1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  27 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  29 #include "gc_implementation/g1/heapRegion.inline.hpp"
  30 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  31 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  32 #include "memory/genOopClosures.inline.hpp"
  33 #include "memory/iterator.hpp"
  34 #include "oops/oop.inline.hpp"
  35 
  36 int    HeapRegion::LogOfHRGrainBytes = 0;
  37 int    HeapRegion::LogOfHRGrainWords = 0;
  38 size_t HeapRegion::GrainBytes        = 0;
  39 size_t HeapRegion::GrainWords        = 0;
  40 size_t HeapRegion::CardsPerRegion    = 0;
  41 
  42 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  43                                  HeapRegion* hr, ExtendedOopClosure* cl,
  44                                  CardTableModRefBS::PrecisionStyle precision,
  45                                  FilterKind fk) :
  46   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
  47   _hr(hr), _fk(fk), _g1(g1) { }
  48 
  49 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  50                                                    OopClosure* oc) :
  51   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  52 
  53 class VerifyLiveClosure: public OopClosure {
  54 private:
  55   G1CollectedHeap* _g1h;
  56   CardTableModRefBS* _bs;
  57   oop _containing_obj;
  58   bool _failures;
  59   int _n_failures;
  60   VerifyOption _vo;
  61 public:
  62   // _vo == UsePrevMarking -> use "prev" marking information,
  63   // _vo == UseNextMarking -> use "next" marking information,
  64   // _vo == UseMarkWord    -> use mark word from object header.
  65   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
  66     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
  67     _failures(false), _n_failures(0), _vo(vo)
  68   {
  69     BarrierSet* bs = _g1h->barrier_set();
  70     if (bs->is_a(BarrierSet::CardTableModRef))
  71       _bs = (CardTableModRefBS*)bs;
  72   }
  73 
  74   void set_containing_obj(oop obj) {
  75     _containing_obj = obj;
  76   }
  77 
  78   bool failures() { return _failures; }
  79   int n_failures() { return _n_failures; }
  80 
  81   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  82   virtual void do_oop(      oop* p) { do_oop_work(p); }
  83 
  84   void print_object(outputStream* out, oop obj) {
  85 #ifdef PRODUCT
  86     Klass* k = obj->klass();
  87     const char* class_name = InstanceKlass::cast(k)->external_name();
  88     out->print_cr("class name %s", class_name);
  89 #else // PRODUCT
  90     obj->print_on(out);
  91 #endif // PRODUCT
  92   }
  93 
  94   template <class T>
  95   void do_oop_work(T* p) {
  96     assert(_containing_obj != NULL, "Precondition");
  97     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
  98            "Precondition");
  99     T heap_oop = oopDesc::load_heap_oop(p);
 100     if (!oopDesc::is_null(heap_oop)) {
 101       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 102       bool failed = false;
 103       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 104         MutexLockerEx x(ParGCRareEvent_lock,
 105                         Mutex::_no_safepoint_check_flag);
 106 
 107         if (!_failures) {
 108           gclog_or_tty->print_cr("");
 109           gclog_or_tty->print_cr("----------");
 110         }
 111         if (!_g1h->is_in_closed_subset(obj)) {
 112           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 113           gclog_or_tty->print_cr("Field "PTR_FORMAT
 114                                  " of live obj "PTR_FORMAT" in region "
 115                                  "["PTR_FORMAT", "PTR_FORMAT")",
 116                                  p, (void*) _containing_obj,
 117                                  from->bottom(), from->end());
 118           print_object(gclog_or_tty, _containing_obj);
 119           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 120                                  (void*) obj);
 121         } else {
 122           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 123           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 124           gclog_or_tty->print_cr("Field "PTR_FORMAT
 125                                  " of live obj "PTR_FORMAT" in region "
 126                                  "["PTR_FORMAT", "PTR_FORMAT")",
 127                                  p, (void*) _containing_obj,
 128                                  from->bottom(), from->end());
 129           print_object(gclog_or_tty, _containing_obj);
 130           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 131                                  "["PTR_FORMAT", "PTR_FORMAT")",
 132                                  (void*) obj, to->bottom(), to->end());
 133           print_object(gclog_or_tty, obj);
 134         }
 135         gclog_or_tty->print_cr("----------");
 136         gclog_or_tty->flush();
 137         _failures = true;
 138         failed = true;
 139         _n_failures++;
 140       }
 141 
 142       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 143         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 144         HeapRegion* to   = _g1h->heap_region_containing(obj);
 145         if (from != NULL && to != NULL &&
 146             from != to &&
 147             !to->isHumongous()) {
 148           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 149           jbyte cv_field = *_bs->byte_for_const(p);
 150           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 151 
 152           bool is_bad = !(from->is_young()
 153                           || to->rem_set()->contains_reference(p)
 154                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 155                               (_containing_obj->is_objArray() ?
 156                                   cv_field == dirty
 157                                : cv_obj == dirty || cv_field == dirty));
 158           if (is_bad) {
 159             MutexLockerEx x(ParGCRareEvent_lock,
 160                             Mutex::_no_safepoint_check_flag);
 161 
 162             if (!_failures) {
 163               gclog_or_tty->print_cr("");
 164               gclog_or_tty->print_cr("----------");
 165             }
 166             gclog_or_tty->print_cr("Missing rem set entry:");
 167             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 168                                    "of obj "PTR_FORMAT", "
 169                                    "in region "HR_FORMAT,
 170                                    p, (void*) _containing_obj,
 171                                    HR_FORMAT_PARAMS(from));
 172             _containing_obj->print_on(gclog_or_tty);
 173             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 174                                    "in region "HR_FORMAT,
 175                                    (void*) obj,
 176                                    HR_FORMAT_PARAMS(to));
 177             obj->print_on(gclog_or_tty);
 178             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 179                           cv_obj, cv_field);
 180             gclog_or_tty->print_cr("----------");
 181             gclog_or_tty->flush();
 182             _failures = true;
 183             if (!failed) _n_failures++;
 184           }
 185         }
 186       }
 187     }
 188   }
 189 };
 190 
 191 template<class ClosureType>
 192 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
 193                                HeapRegion* hr,
 194                                HeapWord* cur, HeapWord* top) {
 195   oop cur_oop = oop(cur);
 196   int oop_size = cur_oop->size();
 197   HeapWord* next_obj = cur + oop_size;
 198   while (next_obj < top) {
 199     // Keep filtering the remembered set.
 200     if (!g1h->is_obj_dead(cur_oop, hr)) {
 201       // Bottom lies entirely below top, so we can call the
 202       // non-memRegion version of oop_iterate below.
 203       cur_oop->oop_iterate(cl);
 204     }
 205     cur = next_obj;
 206     cur_oop = oop(cur);
 207     oop_size = cur_oop->size();
 208     next_obj = cur + oop_size;
 209   }
 210   return cur;
 211 }
 212 
 213 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
 214                                               HeapWord* bottom,
 215                                               HeapWord* top,
 216                                               ExtendedOopClosure* cl) {
 217   G1CollectedHeap* g1h = _g1;
 218   int oop_size;
 219   ExtendedOopClosure* cl2 = NULL;
 220 
 221   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
 222   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
 223 
 224   switch (_fk) {
 225   case NoFilterKind:          cl2 = cl; break;
 226   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
 227   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
 228   default:                    ShouldNotReachHere();
 229   }
 230 
 231   // Start filtering what we add to the remembered set. If the object is
 232   // not considered dead, either because it is marked (in the mark bitmap)
 233   // or it was allocated after marking finished, then we add it. Otherwise
 234   // we can safely ignore the object.
 235   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 236     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 237   } else {
 238     oop_size = oop(bottom)->size();
 239   }
 240 
 241   bottom += oop_size;
 242 
 243   if (bottom < top) {
 244     // We replicate the loop below for several kinds of possible filters.
 245     switch (_fk) {
 246     case NoFilterKind:
 247       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
 248       break;
 249 
 250     case IntoCSFilterKind: {
 251       FilterIntoCSClosure filt(this, g1h, cl);
 252       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 253       break;
 254     }
 255 
 256     case OutOfRegionFilterKind: {
 257       FilterOutOfRegionClosure filt(_hr, cl);
 258       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 259       break;
 260     }
 261 
 262     default:
 263       ShouldNotReachHere();
 264     }
 265 
 266     // Last object. Need to do dead-obj filtering here too.
 267     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 268       oop(bottom)->oop_iterate(cl2, mr);
 269     }
 270   }
 271 }
 272 
 273 // Minimum region size; we won't go lower than that.
 274 // We might want to decrease this in the future, to deal with small
 275 // heaps a bit more efficiently.
 276 #define MIN_REGION_SIZE  (      1024 * 1024 )
 277 
 278 // Maximum region size; we don't go higher than that. There's a good
 279 // reason for having an upper bound. We don't want regions to get too
 280 // large, otherwise cleanup's effectiveness would decrease as there
 281 // will be fewer opportunities to find totally empty regions after
 282 // marking.
 283 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 284 
 285 // The automatic region size calculation will try to have around this
 286 // many regions in the heap (based on the min heap size).
 287 #define TARGET_REGION_NUMBER          2048
 288 
 289 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
 290   // region_size in bytes
 291   uintx region_size = G1HeapRegionSize;
 292   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 293     // We base the automatic calculation on the min heap size. This
 294     // can be problematic if the spread between min and max is quite
 295     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
 296     // the max size, the region size might be way too large for the
 297     // min size. Either way, some users might have to set the region
 298     // size manually for some -Xms / -Xmx combos.
 299 
 300     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
 301                        (uintx) MIN_REGION_SIZE);
 302   }
 303 
 304   int region_size_log = log2_long((jlong) region_size);
 305   // Recalculate the region size to make sure it's a power of
 306   // 2. This means that region_size is the largest power of 2 that's
 307   // <= what we've calculated so far.
 308   region_size = ((uintx)1 << region_size_log);
 309 
 310   // Now make sure that we don't go over or under our limits.
 311   if (region_size < MIN_REGION_SIZE) {
 312     region_size = MIN_REGION_SIZE;
 313   } else if (region_size > MAX_REGION_SIZE) {
 314     region_size = MAX_REGION_SIZE;
 315   }
 316 
 317   if (region_size != G1HeapRegionSize) {
 318     // Update the flag to make sure that PrintFlagsFinal logs the correct value
 319     FLAG_SET_ERGO(uintx, G1HeapRegionSize, region_size);
 320   }
 321 
 322   // And recalculate the log.
 323   region_size_log = log2_long((jlong) region_size);
 324 
 325   // Now, set up the globals.
 326   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 327   LogOfHRGrainBytes = region_size_log;
 328 
 329   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 330   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 331 
 332   guarantee(GrainBytes == 0, "we should only set it once");
 333   // The cast to int is safe, given that we've bounded region_size by
 334   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 335   GrainBytes = (size_t)region_size;
 336 
 337   guarantee(GrainWords == 0, "we should only set it once");
 338   GrainWords = GrainBytes >> LogHeapWordSize;
 339   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 340 
 341   guarantee(CardsPerRegion == 0, "we should only set it once");
 342   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 343 }
 344 
 345 void HeapRegion::reset_after_compaction() {
 346   G1OffsetTableContigSpace::reset_after_compaction();
 347   // After a compaction the mark bitmap is invalid, so we must
 348   // treat all objects as being inside the unmarked area.
 349   zero_marked_bytes();
 350   init_top_at_mark_start();
 351 }
 352 
 353 void HeapRegion::hr_clear(bool par, bool clear_space) {
 354   assert(_humongous_type == NotHumongous,
 355          "we should have already filtered out humongous regions");
 356   assert(_humongous_start_region == NULL,
 357          "we should have already filtered out humongous regions");
 358   assert(_end == _orig_end,
 359          "we should have already filtered out humongous regions");
 360 
 361   _in_collection_set = false;
 362 
 363   set_young_index_in_cset(-1);
 364   uninstall_surv_rate_group();
 365   set_young_type(NotYoung);
 366   reset_pre_dummy_top();
 367 
 368   if (!par) {
 369     // If this is parallel, this will be done later.
 370     HeapRegionRemSet* hrrs = rem_set();
 371     if (hrrs != NULL) hrrs->clear();
 372     _claimed = InitialClaimValue;
 373   }
 374   zero_marked_bytes();
 375 
 376   _offsets.resize(HeapRegion::GrainWords);
 377   init_top_at_mark_start();
 378   if (clear_space) clear(SpaceDecorator::Mangle);
 379 }
 380 
 381 void HeapRegion::par_clear() {
 382   assert(used() == 0, "the region should have been already cleared");
 383   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 384   HeapRegionRemSet* hrrs = rem_set();
 385   hrrs->clear();
 386   CardTableModRefBS* ct_bs =
 387                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 388   ct_bs->clear(MemRegion(bottom(), end()));
 389 }
 390 
 391 void HeapRegion::calc_gc_efficiency() {
 392   // GC efficiency is the ratio of how much space would be
 393   // reclaimed over how long we predict it would take to reclaim it.
 394   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 395   G1CollectorPolicy* g1p = g1h->g1_policy();
 396 
 397   // Retrieve a prediction of the elapsed time for this region for
 398   // a mixed gc because the region will only be evacuated during a
 399   // mixed gc.
 400   double region_elapsed_time_ms =
 401     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 402   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 403 }
 404 
 405 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 406   assert(!isHumongous(), "sanity / pre-condition");
 407   assert(end() == _orig_end,
 408          "Should be normal before the humongous object allocation");
 409   assert(top() == bottom(), "should be empty");
 410   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 411 
 412   _humongous_type = StartsHumongous;
 413   _humongous_start_region = this;
 414 
 415   set_end(new_end);
 416   _offsets.set_for_starts_humongous(new_top);
 417 }
 418 
 419 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 420   assert(!isHumongous(), "sanity / pre-condition");
 421   assert(end() == _orig_end,
 422          "Should be normal before the humongous object allocation");
 423   assert(top() == bottom(), "should be empty");
 424   assert(first_hr->startsHumongous(), "pre-condition");
 425 
 426   _humongous_type = ContinuesHumongous;
 427   _humongous_start_region = first_hr;
 428 }
 429 
 430 void HeapRegion::set_notHumongous() {
 431   assert(isHumongous(), "pre-condition");
 432 
 433   if (startsHumongous()) {
 434     assert(top() <= end(), "pre-condition");
 435     set_end(_orig_end);
 436     if (top() > end()) {
 437       // at least one "continues humongous" region after it
 438       set_top(end());
 439     }
 440   } else {
 441     // continues humongous
 442     assert(end() == _orig_end, "sanity");
 443   }
 444 
 445   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 446   _humongous_type = NotHumongous;
 447   _humongous_start_region = NULL;
 448 }
 449 
 450 bool HeapRegion::claimHeapRegion(jint claimValue) {
 451   jint current = _claimed;
 452   if (current != claimValue) {
 453     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 454     if (res == current) {
 455       return true;
 456     }
 457   }
 458   return false;
 459 }
 460 
 461 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 462   HeapWord* low = addr;
 463   HeapWord* high = end();
 464   while (low < high) {
 465     size_t diff = pointer_delta(high, low);
 466     // Must add one below to bias toward the high amount.  Otherwise, if
 467   // "high" were at the desired value, and "low" were one less, we
 468     // would not converge on "high".  This is not symmetric, because
 469     // we set "high" to a block start, which might be the right one,
 470     // which we don't do for "low".
 471     HeapWord* middle = low + (diff+1)/2;
 472     if (middle == high) return high;
 473     HeapWord* mid_bs = block_start_careful(middle);
 474     if (mid_bs < addr) {
 475       low = middle;
 476     } else {
 477       high = mid_bs;
 478     }
 479   }
 480   assert(low == high && low >= addr, "Didn't work.");
 481   return low;
 482 }
 483 
 484 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 485 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 486 #endif // _MSC_VER
 487 
 488 
 489 HeapRegion::HeapRegion(uint hrs_index,
 490                        G1BlockOffsetSharedArray* sharedOffsetArray,
 491                        MemRegion mr) :
 492     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 493     _hrs_index(hrs_index),
 494     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 495     _in_collection_set(false),
 496     _next_in_special_set(NULL), _orig_end(NULL),
 497     _claimed(InitialClaimValue), _evacuation_failed(false),
 498     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 499     _young_type(NotYoung), _next_young_region(NULL),
 500     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
 501 #ifdef ASSERT
 502     _containing_set(NULL),
 503 #endif // ASSERT
 504      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 505     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 506     _predicted_bytes_to_copy(0)
 507 {
 508   _orig_end = mr.end();
 509   // Note that initialize() will set the start of the unmarked area of the
 510   // region.
 511   hr_clear(false /*par*/, false /*clear_space*/);
 512   set_top(bottom());
 513   set_saved_mark();
 514 
 515   _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);
 516 
 517   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 518 }
 519 
 520 CompactibleSpace* HeapRegion::next_compaction_space() const {
 521   // We're not using an iterator given that it will wrap around when
 522   // it reaches the last region and this is not what we want here.
 523   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 524   uint index = hrs_index() + 1;
 525   while (index < g1h->n_regions()) {
 526     HeapRegion* hr = g1h->region_at(index);
 527     if (!hr->isHumongous()) {
 528       return hr;
 529     }
 530     index += 1;
 531   }
 532   return NULL;
 533 }
 534 
 535 void HeapRegion::save_marks() {
 536   set_saved_mark();
 537 }
 538 
 539 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 540   HeapWord* p = mr.start();
 541   HeapWord* e = mr.end();
 542   oop obj;
 543   while (p < e) {
 544     obj = oop(p);
 545     p += obj->oop_iterate(cl);
 546   }
 547   assert(p == e, "bad memregion: doesn't end on obj boundary");
 548 }
 549 
 550 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 551 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
 552   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
 553 }
 554 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
 555 
 556 
 557 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
 558   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
 559 }
 560 
 561 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 562                                                     bool during_conc_mark) {
 563   // We always recreate the prev marking info and we'll explicitly
 564   // mark all objects we find to be self-forwarded on the prev
 565   // bitmap. So all objects need to be below PTAMS.
 566   _prev_top_at_mark_start = top();
 567   _prev_marked_bytes = 0;
 568 
 569   if (during_initial_mark) {
 570     // During initial-mark, we'll also explicitly mark all objects
 571     // we find to be self-forwarded on the next bitmap. So all
 572     // objects need to be below NTAMS.
 573     _next_top_at_mark_start = top();
 574     _next_marked_bytes = 0;
 575   } else if (during_conc_mark) {
 576     // During concurrent mark, all objects in the CSet (including
 577     // the ones we find to be self-forwarded) are implicitly live.
 578     // So all objects need to be above NTAMS.
 579     _next_top_at_mark_start = bottom();
 580     _next_marked_bytes = 0;
 581   }
 582 }
 583 
 584 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 585                                                   bool during_conc_mark,
 586                                                   size_t marked_bytes) {
 587   assert(0 <= marked_bytes && marked_bytes <= used(),
 588          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 589                  marked_bytes, used()));
 590   _prev_marked_bytes = marked_bytes;
 591 }
 592 
 593 HeapWord*
 594 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 595                                                  ObjectClosure* cl) {
 596   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 597   // We used to use "block_start_careful" here.  But we're actually happy
 598   // to update the BOT while we do this...
 599   HeapWord* cur = block_start(mr.start());
 600   mr = mr.intersection(used_region());
 601   if (mr.is_empty()) return NULL;
 602   // Otherwise, find the obj that extends onto mr.start().
 603 
 604   assert(cur <= mr.start()
 605          && (oop(cur)->klass_or_null() == NULL ||
 606              cur + oop(cur)->size() > mr.start()),
 607          "postcondition of block_start");
 608   oop obj;
 609   while (cur < mr.end()) {
 610     obj = oop(cur);
 611     if (obj->klass_or_null() == NULL) {
 612       // Ran into an unparseable point.
 613       return cur;
 614     } else if (!g1h->is_obj_dead(obj)) {
 615       cl->do_object(obj);
 616     }
 617     if (cl->abort()) return cur;
 618     // The check above must occur before the operation below, since an
 619     // abort might invalidate the "size" operation.
 620     cur += obj->size();
 621   }
 622   return NULL;
 623 }
 624 
 625 HeapWord*
 626 HeapRegion::
 627 oops_on_card_seq_iterate_careful(MemRegion mr,
 628                                  FilterOutOfRegionClosure* cl,
 629                                  bool filter_young,
 630                                  jbyte* card_ptr) {
 631   // Currently, we should only have to clean the card if filter_young
 632   // is true and vice versa.
 633   if (filter_young) {
 634     assert(card_ptr != NULL, "pre-condition");
 635   } else {
 636     assert(card_ptr == NULL, "pre-condition");
 637   }
 638   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 639 
 640   // If we're within a stop-world GC, then we might look at a card in a
 641   // GC alloc region that extends onto a GC LAB, which may not be
 642   // parseable.  Stop such at the "saved_mark" of the region.
 643   if (g1h->is_gc_active()) {
 644     mr = mr.intersection(used_region_at_save_marks());
 645   } else {
 646     mr = mr.intersection(used_region());
 647   }
 648   if (mr.is_empty()) return NULL;
 649   // Otherwise, find the obj that extends onto mr.start().
 650 
 651   // The intersection of the incoming mr (for the card) and the
 652   // allocated part of the region is non-empty. This implies that
 653   // we have actually allocated into this region. The code in
 654   // G1CollectedHeap.cpp that allocates a new region sets the
 655   // is_young tag on the region before allocating. Thus we
 656   // safely know if this region is young.
 657   if (is_young() && filter_young) {
 658     return NULL;
 659   }
 660 
 661   assert(!is_young(), "check value of filter_young");
 662 
 663   // We can only clean the card here, after we make the decision that
 664   // the card is not young. And we only clean the card if we have been
 665   // asked to (i.e., card_ptr != NULL).
 666   if (card_ptr != NULL) {
 667     *card_ptr = CardTableModRefBS::clean_card_val();
 668     // We must complete this write before we do any of the reads below.
 669     OrderAccess::storeload();
 670   }
 671 
 672   // Cache the boundaries of the memory region in some const locals
 673   HeapWord* const start = mr.start();
 674   HeapWord* const end = mr.end();
 675 
 676   // We used to use "block_start_careful" here.  But we're actually happy
 677   // to update the BOT while we do this...
 678   HeapWord* cur = block_start(start);
 679   assert(cur <= start, "Postcondition");
 680 
 681   oop obj;
 682 
 683   HeapWord* next = cur;
 684   while (next <= start) {
 685     cur = next;
 686     obj = oop(cur);
 687     if (obj->klass_or_null() == NULL) {
 688       // Ran into an unparseable point.
 689       return cur;
 690     }
 691     // Otherwise...
 692     next = (cur + obj->size());
 693   }
 694 
 695   // If we finish the above loop...We have a parseable object that
 696   // begins on or before the start of the memory region, and ends
 697   // inside or spans the entire region.
 698 
 699   assert(obj == oop(cur), "sanity");
 700   assert(cur <= start &&
 701          obj->klass_or_null() != NULL &&
 702          (cur + obj->size()) > start,
 703          "Loop postcondition");
 704 
 705   if (!g1h->is_obj_dead(obj)) {
 706     obj->oop_iterate(cl, mr);
 707   }
 708 
 709   while (cur < end) {
 710     obj = oop(cur);
 711     if (obj->klass_or_null() == NULL) {
 712       // Ran into an unparseable point.
 713       return cur;
 714     };
 715 
 716     // Otherwise:
 717     next = (cur + obj->size());
 718 
 719     if (!g1h->is_obj_dead(obj)) {
 720       if (next < end || !obj->is_objArray()) {
 721         // This object either does not span the MemRegion
 722         // boundary, or if it does it's not an array.
 723         // Apply closure to whole object.
 724         obj->oop_iterate(cl);
 725       } else {
 726         // This obj is an array that spans the boundary.
 727         // Stop at the boundary.
 728         obj->oop_iterate(cl, mr);
 729       }
 730     }
 731     cur = next;
 732   }
 733   return NULL;
 734 }
 735 
 736 void HeapRegion::print() const { print_on(gclog_or_tty); }
 737 void HeapRegion::print_on(outputStream* st) const {
 738   if (isHumongous()) {
 739     if (startsHumongous())
 740       st->print(" HS");
 741     else
 742       st->print(" HC");
 743   } else {
 744     st->print("   ");
 745   }
 746   if (in_collection_set())
 747     st->print(" CS");
 748   else
 749     st->print("   ");
 750   if (is_young())
 751     st->print(is_survivor() ? " SU" : " Y ");
 752   else
 753     st->print("   ");
 754   if (is_empty())
 755     st->print(" F");
 756   else
 757     st->print("  ");
 758   st->print(" TS %5d", _gc_time_stamp);
 759   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 760             prev_top_at_mark_start(), next_top_at_mark_start());
 761   G1OffsetTableContigSpace::print_on(st);
 762 }
 763 
 764 void HeapRegion::verify() const {
 765   bool dummy = false;
 766   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 767 }
 768 
 769 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 770 // We would need a mechanism to make that code skip dead objects.
 771 
 772 void HeapRegion::verify(VerifyOption vo,
 773                         bool* failures) const {
 774   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 775   *failures = false;
 776   HeapWord* p = bottom();
 777   HeapWord* prev_p = NULL;
 778   VerifyLiveClosure vl_cl(g1, vo);
 779   bool is_humongous = isHumongous();
 780   bool do_bot_verify = !is_young();
 781   size_t object_num = 0;
 782   while (p < top()) {
 783     oop obj = oop(p);
 784     size_t obj_size = obj->size();
 785     object_num += 1;
 786 
 787     if (is_humongous != g1->isHumongous(obj_size)) {
 788       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 789                              SIZE_FORMAT" words) in a %shumongous region",
 790                              p, g1->isHumongous(obj_size) ? "" : "non-",
 791                              obj_size, is_humongous ? "" : "non-");
 792        *failures = true;
 793        return;
 794     }
 795 
 796     // If it returns false, verify_for_object() will output the
 797     // appropriate messasge.
 798     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
 799       *failures = true;
 800       return;
 801     }
 802 
 803     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 804       if (obj->is_oop()) {
 805         Klass* klass = obj->klass();
 806         if (!klass->is_metaspace_object()) {
 807           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 808                                  "not metadata", klass, obj);
 809           *failures = true;
 810           return;
 811         } else if (!klass->is_klass()) {
 812           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 813                                  "not a klass", klass, obj);
 814           *failures = true;
 815           return;
 816         } else {
 817           vl_cl.set_containing_obj(obj);
 818           obj->oop_iterate_no_header(&vl_cl);
 819           if (vl_cl.failures()) {
 820             *failures = true;
 821           }
 822           if (G1MaxVerifyFailures >= 0 &&
 823               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 824             return;
 825           }
 826         }
 827       } else {
 828         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
 829         *failures = true;
 830         return;
 831       }
 832     }
 833     prev_p = p;
 834     p += obj_size;
 835   }
 836 
 837   if (p != top()) {
 838     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 839                            "does not match top "PTR_FORMAT, p, top());
 840     *failures = true;
 841     return;
 842   }
 843 
 844   HeapWord* the_end = end();
 845   assert(p == top(), "it should still hold");
 846   // Do some extra BOT consistency checking for addresses in the
 847   // range [top, end). BOT look-ups in this range should yield
 848   // top. No point in doing that if top == end (there's nothing there).
 849   if (p < the_end) {
 850     // Look up top
 851     HeapWord* addr_1 = p;
 852     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 853     if (b_start_1 != p) {
 854       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 855                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 856                              addr_1, b_start_1, p);
 857       *failures = true;
 858       return;
 859     }
 860 
 861     // Look up top + 1
 862     HeapWord* addr_2 = p + 1;
 863     if (addr_2 < the_end) {
 864       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 865       if (b_start_2 != p) {
 866         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 867                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 868                                addr_2, b_start_2, p);
 869         *failures = true;
 870         return;
 871       }
 872     }
 873 
 874     // Look up an address between top and end
 875     size_t diff = pointer_delta(the_end, p) / 2;
 876     HeapWord* addr_3 = p + diff;
 877     if (addr_3 < the_end) {
 878       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 879       if (b_start_3 != p) {
 880         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 881                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 882                                addr_3, b_start_3, p);
 883         *failures = true;
 884         return;
 885       }
 886     }
 887 
 888     // Loook up end - 1
 889     HeapWord* addr_4 = the_end - 1;
 890     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 891     if (b_start_4 != p) {
 892       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
 893                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 894                              addr_4, b_start_4, p);
 895       *failures = true;
 896       return;
 897     }
 898   }
 899 
 900   if (is_humongous && object_num > 1) {
 901     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 902                            "but has "SIZE_FORMAT", objects",
 903                            bottom(), end(), object_num);
 904     *failures = true;
 905     return;
 906   }
 907 }
 908 
 909 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 910 // away eventually.
 911 
 912 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 913   ContiguousSpace::clear(mangle_space);
 914   _offsets.zero_bottom_entry();
 915   _offsets.initialize_threshold();
 916 }
 917 
 918 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 919   Space::set_bottom(new_bottom);
 920   _offsets.set_bottom(new_bottom);
 921 }
 922 
 923 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 924   Space::set_end(new_end);
 925   _offsets.resize(new_end - bottom());
 926 }
 927 
 928 void G1OffsetTableContigSpace::print() const {
 929   print_short();
 930   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 931                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 932                 bottom(), top(), _offsets.threshold(), end());
 933 }
 934 
 935 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 936   return _offsets.initialize_threshold();
 937 }
 938 
 939 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
 940                                                     HeapWord* end) {
 941   _offsets.alloc_block(start, end);
 942   return _offsets.threshold();
 943 }
 944 
 945 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
 946   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 947   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
 948   if (_gc_time_stamp < g1h->get_gc_time_stamp())
 949     return top();
 950   else
 951     return ContiguousSpace::saved_mark_word();
 952 }
 953 
 954 void G1OffsetTableContigSpace::set_saved_mark() {
 955   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 956   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
 957 
 958   if (_gc_time_stamp < curr_gc_time_stamp) {
 959     // The order of these is important, as another thread might be
 960     // about to start scanning this region. If it does so after
 961     // set_saved_mark and before _gc_time_stamp = ..., then the latter
 962     // will be false, and it will pick up top() as the high water mark
 963     // of region. If it does so after _gc_time_stamp = ..., then it
 964     // will pick up the right saved_mark_word() as the high water mark
 965     // of the region. Either way, the behaviour will be correct.
 966     ContiguousSpace::set_saved_mark();
 967     OrderAccess::storestore();
 968     _gc_time_stamp = curr_gc_time_stamp;
 969     // No need to do another barrier to flush the writes above. If
 970     // this is called in parallel with other threads trying to
 971     // allocate into the region, the caller should call this while
 972     // holding a lock and when the lock is released the writes will be
 973     // flushed.
 974   }
 975 }
 976 
 977 G1OffsetTableContigSpace::
 978 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 979                          MemRegion mr) :
 980   _offsets(sharedOffsetArray, mr),
 981   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
 982   _gc_time_stamp(0)
 983 {
 984   _offsets.set_space(this);
 985   // false ==> we'll do the clearing if there's clearing to be done.
 986   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
 987   _offsets.zero_bottom_entry();
 988   _offsets.initialize_threshold();
 989 }