1 /* 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP 26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP 27 28 #include "memory/referencePolicy.hpp" 29 #include "memory/referenceProcessorStats.hpp" 30 #include "memory/referenceType.hpp" 31 #include "oops/instanceRefKlass.hpp" 32 33 class GCTimer; 34 35 // ReferenceProcessor class encapsulates the per-"collector" processing 36 // of java.lang.Reference objects for GC. The interface is useful for supporting 37 // a generational abstraction, in particular when there are multiple 38 // generations that are being independently collected -- possibly 39 // concurrently and/or incrementally. Note, however, that the 40 // ReferenceProcessor class abstracts away from a generational setting 41 // by using only a heap interval (called "span" below), thus allowing 42 // its use in a straightforward manner in a general, non-generational 43 // setting. 44 // 45 // The basic idea is that each ReferenceProcessor object concerns 46 // itself with ("weak") reference processing in a specific "span" 47 // of the heap of interest to a specific collector. Currently, 48 // the span is a convex interval of the heap, but, efficiency 49 // apart, there seems to be no reason it couldn't be extended 50 // (with appropriate modifications) to any "non-convex interval". 51 52 // forward references 53 class ReferencePolicy; 54 class AbstractRefProcTaskExecutor; 55 56 // List of discovered references. 57 class DiscoveredList { 58 public: 59 DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { } 60 oop head() const { 61 return UseCompressedOops ? oopDesc::decode_heap_oop(_compressed_head) : 62 _oop_head; 63 } 64 HeapWord* adr_head() { 65 return UseCompressedOops ? (HeapWord*)&_compressed_head : 66 (HeapWord*)&_oop_head; 67 } 68 void set_head(oop o) { 69 if (UseCompressedOops) { 70 // Must compress the head ptr. 71 _compressed_head = oopDesc::encode_heap_oop(o); 72 } else { 73 _oop_head = o; 74 } 75 } 76 bool is_empty() const { return head() == NULL; } 77 size_t length() { return _len; } 78 void set_length(size_t len) { _len = len; } 79 void inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); } 80 void dec_length(size_t dec) { _len -= dec; } 81 private: 82 // Set value depending on UseCompressedOops. This could be a template class 83 // but then we have to fix all the instantiations and declarations that use this class. 84 oop _oop_head; 85 narrowOop _compressed_head; 86 size_t _len; 87 }; 88 89 // Iterator for the list of discovered references. 90 class DiscoveredListIterator { 91 private: 92 DiscoveredList& _refs_list; 93 HeapWord* _prev_next; 94 oop _prev; 95 oop _ref; 96 HeapWord* _discovered_addr; 97 oop _next; 98 HeapWord* _referent_addr; 99 oop _referent; 100 OopClosure* _keep_alive; 101 BoolObjectClosure* _is_alive; 102 103 DEBUG_ONLY( 104 oop _first_seen; // cyclic linked list check 105 ) 106 107 NOT_PRODUCT( 108 size_t _processed; 109 size_t _removed; 110 ) 111 112 public: 113 inline DiscoveredListIterator(DiscoveredList& refs_list, 114 OopClosure* keep_alive, 115 BoolObjectClosure* is_alive): 116 _refs_list(refs_list), 117 _prev_next(refs_list.adr_head()), 118 _prev(NULL), 119 _ref(refs_list.head()), 120 #ifdef ASSERT 121 _first_seen(refs_list.head()), 122 #endif 123 #ifndef PRODUCT 124 _processed(0), 125 _removed(0), 126 #endif 127 _next(NULL), 128 _keep_alive(keep_alive), 129 _is_alive(is_alive) 130 { } 131 132 // End Of List. 133 inline bool has_next() const { return _ref != NULL; } 134 135 // Get oop to the Reference object. 136 inline oop obj() const { return _ref; } 137 138 // Get oop to the referent object. 139 inline oop referent() const { return _referent; } 140 141 // Returns true if referent is alive. 142 inline bool is_referent_alive() const { 143 return _is_alive->do_object_b(_referent); 144 } 145 146 // Loads data for the current reference. 147 // The "allow_null_referent" argument tells us to allow for the possibility 148 // of a NULL referent in the discovered Reference object. This typically 149 // happens in the case of concurrent collectors that may have done the 150 // discovery concurrently, or interleaved, with mutator execution. 151 void load_ptrs(DEBUG_ONLY(bool allow_null_referent)); 152 153 // Move to the next discovered reference. 154 inline void next() { 155 _prev_next = _discovered_addr; 156 _prev = _ref; 157 move_to_next(); 158 } 159 160 // Remove the current reference from the list 161 void remove(); 162 163 // Make the Reference object active again. 164 void make_active(); 165 166 // Make the referent alive. 167 inline void make_referent_alive() { 168 if (UseCompressedOops) { 169 _keep_alive->do_oop((narrowOop*)_referent_addr); 170 } else { 171 _keep_alive->do_oop((oop*)_referent_addr); 172 } 173 } 174 175 // Update the discovered field. 176 inline void update_discovered() { 177 // First _prev_next ref actually points into DiscoveredList (gross). 178 if (UseCompressedOops) { 179 if (!oopDesc::is_null(*(narrowOop*)_prev_next)) { 180 _keep_alive->do_oop((narrowOop*)_prev_next); 181 } 182 } else { 183 if (!oopDesc::is_null(*(oop*)_prev_next)) { 184 _keep_alive->do_oop((oop*)_prev_next); 185 } 186 } 187 } 188 189 // NULL out referent pointer. 190 void clear_referent(); 191 192 // Statistics 193 NOT_PRODUCT( 194 inline size_t processed() const { return _processed; } 195 inline size_t removed() const { return _removed; } 196 ) 197 198 inline void move_to_next() { 199 if (_ref == _next) { 200 // End of the list. 201 _ref = NULL; 202 } else { 203 _ref = _next; 204 } 205 assert(_ref != _first_seen, "cyclic ref_list found"); 206 NOT_PRODUCT(_processed++); 207 } 208 }; 209 210 class ReferenceProcessor : public CHeapObj<mtGC> { 211 212 private: 213 size_t total_count(DiscoveredList lists[]); 214 215 protected: 216 // Compatibility with pre-4965777 JDK's 217 static bool _pending_list_uses_discovered_field; 218 219 // The SoftReference master timestamp clock 220 static jlong _soft_ref_timestamp_clock; 221 222 MemRegion _span; // (right-open) interval of heap 223 // subject to wkref discovery 224 225 bool _discovering_refs; // true when discovery enabled 226 bool _discovery_is_atomic; // if discovery is atomic wrt 227 // other collectors in configuration 228 bool _discovery_is_mt; // true if reference discovery is MT. 229 230 bool _enqueuing_is_done; // true if all weak references enqueued 231 bool _processing_is_mt; // true during phases when 232 // reference processing is MT. 233 uint _next_id; // round-robin mod _num_q counter in 234 // support of work distribution 235 236 // For collectors that do not keep GC liveness information 237 // in the object header, this field holds a closure that 238 // helps the reference processor determine the reachability 239 // of an oop. It is currently initialized to NULL for all 240 // collectors except for CMS and G1. 241 BoolObjectClosure* _is_alive_non_header; 242 243 // Soft ref clearing policies 244 // . the default policy 245 static ReferencePolicy* _default_soft_ref_policy; 246 // . the "clear all" policy 247 static ReferencePolicy* _always_clear_soft_ref_policy; 248 // . the current policy below is either one of the above 249 ReferencePolicy* _current_soft_ref_policy; 250 251 // The discovered ref lists themselves 252 253 // The active MT'ness degree of the queues below 254 uint _num_q; 255 // The maximum MT'ness degree of the queues below 256 uint _max_num_q; 257 258 // Master array of discovered oops 259 DiscoveredList* _discovered_refs; 260 261 // Arrays of lists of oops, one per thread (pointers into master array above) 262 DiscoveredList* _discoveredSoftRefs; 263 DiscoveredList* _discoveredWeakRefs; 264 DiscoveredList* _discoveredFinalRefs; 265 DiscoveredList* _discoveredPhantomRefs; 266 267 public: 268 static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); } 269 270 uint num_q() { return _num_q; } 271 uint max_num_q() { return _max_num_q; } 272 void set_active_mt_degree(uint v) { _num_q = v; } 273 274 DiscoveredList* discovered_refs() { return _discovered_refs; } 275 276 ReferencePolicy* setup_policy(bool always_clear) { 277 _current_soft_ref_policy = always_clear ? 278 _always_clear_soft_ref_policy : _default_soft_ref_policy; 279 _current_soft_ref_policy->setup(); // snapshot the policy threshold 280 return _current_soft_ref_policy; 281 } 282 283 // Process references with a certain reachability level. 284 size_t process_discovered_reflist(DiscoveredList refs_lists[], 285 ReferencePolicy* policy, 286 bool clear_referent, 287 BoolObjectClosure* is_alive, 288 OopClosure* keep_alive, 289 VoidClosure* complete_gc, 290 AbstractRefProcTaskExecutor* task_executor); 291 292 void process_phaseJNI(BoolObjectClosure* is_alive, 293 OopClosure* keep_alive, 294 VoidClosure* complete_gc); 295 296 // Work methods used by the method process_discovered_reflist 297 // Phase1: keep alive all those referents that are otherwise 298 // dead but which must be kept alive by policy (and their closure). 299 void process_phase1(DiscoveredList& refs_list, 300 ReferencePolicy* policy, 301 BoolObjectClosure* is_alive, 302 OopClosure* keep_alive, 303 VoidClosure* complete_gc); 304 // Phase2: remove all those references whose referents are 305 // reachable. 306 inline void process_phase2(DiscoveredList& refs_list, 307 BoolObjectClosure* is_alive, 308 OopClosure* keep_alive, 309 VoidClosure* complete_gc) { 310 if (discovery_is_atomic()) { 311 // complete_gc is ignored in this case for this phase 312 pp2_work(refs_list, is_alive, keep_alive); 313 } else { 314 assert(complete_gc != NULL, "Error"); 315 pp2_work_concurrent_discovery(refs_list, is_alive, 316 keep_alive, complete_gc); 317 } 318 } 319 // Work methods in support of process_phase2 320 void pp2_work(DiscoveredList& refs_list, 321 BoolObjectClosure* is_alive, 322 OopClosure* keep_alive); 323 void pp2_work_concurrent_discovery( 324 DiscoveredList& refs_list, 325 BoolObjectClosure* is_alive, 326 OopClosure* keep_alive, 327 VoidClosure* complete_gc); 328 // Phase3: process the referents by either clearing them 329 // or keeping them alive (and their closure) 330 void process_phase3(DiscoveredList& refs_list, 331 bool clear_referent, 332 BoolObjectClosure* is_alive, 333 OopClosure* keep_alive, 334 VoidClosure* complete_gc); 335 336 // Enqueue references with a certain reachability level 337 void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr); 338 339 // "Preclean" all the discovered reference lists 340 // by removing references with strongly reachable referents. 341 // The first argument is a predicate on an oop that indicates 342 // its (strong) reachability and the second is a closure that 343 // may be used to incrementalize or abort the precleaning process. 344 // The caller is responsible for taking care of potential 345 // interference with concurrent operations on these lists 346 // (or predicates involved) by other threads. Currently 347 // only used by the CMS collector. 348 void preclean_discovered_references(BoolObjectClosure* is_alive, 349 OopClosure* keep_alive, 350 VoidClosure* complete_gc, 351 YieldClosure* yield, 352 GCTimer* gc_timer); 353 354 // Delete entries in the discovered lists that have 355 // either a null referent or are not active. Such 356 // Reference objects can result from the clearing 357 // or enqueueing of Reference objects concurrent 358 // with their discovery by a (concurrent) collector. 359 // For a definition of "active" see java.lang.ref.Reference; 360 // Refs are born active, become inactive when enqueued, 361 // and never become active again. The state of being 362 // active is encoded as follows: A Ref is active 363 // if and only if its "next" field is NULL. 364 void clean_up_discovered_references(); 365 void clean_up_discovered_reflist(DiscoveredList& refs_list); 366 367 // Returns the name of the discovered reference list 368 // occupying the i / _num_q slot. 369 const char* list_name(uint i); 370 371 void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor); 372 373 protected: 374 // "Preclean" the given discovered reference list 375 // by removing references with strongly reachable referents. 376 // Currently used in support of CMS only. 377 void preclean_discovered_reflist(DiscoveredList& refs_list, 378 BoolObjectClosure* is_alive, 379 OopClosure* keep_alive, 380 VoidClosure* complete_gc, 381 YieldClosure* yield); 382 383 // round-robin mod _num_q (not: _not_ mode _max_num_q) 384 uint next_id() { 385 uint id = _next_id; 386 if (++_next_id == _num_q) { 387 _next_id = 0; 388 } 389 return id; 390 } 391 DiscoveredList* get_discovered_list(ReferenceType rt); 392 inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj, 393 HeapWord* discovered_addr); 394 void verify_ok_to_handle_reflists() PRODUCT_RETURN; 395 396 void clear_discovered_references(DiscoveredList& refs_list); 397 void abandon_partial_discovered_list(DiscoveredList& refs_list); 398 399 // Calculate the number of jni handles. 400 unsigned int count_jni_refs(); 401 402 // Balances reference queues. 403 void balance_queues(DiscoveredList ref_lists[]); 404 405 // Update (advance) the soft ref master clock field. 406 void update_soft_ref_master_clock(); 407 408 public: 409 // Default parameters give you a vanilla reference processor. 410 ReferenceProcessor(MemRegion span, 411 bool mt_processing = false, uint mt_processing_degree = 1, 412 bool mt_discovery = false, uint mt_discovery_degree = 1, 413 bool atomic_discovery = true, 414 BoolObjectClosure* is_alive_non_header = NULL); 415 416 // RefDiscoveryPolicy values 417 enum DiscoveryPolicy { 418 ReferenceBasedDiscovery = 0, 419 ReferentBasedDiscovery = 1, 420 DiscoveryPolicyMin = ReferenceBasedDiscovery, 421 DiscoveryPolicyMax = ReferentBasedDiscovery 422 }; 423 424 static void init_statics(); 425 426 public: 427 // get and set "is_alive_non_header" field 428 BoolObjectClosure* is_alive_non_header() { 429 return _is_alive_non_header; 430 } 431 void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) { 432 _is_alive_non_header = is_alive_non_header; 433 } 434 435 // get and set span 436 MemRegion span() { return _span; } 437 void set_span(MemRegion span) { _span = span; } 438 439 // start and stop weak ref discovery 440 void enable_discovery(bool verify_disabled, bool check_no_refs); 441 void disable_discovery() { _discovering_refs = false; } 442 bool discovery_enabled() { return _discovering_refs; } 443 444 // whether discovery is atomic wrt other collectors 445 bool discovery_is_atomic() const { return _discovery_is_atomic; } 446 void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; } 447 448 // whether the JDK in which we are embedded is a pre-4965777 JDK, 449 // and thus whether or not it uses the discovered field to chain 450 // the entries in the pending list. 451 static bool pending_list_uses_discovered_field() { 452 return _pending_list_uses_discovered_field; 453 } 454 455 // whether discovery is done by multiple threads same-old-timeously 456 bool discovery_is_mt() const { return _discovery_is_mt; } 457 void set_mt_discovery(bool mt) { _discovery_is_mt = mt; } 458 459 // Whether we are in a phase when _processing_ is MT. 460 bool processing_is_mt() const { return _processing_is_mt; } 461 void set_mt_processing(bool mt) { _processing_is_mt = mt; } 462 463 // whether all enqueueing of weak references is complete 464 bool enqueuing_is_done() { return _enqueuing_is_done; } 465 void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; } 466 467 // iterate over oops 468 void weak_oops_do(OopClosure* f); // weak roots 469 470 // Balance each of the discovered lists. 471 void balance_all_queues(); 472 void verify_list(DiscoveredList& ref_list); 473 474 // Discover a Reference object, using appropriate discovery criteria 475 bool discover_reference(oop obj, ReferenceType rt); 476 477 // Process references found during GC (called by the garbage collector) 478 ReferenceProcessorStats 479 process_discovered_references(BoolObjectClosure* is_alive, 480 OopClosure* keep_alive, 481 VoidClosure* complete_gc, 482 AbstractRefProcTaskExecutor* task_executor, 483 GCTimer *gc_timer); 484 485 // Enqueue references at end of GC (called by the garbage collector) 486 bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL); 487 488 // If a discovery is in process that is being superceded, abandon it: all 489 // the discovered lists will be empty, and all the objects on them will 490 // have NULL discovered fields. Must be called only at a safepoint. 491 void abandon_partial_discovery(); 492 493 // debugging 494 void verify_no_references_recorded() PRODUCT_RETURN; 495 void verify_referent(oop obj) PRODUCT_RETURN; 496 497 // clear the discovered lists (unlinking each entry). 498 void clear_discovered_references() PRODUCT_RETURN; 499 }; 500 501 // A utility class to disable reference discovery in 502 // the scope which contains it, for given ReferenceProcessor. 503 class NoRefDiscovery: StackObj { 504 private: 505 ReferenceProcessor* _rp; 506 bool _was_discovering_refs; 507 public: 508 NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) { 509 _was_discovering_refs = _rp->discovery_enabled(); 510 if (_was_discovering_refs) { 511 _rp->disable_discovery(); 512 } 513 } 514 515 ~NoRefDiscovery() { 516 if (_was_discovering_refs) { 517 _rp->enable_discovery(true /*verify_disabled*/, false /*check_no_refs*/); 518 } 519 } 520 }; 521 522 523 // A utility class to temporarily mutate the span of the 524 // given ReferenceProcessor in the scope that contains it. 525 class ReferenceProcessorSpanMutator: StackObj { 526 private: 527 ReferenceProcessor* _rp; 528 MemRegion _saved_span; 529 530 public: 531 ReferenceProcessorSpanMutator(ReferenceProcessor* rp, 532 MemRegion span): 533 _rp(rp) { 534 _saved_span = _rp->span(); 535 _rp->set_span(span); 536 } 537 538 ~ReferenceProcessorSpanMutator() { 539 _rp->set_span(_saved_span); 540 } 541 }; 542 543 // A utility class to temporarily change the MT'ness of 544 // reference discovery for the given ReferenceProcessor 545 // in the scope that contains it. 546 class ReferenceProcessorMTDiscoveryMutator: StackObj { 547 private: 548 ReferenceProcessor* _rp; 549 bool _saved_mt; 550 551 public: 552 ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp, 553 bool mt): 554 _rp(rp) { 555 _saved_mt = _rp->discovery_is_mt(); 556 _rp->set_mt_discovery(mt); 557 } 558 559 ~ReferenceProcessorMTDiscoveryMutator() { 560 _rp->set_mt_discovery(_saved_mt); 561 } 562 }; 563 564 565 // A utility class to temporarily change the disposition 566 // of the "is_alive_non_header" closure field of the 567 // given ReferenceProcessor in the scope that contains it. 568 class ReferenceProcessorIsAliveMutator: StackObj { 569 private: 570 ReferenceProcessor* _rp; 571 BoolObjectClosure* _saved_cl; 572 573 public: 574 ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp, 575 BoolObjectClosure* cl): 576 _rp(rp) { 577 _saved_cl = _rp->is_alive_non_header(); 578 _rp->set_is_alive_non_header(cl); 579 } 580 581 ~ReferenceProcessorIsAliveMutator() { 582 _rp->set_is_alive_non_header(_saved_cl); 583 } 584 }; 585 586 // A utility class to temporarily change the disposition 587 // of the "discovery_is_atomic" field of the 588 // given ReferenceProcessor in the scope that contains it. 589 class ReferenceProcessorAtomicMutator: StackObj { 590 private: 591 ReferenceProcessor* _rp; 592 bool _saved_atomic_discovery; 593 594 public: 595 ReferenceProcessorAtomicMutator(ReferenceProcessor* rp, 596 bool atomic): 597 _rp(rp) { 598 _saved_atomic_discovery = _rp->discovery_is_atomic(); 599 _rp->set_atomic_discovery(atomic); 600 } 601 602 ~ReferenceProcessorAtomicMutator() { 603 _rp->set_atomic_discovery(_saved_atomic_discovery); 604 } 605 }; 606 607 608 // A utility class to temporarily change the MT processing 609 // disposition of the given ReferenceProcessor instance 610 // in the scope that contains it. 611 class ReferenceProcessorMTProcMutator: StackObj { 612 private: 613 ReferenceProcessor* _rp; 614 bool _saved_mt; 615 616 public: 617 ReferenceProcessorMTProcMutator(ReferenceProcessor* rp, 618 bool mt): 619 _rp(rp) { 620 _saved_mt = _rp->processing_is_mt(); 621 _rp->set_mt_processing(mt); 622 } 623 624 ~ReferenceProcessorMTProcMutator() { 625 _rp->set_mt_processing(_saved_mt); 626 } 627 }; 628 629 630 // This class is an interface used to implement task execution for the 631 // reference processing. 632 class AbstractRefProcTaskExecutor { 633 public: 634 635 // Abstract tasks to execute. 636 class ProcessTask; 637 class EnqueueTask; 638 639 // Executes a task using worker threads. 640 virtual void execute(ProcessTask& task) = 0; 641 virtual void execute(EnqueueTask& task) = 0; 642 643 // Switch to single threaded mode. 644 virtual void set_single_threaded_mode() { }; 645 }; 646 647 // Abstract reference processing task to execute. 648 class AbstractRefProcTaskExecutor::ProcessTask { 649 protected: 650 ProcessTask(ReferenceProcessor& ref_processor, 651 DiscoveredList refs_lists[], 652 bool marks_oops_alive) 653 : _ref_processor(ref_processor), 654 _refs_lists(refs_lists), 655 _marks_oops_alive(marks_oops_alive) 656 { } 657 658 public: 659 virtual void work(unsigned int work_id, BoolObjectClosure& is_alive, 660 OopClosure& keep_alive, 661 VoidClosure& complete_gc) = 0; 662 663 // Returns true if a task marks some oops as alive. 664 bool marks_oops_alive() const 665 { return _marks_oops_alive; } 666 667 protected: 668 ReferenceProcessor& _ref_processor; 669 DiscoveredList* _refs_lists; 670 const bool _marks_oops_alive; 671 }; 672 673 // Abstract reference processing task to execute. 674 class AbstractRefProcTaskExecutor::EnqueueTask { 675 protected: 676 EnqueueTask(ReferenceProcessor& ref_processor, 677 DiscoveredList refs_lists[], 678 HeapWord* pending_list_addr, 679 int n_queues) 680 : _ref_processor(ref_processor), 681 _refs_lists(refs_lists), 682 _pending_list_addr(pending_list_addr), 683 _n_queues(n_queues) 684 { } 685 686 public: 687 virtual void work(unsigned int work_id) = 0; 688 689 protected: 690 ReferenceProcessor& _ref_processor; 691 DiscoveredList* _refs_lists; 692 HeapWord* _pending_list_addr; 693 int _n_queues; 694 }; 695 696 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP