   // The max old CSet region bound is based on the threshold expressed
1894   // as a percentage of the heap size. I.e., it should bound the
1895   // number of old regions added to the CSet irrespective of how many
1896   // of them are available.
1897 
1898   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1899   const size_t region_num = g1h->n_regions();
1900   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1901   size_t result = region_num * perc / 100;
1902   // emulate ceiling
1903   if (100 * result < region_num * perc) {
1904     result += 1;
1905   }
1906   return (uint) result;
1907 }
1908 
1909 
1910 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1911   double young_start_time_sec = os::elapsedTime();
1912 
1913   YoungList* young_list = _g1->young_list();
1914   finalize_incremental_cset_building();
1915 
1916   guarantee(target_pause_time_ms > 0.0,
1917             err_msg("target_pause_time_ms = %1.6lf should be positive",
1918                     target_pause_time_ms));
1919   guarantee(_collection_set == NULL, "Precondition");
1920 
1921   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1922   double predicted_pause_time_ms = base_time_ms;
1923   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1924 
1925   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1926                 "start choosing CSet",
1927                 ergo_format_size("_pending_cards")
1928                 ergo_format_ms("predicted base time")
1929                 ergo_format_ms("remaining time")
1930                 ergo_format_ms("target pause time"),
1931                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1932 
1933   _last_gc_was_young = gcs_are_young() ? true : false;
1934 
1935   if (_last_gc_was_young) {
1936     _trace_gen0_time_data.increment_young_collection_count();
1937   } else {
1938     _trace_gen0_time_data.increment_mixed_collection_count();
1939   }
1940 
1941   // The young list is laid with the survivor regions from the previous
1942   // pause are appended to the RHS of the young list, i.e.
1943   //   [Newly Young Regions ++ Survivors from last pause].
1944 
1945   uint survivor_region_length = young_list->survivor_length();
1946   uint eden_region_length = young_list->length() - survivor_region_length;
1947   init_cset_region_lengths(eden_region_length, survivor_region_length);
1948 
1949   HeapRegion* hr = young_list->first_survivor_region();
1950   while (hr != NULL) {
1951     assert(hr->is_survivor(), "badly formed young list");
1952     hr->set_young();
1953     hr = hr->get_next_young_region();
1954   }
1955 
1956   // Clear the fields that point to the survivor list - they are all young now.
1957   young_list->clear_survivors();
1958 
1959   _collection_set = _inc_cset_head;
1960   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1961   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1962   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1963 
1964   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1965                 "add young regions to CSet",
1966                 ergo_format_region("eden")
1967                 ergo_format_region("survivors")
1968                 ergo_format_ms("predicted young region time"),
1969                 eden_region_length, survivor_region_length,
1970                 _inc_cset_predicted_elapsed_time_ms);
1971 
1972   // The number of recorded young regions is the incremental
1973   // collection set's current size
1974   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1975 
1976   double young_end_time_sec = os::elapsedTime();
1977   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1978 
1979   // Set the start of the non-young choice time.
1980   double non_young_start_time_sec = young_end_time_sec;
1981 
1982   if (!gcs_are_young()) {
1983     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1984     cset_chooser->verify();
1985     const uint min_old_cset_length = calc_min_old_cset_length();
1986     const uint max_old_cset_length = calc_max_old_cset_length();
1987 
1988     uint expensive_region_num = 0;
1989     bool check_time_remaining = adaptive_young_list_length();
1990 
1991     HeapRegion* hr = cset_chooser->peek();
1992     while (hr != NULL) {
1993       if (old_cset_region_length() >= max_old_cset_length) {
1994         // Added maximum number of old regions to the CSet.
1995         ergo_verbose2(ErgoCSetConstruction,
1996                       "finish adding old regions to CSet",
1997                       ergo_format_reason("old CSet region num reached max")
1998                       ergo_format_region("old")
1999                       ergo_format_region("max"),
2000                       old_cset_region_length(), max_old_cset_length);
2001         break;
2002       }
2003 
2004 
2005       // Stop adding regions if the remaining reclaimable space is
2006       // not above G1HeapWastePercent.
2007       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2008       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2009       double threshold = (double) G1HeapWastePercent;
2010       if (reclaimable_perc <= threshold) {
2011         // We've added enough old regions that the amount of uncollected
2012         // reclaimable space is at or below the waste threshold. Stop
2013         // adding old regions to the CSet.
2014         ergo_verbose5(ErgoCSetConstruction,
2015                       "finish adding old regions to CSet",
2016                       ergo_format_reason("reclaimable percentage not over threshold")
2017                       ergo_format_region("old")
2018                       ergo_format_region("max")
2019                       ergo_format_byte_perc("reclaimable")
2020                       ergo_format_perc("threshold"),
2021                       old_cset_region_length(),
2022                       max_old_cset_length,
2023                       reclaimable_bytes,
2024                       reclaimable_perc, threshold);
2025         break;
2026       }
2027 
2028       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2029       if (check_time_remaining) {
2030         if (predicted_time_ms > time_remaining_ms) {
2031           // Too expensive for the current CSet.
2032 
2033           if (old_cset_region_length() >= min_old_cset_length) {
2034             // We have added the minimum number of old regions to the CSet,
2035             // we are done with this CSet.
2036             ergo_verbose4(ErgoCSetConstruction,
2037                           "finish adding old regions to CSet",
2038                           ergo_format_reason("predicted time is too high")
2039                           ergo_format_ms("predicted time")
2040                           ergo_format_ms("remaining time")
2041                           ergo_format_region("old")
2042                           ergo_format_region("min"),
2043                           predicted_time_ms, time_remaining_ms,
2044                           old_cset_region_length(), min_old_cset_length);
2045             break;
2046           }
2047 
2048           // We'll add it anyway given that we haven't reached the
2049           // minimum number of old regions.
2050           expensive_region_num += 1;
2051         }
2052       } else {
2053         if (old_cset_region_length() >= min_old_cset_length) {
2054           // In the non-auto-tuning case, we'll finish adding regions
2055           // to the CSet if we reach the minimum.
2056           ergo_verbose2(ErgoCSetConstruction,
2057                         "finish adding old regions to CSet",
2058                         ergo_format_reason("old CSet region num reached min")
2059                         ergo_format_region("old")
2060                         ergo_format_region("min"),
2061                         old_cset_region_length(), min_old_cset_length);
2062           break;
2063         }
2064       }
2065 
2066       // We will add this region to the CSet.
2067       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2068       predicted_pause_time_ms += predicted_time_ms;
2069       cset_chooser->remove_and_move_to_next(hr);
2070       _g1->old_set_remove(hr);
2071       add_old_region_to_cset(hr);
2072 
2073       hr = cset_chooser->peek();
2074     }
2075     if (hr == NULL) {
2076       ergo_verbose0(ErgoCSetConstruction,
2077                     "finish adding old regions to CSet",
2078                     ergo_format_reason("candidate old regions not available"));
2079     }
2080 
2081     if (expensive_region_num > 0) {
2082       // We print the information once here at the end, predicated on
2083       // whether we added any apparently expensive regions or not, to
2084       // avoid generating output per region.
2085       ergo_verbose4(ErgoCSetConstruction,
2086                     "added expensive regions to CSet",
2087                     ergo_format_reason("old CSet region num not reached min")
2088                     ergo_format_region("old")
2089                     ergo_format_region("expensive")
2090                     ergo_format_region("min")
2091                     ergo_format_ms("remaining time"),
2092                     old_cset_region_length(),
2093                     expensive_region_num,
2094                     min_old_cset_length,
2095                     time_remaining_ms);
2096     }
2097 
2098     cset_chooser->verify();
2099   }
2100 
2101   stop_incremental_cset_building();
2102 
2103   ergo_verbose5(ErgoCSetConstruction,
2104                 "finish choosing CSet",
2105                 ergo_format_region("eden")
2106                 ergo_format_region("survivors")
2107                 ergo_format_region("old")
2108                 ergo_format_ms("predicted pause time")
2109                 ergo_format_ms("target pause time"),
2110                 eden_region_length, survivor_region_length,
2111                 old_cset_region_length(),
2112                 predicted_pause_time_ms, target_pause_time_ms);
2113 
2114   double non_young_end_time_sec = os::elapsedTime();
2115   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2116   evacuation_info.set_collectionset_regions(cset_region_length());
2117 }
2118 
2119 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2120   if(TraceGen0Time) {
2121     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2122   }
2123 }
2124 
2125 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2126   if(TraceGen0Time) {
2127     _all_yield_times_ms.add(yield_time_ms);
2128   }
2129 }
2130 
2131 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2132   if(TraceGen0Time) {
2133     _total.add(pause_time_ms);
2134     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2135     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2136     _parallel.add(phase_times->cur_collection_par_time_ms());
2137     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2138     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2139     _update_rs.add(phase_times->average_last_update_rs_time());
2140     _scan_rs.add(phase_times->average_last_scan_rs_time());
2141     _obj_copy.add(phase_times->average_last_obj_copy_time());
2142     _termination.add(phase_times->average_last_termination_time());
2143 
2144     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2145       phase_times->average_last_satb_filtering_times_ms() +
2146       phase_times->average_last_update_rs_time() +
2147       phase_times->average_last_scan_rs_time() +
2148       phase_times->average_last_obj_copy_time() +
2149       + phase_times->average_last_termination_time();
2150 
2151     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2152     _parallel_other.add(parallel_other_time);
2153     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2154   }
2155 }
2156 
2157 void TraceGen0TimeData::increment_young_collection_count() {
2158   if(TraceGen0Time) {
2159     ++_young_pause_num;
2160   }
2161 }
2162 
2163 void TraceGen0TimeData::increment_mixed_collection_count() {
2164   if(TraceGen0Time) {
2165     ++_mixed_pause_num;
2166   }
2167 }
2168 
2169 void TraceGen0TimeData::print_summary(const char* str,
2170                                       const NumberSeq* seq) const {
2171   double sum = seq->sum();
2172   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2173                 str, sum / 1000.0, seq->avg());
2174 }
2175 
2176 void TraceGen0TimeData::print_summary_sd(const char* str,
2177                                          const NumberSeq* seq) const {
2178   print_summary(str, seq);
2179   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2180                 "(num", seq->num(), seq->sd(), seq->maximum());
2181 }
2182 
2183 void TraceGen0TimeData::print() const {
2184   if (!TraceGen0Time) {
2185     return;
2186   }
2187 
2188   gclog_or_tty->print_cr("ALL PAUSES");
2189   print_summary_sd("   Total", &_total);
2190   gclog_or_tty->print_cr("");
2191   gclog_or_tty->print_cr("");
2192   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2193   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2194   gclog_or_tty->print_cr("");
2195 
2196   gclog_or_tty->print_cr("EVACUATION PAUSES");
2197 
2198   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2199     gclog_or_tty->print_cr("none");
2200   } else {
2201     print_summary_sd("   Evacuation Pauses", &_total);
2202     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2203     print_summary("      Parallel Time", &_parallel);
2204     print_summary("         Ext Root Scanning", &_ext_root_scan);
2205     print_summary("         SATB Filtering", &_satb_filtering);
2206     print_summary("         Update RS", &_update_rs);
2207     print_summary("         Scan RS", &_scan_rs);
2208     print_summary("         Object Copy", &_obj_copy);
2209     print_summary("         Termination", &_termination);
2210     print_summary("         Parallel Other", &_parallel_other);
2211     print_summary("      Clear CT", &_clear_ct);
2212     print_summary("      Other", &_other);
2213   }
2214   gclog_or_tty->print_cr("");
2215 
2216   gclog_or_tty->print_cr("MISC");
2217   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2218   print_summary_sd("   Yields", &_all_yield_times_ms);
2219 }
2220 
2221 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2222   if (TraceGen1Time) {
2223     _all_full_gc_times.add(full_gc_time_ms);
2224   }
2225 }
2226 
2227 void TraceGen1TimeData::print() const {
2228   if (!TraceGen1Time) {
2229     return;
2230   }
2231 
2232   if (_all_full_gc_times.num() > 0) {
2233     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2234       _all_full_gc_times.num(),
2235       _all_full_gc_times.sum() / 1000.0);
2236     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2237     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2238       _all_full_gc_times.sd(),
2239       _all_full_gc_times.maximum());
2240   }
2241 }