1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "code/icBuffer.hpp"
  28 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  29 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  36 #include "gc_implementation/g1/g1EvacFailure.hpp"
  37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  38 #include "gc_implementation/g1/g1Log.hpp"
  39 #include "gc_implementation/g1/g1MarkSweep.hpp"
  40 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  41 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  42 #include "gc_implementation/g1/g1YCTypes.hpp"
  43 #include "gc_implementation/g1/heapRegion.inline.hpp"
  44 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  45 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  46 #include "gc_implementation/g1/vm_operations_g1.hpp"
  47 #include "gc_implementation/shared/gcHeapSummary.hpp"
  48 #include "gc_implementation/shared/gcTimer.hpp"
  49 #include "gc_implementation/shared/gcTrace.hpp"
  50 #include "gc_implementation/shared/gcTraceTime.hpp"
  51 #include "gc_implementation/shared/isGCActiveMark.hpp"
  52 #include "memory/gcLocker.inline.hpp"
  53 #include "memory/generationSpec.hpp"
  54 #include "memory/iterator.hpp"
  55 #include "memory/referenceProcessor.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/oop.pcgc.inline.hpp"
  58 #include "runtime/vmThread.hpp"
  59 #include "utilities/ticks.hpp"
  60 
  61 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  62 
  63 // turn it on so that the contents of the young list (scan-only /
  64 // to-be-collected) are printed at "strategic" points before / during
  65 // / after the collection --- this is useful for debugging
  66 #define YOUNG_LIST_VERBOSE 0
  67 // CURRENT STATUS
  68 // This file is under construction.  Search for "FIXME".
  69 
  70 // INVARIANTS/NOTES
  71 //
  72 // All allocation activity covered by the G1CollectedHeap interface is
  73 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  74 // and allocate_new_tlab, which are the "entry" points to the
  75 // allocation code from the rest of the JVM.  (Note that this does not
  76 // apply to TLAB allocation, which is not part of this interface: it
  77 // is done by clients of this interface.)
  78 
  79 // Notes on implementation of parallelism in different tasks.
  80 //
  81 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  82 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  83 // It does use run_task() which sets _n_workers in the task.
  84 // G1ParTask executes g1_process_strong_roots() ->
  85 // SharedHeap::process_strong_roots() which calls eventually to
  86 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  87 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  88 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  89 //
  90 
  91 // Local to this file.
  92 
  93 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  94   SuspendibleThreadSet* _sts;
  95   G1RemSet* _g1rs;
  96   ConcurrentG1Refine* _cg1r;
  97   bool _concurrent;
  98 public:
  99   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
 100                               G1RemSet* g1rs,
 101                               ConcurrentG1Refine* cg1r) :
 102     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 103   {}
 104   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 105     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 106     // This path is executed by the concurrent refine or mutator threads,
 107     // concurrently, and so we do not care if card_ptr contains references
 108     // that point into the collection set.
 109     assert(!oops_into_cset, "should be");
 110 
 111     if (_concurrent && _sts->should_yield()) {
 112       // Caller will actually yield.
 113       return false;
 114     }
 115     // Otherwise, we finished successfully; return true.
 116     return true;
 117   }
 118   void set_concurrent(bool b) { _concurrent = b; }
 119 };
 120 
 121 
 122 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 123   int _calls;
 124   G1CollectedHeap* _g1h;
 125   CardTableModRefBS* _ctbs;
 126   int _histo[256];
 127 public:
 128   ClearLoggedCardTableEntryClosure() :
 129     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
 130   {
 131     for (int i = 0; i < 256; i++) _histo[i] = 0;
 132   }
 133   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 134     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 135       _calls++;
 136       unsigned char* ujb = (unsigned char*)card_ptr;
 137       int ind = (int)(*ujb);
 138       _histo[ind]++;
 139       *card_ptr = -1;
 140     }
 141     return true;
 142   }
 143   int calls() { return _calls; }
 144   void print_histo() {
 145     gclog_or_tty->print_cr("Card table value histogram:");
 146     for (int i = 0; i < 256; i++) {
 147       if (_histo[i] != 0) {
 148         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 149       }
 150     }
 151   }
 152 };
 153 
 154 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 155   int _calls;
 156   G1CollectedHeap* _g1h;
 157   CardTableModRefBS* _ctbs;
 158 public:
 159   RedirtyLoggedCardTableEntryClosure() :
 160     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}
 161 
 162   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 163     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 164       _calls++;
 165       *card_ptr = 0;
 166     }
 167     return true;
 168   }
 169   int calls() { return _calls; }
 170 };
 171 
 172 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 173 public:
 174   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 175     *card_ptr = CardTableModRefBS::dirty_card_val();
 176     return true;
 177   }
 178 };
 179 
 180 YoungList::YoungList(G1CollectedHeap* g1h) :
 181     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 182     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 183   guarantee(check_list_empty(false), "just making sure...");
 184 }
 185 
 186 void YoungList::push_region(HeapRegion *hr) {
 187   assert(!hr->is_young(), "should not already be young");
 188   assert(hr->get_next_young_region() == NULL, "cause it should!");
 189 
 190   hr->set_next_young_region(_head);
 191   _head = hr;
 192 
 193   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 194   ++_length;
 195 }
 196 
 197 void YoungList::add_survivor_region(HeapRegion* hr) {
 198   assert(hr->is_survivor(), "should be flagged as survivor region");
 199   assert(hr->get_next_young_region() == NULL, "cause it should!");
 200 
 201   hr->set_next_young_region(_survivor_head);
 202   if (_survivor_head == NULL) {
 203     _survivor_tail = hr;
 204   }
 205   _survivor_head = hr;
 206   ++_survivor_length;
 207 }
 208 
 209 void YoungList::empty_list(HeapRegion* list) {
 210   while (list != NULL) {
 211     HeapRegion* next = list->get_next_young_region();
 212     list->set_next_young_region(NULL);
 213     list->uninstall_surv_rate_group();
 214     list->set_not_young();
 215     list = next;
 216   }
 217 }
 218 
 219 void YoungList::empty_list() {
 220   assert(check_list_well_formed(), "young list should be well formed");
 221 
 222   empty_list(_head);
 223   _head = NULL;
 224   _length = 0;
 225 
 226   empty_list(_survivor_head);
 227   _survivor_head = NULL;
 228   _survivor_tail = NULL;
 229   _survivor_length = 0;
 230 
 231   _last_sampled_rs_lengths = 0;
 232 
 233   assert(check_list_empty(false), "just making sure...");
 234 }
 235 
 236 bool YoungList::check_list_well_formed() {
 237   bool ret = true;
 238 
 239   uint length = 0;
 240   HeapRegion* curr = _head;
 241   HeapRegion* last = NULL;
 242   while (curr != NULL) {
 243     if (!curr->is_young()) {
 244       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 245                              "incorrectly tagged (y: %d, surv: %d)",
 246                              curr->bottom(), curr->end(),
 247                              curr->is_young(), curr->is_survivor());
 248       ret = false;
 249     }
 250     ++length;
 251     last = curr;
 252     curr = curr->get_next_young_region();
 253   }
 254   ret = ret && (length == _length);
 255 
 256   if (!ret) {
 257     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 258     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 259                            length, _length);
 260   }
 261 
 262   return ret;
 263 }
 264 
 265 bool YoungList::check_list_empty(bool check_sample) {
 266   bool ret = true;
 267 
 268   if (_length != 0) {
 269     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 270                   _length);
 271     ret = false;
 272   }
 273   if (check_sample && _last_sampled_rs_lengths != 0) {
 274     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 275     ret = false;
 276   }
 277   if (_head != NULL) {
 278     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 279     ret = false;
 280   }
 281   if (!ret) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 283   }
 284 
 285   return ret;
 286 }
 287 
 288 void
 289 YoungList::rs_length_sampling_init() {
 290   _sampled_rs_lengths = 0;
 291   _curr               = _head;
 292 }
 293 
 294 bool
 295 YoungList::rs_length_sampling_more() {
 296   return _curr != NULL;
 297 }
 298 
 299 void
 300 YoungList::rs_length_sampling_next() {
 301   assert( _curr != NULL, "invariant" );
 302   size_t rs_length = _curr->rem_set()->occupied();
 303 
 304   _sampled_rs_lengths += rs_length;
 305 
 306   // The current region may not yet have been added to the
 307   // incremental collection set (it gets added when it is
 308   // retired as the current allocation region).
 309   if (_curr->in_collection_set()) {
 310     // Update the collection set policy information for this region
 311     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 312   }
 313 
 314   _curr = _curr->get_next_young_region();
 315   if (_curr == NULL) {
 316     _last_sampled_rs_lengths = _sampled_rs_lengths;
 317     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 318   }
 319 }
 320 
 321 void
 322 YoungList::reset_auxilary_lists() {
 323   guarantee( is_empty(), "young list should be empty" );
 324   assert(check_list_well_formed(), "young list should be well formed");
 325 
 326   // Add survivor regions to SurvRateGroup.
 327   _g1h->g1_policy()->note_start_adding_survivor_regions();
 328   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 329 
 330   int young_index_in_cset = 0;
 331   for (HeapRegion* curr = _survivor_head;
 332        curr != NULL;
 333        curr = curr->get_next_young_region()) {
 334     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 335 
 336     // The region is a non-empty survivor so let's add it to
 337     // the incremental collection set for the next evacuation
 338     // pause.
 339     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 340     young_index_in_cset += 1;
 341   }
 342   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 343   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 344 
 345   _head   = _survivor_head;
 346   _length = _survivor_length;
 347   if (_survivor_head != NULL) {
 348     assert(_survivor_tail != NULL, "cause it shouldn't be");
 349     assert(_survivor_length > 0, "invariant");
 350     _survivor_tail->set_next_young_region(NULL);
 351   }
 352 
 353   // Don't clear the survivor list handles until the start of
 354   // the next evacuation pause - we need it in order to re-tag
 355   // the survivor regions from this evacuation pause as 'young'
 356   // at the start of the next.
 357 
 358   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 359 
 360   assert(check_list_well_formed(), "young list should be well formed");
 361 }
 362 
 363 void YoungList::print() {
 364   HeapRegion* lists[] = {_head,   _survivor_head};
 365   const char* names[] = {"YOUNG", "SURVIVOR"};
 366 
 367   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 368     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 369     HeapRegion *curr = lists[list];
 370     if (curr == NULL)
 371       gclog_or_tty->print_cr("  empty");
 372     while (curr != NULL) {
 373       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 374                              HR_FORMAT_PARAMS(curr),
 375                              curr->prev_top_at_mark_start(),
 376                              curr->next_top_at_mark_start(),
 377                              curr->age_in_surv_rate_group_cond());
 378       curr = curr->get_next_young_region();
 379     }
 380   }
 381 
 382   gclog_or_tty->print_cr("");
 383 }
 384 
 385 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 386 {
 387   // Claim the right to put the region on the dirty cards region list
 388   // by installing a self pointer.
 389   HeapRegion* next = hr->get_next_dirty_cards_region();
 390   if (next == NULL) {
 391     HeapRegion* res = (HeapRegion*)
 392       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 393                           NULL);
 394     if (res == NULL) {
 395       HeapRegion* head;
 396       do {
 397         // Put the region to the dirty cards region list.
 398         head = _dirty_cards_region_list;
 399         next = (HeapRegion*)
 400           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 401         if (next == head) {
 402           assert(hr->get_next_dirty_cards_region() == hr,
 403                  "hr->get_next_dirty_cards_region() != hr");
 404           if (next == NULL) {
 405             // The last region in the list points to itself.
 406             hr->set_next_dirty_cards_region(hr);
 407           } else {
 408             hr->set_next_dirty_cards_region(next);
 409           }
 410         }
 411       } while (next != head);
 412     }
 413   }
 414 }
 415 
 416 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 417 {
 418   HeapRegion* head;
 419   HeapRegion* hr;
 420   do {
 421     head = _dirty_cards_region_list;
 422     if (head == NULL) {
 423       return NULL;
 424     }
 425     HeapRegion* new_head = head->get_next_dirty_cards_region();
 426     if (head == new_head) {
 427       // The last region.
 428       new_head = NULL;
 429     }
 430     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 431                                           head);
 432   } while (hr != head);
 433   assert(hr != NULL, "invariant");
 434   hr->set_next_dirty_cards_region(NULL);
 435   return hr;
 436 }
 437 
 438 void G1CollectedHeap::stop_conc_gc_threads() {
 439   _cg1r->stop();
 440   _cmThread->stop();
 441 }
 442 
 443 #ifdef ASSERT
 444 // A region is added to the collection set as it is retired
 445 // so an address p can point to a region which will be in the
 446 // collection set but has not yet been retired.  This method
 447 // therefore is only accurate during a GC pause after all
 448 // regions have been retired.  It is used for debugging
 449 // to check if an nmethod has references to objects that can
 450 // be move during a partial collection.  Though it can be
 451 // inaccurate, it is sufficient for G1 because the conservative
 452 // implementation of is_scavengable() for G1 will indicate that
 453 // all nmethods must be scanned during a partial collection.
 454 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 455   HeapRegion* hr = heap_region_containing(p);
 456   return hr != NULL && hr->in_collection_set();
 457 }
 458 #endif
 459 
 460 // Returns true if the reference points to an object that
 461 // can move in an incremental collection.
 462 bool G1CollectedHeap::is_scavengable(const void* p) {
 463   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 464   G1CollectorPolicy* g1p = g1h->g1_policy();
 465   HeapRegion* hr = heap_region_containing(p);
 466   if (hr == NULL) {
 467      // null
 468      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 469      return false;
 470   } else {
 471     return !hr->isHumongous();
 472   }
 473 }
 474 
 475 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 476   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 477   CardTableModRefBS* ct_bs = g1_barrier_set();
 478 
 479   // Count the dirty cards at the start.
 480   CountNonCleanMemRegionClosure count1(this);
 481   ct_bs->mod_card_iterate(&count1);
 482   int orig_count = count1.n();
 483 
 484   // First clear the logged cards.
 485   ClearLoggedCardTableEntryClosure clear;
 486   dcqs.set_closure(&clear);
 487   dcqs.apply_closure_to_all_completed_buffers();
 488   dcqs.iterate_closure_all_threads(false);
 489   clear.print_histo();
 490 
 491   // Now ensure that there's no dirty cards.
 492   CountNonCleanMemRegionClosure count2(this);
 493   ct_bs->mod_card_iterate(&count2);
 494   if (count2.n() != 0) {
 495     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 496                            count2.n(), orig_count);
 497   }
 498   guarantee(count2.n() == 0, "Card table should be clean.");
 499 
 500   RedirtyLoggedCardTableEntryClosure redirty;
 501   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 502   dcqs.apply_closure_to_all_completed_buffers();
 503   dcqs.iterate_closure_all_threads(false);
 504   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 505                          clear.calls(), orig_count);
 506   guarantee(redirty.calls() == clear.calls(),
 507             "Or else mechanism is broken.");
 508 
 509   CountNonCleanMemRegionClosure count3(this);
 510   ct_bs->mod_card_iterate(&count3);
 511   if (count3.n() != orig_count) {
 512     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 513                            orig_count, count3.n());
 514     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 515   }
 516 
 517   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 518 }
 519 
 520 // Private class members.
 521 
 522 G1CollectedHeap* G1CollectedHeap::_g1h;
 523 
 524 // Private methods.
 525 
 526 HeapRegion*
 527 G1CollectedHeap::new_region_try_secondary_free_list() {
 528   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 529   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 530     if (!_secondary_free_list.is_empty()) {
 531       if (G1ConcRegionFreeingVerbose) {
 532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 533                                "secondary_free_list has %u entries",
 534                                _secondary_free_list.length());
 535       }
 536       // It looks as if there are free regions available on the
 537       // secondary_free_list. Let's move them to the free_list and try
 538       // again to allocate from it.
 539       append_secondary_free_list();
 540 
 541       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 542              "empty we should have moved at least one entry to the free_list");
 543       HeapRegion* res = _free_list.remove_head();
 544       if (G1ConcRegionFreeingVerbose) {
 545         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 546                                "allocated "HR_FORMAT" from secondary_free_list",
 547                                HR_FORMAT_PARAMS(res));
 548       }
 549       return res;
 550     }
 551 
 552     // Wait here until we get notified either when (a) there are no
 553     // more free regions coming or (b) some regions have been moved on
 554     // the secondary_free_list.
 555     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 556   }
 557 
 558   if (G1ConcRegionFreeingVerbose) {
 559     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 560                            "could not allocate from secondary_free_list");
 561   }
 562   return NULL;
 563 }
 564 
 565 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 566   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 567          "the only time we use this to allocate a humongous region is "
 568          "when we are allocating a single humongous region");
 569 
 570   HeapRegion* res;
 571   if (G1StressConcRegionFreeing) {
 572     if (!_secondary_free_list.is_empty()) {
 573       if (G1ConcRegionFreeingVerbose) {
 574         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 575                                "forced to look at the secondary_free_list");
 576       }
 577       res = new_region_try_secondary_free_list();
 578       if (res != NULL) {
 579         return res;
 580       }
 581     }
 582   }
 583   res = _free_list.remove_head_or_null();
 584   if (res == NULL) {
 585     if (G1ConcRegionFreeingVerbose) {
 586       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 587                              "res == NULL, trying the secondary_free_list");
 588     }
 589     res = new_region_try_secondary_free_list();
 590   }
 591   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 592     // Currently, only attempts to allocate GC alloc regions set
 593     // do_expand to true. So, we should only reach here during a
 594     // safepoint. If this assumption changes we might have to
 595     // reconsider the use of _expand_heap_after_alloc_failure.
 596     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 597 
 598     ergo_verbose1(ErgoHeapSizing,
 599                   "attempt heap expansion",
 600                   ergo_format_reason("region allocation request failed")
 601                   ergo_format_byte("allocation request"),
 602                   word_size * HeapWordSize);
 603     if (expand(word_size * HeapWordSize)) {
 604       // Given that expand() succeeded in expanding the heap, and we
 605       // always expand the heap by an amount aligned to the heap
 606       // region size, the free list should in theory not be empty. So
 607       // it would probably be OK to use remove_head(). But the extra
 608       // check for NULL is unlikely to be a performance issue here (we
 609       // just expanded the heap!) so let's just be conservative and
 610       // use remove_head_or_null().
 611       res = _free_list.remove_head_or_null();
 612     } else {
 613       _expand_heap_after_alloc_failure = false;
 614     }
 615   }
 616   return res;
 617 }
 618 
 619 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 620                                                         size_t word_size) {
 621   assert(isHumongous(word_size), "word_size should be humongous");
 622   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 623 
 624   uint first = G1_NULL_HRS_INDEX;
 625   if (num_regions == 1) {
 626     // Only one region to allocate, no need to go through the slower
 627     // path. The caller will attempt the expansion if this fails, so
 628     // let's not try to expand here too.
 629     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 630     if (hr != NULL) {
 631       first = hr->hrs_index();
 632     } else {
 633       first = G1_NULL_HRS_INDEX;
 634     }
 635   } else {
 636     // We can't allocate humongous regions while cleanupComplete() is
 637     // running, since some of the regions we find to be empty might not
 638     // yet be added to the free list and it is not straightforward to
 639     // know which list they are on so that we can remove them. Note
 640     // that we only need to do this if we need to allocate more than
 641     // one region to satisfy the current humongous allocation
 642     // request. If we are only allocating one region we use the common
 643     // region allocation code (see above).
 644     wait_while_free_regions_coming();
 645     append_secondary_free_list_if_not_empty_with_lock();
 646 
 647     if (free_regions() >= num_regions) {
 648       first = _hrs.find_contiguous(num_regions);
 649       if (first != G1_NULL_HRS_INDEX) {
 650         for (uint i = first; i < first + num_regions; ++i) {
 651           HeapRegion* hr = region_at(i);
 652           assert(hr->is_empty(), "sanity");
 653           assert(is_on_master_free_list(hr), "sanity");
 654           hr->set_pending_removal(true);
 655         }
 656         _free_list.remove_all_pending(num_regions);
 657       }
 658     }
 659   }
 660   return first;
 661 }
 662 
 663 HeapWord*
 664 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 665                                                            uint num_regions,
 666                                                            size_t word_size) {
 667   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 668   assert(isHumongous(word_size), "word_size should be humongous");
 669   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 670 
 671   // Index of last region in the series + 1.
 672   uint last = first + num_regions;
 673 
 674   // We need to initialize the region(s) we just discovered. This is
 675   // a bit tricky given that it can happen concurrently with
 676   // refinement threads refining cards on these regions and
 677   // potentially wanting to refine the BOT as they are scanning
 678   // those cards (this can happen shortly after a cleanup; see CR
 679   // 6991377). So we have to set up the region(s) carefully and in
 680   // a specific order.
 681 
 682   // The word size sum of all the regions we will allocate.
 683   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 684   assert(word_size <= word_size_sum, "sanity");
 685 
 686   // This will be the "starts humongous" region.
 687   HeapRegion* first_hr = region_at(first);
 688   // The header of the new object will be placed at the bottom of
 689   // the first region.
 690   HeapWord* new_obj = first_hr->bottom();
 691   // This will be the new end of the first region in the series that
 692   // should also match the end of the last region in the series.
 693   HeapWord* new_end = new_obj + word_size_sum;
 694   // This will be the new top of the first region that will reflect
 695   // this allocation.
 696   HeapWord* new_top = new_obj + word_size;
 697 
 698   // First, we need to zero the header of the space that we will be
 699   // allocating. When we update top further down, some refinement
 700   // threads might try to scan the region. By zeroing the header we
 701   // ensure that any thread that will try to scan the region will
 702   // come across the zero klass word and bail out.
 703   //
 704   // NOTE: It would not have been correct to have used
 705   // CollectedHeap::fill_with_object() and make the space look like
 706   // an int array. The thread that is doing the allocation will
 707   // later update the object header to a potentially different array
 708   // type and, for a very short period of time, the klass and length
 709   // fields will be inconsistent. This could cause a refinement
 710   // thread to calculate the object size incorrectly.
 711   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 712 
 713   // We will set up the first region as "starts humongous". This
 714   // will also update the BOT covering all the regions to reflect
 715   // that there is a single object that starts at the bottom of the
 716   // first region.
 717   first_hr->set_startsHumongous(new_top, new_end);
 718 
 719   // Then, if there are any, we will set up the "continues
 720   // humongous" regions.
 721   HeapRegion* hr = NULL;
 722   for (uint i = first + 1; i < last; ++i) {
 723     hr = region_at(i);
 724     hr->set_continuesHumongous(first_hr);
 725   }
 726   // If we have "continues humongous" regions (hr != NULL), then the
 727   // end of the last one should match new_end.
 728   assert(hr == NULL || hr->end() == new_end, "sanity");
 729 
 730   // Up to this point no concurrent thread would have been able to
 731   // do any scanning on any region in this series. All the top
 732   // fields still point to bottom, so the intersection between
 733   // [bottom,top] and [card_start,card_end] will be empty. Before we
 734   // update the top fields, we'll do a storestore to make sure that
 735   // no thread sees the update to top before the zeroing of the
 736   // object header and the BOT initialization.
 737   OrderAccess::storestore();
 738 
 739   // Now that the BOT and the object header have been initialized,
 740   // we can update top of the "starts humongous" region.
 741   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 742          "new_top should be in this region");
 743   first_hr->set_top(new_top);
 744   if (_hr_printer.is_active()) {
 745     HeapWord* bottom = first_hr->bottom();
 746     HeapWord* end = first_hr->orig_end();
 747     if ((first + 1) == last) {
 748       // the series has a single humongous region
 749       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 750     } else {
 751       // the series has more than one humongous regions
 752       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 753     }
 754   }
 755 
 756   // Now, we will update the top fields of the "continues humongous"
 757   // regions. The reason we need to do this is that, otherwise,
 758   // these regions would look empty and this will confuse parts of
 759   // G1. For example, the code that looks for a consecutive number
 760   // of empty regions will consider them empty and try to
 761   // re-allocate them. We can extend is_empty() to also include
 762   // !continuesHumongous(), but it is easier to just update the top
 763   // fields here. The way we set top for all regions (i.e., top ==
 764   // end for all regions but the last one, top == new_top for the
 765   // last one) is actually used when we will free up the humongous
 766   // region in free_humongous_region().
 767   hr = NULL;
 768   for (uint i = first + 1; i < last; ++i) {
 769     hr = region_at(i);
 770     if ((i + 1) == last) {
 771       // last continues humongous region
 772       assert(hr->bottom() < new_top && new_top <= hr->end(),
 773              "new_top should fall on this region");
 774       hr->set_top(new_top);
 775       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 776     } else {
 777       // not last one
 778       assert(new_top > hr->end(), "new_top should be above this region");
 779       hr->set_top(hr->end());
 780       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 781     }
 782   }
 783   // If we have continues humongous regions (hr != NULL), then the
 784   // end of the last one should match new_end and its top should
 785   // match new_top.
 786   assert(hr == NULL ||
 787          (hr->end() == new_end && hr->top() == new_top), "sanity");
 788 
 789   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 790   _summary_bytes_used += first_hr->used();
 791   _humongous_set.add(first_hr);
 792 
 793   return new_obj;
 794 }
 795 
 796 // If could fit into free regions w/o expansion, try.
 797 // Otherwise, if can expand, do so.
 798 // Otherwise, if using ex regions might help, try with ex given back.
 799 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 800   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 801 
 802   verify_region_sets_optional();
 803 
 804   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 805   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 806   uint x_num = expansion_regions();
 807   uint fs = _hrs.free_suffix();
 808   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 809   if (first == G1_NULL_HRS_INDEX) {
 810     // The only thing we can do now is attempt expansion.
 811     if (fs + x_num >= num_regions) {
 812       // If the number of regions we're trying to allocate for this
 813       // object is at most the number of regions in the free suffix,
 814       // then the call to humongous_obj_allocate_find_first() above
 815       // should have succeeded and we wouldn't be here.
 816       //
 817       // We should only be trying to expand when the free suffix is
 818       // not sufficient for the object _and_ we have some expansion
 819       // room available.
 820       assert(num_regions > fs, "earlier allocation should have succeeded");
 821 
 822       ergo_verbose1(ErgoHeapSizing,
 823                     "attempt heap expansion",
 824                     ergo_format_reason("humongous allocation request failed")
 825                     ergo_format_byte("allocation request"),
 826                     word_size * HeapWordSize);
 827       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 828         // Even though the heap was expanded, it might not have
 829         // reached the desired size. So, we cannot assume that the
 830         // allocation will succeed.
 831         first = humongous_obj_allocate_find_first(num_regions, word_size);
 832       }
 833     }
 834   }
 835 
 836   HeapWord* result = NULL;
 837   if (first != G1_NULL_HRS_INDEX) {
 838     result =
 839       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 840     assert(result != NULL, "it should always return a valid result");
 841 
 842     // A successful humongous object allocation changes the used space
 843     // information of the old generation so we need to recalculate the
 844     // sizes and update the jstat counters here.
 845     g1mm()->update_sizes();
 846   }
 847 
 848   verify_region_sets_optional();
 849 
 850   return result;
 851 }
 852 
 853 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 854   assert_heap_not_locked_and_not_at_safepoint();
 855   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 856 
 857   unsigned int dummy_gc_count_before;
 858   int dummy_gclocker_retry_count = 0;
 859   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 860 }
 861 
 862 HeapWord*
 863 G1CollectedHeap::mem_allocate(size_t word_size,
 864                               bool*  gc_overhead_limit_was_exceeded) {
 865   assert_heap_not_locked_and_not_at_safepoint();
 866 
 867   // Loop until the allocation is satisfied, or unsatisfied after GC.
 868   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 869     unsigned int gc_count_before;
 870 
 871     HeapWord* result = NULL;
 872     if (!isHumongous(word_size)) {
 873       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 874     } else {
 875       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 876     }
 877     if (result != NULL) {
 878       return result;
 879     }
 880 
 881     // Create the garbage collection operation...
 882     VM_G1CollectForAllocation op(gc_count_before, word_size);
 883     // ...and get the VM thread to execute it.
 884     VMThread::execute(&op);
 885 
 886     if (op.prologue_succeeded() && op.pause_succeeded()) {
 887       // If the operation was successful we'll return the result even
 888       // if it is NULL. If the allocation attempt failed immediately
 889       // after a Full GC, it's unlikely we'll be able to allocate now.
 890       HeapWord* result = op.result();
 891       if (result != NULL && !isHumongous(word_size)) {
 892         // Allocations that take place on VM operations do not do any
 893         // card dirtying and we have to do it here. We only have to do
 894         // this for non-humongous allocations, though.
 895         dirty_young_block(result, word_size);
 896       }
 897       return result;
 898     } else {
 899       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 900         return NULL;
 901       }
 902       assert(op.result() == NULL,
 903              "the result should be NULL if the VM op did not succeed");
 904     }
 905 
 906     // Give a warning if we seem to be looping forever.
 907     if ((QueuedAllocationWarningCount > 0) &&
 908         (try_count % QueuedAllocationWarningCount == 0)) {
 909       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 910     }
 911   }
 912 
 913   ShouldNotReachHere();
 914   return NULL;
 915 }
 916 
 917 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 918                                            unsigned int *gc_count_before_ret,
 919                                            int* gclocker_retry_count_ret) {
 920   // Make sure you read the note in attempt_allocation_humongous().
 921 
 922   assert_heap_not_locked_and_not_at_safepoint();
 923   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 924          "be called for humongous allocation requests");
 925 
 926   // We should only get here after the first-level allocation attempt
 927   // (attempt_allocation()) failed to allocate.
 928 
 929   // We will loop until a) we manage to successfully perform the
 930   // allocation or b) we successfully schedule a collection which
 931   // fails to perform the allocation. b) is the only case when we'll
 932   // return NULL.
 933   HeapWord* result = NULL;
 934   for (int try_count = 1; /* we'll return */; try_count += 1) {
 935     bool should_try_gc;
 936     unsigned int gc_count_before;
 937 
 938     {
 939       MutexLockerEx x(Heap_lock);
 940 
 941       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 942                                                       false /* bot_updates */);
 943       if (result != NULL) {
 944         return result;
 945       }
 946 
 947       // If we reach here, attempt_allocation_locked() above failed to
 948       // allocate a new region. So the mutator alloc region should be NULL.
 949       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 950 
 951       if (GC_locker::is_active_and_needs_gc()) {
 952         if (g1_policy()->can_expand_young_list()) {
 953           // No need for an ergo verbose message here,
 954           // can_expand_young_list() does this when it returns true.
 955           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 956                                                       false /* bot_updates */);
 957           if (result != NULL) {
 958             return result;
 959           }
 960         }
 961         should_try_gc = false;
 962       } else {
 963         // The GCLocker may not be active but the GCLocker initiated
 964         // GC may not yet have been performed (GCLocker::needs_gc()
 965         // returns true). In this case we do not try this GC and
 966         // wait until the GCLocker initiated GC is performed, and
 967         // then retry the allocation.
 968         if (GC_locker::needs_gc()) {
 969           should_try_gc = false;
 970         } else {
 971           // Read the GC count while still holding the Heap_lock.
 972           gc_count_before = total_collections();
 973           should_try_gc = true;
 974         }
 975       }
 976     }
 977 
 978     if (should_try_gc) {
 979       bool succeeded;
 980       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 981           GCCause::_g1_inc_collection_pause);
 982       if (result != NULL) {
 983         assert(succeeded, "only way to get back a non-NULL result");
 984         return result;
 985       }
 986 
 987       if (succeeded) {
 988         // If we get here we successfully scheduled a collection which
 989         // failed to allocate. No point in trying to allocate
 990         // further. We'll just return NULL.
 991         MutexLockerEx x(Heap_lock);
 992         *gc_count_before_ret = total_collections();
 993         return NULL;
 994       }
 995     } else {
 996       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 997         MutexLockerEx x(Heap_lock);
 998         *gc_count_before_ret = total_collections();
 999         return NULL;
1000       }
1001       // The GCLocker is either active or the GCLocker initiated
1002       // GC has not yet been performed. Stall until it is and
1003       // then retry the allocation.
1004       GC_locker::stall_until_clear();
1005       (*gclocker_retry_count_ret) += 1;
1006     }
1007 
1008     // We can reach here if we were unsuccessful in scheduling a
1009     // collection (because another thread beat us to it) or if we were
1010     // stalled due to the GC locker. In either can we should retry the
1011     // allocation attempt in case another thread successfully
1012     // performed a collection and reclaimed enough space. We do the
1013     // first attempt (without holding the Heap_lock) here and the
1014     // follow-on attempt will be at the start of the next loop
1015     // iteration (after taking the Heap_lock).
1016     result = _mutator_alloc_region.attempt_allocation(word_size,
1017                                                       false /* bot_updates */);
1018     if (result != NULL) {
1019       return result;
1020     }
1021 
1022     // Give a warning if we seem to be looping forever.
1023     if ((QueuedAllocationWarningCount > 0) &&
1024         (try_count % QueuedAllocationWarningCount == 0)) {
1025       warning("G1CollectedHeap::attempt_allocation_slow() "
1026               "retries %d times", try_count);
1027     }
1028   }
1029 
1030   ShouldNotReachHere();
1031   return NULL;
1032 }
1033 
1034 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1035                                           unsigned int * gc_count_before_ret,
1036                                           int* gclocker_retry_count_ret) {
1037   // The structure of this method has a lot of similarities to
1038   // attempt_allocation_slow(). The reason these two were not merged
1039   // into a single one is that such a method would require several "if
1040   // allocation is not humongous do this, otherwise do that"
1041   // conditional paths which would obscure its flow. In fact, an early
1042   // version of this code did use a unified method which was harder to
1043   // follow and, as a result, it had subtle bugs that were hard to
1044   // track down. So keeping these two methods separate allows each to
1045   // be more readable. It will be good to keep these two in sync as
1046   // much as possible.
1047 
1048   assert_heap_not_locked_and_not_at_safepoint();
1049   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1050          "should only be called for humongous allocations");
1051 
1052   // Humongous objects can exhaust the heap quickly, so we should check if we
1053   // need to start a marking cycle at each humongous object allocation. We do
1054   // the check before we do the actual allocation. The reason for doing it
1055   // before the allocation is that we avoid having to keep track of the newly
1056   // allocated memory while we do a GC.
1057   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1058                                            word_size)) {
1059     collect(GCCause::_g1_humongous_allocation);
1060   }
1061 
1062   // We will loop until a) we manage to successfully perform the
1063   // allocation or b) we successfully schedule a collection which
1064   // fails to perform the allocation. b) is the only case when we'll
1065   // return NULL.
1066   HeapWord* result = NULL;
1067   for (int try_count = 1; /* we'll return */; try_count += 1) {
1068     bool should_try_gc;
1069     unsigned int gc_count_before;
1070 
1071     {
1072       MutexLockerEx x(Heap_lock);
1073 
1074       // Given that humongous objects are not allocated in young
1075       // regions, we'll first try to do the allocation without doing a
1076       // collection hoping that there's enough space in the heap.
1077       result = humongous_obj_allocate(word_size);
1078       if (result != NULL) {
1079         return result;
1080       }
1081 
1082       if (GC_locker::is_active_and_needs_gc()) {
1083         should_try_gc = false;
1084       } else {
1085          // The GCLocker may not be active but the GCLocker initiated
1086         // GC may not yet have been performed (GCLocker::needs_gc()
1087         // returns true). In this case we do not try this GC and
1088         // wait until the GCLocker initiated GC is performed, and
1089         // then retry the allocation.
1090         if (GC_locker::needs_gc()) {
1091           should_try_gc = false;
1092         } else {
1093           // Read the GC count while still holding the Heap_lock.
1094           gc_count_before = total_collections();
1095           should_try_gc = true;
1096         }
1097       }
1098     }
1099 
1100     if (should_try_gc) {
1101       // If we failed to allocate the humongous object, we should try to
1102       // do a collection pause (if we're allowed) in case it reclaims
1103       // enough space for the allocation to succeed after the pause.
1104 
1105       bool succeeded;
1106       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1107           GCCause::_g1_humongous_allocation);
1108       if (result != NULL) {
1109         assert(succeeded, "only way to get back a non-NULL result");
1110         return result;
1111       }
1112 
1113       if (succeeded) {
1114         // If we get here we successfully scheduled a collection which
1115         // failed to allocate. No point in trying to allocate
1116         // further. We'll just return NULL.
1117         MutexLockerEx x(Heap_lock);
1118         *gc_count_before_ret = total_collections();
1119         return NULL;
1120       }
1121     } else {
1122       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1123         MutexLockerEx x(Heap_lock);
1124         *gc_count_before_ret = total_collections();
1125         return NULL;
1126       }
1127       // The GCLocker is either active or the GCLocker initiated
1128       // GC has not yet been performed. Stall until it is and
1129       // then retry the allocation.
1130       GC_locker::stall_until_clear();
1131       (*gclocker_retry_count_ret) += 1;
1132     }
1133 
1134     // We can reach here if we were unsuccessful in scheduling a
1135     // collection (because another thread beat us to it) or if we were
1136     // stalled due to the GC locker. In either can we should retry the
1137     // allocation attempt in case another thread successfully
1138     // performed a collection and reclaimed enough space.  Give a
1139     // warning if we seem to be looping forever.
1140 
1141     if ((QueuedAllocationWarningCount > 0) &&
1142         (try_count % QueuedAllocationWarningCount == 0)) {
1143       warning("G1CollectedHeap::attempt_allocation_humongous() "
1144               "retries %d times", try_count);
1145     }
1146   }
1147 
1148   ShouldNotReachHere();
1149   return NULL;
1150 }
1151 
1152 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1153                                        bool expect_null_mutator_alloc_region) {
1154   assert_at_safepoint(true /* should_be_vm_thread */);
1155   assert(_mutator_alloc_region.get() == NULL ||
1156                                              !expect_null_mutator_alloc_region,
1157          "the current alloc region was unexpectedly found to be non-NULL");
1158 
1159   if (!isHumongous(word_size)) {
1160     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1161                                                       false /* bot_updates */);
1162   } else {
1163     HeapWord* result = humongous_obj_allocate(word_size);
1164     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1165       g1_policy()->set_initiate_conc_mark_if_possible();
1166     }
1167     return result;
1168   }
1169 
1170   ShouldNotReachHere();
1171 }
1172 
1173 class PostMCRemSetClearClosure: public HeapRegionClosure {
1174   G1CollectedHeap* _g1h;
1175   ModRefBarrierSet* _mr_bs;
1176 public:
1177   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1178     _g1h(g1h), _mr_bs(mr_bs) {}
1179 
1180   bool doHeapRegion(HeapRegion* r) {
1181     HeapRegionRemSet* hrrs = r->rem_set();
1182 
1183     if (r->continuesHumongous()) {
1184       // We'll assert that the strong code root list and RSet is empty
1185       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1186       assert(hrrs->occupied() == 0, "RSet should be empty");
1187       return false;
1188     }
1189 
1190     _g1h->reset_gc_time_stamps(r);
1191     hrrs->clear();
1192     // You might think here that we could clear just the cards
1193     // corresponding to the used region.  But no: if we leave a dirty card
1194     // in a region we might allocate into, then it would prevent that card
1195     // from being enqueued, and cause it to be missed.
1196     // Re: the performance cost: we shouldn't be doing full GC anyway!
1197     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1198 
1199     return false;
1200   }
1201 };
1202 
1203 void G1CollectedHeap::clear_rsets_post_compaction() {
1204   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1205   heap_region_iterate(&rs_clear);
1206 }
1207 
1208 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1209   G1CollectedHeap*   _g1h;
1210   UpdateRSOopClosure _cl;
1211   int                _worker_i;
1212 public:
1213   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1214     _cl(g1->g1_rem_set(), worker_i),
1215     _worker_i(worker_i),
1216     _g1h(g1)
1217   { }
1218 
1219   bool doHeapRegion(HeapRegion* r) {
1220     if (!r->continuesHumongous()) {
1221       _cl.set_from(r);
1222       r->oop_iterate(&_cl);
1223     }
1224     return false;
1225   }
1226 };
1227 
1228 class ParRebuildRSTask: public AbstractGangTask {
1229   G1CollectedHeap* _g1;
1230 public:
1231   ParRebuildRSTask(G1CollectedHeap* g1)
1232     : AbstractGangTask("ParRebuildRSTask"),
1233       _g1(g1)
1234   { }
1235 
1236   void work(uint worker_id) {
1237     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1238     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1239                                           _g1->workers()->active_workers(),
1240                                          HeapRegion::RebuildRSClaimValue);
1241   }
1242 };
1243 
1244 class PostCompactionPrinterClosure: public HeapRegionClosure {
1245 private:
1246   G1HRPrinter* _hr_printer;
1247 public:
1248   bool doHeapRegion(HeapRegion* hr) {
1249     assert(!hr->is_young(), "not expecting to find young regions");
1250     // We only generate output for non-empty regions.
1251     if (!hr->is_empty()) {
1252       if (!hr->isHumongous()) {
1253         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1254       } else if (hr->startsHumongous()) {
1255         if (hr->region_num() == 1) {
1256           // single humongous region
1257           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1258         } else {
1259           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1260         }
1261       } else {
1262         assert(hr->continuesHumongous(), "only way to get here");
1263         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1264       }
1265     }
1266     return false;
1267   }
1268 
1269   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1270     : _hr_printer(hr_printer) { }
1271 };
1272 
1273 void G1CollectedHeap::print_hrs_post_compaction() {
1274   PostCompactionPrinterClosure cl(hr_printer());
1275   heap_region_iterate(&cl);
1276 }
1277 
1278 bool G1CollectedHeap::do_collection(bool explicit_gc,
1279                                     bool clear_all_soft_refs,
1280                                     size_t word_size) {
1281   assert_at_safepoint(true /* should_be_vm_thread */);
1282 
1283   if (GC_locker::check_active_before_gc()) {
1284     return false;
1285   }
1286 
1287   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1288   gc_timer->register_gc_start();
1289 
1290   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1291   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1292 
1293   SvcGCMarker sgcm(SvcGCMarker::FULL);
1294   ResourceMark rm;
1295 
1296   print_heap_before_gc();
1297   trace_heap_before_gc(gc_tracer);
1298 
1299   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1300 
1301   verify_region_sets_optional();
1302 
1303   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1304                            collector_policy()->should_clear_all_soft_refs();
1305 
1306   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1307 
1308   {
1309     IsGCActiveMark x;
1310 
1311     // Timing
1312     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1313     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1314     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1315 
1316     {
1317       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1318       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1319       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1320 
1321       double start = os::elapsedTime();
1322       g1_policy()->record_full_collection_start();
1323 
1324       // Note: When we have a more flexible GC logging framework that
1325       // allows us to add optional attributes to a GC log record we
1326       // could consider timing and reporting how long we wait in the
1327       // following two methods.
1328       wait_while_free_regions_coming();
1329       // If we start the compaction before the CM threads finish
1330       // scanning the root regions we might trip them over as we'll
1331       // be moving objects / updating references. So let's wait until
1332       // they are done. By telling them to abort, they should complete
1333       // early.
1334       _cm->root_regions()->abort();
1335       _cm->root_regions()->wait_until_scan_finished();
1336       append_secondary_free_list_if_not_empty_with_lock();
1337 
1338       gc_prologue(true);
1339       increment_total_collections(true /* full gc */);
1340       increment_old_marking_cycles_started();
1341 
1342       assert(used() == recalculate_used(), "Should be equal");
1343 
1344       verify_before_gc();
1345 
1346       pre_full_gc_dump(gc_timer);
1347 
1348       COMPILER2_PRESENT(DerivedPointerTable::clear());
1349 
1350       // Disable discovery and empty the discovered lists
1351       // for the CM ref processor.
1352       ref_processor_cm()->disable_discovery();
1353       ref_processor_cm()->abandon_partial_discovery();
1354       ref_processor_cm()->verify_no_references_recorded();
1355 
1356       // Abandon current iterations of concurrent marking and concurrent
1357       // refinement, if any are in progress. We have to do this before
1358       // wait_until_scan_finished() below.
1359       concurrent_mark()->abort();
1360 
1361       // Make sure we'll choose a new allocation region afterwards.
1362       release_mutator_alloc_region();
1363       abandon_gc_alloc_regions();
1364       g1_rem_set()->cleanupHRRS();
1365 
1366       // We should call this after we retire any currently active alloc
1367       // regions so that all the ALLOC / RETIRE events are generated
1368       // before the start GC event.
1369       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1370 
1371       // We may have added regions to the current incremental collection
1372       // set between the last GC or pause and now. We need to clear the
1373       // incremental collection set and then start rebuilding it afresh
1374       // after this full GC.
1375       abandon_collection_set(g1_policy()->inc_cset_head());
1376       g1_policy()->clear_incremental_cset();
1377       g1_policy()->stop_incremental_cset_building();
1378 
1379       tear_down_region_sets(false /* free_list_only */);
1380       g1_policy()->set_gcs_are_young(true);
1381 
1382       // See the comments in g1CollectedHeap.hpp and
1383       // G1CollectedHeap::ref_processing_init() about
1384       // how reference processing currently works in G1.
1385 
1386       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1387       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1388 
1389       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1390       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1391 
1392       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1393       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1394 
1395       // Do collection work
1396       {
1397         HandleMark hm;  // Discard invalid handles created during gc
1398         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1399       }
1400 
1401       assert(free_regions() == 0, "we should not have added any free regions");
1402       rebuild_region_sets(false /* free_list_only */);
1403 
1404       // Enqueue any discovered reference objects that have
1405       // not been removed from the discovered lists.
1406       ref_processor_stw()->enqueue_discovered_references();
1407 
1408       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1409 
1410       MemoryService::track_memory_usage();
1411 
1412       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1413       ref_processor_stw()->verify_no_references_recorded();
1414 
1415       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1416       ClassLoaderDataGraph::purge();
1417       MetaspaceAux::verify_metrics();
1418 
1419       // Note: since we've just done a full GC, concurrent
1420       // marking is no longer active. Therefore we need not
1421       // re-enable reference discovery for the CM ref processor.
1422       // That will be done at the start of the next marking cycle.
1423       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1424       ref_processor_cm()->verify_no_references_recorded();
1425 
1426       reset_gc_time_stamp();
1427       // Since everything potentially moved, we will clear all remembered
1428       // sets, and clear all cards.  Later we will rebuild remembered
1429       // sets. We will also reset the GC time stamps of the regions.
1430       clear_rsets_post_compaction();
1431       check_gc_time_stamps();
1432 
1433       // Resize the heap if necessary.
1434       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1435 
1436       if (_hr_printer.is_active()) {
1437         // We should do this after we potentially resize the heap so
1438         // that all the COMMIT / UNCOMMIT events are generated before
1439         // the end GC event.
1440 
1441         print_hrs_post_compaction();
1442         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1443       }
1444 
1445       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1446       if (hot_card_cache->use_cache()) {
1447         hot_card_cache->reset_card_counts();
1448         hot_card_cache->reset_hot_cache();
1449       }
1450 
1451       // Rebuild remembered sets of all regions.
1452       if (G1CollectedHeap::use_parallel_gc_threads()) {
1453         uint n_workers =
1454           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1455                                                   workers()->active_workers(),
1456                                                   Threads::number_of_non_daemon_threads());
1457         assert(UseDynamicNumberOfGCThreads ||
1458                n_workers == workers()->total_workers(),
1459                "If not dynamic should be using all the  workers");
1460         workers()->set_active_workers(n_workers);
1461         // Set parallel threads in the heap (_n_par_threads) only
1462         // before a parallel phase and always reset it to 0 after
1463         // the phase so that the number of parallel threads does
1464         // no get carried forward to a serial phase where there
1465         // may be code that is "possibly_parallel".
1466         set_par_threads(n_workers);
1467 
1468         ParRebuildRSTask rebuild_rs_task(this);
1469         assert(check_heap_region_claim_values(
1470                HeapRegion::InitialClaimValue), "sanity check");
1471         assert(UseDynamicNumberOfGCThreads ||
1472                workers()->active_workers() == workers()->total_workers(),
1473                "Unless dynamic should use total workers");
1474         // Use the most recent number of  active workers
1475         assert(workers()->active_workers() > 0,
1476                "Active workers not properly set");
1477         set_par_threads(workers()->active_workers());
1478         workers()->run_task(&rebuild_rs_task);
1479         set_par_threads(0);
1480         assert(check_heap_region_claim_values(
1481                HeapRegion::RebuildRSClaimValue), "sanity check");
1482         reset_heap_region_claim_values();
1483       } else {
1484         RebuildRSOutOfRegionClosure rebuild_rs(this);
1485         heap_region_iterate(&rebuild_rs);
1486       }
1487 
1488       // Rebuild the strong code root lists for each region
1489       rebuild_strong_code_roots();
1490 
1491       if (true) { // FIXME
1492         MetaspaceGC::compute_new_size();
1493       }
1494 
1495 #ifdef TRACESPINNING
1496       ParallelTaskTerminator::print_termination_counts();
1497 #endif
1498 
1499       // Discard all rset updates
1500       JavaThread::dirty_card_queue_set().abandon_logs();
1501       assert(!G1DeferredRSUpdate
1502              || (G1DeferredRSUpdate &&
1503                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1504 
1505       _young_list->reset_sampled_info();
1506       // At this point there should be no regions in the
1507       // entire heap tagged as young.
1508       assert(check_young_list_empty(true /* check_heap */),
1509              "young list should be empty at this point");
1510 
1511       // Update the number of full collections that have been completed.
1512       increment_old_marking_cycles_completed(false /* concurrent */);
1513 
1514       _hrs.verify_optional();
1515       verify_region_sets_optional();
1516 
1517       verify_after_gc();
1518 
1519       // Start a new incremental collection set for the next pause
1520       assert(g1_policy()->collection_set() == NULL, "must be");
1521       g1_policy()->start_incremental_cset_building();
1522 
1523       // Clear the _cset_fast_test bitmap in anticipation of adding
1524       // regions to the incremental collection set for the next
1525       // evacuation pause.
1526       clear_cset_fast_test();
1527 
1528       init_mutator_alloc_region();
1529 
1530       double end = os::elapsedTime();
1531       g1_policy()->record_full_collection_end();
1532 
1533       if (G1Log::fine()) {
1534         g1_policy()->print_heap_transition();
1535       }
1536 
1537       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1538       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1539       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1540       // before any GC notifications are raised.
1541       g1mm()->update_sizes();
1542 
1543       gc_epilogue(true);
1544     }
1545 
1546     if (G1Log::finer()) {
1547       g1_policy()->print_detailed_heap_transition(true /* full */);
1548     }
1549 
1550     print_heap_after_gc();
1551     trace_heap_after_gc(gc_tracer);
1552 
1553     post_full_gc_dump(gc_timer);
1554 
1555     gc_timer->register_gc_end();
1556     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1557   }
1558 
1559   return true;
1560 }
1561 
1562 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1563   // do_collection() will return whether it succeeded in performing
1564   // the GC. Currently, there is no facility on the
1565   // do_full_collection() API to notify the caller than the collection
1566   // did not succeed (e.g., because it was locked out by the GC
1567   // locker). So, right now, we'll ignore the return value.
1568   bool dummy = do_collection(true,                /* explicit_gc */
1569                              clear_all_soft_refs,
1570                              0                    /* word_size */);
1571 }
1572 
1573 // This code is mostly copied from TenuredGeneration.
1574 void
1575 G1CollectedHeap::
1576 resize_if_necessary_after_full_collection(size_t word_size) {
1577   // Include the current allocation, if any, and bytes that will be
1578   // pre-allocated to support collections, as "used".
1579   const size_t used_after_gc = used();
1580   const size_t capacity_after_gc = capacity();
1581   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1582 
1583   // This is enforced in arguments.cpp.
1584   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1585          "otherwise the code below doesn't make sense");
1586 
1587   // We don't have floating point command-line arguments
1588   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1589   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1590   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1591   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1592 
1593   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1594   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1595 
1596   // We have to be careful here as these two calculations can overflow
1597   // 32-bit size_t's.
1598   double used_after_gc_d = (double) used_after_gc;
1599   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1600   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1601 
1602   // Let's make sure that they are both under the max heap size, which
1603   // by default will make them fit into a size_t.
1604   double desired_capacity_upper_bound = (double) max_heap_size;
1605   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1606                                     desired_capacity_upper_bound);
1607   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1608                                     desired_capacity_upper_bound);
1609 
1610   // We can now safely turn them into size_t's.
1611   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1612   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1613 
1614   // This assert only makes sense here, before we adjust them
1615   // with respect to the min and max heap size.
1616   assert(minimum_desired_capacity <= maximum_desired_capacity,
1617          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1618                  "maximum_desired_capacity = "SIZE_FORMAT,
1619                  minimum_desired_capacity, maximum_desired_capacity));
1620 
1621   // Should not be greater than the heap max size. No need to adjust
1622   // it with respect to the heap min size as it's a lower bound (i.e.,
1623   // we'll try to make the capacity larger than it, not smaller).
1624   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1625   // Should not be less than the heap min size. No need to adjust it
1626   // with respect to the heap max size as it's an upper bound (i.e.,
1627   // we'll try to make the capacity smaller than it, not greater).
1628   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1629 
1630   if (capacity_after_gc < minimum_desired_capacity) {
1631     // Don't expand unless it's significant
1632     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1633     ergo_verbose4(ErgoHeapSizing,
1634                   "attempt heap expansion",
1635                   ergo_format_reason("capacity lower than "
1636                                      "min desired capacity after Full GC")
1637                   ergo_format_byte("capacity")
1638                   ergo_format_byte("occupancy")
1639                   ergo_format_byte_perc("min desired capacity"),
1640                   capacity_after_gc, used_after_gc,
1641                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1642     expand(expand_bytes);
1643 
1644     // No expansion, now see if we want to shrink
1645   } else if (capacity_after_gc > maximum_desired_capacity) {
1646     // Capacity too large, compute shrinking size
1647     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1648     ergo_verbose4(ErgoHeapSizing,
1649                   "attempt heap shrinking",
1650                   ergo_format_reason("capacity higher than "
1651                                      "max desired capacity after Full GC")
1652                   ergo_format_byte("capacity")
1653                   ergo_format_byte("occupancy")
1654                   ergo_format_byte_perc("max desired capacity"),
1655                   capacity_after_gc, used_after_gc,
1656                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1657     shrink(shrink_bytes);
1658   }
1659 }
1660 
1661 
1662 HeapWord*
1663 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1664                                            bool* succeeded) {
1665   assert_at_safepoint(true /* should_be_vm_thread */);
1666 
1667   *succeeded = true;
1668   // Let's attempt the allocation first.
1669   HeapWord* result =
1670     attempt_allocation_at_safepoint(word_size,
1671                                  false /* expect_null_mutator_alloc_region */);
1672   if (result != NULL) {
1673     assert(*succeeded, "sanity");
1674     return result;
1675   }
1676 
1677   // In a G1 heap, we're supposed to keep allocation from failing by
1678   // incremental pauses.  Therefore, at least for now, we'll favor
1679   // expansion over collection.  (This might change in the future if we can
1680   // do something smarter than full collection to satisfy a failed alloc.)
1681   result = expand_and_allocate(word_size);
1682   if (result != NULL) {
1683     assert(*succeeded, "sanity");
1684     return result;
1685   }
1686 
1687   // Expansion didn't work, we'll try to do a Full GC.
1688   bool gc_succeeded = do_collection(false, /* explicit_gc */
1689                                     false, /* clear_all_soft_refs */
1690                                     word_size);
1691   if (!gc_succeeded) {
1692     *succeeded = false;
1693     return NULL;
1694   }
1695 
1696   // Retry the allocation
1697   result = attempt_allocation_at_safepoint(word_size,
1698                                   true /* expect_null_mutator_alloc_region */);
1699   if (result != NULL) {
1700     assert(*succeeded, "sanity");
1701     return result;
1702   }
1703 
1704   // Then, try a Full GC that will collect all soft references.
1705   gc_succeeded = do_collection(false, /* explicit_gc */
1706                                true,  /* clear_all_soft_refs */
1707                                word_size);
1708   if (!gc_succeeded) {
1709     *succeeded = false;
1710     return NULL;
1711   }
1712 
1713   // Retry the allocation once more
1714   result = attempt_allocation_at_safepoint(word_size,
1715                                   true /* expect_null_mutator_alloc_region */);
1716   if (result != NULL) {
1717     assert(*succeeded, "sanity");
1718     return result;
1719   }
1720 
1721   assert(!collector_policy()->should_clear_all_soft_refs(),
1722          "Flag should have been handled and cleared prior to this point");
1723 
1724   // What else?  We might try synchronous finalization later.  If the total
1725   // space available is large enough for the allocation, then a more
1726   // complete compaction phase than we've tried so far might be
1727   // appropriate.
1728   assert(*succeeded, "sanity");
1729   return NULL;
1730 }
1731 
1732 // Attempting to expand the heap sufficiently
1733 // to support an allocation of the given "word_size".  If
1734 // successful, perform the allocation and return the address of the
1735 // allocated block, or else "NULL".
1736 
1737 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1738   assert_at_safepoint(true /* should_be_vm_thread */);
1739 
1740   verify_region_sets_optional();
1741 
1742   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1743   ergo_verbose1(ErgoHeapSizing,
1744                 "attempt heap expansion",
1745                 ergo_format_reason("allocation request failed")
1746                 ergo_format_byte("allocation request"),
1747                 word_size * HeapWordSize);
1748   if (expand(expand_bytes)) {
1749     _hrs.verify_optional();
1750     verify_region_sets_optional();
1751     return attempt_allocation_at_safepoint(word_size,
1752                                  false /* expect_null_mutator_alloc_region */);
1753   }
1754   return NULL;
1755 }
1756 
1757 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1758                                              HeapWord* new_end) {
1759   assert(old_end != new_end, "don't call this otherwise");
1760   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1761 
1762   // Update the committed mem region.
1763   _g1_committed.set_end(new_end);
1764   // Tell the card table about the update.
1765   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1766   // Tell the BOT about the update.
1767   _bot_shared->resize(_g1_committed.word_size());
1768   // Tell the hot card cache about the update
1769   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1770 }
1771 
1772 bool G1CollectedHeap::expand(size_t expand_bytes) {
1773   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1774   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1775                                        HeapRegion::GrainBytes);
1776   ergo_verbose2(ErgoHeapSizing,
1777                 "expand the heap",
1778                 ergo_format_byte("requested expansion amount")
1779                 ergo_format_byte("attempted expansion amount"),
1780                 expand_bytes, aligned_expand_bytes);
1781 
1782   if (_g1_storage.uncommitted_size() == 0) {
1783     ergo_verbose0(ErgoHeapSizing,
1784                       "did not expand the heap",
1785                       ergo_format_reason("heap already fully expanded"));
1786     return false;
1787   }
1788 
1789   // First commit the memory.
1790   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1791   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1792   if (successful) {
1793     // Then propagate this update to the necessary data structures.
1794     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1795     update_committed_space(old_end, new_end);
1796 
1797     FreeRegionList expansion_list("Local Expansion List", NULL);
1798     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1799     assert(mr.start() == old_end, "post-condition");
1800     // mr might be a smaller region than what was requested if
1801     // expand_by() was unable to allocate the HeapRegion instances
1802     assert(mr.end() <= new_end, "post-condition");
1803 
1804     size_t actual_expand_bytes = mr.byte_size();
1805     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1806     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1807            "post-condition");
1808     if (actual_expand_bytes < aligned_expand_bytes) {
1809       // We could not expand _hrs to the desired size. In this case we
1810       // need to shrink the committed space accordingly.
1811       assert(mr.end() < new_end, "invariant");
1812 
1813       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1814       // First uncommit the memory.
1815       _g1_storage.shrink_by(diff_bytes);
1816       // Then propagate this update to the necessary data structures.
1817       update_committed_space(new_end, mr.end());
1818     }
1819     _free_list.add_as_tail(&expansion_list);
1820 
1821     if (_hr_printer.is_active()) {
1822       HeapWord* curr = mr.start();
1823       while (curr < mr.end()) {
1824         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1825         _hr_printer.commit(curr, curr_end);
1826         curr = curr_end;
1827       }
1828       assert(curr == mr.end(), "post-condition");
1829     }
1830     g1_policy()->record_new_heap_size(n_regions());
1831   } else {
1832     ergo_verbose0(ErgoHeapSizing,
1833                   "did not expand the heap",
1834                   ergo_format_reason("heap expansion operation failed"));
1835     // The expansion of the virtual storage space was unsuccessful.
1836     // Let's see if it was because we ran out of swap.
1837     if (G1ExitOnExpansionFailure &&
1838         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1839       // We had head room...
1840       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1841     }
1842   }
1843   return successful;
1844 }
1845 
1846 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1847   size_t aligned_shrink_bytes =
1848     ReservedSpace::page_align_size_down(shrink_bytes);
1849   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1850                                          HeapRegion::GrainBytes);
1851   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1852 
1853   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1854   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1855   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1856 
1857   ergo_verbose3(ErgoHeapSizing,
1858                 "shrink the heap",
1859                 ergo_format_byte("requested shrinking amount")
1860                 ergo_format_byte("aligned shrinking amount")
1861                 ergo_format_byte("attempted shrinking amount"),
1862                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1863   if (num_regions_removed > 0) {
1864     _g1_storage.shrink_by(shrunk_bytes);
1865     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1866 
1867     if (_hr_printer.is_active()) {
1868       HeapWord* curr = old_end;
1869       while (curr > new_end) {
1870         HeapWord* curr_end = curr;
1871         curr -= HeapRegion::GrainWords;
1872         _hr_printer.uncommit(curr, curr_end);
1873       }
1874     }
1875 
1876     _expansion_regions += num_regions_removed;
1877     update_committed_space(old_end, new_end);
1878     HeapRegionRemSet::shrink_heap(n_regions());
1879     g1_policy()->record_new_heap_size(n_regions());
1880   } else {
1881     ergo_verbose0(ErgoHeapSizing,
1882                   "did not shrink the heap",
1883                   ergo_format_reason("heap shrinking operation failed"));
1884   }
1885 }
1886 
1887 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1888   verify_region_sets_optional();
1889 
1890   // We should only reach here at the end of a Full GC which means we
1891   // should not not be holding to any GC alloc regions. The method
1892   // below will make sure of that and do any remaining clean up.
1893   abandon_gc_alloc_regions();
1894 
1895   // Instead of tearing down / rebuilding the free lists here, we
1896   // could instead use the remove_all_pending() method on free_list to
1897   // remove only the ones that we need to remove.
1898   tear_down_region_sets(true /* free_list_only */);
1899   shrink_helper(shrink_bytes);
1900   rebuild_region_sets(true /* free_list_only */);
1901 
1902   _hrs.verify_optional();
1903   verify_region_sets_optional();
1904 }
1905 
1906 // Public methods.
1907 
1908 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1909 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1910 #endif // _MSC_VER
1911 
1912 
1913 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1914   SharedHeap(policy_),
1915   _g1_policy(policy_),
1916   _dirty_card_queue_set(false),
1917   _into_cset_dirty_card_queue_set(false),
1918   _is_alive_closure_cm(this),
1919   _is_alive_closure_stw(this),
1920   _ref_processor_cm(NULL),
1921   _ref_processor_stw(NULL),
1922   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1923   _bot_shared(NULL),
1924   _evac_failure_scan_stack(NULL),
1925   _mark_in_progress(false),
1926   _cg1r(NULL), _summary_bytes_used(0),
1927   _g1mm(NULL),
1928   _refine_cte_cl(NULL),
1929   _full_collection(false),
1930   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1931   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1932   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1933   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1934   _free_regions_coming(false),
1935   _young_list(new YoungList(this)),
1936   _gc_time_stamp(0),
1937   _retained_old_gc_alloc_region(NULL),
1938   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1939   _old_plab_stats(OldPLABSize, PLABWeight),
1940   _expand_heap_after_alloc_failure(true),
1941   _surviving_young_words(NULL),
1942   _old_marking_cycles_started(0),
1943   _old_marking_cycles_completed(0),
1944   _concurrent_cycle_started(false),
1945   _in_cset_fast_test(NULL),
1946   _in_cset_fast_test_base(NULL),
1947   _dirty_cards_region_list(NULL),
1948   _worker_cset_start_region(NULL),
1949   _worker_cset_start_region_time_stamp(NULL),
1950   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1951   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1952   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1953   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1954 
1955   _g1h = this;
1956   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1957     vm_exit_during_initialization("Failed necessary allocation.");
1958   }
1959 
1960   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1961 
1962   int n_queues = MAX2((int)ParallelGCThreads, 1);
1963   _task_queues = new RefToScanQueueSet(n_queues);
1964 
1965   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1966   assert(n_rem_sets > 0, "Invariant.");
1967 
1968   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1969   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1970   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1971 
1972   for (int i = 0; i < n_queues; i++) {
1973     RefToScanQueue* q = new RefToScanQueue();
1974     q->initialize();
1975     _task_queues->register_queue(i, q);
1976     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1977   }
1978   clear_cset_start_regions();
1979 
1980   // Initialize the G1EvacuationFailureALot counters and flags.
1981   NOT_PRODUCT(reset_evacuation_should_fail();)
1982 
1983   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1984 }
1985 
1986 jint G1CollectedHeap::initialize() {
1987   CollectedHeap::pre_initialize();
1988   os::enable_vtime();
1989 
1990   G1Log::init();
1991 
1992   // Necessary to satisfy locking discipline assertions.
1993 
1994   MutexLocker x(Heap_lock);
1995 
1996   // We have to initialize the printer before committing the heap, as
1997   // it will be used then.
1998   _hr_printer.set_active(G1PrintHeapRegions);
1999 
2000   // While there are no constraints in the GC code that HeapWordSize
2001   // be any particular value, there are multiple other areas in the
2002   // system which believe this to be true (e.g. oop->object_size in some
2003   // cases incorrectly returns the size in wordSize units rather than
2004   // HeapWordSize).
2005   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2006 
2007   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2008   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2009   size_t heap_alignment = collector_policy()->heap_alignment();
2010 
2011   // Ensure that the sizes are properly aligned.
2012   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2013   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2014   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2015 
2016   _cg1r = new ConcurrentG1Refine(this);
2017 
2018   // Reserve the maximum.
2019 
2020   // When compressed oops are enabled, the preferred heap base
2021   // is calculated by subtracting the requested size from the
2022   // 32Gb boundary and using the result as the base address for
2023   // heap reservation. If the requested size is not aligned to
2024   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2025   // into the ReservedHeapSpace constructor) then the actual
2026   // base of the reserved heap may end up differing from the
2027   // address that was requested (i.e. the preferred heap base).
2028   // If this happens then we could end up using a non-optimal
2029   // compressed oops mode.
2030 
2031   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2032                                                  heap_alignment);
2033 
2034   // It is important to do this in a way such that concurrent readers can't
2035   // temporarily think something is in the heap.  (I've actually seen this
2036   // happen in asserts: DLD.)
2037   _reserved.set_word_size(0);
2038   _reserved.set_start((HeapWord*)heap_rs.base());
2039   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2040 
2041   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2042 
2043   // Create the gen rem set (and barrier set) for the entire reserved region.
2044   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2045   set_barrier_set(rem_set()->bs());
2046   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2047     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2048     return JNI_ENOMEM;
2049   }
2050 
2051   // Also create a G1 rem set.
2052   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2053 
2054   // Carve out the G1 part of the heap.
2055 
2056   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2057   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2058                            g1_rs.size()/HeapWordSize);
2059 
2060   _g1_storage.initialize(g1_rs, 0);
2061   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2062   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2063                   (HeapWord*) _g1_reserved.end());
2064   assert(_hrs.max_length() == _expansion_regions,
2065          err_msg("max length: %u expansion regions: %u",
2066                  _hrs.max_length(), _expansion_regions));
2067 
2068   // Do later initialization work for concurrent refinement.
2069   _cg1r->init();
2070 
2071   // 6843694 - ensure that the maximum region index can fit
2072   // in the remembered set structures.
2073   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2074   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2075 
2076   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2077   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2078   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2079             "too many cards per region");
2080 
2081   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2082 
2083   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2084                                              heap_word_size(init_byte_size));
2085 
2086   _g1h = this;
2087 
2088   _in_cset_fast_test_length = max_regions();
2089   _in_cset_fast_test_base =
2090                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2091 
2092   // We're biasing _in_cset_fast_test to avoid subtracting the
2093   // beginning of the heap every time we want to index; basically
2094   // it's the same with what we do with the card table.
2095   _in_cset_fast_test = _in_cset_fast_test_base -
2096                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2097 
2098   // Clear the _cset_fast_test bitmap in anticipation of adding
2099   // regions to the incremental collection set for the first
2100   // evacuation pause.
2101   clear_cset_fast_test();
2102 
2103   // Create the ConcurrentMark data structure and thread.
2104   // (Must do this late, so that "max_regions" is defined.)
2105   _cm = new ConcurrentMark(this, heap_rs);
2106   if (_cm == NULL || !_cm->completed_initialization()) {
2107     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2108     return JNI_ENOMEM;
2109   }
2110   _cmThread = _cm->cmThread();
2111 
2112   // Initialize the from_card cache structure of HeapRegionRemSet.
2113   HeapRegionRemSet::init_heap(max_regions());
2114 
2115   // Now expand into the initial heap size.
2116   if (!expand(init_byte_size)) {
2117     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2118     return JNI_ENOMEM;
2119   }
2120 
2121   // Perform any initialization actions delegated to the policy.
2122   g1_policy()->init();
2123 
2124   _refine_cte_cl =
2125     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2126                                     g1_rem_set(),
2127                                     concurrent_g1_refine());
2128   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2129 
2130   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2131                                                SATB_Q_FL_lock,
2132                                                G1SATBProcessCompletedThreshold,
2133                                                Shared_SATB_Q_lock);
2134 
2135   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2136                                                 DirtyCardQ_FL_lock,
2137                                                 concurrent_g1_refine()->yellow_zone(),
2138                                                 concurrent_g1_refine()->red_zone(),
2139                                                 Shared_DirtyCardQ_lock);
2140 
2141   if (G1DeferredRSUpdate) {
2142     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2143                                       DirtyCardQ_FL_lock,
2144                                       -1, // never trigger processing
2145                                       -1, // no limit on length
2146                                       Shared_DirtyCardQ_lock,
2147                                       &JavaThread::dirty_card_queue_set());
2148   }
2149 
2150   // Initialize the card queue set used to hold cards containing
2151   // references into the collection set.
2152   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2153                                              DirtyCardQ_FL_lock,
2154                                              -1, // never trigger processing
2155                                              -1, // no limit on length
2156                                              Shared_DirtyCardQ_lock,
2157                                              &JavaThread::dirty_card_queue_set());
2158 
2159   // In case we're keeping closure specialization stats, initialize those
2160   // counts and that mechanism.
2161   SpecializationStats::clear();
2162 
2163   // Here we allocate the dummy full region that is required by the
2164   // G1AllocRegion class. If we don't pass an address in the reserved
2165   // space here, lots of asserts fire.
2166 
2167   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2168                                              _g1_reserved.start());
2169   // We'll re-use the same region whether the alloc region will
2170   // require BOT updates or not and, if it doesn't, then a non-young
2171   // region will complain that it cannot support allocations without
2172   // BOT updates. So we'll tag the dummy region as young to avoid that.
2173   dummy_region->set_young();
2174   // Make sure it's full.
2175   dummy_region->set_top(dummy_region->end());
2176   G1AllocRegion::setup(this, dummy_region);
2177 
2178   init_mutator_alloc_region();
2179 
2180   // Do create of the monitoring and management support so that
2181   // values in the heap have been properly initialized.
2182   _g1mm = new G1MonitoringSupport(this);
2183 
2184   return JNI_OK;
2185 }
2186 
2187 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2188   return HeapRegion::max_region_size();
2189 }
2190 
2191 void G1CollectedHeap::ref_processing_init() {
2192   // Reference processing in G1 currently works as follows:
2193   //
2194   // * There are two reference processor instances. One is
2195   //   used to record and process discovered references
2196   //   during concurrent marking; the other is used to
2197   //   record and process references during STW pauses
2198   //   (both full and incremental).
2199   // * Both ref processors need to 'span' the entire heap as
2200   //   the regions in the collection set may be dotted around.
2201   //
2202   // * For the concurrent marking ref processor:
2203   //   * Reference discovery is enabled at initial marking.
2204   //   * Reference discovery is disabled and the discovered
2205   //     references processed etc during remarking.
2206   //   * Reference discovery is MT (see below).
2207   //   * Reference discovery requires a barrier (see below).
2208   //   * Reference processing may or may not be MT
2209   //     (depending on the value of ParallelRefProcEnabled
2210   //     and ParallelGCThreads).
2211   //   * A full GC disables reference discovery by the CM
2212   //     ref processor and abandons any entries on it's
2213   //     discovered lists.
2214   //
2215   // * For the STW processor:
2216   //   * Non MT discovery is enabled at the start of a full GC.
2217   //   * Processing and enqueueing during a full GC is non-MT.
2218   //   * During a full GC, references are processed after marking.
2219   //
2220   //   * Discovery (may or may not be MT) is enabled at the start
2221   //     of an incremental evacuation pause.
2222   //   * References are processed near the end of a STW evacuation pause.
2223   //   * For both types of GC:
2224   //     * Discovery is atomic - i.e. not concurrent.
2225   //     * Reference discovery will not need a barrier.
2226 
2227   SharedHeap::ref_processing_init();
2228   MemRegion mr = reserved_region();
2229 
2230   // Concurrent Mark ref processor
2231   _ref_processor_cm =
2232     new ReferenceProcessor(mr,    // span
2233                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2234                                 // mt processing
2235                            (int) ParallelGCThreads,
2236                                 // degree of mt processing
2237                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2238                                 // mt discovery
2239                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2240                                 // degree of mt discovery
2241                            false,
2242                                 // Reference discovery is not atomic
2243                            &_is_alive_closure_cm,
2244                                 // is alive closure
2245                                 // (for efficiency/performance)
2246                            true);
2247                                 // Setting next fields of discovered
2248                                 // lists requires a barrier.
2249 
2250   // STW ref processor
2251   _ref_processor_stw =
2252     new ReferenceProcessor(mr,    // span
2253                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2254                                 // mt processing
2255                            MAX2((int)ParallelGCThreads, 1),
2256                                 // degree of mt processing
2257                            (ParallelGCThreads > 1),
2258                                 // mt discovery
2259                            MAX2((int)ParallelGCThreads, 1),
2260                                 // degree of mt discovery
2261                            true,
2262                                 // Reference discovery is atomic
2263                            &_is_alive_closure_stw,
2264                                 // is alive closure
2265                                 // (for efficiency/performance)
2266                            false);
2267                                 // Setting next fields of discovered
2268                                 // lists does not require a barrier.
2269 }
2270 
2271 size_t G1CollectedHeap::capacity() const {
2272   return _g1_committed.byte_size();
2273 }
2274 
2275 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2276   assert(!hr->continuesHumongous(), "pre-condition");
2277   hr->reset_gc_time_stamp();
2278   if (hr->startsHumongous()) {
2279     uint first_index = hr->hrs_index() + 1;
2280     uint last_index = hr->last_hc_index();
2281     for (uint i = first_index; i < last_index; i += 1) {
2282       HeapRegion* chr = region_at(i);
2283       assert(chr->continuesHumongous(), "sanity");
2284       chr->reset_gc_time_stamp();
2285     }
2286   }
2287 }
2288 
2289 #ifndef PRODUCT
2290 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2291 private:
2292   unsigned _gc_time_stamp;
2293   bool _failures;
2294 
2295 public:
2296   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2297     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2298 
2299   virtual bool doHeapRegion(HeapRegion* hr) {
2300     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2301     if (_gc_time_stamp != region_gc_time_stamp) {
2302       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2303                              "expected %d", HR_FORMAT_PARAMS(hr),
2304                              region_gc_time_stamp, _gc_time_stamp);
2305       _failures = true;
2306     }
2307     return false;
2308   }
2309 
2310   bool failures() { return _failures; }
2311 };
2312 
2313 void G1CollectedHeap::check_gc_time_stamps() {
2314   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2315   heap_region_iterate(&cl);
2316   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2317 }
2318 #endif // PRODUCT
2319 
2320 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2321                                                  DirtyCardQueue* into_cset_dcq,
2322                                                  bool concurrent,
2323                                                  int worker_i) {
2324   // Clean cards in the hot card cache
2325   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2326   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2327 
2328   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2329   int n_completed_buffers = 0;
2330   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2331     n_completed_buffers++;
2332   }
2333   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2334   dcqs.clear_n_completed_buffers();
2335   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2336 }
2337 
2338 
2339 // Computes the sum of the storage used by the various regions.
2340 
2341 size_t G1CollectedHeap::used() const {
2342   assert(Heap_lock->owner() != NULL,
2343          "Should be owned on this thread's behalf.");
2344   size_t result = _summary_bytes_used;
2345   // Read only once in case it is set to NULL concurrently
2346   HeapRegion* hr = _mutator_alloc_region.get();
2347   if (hr != NULL)
2348     result += hr->used();
2349   return result;
2350 }
2351 
2352 size_t G1CollectedHeap::used_unlocked() const {
2353   size_t result = _summary_bytes_used;
2354   return result;
2355 }
2356 
2357 class SumUsedClosure: public HeapRegionClosure {
2358   size_t _used;
2359 public:
2360   SumUsedClosure() : _used(0) {}
2361   bool doHeapRegion(HeapRegion* r) {
2362     if (!r->continuesHumongous()) {
2363       _used += r->used();
2364     }
2365     return false;
2366   }
2367   size_t result() { return _used; }
2368 };
2369 
2370 size_t G1CollectedHeap::recalculate_used() const {
2371   SumUsedClosure blk;
2372   heap_region_iterate(&blk);
2373   return blk.result();
2374 }
2375 
2376 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2377   switch (cause) {
2378     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2379     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2380     case GCCause::_g1_humongous_allocation: return true;
2381     default:                                return false;
2382   }
2383 }
2384 
2385 #ifndef PRODUCT
2386 void G1CollectedHeap::allocate_dummy_regions() {
2387   // Let's fill up most of the region
2388   size_t word_size = HeapRegion::GrainWords - 1024;
2389   // And as a result the region we'll allocate will be humongous.
2390   guarantee(isHumongous(word_size), "sanity");
2391 
2392   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2393     // Let's use the existing mechanism for the allocation
2394     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2395     if (dummy_obj != NULL) {
2396       MemRegion mr(dummy_obj, word_size);
2397       CollectedHeap::fill_with_object(mr);
2398     } else {
2399       // If we can't allocate once, we probably cannot allocate
2400       // again. Let's get out of the loop.
2401       break;
2402     }
2403   }
2404 }
2405 #endif // !PRODUCT
2406 
2407 void G1CollectedHeap::increment_old_marking_cycles_started() {
2408   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2409     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2410     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2411     _old_marking_cycles_started, _old_marking_cycles_completed));
2412 
2413   _old_marking_cycles_started++;
2414 }
2415 
2416 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2417   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2418 
2419   // We assume that if concurrent == true, then the caller is a
2420   // concurrent thread that was joined the Suspendible Thread
2421   // Set. If there's ever a cheap way to check this, we should add an
2422   // assert here.
2423 
2424   // Given that this method is called at the end of a Full GC or of a
2425   // concurrent cycle, and those can be nested (i.e., a Full GC can
2426   // interrupt a concurrent cycle), the number of full collections
2427   // completed should be either one (in the case where there was no
2428   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2429   // behind the number of full collections started.
2430 
2431   // This is the case for the inner caller, i.e. a Full GC.
2432   assert(concurrent ||
2433          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2434          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2435          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2436                  "is inconsistent with _old_marking_cycles_completed = %u",
2437                  _old_marking_cycles_started, _old_marking_cycles_completed));
2438 
2439   // This is the case for the outer caller, i.e. the concurrent cycle.
2440   assert(!concurrent ||
2441          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2442          err_msg("for outer caller (concurrent cycle): "
2443                  "_old_marking_cycles_started = %u "
2444                  "is inconsistent with _old_marking_cycles_completed = %u",
2445                  _old_marking_cycles_started, _old_marking_cycles_completed));
2446 
2447   _old_marking_cycles_completed += 1;
2448 
2449   // We need to clear the "in_progress" flag in the CM thread before
2450   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2451   // is set) so that if a waiter requests another System.gc() it doesn't
2452   // incorrectly see that a marking cycle is still in progress.
2453   if (concurrent) {
2454     _cmThread->clear_in_progress();
2455   }
2456 
2457   // This notify_all() will ensure that a thread that called
2458   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2459   // and it's waiting for a full GC to finish will be woken up. It is
2460   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2461   FullGCCount_lock->notify_all();
2462 }
2463 
2464 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2465   _concurrent_cycle_started = true;
2466   _gc_timer_cm->register_gc_start(start_time);
2467 
2468   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2469   trace_heap_before_gc(_gc_tracer_cm);
2470 }
2471 
2472 void G1CollectedHeap::register_concurrent_cycle_end() {
2473   if (_concurrent_cycle_started) {
2474     if (_cm->has_aborted()) {
2475       _gc_tracer_cm->report_concurrent_mode_failure();
2476     }
2477 
2478     _gc_timer_cm->register_gc_end();
2479     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2480 
2481     _concurrent_cycle_started = false;
2482   }
2483 }
2484 
2485 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2486   if (_concurrent_cycle_started) {
2487     trace_heap_after_gc(_gc_tracer_cm);
2488   }
2489 }
2490 
2491 G1YCType G1CollectedHeap::yc_type() {
2492   bool is_young = g1_policy()->gcs_are_young();
2493   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2494   bool is_during_mark = mark_in_progress();
2495 
2496   if (is_initial_mark) {
2497     return InitialMark;
2498   } else if (is_during_mark) {
2499     return DuringMark;
2500   } else if (is_young) {
2501     return Normal;
2502   } else {
2503     return Mixed;
2504   }
2505 }
2506 
2507 void G1CollectedHeap::collect(GCCause::Cause cause) {
2508   assert_heap_not_locked();
2509 
2510   unsigned int gc_count_before;
2511   unsigned int old_marking_count_before;
2512   bool retry_gc;
2513 
2514   do {
2515     retry_gc = false;
2516 
2517     {
2518       MutexLocker ml(Heap_lock);
2519 
2520       // Read the GC count while holding the Heap_lock
2521       gc_count_before = total_collections();
2522       old_marking_count_before = _old_marking_cycles_started;
2523     }
2524 
2525     if (should_do_concurrent_full_gc(cause)) {
2526       // Schedule an initial-mark evacuation pause that will start a
2527       // concurrent cycle. We're setting word_size to 0 which means that
2528       // we are not requesting a post-GC allocation.
2529       VM_G1IncCollectionPause op(gc_count_before,
2530                                  0,     /* word_size */
2531                                  true,  /* should_initiate_conc_mark */
2532                                  g1_policy()->max_pause_time_ms(),
2533                                  cause);
2534 
2535       VMThread::execute(&op);
2536       if (!op.pause_succeeded()) {
2537         if (old_marking_count_before == _old_marking_cycles_started) {
2538           retry_gc = op.should_retry_gc();
2539         } else {
2540           // A Full GC happened while we were trying to schedule the
2541           // initial-mark GC. No point in starting a new cycle given
2542           // that the whole heap was collected anyway.
2543         }
2544 
2545         if (retry_gc) {
2546           if (GC_locker::is_active_and_needs_gc()) {
2547             GC_locker::stall_until_clear();
2548           }
2549         }
2550       }
2551     } else {
2552       if (cause == GCCause::_gc_locker
2553           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2554 
2555         // Schedule a standard evacuation pause. We're setting word_size
2556         // to 0 which means that we are not requesting a post-GC allocation.
2557         VM_G1IncCollectionPause op(gc_count_before,
2558                                    0,     /* word_size */
2559                                    false, /* should_initiate_conc_mark */
2560                                    g1_policy()->max_pause_time_ms(),
2561                                    cause);
2562         VMThread::execute(&op);
2563       } else {
2564         // Schedule a Full GC.
2565         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2566         VMThread::execute(&op);
2567       }
2568     }
2569   } while (retry_gc);
2570 }
2571 
2572 bool G1CollectedHeap::is_in(const void* p) const {
2573   if (_g1_committed.contains(p)) {
2574     // Given that we know that p is in the committed space,
2575     // heap_region_containing_raw() should successfully
2576     // return the containing region.
2577     HeapRegion* hr = heap_region_containing_raw(p);
2578     return hr->is_in(p);
2579   } else {
2580     return false;
2581   }
2582 }
2583 
2584 // Iteration functions.
2585 
2586 // Iterates an OopClosure over all ref-containing fields of objects
2587 // within a HeapRegion.
2588 
2589 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2590   MemRegion _mr;
2591   ExtendedOopClosure* _cl;
2592 public:
2593   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2594     : _mr(mr), _cl(cl) {}
2595   bool doHeapRegion(HeapRegion* r) {
2596     if (!r->continuesHumongous()) {
2597       r->oop_iterate(_cl);
2598     }
2599     return false;
2600   }
2601 };
2602 
2603 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2604   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2605   heap_region_iterate(&blk);
2606 }
2607 
2608 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2609   IterateOopClosureRegionClosure blk(mr, cl);
2610   heap_region_iterate(&blk);
2611 }
2612 
2613 // Iterates an ObjectClosure over all objects within a HeapRegion.
2614 
2615 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2616   ObjectClosure* _cl;
2617 public:
2618   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2619   bool doHeapRegion(HeapRegion* r) {
2620     if (! r->continuesHumongous()) {
2621       r->object_iterate(_cl);
2622     }
2623     return false;
2624   }
2625 };
2626 
2627 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2628   IterateObjectClosureRegionClosure blk(cl);
2629   heap_region_iterate(&blk);
2630 }
2631 
2632 // Calls a SpaceClosure on a HeapRegion.
2633 
2634 class SpaceClosureRegionClosure: public HeapRegionClosure {
2635   SpaceClosure* _cl;
2636 public:
2637   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2638   bool doHeapRegion(HeapRegion* r) {
2639     _cl->do_space(r);
2640     return false;
2641   }
2642 };
2643 
2644 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2645   SpaceClosureRegionClosure blk(cl);
2646   heap_region_iterate(&blk);
2647 }
2648 
2649 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2650   _hrs.iterate(cl);
2651 }
2652 
2653 void
2654 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2655                                                  uint worker_id,
2656                                                  uint no_of_par_workers,
2657                                                  jint claim_value) {
2658   const uint regions = n_regions();
2659   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2660                              no_of_par_workers :
2661                              1);
2662   assert(UseDynamicNumberOfGCThreads ||
2663          no_of_par_workers == workers()->total_workers(),
2664          "Non dynamic should use fixed number of workers");
2665   // try to spread out the starting points of the workers
2666   const HeapRegion* start_hr =
2667                         start_region_for_worker(worker_id, no_of_par_workers);
2668   const uint start_index = start_hr->hrs_index();
2669 
2670   // each worker will actually look at all regions
2671   for (uint count = 0; count < regions; ++count) {
2672     const uint index = (start_index + count) % regions;
2673     assert(0 <= index && index < regions, "sanity");
2674     HeapRegion* r = region_at(index);
2675     // we'll ignore "continues humongous" regions (we'll process them
2676     // when we come across their corresponding "start humongous"
2677     // region) and regions already claimed
2678     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2679       continue;
2680     }
2681     // OK, try to claim it
2682     if (r->claimHeapRegion(claim_value)) {
2683       // success!
2684       assert(!r->continuesHumongous(), "sanity");
2685       if (r->startsHumongous()) {
2686         // If the region is "starts humongous" we'll iterate over its
2687         // "continues humongous" first; in fact we'll do them
2688         // first. The order is important. In on case, calling the
2689         // closure on the "starts humongous" region might de-allocate
2690         // and clear all its "continues humongous" regions and, as a
2691         // result, we might end up processing them twice. So, we'll do
2692         // them first (notice: most closures will ignore them anyway) and
2693         // then we'll do the "starts humongous" region.
2694         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2695           HeapRegion* chr = region_at(ch_index);
2696 
2697           // if the region has already been claimed or it's not
2698           // "continues humongous" we're done
2699           if (chr->claim_value() == claim_value ||
2700               !chr->continuesHumongous()) {
2701             break;
2702           }
2703 
2704           // No one should have claimed it directly. We can given
2705           // that we claimed its "starts humongous" region.
2706           assert(chr->claim_value() != claim_value, "sanity");
2707           assert(chr->humongous_start_region() == r, "sanity");
2708 
2709           if (chr->claimHeapRegion(claim_value)) {
2710             // we should always be able to claim it; no one else should
2711             // be trying to claim this region
2712 
2713             bool res2 = cl->doHeapRegion(chr);
2714             assert(!res2, "Should not abort");
2715 
2716             // Right now, this holds (i.e., no closure that actually
2717             // does something with "continues humongous" regions
2718             // clears them). We might have to weaken it in the future,
2719             // but let's leave these two asserts here for extra safety.
2720             assert(chr->continuesHumongous(), "should still be the case");
2721             assert(chr->humongous_start_region() == r, "sanity");
2722           } else {
2723             guarantee(false, "we should not reach here");
2724           }
2725         }
2726       }
2727 
2728       assert(!r->continuesHumongous(), "sanity");
2729       bool res = cl->doHeapRegion(r);
2730       assert(!res, "Should not abort");
2731     }
2732   }
2733 }
2734 
2735 class ResetClaimValuesClosure: public HeapRegionClosure {
2736 public:
2737   bool doHeapRegion(HeapRegion* r) {
2738     r->set_claim_value(HeapRegion::InitialClaimValue);
2739     return false;
2740   }
2741 };
2742 
2743 void G1CollectedHeap::reset_heap_region_claim_values() {
2744   ResetClaimValuesClosure blk;
2745   heap_region_iterate(&blk);
2746 }
2747 
2748 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2749   ResetClaimValuesClosure blk;
2750   collection_set_iterate(&blk);
2751 }
2752 
2753 #ifdef ASSERT
2754 // This checks whether all regions in the heap have the correct claim
2755 // value. I also piggy-backed on this a check to ensure that the
2756 // humongous_start_region() information on "continues humongous"
2757 // regions is correct.
2758 
2759 class CheckClaimValuesClosure : public HeapRegionClosure {
2760 private:
2761   jint _claim_value;
2762   uint _failures;
2763   HeapRegion* _sh_region;
2764 
2765 public:
2766   CheckClaimValuesClosure(jint claim_value) :
2767     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2768   bool doHeapRegion(HeapRegion* r) {
2769     if (r->claim_value() != _claim_value) {
2770       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2771                              "claim value = %d, should be %d",
2772                              HR_FORMAT_PARAMS(r),
2773                              r->claim_value(), _claim_value);
2774       ++_failures;
2775     }
2776     if (!r->isHumongous()) {
2777       _sh_region = NULL;
2778     } else if (r->startsHumongous()) {
2779       _sh_region = r;
2780     } else if (r->continuesHumongous()) {
2781       if (r->humongous_start_region() != _sh_region) {
2782         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2783                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2784                                HR_FORMAT_PARAMS(r),
2785                                r->humongous_start_region(),
2786                                _sh_region);
2787         ++_failures;
2788       }
2789     }
2790     return false;
2791   }
2792   uint failures() { return _failures; }
2793 };
2794 
2795 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2796   CheckClaimValuesClosure cl(claim_value);
2797   heap_region_iterate(&cl);
2798   return cl.failures() == 0;
2799 }
2800 
2801 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2802 private:
2803   jint _claim_value;
2804   uint _failures;
2805 
2806 public:
2807   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2808     _claim_value(claim_value), _failures(0) { }
2809 
2810   uint failures() { return _failures; }
2811 
2812   bool doHeapRegion(HeapRegion* hr) {
2813     assert(hr->in_collection_set(), "how?");
2814     assert(!hr->isHumongous(), "H-region in CSet");
2815     if (hr->claim_value() != _claim_value) {
2816       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2817                              "claim value = %d, should be %d",
2818                              HR_FORMAT_PARAMS(hr),
2819                              hr->claim_value(), _claim_value);
2820       _failures += 1;
2821     }
2822     return false;
2823   }
2824 };
2825 
2826 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2827   CheckClaimValuesInCSetHRClosure cl(claim_value);
2828   collection_set_iterate(&cl);
2829   return cl.failures() == 0;
2830 }
2831 #endif // ASSERT
2832 
2833 // Clear the cached CSet starting regions and (more importantly)
2834 // the time stamps. Called when we reset the GC time stamp.
2835 void G1CollectedHeap::clear_cset_start_regions() {
2836   assert(_worker_cset_start_region != NULL, "sanity");
2837   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2838 
2839   int n_queues = MAX2((int)ParallelGCThreads, 1);
2840   for (int i = 0; i < n_queues; i++) {
2841     _worker_cset_start_region[i] = NULL;
2842     _worker_cset_start_region_time_stamp[i] = 0;
2843   }
2844 }
2845 
2846 // Given the id of a worker, obtain or calculate a suitable
2847 // starting region for iterating over the current collection set.
2848 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2849   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2850 
2851   HeapRegion* result = NULL;
2852   unsigned gc_time_stamp = get_gc_time_stamp();
2853 
2854   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2855     // Cached starting region for current worker was set
2856     // during the current pause - so it's valid.
2857     // Note: the cached starting heap region may be NULL
2858     // (when the collection set is empty).
2859     result = _worker_cset_start_region[worker_i];
2860     assert(result == NULL || result->in_collection_set(), "sanity");
2861     return result;
2862   }
2863 
2864   // The cached entry was not valid so let's calculate
2865   // a suitable starting heap region for this worker.
2866 
2867   // We want the parallel threads to start their collection
2868   // set iteration at different collection set regions to
2869   // avoid contention.
2870   // If we have:
2871   //          n collection set regions
2872   //          p threads
2873   // Then thread t will start at region floor ((t * n) / p)
2874 
2875   result = g1_policy()->collection_set();
2876   if (G1CollectedHeap::use_parallel_gc_threads()) {
2877     uint cs_size = g1_policy()->cset_region_length();
2878     uint active_workers = workers()->active_workers();
2879     assert(UseDynamicNumberOfGCThreads ||
2880              active_workers == workers()->total_workers(),
2881              "Unless dynamic should use total workers");
2882 
2883     uint end_ind   = (cs_size * worker_i) / active_workers;
2884     uint start_ind = 0;
2885 
2886     if (worker_i > 0 &&
2887         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2888       // Previous workers starting region is valid
2889       // so let's iterate from there
2890       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2891       result = _worker_cset_start_region[worker_i - 1];
2892     }
2893 
2894     for (uint i = start_ind; i < end_ind; i++) {
2895       result = result->next_in_collection_set();
2896     }
2897   }
2898 
2899   // Note: the calculated starting heap region may be NULL
2900   // (when the collection set is empty).
2901   assert(result == NULL || result->in_collection_set(), "sanity");
2902   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2903          "should be updated only once per pause");
2904   _worker_cset_start_region[worker_i] = result;
2905   OrderAccess::storestore();
2906   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2907   return result;
2908 }
2909 
2910 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2911                                                      uint no_of_par_workers) {
2912   uint worker_num =
2913            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2914   assert(UseDynamicNumberOfGCThreads ||
2915          no_of_par_workers == workers()->total_workers(),
2916          "Non dynamic should use fixed number of workers");
2917   const uint start_index = n_regions() * worker_i / worker_num;
2918   return region_at(start_index);
2919 }
2920 
2921 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2922   HeapRegion* r = g1_policy()->collection_set();
2923   while (r != NULL) {
2924     HeapRegion* next = r->next_in_collection_set();
2925     if (cl->doHeapRegion(r)) {
2926       cl->incomplete();
2927       return;
2928     }
2929     r = next;
2930   }
2931 }
2932 
2933 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2934                                                   HeapRegionClosure *cl) {
2935   if (r == NULL) {
2936     // The CSet is empty so there's nothing to do.
2937     return;
2938   }
2939 
2940   assert(r->in_collection_set(),
2941          "Start region must be a member of the collection set.");
2942   HeapRegion* cur = r;
2943   while (cur != NULL) {
2944     HeapRegion* next = cur->next_in_collection_set();
2945     if (cl->doHeapRegion(cur) && false) {
2946       cl->incomplete();
2947       return;
2948     }
2949     cur = next;
2950   }
2951   cur = g1_policy()->collection_set();
2952   while (cur != r) {
2953     HeapRegion* next = cur->next_in_collection_set();
2954     if (cl->doHeapRegion(cur) && false) {
2955       cl->incomplete();
2956       return;
2957     }
2958     cur = next;
2959   }
2960 }
2961 
2962 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2963   return n_regions() > 0 ? region_at(0) : NULL;
2964 }
2965 
2966 
2967 Space* G1CollectedHeap::space_containing(const void* addr) const {
2968   Space* res = heap_region_containing(addr);
2969   return res;
2970 }
2971 
2972 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2973   Space* sp = space_containing(addr);
2974   if (sp != NULL) {
2975     return sp->block_start(addr);
2976   }
2977   return NULL;
2978 }
2979 
2980 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2981   Space* sp = space_containing(addr);
2982   assert(sp != NULL, "block_size of address outside of heap");
2983   return sp->block_size(addr);
2984 }
2985 
2986 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2987   Space* sp = space_containing(addr);
2988   return sp->block_is_obj(addr);
2989 }
2990 
2991 bool G1CollectedHeap::supports_tlab_allocation() const {
2992   return true;
2993 }
2994 
2995 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2996   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2997 }
2998 
2999 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
3000   return young_list()->eden_used_bytes();
3001 }
3002 
3003 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
3004 // must be smaller than the humongous object limit.
3005 size_t G1CollectedHeap::max_tlab_size() const {
3006   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3007 }
3008 
3009 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3010   // Return the remaining space in the cur alloc region, but not less than
3011   // the min TLAB size.
3012 
3013   // Also, this value can be at most the humongous object threshold,
3014   // since we can't allow tlabs to grow big enough to accommodate
3015   // humongous objects.
3016 
3017   HeapRegion* hr = _mutator_alloc_region.get();
3018   size_t max_tlab = max_tlab_size() * wordSize;
3019   if (hr == NULL) {
3020     return max_tlab;
3021   } else {
3022     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3023   }
3024 }
3025 
3026 size_t G1CollectedHeap::max_capacity() const {
3027   return _g1_reserved.byte_size();
3028 }
3029 
3030 jlong G1CollectedHeap::millis_since_last_gc() {
3031   // assert(false, "NYI");
3032   return 0;
3033 }
3034 
3035 void G1CollectedHeap::prepare_for_verify() {
3036   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3037     ensure_parsability(false);
3038   }
3039   g1_rem_set()->prepare_for_verify();
3040 }
3041 
3042 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3043                                               VerifyOption vo) {
3044   switch (vo) {
3045   case VerifyOption_G1UsePrevMarking:
3046     return hr->obj_allocated_since_prev_marking(obj);
3047   case VerifyOption_G1UseNextMarking:
3048     return hr->obj_allocated_since_next_marking(obj);
3049   case VerifyOption_G1UseMarkWord:
3050     return false;
3051   default:
3052     ShouldNotReachHere();
3053   }
3054   return false; // keep some compilers happy
3055 }
3056 
3057 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3058   switch (vo) {
3059   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3060   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3061   case VerifyOption_G1UseMarkWord:    return NULL;
3062   default:                            ShouldNotReachHere();
3063   }
3064   return NULL; // keep some compilers happy
3065 }
3066 
3067 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3068   switch (vo) {
3069   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3070   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3071   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3072   default:                            ShouldNotReachHere();
3073   }
3074   return false; // keep some compilers happy
3075 }
3076 
3077 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3078   switch (vo) {
3079   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3080   case VerifyOption_G1UseNextMarking: return "NTAMS";
3081   case VerifyOption_G1UseMarkWord:    return "NONE";
3082   default:                            ShouldNotReachHere();
3083   }
3084   return NULL; // keep some compilers happy
3085 }
3086 
3087 class VerifyRootsClosure: public OopClosure {
3088 private:
3089   G1CollectedHeap* _g1h;
3090   VerifyOption     _vo;
3091   bool             _failures;
3092 public:
3093   // _vo == UsePrevMarking -> use "prev" marking information,
3094   // _vo == UseNextMarking -> use "next" marking information,
3095   // _vo == UseMarkWord    -> use mark word from object header.
3096   VerifyRootsClosure(VerifyOption vo) :
3097     _g1h(G1CollectedHeap::heap()),
3098     _vo(vo),
3099     _failures(false) { }
3100 
3101   bool failures() { return _failures; }
3102 
3103   template <class T> void do_oop_nv(T* p) {
3104     T heap_oop = oopDesc::load_heap_oop(p);
3105     if (!oopDesc::is_null(heap_oop)) {
3106       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3107       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3108         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3109                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3110         if (_vo == VerifyOption_G1UseMarkWord) {
3111           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3112         }
3113         obj->print_on(gclog_or_tty);
3114         _failures = true;
3115       }
3116     }
3117   }
3118 
3119   void do_oop(oop* p)       { do_oop_nv(p); }
3120   void do_oop(narrowOop* p) { do_oop_nv(p); }
3121 };
3122 
3123 class G1VerifyCodeRootOopClosure: public OopClosure {
3124   G1CollectedHeap* _g1h;
3125   OopClosure* _root_cl;
3126   nmethod* _nm;
3127   VerifyOption _vo;
3128   bool _failures;
3129 
3130   template <class T> void do_oop_work(T* p) {
3131     // First verify that this root is live
3132     _root_cl->do_oop(p);
3133 
3134     if (!G1VerifyHeapRegionCodeRoots) {
3135       // We're not verifying the code roots attached to heap region.
3136       return;
3137     }
3138 
3139     // Don't check the code roots during marking verification in a full GC
3140     if (_vo == VerifyOption_G1UseMarkWord) {
3141       return;
3142     }
3143 
3144     // Now verify that the current nmethod (which contains p) is
3145     // in the code root list of the heap region containing the
3146     // object referenced by p.
3147 
3148     T heap_oop = oopDesc::load_heap_oop(p);
3149     if (!oopDesc::is_null(heap_oop)) {
3150       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3151 
3152       // Now fetch the region containing the object
3153       HeapRegion* hr = _g1h->heap_region_containing(obj);
3154       HeapRegionRemSet* hrrs = hr->rem_set();
3155       // Verify that the strong code root list for this region
3156       // contains the nmethod
3157       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3158         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3159                               "from nmethod "PTR_FORMAT" not in strong "
3160                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3161                               p, _nm, hr->bottom(), hr->end());
3162         _failures = true;
3163       }
3164     }
3165   }
3166 
3167 public:
3168   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3169     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3170 
3171   void do_oop(oop* p) { do_oop_work(p); }
3172   void do_oop(narrowOop* p) { do_oop_work(p); }
3173 
3174   void set_nmethod(nmethod* nm) { _nm = nm; }
3175   bool failures() { return _failures; }
3176 };
3177 
3178 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3179   G1VerifyCodeRootOopClosure* _oop_cl;
3180 
3181 public:
3182   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3183     _oop_cl(oop_cl) {}
3184 
3185   void do_code_blob(CodeBlob* cb) {
3186     nmethod* nm = cb->as_nmethod_or_null();
3187     if (nm != NULL) {
3188       _oop_cl->set_nmethod(nm);
3189       nm->oops_do(_oop_cl);
3190     }
3191   }
3192 };
3193 
3194 class YoungRefCounterClosure : public OopClosure {
3195   G1CollectedHeap* _g1h;
3196   int              _count;
3197  public:
3198   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3199   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3200   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3201 
3202   int count() { return _count; }
3203   void reset_count() { _count = 0; };
3204 };
3205 
3206 class VerifyKlassClosure: public KlassClosure {
3207   YoungRefCounterClosure _young_ref_counter_closure;
3208   OopClosure *_oop_closure;
3209  public:
3210   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3211   void do_klass(Klass* k) {
3212     k->oops_do(_oop_closure);
3213 
3214     _young_ref_counter_closure.reset_count();
3215     k->oops_do(&_young_ref_counter_closure);
3216     if (_young_ref_counter_closure.count() > 0) {
3217       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3218     }
3219   }
3220 };
3221 
3222 class VerifyLivenessOopClosure: public OopClosure {
3223   G1CollectedHeap* _g1h;
3224   VerifyOption _vo;
3225 public:
3226   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3227     _g1h(g1h), _vo(vo)
3228   { }
3229   void do_oop(narrowOop *p) { do_oop_work(p); }
3230   void do_oop(      oop *p) { do_oop_work(p); }
3231 
3232   template <class T> void do_oop_work(T *p) {
3233     oop obj = oopDesc::load_decode_heap_oop(p);
3234     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3235               "Dead object referenced by a not dead object");
3236   }
3237 };
3238 
3239 class VerifyObjsInRegionClosure: public ObjectClosure {
3240 private:
3241   G1CollectedHeap* _g1h;
3242   size_t _live_bytes;
3243   HeapRegion *_hr;
3244   VerifyOption _vo;
3245 public:
3246   // _vo == UsePrevMarking -> use "prev" marking information,
3247   // _vo == UseNextMarking -> use "next" marking information,
3248   // _vo == UseMarkWord    -> use mark word from object header.
3249   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3250     : _live_bytes(0), _hr(hr), _vo(vo) {
3251     _g1h = G1CollectedHeap::heap();
3252   }
3253   void do_object(oop o) {
3254     VerifyLivenessOopClosure isLive(_g1h, _vo);
3255     assert(o != NULL, "Huh?");
3256     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3257       // If the object is alive according to the mark word,
3258       // then verify that the marking information agrees.
3259       // Note we can't verify the contra-positive of the
3260       // above: if the object is dead (according to the mark
3261       // word), it may not be marked, or may have been marked
3262       // but has since became dead, or may have been allocated
3263       // since the last marking.
3264       if (_vo == VerifyOption_G1UseMarkWord) {
3265         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3266       }
3267 
3268       o->oop_iterate_no_header(&isLive);
3269       if (!_hr->obj_allocated_since_prev_marking(o)) {
3270         size_t obj_size = o->size();    // Make sure we don't overflow
3271         _live_bytes += (obj_size * HeapWordSize);
3272       }
3273     }
3274   }
3275   size_t live_bytes() { return _live_bytes; }
3276 };
3277 
3278 class PrintObjsInRegionClosure : public ObjectClosure {
3279   HeapRegion *_hr;
3280   G1CollectedHeap *_g1;
3281 public:
3282   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3283     _g1 = G1CollectedHeap::heap();
3284   };
3285 
3286   void do_object(oop o) {
3287     if (o != NULL) {
3288       HeapWord *start = (HeapWord *) o;
3289       size_t word_sz = o->size();
3290       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3291                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3292                           (void*) o, word_sz,
3293                           _g1->isMarkedPrev(o),
3294                           _g1->isMarkedNext(o),
3295                           _hr->obj_allocated_since_prev_marking(o));
3296       HeapWord *end = start + word_sz;
3297       HeapWord *cur;
3298       int *val;
3299       for (cur = start; cur < end; cur++) {
3300         val = (int *) cur;
3301         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3302       }
3303     }
3304   }
3305 };
3306 
3307 class VerifyRegionClosure: public HeapRegionClosure {
3308 private:
3309   bool             _par;
3310   VerifyOption     _vo;
3311   bool             _failures;
3312 public:
3313   // _vo == UsePrevMarking -> use "prev" marking information,
3314   // _vo == UseNextMarking -> use "next" marking information,
3315   // _vo == UseMarkWord    -> use mark word from object header.
3316   VerifyRegionClosure(bool par, VerifyOption vo)
3317     : _par(par),
3318       _vo(vo),
3319       _failures(false) {}
3320 
3321   bool failures() {
3322     return _failures;
3323   }
3324 
3325   bool doHeapRegion(HeapRegion* r) {
3326     if (!r->continuesHumongous()) {
3327       bool failures = false;
3328       r->verify(_vo, &failures);
3329       if (failures) {
3330         _failures = true;
3331       } else {
3332         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3333         r->object_iterate(&not_dead_yet_cl);
3334         if (_vo != VerifyOption_G1UseNextMarking) {
3335           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3336             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3337                                    "max_live_bytes "SIZE_FORMAT" "
3338                                    "< calculated "SIZE_FORMAT,
3339                                    r->bottom(), r->end(),
3340                                    r->max_live_bytes(),
3341                                  not_dead_yet_cl.live_bytes());
3342             _failures = true;
3343           }
3344         } else {
3345           // When vo == UseNextMarking we cannot currently do a sanity
3346           // check on the live bytes as the calculation has not been
3347           // finalized yet.
3348         }
3349       }
3350     }
3351     return false; // stop the region iteration if we hit a failure
3352   }
3353 };
3354 
3355 // This is the task used for parallel verification of the heap regions
3356 
3357 class G1ParVerifyTask: public AbstractGangTask {
3358 private:
3359   G1CollectedHeap* _g1h;
3360   VerifyOption     _vo;
3361   bool             _failures;
3362 
3363 public:
3364   // _vo == UsePrevMarking -> use "prev" marking information,
3365   // _vo == UseNextMarking -> use "next" marking information,
3366   // _vo == UseMarkWord    -> use mark word from object header.
3367   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3368     AbstractGangTask("Parallel verify task"),
3369     _g1h(g1h),
3370     _vo(vo),
3371     _failures(false) { }
3372 
3373   bool failures() {
3374     return _failures;
3375   }
3376 
3377   void work(uint worker_id) {
3378     HandleMark hm;
3379     VerifyRegionClosure blk(true, _vo);
3380     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3381                                           _g1h->workers()->active_workers(),
3382                                           HeapRegion::ParVerifyClaimValue);
3383     if (blk.failures()) {
3384       _failures = true;
3385     }
3386   }
3387 };
3388 
3389 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3390   if (SafepointSynchronize::is_at_safepoint()) {
3391     assert(Thread::current()->is_VM_thread(),
3392            "Expected to be executed serially by the VM thread at this point");
3393 
3394     if (!silent) { gclog_or_tty->print("Roots "); }
3395     VerifyRootsClosure rootsCl(vo);
3396     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3397     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3398     VerifyKlassClosure klassCl(this, &rootsCl);
3399 
3400     // We apply the relevant closures to all the oops in the
3401     // system dictionary, the string table and the code cache.
3402     const int so = SO_AllClasses | SO_Strings | SO_AllCodeCache;
3403 
3404     // Need cleared claim bits for the strong roots processing
3405     ClassLoaderDataGraph::clear_claimed_marks();
3406 
3407     process_strong_roots(true,      // activate StrongRootsScope
3408                          ScanningOption(so),  // roots scanning options
3409                          &rootsCl,
3410                          &blobsCl,
3411                          &klassCl
3412                          );
3413 
3414     bool failures = rootsCl.failures() || codeRootsCl.failures();
3415 
3416     if (vo != VerifyOption_G1UseMarkWord) {
3417       // If we're verifying during a full GC then the region sets
3418       // will have been torn down at the start of the GC. Therefore
3419       // verifying the region sets will fail. So we only verify
3420       // the region sets when not in a full GC.
3421       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3422       verify_region_sets();
3423     }
3424 
3425     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3426     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3427       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3428              "sanity check");
3429 
3430       G1ParVerifyTask task(this, vo);
3431       assert(UseDynamicNumberOfGCThreads ||
3432         workers()->active_workers() == workers()->total_workers(),
3433         "If not dynamic should be using all the workers");
3434       int n_workers = workers()->active_workers();
3435       set_par_threads(n_workers);
3436       workers()->run_task(&task);
3437       set_par_threads(0);
3438       if (task.failures()) {
3439         failures = true;
3440       }
3441 
3442       // Checks that the expected amount of parallel work was done.
3443       // The implication is that n_workers is > 0.
3444       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3445              "sanity check");
3446 
3447       reset_heap_region_claim_values();
3448 
3449       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3450              "sanity check");
3451     } else {
3452       VerifyRegionClosure blk(false, vo);
3453       heap_region_iterate(&blk);
3454       if (blk.failures()) {
3455         failures = true;
3456       }
3457     }
3458     if (!silent) gclog_or_tty->print("RemSet ");
3459     rem_set()->verify();
3460 
3461     if (failures) {
3462       gclog_or_tty->print_cr("Heap:");
3463       // It helps to have the per-region information in the output to
3464       // help us track down what went wrong. This is why we call
3465       // print_extended_on() instead of print_on().
3466       print_extended_on(gclog_or_tty);
3467       gclog_or_tty->print_cr("");
3468 #ifndef PRODUCT
3469       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3470         concurrent_mark()->print_reachable("at-verification-failure",
3471                                            vo, false /* all */);
3472       }
3473 #endif
3474       gclog_or_tty->flush();
3475     }
3476     guarantee(!failures, "there should not have been any failures");
3477   } else {
3478     if (!silent)
3479       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3480   }
3481 }
3482 
3483 void G1CollectedHeap::verify(bool silent) {
3484   verify(silent, VerifyOption_G1UsePrevMarking);
3485 }
3486 
3487 double G1CollectedHeap::verify(bool guard, const char* msg) {
3488   double verify_time_ms = 0.0;
3489 
3490   if (guard && total_collections() >= VerifyGCStartAt) {
3491     double verify_start = os::elapsedTime();
3492     HandleMark hm;  // Discard invalid handles created during verification
3493     prepare_for_verify();
3494     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3495     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3496   }
3497 
3498   return verify_time_ms;
3499 }
3500 
3501 void G1CollectedHeap::verify_before_gc() {
3502   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3503   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3504 }
3505 
3506 void G1CollectedHeap::verify_after_gc() {
3507   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3508   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3509 }
3510 
3511 class PrintRegionClosure: public HeapRegionClosure {
3512   outputStream* _st;
3513 public:
3514   PrintRegionClosure(outputStream* st) : _st(st) {}
3515   bool doHeapRegion(HeapRegion* r) {
3516     r->print_on(_st);
3517     return false;
3518   }
3519 };
3520 
3521 void G1CollectedHeap::print_on(outputStream* st) const {
3522   st->print(" %-20s", "garbage-first heap");
3523   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3524             capacity()/K, used_unlocked()/K);
3525   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3526             _g1_storage.low_boundary(),
3527             _g1_storage.high(),
3528             _g1_storage.high_boundary());
3529   st->cr();
3530   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3531   uint young_regions = _young_list->length();
3532   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3533             (size_t) young_regions * HeapRegion::GrainBytes / K);
3534   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3535   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3536             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3537   st->cr();
3538   MetaspaceAux::print_on(st);
3539 }
3540 
3541 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3542   print_on(st);
3543 
3544   // Print the per-region information.
3545   st->cr();
3546   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3547                "HS=humongous(starts), HC=humongous(continues), "
3548                "CS=collection set, F=free, TS=gc time stamp, "
3549                "PTAMS=previous top-at-mark-start, "
3550                "NTAMS=next top-at-mark-start)");
3551   PrintRegionClosure blk(st);
3552   heap_region_iterate(&blk);
3553 }
3554 
3555 void G1CollectedHeap::print_on_error(outputStream* st) const {
3556   this->CollectedHeap::print_on_error(st);
3557 
3558   if (_cm != NULL) {
3559     st->cr();
3560     _cm->print_on_error(st);
3561   }
3562 }
3563 
3564 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3565   if (G1CollectedHeap::use_parallel_gc_threads()) {
3566     workers()->print_worker_threads_on(st);
3567   }
3568   _cmThread->print_on(st);
3569   st->cr();
3570   _cm->print_worker_threads_on(st);
3571   _cg1r->print_worker_threads_on(st);
3572 }
3573 
3574 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3575   if (G1CollectedHeap::use_parallel_gc_threads()) {
3576     workers()->threads_do(tc);
3577   }
3578   tc->do_thread(_cmThread);
3579   _cg1r->threads_do(tc);
3580 }
3581 
3582 void G1CollectedHeap::print_tracing_info() const {
3583   // We'll overload this to mean "trace GC pause statistics."
3584   if (TraceGen0Time || TraceGen1Time) {
3585     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3586     // to that.
3587     g1_policy()->print_tracing_info();
3588   }
3589   if (G1SummarizeRSetStats) {
3590     g1_rem_set()->print_summary_info();
3591   }
3592   if (G1SummarizeConcMark) {
3593     concurrent_mark()->print_summary_info();
3594   }
3595   g1_policy()->print_yg_surv_rate_info();
3596   SpecializationStats::print();
3597 }
3598 
3599 #ifndef PRODUCT
3600 // Helpful for debugging RSet issues.
3601 
3602 class PrintRSetsClosure : public HeapRegionClosure {
3603 private:
3604   const char* _msg;
3605   size_t _occupied_sum;
3606 
3607 public:
3608   bool doHeapRegion(HeapRegion* r) {
3609     HeapRegionRemSet* hrrs = r->rem_set();
3610     size_t occupied = hrrs->occupied();
3611     _occupied_sum += occupied;
3612 
3613     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3614                            HR_FORMAT_PARAMS(r));
3615     if (occupied == 0) {
3616       gclog_or_tty->print_cr("  RSet is empty");
3617     } else {
3618       hrrs->print();
3619     }
3620     gclog_or_tty->print_cr("----------");
3621     return false;
3622   }
3623 
3624   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3625     gclog_or_tty->cr();
3626     gclog_or_tty->print_cr("========================================");
3627     gclog_or_tty->print_cr(msg);
3628     gclog_or_tty->cr();
3629   }
3630 
3631   ~PrintRSetsClosure() {
3632     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3633     gclog_or_tty->print_cr("========================================");
3634     gclog_or_tty->cr();
3635   }
3636 };
3637 
3638 void G1CollectedHeap::print_cset_rsets() {
3639   PrintRSetsClosure cl("Printing CSet RSets");
3640   collection_set_iterate(&cl);
3641 }
3642 
3643 void G1CollectedHeap::print_all_rsets() {
3644   PrintRSetsClosure cl("Printing All RSets");;
3645   heap_region_iterate(&cl);
3646 }
3647 #endif // PRODUCT
3648 
3649 G1CollectedHeap* G1CollectedHeap::heap() {
3650   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3651          "not a garbage-first heap");
3652   return _g1h;
3653 }
3654 
3655 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3656   // always_do_update_barrier = false;
3657   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3658   // Fill TLAB's and such
3659   accumulate_statistics_all_tlabs();
3660   ensure_parsability(true);
3661 
3662   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3663       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3664     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3665   }
3666 }
3667 
3668 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3669 
3670   if (G1SummarizeRSetStats &&
3671       (G1SummarizeRSetStatsPeriod > 0) &&
3672       // we are at the end of the GC. Total collections has already been increased.
3673       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3674     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3675   }
3676 
3677   // FIXME: what is this about?
3678   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3679   // is set.
3680   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3681                         "derived pointer present"));
3682   // always_do_update_barrier = true;
3683 
3684   resize_all_tlabs();
3685 
3686   // We have just completed a GC. Update the soft reference
3687   // policy with the new heap occupancy
3688   Universe::update_heap_info_at_gc();
3689 }
3690 
3691 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3692                                                unsigned int gc_count_before,
3693                                                bool* succeeded,
3694                                                GCCause::Cause gc_cause) {
3695   assert_heap_not_locked_and_not_at_safepoint();
3696   g1_policy()->record_stop_world_start();
3697   VM_G1IncCollectionPause op(gc_count_before,
3698                              word_size,
3699                              false, /* should_initiate_conc_mark */
3700                              g1_policy()->max_pause_time_ms(),
3701                              gc_cause);
3702   VMThread::execute(&op);
3703 
3704   HeapWord* result = op.result();
3705   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3706   assert(result == NULL || ret_succeeded,
3707          "the result should be NULL if the VM did not succeed");
3708   *succeeded = ret_succeeded;
3709 
3710   assert_heap_not_locked();
3711   return result;
3712 }
3713 
3714 void
3715 G1CollectedHeap::doConcurrentMark() {
3716   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3717   if (!_cmThread->in_progress()) {
3718     _cmThread->set_started();
3719     CGC_lock->notify();
3720   }
3721 }
3722 
3723 size_t G1CollectedHeap::pending_card_num() {
3724   size_t extra_cards = 0;
3725   JavaThread *curr = Threads::first();
3726   while (curr != NULL) {
3727     DirtyCardQueue& dcq = curr->dirty_card_queue();
3728     extra_cards += dcq.size();
3729     curr = curr->next();
3730   }
3731   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3732   size_t buffer_size = dcqs.buffer_size();
3733   size_t buffer_num = dcqs.completed_buffers_num();
3734 
3735   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3736   // in bytes - not the number of 'entries'. We need to convert
3737   // into a number of cards.
3738   return (buffer_size * buffer_num + extra_cards) / oopSize;
3739 }
3740 
3741 size_t G1CollectedHeap::cards_scanned() {
3742   return g1_rem_set()->cardsScanned();
3743 }
3744 
3745 void
3746 G1CollectedHeap::setup_surviving_young_words() {
3747   assert(_surviving_young_words == NULL, "pre-condition");
3748   uint array_length = g1_policy()->young_cset_region_length();
3749   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3750   if (_surviving_young_words == NULL) {
3751     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3752                           "Not enough space for young surv words summary.");
3753   }
3754   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3755 #ifdef ASSERT
3756   for (uint i = 0;  i < array_length; ++i) {
3757     assert( _surviving_young_words[i] == 0, "memset above" );
3758   }
3759 #endif // !ASSERT
3760 }
3761 
3762 void
3763 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3764   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3765   uint array_length = g1_policy()->young_cset_region_length();
3766   for (uint i = 0; i < array_length; ++i) {
3767     _surviving_young_words[i] += surv_young_words[i];
3768   }
3769 }
3770 
3771 void
3772 G1CollectedHeap::cleanup_surviving_young_words() {
3773   guarantee( _surviving_young_words != NULL, "pre-condition" );
3774   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3775   _surviving_young_words = NULL;
3776 }
3777 
3778 #ifdef ASSERT
3779 class VerifyCSetClosure: public HeapRegionClosure {
3780 public:
3781   bool doHeapRegion(HeapRegion* hr) {
3782     // Here we check that the CSet region's RSet is ready for parallel
3783     // iteration. The fields that we'll verify are only manipulated
3784     // when the region is part of a CSet and is collected. Afterwards,
3785     // we reset these fields when we clear the region's RSet (when the
3786     // region is freed) so they are ready when the region is
3787     // re-allocated. The only exception to this is if there's an
3788     // evacuation failure and instead of freeing the region we leave
3789     // it in the heap. In that case, we reset these fields during
3790     // evacuation failure handling.
3791     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3792 
3793     // Here's a good place to add any other checks we'd like to
3794     // perform on CSet regions.
3795     return false;
3796   }
3797 };
3798 #endif // ASSERT
3799 
3800 #if TASKQUEUE_STATS
3801 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3802   st->print_raw_cr("GC Task Stats");
3803   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3804   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3805 }
3806 
3807 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3808   print_taskqueue_stats_hdr(st);
3809 
3810   TaskQueueStats totals;
3811   const int n = workers() != NULL ? workers()->total_workers() : 1;
3812   for (int i = 0; i < n; ++i) {
3813     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3814     totals += task_queue(i)->stats;
3815   }
3816   st->print_raw("tot "); totals.print(st); st->cr();
3817 
3818   DEBUG_ONLY(totals.verify());
3819 }
3820 
3821 void G1CollectedHeap::reset_taskqueue_stats() {
3822   const int n = workers() != NULL ? workers()->total_workers() : 1;
3823   for (int i = 0; i < n; ++i) {
3824     task_queue(i)->stats.reset();
3825   }
3826 }
3827 #endif // TASKQUEUE_STATS
3828 
3829 void G1CollectedHeap::log_gc_header() {
3830   if (!G1Log::fine()) {
3831     return;
3832   }
3833 
3834   gclog_or_tty->date_stamp(PrintGCDateStamps);
3835   gclog_or_tty->stamp(PrintGCTimeStamps);
3836 
3837   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3838     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3839     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3840 
3841   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3842 }
3843 
3844 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3845   if (!G1Log::fine()) {
3846     return;
3847   }
3848 
3849   if (G1Log::finer()) {
3850     if (evacuation_failed()) {
3851       gclog_or_tty->print(" (to-space exhausted)");
3852     }
3853     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3854     g1_policy()->phase_times()->note_gc_end();
3855     g1_policy()->phase_times()->print(pause_time_sec);
3856     g1_policy()->print_detailed_heap_transition();
3857   } else {
3858     if (evacuation_failed()) {
3859       gclog_or_tty->print("--");
3860     }
3861     g1_policy()->print_heap_transition();
3862     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3863   }
3864   gclog_or_tty->flush();
3865 }
3866 
3867 bool
3868 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3869   assert_at_safepoint(true /* should_be_vm_thread */);
3870   guarantee(!is_gc_active(), "collection is not reentrant");
3871 
3872   if (GC_locker::check_active_before_gc()) {
3873     return false;
3874   }
3875 
3876   _gc_timer_stw->register_gc_start();
3877 
3878   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3879 
3880   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3881   ResourceMark rm;
3882 
3883   print_heap_before_gc();
3884   trace_heap_before_gc(_gc_tracer_stw);
3885 
3886   verify_region_sets_optional();
3887   verify_dirty_young_regions();
3888 
3889   // This call will decide whether this pause is an initial-mark
3890   // pause. If it is, during_initial_mark_pause() will return true
3891   // for the duration of this pause.
3892   g1_policy()->decide_on_conc_mark_initiation();
3893 
3894   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3895   assert(!g1_policy()->during_initial_mark_pause() ||
3896           g1_policy()->gcs_are_young(), "sanity");
3897 
3898   // We also do not allow mixed GCs during marking.
3899   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3900 
3901   // Record whether this pause is an initial mark. When the current
3902   // thread has completed its logging output and it's safe to signal
3903   // the CM thread, the flag's value in the policy has been reset.
3904   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3905 
3906   // Inner scope for scope based logging, timers, and stats collection
3907   {
3908     EvacuationInfo evacuation_info;
3909 
3910     if (g1_policy()->during_initial_mark_pause()) {
3911       // We are about to start a marking cycle, so we increment the
3912       // full collection counter.
3913       increment_old_marking_cycles_started();
3914       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3915     }
3916 
3917     _gc_tracer_stw->report_yc_type(yc_type());
3918 
3919     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3920 
3921     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3922                                 workers()->active_workers() : 1);
3923     double pause_start_sec = os::elapsedTime();
3924     g1_policy()->phase_times()->note_gc_start(active_workers);
3925     log_gc_header();
3926 
3927     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3928     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3929 
3930     // If the secondary_free_list is not empty, append it to the
3931     // free_list. No need to wait for the cleanup operation to finish;
3932     // the region allocation code will check the secondary_free_list
3933     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3934     // set, skip this step so that the region allocation code has to
3935     // get entries from the secondary_free_list.
3936     if (!G1StressConcRegionFreeing) {
3937       append_secondary_free_list_if_not_empty_with_lock();
3938     }
3939 
3940     assert(check_young_list_well_formed(), "young list should be well formed");
3941     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3942            "sanity check");
3943 
3944     // Don't dynamically change the number of GC threads this early.  A value of
3945     // 0 is used to indicate serial work.  When parallel work is done,
3946     // it will be set.
3947 
3948     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3949       IsGCActiveMark x;
3950 
3951       gc_prologue(false);
3952       increment_total_collections(false /* full gc */);
3953       increment_gc_time_stamp();
3954 
3955       verify_before_gc();
3956 
3957       COMPILER2_PRESENT(DerivedPointerTable::clear());
3958 
3959       // Please see comment in g1CollectedHeap.hpp and
3960       // G1CollectedHeap::ref_processing_init() to see how
3961       // reference processing currently works in G1.
3962 
3963       // Enable discovery in the STW reference processor
3964       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3965                                             true /*verify_no_refs*/);
3966 
3967       {
3968         // We want to temporarily turn off discovery by the
3969         // CM ref processor, if necessary, and turn it back on
3970         // on again later if we do. Using a scoped
3971         // NoRefDiscovery object will do this.
3972         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3973 
3974         // Forget the current alloc region (we might even choose it to be part
3975         // of the collection set!).
3976         release_mutator_alloc_region();
3977 
3978         // We should call this after we retire the mutator alloc
3979         // region(s) so that all the ALLOC / RETIRE events are generated
3980         // before the start GC event.
3981         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3982 
3983         // This timing is only used by the ergonomics to handle our pause target.
3984         // It is unclear why this should not include the full pause. We will
3985         // investigate this in CR 7178365.
3986         //
3987         // Preserving the old comment here if that helps the investigation:
3988         //
3989         // The elapsed time induced by the start time below deliberately elides
3990         // the possible verification above.
3991         double sample_start_time_sec = os::elapsedTime();
3992 
3993 #if YOUNG_LIST_VERBOSE
3994         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3995         _young_list->print();
3996         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3997 #endif // YOUNG_LIST_VERBOSE
3998 
3999         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4000 
4001         double scan_wait_start = os::elapsedTime();
4002         // We have to wait until the CM threads finish scanning the
4003         // root regions as it's the only way to ensure that all the
4004         // objects on them have been correctly scanned before we start
4005         // moving them during the GC.
4006         bool waited = _cm->root_regions()->wait_until_scan_finished();
4007         double wait_time_ms = 0.0;
4008         if (waited) {
4009           double scan_wait_end = os::elapsedTime();
4010           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4011         }
4012         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4013 
4014 #if YOUNG_LIST_VERBOSE
4015         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4016         _young_list->print();
4017 #endif // YOUNG_LIST_VERBOSE
4018 
4019         if (g1_policy()->during_initial_mark_pause()) {
4020           concurrent_mark()->checkpointRootsInitialPre();
4021         }
4022 
4023 #if YOUNG_LIST_VERBOSE
4024         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4025         _young_list->print();
4026         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4027 #endif // YOUNG_LIST_VERBOSE
4028 
4029         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4030 
4031         _cm->note_start_of_gc();
4032         // We should not verify the per-thread SATB buffers given that
4033         // we have not filtered them yet (we'll do so during the
4034         // GC). We also call this after finalize_cset() to
4035         // ensure that the CSet has been finalized.
4036         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4037                                  true  /* verify_enqueued_buffers */,
4038                                  false /* verify_thread_buffers */,
4039                                  true  /* verify_fingers */);
4040 
4041         if (_hr_printer.is_active()) {
4042           HeapRegion* hr = g1_policy()->collection_set();
4043           while (hr != NULL) {
4044             G1HRPrinter::RegionType type;
4045             if (!hr->is_young()) {
4046               type = G1HRPrinter::Old;
4047             } else if (hr->is_survivor()) {
4048               type = G1HRPrinter::Survivor;
4049             } else {
4050               type = G1HRPrinter::Eden;
4051             }
4052             _hr_printer.cset(hr);
4053             hr = hr->next_in_collection_set();
4054           }
4055         }
4056 
4057 #ifdef ASSERT
4058         VerifyCSetClosure cl;
4059         collection_set_iterate(&cl);
4060 #endif // ASSERT
4061 
4062         setup_surviving_young_words();
4063 
4064         // Initialize the GC alloc regions.
4065         init_gc_alloc_regions(evacuation_info);
4066 
4067         // Actually do the work...
4068         evacuate_collection_set(evacuation_info);
4069 
4070         // We do this to mainly verify the per-thread SATB buffers
4071         // (which have been filtered by now) since we didn't verify
4072         // them earlier. No point in re-checking the stacks / enqueued
4073         // buffers given that the CSet has not changed since last time
4074         // we checked.
4075         _cm->verify_no_cset_oops(false /* verify_stacks */,
4076                                  false /* verify_enqueued_buffers */,
4077                                  true  /* verify_thread_buffers */,
4078                                  true  /* verify_fingers */);
4079 
4080         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4081         g1_policy()->clear_collection_set();
4082 
4083         cleanup_surviving_young_words();
4084 
4085         // Start a new incremental collection set for the next pause.
4086         g1_policy()->start_incremental_cset_building();
4087 
4088         // Clear the _cset_fast_test bitmap in anticipation of adding
4089         // regions to the incremental collection set for the next
4090         // evacuation pause.
4091         clear_cset_fast_test();
4092 
4093         _young_list->reset_sampled_info();
4094 
4095         // Don't check the whole heap at this point as the
4096         // GC alloc regions from this pause have been tagged
4097         // as survivors and moved on to the survivor list.
4098         // Survivor regions will fail the !is_young() check.
4099         assert(check_young_list_empty(false /* check_heap */),
4100           "young list should be empty");
4101 
4102 #if YOUNG_LIST_VERBOSE
4103         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4104         _young_list->print();
4105 #endif // YOUNG_LIST_VERBOSE
4106 
4107         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4108                                              _young_list->first_survivor_region(),
4109                                              _young_list->last_survivor_region());
4110 
4111         _young_list->reset_auxilary_lists();
4112 
4113         if (evacuation_failed()) {
4114           _summary_bytes_used = recalculate_used();
4115           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4116           for (uint i = 0; i < n_queues; i++) {
4117             if (_evacuation_failed_info_array[i].has_failed()) {
4118               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4119             }
4120           }
4121         } else {
4122           // The "used" of the the collection set have already been subtracted
4123           // when they were freed.  Add in the bytes evacuated.
4124           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4125         }
4126 
4127         if (g1_policy()->during_initial_mark_pause()) {
4128           // We have to do this before we notify the CM threads that
4129           // they can start working to make sure that all the
4130           // appropriate initialization is done on the CM object.
4131           concurrent_mark()->checkpointRootsInitialPost();
4132           set_marking_started();
4133           // Note that we don't actually trigger the CM thread at
4134           // this point. We do that later when we're sure that
4135           // the current thread has completed its logging output.
4136         }
4137 
4138         allocate_dummy_regions();
4139 
4140 #if YOUNG_LIST_VERBOSE
4141         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4142         _young_list->print();
4143         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4144 #endif // YOUNG_LIST_VERBOSE
4145 
4146         init_mutator_alloc_region();
4147 
4148         {
4149           size_t expand_bytes = g1_policy()->expansion_amount();
4150           if (expand_bytes > 0) {
4151             size_t bytes_before = capacity();
4152             // No need for an ergo verbose message here,
4153             // expansion_amount() does this when it returns a value > 0.
4154             if (!expand(expand_bytes)) {
4155               // We failed to expand the heap so let's verify that
4156               // committed/uncommitted amount match the backing store
4157               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4158               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4159             }
4160           }
4161         }
4162 
4163         // We redo the verification but now wrt to the new CSet which
4164         // has just got initialized after the previous CSet was freed.
4165         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4166                                  true  /* verify_enqueued_buffers */,
4167                                  true  /* verify_thread_buffers */,
4168                                  true  /* verify_fingers */);
4169         _cm->note_end_of_gc();
4170 
4171         // This timing is only used by the ergonomics to handle our pause target.
4172         // It is unclear why this should not include the full pause. We will
4173         // investigate this in CR 7178365.
4174         double sample_end_time_sec = os::elapsedTime();
4175         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4176         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4177 
4178         MemoryService::track_memory_usage();
4179 
4180         // In prepare_for_verify() below we'll need to scan the deferred
4181         // update buffers to bring the RSets up-to-date if
4182         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4183         // the update buffers we'll probably need to scan cards on the
4184         // regions we just allocated to (i.e., the GC alloc
4185         // regions). However, during the last GC we called
4186         // set_saved_mark() on all the GC alloc regions, so card
4187         // scanning might skip the [saved_mark_word()...top()] area of
4188         // those regions (i.e., the area we allocated objects into
4189         // during the last GC). But it shouldn't. Given that
4190         // saved_mark_word() is conditional on whether the GC time stamp
4191         // on the region is current or not, by incrementing the GC time
4192         // stamp here we invalidate all the GC time stamps on all the
4193         // regions and saved_mark_word() will simply return top() for
4194         // all the regions. This is a nicer way of ensuring this rather
4195         // than iterating over the regions and fixing them. In fact, the
4196         // GC time stamp increment here also ensures that
4197         // saved_mark_word() will return top() between pauses, i.e.,
4198         // during concurrent refinement. So we don't need the
4199         // is_gc_active() check to decided which top to use when
4200         // scanning cards (see CR 7039627).
4201         increment_gc_time_stamp();
4202 
4203         verify_after_gc();
4204 
4205         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4206         ref_processor_stw()->verify_no_references_recorded();
4207 
4208         // CM reference discovery will be re-enabled if necessary.
4209       }
4210 
4211       // We should do this after we potentially expand the heap so
4212       // that all the COMMIT events are generated before the end GC
4213       // event, and after we retire the GC alloc regions so that all
4214       // RETIRE events are generated before the end GC event.
4215       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4216 
4217       if (mark_in_progress()) {
4218         concurrent_mark()->update_g1_committed();
4219       }
4220 
4221 #ifdef TRACESPINNING
4222       ParallelTaskTerminator::print_termination_counts();
4223 #endif
4224 
4225       gc_epilogue(false);
4226     }
4227 
4228     // Print the remainder of the GC log output.
4229     log_gc_footer(os::elapsedTime() - pause_start_sec);
4230 
4231     // It is not yet to safe to tell the concurrent mark to
4232     // start as we have some optional output below. We don't want the
4233     // output from the concurrent mark thread interfering with this
4234     // logging output either.
4235 
4236     _hrs.verify_optional();
4237     verify_region_sets_optional();
4238 
4239     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4240     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4241 
4242     print_heap_after_gc();
4243     trace_heap_after_gc(_gc_tracer_stw);
4244 
4245     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4246     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4247     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4248     // before any GC notifications are raised.
4249     g1mm()->update_sizes();
4250 
4251     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4252     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4253     _gc_timer_stw->register_gc_end();
4254     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4255   }
4256   // It should now be safe to tell the concurrent mark thread to start
4257   // without its logging output interfering with the logging output
4258   // that came from the pause.
4259 
4260   if (should_start_conc_mark) {
4261     // CAUTION: after the doConcurrentMark() call below,
4262     // the concurrent marking thread(s) could be running
4263     // concurrently with us. Make sure that anything after
4264     // this point does not assume that we are the only GC thread
4265     // running. Note: of course, the actual marking work will
4266     // not start until the safepoint itself is released in
4267     // ConcurrentGCThread::safepoint_desynchronize().
4268     doConcurrentMark();
4269   }
4270 
4271   return true;
4272 }
4273 
4274 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4275 {
4276   size_t gclab_word_size;
4277   switch (purpose) {
4278     case GCAllocForSurvived:
4279       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4280       break;
4281     case GCAllocForTenured:
4282       gclab_word_size = _old_plab_stats.desired_plab_sz();
4283       break;
4284     default:
4285       assert(false, "unknown GCAllocPurpose");
4286       gclab_word_size = _old_plab_stats.desired_plab_sz();
4287       break;
4288   }
4289 
4290   // Prevent humongous PLAB sizes for two reasons:
4291   // * PLABs are allocated using a similar paths as oops, but should
4292   //   never be in a humongous region
4293   // * Allowing humongous PLABs needlessly churns the region free lists
4294   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4295 }
4296 
4297 void G1CollectedHeap::init_mutator_alloc_region() {
4298   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4299   _mutator_alloc_region.init();
4300 }
4301 
4302 void G1CollectedHeap::release_mutator_alloc_region() {
4303   _mutator_alloc_region.release();
4304   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4305 }
4306 
4307 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4308   assert_at_safepoint(true /* should_be_vm_thread */);
4309 
4310   _survivor_gc_alloc_region.init();
4311   _old_gc_alloc_region.init();
4312   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4313   _retained_old_gc_alloc_region = NULL;
4314 
4315   // We will discard the current GC alloc region if:
4316   // a) it's in the collection set (it can happen!),
4317   // b) it's already full (no point in using it),
4318   // c) it's empty (this means that it was emptied during
4319   // a cleanup and it should be on the free list now), or
4320   // d) it's humongous (this means that it was emptied
4321   // during a cleanup and was added to the free list, but
4322   // has been subsequently used to allocate a humongous
4323   // object that may be less than the region size).
4324   if (retained_region != NULL &&
4325       !retained_region->in_collection_set() &&
4326       !(retained_region->top() == retained_region->end()) &&
4327       !retained_region->is_empty() &&
4328       !retained_region->isHumongous()) {
4329     retained_region->set_saved_mark();
4330     // The retained region was added to the old region set when it was
4331     // retired. We have to remove it now, since we don't allow regions
4332     // we allocate to in the region sets. We'll re-add it later, when
4333     // it's retired again.
4334     _old_set.remove(retained_region);
4335     bool during_im = g1_policy()->during_initial_mark_pause();
4336     retained_region->note_start_of_copying(during_im);
4337     _old_gc_alloc_region.set(retained_region);
4338     _hr_printer.reuse(retained_region);
4339     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4340   }
4341 }
4342 
4343 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4344   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4345                                          _old_gc_alloc_region.count());
4346   _survivor_gc_alloc_region.release();
4347   // If we have an old GC alloc region to release, we'll save it in
4348   // _retained_old_gc_alloc_region. If we don't
4349   // _retained_old_gc_alloc_region will become NULL. This is what we
4350   // want either way so no reason to check explicitly for either
4351   // condition.
4352   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4353 
4354   if (ResizePLAB) {
4355     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4356     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4357   }
4358 }
4359 
4360 void G1CollectedHeap::abandon_gc_alloc_regions() {
4361   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4362   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4363   _retained_old_gc_alloc_region = NULL;
4364 }
4365 
4366 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4367   _drain_in_progress = false;
4368   set_evac_failure_closure(cl);
4369   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4370 }
4371 
4372 void G1CollectedHeap::finalize_for_evac_failure() {
4373   assert(_evac_failure_scan_stack != NULL &&
4374          _evac_failure_scan_stack->length() == 0,
4375          "Postcondition");
4376   assert(!_drain_in_progress, "Postcondition");
4377   delete _evac_failure_scan_stack;
4378   _evac_failure_scan_stack = NULL;
4379 }
4380 
4381 void G1CollectedHeap::remove_self_forwarding_pointers() {
4382   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4383 
4384   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4385 
4386   if (G1CollectedHeap::use_parallel_gc_threads()) {
4387     set_par_threads();
4388     workers()->run_task(&rsfp_task);
4389     set_par_threads(0);
4390   } else {
4391     rsfp_task.work(0);
4392   }
4393 
4394   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4395 
4396   // Reset the claim values in the regions in the collection set.
4397   reset_cset_heap_region_claim_values();
4398 
4399   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4400 
4401   // Now restore saved marks, if any.
4402   assert(_objs_with_preserved_marks.size() ==
4403             _preserved_marks_of_objs.size(), "Both or none.");
4404   while (!_objs_with_preserved_marks.is_empty()) {
4405     oop obj = _objs_with_preserved_marks.pop();
4406     markOop m = _preserved_marks_of_objs.pop();
4407     obj->set_mark(m);
4408   }
4409   _objs_with_preserved_marks.clear(true);
4410   _preserved_marks_of_objs.clear(true);
4411 }
4412 
4413 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4414   _evac_failure_scan_stack->push(obj);
4415 }
4416 
4417 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4418   assert(_evac_failure_scan_stack != NULL, "precondition");
4419 
4420   while (_evac_failure_scan_stack->length() > 0) {
4421      oop obj = _evac_failure_scan_stack->pop();
4422      _evac_failure_closure->set_region(heap_region_containing(obj));
4423      obj->oop_iterate_backwards(_evac_failure_closure);
4424   }
4425 }
4426 
4427 oop
4428 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4429                                                oop old) {
4430   assert(obj_in_cs(old),
4431          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4432                  (HeapWord*) old));
4433   markOop m = old->mark();
4434   oop forward_ptr = old->forward_to_atomic(old);
4435   if (forward_ptr == NULL) {
4436     // Forward-to-self succeeded.
4437     assert(_par_scan_state != NULL, "par scan state");
4438     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4439     uint queue_num = _par_scan_state->queue_num();
4440 
4441     _evacuation_failed = true;
4442     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4443     if (_evac_failure_closure != cl) {
4444       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4445       assert(!_drain_in_progress,
4446              "Should only be true while someone holds the lock.");
4447       // Set the global evac-failure closure to the current thread's.
4448       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4449       set_evac_failure_closure(cl);
4450       // Now do the common part.
4451       handle_evacuation_failure_common(old, m);
4452       // Reset to NULL.
4453       set_evac_failure_closure(NULL);
4454     } else {
4455       // The lock is already held, and this is recursive.
4456       assert(_drain_in_progress, "This should only be the recursive case.");
4457       handle_evacuation_failure_common(old, m);
4458     }
4459     return old;
4460   } else {
4461     // Forward-to-self failed. Either someone else managed to allocate
4462     // space for this object (old != forward_ptr) or they beat us in
4463     // self-forwarding it (old == forward_ptr).
4464     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4465            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4466                    "should not be in the CSet",
4467                    (HeapWord*) old, (HeapWord*) forward_ptr));
4468     return forward_ptr;
4469   }
4470 }
4471 
4472 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4473   preserve_mark_if_necessary(old, m);
4474 
4475   HeapRegion* r = heap_region_containing(old);
4476   if (!r->evacuation_failed()) {
4477     r->set_evacuation_failed(true);
4478     _hr_printer.evac_failure(r);
4479   }
4480 
4481   push_on_evac_failure_scan_stack(old);
4482 
4483   if (!_drain_in_progress) {
4484     // prevent recursion in copy_to_survivor_space()
4485     _drain_in_progress = true;
4486     drain_evac_failure_scan_stack();
4487     _drain_in_progress = false;
4488   }
4489 }
4490 
4491 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4492   assert(evacuation_failed(), "Oversaving!");
4493   // We want to call the "for_promotion_failure" version only in the
4494   // case of a promotion failure.
4495   if (m->must_be_preserved_for_promotion_failure(obj)) {
4496     _objs_with_preserved_marks.push(obj);
4497     _preserved_marks_of_objs.push(m);
4498   }
4499 }
4500 
4501 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4502                                                   size_t word_size) {
4503   if (purpose == GCAllocForSurvived) {
4504     HeapWord* result = survivor_attempt_allocation(word_size);
4505     if (result != NULL) {
4506       return result;
4507     } else {
4508       // Let's try to allocate in the old gen in case we can fit the
4509       // object there.
4510       return old_attempt_allocation(word_size);
4511     }
4512   } else {
4513     assert(purpose ==  GCAllocForTenured, "sanity");
4514     HeapWord* result = old_attempt_allocation(word_size);
4515     if (result != NULL) {
4516       return result;
4517     } else {
4518       // Let's try to allocate in the survivors in case we can fit the
4519       // object there.
4520       return survivor_attempt_allocation(word_size);
4521     }
4522   }
4523 
4524   ShouldNotReachHere();
4525   // Trying to keep some compilers happy.
4526   return NULL;
4527 }
4528 
4529 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4530   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4531 
4532 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4533   : _g1h(g1h),
4534     _refs(g1h->task_queue(queue_num)),
4535     _dcq(&g1h->dirty_card_queue_set()),
4536     _ct_bs(g1h->g1_barrier_set()),
4537     _g1_rem(g1h->g1_rem_set()),
4538     _hash_seed(17), _queue_num(queue_num),
4539     _term_attempts(0),
4540     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4541     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4542     _age_table(false),
4543     _strong_roots_time(0), _term_time(0),
4544     _alloc_buffer_waste(0), _undo_waste(0) {
4545   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4546   // we "sacrifice" entry 0 to keep track of surviving bytes for
4547   // non-young regions (where the age is -1)
4548   // We also add a few elements at the beginning and at the end in
4549   // an attempt to eliminate cache contention
4550   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4551   uint array_length = PADDING_ELEM_NUM +
4552                       real_length +
4553                       PADDING_ELEM_NUM;
4554   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4555   if (_surviving_young_words_base == NULL)
4556     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4557                           "Not enough space for young surv histo.");
4558   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4559   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4560 
4561   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4562   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4563 
4564   _start = os::elapsedTime();
4565 }
4566 
4567 void
4568 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4569 {
4570   st->print_raw_cr("GC Termination Stats");
4571   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4572                    " ------waste (KiB)------");
4573   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4574                    "  total   alloc    undo");
4575   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4576                    " ------- ------- -------");
4577 }
4578 
4579 void
4580 G1ParScanThreadState::print_termination_stats(int i,
4581                                               outputStream* const st) const
4582 {
4583   const double elapsed_ms = elapsed_time() * 1000.0;
4584   const double s_roots_ms = strong_roots_time() * 1000.0;
4585   const double term_ms    = term_time() * 1000.0;
4586   st->print_cr("%3d %9.2f %9.2f %6.2f "
4587                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4588                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4589                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4590                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4591                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4592                alloc_buffer_waste() * HeapWordSize / K,
4593                undo_waste() * HeapWordSize / K);
4594 }
4595 
4596 #ifdef ASSERT
4597 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4598   assert(ref != NULL, "invariant");
4599   assert(UseCompressedOops, "sanity");
4600   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4601   oop p = oopDesc::load_decode_heap_oop(ref);
4602   assert(_g1h->is_in_g1_reserved(p),
4603          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4604   return true;
4605 }
4606 
4607 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4608   assert(ref != NULL, "invariant");
4609   if (has_partial_array_mask(ref)) {
4610     // Must be in the collection set--it's already been copied.
4611     oop p = clear_partial_array_mask(ref);
4612     assert(_g1h->obj_in_cs(p),
4613            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4614   } else {
4615     oop p = oopDesc::load_decode_heap_oop(ref);
4616     assert(_g1h->is_in_g1_reserved(p),
4617            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4618   }
4619   return true;
4620 }
4621 
4622 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4623   if (ref.is_narrow()) {
4624     return verify_ref((narrowOop*) ref);
4625   } else {
4626     return verify_ref((oop*) ref);
4627   }
4628 }
4629 #endif // ASSERT
4630 
4631 void G1ParScanThreadState::trim_queue() {
4632   assert(_evac_cl != NULL, "not set");
4633   assert(_evac_failure_cl != NULL, "not set");
4634   assert(_partial_scan_cl != NULL, "not set");
4635 
4636   StarTask ref;
4637   do {
4638     // Drain the overflow stack first, so other threads can steal.
4639     while (refs()->pop_overflow(ref)) {
4640       deal_with_reference(ref);
4641     }
4642 
4643     while (refs()->pop_local(ref)) {
4644       deal_with_reference(ref);
4645     }
4646   } while (!refs()->is_empty());
4647 }
4648 
4649 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4650                                      G1ParScanThreadState* par_scan_state) :
4651   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4652   _par_scan_state(par_scan_state),
4653   _worker_id(par_scan_state->queue_num()),
4654   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4655   _mark_in_progress(_g1->mark_in_progress()) { }
4656 
4657 template <G1Barrier barrier, bool do_mark_object>
4658 void G1ParCopyClosure<barrier, do_mark_object>::mark_object(oop obj) {
4659 #ifdef ASSERT
4660   HeapRegion* hr = _g1->heap_region_containing(obj);
4661   assert(hr != NULL, "sanity");
4662   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4663 #endif // ASSERT
4664 
4665   // We know that the object is not moving so it's safe to read its size.
4666   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4667 }
4668 
4669 template <G1Barrier barrier, bool do_mark_object>
4670 void G1ParCopyClosure<barrier, do_mark_object>
4671   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4672 #ifdef ASSERT
4673   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4674   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4675   assert(from_obj != to_obj, "should not be self-forwarded");
4676 
4677   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4678   assert(from_hr != NULL, "sanity");
4679   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4680 
4681   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4682   assert(to_hr != NULL, "sanity");
4683   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4684 #endif // ASSERT
4685 
4686   // The object might be in the process of being copied by another
4687   // worker so we cannot trust that its to-space image is
4688   // well-formed. So we have to read its size from its from-space
4689   // image which we know should not be changing.
4690   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4691 }
4692 
4693 template <G1Barrier barrier, bool do_mark_object>
4694 oop G1ParCopyClosure<barrier, do_mark_object>
4695   ::copy_to_survivor_space(oop old) {
4696   size_t word_sz = old->size();
4697   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4698   // +1 to make the -1 indexes valid...
4699   int       young_index = from_region->young_index_in_cset()+1;
4700   assert( (from_region->is_young() && young_index >  0) ||
4701          (!from_region->is_young() && young_index == 0), "invariant" );
4702   G1CollectorPolicy* g1p = _g1->g1_policy();
4703   markOop m = old->mark();
4704   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4705                                            : m->age();
4706   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4707                                                              word_sz);
4708   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4709 #ifndef PRODUCT
4710   // Should this evacuation fail?
4711   if (_g1->evacuation_should_fail()) {
4712     if (obj_ptr != NULL) {
4713       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4714       obj_ptr = NULL;
4715     }
4716   }
4717 #endif // !PRODUCT
4718 
4719   if (obj_ptr == NULL) {
4720     // This will either forward-to-self, or detect that someone else has
4721     // installed a forwarding pointer.
4722     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4723   }
4724 
4725   oop obj = oop(obj_ptr);
4726 
4727   // We're going to allocate linearly, so might as well prefetch ahead.
4728   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4729 
4730   oop forward_ptr = old->forward_to_atomic(obj);
4731   if (forward_ptr == NULL) {
4732     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4733     if (g1p->track_object_age(alloc_purpose)) {
4734       // We could simply do obj->incr_age(). However, this causes a
4735       // performance issue. obj->incr_age() will first check whether
4736       // the object has a displaced mark by checking its mark word;
4737       // getting the mark word from the new location of the object
4738       // stalls. So, given that we already have the mark word and we
4739       // are about to install it anyway, it's better to increase the
4740       // age on the mark word, when the object does not have a
4741       // displaced mark word. We're not expecting many objects to have
4742       // a displaced marked word, so that case is not optimized
4743       // further (it could be...) and we simply call obj->incr_age().
4744 
4745       if (m->has_displaced_mark_helper()) {
4746         // in this case, we have to install the mark word first,
4747         // otherwise obj looks to be forwarded (the old mark word,
4748         // which contains the forward pointer, was copied)
4749         obj->set_mark(m);
4750         obj->incr_age();
4751       } else {
4752         m = m->incr_age();
4753         obj->set_mark(m);
4754       }
4755       _par_scan_state->age_table()->add(obj, word_sz);
4756     } else {
4757       obj->set_mark(m);
4758     }
4759 
4760     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4761     surv_young_words[young_index] += word_sz;
4762 
4763     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4764       // We keep track of the next start index in the length field of
4765       // the to-space object. The actual length can be found in the
4766       // length field of the from-space object.
4767       arrayOop(obj)->set_length(0);
4768       oop* old_p = set_partial_array_mask(old);
4769       _par_scan_state->push_on_queue(old_p);
4770     } else {
4771       // No point in using the slower heap_region_containing() method,
4772       // given that we know obj is in the heap.
4773       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4774       obj->oop_iterate_backwards(&_scanner);
4775     }
4776   } else {
4777     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4778     obj = forward_ptr;
4779   }
4780   return obj;
4781 }
4782 
4783 template <class T>
4784 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4785   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4786     _scanned_klass->record_modified_oops();
4787   }
4788 }
4789 
4790 template <G1Barrier barrier, bool do_mark_object>
4791 template <class T>
4792 void G1ParCopyClosure<barrier, do_mark_object>
4793 ::do_oop_work(T* p) {
4794   oop obj = oopDesc::load_decode_heap_oop(p);
4795 
4796   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4797 
4798   // here the null check is implicit in the cset_fast_test() test
4799   if (_g1->in_cset_fast_test(obj)) {
4800     oop forwardee;
4801     if (obj->is_forwarded()) {
4802       forwardee = obj->forwardee();
4803     } else {
4804       forwardee = copy_to_survivor_space(obj);
4805     }
4806     assert(forwardee != NULL, "forwardee should not be NULL");
4807     oopDesc::encode_store_heap_oop(p, forwardee);
4808     if (do_mark_object && forwardee != obj) {
4809       // If the object is self-forwarded we don't need to explicitly
4810       // mark it, the evacuation failure protocol will do so.
4811       mark_forwarded_object(obj, forwardee);
4812     }
4813 
4814     if (barrier == G1BarrierKlass) {
4815       do_klass_barrier(p, forwardee);
4816     }
4817   } else {
4818     // The object is not in collection set. If we're a root scanning
4819     // closure during an initial mark pause (i.e. do_mark_object will
4820     // be true) then attempt to mark the object.
4821     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4822       mark_object(obj);
4823     }
4824   }
4825 
4826   if (barrier == G1BarrierEvac && obj != NULL) {
4827     _par_scan_state->update_rs(_from, p, _worker_id);
4828   }
4829 }
4830 
4831 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
4832 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4833 
4834 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4835   assert(has_partial_array_mask(p), "invariant");
4836   oop from_obj = clear_partial_array_mask(p);
4837 
4838   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4839   assert(from_obj->is_objArray(), "must be obj array");
4840   objArrayOop from_obj_array = objArrayOop(from_obj);
4841   // The from-space object contains the real length.
4842   int length                 = from_obj_array->length();
4843 
4844   assert(from_obj->is_forwarded(), "must be forwarded");
4845   oop to_obj                 = from_obj->forwardee();
4846   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4847   objArrayOop to_obj_array   = objArrayOop(to_obj);
4848   // We keep track of the next start index in the length field of the
4849   // to-space object.
4850   int next_index             = to_obj_array->length();
4851   assert(0 <= next_index && next_index < length,
4852          err_msg("invariant, next index: %d, length: %d", next_index, length));
4853 
4854   int start                  = next_index;
4855   int end                    = length;
4856   int remainder              = end - start;
4857   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4858   if (remainder > 2 * ParGCArrayScanChunk) {
4859     end = start + ParGCArrayScanChunk;
4860     to_obj_array->set_length(end);
4861     // Push the remainder before we process the range in case another
4862     // worker has run out of things to do and can steal it.
4863     oop* from_obj_p = set_partial_array_mask(from_obj);
4864     _par_scan_state->push_on_queue(from_obj_p);
4865   } else {
4866     assert(length == end, "sanity");
4867     // We'll process the final range for this object. Restore the length
4868     // so that the heap remains parsable in case of evacuation failure.
4869     to_obj_array->set_length(end);
4870   }
4871   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4872   // Process indexes [start,end). It will also process the header
4873   // along with the first chunk (i.e., the chunk with start == 0).
4874   // Note that at this point the length field of to_obj_array is not
4875   // correct given that we are using it to keep track of the next
4876   // start index. oop_iterate_range() (thankfully!) ignores the length
4877   // field and only relies on the start / end parameters.  It does
4878   // however return the size of the object which will be incorrect. So
4879   // we have to ignore it even if we wanted to use it.
4880   to_obj_array->oop_iterate_range(&_scanner, start, end);
4881 }
4882 
4883 class G1ParEvacuateFollowersClosure : public VoidClosure {
4884 protected:
4885   G1CollectedHeap*              _g1h;
4886   G1ParScanThreadState*         _par_scan_state;
4887   RefToScanQueueSet*            _queues;
4888   ParallelTaskTerminator*       _terminator;
4889 
4890   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4891   RefToScanQueueSet*      queues()         { return _queues; }
4892   ParallelTaskTerminator* terminator()     { return _terminator; }
4893 
4894 public:
4895   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4896                                 G1ParScanThreadState* par_scan_state,
4897                                 RefToScanQueueSet* queues,
4898                                 ParallelTaskTerminator* terminator)
4899     : _g1h(g1h), _par_scan_state(par_scan_state),
4900       _queues(queues), _terminator(terminator) {}
4901 
4902   void do_void();
4903 
4904 private:
4905   inline bool offer_termination();
4906 };
4907 
4908 bool G1ParEvacuateFollowersClosure::offer_termination() {
4909   G1ParScanThreadState* const pss = par_scan_state();
4910   pss->start_term_time();
4911   const bool res = terminator()->offer_termination();
4912   pss->end_term_time();
4913   return res;
4914 }
4915 
4916 void G1ParEvacuateFollowersClosure::do_void() {
4917   StarTask stolen_task;
4918   G1ParScanThreadState* const pss = par_scan_state();
4919   pss->trim_queue();
4920 
4921   do {
4922     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4923       assert(pss->verify_task(stolen_task), "sanity");
4924       if (stolen_task.is_narrow()) {
4925         pss->deal_with_reference((narrowOop*) stolen_task);
4926       } else {
4927         pss->deal_with_reference((oop*) stolen_task);
4928       }
4929 
4930       // We've just processed a reference and we might have made
4931       // available new entries on the queues. So we have to make sure
4932       // we drain the queues as necessary.
4933       pss->trim_queue();
4934     }
4935   } while (!offer_termination());
4936 
4937   pss->retire_alloc_buffers();
4938 }
4939 
4940 class G1KlassScanClosure : public KlassClosure {
4941  G1ParCopyHelper* _closure;
4942  bool             _process_only_dirty;
4943  int              _count;
4944  public:
4945   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4946       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4947   void do_klass(Klass* klass) {
4948     // If the klass has not been dirtied we know that there's
4949     // no references into  the young gen and we can skip it.
4950    if (!_process_only_dirty || klass->has_modified_oops()) {
4951       // Clean the klass since we're going to scavenge all the metadata.
4952       klass->clear_modified_oops();
4953 
4954       // Tell the closure that this klass is the Klass to scavenge
4955       // and is the one to dirty if oops are left pointing into the young gen.
4956       _closure->set_scanned_klass(klass);
4957 
4958       klass->oops_do(_closure);
4959 
4960       _closure->set_scanned_klass(NULL);
4961     }
4962     _count++;
4963   }
4964 };
4965 
4966 class G1ParTask : public AbstractGangTask {
4967 protected:
4968   G1CollectedHeap*       _g1h;
4969   RefToScanQueueSet      *_queues;
4970   ParallelTaskTerminator _terminator;
4971   uint _n_workers;
4972 
4973   Mutex _stats_lock;
4974   Mutex* stats_lock() { return &_stats_lock; }
4975 
4976   size_t getNCards() {
4977     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4978       / G1BlockOffsetSharedArray::N_bytes;
4979   }
4980 
4981 public:
4982   G1ParTask(G1CollectedHeap* g1h,
4983             RefToScanQueueSet *task_queues)
4984     : AbstractGangTask("G1 collection"),
4985       _g1h(g1h),
4986       _queues(task_queues),
4987       _terminator(0, _queues),
4988       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4989   {}
4990 
4991   RefToScanQueueSet* queues() { return _queues; }
4992 
4993   RefToScanQueue *work_queue(int i) {
4994     return queues()->queue(i);
4995   }
4996 
4997   ParallelTaskTerminator* terminator() { return &_terminator; }
4998 
4999   virtual void set_for_termination(int active_workers) {
5000     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
5001     // in the young space (_par_seq_tasks) in the G1 heap
5002     // for SequentialSubTasksDone.
5003     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
5004     // both of which need setting by set_n_termination().
5005     _g1h->SharedHeap::set_n_termination(active_workers);
5006     _g1h->set_n_termination(active_workers);
5007     terminator()->reset_for_reuse(active_workers);
5008     _n_workers = active_workers;
5009   }
5010 
5011   void work(uint worker_id) {
5012     if (worker_id >= _n_workers) return;  // no work needed this round
5013 
5014     double start_time_ms = os::elapsedTime() * 1000.0;
5015     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5016 
5017     {
5018       ResourceMark rm;
5019       HandleMark   hm;
5020 
5021       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5022 
5023       G1ParScanThreadState            pss(_g1h, worker_id);
5024       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
5025       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5026       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
5027 
5028       pss.set_evac_closure(&scan_evac_cl);
5029       pss.set_evac_failure_closure(&evac_failure_cl);
5030       pss.set_partial_scan_closure(&partial_scan_cl);
5031 
5032       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5033       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5034 
5035       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5036       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5037 
5038       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5039       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5040       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5041 
5042       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5043       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5044 
5045       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5046         // We also need to mark copied objects.
5047         scan_root_cl = &scan_mark_root_cl;
5048         scan_klasses_cl = &scan_mark_klasses_cl_s;
5049       }
5050 
5051       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5052 
5053       // Don't scan the scavengable methods in the code cache as part
5054       // of strong root scanning. The code roots that point into a
5055       // region in the collection set are scanned when we scan the
5056       // region's RSet.
5057       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5058 
5059       pss.start_strong_roots();
5060       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5061                                     SharedHeap::ScanningOption(so),
5062                                     scan_root_cl,
5063                                     &push_heap_rs_cl,
5064                                     scan_klasses_cl,
5065                                     worker_id);
5066       pss.end_strong_roots();
5067 
5068       {
5069         double start = os::elapsedTime();
5070         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5071         evac.do_void();
5072         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5073         double term_ms = pss.term_time()*1000.0;
5074         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5075         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5076       }
5077       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5078       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5079 
5080       if (ParallelGCVerbose) {
5081         MutexLocker x(stats_lock());
5082         pss.print_termination_stats(worker_id);
5083       }
5084 
5085       assert(pss.refs()->is_empty(), "should be empty");
5086 
5087       // Close the inner scope so that the ResourceMark and HandleMark
5088       // destructors are executed here and are included as part of the
5089       // "GC Worker Time".
5090     }
5091 
5092     double end_time_ms = os::elapsedTime() * 1000.0;
5093     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5094   }
5095 };
5096 
5097 // *** Common G1 Evacuation Stuff
5098 
5099 // This method is run in a GC worker.
5100 
5101 void
5102 G1CollectedHeap::
5103 g1_process_strong_roots(bool is_scavenging,
5104                         ScanningOption so,
5105                         OopClosure* scan_non_heap_roots,
5106                         OopsInHeapRegionClosure* scan_rs,
5107                         G1KlassScanClosure* scan_klasses,
5108                         int worker_i) {
5109 
5110   // First scan the strong roots
5111   double ext_roots_start = os::elapsedTime();
5112   double closure_app_time_sec = 0.0;
5113 
5114   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5115 
5116   assert(so & SO_AllCodeCache || scan_rs != NULL, "must scan code roots somehow");
5117   // Walk the code cache/strong code roots w/o buffering, because StarTask
5118   // cannot handle unaligned oop locations.
5119   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5120 
5121   process_strong_roots(false, // no scoping; this is parallel code
5122                        so,
5123                        &buf_scan_non_heap_roots,
5124                        &eager_scan_code_roots,
5125                        scan_klasses
5126                        );
5127 
5128   // Now the CM ref_processor roots.
5129   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5130     // We need to treat the discovered reference lists of the
5131     // concurrent mark ref processor as roots and keep entries
5132     // (which are added by the marking threads) on them live
5133     // until they can be processed at the end of marking.
5134     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5135   }
5136 
5137   // Finish up any enqueued closure apps (attributed as object copy time).
5138   buf_scan_non_heap_roots.done();
5139 
5140   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5141 
5142   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5143 
5144   double ext_root_time_ms =
5145     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5146 
5147   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5148 
5149   // During conc marking we have to filter the per-thread SATB buffers
5150   // to make sure we remove any oops into the CSet (which will show up
5151   // as implicitly live).
5152   double satb_filtering_ms = 0.0;
5153   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5154     if (mark_in_progress()) {
5155       double satb_filter_start = os::elapsedTime();
5156 
5157       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5158 
5159       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5160     }
5161   }
5162   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5163 
5164   // If this is an initial mark pause, and we're not scanning
5165   // the entire code cache, we need to mark the oops in the
5166   // strong code root lists for the regions that are not in
5167   // the collection set.
5168   // Note all threads participate in this set of root tasks.
5169   double mark_strong_code_roots_ms = 0.0;
5170   if (g1_policy()->during_initial_mark_pause() && !(so & SO_AllCodeCache)) {
5171     double mark_strong_roots_start = os::elapsedTime();
5172     mark_strong_code_roots(worker_i);
5173     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5174   }
5175   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5176 
5177   // Now scan the complement of the collection set.
5178   if (scan_rs != NULL) {
5179     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5180   }
5181   _process_strong_tasks->all_tasks_completed();
5182 }
5183 
5184 void
5185 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5186   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5187   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5188 }
5189 
5190 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
5191 private:
5192   BoolObjectClosure* _is_alive;
5193   int _initial_string_table_size;
5194   int _initial_symbol_table_size;
5195 
5196   bool  _process_strings;
5197   int _strings_processed;
5198   int _strings_removed;
5199 
5200   bool  _process_symbols;
5201   int _symbols_processed;
5202   int _symbols_removed;
5203 
5204   bool _do_in_parallel;
5205 public:
5206   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5207     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5208     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5209     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5210     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5211 
5212     _initial_string_table_size = StringTable::the_table()->table_size();
5213     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5214     if (process_strings) {
5215       StringTable::clear_parallel_claimed_index();
5216     }
5217     if (process_symbols) {
5218       SymbolTable::clear_parallel_claimed_index();
5219     }
5220   }
5221 
5222   ~G1StringSymbolTableUnlinkTask() {
5223     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5224               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
5225                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5226     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5227               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
5228                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5229   }
5230 
5231   void work(uint worker_id) {
5232     if (_do_in_parallel) {
5233       int strings_processed = 0;
5234       int strings_removed = 0;
5235       int symbols_processed = 0;
5236       int symbols_removed = 0;
5237       if (_process_strings) {
5238         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5239         Atomic::add(strings_processed, &_strings_processed);
5240         Atomic::add(strings_removed, &_strings_removed);
5241       }
5242       if (_process_symbols) {
5243         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5244         Atomic::add(symbols_processed, &_symbols_processed);
5245         Atomic::add(symbols_removed, &_symbols_removed);
5246       }
5247     } else {
5248       if (_process_strings) {
5249         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5250       }
5251       if (_process_symbols) {
5252         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5253       }
5254     }
5255   }
5256 
5257   size_t strings_processed() const { return (size_t)_strings_processed; }
5258   size_t strings_removed()   const { return (size_t)_strings_removed; }
5259 
5260   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5261   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5262 };
5263 
5264 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5265                                                      bool process_strings, bool process_symbols) {
5266   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5267                    _g1h->workers()->active_workers() : 1);
5268 
5269   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5270   if (G1CollectedHeap::use_parallel_gc_threads()) {
5271     set_par_threads(n_workers);
5272     workers()->run_task(&g1_unlink_task);
5273     set_par_threads(0);
5274   } else {
5275     g1_unlink_task.work(0);
5276   }
5277   if (G1TraceStringSymbolTableScrubbing) {
5278     gclog_or_tty->print_cr("Cleaned string and symbol table, "
5279                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5280                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5281                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
5282                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
5283   }
5284 }
5285 
5286 // Weak Reference Processing support
5287 
5288 // An always "is_alive" closure that is used to preserve referents.
5289 // If the object is non-null then it's alive.  Used in the preservation
5290 // of referent objects that are pointed to by reference objects
5291 // discovered by the CM ref processor.
5292 class G1AlwaysAliveClosure: public BoolObjectClosure {
5293   G1CollectedHeap* _g1;
5294 public:
5295   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5296   bool do_object_b(oop p) {
5297     if (p != NULL) {
5298       return true;
5299     }
5300     return false;
5301   }
5302 };
5303 
5304 bool G1STWIsAliveClosure::do_object_b(oop p) {
5305   // An object is reachable if it is outside the collection set,
5306   // or is inside and copied.
5307   return !_g1->obj_in_cs(p) || p->is_forwarded();
5308 }
5309 
5310 // Non Copying Keep Alive closure
5311 class G1KeepAliveClosure: public OopClosure {
5312   G1CollectedHeap* _g1;
5313 public:
5314   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5315   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5316   void do_oop(      oop* p) {
5317     oop obj = *p;
5318 
5319     if (_g1->obj_in_cs(obj)) {
5320       assert( obj->is_forwarded(), "invariant" );
5321       *p = obj->forwardee();
5322     }
5323   }
5324 };
5325 
5326 // Copying Keep Alive closure - can be called from both
5327 // serial and parallel code as long as different worker
5328 // threads utilize different G1ParScanThreadState instances
5329 // and different queues.
5330 
5331 class G1CopyingKeepAliveClosure: public OopClosure {
5332   G1CollectedHeap*         _g1h;
5333   OopClosure*              _copy_non_heap_obj_cl;
5334   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5335   G1ParScanThreadState*    _par_scan_state;
5336 
5337 public:
5338   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5339                             OopClosure* non_heap_obj_cl,
5340                             OopsInHeapRegionClosure* metadata_obj_cl,
5341                             G1ParScanThreadState* pss):
5342     _g1h(g1h),
5343     _copy_non_heap_obj_cl(non_heap_obj_cl),
5344     _copy_metadata_obj_cl(metadata_obj_cl),
5345     _par_scan_state(pss)
5346   {}
5347 
5348   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5349   virtual void do_oop(      oop* p) { do_oop_work(p); }
5350 
5351   template <class T> void do_oop_work(T* p) {
5352     oop obj = oopDesc::load_decode_heap_oop(p);
5353 
5354     if (_g1h->obj_in_cs(obj)) {
5355       // If the referent object has been forwarded (either copied
5356       // to a new location or to itself in the event of an
5357       // evacuation failure) then we need to update the reference
5358       // field and, if both reference and referent are in the G1
5359       // heap, update the RSet for the referent.
5360       //
5361       // If the referent has not been forwarded then we have to keep
5362       // it alive by policy. Therefore we have copy the referent.
5363       //
5364       // If the reference field is in the G1 heap then we can push
5365       // on the PSS queue. When the queue is drained (after each
5366       // phase of reference processing) the object and it's followers
5367       // will be copied, the reference field set to point to the
5368       // new location, and the RSet updated. Otherwise we need to
5369       // use the the non-heap or metadata closures directly to copy
5370       // the referent object and update the pointer, while avoiding
5371       // updating the RSet.
5372 
5373       if (_g1h->is_in_g1_reserved(p)) {
5374         _par_scan_state->push_on_queue(p);
5375       } else {
5376         assert(!ClassLoaderDataGraph::contains((address)p),
5377                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5378                               PTR_FORMAT, p));
5379           _copy_non_heap_obj_cl->do_oop(p);
5380         }
5381       }
5382     }
5383 };
5384 
5385 // Serial drain queue closure. Called as the 'complete_gc'
5386 // closure for each discovered list in some of the
5387 // reference processing phases.
5388 
5389 class G1STWDrainQueueClosure: public VoidClosure {
5390 protected:
5391   G1CollectedHeap* _g1h;
5392   G1ParScanThreadState* _par_scan_state;
5393 
5394   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5395 
5396 public:
5397   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5398     _g1h(g1h),
5399     _par_scan_state(pss)
5400   { }
5401 
5402   void do_void() {
5403     G1ParScanThreadState* const pss = par_scan_state();
5404     pss->trim_queue();
5405   }
5406 };
5407 
5408 // Parallel Reference Processing closures
5409 
5410 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5411 // processing during G1 evacuation pauses.
5412 
5413 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5414 private:
5415   G1CollectedHeap*   _g1h;
5416   RefToScanQueueSet* _queues;
5417   FlexibleWorkGang*  _workers;
5418   int                _active_workers;
5419 
5420 public:
5421   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5422                         FlexibleWorkGang* workers,
5423                         RefToScanQueueSet *task_queues,
5424                         int n_workers) :
5425     _g1h(g1h),
5426     _queues(task_queues),
5427     _workers(workers),
5428     _active_workers(n_workers)
5429   {
5430     assert(n_workers > 0, "shouldn't call this otherwise");
5431   }
5432 
5433   // Executes the given task using concurrent marking worker threads.
5434   virtual void execute(ProcessTask& task);
5435   virtual void execute(EnqueueTask& task);
5436 };
5437 
5438 // Gang task for possibly parallel reference processing
5439 
5440 class G1STWRefProcTaskProxy: public AbstractGangTask {
5441   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5442   ProcessTask&     _proc_task;
5443   G1CollectedHeap* _g1h;
5444   RefToScanQueueSet *_task_queues;
5445   ParallelTaskTerminator* _terminator;
5446 
5447 public:
5448   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5449                      G1CollectedHeap* g1h,
5450                      RefToScanQueueSet *task_queues,
5451                      ParallelTaskTerminator* terminator) :
5452     AbstractGangTask("Process reference objects in parallel"),
5453     _proc_task(proc_task),
5454     _g1h(g1h),
5455     _task_queues(task_queues),
5456     _terminator(terminator)
5457   {}
5458 
5459   virtual void work(uint worker_id) {
5460     // The reference processing task executed by a single worker.
5461     ResourceMark rm;
5462     HandleMark   hm;
5463 
5464     G1STWIsAliveClosure is_alive(_g1h);
5465 
5466     G1ParScanThreadState pss(_g1h, worker_id);
5467 
5468     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5469     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5470     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5471 
5472     pss.set_evac_closure(&scan_evac_cl);
5473     pss.set_evac_failure_closure(&evac_failure_cl);
5474     pss.set_partial_scan_closure(&partial_scan_cl);
5475 
5476     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5477     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5478 
5479     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5480     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5481 
5482     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5483     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5484 
5485     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5486       // We also need to mark copied objects.
5487       copy_non_heap_cl = &copy_mark_non_heap_cl;
5488       copy_metadata_cl = &copy_mark_metadata_cl;
5489     }
5490 
5491     // Keep alive closure.
5492     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5493 
5494     // Complete GC closure
5495     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5496 
5497     // Call the reference processing task's work routine.
5498     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5499 
5500     // Note we cannot assert that the refs array is empty here as not all
5501     // of the processing tasks (specifically phase2 - pp2_work) execute
5502     // the complete_gc closure (which ordinarily would drain the queue) so
5503     // the queue may not be empty.
5504   }
5505 };
5506 
5507 // Driver routine for parallel reference processing.
5508 // Creates an instance of the ref processing gang
5509 // task and has the worker threads execute it.
5510 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5511   assert(_workers != NULL, "Need parallel worker threads.");
5512 
5513   ParallelTaskTerminator terminator(_active_workers, _queues);
5514   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5515 
5516   _g1h->set_par_threads(_active_workers);
5517   _workers->run_task(&proc_task_proxy);
5518   _g1h->set_par_threads(0);
5519 }
5520 
5521 // Gang task for parallel reference enqueueing.
5522 
5523 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5524   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5525   EnqueueTask& _enq_task;
5526 
5527 public:
5528   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5529     AbstractGangTask("Enqueue reference objects in parallel"),
5530     _enq_task(enq_task)
5531   { }
5532 
5533   virtual void work(uint worker_id) {
5534     _enq_task.work(worker_id);
5535   }
5536 };
5537 
5538 // Driver routine for parallel reference enqueueing.
5539 // Creates an instance of the ref enqueueing gang
5540 // task and has the worker threads execute it.
5541 
5542 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5543   assert(_workers != NULL, "Need parallel worker threads.");
5544 
5545   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5546 
5547   _g1h->set_par_threads(_active_workers);
5548   _workers->run_task(&enq_task_proxy);
5549   _g1h->set_par_threads(0);
5550 }
5551 
5552 // End of weak reference support closures
5553 
5554 // Abstract task used to preserve (i.e. copy) any referent objects
5555 // that are in the collection set and are pointed to by reference
5556 // objects discovered by the CM ref processor.
5557 
5558 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5559 protected:
5560   G1CollectedHeap* _g1h;
5561   RefToScanQueueSet      *_queues;
5562   ParallelTaskTerminator _terminator;
5563   uint _n_workers;
5564 
5565 public:
5566   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5567     AbstractGangTask("ParPreserveCMReferents"),
5568     _g1h(g1h),
5569     _queues(task_queues),
5570     _terminator(workers, _queues),
5571     _n_workers(workers)
5572   { }
5573 
5574   void work(uint worker_id) {
5575     ResourceMark rm;
5576     HandleMark   hm;
5577 
5578     G1ParScanThreadState            pss(_g1h, worker_id);
5579     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5580     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5581     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5582 
5583     pss.set_evac_closure(&scan_evac_cl);
5584     pss.set_evac_failure_closure(&evac_failure_cl);
5585     pss.set_partial_scan_closure(&partial_scan_cl);
5586 
5587     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5588 
5589 
5590     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5591     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5592 
5593     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5594     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5595 
5596     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5597     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5598 
5599     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5600       // We also need to mark copied objects.
5601       copy_non_heap_cl = &copy_mark_non_heap_cl;
5602       copy_metadata_cl = &copy_mark_metadata_cl;
5603     }
5604 
5605     // Is alive closure
5606     G1AlwaysAliveClosure always_alive(_g1h);
5607 
5608     // Copying keep alive closure. Applied to referent objects that need
5609     // to be copied.
5610     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5611 
5612     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5613 
5614     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5615     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5616 
5617     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5618     // So this must be true - but assert just in case someone decides to
5619     // change the worker ids.
5620     assert(0 <= worker_id && worker_id < limit, "sanity");
5621     assert(!rp->discovery_is_atomic(), "check this code");
5622 
5623     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5624     for (uint idx = worker_id; idx < limit; idx += stride) {
5625       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5626 
5627       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5628       while (iter.has_next()) {
5629         // Since discovery is not atomic for the CM ref processor, we
5630         // can see some null referent objects.
5631         iter.load_ptrs(DEBUG_ONLY(true));
5632         oop ref = iter.obj();
5633 
5634         // This will filter nulls.
5635         if (iter.is_referent_alive()) {
5636           iter.make_referent_alive();
5637         }
5638         iter.move_to_next();
5639       }
5640     }
5641 
5642     // Drain the queue - which may cause stealing
5643     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5644     drain_queue.do_void();
5645     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5646     assert(pss.refs()->is_empty(), "should be");
5647   }
5648 };
5649 
5650 // Weak Reference processing during an evacuation pause (part 1).
5651 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5652   double ref_proc_start = os::elapsedTime();
5653 
5654   ReferenceProcessor* rp = _ref_processor_stw;
5655   assert(rp->discovery_enabled(), "should have been enabled");
5656 
5657   // Any reference objects, in the collection set, that were 'discovered'
5658   // by the CM ref processor should have already been copied (either by
5659   // applying the external root copy closure to the discovered lists, or
5660   // by following an RSet entry).
5661   //
5662   // But some of the referents, that are in the collection set, that these
5663   // reference objects point to may not have been copied: the STW ref
5664   // processor would have seen that the reference object had already
5665   // been 'discovered' and would have skipped discovering the reference,
5666   // but would not have treated the reference object as a regular oop.
5667   // As a result the copy closure would not have been applied to the
5668   // referent object.
5669   //
5670   // We need to explicitly copy these referent objects - the references
5671   // will be processed at the end of remarking.
5672   //
5673   // We also need to do this copying before we process the reference
5674   // objects discovered by the STW ref processor in case one of these
5675   // referents points to another object which is also referenced by an
5676   // object discovered by the STW ref processor.
5677 
5678   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5679            no_of_gc_workers == workers()->active_workers(),
5680            "Need to reset active GC workers");
5681 
5682   set_par_threads(no_of_gc_workers);
5683   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5684                                                  no_of_gc_workers,
5685                                                  _task_queues);
5686 
5687   if (G1CollectedHeap::use_parallel_gc_threads()) {
5688     workers()->run_task(&keep_cm_referents);
5689   } else {
5690     keep_cm_referents.work(0);
5691   }
5692 
5693   set_par_threads(0);
5694 
5695   // Closure to test whether a referent is alive.
5696   G1STWIsAliveClosure is_alive(this);
5697 
5698   // Even when parallel reference processing is enabled, the processing
5699   // of JNI refs is serial and performed serially by the current thread
5700   // rather than by a worker. The following PSS will be used for processing
5701   // JNI refs.
5702 
5703   // Use only a single queue for this PSS.
5704   G1ParScanThreadState pss(this, 0);
5705 
5706   // We do not embed a reference processor in the copying/scanning
5707   // closures while we're actually processing the discovered
5708   // reference objects.
5709   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5710   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5711   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5712 
5713   pss.set_evac_closure(&scan_evac_cl);
5714   pss.set_evac_failure_closure(&evac_failure_cl);
5715   pss.set_partial_scan_closure(&partial_scan_cl);
5716 
5717   assert(pss.refs()->is_empty(), "pre-condition");
5718 
5719   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5720   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5721 
5722   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5723   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5724 
5725   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5726   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5727 
5728   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5729     // We also need to mark copied objects.
5730     copy_non_heap_cl = &copy_mark_non_heap_cl;
5731     copy_metadata_cl = &copy_mark_metadata_cl;
5732   }
5733 
5734   // Keep alive closure.
5735   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5736 
5737   // Serial Complete GC closure
5738   G1STWDrainQueueClosure drain_queue(this, &pss);
5739 
5740   // Setup the soft refs policy...
5741   rp->setup_policy(false);
5742 
5743   ReferenceProcessorStats stats;
5744   if (!rp->processing_is_mt()) {
5745     // Serial reference processing...
5746     stats = rp->process_discovered_references(&is_alive,
5747                                               &keep_alive,
5748                                               &drain_queue,
5749                                               NULL,
5750                                               _gc_timer_stw);
5751   } else {
5752     // Parallel reference processing
5753     assert(rp->num_q() == no_of_gc_workers, "sanity");
5754     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5755 
5756     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5757     stats = rp->process_discovered_references(&is_alive,
5758                                               &keep_alive,
5759                                               &drain_queue,
5760                                               &par_task_executor,
5761                                               _gc_timer_stw);
5762   }
5763 
5764   _gc_tracer_stw->report_gc_reference_stats(stats);
5765   // We have completed copying any necessary live referent objects
5766   // (that were not copied during the actual pause) so we can
5767   // retire any active alloc buffers
5768   pss.retire_alloc_buffers();
5769   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5770 
5771   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5772   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5773 }
5774 
5775 // Weak Reference processing during an evacuation pause (part 2).
5776 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5777   double ref_enq_start = os::elapsedTime();
5778 
5779   ReferenceProcessor* rp = _ref_processor_stw;
5780   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5781 
5782   // Now enqueue any remaining on the discovered lists on to
5783   // the pending list.
5784   if (!rp->processing_is_mt()) {
5785     // Serial reference processing...
5786     rp->enqueue_discovered_references();
5787   } else {
5788     // Parallel reference enqueueing
5789 
5790     assert(no_of_gc_workers == workers()->active_workers(),
5791            "Need to reset active workers");
5792     assert(rp->num_q() == no_of_gc_workers, "sanity");
5793     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5794 
5795     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5796     rp->enqueue_discovered_references(&par_task_executor);
5797   }
5798 
5799   rp->verify_no_references_recorded();
5800   assert(!rp->discovery_enabled(), "should have been disabled");
5801 
5802   // FIXME
5803   // CM's reference processing also cleans up the string and symbol tables.
5804   // Should we do that here also? We could, but it is a serial operation
5805   // and could significantly increase the pause time.
5806 
5807   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5808   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5809 }
5810 
5811 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5812   _expand_heap_after_alloc_failure = true;
5813   _evacuation_failed = false;
5814 
5815   // Should G1EvacuationFailureALot be in effect for this GC?
5816   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5817 
5818   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5819 
5820   // Disable the hot card cache.
5821   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5822   hot_card_cache->reset_hot_cache_claimed_index();
5823   hot_card_cache->set_use_cache(false);
5824 
5825   uint n_workers;
5826   if (G1CollectedHeap::use_parallel_gc_threads()) {
5827     n_workers =
5828       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5829                                      workers()->active_workers(),
5830                                      Threads::number_of_non_daemon_threads());
5831     assert(UseDynamicNumberOfGCThreads ||
5832            n_workers == workers()->total_workers(),
5833            "If not dynamic should be using all the  workers");
5834     workers()->set_active_workers(n_workers);
5835     set_par_threads(n_workers);
5836   } else {
5837     assert(n_par_threads() == 0,
5838            "Should be the original non-parallel value");
5839     n_workers = 1;
5840   }
5841 
5842   G1ParTask g1_par_task(this, _task_queues);
5843 
5844   init_for_evac_failure(NULL);
5845 
5846   rem_set()->prepare_for_younger_refs_iterate(true);
5847 
5848   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5849   double start_par_time_sec = os::elapsedTime();
5850   double end_par_time_sec;
5851 
5852   {
5853     StrongRootsScope srs(this);
5854 
5855     if (G1CollectedHeap::use_parallel_gc_threads()) {
5856       // The individual threads will set their evac-failure closures.
5857       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5858       // These tasks use ShareHeap::_process_strong_tasks
5859       assert(UseDynamicNumberOfGCThreads ||
5860              workers()->active_workers() == workers()->total_workers(),
5861              "If not dynamic should be using all the  workers");
5862       workers()->run_task(&g1_par_task);
5863     } else {
5864       g1_par_task.set_for_termination(n_workers);
5865       g1_par_task.work(0);
5866     }
5867     end_par_time_sec = os::elapsedTime();
5868 
5869     // Closing the inner scope will execute the destructor
5870     // for the StrongRootsScope object. We record the current
5871     // elapsed time before closing the scope so that time
5872     // taken for the SRS destructor is NOT included in the
5873     // reported parallel time.
5874   }
5875 
5876   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5877   g1_policy()->phase_times()->record_par_time(par_time_ms);
5878 
5879   double code_root_fixup_time_ms =
5880         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5881   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5882 
5883   set_par_threads(0);
5884 
5885   // Process any discovered reference objects - we have
5886   // to do this _before_ we retire the GC alloc regions
5887   // as we may have to copy some 'reachable' referent
5888   // objects (and their reachable sub-graphs) that were
5889   // not copied during the pause.
5890   process_discovered_references(n_workers);
5891 
5892   // Weak root processing.
5893   {
5894     G1STWIsAliveClosure is_alive(this);
5895     G1KeepAliveClosure keep_alive(this);
5896     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5897   }
5898 
5899   release_gc_alloc_regions(n_workers, evacuation_info);
5900   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5901 
5902   // Reset and re-enable the hot card cache.
5903   // Note the counts for the cards in the regions in the
5904   // collection set are reset when the collection set is freed.
5905   hot_card_cache->reset_hot_cache();
5906   hot_card_cache->set_use_cache(true);
5907 
5908   // Migrate the strong code roots attached to each region in
5909   // the collection set. Ideally we would like to do this
5910   // after we have finished the scanning/evacuation of the
5911   // strong code roots for a particular heap region.
5912   migrate_strong_code_roots();
5913 
5914   if (g1_policy()->during_initial_mark_pause()) {
5915     // Reset the claim values set during marking the strong code roots
5916     reset_heap_region_claim_values();
5917   }
5918 
5919   finalize_for_evac_failure();
5920 
5921   if (evacuation_failed()) {
5922     remove_self_forwarding_pointers();
5923 
5924     // Reset the G1EvacuationFailureALot counters and flags
5925     // Note: the values are reset only when an actual
5926     // evacuation failure occurs.
5927     NOT_PRODUCT(reset_evacuation_should_fail();)
5928   }
5929 
5930   // Enqueue any remaining references remaining on the STW
5931   // reference processor's discovered lists. We need to do
5932   // this after the card table is cleaned (and verified) as
5933   // the act of enqueueing entries on to the pending list
5934   // will log these updates (and dirty their associated
5935   // cards). We need these updates logged to update any
5936   // RSets.
5937   enqueue_discovered_references(n_workers);
5938 
5939   if (G1DeferredRSUpdate) {
5940     RedirtyLoggedCardTableEntryFastClosure redirty;
5941     dirty_card_queue_set().set_closure(&redirty);
5942     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5943 
5944     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5945     dcq.merge_bufferlists(&dirty_card_queue_set());
5946     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5947   }
5948   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5949 }
5950 
5951 void G1CollectedHeap::free_region(HeapRegion* hr,
5952                                   FreeRegionList* free_list,
5953                                   bool par) {
5954   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5955   assert(!hr->is_empty(), "the region should not be empty");
5956   assert(free_list != NULL, "pre-condition");
5957 
5958   // Clear the card counts for this region.
5959   // Note: we only need to do this if the region is not young
5960   // (since we don't refine cards in young regions).
5961   if (!hr->is_young()) {
5962     _cg1r->hot_card_cache()->reset_card_counts(hr);
5963   }
5964   hr->hr_clear(par, true /* clear_space */);
5965   free_list->add_as_head(hr);
5966 }
5967 
5968 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5969                                      FreeRegionList* free_list,
5970                                      bool par) {
5971   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5972   assert(free_list != NULL, "pre-condition");
5973 
5974   size_t hr_capacity = hr->capacity();
5975   // We need to read this before we make the region non-humongous,
5976   // otherwise the information will be gone.
5977   uint last_index = hr->last_hc_index();
5978   hr->set_notHumongous();
5979   free_region(hr, free_list, par);
5980 
5981   uint i = hr->hrs_index() + 1;
5982   while (i < last_index) {
5983     HeapRegion* curr_hr = region_at(i);
5984     assert(curr_hr->continuesHumongous(), "invariant");
5985     curr_hr->set_notHumongous();
5986     free_region(curr_hr, free_list, par);
5987     i += 1;
5988   }
5989 }
5990 
5991 void G1CollectedHeap::remove_from_sets(const HeapRegionSetCount& old_regions_removed,
5992                                        const HeapRegionSetCount& humongous_regions_removed) {
5993   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5994     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5995     _old_set.bulk_remove(old_regions_removed);
5996     _humongous_set.bulk_remove(humongous_regions_removed);
5997   }
5998 
5999 }
6000 
6001 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6002   assert(list != NULL, "list can't be null");
6003   if (!list->is_empty()) {
6004     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6005     _free_list.add_as_head(list);
6006   }
6007 }
6008 
6009 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6010   assert(_summary_bytes_used >= bytes,
6011          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
6012                   _summary_bytes_used, bytes));
6013   _summary_bytes_used -= bytes;
6014 }
6015 
6016 void G1CollectedHeap::decrement_summary_bytes_mt(size_t bytes) {
6017   if (bytes > 0) {
6018     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
6019     decrement_summary_bytes(bytes);
6020   }
6021 }
6022 
6023 class G1ParCleanupCTTask : public AbstractGangTask {
6024   G1SATBCardTableModRefBS* _ct_bs;
6025   G1CollectedHeap* _g1h;
6026   HeapRegion* volatile _su_head;
6027 public:
6028   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6029                      G1CollectedHeap* g1h) :
6030     AbstractGangTask("G1 Par Cleanup CT Task"),
6031     _ct_bs(ct_bs), _g1h(g1h) { }
6032 
6033   void work(uint worker_id) {
6034     HeapRegion* r;
6035     while (r = _g1h->pop_dirty_cards_region()) {
6036       clear_cards(r);
6037     }
6038   }
6039 
6040   void clear_cards(HeapRegion* r) {
6041     // Cards of the survivors should have already been dirtied.
6042     if (!r->is_survivor()) {
6043       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6044     }
6045   }
6046 };
6047 
6048 #ifndef PRODUCT
6049 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6050   G1CollectedHeap* _g1h;
6051   G1SATBCardTableModRefBS* _ct_bs;
6052 public:
6053   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6054     : _g1h(g1h), _ct_bs(ct_bs) { }
6055   virtual bool doHeapRegion(HeapRegion* r) {
6056     if (r->is_survivor()) {
6057       _g1h->verify_dirty_region(r);
6058     } else {
6059       _g1h->verify_not_dirty_region(r);
6060     }
6061     return false;
6062   }
6063 };
6064 
6065 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6066   // All of the region should be clean.
6067   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6068   MemRegion mr(hr->bottom(), hr->end());
6069   ct_bs->verify_not_dirty_region(mr);
6070 }
6071 
6072 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6073   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6074   // dirty allocated blocks as they allocate them. The thread that
6075   // retires each region and replaces it with a new one will do a
6076   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6077   // not dirty that area (one less thing to have to do while holding
6078   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6079   // is dirty.
6080   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6081   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6082   if (hr->is_young()) {
6083     ct_bs->verify_g1_young_region(mr);
6084   } else {
6085     ct_bs->verify_dirty_region(mr);
6086   }
6087 }
6088 
6089 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6090   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6091   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6092     verify_dirty_region(hr);
6093   }
6094 }
6095 
6096 void G1CollectedHeap::verify_dirty_young_regions() {
6097   verify_dirty_young_list(_young_list->first_region());
6098 }
6099 #endif
6100 
6101 void G1CollectedHeap::cleanUpCardTable() {
6102   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6103   double start = os::elapsedTime();
6104 
6105   {
6106     // Iterate over the dirty cards region list.
6107     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6108 
6109     if (G1CollectedHeap::use_parallel_gc_threads()) {
6110       set_par_threads();
6111       workers()->run_task(&cleanup_task);
6112       set_par_threads(0);
6113     } else {
6114       while (_dirty_cards_region_list) {
6115         HeapRegion* r = _dirty_cards_region_list;
6116         cleanup_task.clear_cards(r);
6117         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6118         if (_dirty_cards_region_list == r) {
6119           // The last region.
6120           _dirty_cards_region_list = NULL;
6121         }
6122         r->set_next_dirty_cards_region(NULL);
6123       }
6124     }
6125 #ifndef PRODUCT
6126     if (G1VerifyCTCleanup || VerifyAfterGC) {
6127       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6128       heap_region_iterate(&cleanup_verifier);
6129     }
6130 #endif
6131   }
6132 
6133   double elapsed = os::elapsedTime() - start;
6134   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6135 }
6136 
6137 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6138   size_t pre_used = 0;
6139   FreeRegionList local_free_list("Local List for CSet Freeing", NULL);
6140 
6141   double young_time_ms     = 0.0;
6142   double non_young_time_ms = 0.0;
6143 
6144   // Since the collection set is a superset of the the young list,
6145   // all we need to do to clear the young list is clear its
6146   // head and length, and unlink any young regions in the code below
6147   _young_list->clear();
6148 
6149   G1CollectorPolicy* policy = g1_policy();
6150 
6151   double start_sec = os::elapsedTime();
6152   bool non_young = true;
6153 
6154   HeapRegion* cur = cs_head;
6155   int age_bound = -1;
6156   size_t rs_lengths = 0;
6157 
6158   while (cur != NULL) {
6159     assert(!is_on_master_free_list(cur), "sanity");
6160     if (non_young) {
6161       if (cur->is_young()) {
6162         double end_sec = os::elapsedTime();
6163         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6164         non_young_time_ms += elapsed_ms;
6165 
6166         start_sec = os::elapsedTime();
6167         non_young = false;
6168       }
6169     } else {
6170       if (!cur->is_young()) {
6171         double end_sec = os::elapsedTime();
6172         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6173         young_time_ms += elapsed_ms;
6174 
6175         start_sec = os::elapsedTime();
6176         non_young = true;
6177       }
6178     }
6179 
6180     rs_lengths += cur->rem_set()->occupied();
6181 
6182     HeapRegion* next = cur->next_in_collection_set();
6183     assert(cur->in_collection_set(), "bad CS");
6184     cur->set_next_in_collection_set(NULL);
6185     cur->set_in_collection_set(false);
6186 
6187     if (cur->is_young()) {
6188       int index = cur->young_index_in_cset();
6189       assert(index != -1, "invariant");
6190       assert((uint) index < policy->young_cset_region_length(), "invariant");
6191       size_t words_survived = _surviving_young_words[index];
6192       cur->record_surv_words_in_group(words_survived);
6193 
6194       // At this point the we have 'popped' cur from the collection set
6195       // (linked via next_in_collection_set()) but it is still in the
6196       // young list (linked via next_young_region()). Clear the
6197       // _next_young_region field.
6198       cur->set_next_young_region(NULL);
6199     } else {
6200       int index = cur->young_index_in_cset();
6201       assert(index == -1, "invariant");
6202     }
6203 
6204     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6205             (!cur->is_young() && cur->young_index_in_cset() == -1),
6206             "invariant" );
6207 
6208     if (!cur->evacuation_failed()) {
6209       MemRegion used_mr = cur->used_region();
6210 
6211       // And the region is empty.
6212       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6213       pre_used += cur->used();
6214       free_region(cur, &local_free_list, false /* par */);
6215     } else {
6216       cur->uninstall_surv_rate_group();
6217       if (cur->is_young()) {
6218         cur->set_young_index_in_cset(-1);
6219       }
6220       cur->set_not_young();
6221       cur->set_evacuation_failed(false);
6222       // The region is now considered to be old.
6223       _old_set.add(cur);
6224       evacuation_info.increment_collectionset_used_after(cur->used());
6225     }
6226     cur = next;
6227   }
6228 
6229   evacuation_info.set_regions_freed(local_free_list.length());
6230   policy->record_max_rs_lengths(rs_lengths);
6231   policy->cset_regions_freed();
6232 
6233   double end_sec = os::elapsedTime();
6234   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6235 
6236   if (non_young) {
6237     non_young_time_ms += elapsed_ms;
6238   } else {
6239     young_time_ms += elapsed_ms;
6240   }
6241 
6242   prepend_to_freelist(&local_free_list);
6243   decrement_summary_bytes(pre_used);
6244   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6245   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6246 }
6247 
6248 // This routine is similar to the above but does not record
6249 // any policy statistics or update free lists; we are abandoning
6250 // the current incremental collection set in preparation of a
6251 // full collection. After the full GC we will start to build up
6252 // the incremental collection set again.
6253 // This is only called when we're doing a full collection
6254 // and is immediately followed by the tearing down of the young list.
6255 
6256 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6257   HeapRegion* cur = cs_head;
6258 
6259   while (cur != NULL) {
6260     HeapRegion* next = cur->next_in_collection_set();
6261     assert(cur->in_collection_set(), "bad CS");
6262     cur->set_next_in_collection_set(NULL);
6263     cur->set_in_collection_set(false);
6264     cur->set_young_index_in_cset(-1);
6265     cur = next;
6266   }
6267 }
6268 
6269 void G1CollectedHeap::set_free_regions_coming() {
6270   if (G1ConcRegionFreeingVerbose) {
6271     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6272                            "setting free regions coming");
6273   }
6274 
6275   assert(!free_regions_coming(), "pre-condition");
6276   _free_regions_coming = true;
6277 }
6278 
6279 void G1CollectedHeap::reset_free_regions_coming() {
6280   assert(free_regions_coming(), "pre-condition");
6281 
6282   {
6283     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6284     _free_regions_coming = false;
6285     SecondaryFreeList_lock->notify_all();
6286   }
6287 
6288   if (G1ConcRegionFreeingVerbose) {
6289     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6290                            "reset free regions coming");
6291   }
6292 }
6293 
6294 void G1CollectedHeap::wait_while_free_regions_coming() {
6295   // Most of the time we won't have to wait, so let's do a quick test
6296   // first before we take the lock.
6297   if (!free_regions_coming()) {
6298     return;
6299   }
6300 
6301   if (G1ConcRegionFreeingVerbose) {
6302     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6303                            "waiting for free regions");
6304   }
6305 
6306   {
6307     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6308     while (free_regions_coming()) {
6309       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6310     }
6311   }
6312 
6313   if (G1ConcRegionFreeingVerbose) {
6314     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6315                            "done waiting for free regions");
6316   }
6317 }
6318 
6319 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6320   assert(heap_lock_held_for_gc(),
6321               "the heap lock should already be held by or for this thread");
6322   _young_list->push_region(hr);
6323 }
6324 
6325 class NoYoungRegionsClosure: public HeapRegionClosure {
6326 private:
6327   bool _success;
6328 public:
6329   NoYoungRegionsClosure() : _success(true) { }
6330   bool doHeapRegion(HeapRegion* r) {
6331     if (r->is_young()) {
6332       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6333                              r->bottom(), r->end());
6334       _success = false;
6335     }
6336     return false;
6337   }
6338   bool success() { return _success; }
6339 };
6340 
6341 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6342   bool ret = _young_list->check_list_empty(check_sample);
6343 
6344   if (check_heap) {
6345     NoYoungRegionsClosure closure;
6346     heap_region_iterate(&closure);
6347     ret = ret && closure.success();
6348   }
6349 
6350   return ret;
6351 }
6352 
6353 class TearDownRegionSetsClosure : public HeapRegionClosure {
6354 private:
6355   HeapRegionSet *_old_set;
6356 
6357 public:
6358   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6359 
6360   bool doHeapRegion(HeapRegion* r) {
6361     if (r->is_empty()) {
6362       // We ignore empty regions, we'll empty the free list afterwards
6363     } else if (r->is_young()) {
6364       // We ignore young regions, we'll empty the young list afterwards
6365     } else if (r->isHumongous()) {
6366       // We ignore humongous regions, we're not tearing down the
6367       // humongous region set
6368     } else {
6369       // The rest should be old
6370       _old_set->remove(r);
6371     }
6372     return false;
6373   }
6374 
6375   ~TearDownRegionSetsClosure() {
6376     assert(_old_set->is_empty(), "post-condition");
6377   }
6378 };
6379 
6380 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6381   assert_at_safepoint(true /* should_be_vm_thread */);
6382 
6383   if (!free_list_only) {
6384     TearDownRegionSetsClosure cl(&_old_set);
6385     heap_region_iterate(&cl);
6386 
6387     // Need to do this after the heap iteration to be able to
6388     // recognize the young regions and ignore them during the iteration.
6389     _young_list->empty_list();
6390   }
6391   _free_list.remove_all();
6392 }
6393 
6394 class RebuildRegionSetsClosure : public HeapRegionClosure {
6395 private:
6396   bool            _free_list_only;
6397   HeapRegionSet*   _old_set;
6398   FreeRegionList* _free_list;
6399   size_t          _total_used;
6400 
6401 public:
6402   RebuildRegionSetsClosure(bool free_list_only,
6403                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6404     _free_list_only(free_list_only),
6405     _old_set(old_set), _free_list(free_list), _total_used(0) {
6406     assert(_free_list->is_empty(), "pre-condition");
6407     if (!free_list_only) {
6408       assert(_old_set->is_empty(), "pre-condition");
6409     }
6410   }
6411 
6412   bool doHeapRegion(HeapRegion* r) {
6413     if (r->continuesHumongous()) {
6414       return false;
6415     }
6416 
6417     if (r->is_empty()) {
6418       // Add free regions to the free list
6419       _free_list->add_as_tail(r);
6420     } else if (!_free_list_only) {
6421       assert(!r->is_young(), "we should not come across young regions");
6422 
6423       if (r->isHumongous()) {
6424         // We ignore humongous regions, we left the humongous set unchanged
6425       } else {
6426         // The rest should be old, add them to the old set
6427         _old_set->add(r);
6428       }
6429       _total_used += r->used();
6430     }
6431 
6432     return false;
6433   }
6434 
6435   size_t total_used() {
6436     return _total_used;
6437   }
6438 };
6439 
6440 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6441   assert_at_safepoint(true /* should_be_vm_thread */);
6442 
6443   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6444   heap_region_iterate(&cl);
6445 
6446   if (!free_list_only) {
6447     _summary_bytes_used = cl.total_used();
6448   }
6449   assert(_summary_bytes_used == recalculate_used(),
6450          err_msg("inconsistent _summary_bytes_used, "
6451                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6452                  _summary_bytes_used, recalculate_used()));
6453 }
6454 
6455 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6456   _refine_cte_cl->set_concurrent(concurrent);
6457 }
6458 
6459 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6460   HeapRegion* hr = heap_region_containing(p);
6461   if (hr == NULL) {
6462     return false;
6463   } else {
6464     return hr->is_in(p);
6465   }
6466 }
6467 
6468 // Methods for the mutator alloc region
6469 
6470 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6471                                                       bool force) {
6472   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6473   assert(!force || g1_policy()->can_expand_young_list(),
6474          "if force is true we should be able to expand the young list");
6475   bool young_list_full = g1_policy()->is_young_list_full();
6476   if (force || !young_list_full) {
6477     HeapRegion* new_alloc_region = new_region(word_size,
6478                                               false /* do_expand */);
6479     if (new_alloc_region != NULL) {
6480       set_region_short_lived_locked(new_alloc_region);
6481       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6482       return new_alloc_region;
6483     }
6484   }
6485   return NULL;
6486 }
6487 
6488 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6489                                                   size_t allocated_bytes) {
6490   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6491   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6492 
6493   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6494   _summary_bytes_used += allocated_bytes;
6495   _hr_printer.retire(alloc_region);
6496   // We update the eden sizes here, when the region is retired,
6497   // instead of when it's allocated, since this is the point that its
6498   // used space has been recored in _summary_bytes_used.
6499   g1mm()->update_eden_size();
6500 }
6501 
6502 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6503                                                     bool force) {
6504   return _g1h->new_mutator_alloc_region(word_size, force);
6505 }
6506 
6507 void G1CollectedHeap::set_par_threads() {
6508   // Don't change the number of workers.  Use the value previously set
6509   // in the workgroup.
6510   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6511   uint n_workers = workers()->active_workers();
6512   assert(UseDynamicNumberOfGCThreads ||
6513            n_workers == workers()->total_workers(),
6514       "Otherwise should be using the total number of workers");
6515   if (n_workers == 0) {
6516     assert(false, "Should have been set in prior evacuation pause.");
6517     n_workers = ParallelGCThreads;
6518     workers()->set_active_workers(n_workers);
6519   }
6520   set_par_threads(n_workers);
6521 }
6522 
6523 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6524                                        size_t allocated_bytes) {
6525   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6526 }
6527 
6528 // Methods for the GC alloc regions
6529 
6530 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6531                                                  uint count,
6532                                                  GCAllocPurpose ap) {
6533   assert(FreeList_lock->owned_by_self(), "pre-condition");
6534 
6535   if (count < g1_policy()->max_regions(ap)) {
6536     HeapRegion* new_alloc_region = new_region(word_size,
6537                                               true /* do_expand */);
6538     if (new_alloc_region != NULL) {
6539       // We really only need to do this for old regions given that we
6540       // should never scan survivors. But it doesn't hurt to do it
6541       // for survivors too.
6542       new_alloc_region->set_saved_mark();
6543       if (ap == GCAllocForSurvived) {
6544         new_alloc_region->set_survivor();
6545         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6546       } else {
6547         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6548       }
6549       bool during_im = g1_policy()->during_initial_mark_pause();
6550       new_alloc_region->note_start_of_copying(during_im);
6551       return new_alloc_region;
6552     } else {
6553       g1_policy()->note_alloc_region_limit_reached(ap);
6554     }
6555   }
6556   return NULL;
6557 }
6558 
6559 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6560                                              size_t allocated_bytes,
6561                                              GCAllocPurpose ap) {
6562   bool during_im = g1_policy()->during_initial_mark_pause();
6563   alloc_region->note_end_of_copying(during_im);
6564   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6565   if (ap == GCAllocForSurvived) {
6566     young_list()->add_survivor_region(alloc_region);
6567   } else {
6568     _old_set.add(alloc_region);
6569   }
6570   _hr_printer.retire(alloc_region);
6571 }
6572 
6573 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6574                                                        bool force) {
6575   assert(!force, "not supported for GC alloc regions");
6576   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6577 }
6578 
6579 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6580                                           size_t allocated_bytes) {
6581   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6582                                GCAllocForSurvived);
6583 }
6584 
6585 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6586                                                   bool force) {
6587   assert(!force, "not supported for GC alloc regions");
6588   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6589 }
6590 
6591 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6592                                      size_t allocated_bytes) {
6593   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6594                                GCAllocForTenured);
6595 }
6596 // Heap region set verification
6597 
6598 class VerifyRegionListsClosure : public HeapRegionClosure {
6599 private:
6600   HeapRegionSet*   _old_set;
6601   HeapRegionSet*   _humongous_set;
6602   FreeRegionList*  _free_list;
6603 
6604 public:
6605   HeapRegionSetCount _old_count;
6606   HeapRegionSetCount _humongous_count;
6607   HeapRegionSetCount _free_count;
6608 
6609   VerifyRegionListsClosure(HeapRegionSet* old_set,
6610                            HeapRegionSet* humongous_set,
6611                            FreeRegionList* free_list) :
6612     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6613     _old_count(), _humongous_count(), _free_count(){ }
6614 
6615   bool doHeapRegion(HeapRegion* hr) {
6616     if (hr->continuesHumongous()) {
6617       return false;
6618     }
6619 
6620     if (hr->is_young()) {
6621       // TODO
6622     } else if (hr->startsHumongous()) {
6623       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
6624       _humongous_count.increment(1u, hr->capacity());
6625     } else if (hr->is_empty()) {
6626       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
6627       _free_count.increment(1u, hr->capacity());
6628     } else {
6629       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
6630       _old_count.increment(1u, hr->capacity());
6631     }
6632     return false;
6633   }
6634 };
6635 
6636 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6637                                              HeapWord* bottom) {
6638   HeapWord* end = bottom + HeapRegion::GrainWords;
6639   MemRegion mr(bottom, end);
6640   assert(_g1_reserved.contains(mr), "invariant");
6641   // This might return NULL if the allocation fails
6642   return new HeapRegion(hrs_index, _bot_shared, mr);
6643 }
6644 
6645 void G1CollectedHeap::verify_region_sets() {
6646   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6647 
6648   // First, check the explicit lists.
6649   _free_list.verify_list();
6650   {
6651     // Given that a concurrent operation might be adding regions to
6652     // the secondary free list we have to take the lock before
6653     // verifying it.
6654     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6655     _secondary_free_list.verify_list();
6656   }
6657 
6658   // If a concurrent region freeing operation is in progress it will
6659   // be difficult to correctly attributed any free regions we come
6660   // across to the correct free list given that they might belong to
6661   // one of several (free_list, secondary_free_list, any local lists,
6662   // etc.). So, if that's the case we will skip the rest of the
6663   // verification operation. Alternatively, waiting for the concurrent
6664   // operation to complete will have a non-trivial effect on the GC's
6665   // operation (no concurrent operation will last longer than the
6666   // interval between two calls to verification) and it might hide
6667   // any issues that we would like to catch during testing.
6668   if (free_regions_coming()) {
6669     return;
6670   }
6671 
6672   // Make sure we append the secondary_free_list on the free_list so
6673   // that all free regions we will come across can be safely
6674   // attributed to the free_list.
6675   append_secondary_free_list_if_not_empty_with_lock();
6676 
6677   // Finally, make sure that the region accounting in the lists is
6678   // consistent with what we see in the heap.
6679 
6680   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6681   heap_region_iterate(&cl);
6682 
6683   guarantee(_old_set.length() == cl._old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", _old_set.length(), cl._old_count.length()));
6684   guarantee(_old_set.total_capacity_bytes() == cl._old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6685       _old_set.total_capacity_bytes(), cl._old_count.capacity()));
6686 
6687   guarantee(_humongous_set.length() == cl._humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", _humongous_set.length(), cl._humongous_count.length()));
6688   guarantee(_humongous_set.total_capacity_bytes() == cl._humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6689       _humongous_set.total_capacity_bytes(), cl._humongous_count.capacity()));
6690 
6691   guarantee(_free_list.length() == cl._free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", _free_list.length(), cl._free_count.length()));
6692   guarantee(_free_list.total_capacity_bytes() == cl._free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6693       _free_list.total_capacity_bytes(), cl._free_count.capacity()));
6694 }
6695 
6696 // Optimized nmethod scanning
6697 
6698 class RegisterNMethodOopClosure: public OopClosure {
6699   G1CollectedHeap* _g1h;
6700   nmethod* _nm;
6701 
6702   template <class T> void do_oop_work(T* p) {
6703     T heap_oop = oopDesc::load_heap_oop(p);
6704     if (!oopDesc::is_null(heap_oop)) {
6705       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6706       HeapRegion* hr = _g1h->heap_region_containing(obj);
6707       assert(!hr->continuesHumongous(),
6708              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6709                      " starting at "HR_FORMAT,
6710                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6711 
6712       // HeapRegion::add_strong_code_root() avoids adding duplicate
6713       // entries but having duplicates is  OK since we "mark" nmethods
6714       // as visited when we scan the strong code root lists during the GC.
6715       hr->add_strong_code_root(_nm);
6716       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6717              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6718                      _nm, HR_FORMAT_PARAMS(hr)));
6719     }
6720   }
6721 
6722 public:
6723   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6724     _g1h(g1h), _nm(nm) {}
6725 
6726   void do_oop(oop* p)       { do_oop_work(p); }
6727   void do_oop(narrowOop* p) { do_oop_work(p); }
6728 };
6729 
6730 class UnregisterNMethodOopClosure: public OopClosure {
6731   G1CollectedHeap* _g1h;
6732   nmethod* _nm;
6733 
6734   template <class T> void do_oop_work(T* p) {
6735     T heap_oop = oopDesc::load_heap_oop(p);
6736     if (!oopDesc::is_null(heap_oop)) {
6737       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6738       HeapRegion* hr = _g1h->heap_region_containing(obj);
6739       assert(!hr->continuesHumongous(),
6740              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6741                      " starting at "HR_FORMAT,
6742                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6743 
6744       hr->remove_strong_code_root(_nm);
6745       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6746              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6747                      _nm, HR_FORMAT_PARAMS(hr)));
6748     }
6749   }
6750 
6751 public:
6752   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6753     _g1h(g1h), _nm(nm) {}
6754 
6755   void do_oop(oop* p)       { do_oop_work(p); }
6756   void do_oop(narrowOop* p) { do_oop_work(p); }
6757 };
6758 
6759 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6760   CollectedHeap::register_nmethod(nm);
6761 
6762   guarantee(nm != NULL, "sanity");
6763   RegisterNMethodOopClosure reg_cl(this, nm);
6764   nm->oops_do(&reg_cl);
6765 }
6766 
6767 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6768   CollectedHeap::unregister_nmethod(nm);
6769 
6770   guarantee(nm != NULL, "sanity");
6771   UnregisterNMethodOopClosure reg_cl(this, nm);
6772   nm->oops_do(&reg_cl, true);
6773 }
6774 
6775 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6776 public:
6777   bool doHeapRegion(HeapRegion *hr) {
6778     assert(!hr->isHumongous(),
6779            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6780                    HR_FORMAT_PARAMS(hr)));
6781     hr->migrate_strong_code_roots();
6782     return false;
6783   }
6784 };
6785 
6786 void G1CollectedHeap::migrate_strong_code_roots() {
6787   MigrateCodeRootsHeapRegionClosure cl;
6788   double migrate_start = os::elapsedTime();
6789   collection_set_iterate(&cl);
6790   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6791   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6792 }
6793 
6794 // Mark all the code roots that point into regions *not* in the
6795 // collection set.
6796 //
6797 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6798 // walking the the code roots lists of regions not in the collection
6799 // set. Suppose we have an nmethod (M) that points to objects in two
6800 // separate regions - one in the collection set (R1) and one not (R2).
6801 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6802 // nmethod M when walking the code roots for R1. When we come to scan
6803 // the code roots for R2, we would see that M is already marked and it
6804 // would be skipped and the objects in R2 that are referenced from M
6805 // would not be evacuated.
6806 
6807 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6808 
6809   class MarkStrongCodeRootOopClosure: public OopClosure {
6810     ConcurrentMark* _cm;
6811     HeapRegion* _hr;
6812     uint _worker_id;
6813 
6814     template <class T> void do_oop_work(T* p) {
6815       T heap_oop = oopDesc::load_heap_oop(p);
6816       if (!oopDesc::is_null(heap_oop)) {
6817         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6818         // Only mark objects in the region (which is assumed
6819         // to be not in the collection set).
6820         if (_hr->is_in(obj)) {
6821           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6822         }
6823       }
6824     }
6825 
6826   public:
6827     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6828       _cm(cm), _hr(hr), _worker_id(worker_id) {
6829       assert(!_hr->in_collection_set(), "sanity");
6830     }
6831 
6832     void do_oop(narrowOop* p) { do_oop_work(p); }
6833     void do_oop(oop* p)       { do_oop_work(p); }
6834   };
6835 
6836   MarkStrongCodeRootOopClosure _oop_cl;
6837 
6838 public:
6839   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6840     _oop_cl(cm, hr, worker_id) {}
6841 
6842   void do_code_blob(CodeBlob* cb) {
6843     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6844     if (nm != NULL) {
6845       nm->oops_do(&_oop_cl);
6846     }
6847   }
6848 };
6849 
6850 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6851   G1CollectedHeap* _g1h;
6852   uint _worker_id;
6853 
6854 public:
6855   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6856     _g1h(g1h), _worker_id(worker_id) {}
6857 
6858   bool doHeapRegion(HeapRegion *hr) {
6859     HeapRegionRemSet* hrrs = hr->rem_set();
6860     if (hr->continuesHumongous()) {
6861       // Code roots should never be attached to a continuation of a humongous region
6862       assert(hrrs->strong_code_roots_list_length() == 0,
6863              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6864                      " starting at "HR_FORMAT", but has "INT32_FORMAT,
6865                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
6866                      hrrs->strong_code_roots_list_length()));
6867       return false;
6868     }
6869 
6870     if (hr->in_collection_set()) {
6871       // Don't mark code roots into regions in the collection set here.
6872       // They will be marked when we scan them.
6873       return false;
6874     }
6875 
6876     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6877     hr->strong_code_roots_do(&cb_cl);
6878     return false;
6879   }
6880 };
6881 
6882 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6883   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6884   if (G1CollectedHeap::use_parallel_gc_threads()) {
6885     heap_region_par_iterate_chunked(&cl,
6886                                     worker_id,
6887                                     workers()->active_workers(),
6888                                     HeapRegion::ParMarkRootClaimValue);
6889   } else {
6890     heap_region_iterate(&cl);
6891   }
6892 }
6893 
6894 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6895   G1CollectedHeap* _g1h;
6896 
6897 public:
6898   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6899     _g1h(g1h) {}
6900 
6901   void do_code_blob(CodeBlob* cb) {
6902     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6903     if (nm == NULL) {
6904       return;
6905     }
6906 
6907     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
6908       _g1h->register_nmethod(nm);
6909     }
6910   }
6911 };
6912 
6913 void G1CollectedHeap::rebuild_strong_code_roots() {
6914   RebuildStrongCodeRootClosure blob_cl(this);
6915   CodeCache::blobs_do(&blob_cl);
6916 }