1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/interp_masm.hpp"
  30 #include "interpreter/templateTable.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 #include "utilities/macros.hpp"
  40 
  41 #ifndef CC_INTERP
  42 #define __ _masm->
  43 
  44 //----------------------------------------------------------------------------------------------------
  45 // Platform-dependent initialization
  46 
  47 void TemplateTable::pd_initialize() {
  48   // No i486 specific initialization
  49 }
  50 
  51 //----------------------------------------------------------------------------------------------------
  52 // Address computation
  53 
  54 // local variables
  55 static inline Address iaddress(int n)            {
  56   return Address(rdi, Interpreter::local_offset_in_bytes(n));
  57 }
  58 
  59 static inline Address laddress(int n)            { return iaddress(n + 1); }
  60 static inline Address haddress(int n)            { return iaddress(n + 0); }
  61 static inline Address faddress(int n)            { return iaddress(n); }
  62 static inline Address daddress(int n)            { return laddress(n); }
  63 static inline Address aaddress(int n)            { return iaddress(n); }
  64 
  65 static inline Address iaddress(Register r)       {
  66   return Address(rdi, r, Interpreter::stackElementScale());
  67 }
  68 static inline Address laddress(Register r)       {
  69   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
  70 }
  71 static inline Address haddress(Register r)       {
  72   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  73 }
  74 
  75 static inline Address faddress(Register r)       { return iaddress(r); }
  76 static inline Address daddress(Register r)       { return laddress(r); }
  77 static inline Address aaddress(Register r)       { return iaddress(r); }
  78 
  79 // expression stack
  80 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
  81 // data beyond the rsp which is potentially unsafe in an MT environment;
  82 // an interrupt may overwrite that data.)
  83 static inline Address at_rsp   () {
  84   return Address(rsp, 0);
  85 }
  86 
  87 // At top of Java expression stack which may be different than rsp().  It
  88 // isn't for category 1 objects.
  89 static inline Address at_tos   () {
  90   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  91   return tos;
  92 }
  93 
  94 static inline Address at_tos_p1() {
  95   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
  96 }
  97 
  98 static inline Address at_tos_p2() {
  99   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 100 }
 101 
 102 // Condition conversion
 103 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 104   switch (cc) {
 105     case TemplateTable::equal        : return Assembler::notEqual;
 106     case TemplateTable::not_equal    : return Assembler::equal;
 107     case TemplateTable::less         : return Assembler::greaterEqual;
 108     case TemplateTable::less_equal   : return Assembler::greater;
 109     case TemplateTable::greater      : return Assembler::lessEqual;
 110     case TemplateTable::greater_equal: return Assembler::less;
 111   }
 112   ShouldNotReachHere();
 113   return Assembler::zero;
 114 }
 115 
 116 
 117 //----------------------------------------------------------------------------------------------------
 118 // Miscelaneous helper routines
 119 
 120 // Store an oop (or NULL) at the address described by obj.
 121 // If val == noreg this means store a NULL
 122 
 123 static void do_oop_store(InterpreterMacroAssembler* _masm,
 124                          Address obj,
 125                          Register val,
 126                          BarrierSet::Name barrier,
 127                          bool precise) {
 128   assert(val == noreg || val == rax, "parameter is just for looks");
 129   switch (barrier) {
 130 #if INCLUDE_ALL_GCS
 131     case BarrierSet::G1SATBCT:
 132     case BarrierSet::G1SATBCTLogging:
 133       {
 134         // flatten object address if needed
 135         // We do it regardless of precise because we need the registers
 136         if (obj.index() == noreg && obj.disp() == 0) {
 137           if (obj.base() != rdx) {
 138             __ movl(rdx, obj.base());
 139           }
 140         } else {
 141           __ leal(rdx, obj);
 142         }
 143         __ get_thread(rcx);
 144         __ save_bcp();
 145         __ g1_write_barrier_pre(rdx /* obj */,
 146                                 rbx /* pre_val */,
 147                                 rcx /* thread */,
 148                                 rsi /* tmp */,
 149                                 val != noreg /* tosca_live */,
 150                                 false /* expand_call */);
 151 
 152         // Do the actual store
 153         // noreg means NULL
 154         if (val == noreg) {
 155           __ movptr(Address(rdx, 0), NULL_WORD);
 156           // No post barrier for NULL
 157         } else {
 158           __ movl(Address(rdx, 0), val);
 159           __ g1_write_barrier_post(rdx /* store_adr */,
 160                                    val /* new_val */,
 161                                    rcx /* thread */,
 162                                    rbx /* tmp */,
 163                                    rsi /* tmp2 */);
 164         }
 165         __ restore_bcp();
 166 
 167       }
 168       break;
 169 #endif // INCLUDE_ALL_GCS
 170     case BarrierSet::CardTableModRef:
 171     case BarrierSet::CardTableExtension:
 172       {
 173         if (val == noreg) {
 174           __ movptr(obj, NULL_WORD);
 175         } else {
 176           __ movl(obj, val);
 177           // flatten object address if needed
 178           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 179             __ store_check(obj.base());
 180           } else {
 181             __ leal(rdx, obj);
 182             __ store_check(rdx);
 183           }
 184         }
 185       }
 186       break;
 187     case BarrierSet::ModRef:
 188     case BarrierSet::Other:
 189       if (val == noreg) {
 190         __ movptr(obj, NULL_WORD);
 191       } else {
 192         __ movl(obj, val);
 193       }
 194       break;
 195     default      :
 196       ShouldNotReachHere();
 197 
 198   }
 199 }
 200 
 201 Address TemplateTable::at_bcp(int offset) {
 202   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 203   return Address(rsi, offset);
 204 }
 205 
 206 
 207 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 208                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 209                                    int byte_no) {
 210   if (!RewriteBytecodes)  return;
 211   Label L_patch_done;
 212 
 213   switch (bc) {
 214   case Bytecodes::_fast_aputfield:
 215   case Bytecodes::_fast_bputfield:
 216   case Bytecodes::_fast_cputfield:
 217   case Bytecodes::_fast_dputfield:
 218   case Bytecodes::_fast_fputfield:
 219   case Bytecodes::_fast_iputfield:
 220   case Bytecodes::_fast_lputfield:
 221   case Bytecodes::_fast_sputfield:
 222     {
 223       // We skip bytecode quickening for putfield instructions when
 224       // the put_code written to the constant pool cache is zero.
 225       // This is required so that every execution of this instruction
 226       // calls out to InterpreterRuntime::resolve_get_put to do
 227       // additional, required work.
 228       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 229       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 230       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
 231       __ movl(bc_reg, bc);
 232       __ cmpl(temp_reg, (int) 0);
 233       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 234     }
 235     break;
 236   default:
 237     assert(byte_no == -1, "sanity");
 238     // the pair bytecodes have already done the load.
 239     if (load_bc_into_bc_reg) {
 240       __ movl(bc_reg, bc);
 241     }
 242   }
 243 
 244   if (JvmtiExport::can_post_breakpoint()) {
 245     Label L_fast_patch;
 246     // if a breakpoint is present we can't rewrite the stream directly
 247     __ movzbl(temp_reg, at_bcp(0));
 248     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 249     __ jcc(Assembler::notEqual, L_fast_patch);
 250     __ get_method(temp_reg);
 251     // Let breakpoint table handling rewrite to quicker bytecode
 252     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rsi, bc_reg);
 253 #ifndef ASSERT
 254     __ jmpb(L_patch_done);
 255 #else
 256     __ jmp(L_patch_done);
 257 #endif
 258     __ bind(L_fast_patch);
 259   }
 260 
 261 #ifdef ASSERT
 262   Label L_okay;
 263   __ load_unsigned_byte(temp_reg, at_bcp(0));
 264   __ cmpl(temp_reg, (int)Bytecodes::java_code(bc));
 265   __ jccb(Assembler::equal, L_okay);
 266   __ cmpl(temp_reg, bc_reg);
 267   __ jcc(Assembler::equal, L_okay);
 268   __ stop("patching the wrong bytecode");
 269   __ bind(L_okay);
 270 #endif
 271 
 272   // patch bytecode
 273   __ movb(at_bcp(0), bc_reg);
 274   __ bind(L_patch_done);
 275 }
 276 
 277 //----------------------------------------------------------------------------------------------------
 278 // Individual instructions
 279 
 280 void TemplateTable::nop() {
 281   transition(vtos, vtos);
 282   // nothing to do
 283 }
 284 
 285 void TemplateTable::shouldnotreachhere() {
 286   transition(vtos, vtos);
 287   __ stop("shouldnotreachhere bytecode");
 288 }
 289 
 290 
 291 
 292 void TemplateTable::aconst_null() {
 293   transition(vtos, atos);
 294   __ xorptr(rax, rax);
 295 }
 296 
 297 
 298 void TemplateTable::iconst(int value) {
 299   transition(vtos, itos);
 300   if (value == 0) {
 301     __ xorptr(rax, rax);
 302   } else {
 303     __ movptr(rax, value);
 304   }
 305 }
 306 
 307 
 308 void TemplateTable::lconst(int value) {
 309   transition(vtos, ltos);
 310   if (value == 0) {
 311     __ xorptr(rax, rax);
 312   } else {
 313     __ movptr(rax, value);
 314   }
 315   assert(value >= 0, "check this code");
 316   __ xorptr(rdx, rdx);
 317 }
 318 
 319 
 320 void TemplateTable::fconst(int value) {
 321   transition(vtos, ftos);
 322          if (value == 0) { __ fldz();
 323   } else if (value == 1) { __ fld1();
 324   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 325   } else                 { ShouldNotReachHere();
 326   }
 327 }
 328 
 329 
 330 void TemplateTable::dconst(int value) {
 331   transition(vtos, dtos);
 332          if (value == 0) { __ fldz();
 333   } else if (value == 1) { __ fld1();
 334   } else                 { ShouldNotReachHere();
 335   }
 336 }
 337 
 338 
 339 void TemplateTable::bipush() {
 340   transition(vtos, itos);
 341   __ load_signed_byte(rax, at_bcp(1));
 342 }
 343 
 344 
 345 void TemplateTable::sipush() {
 346   transition(vtos, itos);
 347   __ load_unsigned_short(rax, at_bcp(1));
 348   __ bswapl(rax);
 349   __ sarl(rax, 16);
 350 }
 351 
 352 void TemplateTable::ldc(bool wide) {
 353   transition(vtos, vtos);
 354   Label call_ldc, notFloat, notClass, Done;
 355 
 356   if (wide) {
 357     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 358   } else {
 359     __ load_unsigned_byte(rbx, at_bcp(1));
 360   }
 361   __ get_cpool_and_tags(rcx, rax);
 362   const int base_offset = ConstantPool::header_size() * wordSize;
 363   const int tags_offset = Array<u1>::base_offset_in_bytes();
 364 
 365   // get type
 366   __ xorptr(rdx, rdx);
 367   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 368 
 369   // unresolved class - get the resolved class
 370   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 371   __ jccb(Assembler::equal, call_ldc);
 372 
 373   // unresolved class in error (resolution failed) - call into runtime
 374   // so that the same error from first resolution attempt is thrown.
 375   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 376   __ jccb(Assembler::equal, call_ldc);
 377 
 378   // resolved class - need to call vm to get java mirror of the class
 379   __ cmpl(rdx, JVM_CONSTANT_Class);
 380   __ jcc(Assembler::notEqual, notClass);
 381 
 382   __ bind(call_ldc);
 383   __ movl(rcx, wide);
 384   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
 385   __ push(atos);
 386   __ jmp(Done);
 387 
 388   __ bind(notClass);
 389   __ cmpl(rdx, JVM_CONSTANT_Float);
 390   __ jccb(Assembler::notEqual, notFloat);
 391   // ftos
 392   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
 393   __ push(ftos);
 394   __ jmp(Done);
 395 
 396   __ bind(notFloat);
 397 #ifdef ASSERT
 398   { Label L;
 399     __ cmpl(rdx, JVM_CONSTANT_Integer);
 400     __ jcc(Assembler::equal, L);
 401     // String and Object are rewritten to fast_aldc
 402     __ stop("unexpected tag type in ldc");
 403     __ bind(L);
 404   }
 405 #endif
 406   // itos JVM_CONSTANT_Integer only
 407   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 408   __ push(itos);
 409   __ bind(Done);
 410 }
 411 
 412 // Fast path for caching oop constants.
 413 void TemplateTable::fast_aldc(bool wide) {
 414   transition(vtos, atos);
 415 
 416   Register result = rax;
 417   Register tmp = rdx;
 418   int index_size = wide ? sizeof(u2) : sizeof(u1);
 419 
 420   Label resolved;
 421 
 422   // We are resolved if the resolved reference cache entry contains a
 423   // non-null object (String, MethodType, etc.)
 424   assert_different_registers(result, tmp);
 425   __ get_cache_index_at_bcp(tmp, 1, index_size);
 426   __ load_resolved_reference_at_index(result, tmp);
 427   __ testl(result, result);
 428   __ jcc(Assembler::notZero, resolved);
 429 
 430   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 431 
 432   // first time invocation - must resolve first
 433   __ movl(tmp, (int)bytecode());
 434   __ call_VM(result, entry, tmp);
 435 
 436   __ bind(resolved);
 437 
 438   if (VerifyOops) {
 439     __ verify_oop(result);
 440   }
 441 }
 442 
 443 void TemplateTable::ldc2_w() {
 444   transition(vtos, vtos);
 445   Label Long, Done;
 446   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 447 
 448   __ get_cpool_and_tags(rcx, rax);
 449   const int base_offset = ConstantPool::header_size() * wordSize;
 450   const int tags_offset = Array<u1>::base_offset_in_bytes();
 451 
 452   // get type
 453   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
 454   __ jccb(Assembler::notEqual, Long);
 455   // dtos
 456   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
 457   __ push(dtos);
 458   __ jmpb(Done);
 459 
 460   __ bind(Long);
 461   // ltos
 462   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 463   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 464 
 465   __ push(ltos);
 466 
 467   __ bind(Done);
 468 }
 469 
 470 
 471 void TemplateTable::locals_index(Register reg, int offset) {
 472   __ load_unsigned_byte(reg, at_bcp(offset));
 473   __ negptr(reg);
 474 }
 475 
 476 
 477 void TemplateTable::iload() {
 478   transition(vtos, itos);
 479   if (RewriteFrequentPairs) {
 480     Label rewrite, done;
 481 
 482     // get next byte
 483     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 484     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 485     // last two iloads in a pair.  Comparing against fast_iload means that
 486     // the next bytecode is neither an iload or a caload, and therefore
 487     // an iload pair.
 488     __ cmpl(rbx, Bytecodes::_iload);
 489     __ jcc(Assembler::equal, done);
 490 
 491     __ cmpl(rbx, Bytecodes::_fast_iload);
 492     __ movl(rcx, Bytecodes::_fast_iload2);
 493     __ jccb(Assembler::equal, rewrite);
 494 
 495     // if _caload, rewrite to fast_icaload
 496     __ cmpl(rbx, Bytecodes::_caload);
 497     __ movl(rcx, Bytecodes::_fast_icaload);
 498     __ jccb(Assembler::equal, rewrite);
 499 
 500     // rewrite so iload doesn't check again.
 501     __ movl(rcx, Bytecodes::_fast_iload);
 502 
 503     // rewrite
 504     // rcx: fast bytecode
 505     __ bind(rewrite);
 506     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
 507     __ bind(done);
 508   }
 509 
 510   // Get the local value into tos
 511   locals_index(rbx);
 512   __ movl(rax, iaddress(rbx));
 513 }
 514 
 515 
 516 void TemplateTable::fast_iload2() {
 517   transition(vtos, itos);
 518   locals_index(rbx);
 519   __ movl(rax, iaddress(rbx));
 520   __ push(itos);
 521   locals_index(rbx, 3);
 522   __ movl(rax, iaddress(rbx));
 523 }
 524 
 525 void TemplateTable::fast_iload() {
 526   transition(vtos, itos);
 527   locals_index(rbx);
 528   __ movl(rax, iaddress(rbx));
 529 }
 530 
 531 
 532 void TemplateTable::lload() {
 533   transition(vtos, ltos);
 534   locals_index(rbx);
 535   __ movptr(rax, laddress(rbx));
 536   NOT_LP64(__ movl(rdx, haddress(rbx)));
 537 }
 538 
 539 
 540 void TemplateTable::fload() {
 541   transition(vtos, ftos);
 542   locals_index(rbx);
 543   __ fld_s(faddress(rbx));
 544 }
 545 
 546 
 547 void TemplateTable::dload() {
 548   transition(vtos, dtos);
 549   locals_index(rbx);
 550   __ fld_d(daddress(rbx));
 551 }
 552 
 553 
 554 void TemplateTable::aload() {
 555   transition(vtos, atos);
 556   locals_index(rbx);
 557   __ movptr(rax, aaddress(rbx));
 558 }
 559 
 560 
 561 void TemplateTable::locals_index_wide(Register reg) {
 562   __ load_unsigned_short(reg, at_bcp(2));
 563   __ bswapl(reg);
 564   __ shrl(reg, 16);
 565   __ negptr(reg);
 566 }
 567 
 568 
 569 void TemplateTable::wide_iload() {
 570   transition(vtos, itos);
 571   locals_index_wide(rbx);
 572   __ movl(rax, iaddress(rbx));
 573 }
 574 
 575 
 576 void TemplateTable::wide_lload() {
 577   transition(vtos, ltos);
 578   locals_index_wide(rbx);
 579   __ movptr(rax, laddress(rbx));
 580   NOT_LP64(__ movl(rdx, haddress(rbx)));
 581 }
 582 
 583 
 584 void TemplateTable::wide_fload() {
 585   transition(vtos, ftos);
 586   locals_index_wide(rbx);
 587   __ fld_s(faddress(rbx));
 588 }
 589 
 590 
 591 void TemplateTable::wide_dload() {
 592   transition(vtos, dtos);
 593   locals_index_wide(rbx);
 594   __ fld_d(daddress(rbx));
 595 }
 596 
 597 
 598 void TemplateTable::wide_aload() {
 599   transition(vtos, atos);
 600   locals_index_wide(rbx);
 601   __ movptr(rax, aaddress(rbx));
 602 }
 603 
 604 void TemplateTable::index_check(Register array, Register index) {
 605   // Pop ptr into array
 606   __ pop_ptr(array);
 607   index_check_without_pop(array, index);
 608 }
 609 
 610 void TemplateTable::index_check_without_pop(Register array, Register index) {
 611   // destroys rbx,
 612   // check array
 613   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 614   LP64_ONLY(__ movslq(index, index));
 615   // check index
 616   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 617   if (index != rbx) {
 618     // ??? convention: move aberrant index into rbx, for exception message
 619     assert(rbx != array, "different registers");
 620     __ mov(rbx, index);
 621   }
 622   __ jump_cc(Assembler::aboveEqual,
 623              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 624 }
 625 
 626 
 627 void TemplateTable::iaload() {
 628   transition(itos, itos);
 629   // rdx: array
 630   index_check(rdx, rax);  // kills rbx,
 631   // rax,: index
 632   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
 633 }
 634 
 635 
 636 void TemplateTable::laload() {
 637   transition(itos, ltos);
 638   // rax,: index
 639   // rdx: array
 640   index_check(rdx, rax);
 641   __ mov(rbx, rax);
 642   // rbx,: index
 643   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
 644   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
 645 }
 646 
 647 
 648 void TemplateTable::faload() {
 649   transition(itos, ftos);
 650   // rdx: array
 651   index_check(rdx, rax);  // kills rbx,
 652   // rax,: index
 653   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 654 }
 655 
 656 
 657 void TemplateTable::daload() {
 658   transition(itos, dtos);
 659   // rdx: array
 660   index_check(rdx, rax);  // kills rbx,
 661   // rax,: index
 662   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 663 }
 664 
 665 
 666 void TemplateTable::aaload() {
 667   transition(itos, atos);
 668   // rdx: array
 669   index_check(rdx, rax);  // kills rbx,
 670   // rax,: index
 671   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 672 }
 673 
 674 
 675 void TemplateTable::baload() {
 676   transition(itos, itos);
 677   // rdx: array
 678   index_check(rdx, rax);  // kills rbx,
 679   // rax,: index
 680   // can do better code for P5 - fix this at some point
 681   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 682   __ mov(rax, rbx);
 683 }
 684 
 685 
 686 void TemplateTable::caload() {
 687   transition(itos, itos);
 688   // rdx: array
 689   index_check(rdx, rax);  // kills rbx,
 690   // rax,: index
 691   // can do better code for P5 - may want to improve this at some point
 692   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 693   __ mov(rax, rbx);
 694 }
 695 
 696 // iload followed by caload frequent pair
 697 void TemplateTable::fast_icaload() {
 698   transition(vtos, itos);
 699   // load index out of locals
 700   locals_index(rbx);
 701   __ movl(rax, iaddress(rbx));
 702 
 703   // rdx: array
 704   index_check(rdx, rax);
 705   // rax,: index
 706   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 707   __ mov(rax, rbx);
 708 }
 709 
 710 void TemplateTable::saload() {
 711   transition(itos, itos);
 712   // rdx: array
 713   index_check(rdx, rax);  // kills rbx,
 714   // rax,: index
 715   // can do better code for P5 - may want to improve this at some point
 716   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 717   __ mov(rax, rbx);
 718 }
 719 
 720 
 721 void TemplateTable::iload(int n) {
 722   transition(vtos, itos);
 723   __ movl(rax, iaddress(n));
 724 }
 725 
 726 
 727 void TemplateTable::lload(int n) {
 728   transition(vtos, ltos);
 729   __ movptr(rax, laddress(n));
 730   NOT_LP64(__ movptr(rdx, haddress(n)));
 731 }
 732 
 733 
 734 void TemplateTable::fload(int n) {
 735   transition(vtos, ftos);
 736   __ fld_s(faddress(n));
 737 }
 738 
 739 
 740 void TemplateTable::dload(int n) {
 741   transition(vtos, dtos);
 742   __ fld_d(daddress(n));
 743 }
 744 
 745 
 746 void TemplateTable::aload(int n) {
 747   transition(vtos, atos);
 748   __ movptr(rax, aaddress(n));
 749 }
 750 
 751 
 752 void TemplateTable::aload_0() {
 753   transition(vtos, atos);
 754   // According to bytecode histograms, the pairs:
 755   //
 756   // _aload_0, _fast_igetfield
 757   // _aload_0, _fast_agetfield
 758   // _aload_0, _fast_fgetfield
 759   //
 760   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 761   // bytecode checks if the next bytecode is either _fast_igetfield,
 762   // _fast_agetfield or _fast_fgetfield and then rewrites the
 763   // current bytecode into a pair bytecode; otherwise it rewrites the current
 764   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 765   //
 766   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
 767   //       otherwise we may miss an opportunity for a pair.
 768   //
 769   // Also rewrite frequent pairs
 770   //   aload_0, aload_1
 771   //   aload_0, iload_1
 772   // These bytecodes with a small amount of code are most profitable to rewrite
 773   if (RewriteFrequentPairs) {
 774     Label rewrite, done;
 775     // get next byte
 776     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 777 
 778     // do actual aload_0
 779     aload(0);
 780 
 781     // if _getfield then wait with rewrite
 782     __ cmpl(rbx, Bytecodes::_getfield);
 783     __ jcc(Assembler::equal, done);
 784 
 785     // if _igetfield then reqrite to _fast_iaccess_0
 786     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 787     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 788     __ movl(rcx, Bytecodes::_fast_iaccess_0);
 789     __ jccb(Assembler::equal, rewrite);
 790 
 791     // if _agetfield then reqrite to _fast_aaccess_0
 792     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 793     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 794     __ movl(rcx, Bytecodes::_fast_aaccess_0);
 795     __ jccb(Assembler::equal, rewrite);
 796 
 797     // if _fgetfield then reqrite to _fast_faccess_0
 798     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 799     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 800     __ movl(rcx, Bytecodes::_fast_faccess_0);
 801     __ jccb(Assembler::equal, rewrite);
 802 
 803     // else rewrite to _fast_aload0
 804     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 805     __ movl(rcx, Bytecodes::_fast_aload_0);
 806 
 807     // rewrite
 808     // rcx: fast bytecode
 809     __ bind(rewrite);
 810     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
 811 
 812     __ bind(done);
 813   } else {
 814     aload(0);
 815   }
 816 }
 817 
 818 void TemplateTable::istore() {
 819   transition(itos, vtos);
 820   locals_index(rbx);
 821   __ movl(iaddress(rbx), rax);
 822 }
 823 
 824 
 825 void TemplateTable::lstore() {
 826   transition(ltos, vtos);
 827   locals_index(rbx);
 828   __ movptr(laddress(rbx), rax);
 829   NOT_LP64(__ movptr(haddress(rbx), rdx));
 830 }
 831 
 832 
 833 void TemplateTable::fstore() {
 834   transition(ftos, vtos);
 835   locals_index(rbx);
 836   __ fstp_s(faddress(rbx));
 837 }
 838 
 839 
 840 void TemplateTable::dstore() {
 841   transition(dtos, vtos);
 842   locals_index(rbx);
 843   __ fstp_d(daddress(rbx));
 844 }
 845 
 846 
 847 void TemplateTable::astore() {
 848   transition(vtos, vtos);
 849   __ pop_ptr(rax);
 850   locals_index(rbx);
 851   __ movptr(aaddress(rbx), rax);
 852 }
 853 
 854 
 855 void TemplateTable::wide_istore() {
 856   transition(vtos, vtos);
 857   __ pop_i(rax);
 858   locals_index_wide(rbx);
 859   __ movl(iaddress(rbx), rax);
 860 }
 861 
 862 
 863 void TemplateTable::wide_lstore() {
 864   transition(vtos, vtos);
 865   __ pop_l(rax, rdx);
 866   locals_index_wide(rbx);
 867   __ movptr(laddress(rbx), rax);
 868   NOT_LP64(__ movl(haddress(rbx), rdx));
 869 }
 870 
 871 
 872 void TemplateTable::wide_fstore() {
 873   wide_istore();
 874 }
 875 
 876 
 877 void TemplateTable::wide_dstore() {
 878   wide_lstore();
 879 }
 880 
 881 
 882 void TemplateTable::wide_astore() {
 883   transition(vtos, vtos);
 884   __ pop_ptr(rax);
 885   locals_index_wide(rbx);
 886   __ movptr(aaddress(rbx), rax);
 887 }
 888 
 889 
 890 void TemplateTable::iastore() {
 891   transition(itos, vtos);
 892   __ pop_i(rbx);
 893   // rax,: value
 894   // rdx: array
 895   index_check(rdx, rbx);  // prefer index in rbx,
 896   // rbx,: index
 897   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
 898 }
 899 
 900 
 901 void TemplateTable::lastore() {
 902   transition(ltos, vtos);
 903   __ pop_i(rbx);
 904   // rax,: low(value)
 905   // rcx: array
 906   // rdx: high(value)
 907   index_check(rcx, rbx);  // prefer index in rbx,
 908   // rbx,: index
 909   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
 910   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
 911 }
 912 
 913 
 914 void TemplateTable::fastore() {
 915   transition(ftos, vtos);
 916   __ pop_i(rbx);
 917   // rdx: array
 918   // st0: value
 919   index_check(rdx, rbx);  // prefer index in rbx,
 920   // rbx,: index
 921   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 922 }
 923 
 924 
 925 void TemplateTable::dastore() {
 926   transition(dtos, vtos);
 927   __ pop_i(rbx);
 928   // rdx: array
 929   // st0: value
 930   index_check(rdx, rbx);  // prefer index in rbx,
 931   // rbx,: index
 932   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 933 }
 934 
 935 
 936 void TemplateTable::aastore() {
 937   Label is_null, ok_is_subtype, done;
 938   transition(vtos, vtos);
 939   // stack: ..., array, index, value
 940   __ movptr(rax, at_tos());     // Value
 941   __ movl(rcx, at_tos_p1());  // Index
 942   __ movptr(rdx, at_tos_p2());  // Array
 943 
 944   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 945   index_check_without_pop(rdx, rcx);      // kills rbx,
 946   // do array store check - check for NULL value first
 947   __ testptr(rax, rax);
 948   __ jcc(Assembler::zero, is_null);
 949 
 950   // Move subklass into EBX
 951   __ load_klass(rbx, rax);
 952   // Move superklass into EAX
 953   __ load_klass(rax, rdx);
 954   __ movptr(rax, Address(rax, ObjArrayKlass::element_klass_offset()));
 955   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
 956   __ lea(rdx, element_address);
 957 
 958   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
 959   // Superklass in EAX.  Subklass in EBX.
 960   __ gen_subtype_check( rbx, ok_is_subtype );
 961 
 962   // Come here on failure
 963   // object is at TOS
 964   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 965 
 966   // Come here on success
 967   __ bind(ok_is_subtype);
 968 
 969   // Get the value to store
 970   __ movptr(rax, at_rsp());
 971   // and store it with appropriate barrier
 972   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
 973 
 974   __ jmp(done);
 975 
 976   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
 977   __ bind(is_null);
 978   __ profile_null_seen(rbx);
 979 
 980   // Store NULL, (noreg means NULL to do_oop_store)
 981   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
 982 
 983   // Pop stack arguments
 984   __ bind(done);
 985   __ addptr(rsp, 3 * Interpreter::stackElementSize);
 986 }
 987 
 988 
 989 void TemplateTable::bastore() {
 990   transition(itos, vtos);
 991   __ pop_i(rbx);
 992   // rax,: value
 993   // rdx: array
 994   index_check(rdx, rbx);  // prefer index in rbx,
 995   // rbx,: index
 996   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
 997 }
 998 
 999 
1000 void TemplateTable::castore() {
1001   transition(itos, vtos);
1002   __ pop_i(rbx);
1003   // rax,: value
1004   // rdx: array
1005   index_check(rdx, rbx);  // prefer index in rbx,
1006   // rbx,: index
1007   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
1008 }
1009 
1010 
1011 void TemplateTable::sastore() {
1012   castore();
1013 }
1014 
1015 
1016 void TemplateTable::istore(int n) {
1017   transition(itos, vtos);
1018   __ movl(iaddress(n), rax);
1019 }
1020 
1021 
1022 void TemplateTable::lstore(int n) {
1023   transition(ltos, vtos);
1024   __ movptr(laddress(n), rax);
1025   NOT_LP64(__ movptr(haddress(n), rdx));
1026 }
1027 
1028 
1029 void TemplateTable::fstore(int n) {
1030   transition(ftos, vtos);
1031   __ fstp_s(faddress(n));
1032 }
1033 
1034 
1035 void TemplateTable::dstore(int n) {
1036   transition(dtos, vtos);
1037   __ fstp_d(daddress(n));
1038 }
1039 
1040 
1041 void TemplateTable::astore(int n) {
1042   transition(vtos, vtos);
1043   __ pop_ptr(rax);
1044   __ movptr(aaddress(n), rax);
1045 }
1046 
1047 
1048 void TemplateTable::pop() {
1049   transition(vtos, vtos);
1050   __ addptr(rsp, Interpreter::stackElementSize);
1051 }
1052 
1053 
1054 void TemplateTable::pop2() {
1055   transition(vtos, vtos);
1056   __ addptr(rsp, 2*Interpreter::stackElementSize);
1057 }
1058 
1059 
1060 void TemplateTable::dup() {
1061   transition(vtos, vtos);
1062   // stack: ..., a
1063   __ load_ptr(0, rax);
1064   __ push_ptr(rax);
1065   // stack: ..., a, a
1066 }
1067 
1068 
1069 void TemplateTable::dup_x1() {
1070   transition(vtos, vtos);
1071   // stack: ..., a, b
1072   __ load_ptr( 0, rax);  // load b
1073   __ load_ptr( 1, rcx);  // load a
1074   __ store_ptr(1, rax);  // store b
1075   __ store_ptr(0, rcx);  // store a
1076   __ push_ptr(rax);      // push b
1077   // stack: ..., b, a, b
1078 }
1079 
1080 
1081 void TemplateTable::dup_x2() {
1082   transition(vtos, vtos);
1083   // stack: ..., a, b, c
1084   __ load_ptr( 0, rax);  // load c
1085   __ load_ptr( 2, rcx);  // load a
1086   __ store_ptr(2, rax);  // store c in a
1087   __ push_ptr(rax);      // push c
1088   // stack: ..., c, b, c, c
1089   __ load_ptr( 2, rax);  // load b
1090   __ store_ptr(2, rcx);  // store a in b
1091   // stack: ..., c, a, c, c
1092   __ store_ptr(1, rax);  // store b in c
1093   // stack: ..., c, a, b, c
1094 }
1095 
1096 
1097 void TemplateTable::dup2() {
1098   transition(vtos, vtos);
1099   // stack: ..., a, b
1100   __ load_ptr(1, rax);  // load a
1101   __ push_ptr(rax);     // push a
1102   __ load_ptr(1, rax);  // load b
1103   __ push_ptr(rax);     // push b
1104   // stack: ..., a, b, a, b
1105 }
1106 
1107 
1108 void TemplateTable::dup2_x1() {
1109   transition(vtos, vtos);
1110   // stack: ..., a, b, c
1111   __ load_ptr( 0, rcx);  // load c
1112   __ load_ptr( 1, rax);  // load b
1113   __ push_ptr(rax);      // push b
1114   __ push_ptr(rcx);      // push c
1115   // stack: ..., a, b, c, b, c
1116   __ store_ptr(3, rcx);  // store c in b
1117   // stack: ..., a, c, c, b, c
1118   __ load_ptr( 4, rcx);  // load a
1119   __ store_ptr(2, rcx);  // store a in 2nd c
1120   // stack: ..., a, c, a, b, c
1121   __ store_ptr(4, rax);  // store b in a
1122   // stack: ..., b, c, a, b, c
1123   // stack: ..., b, c, a, b, c
1124 }
1125 
1126 
1127 void TemplateTable::dup2_x2() {
1128   transition(vtos, vtos);
1129   // stack: ..., a, b, c, d
1130   __ load_ptr( 0, rcx);  // load d
1131   __ load_ptr( 1, rax);  // load c
1132   __ push_ptr(rax);      // push c
1133   __ push_ptr(rcx);      // push d
1134   // stack: ..., a, b, c, d, c, d
1135   __ load_ptr( 4, rax);  // load b
1136   __ store_ptr(2, rax);  // store b in d
1137   __ store_ptr(4, rcx);  // store d in b
1138   // stack: ..., a, d, c, b, c, d
1139   __ load_ptr( 5, rcx);  // load a
1140   __ load_ptr( 3, rax);  // load c
1141   __ store_ptr(3, rcx);  // store a in c
1142   __ store_ptr(5, rax);  // store c in a
1143   // stack: ..., c, d, a, b, c, d
1144   // stack: ..., c, d, a, b, c, d
1145 }
1146 
1147 
1148 void TemplateTable::swap() {
1149   transition(vtos, vtos);
1150   // stack: ..., a, b
1151   __ load_ptr( 1, rcx);  // load a
1152   __ load_ptr( 0, rax);  // load b
1153   __ store_ptr(0, rcx);  // store a in b
1154   __ store_ptr(1, rax);  // store b in a
1155   // stack: ..., b, a
1156 }
1157 
1158 
1159 void TemplateTable::iop2(Operation op) {
1160   transition(itos, itos);
1161   switch (op) {
1162     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
1163     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1164     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
1165     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
1166     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
1167     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
1168     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1169     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1170     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1171     default   : ShouldNotReachHere();
1172   }
1173 }
1174 
1175 
1176 void TemplateTable::lop2(Operation op) {
1177   transition(ltos, ltos);
1178   __ pop_l(rbx, rcx);
1179   switch (op) {
1180     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1181     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1182                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1183     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1184     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1185     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1186     default   : ShouldNotReachHere();
1187   }
1188 }
1189 
1190 
1191 void TemplateTable::idiv() {
1192   transition(itos, itos);
1193   __ mov(rcx, rax);
1194   __ pop_i(rax);
1195   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1196   //       they are not equal, one could do a normal division (no correction
1197   //       needed), which may speed up this implementation for the common case.
1198   //       (see also JVM spec., p.243 & p.271)
1199   __ corrected_idivl(rcx);
1200 }
1201 
1202 
1203 void TemplateTable::irem() {
1204   transition(itos, itos);
1205   __ mov(rcx, rax);
1206   __ pop_i(rax);
1207   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1208   //       they are not equal, one could do a normal division (no correction
1209   //       needed), which may speed up this implementation for the common case.
1210   //       (see also JVM spec., p.243 & p.271)
1211   __ corrected_idivl(rcx);
1212   __ mov(rax, rdx);
1213 }
1214 
1215 
1216 void TemplateTable::lmul() {
1217   transition(ltos, ltos);
1218   __ pop_l(rbx, rcx);
1219   __ push(rcx); __ push(rbx);
1220   __ push(rdx); __ push(rax);
1221   __ lmul(2 * wordSize, 0);
1222   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1223 }
1224 
1225 
1226 void TemplateTable::ldiv() {
1227   transition(ltos, ltos);
1228   __ pop_l(rbx, rcx);
1229   __ push(rcx); __ push(rbx);
1230   __ push(rdx); __ push(rax);
1231   // check if y = 0
1232   __ orl(rax, rdx);
1233   __ jump_cc(Assembler::zero,
1234              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1235   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1236   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1237 }
1238 
1239 
1240 void TemplateTable::lrem() {
1241   transition(ltos, ltos);
1242   __ pop_l(rbx, rcx);
1243   __ push(rcx); __ push(rbx);
1244   __ push(rdx); __ push(rax);
1245   // check if y = 0
1246   __ orl(rax, rdx);
1247   __ jump_cc(Assembler::zero,
1248              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1249   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1250   __ addptr(rsp, 4 * wordSize);
1251 }
1252 
1253 
1254 void TemplateTable::lshl() {
1255   transition(itos, ltos);
1256   __ movl(rcx, rax);                             // get shift count
1257   __ pop_l(rax, rdx);                            // get shift value
1258   __ lshl(rdx, rax);
1259 }
1260 
1261 
1262 void TemplateTable::lshr() {
1263   transition(itos, ltos);
1264   __ mov(rcx, rax);                              // get shift count
1265   __ pop_l(rax, rdx);                            // get shift value
1266   __ lshr(rdx, rax, true);
1267 }
1268 
1269 
1270 void TemplateTable::lushr() {
1271   transition(itos, ltos);
1272   __ mov(rcx, rax);                              // get shift count
1273   __ pop_l(rax, rdx);                            // get shift value
1274   __ lshr(rdx, rax);
1275 }
1276 
1277 
1278 void TemplateTable::fop2(Operation op) {
1279   transition(ftos, ftos);
1280   switch (op) {
1281     case add: __ fadd_s (at_rsp());                break;
1282     case sub: __ fsubr_s(at_rsp());                break;
1283     case mul: __ fmul_s (at_rsp());                break;
1284     case div: __ fdivr_s(at_rsp());                break;
1285     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1286     default : ShouldNotReachHere();
1287   }
1288   __ f2ieee();
1289   __ pop(rax);  // pop float thing off
1290 }
1291 
1292 
1293 void TemplateTable::dop2(Operation op) {
1294   transition(dtos, dtos);
1295 
1296   switch (op) {
1297     case add: __ fadd_d (at_rsp());                break;
1298     case sub: __ fsubr_d(at_rsp());                break;
1299     case mul: {
1300       Label L_strict;
1301       Label L_join;
1302       const Address access_flags      (rcx, Method::access_flags_offset());
1303       __ get_method(rcx);
1304       __ movl(rcx, access_flags);
1305       __ testl(rcx, JVM_ACC_STRICT);
1306       __ jccb(Assembler::notZero, L_strict);
1307       __ fmul_d (at_rsp());
1308       __ jmpb(L_join);
1309       __ bind(L_strict);
1310       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1311       __ fmulp();
1312       __ fmul_d (at_rsp());
1313       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1314       __ fmulp();
1315       __ bind(L_join);
1316       break;
1317     }
1318     case div: {
1319       Label L_strict;
1320       Label L_join;
1321       const Address access_flags      (rcx, Method::access_flags_offset());
1322       __ get_method(rcx);
1323       __ movl(rcx, access_flags);
1324       __ testl(rcx, JVM_ACC_STRICT);
1325       __ jccb(Assembler::notZero, L_strict);
1326       __ fdivr_d(at_rsp());
1327       __ jmp(L_join);
1328       __ bind(L_strict);
1329       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1330       __ fmul_d (at_rsp());
1331       __ fdivrp();
1332       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1333       __ fmulp();
1334       __ bind(L_join);
1335       break;
1336     }
1337     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1338     default : ShouldNotReachHere();
1339   }
1340   __ d2ieee();
1341   // Pop double precision number from rsp.
1342   __ pop(rax);
1343   __ pop(rdx);
1344 }
1345 
1346 
1347 void TemplateTable::ineg() {
1348   transition(itos, itos);
1349   __ negl(rax);
1350 }
1351 
1352 
1353 void TemplateTable::lneg() {
1354   transition(ltos, ltos);
1355   __ lneg(rdx, rax);
1356 }
1357 
1358 
1359 void TemplateTable::fneg() {
1360   transition(ftos, ftos);
1361   __ fchs();
1362 }
1363 
1364 
1365 void TemplateTable::dneg() {
1366   transition(dtos, dtos);
1367   __ fchs();
1368 }
1369 
1370 
1371 void TemplateTable::iinc() {
1372   transition(vtos, vtos);
1373   __ load_signed_byte(rdx, at_bcp(2));           // get constant
1374   locals_index(rbx);
1375   __ addl(iaddress(rbx), rdx);
1376 }
1377 
1378 
1379 void TemplateTable::wide_iinc() {
1380   transition(vtos, vtos);
1381   __ movl(rdx, at_bcp(4));                       // get constant
1382   locals_index_wide(rbx);
1383   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
1384   __ sarl(rdx, 16);
1385   __ addl(iaddress(rbx), rdx);
1386   // Note: should probably use only one movl to get both
1387   //       the index and the constant -> fix this
1388 }
1389 
1390 
1391 void TemplateTable::convert() {
1392   // Checking
1393 #ifdef ASSERT
1394   { TosState tos_in  = ilgl;
1395     TosState tos_out = ilgl;
1396     switch (bytecode()) {
1397       case Bytecodes::_i2l: // fall through
1398       case Bytecodes::_i2f: // fall through
1399       case Bytecodes::_i2d: // fall through
1400       case Bytecodes::_i2b: // fall through
1401       case Bytecodes::_i2c: // fall through
1402       case Bytecodes::_i2s: tos_in = itos; break;
1403       case Bytecodes::_l2i: // fall through
1404       case Bytecodes::_l2f: // fall through
1405       case Bytecodes::_l2d: tos_in = ltos; break;
1406       case Bytecodes::_f2i: // fall through
1407       case Bytecodes::_f2l: // fall through
1408       case Bytecodes::_f2d: tos_in = ftos; break;
1409       case Bytecodes::_d2i: // fall through
1410       case Bytecodes::_d2l: // fall through
1411       case Bytecodes::_d2f: tos_in = dtos; break;
1412       default             : ShouldNotReachHere();
1413     }
1414     switch (bytecode()) {
1415       case Bytecodes::_l2i: // fall through
1416       case Bytecodes::_f2i: // fall through
1417       case Bytecodes::_d2i: // fall through
1418       case Bytecodes::_i2b: // fall through
1419       case Bytecodes::_i2c: // fall through
1420       case Bytecodes::_i2s: tos_out = itos; break;
1421       case Bytecodes::_i2l: // fall through
1422       case Bytecodes::_f2l: // fall through
1423       case Bytecodes::_d2l: tos_out = ltos; break;
1424       case Bytecodes::_i2f: // fall through
1425       case Bytecodes::_l2f: // fall through
1426       case Bytecodes::_d2f: tos_out = ftos; break;
1427       case Bytecodes::_i2d: // fall through
1428       case Bytecodes::_l2d: // fall through
1429       case Bytecodes::_f2d: tos_out = dtos; break;
1430       default             : ShouldNotReachHere();
1431     }
1432     transition(tos_in, tos_out);
1433   }
1434 #endif // ASSERT
1435 
1436   // Conversion
1437   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1438   switch (bytecode()) {
1439     case Bytecodes::_i2l:
1440       __ extend_sign(rdx, rax);
1441       break;
1442     case Bytecodes::_i2f:
1443       __ push(rax);          // store int on tos
1444       __ fild_s(at_rsp());   // load int to ST0
1445       __ f2ieee();           // truncate to float size
1446       __ pop(rcx);           // adjust rsp
1447       break;
1448     case Bytecodes::_i2d:
1449       __ push(rax);          // add one slot for d2ieee()
1450       __ push(rax);          // store int on tos
1451       __ fild_s(at_rsp());   // load int to ST0
1452       __ d2ieee();           // truncate to double size
1453       __ pop(rcx);           // adjust rsp
1454       __ pop(rcx);
1455       break;
1456     case Bytecodes::_i2b:
1457       __ shll(rax, 24);      // truncate upper 24 bits
1458       __ sarl(rax, 24);      // and sign-extend byte
1459       LP64_ONLY(__ movsbl(rax, rax));
1460       break;
1461     case Bytecodes::_i2c:
1462       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1463       LP64_ONLY(__ movzwl(rax, rax));
1464       break;
1465     case Bytecodes::_i2s:
1466       __ shll(rax, 16);      // truncate upper 16 bits
1467       __ sarl(rax, 16);      // and sign-extend short
1468       LP64_ONLY(__ movswl(rax, rax));
1469       break;
1470     case Bytecodes::_l2i:
1471       /* nothing to do */
1472       break;
1473     case Bytecodes::_l2f:
1474       __ push(rdx);          // store long on tos
1475       __ push(rax);
1476       __ fild_d(at_rsp());   // load long to ST0
1477       __ f2ieee();           // truncate to float size
1478       __ pop(rcx);           // adjust rsp
1479       __ pop(rcx);
1480       break;
1481     case Bytecodes::_l2d:
1482       __ push(rdx);          // store long on tos
1483       __ push(rax);
1484       __ fild_d(at_rsp());   // load long to ST0
1485       __ d2ieee();           // truncate to double size
1486       __ pop(rcx);           // adjust rsp
1487       __ pop(rcx);
1488       break;
1489     case Bytecodes::_f2i:
1490       __ push(rcx);          // reserve space for argument
1491       __ fstp_s(at_rsp());   // pass float argument on stack
1492       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1493       break;
1494     case Bytecodes::_f2l:
1495       __ push(rcx);          // reserve space for argument
1496       __ fstp_s(at_rsp());   // pass float argument on stack
1497       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1498       break;
1499     case Bytecodes::_f2d:
1500       /* nothing to do */
1501       break;
1502     case Bytecodes::_d2i:
1503       __ push(rcx);          // reserve space for argument
1504       __ push(rcx);
1505       __ fstp_d(at_rsp());   // pass double argument on stack
1506       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
1507       break;
1508     case Bytecodes::_d2l:
1509       __ push(rcx);          // reserve space for argument
1510       __ push(rcx);
1511       __ fstp_d(at_rsp());   // pass double argument on stack
1512       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
1513       break;
1514     case Bytecodes::_d2f:
1515       __ push(rcx);          // reserve space for f2ieee()
1516       __ f2ieee();           // truncate to float size
1517       __ pop(rcx);           // adjust rsp
1518       break;
1519     default             :
1520       ShouldNotReachHere();
1521   }
1522 }
1523 
1524 
1525 void TemplateTable::lcmp() {
1526   transition(ltos, itos);
1527   // y = rdx:rax
1528   __ pop_l(rbx, rcx);             // get x = rcx:rbx
1529   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
1530   __ mov(rax, rcx);
1531 }
1532 
1533 
1534 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1535   if (is_float) {
1536     __ fld_s(at_rsp());
1537   } else {
1538     __ fld_d(at_rsp());
1539     __ pop(rdx);
1540   }
1541   __ pop(rcx);
1542   __ fcmp2int(rax, unordered_result < 0);
1543 }
1544 
1545 
1546 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1547   __ get_method(rcx);           // ECX holds method
1548   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
1549 
1550   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1551                              InvocationCounter::counter_offset();
1552   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1553                               InvocationCounter::counter_offset();
1554 
1555   // Load up EDX with the branch displacement
1556   if (is_wide) {
1557     __ movl(rdx, at_bcp(1));
1558   } else {
1559     __ load_signed_short(rdx, at_bcp(1));
1560   }
1561   __ bswapl(rdx);
1562   if (!is_wide) __ sarl(rdx, 16);
1563   LP64_ONLY(__ movslq(rdx, rdx));
1564 
1565 
1566   // Handle all the JSR stuff here, then exit.
1567   // It's much shorter and cleaner than intermingling with the
1568   // non-JSR normal-branch stuff occurring below.
1569   if (is_jsr) {
1570     // Pre-load the next target bytecode into EBX
1571     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
1572 
1573     // compute return address as bci in rax,
1574     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset())));
1575     __ subptr(rax, Address(rcx, Method::const_offset()));
1576     // Adjust the bcp in RSI by the displacement in EDX
1577     __ addptr(rsi, rdx);
1578     // Push return address
1579     __ push_i(rax);
1580     // jsr returns vtos
1581     __ dispatch_only_noverify(vtos);
1582     return;
1583   }
1584 
1585   // Normal (non-jsr) branch handling
1586 
1587   // Adjust the bcp in RSI by the displacement in EDX
1588   __ addptr(rsi, rdx);
1589 
1590   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
1591   Label backedge_counter_overflow;
1592   Label profile_method;
1593   Label dispatch;
1594   if (UseLoopCounter) {
1595     // increment backedge counter for backward branches
1596     // rax,: MDO
1597     // rbx,: MDO bumped taken-count
1598     // rcx: method
1599     // rdx: target offset
1600     // rsi: target bcp
1601     // rdi: locals pointer
1602     __ testl(rdx, rdx);             // check if forward or backward branch
1603     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1604 
1605     // check if MethodCounters exists
1606     Label has_counters;
1607     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1608     __ testptr(rax, rax);
1609     __ jcc(Assembler::notZero, has_counters);
1610     __ push(rdx);
1611     __ push(rcx);
1612     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
1613                rcx);
1614     __ pop(rcx);
1615     __ pop(rdx);
1616     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1617     __ testptr(rax, rax);
1618     __ jcc(Assembler::zero, dispatch);
1619     __ bind(has_counters);
1620 
1621     if (TieredCompilation) {
1622       Label no_mdo;
1623       int increment = InvocationCounter::count_increment;
1624       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1625       if (ProfileInterpreter) {
1626         // Are we profiling?
1627         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
1628         __ testptr(rbx, rbx);
1629         __ jccb(Assembler::zero, no_mdo);
1630         // Increment the MDO backedge counter
1631         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
1632                                                 in_bytes(InvocationCounter::counter_offset()));
1633         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1634                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1635         __ jmp(dispatch);
1636       }
1637       __ bind(no_mdo);
1638       // Increment backedge counter in MethodCounters*
1639       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1640       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1641                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1642     } else {
1643       // increment counter
1644       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1645       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1646       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1647       __ movl(Address(rcx, be_offset), rax);        // store counter
1648 
1649       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1650 
1651       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
1652       __ addl(rax, Address(rcx, be_offset));        // add both counters
1653 
1654       if (ProfileInterpreter) {
1655         // Test to see if we should create a method data oop
1656         __ cmp32(rax,
1657                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1658         __ jcc(Assembler::less, dispatch);
1659 
1660         // if no method data exists, go to profile method
1661         __ test_method_data_pointer(rax, profile_method);
1662 
1663         if (UseOnStackReplacement) {
1664           // check for overflow against rbx, which is the MDO taken count
1665           __ cmp32(rbx,
1666                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1667           __ jcc(Assembler::below, dispatch);
1668 
1669           // When ProfileInterpreter is on, the backedge_count comes from the
1670           // MethodData*, which value does not get reset on the call to
1671           // frequency_counter_overflow().  To avoid excessive calls to the overflow
1672           // routine while the method is being compiled, add a second test to make
1673           // sure the overflow function is called only once every overflow_frequency.
1674           const int overflow_frequency = 1024;
1675           __ andptr(rbx, overflow_frequency-1);
1676           __ jcc(Assembler::zero, backedge_counter_overflow);
1677         }
1678       } else {
1679         if (UseOnStackReplacement) {
1680           // check for overflow against rax, which is the sum of the counters
1681           __ cmp32(rax,
1682                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1683           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1684 
1685         }
1686       }
1687     }
1688     __ bind(dispatch);
1689   }
1690 
1691   // Pre-load the next target bytecode into EBX
1692   __ load_unsigned_byte(rbx, Address(rsi, 0));
1693 
1694   // continue with the bytecode @ target
1695   // rax,: return bci for jsr's, unused otherwise
1696   // rbx,: target bytecode
1697   // rsi: target bcp
1698   __ dispatch_only(vtos);
1699 
1700   if (UseLoopCounter) {
1701     if (ProfileInterpreter) {
1702       // Out-of-line code to allocate method data oop.
1703       __ bind(profile_method);
1704       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1705       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
1706       __ set_method_data_pointer_for_bcp();
1707       __ jmp(dispatch);
1708     }
1709 
1710     if (UseOnStackReplacement) {
1711 
1712       // invocation counter overflow
1713       __ bind(backedge_counter_overflow);
1714       __ negptr(rdx);
1715       __ addptr(rdx, rsi);        // branch bcp
1716       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
1717       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
1718 
1719       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
1720       // rbx,: target bytecode
1721       // rdx: scratch
1722       // rdi: locals pointer
1723       // rsi: bcp
1724       __ testptr(rax, rax);                      // test result
1725       __ jcc(Assembler::zero, dispatch);         // no osr if null
1726       // nmethod may have been invalidated (VM may block upon call_VM return)
1727       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
1728       __ jcc(Assembler::notEqual, dispatch);
1729 
1730       // We have the address of an on stack replacement routine in rax,
1731       // We need to prepare to execute the OSR method. First we must
1732       // migrate the locals and monitors off of the stack.
1733 
1734       __ mov(rbx, rax);                             // save the nmethod
1735 
1736       __ get_thread(rcx);
1737       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1738       // rax, is OSR buffer, move it to expected parameter location
1739       __ mov(rcx, rax);
1740 
1741       // pop the interpreter frame
1742       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1743       __ leave();                                // remove frame anchor
1744       __ pop(rdi);                               // get return address
1745       __ mov(rsp, rdx);                          // set sp to sender sp
1746 
1747       // Align stack pointer for compiled code (note that caller is
1748       // responsible for undoing this fixup by remembering the old SP
1749       // in an rbp,-relative location)
1750       __ andptr(rsp, -(StackAlignmentInBytes));
1751 
1752       // push the (possibly adjusted) return address
1753       __ push(rdi);
1754 
1755       // and begin the OSR nmethod
1756       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
1757     }
1758   }
1759 }
1760 
1761 
1762 void TemplateTable::if_0cmp(Condition cc) {
1763   transition(itos, vtos);
1764   // assume branch is more often taken than not (loops use backward branches)
1765   Label not_taken;
1766   __ testl(rax, rax);
1767   __ jcc(j_not(cc), not_taken);
1768   branch(false, false);
1769   __ bind(not_taken);
1770   __ profile_not_taken_branch(rax);
1771 }
1772 
1773 
1774 void TemplateTable::if_icmp(Condition cc) {
1775   transition(itos, vtos);
1776   // assume branch is more often taken than not (loops use backward branches)
1777   Label not_taken;
1778   __ pop_i(rdx);
1779   __ cmpl(rdx, rax);
1780   __ jcc(j_not(cc), not_taken);
1781   branch(false, false);
1782   __ bind(not_taken);
1783   __ profile_not_taken_branch(rax);
1784 }
1785 
1786 
1787 void TemplateTable::if_nullcmp(Condition cc) {
1788   transition(atos, vtos);
1789   // assume branch is more often taken than not (loops use backward branches)
1790   Label not_taken;
1791   __ testptr(rax, rax);
1792   __ jcc(j_not(cc), not_taken);
1793   branch(false, false);
1794   __ bind(not_taken);
1795   __ profile_not_taken_branch(rax);
1796 }
1797 
1798 
1799 void TemplateTable::if_acmp(Condition cc) {
1800   transition(atos, vtos);
1801   // assume branch is more often taken than not (loops use backward branches)
1802   Label not_taken;
1803   __ pop_ptr(rdx);
1804   __ cmpptr(rdx, rax);
1805   __ jcc(j_not(cc), not_taken);
1806   branch(false, false);
1807   __ bind(not_taken);
1808   __ profile_not_taken_branch(rax);
1809 }
1810 
1811 
1812 void TemplateTable::ret() {
1813   transition(vtos, vtos);
1814   locals_index(rbx);
1815   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
1816   __ profile_ret(rbx, rcx);
1817   __ get_method(rax);
1818   __ movptr(rsi, Address(rax, Method::const_offset()));
1819   __ lea(rsi, Address(rsi, rbx, Address::times_1,
1820                       ConstMethod::codes_offset()));
1821   __ dispatch_next(vtos);
1822 }
1823 
1824 
1825 void TemplateTable::wide_ret() {
1826   transition(vtos, vtos);
1827   locals_index_wide(rbx);
1828   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
1829   __ profile_ret(rbx, rcx);
1830   __ get_method(rax);
1831   __ movptr(rsi, Address(rax, Method::const_offset()));
1832   __ lea(rsi, Address(rsi, rbx, Address::times_1, ConstMethod::codes_offset()));
1833   __ dispatch_next(vtos);
1834 }
1835 
1836 
1837 void TemplateTable::tableswitch() {
1838   Label default_case, continue_execution;
1839   transition(itos, vtos);
1840   // align rsi
1841   __ lea(rbx, at_bcp(wordSize));
1842   __ andptr(rbx, -wordSize);
1843   // load lo & hi
1844   __ movl(rcx, Address(rbx, 1 * wordSize));
1845   __ movl(rdx, Address(rbx, 2 * wordSize));
1846   __ bswapl(rcx);
1847   __ bswapl(rdx);
1848   // check against lo & hi
1849   __ cmpl(rax, rcx);
1850   __ jccb(Assembler::less, default_case);
1851   __ cmpl(rax, rdx);
1852   __ jccb(Assembler::greater, default_case);
1853   // lookup dispatch offset
1854   __ subl(rax, rcx);
1855   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1856   __ profile_switch_case(rax, rbx, rcx);
1857   // continue execution
1858   __ bind(continue_execution);
1859   __ bswapl(rdx);
1860   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1861   __ addptr(rsi, rdx);
1862   __ dispatch_only(vtos);
1863   // handle default
1864   __ bind(default_case);
1865   __ profile_switch_default(rax);
1866   __ movl(rdx, Address(rbx, 0));
1867   __ jmp(continue_execution);
1868 }
1869 
1870 
1871 void TemplateTable::lookupswitch() {
1872   transition(itos, itos);
1873   __ stop("lookupswitch bytecode should have been rewritten");
1874 }
1875 
1876 
1877 void TemplateTable::fast_linearswitch() {
1878   transition(itos, vtos);
1879   Label loop_entry, loop, found, continue_execution;
1880   // bswapl rax, so we can avoid bswapping the table entries
1881   __ bswapl(rax);
1882   // align rsi
1883   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
1884   __ andptr(rbx, -wordSize);
1885   // set counter
1886   __ movl(rcx, Address(rbx, wordSize));
1887   __ bswapl(rcx);
1888   __ jmpb(loop_entry);
1889   // table search
1890   __ bind(loop);
1891   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
1892   __ jccb(Assembler::equal, found);
1893   __ bind(loop_entry);
1894   __ decrementl(rcx);
1895   __ jcc(Assembler::greaterEqual, loop);
1896   // default case
1897   __ profile_switch_default(rax);
1898   __ movl(rdx, Address(rbx, 0));
1899   __ jmpb(continue_execution);
1900   // entry found -> get offset
1901   __ bind(found);
1902   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
1903   __ profile_switch_case(rcx, rax, rbx);
1904   // continue execution
1905   __ bind(continue_execution);
1906   __ bswapl(rdx);
1907   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1908   __ addptr(rsi, rdx);
1909   __ dispatch_only(vtos);
1910 }
1911 
1912 
1913 void TemplateTable::fast_binaryswitch() {
1914   transition(itos, vtos);
1915   // Implementation using the following core algorithm:
1916   //
1917   // int binary_search(int key, LookupswitchPair* array, int n) {
1918   //   // Binary search according to "Methodik des Programmierens" by
1919   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1920   //   int i = 0;
1921   //   int j = n;
1922   //   while (i+1 < j) {
1923   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1924   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1925   //     // where a stands for the array and assuming that the (inexisting)
1926   //     // element a[n] is infinitely big.
1927   //     int h = (i + j) >> 1;
1928   //     // i < h < j
1929   //     if (key < array[h].fast_match()) {
1930   //       j = h;
1931   //     } else {
1932   //       i = h;
1933   //     }
1934   //   }
1935   //   // R: a[i] <= key < a[i+1] or Q
1936   //   // (i.e., if key is within array, i is the correct index)
1937   //   return i;
1938   // }
1939 
1940   // register allocation
1941   const Register key   = rax;                    // already set (tosca)
1942   const Register array = rbx;
1943   const Register i     = rcx;
1944   const Register j     = rdx;
1945   const Register h     = rdi;                    // needs to be restored
1946   const Register temp  = rsi;
1947   // setup array
1948   __ save_bcp();
1949 
1950   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
1951   __ andptr(array, -wordSize);
1952   // initialize i & j
1953   __ xorl(i, i);                                 // i = 0;
1954   __ movl(j, Address(array, -wordSize));         // j = length(array);
1955   // Convert j into native byteordering
1956   __ bswapl(j);
1957   // and start
1958   Label entry;
1959   __ jmp(entry);
1960 
1961   // binary search loop
1962   { Label loop;
1963     __ bind(loop);
1964     // int h = (i + j) >> 1;
1965     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1966     __ sarl(h, 1);                               // h = (i + j) >> 1;
1967     // if (key < array[h].fast_match()) {
1968     //   j = h;
1969     // } else {
1970     //   i = h;
1971     // }
1972     // Convert array[h].match to native byte-ordering before compare
1973     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
1974     __ bswapl(temp);
1975     __ cmpl(key, temp);
1976     // j = h if (key <  array[h].fast_match())
1977     __ cmov32(Assembler::less        , j, h);
1978     // i = h if (key >= array[h].fast_match())
1979     __ cmov32(Assembler::greaterEqual, i, h);
1980     // while (i+1 < j)
1981     __ bind(entry);
1982     __ leal(h, Address(i, 1));                   // i+1
1983     __ cmpl(h, j);                               // i+1 < j
1984     __ jcc(Assembler::less, loop);
1985   }
1986 
1987   // end of binary search, result index is i (must check again!)
1988   Label default_case;
1989   // Convert array[i].match to native byte-ordering before compare
1990   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
1991   __ bswapl(temp);
1992   __ cmpl(key, temp);
1993   __ jcc(Assembler::notEqual, default_case);
1994 
1995   // entry found -> j = offset
1996   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
1997   __ profile_switch_case(i, key, array);
1998   __ bswapl(j);
1999   LP64_ONLY(__ movslq(j, j));
2000   __ restore_bcp();
2001   __ restore_locals();                           // restore rdi
2002   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
2003 
2004   __ addptr(rsi, j);
2005   __ dispatch_only(vtos);
2006 
2007   // default case -> j = default offset
2008   __ bind(default_case);
2009   __ profile_switch_default(i);
2010   __ movl(j, Address(array, -2*wordSize));
2011   __ bswapl(j);
2012   LP64_ONLY(__ movslq(j, j));
2013   __ restore_bcp();
2014   __ restore_locals();                           // restore rdi
2015   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
2016   __ addptr(rsi, j);
2017   __ dispatch_only(vtos);
2018 }
2019 
2020 
2021 void TemplateTable::_return(TosState state) {
2022   transition(state, state);
2023   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
2024 
2025   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2026     assert(state == vtos, "only valid state");
2027     __ movptr(rax, aaddress(0));
2028     __ load_klass(rdi, rax);
2029     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2030     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2031     Label skip_register_finalizer;
2032     __ jcc(Assembler::zero, skip_register_finalizer);
2033 
2034     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
2035 
2036     __ bind(skip_register_finalizer);
2037   }
2038 
2039   __ remove_activation(state, rsi);
2040   __ jmp(rsi);
2041 }
2042 
2043 
2044 // ----------------------------------------------------------------------------
2045 // Volatile variables demand their effects be made known to all CPU's in
2046 // order.  Store buffers on most chips allow reads & writes to reorder; the
2047 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2048 // memory barrier (i.e., it's not sufficient that the interpreter does not
2049 // reorder volatile references, the hardware also must not reorder them).
2050 //
2051 // According to the new Java Memory Model (JMM):
2052 // (1) All volatiles are serialized wrt to each other.
2053 // ALSO reads & writes act as aquire & release, so:
2054 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2055 // the read float up to before the read.  It's OK for non-volatile memory refs
2056 // that happen before the volatile read to float down below it.
2057 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2058 // that happen BEFORE the write float down to after the write.  It's OK for
2059 // non-volatile memory refs that happen after the volatile write to float up
2060 // before it.
2061 //
2062 // We only put in barriers around volatile refs (they are expensive), not
2063 // _between_ memory refs (that would require us to track the flavor of the
2064 // previous memory refs).  Requirements (2) and (3) require some barriers
2065 // before volatile stores and after volatile loads.  These nearly cover
2066 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2067 // case is placed after volatile-stores although it could just as well go
2068 // before volatile-loads.
2069 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2070   // Helper function to insert a is-volatile test and memory barrier
2071   if( !os::is_MP() ) return;    // Not needed on single CPU
2072   __ membar(order_constraint);
2073 }
2074 
2075 void TemplateTable::resolve_cache_and_index(int byte_no,
2076                                             Register Rcache,
2077                                             Register index,
2078                                             size_t index_size) {
2079   const Register temp = rbx;
2080   assert_different_registers(Rcache, index, temp);
2081 
2082   Label resolved;
2083     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2084     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2085     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
2086     __ jcc(Assembler::equal, resolved);
2087 
2088   // resolve first time through
2089   address entry;
2090   switch (bytecode()) {
2091     case Bytecodes::_getstatic      : // fall through
2092     case Bytecodes::_putstatic      : // fall through
2093     case Bytecodes::_getfield       : // fall through
2094     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);        break;
2095     case Bytecodes::_invokevirtual  : // fall through
2096     case Bytecodes::_invokespecial  : // fall through
2097     case Bytecodes::_invokestatic   : // fall through
2098     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);         break;
2099     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);   break;
2100     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
2101     default:
2102       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2103       break;
2104   }
2105   __ movl(temp, (int)bytecode());
2106   __ call_VM(noreg, entry, temp);
2107   // Update registers with resolved info
2108   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2109   __ bind(resolved);
2110 }
2111 
2112 
2113 // The cache and index registers must be set before call
2114 void TemplateTable::load_field_cp_cache_entry(Register obj,
2115                                               Register cache,
2116                                               Register index,
2117                                               Register off,
2118                                               Register flags,
2119                                               bool is_static = false) {
2120   assert_different_registers(cache, index, flags, off);
2121 
2122   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2123   // Field offset
2124   __ movptr(off, Address(cache, index, Address::times_ptr,
2125                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
2126   // Flags
2127   __ movl(flags, Address(cache, index, Address::times_ptr,
2128            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
2129 
2130   // klass overwrite register
2131   if (is_static) {
2132     __ movptr(obj, Address(cache, index, Address::times_ptr,
2133                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
2134     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2135     __ movptr(obj, Address(obj, mirror_offset));
2136   }
2137 }
2138 
2139 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2140                                                Register method,
2141                                                Register itable_index,
2142                                                Register flags,
2143                                                bool is_invokevirtual,
2144                                                bool is_invokevfinal, /*unused*/
2145                                                bool is_invokedynamic) {
2146   // setup registers
2147   const Register cache = rcx;
2148   const Register index = rdx;
2149   assert_different_registers(method, flags);
2150   assert_different_registers(method, cache, index);
2151   assert_different_registers(itable_index, flags);
2152   assert_different_registers(itable_index, cache, index);
2153   // determine constant pool cache field offsets
2154   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2155   const int method_offset = in_bytes(
2156     ConstantPoolCache::base_offset() +
2157       ((byte_no == f2_byte)
2158        ? ConstantPoolCacheEntry::f2_offset()
2159        : ConstantPoolCacheEntry::f1_offset()));
2160   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2161                                     ConstantPoolCacheEntry::flags_offset());
2162   // access constant pool cache fields
2163   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2164                                     ConstantPoolCacheEntry::f2_offset());
2165 
2166   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2167   resolve_cache_and_index(byte_no, cache, index, index_size);
2168     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2169 
2170   if (itable_index != noreg) {
2171     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2172   }
2173   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2174 }
2175 
2176 
2177 // The registers cache and index expected to be set before call.
2178 // Correct values of the cache and index registers are preserved.
2179 void TemplateTable::jvmti_post_field_access(Register cache,
2180                                             Register index,
2181                                             bool is_static,
2182                                             bool has_tos) {
2183   if (JvmtiExport::can_post_field_access()) {
2184     // Check to see if a field access watch has been set before we take
2185     // the time to call into the VM.
2186     Label L1;
2187     assert_different_registers(cache, index, rax);
2188     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2189     __ testl(rax,rax);
2190     __ jcc(Assembler::zero, L1);
2191 
2192     // cache entry pointer
2193     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2194     __ shll(index, LogBytesPerWord);
2195     __ addptr(cache, index);
2196     if (is_static) {
2197       __ xorptr(rax, rax);      // NULL object reference
2198     } else {
2199       __ pop(atos);         // Get the object
2200       __ verify_oop(rax);
2201       __ push(atos);        // Restore stack state
2202     }
2203     // rax,:   object pointer or NULL
2204     // cache: cache entry pointer
2205     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2206                rax, cache);
2207     __ get_cache_and_index_at_bcp(cache, index, 1);
2208     __ bind(L1);
2209   }
2210 }
2211 
2212 void TemplateTable::pop_and_check_object(Register r) {
2213   __ pop_ptr(r);
2214   __ null_check(r);  // for field access must check obj.
2215   __ verify_oop(r);
2216 }
2217 
2218 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2219   transition(vtos, vtos);
2220 
2221   const Register cache = rcx;
2222   const Register index = rdx;
2223   const Register obj   = rcx;
2224   const Register off   = rbx;
2225   const Register flags = rax;
2226 
2227   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2228   jvmti_post_field_access(cache, index, is_static, false);
2229   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2230 
2231   if (!is_static) pop_and_check_object(obj);
2232 
2233   const Address lo(obj, off, Address::times_1, 0*wordSize);
2234   const Address hi(obj, off, Address::times_1, 1*wordSize);
2235 
2236   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2237 
2238   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2239   assert(btos == 0, "change code, btos != 0");
2240   // btos
2241   __ andptr(flags, ConstantPoolCacheEntry::tos_state_mask);
2242   __ jcc(Assembler::notZero, notByte);
2243 
2244   __ load_signed_byte(rax, lo );
2245   __ push(btos);
2246   // Rewrite bytecode to be faster
2247   if (!is_static) {
2248     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
2249   }
2250   __ jmp(Done);
2251 
2252   __ bind(notByte);
2253   // itos
2254   __ cmpl(flags, itos );
2255   __ jcc(Assembler::notEqual, notInt);
2256 
2257   __ movl(rax, lo );
2258   __ push(itos);
2259   // Rewrite bytecode to be faster
2260   if (!is_static) {
2261     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
2262   }
2263   __ jmp(Done);
2264 
2265   __ bind(notInt);
2266   // atos
2267   __ cmpl(flags, atos );
2268   __ jcc(Assembler::notEqual, notObj);
2269 
2270   __ movl(rax, lo );
2271   __ push(atos);
2272   if (!is_static) {
2273     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
2274   }
2275   __ jmp(Done);
2276 
2277   __ bind(notObj);
2278   // ctos
2279   __ cmpl(flags, ctos );
2280   __ jcc(Assembler::notEqual, notChar);
2281 
2282   __ load_unsigned_short(rax, lo );
2283   __ push(ctos);
2284   if (!is_static) {
2285     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
2286   }
2287   __ jmp(Done);
2288 
2289   __ bind(notChar);
2290   // stos
2291   __ cmpl(flags, stos );
2292   __ jcc(Assembler::notEqual, notShort);
2293 
2294   __ load_signed_short(rax, lo );
2295   __ push(stos);
2296   if (!is_static) {
2297     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
2298   }
2299   __ jmp(Done);
2300 
2301   __ bind(notShort);
2302   // ltos
2303   __ cmpl(flags, ltos );
2304   __ jcc(Assembler::notEqual, notLong);
2305 
2306   // Generate code as if volatile.  There just aren't enough registers to
2307   // save that information and this code is faster than the test.
2308   __ fild_d(lo);                // Must load atomically
2309   __ subptr(rsp,2*wordSize);    // Make space for store
2310   __ fistp_d(Address(rsp,0));
2311   __ pop(rax);
2312   __ pop(rdx);
2313 
2314   __ push(ltos);
2315   // Don't rewrite to _fast_lgetfield for potential volatile case.
2316   __ jmp(Done);
2317 
2318   __ bind(notLong);
2319   // ftos
2320   __ cmpl(flags, ftos );
2321   __ jcc(Assembler::notEqual, notFloat);
2322 
2323   __ fld_s(lo);
2324   __ push(ftos);
2325   if (!is_static) {
2326     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
2327   }
2328   __ jmp(Done);
2329 
2330   __ bind(notFloat);
2331   // dtos
2332   __ cmpl(flags, dtos );
2333   __ jcc(Assembler::notEqual, notDouble);
2334 
2335   __ fld_d(lo);
2336   __ push(dtos);
2337   if (!is_static) {
2338     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
2339   }
2340   __ jmpb(Done);
2341 
2342   __ bind(notDouble);
2343 
2344   __ stop("Bad state");
2345 
2346   __ bind(Done);
2347   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2348   // volatile_barrier( );
2349 }
2350 
2351 
2352 void TemplateTable::getfield(int byte_no) {
2353   getfield_or_static(byte_no, false);
2354 }
2355 
2356 
2357 void TemplateTable::getstatic(int byte_no) {
2358   getfield_or_static(byte_no, true);
2359 }
2360 
2361 // The registers cache and index expected to be set before call.
2362 // The function may destroy various registers, just not the cache and index registers.
2363 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2364 
2365   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2366 
2367   if (JvmtiExport::can_post_field_modification()) {
2368     // Check to see if a field modification watch has been set before we take
2369     // the time to call into the VM.
2370     Label L1;
2371     assert_different_registers(cache, index, rax);
2372     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2373     __ testl(rax, rax);
2374     __ jcc(Assembler::zero, L1);
2375 
2376     // The cache and index registers have been already set.
2377     // This allows to eliminate this call but the cache and index
2378     // registers have to be correspondingly used after this line.
2379     __ get_cache_and_index_at_bcp(rax, rdx, 1);
2380 
2381     if (is_static) {
2382       // Life is simple.  Null out the object pointer.
2383       __ xorptr(rbx, rbx);
2384     } else {
2385       // Life is harder. The stack holds the value on top, followed by the object.
2386       // We don't know the size of the value, though; it could be one or two words
2387       // depending on its type. As a result, we must find the type to determine where
2388       // the object is.
2389       Label two_word, valsize_known;
2390       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
2391                                    ConstantPoolCacheEntry::flags_offset())));
2392       __ mov(rbx, rsp);
2393       __ shrl(rcx, ConstantPoolCacheEntry::tos_state_shift);
2394       // Make sure we don't need to mask rcx after the above shift
2395       ConstantPoolCacheEntry::verify_tos_state_shift();
2396       __ cmpl(rcx, ltos);
2397       __ jccb(Assembler::equal, two_word);
2398       __ cmpl(rcx, dtos);
2399       __ jccb(Assembler::equal, two_word);
2400       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
2401       __ jmpb(valsize_known);
2402 
2403       __ bind(two_word);
2404       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
2405 
2406       __ bind(valsize_known);
2407       // setup object pointer
2408       __ movptr(rbx, Address(rbx, 0));
2409     }
2410     // cache entry pointer
2411     __ addptr(rax, in_bytes(cp_base_offset));
2412     __ shll(rdx, LogBytesPerWord);
2413     __ addptr(rax, rdx);
2414     // object (tos)
2415     __ mov(rcx, rsp);
2416     // rbx,: object pointer set up above (NULL if static)
2417     // rax,: cache entry pointer
2418     // rcx: jvalue object on the stack
2419     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2420                rbx, rax, rcx);
2421     __ get_cache_and_index_at_bcp(cache, index, 1);
2422     __ bind(L1);
2423   }
2424 }
2425 
2426 
2427 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2428   transition(vtos, vtos);
2429 
2430   const Register cache = rcx;
2431   const Register index = rdx;
2432   const Register obj   = rcx;
2433   const Register off   = rbx;
2434   const Register flags = rax;
2435 
2436   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2437   jvmti_post_field_mod(cache, index, is_static);
2438   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2439 
2440   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2441   // volatile_barrier( );
2442 
2443   Label notVolatile, Done;
2444   __ movl(rdx, flags);
2445   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2446   __ andl(rdx, 0x1);
2447 
2448   // field addresses
2449   const Address lo(obj, off, Address::times_1, 0*wordSize);
2450   const Address hi(obj, off, Address::times_1, 1*wordSize);
2451 
2452   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2453 
2454   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2455   assert(btos == 0, "change code, btos != 0");
2456   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2457   __ jcc(Assembler::notZero, notByte);
2458 
2459   // btos
2460   {
2461     __ pop(btos);
2462     if (!is_static) pop_and_check_object(obj);
2463     __ movb(lo, rax);
2464     if (!is_static) {
2465       patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx, true, byte_no);
2466     }
2467     __ jmp(Done);
2468   }
2469 
2470   __ bind(notByte);
2471   __ cmpl(flags, itos);
2472   __ jcc(Assembler::notEqual, notInt);
2473 
2474   // itos
2475   {
2476     __ pop(itos);
2477     if (!is_static) pop_and_check_object(obj);
2478     __ movl(lo, rax);
2479     if (!is_static) {
2480       patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx, true, byte_no);
2481     }
2482     __ jmp(Done);
2483   }
2484 
2485   __ bind(notInt);
2486   __ cmpl(flags, atos);
2487   __ jcc(Assembler::notEqual, notObj);
2488 
2489   // atos
2490   {
2491     __ pop(atos);
2492     if (!is_static) pop_and_check_object(obj);
2493     do_oop_store(_masm, lo, rax, _bs->kind(), false);
2494     if (!is_static) {
2495       patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx, true, byte_no);
2496     }
2497     __ jmp(Done);
2498   }
2499 
2500   __ bind(notObj);
2501   __ cmpl(flags, ctos);
2502   __ jcc(Assembler::notEqual, notChar);
2503 
2504   // ctos
2505   {
2506     __ pop(ctos);
2507     if (!is_static) pop_and_check_object(obj);
2508     __ movw(lo, rax);
2509     if (!is_static) {
2510       patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx, true, byte_no);
2511     }
2512     __ jmp(Done);
2513   }
2514 
2515   __ bind(notChar);
2516   __ cmpl(flags, stos);
2517   __ jcc(Assembler::notEqual, notShort);
2518 
2519   // stos
2520   {
2521     __ pop(stos);
2522     if (!is_static) pop_and_check_object(obj);
2523     __ movw(lo, rax);
2524     if (!is_static) {
2525       patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx, true, byte_no);
2526     }
2527     __ jmp(Done);
2528   }
2529 
2530   __ bind(notShort);
2531   __ cmpl(flags, ltos);
2532   __ jcc(Assembler::notEqual, notLong);
2533 
2534   // ltos
2535   {
2536     Label notVolatileLong;
2537     __ testl(rdx, rdx);
2538     __ jcc(Assembler::zero, notVolatileLong);
2539 
2540     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
2541     if (!is_static) pop_and_check_object(obj);
2542 
2543     // Replace with real volatile test
2544     __ push(rdx);
2545     __ push(rax);                 // Must update atomically with FIST
2546     __ fild_d(Address(rsp,0));    // So load into FPU register
2547     __ fistp_d(lo);               // and put into memory atomically
2548     __ addptr(rsp, 2*wordSize);
2549     // volatile_barrier();
2550     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2551                                                  Assembler::StoreStore));
2552     // Don't rewrite volatile version
2553     __ jmp(notVolatile);
2554 
2555     __ bind(notVolatileLong);
2556 
2557     __ pop(ltos);  // overwrites rdx
2558     if (!is_static) pop_and_check_object(obj);
2559     NOT_LP64(__ movptr(hi, rdx));
2560     __ movptr(lo, rax);
2561     if (!is_static) {
2562       patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx, true, byte_no);
2563     }
2564     __ jmp(notVolatile);
2565   }
2566 
2567   __ bind(notLong);
2568   __ cmpl(flags, ftos);
2569   __ jcc(Assembler::notEqual, notFloat);
2570 
2571   // ftos
2572   {
2573     __ pop(ftos);
2574     if (!is_static) pop_and_check_object(obj);
2575     __ fstp_s(lo);
2576     if (!is_static) {
2577       patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx, true, byte_no);
2578     }
2579     __ jmp(Done);
2580   }
2581 
2582   __ bind(notFloat);
2583 #ifdef ASSERT
2584   __ cmpl(flags, dtos);
2585   __ jcc(Assembler::notEqual, notDouble);
2586 #endif
2587 
2588   // dtos
2589   {
2590     __ pop(dtos);
2591     if (!is_static) pop_and_check_object(obj);
2592     __ fstp_d(lo);
2593     if (!is_static) {
2594       patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx, true, byte_no);
2595     }
2596     __ jmp(Done);
2597   }
2598 
2599 #ifdef ASSERT
2600   __ bind(notDouble);
2601   __ stop("Bad state");
2602 #endif
2603 
2604   __ bind(Done);
2605 
2606   // Check for volatile store
2607   __ testl(rdx, rdx);
2608   __ jcc(Assembler::zero, notVolatile);
2609   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2610                                                Assembler::StoreStore));
2611   __ bind(notVolatile);
2612 }
2613 
2614 
2615 void TemplateTable::putfield(int byte_no) {
2616   putfield_or_static(byte_no, false);
2617 }
2618 
2619 
2620 void TemplateTable::putstatic(int byte_no) {
2621   putfield_or_static(byte_no, true);
2622 }
2623 
2624 void TemplateTable::jvmti_post_fast_field_mod() {
2625   if (JvmtiExport::can_post_field_modification()) {
2626     // Check to see if a field modification watch has been set before we take
2627     // the time to call into the VM.
2628     Label L2;
2629      __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2630      __ testl(rcx,rcx);
2631      __ jcc(Assembler::zero, L2);
2632      __ pop_ptr(rbx);               // copy the object pointer from tos
2633      __ verify_oop(rbx);
2634      __ push_ptr(rbx);              // put the object pointer back on tos
2635 
2636      // Save tos values before call_VM() clobbers them. Since we have
2637      // to do it for every data type, we use the saved values as the
2638      // jvalue object.
2639      switch (bytecode()) {          // load values into the jvalue object
2640      case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
2641      case Bytecodes::_fast_bputfield: // fall through
2642      case Bytecodes::_fast_sputfield: // fall through
2643      case Bytecodes::_fast_cputfield: // fall through
2644      case Bytecodes::_fast_iputfield: __ push_i(rax); break;
2645      case Bytecodes::_fast_dputfield: __ push_d(); break;
2646      case Bytecodes::_fast_fputfield: __ push_f(); break;
2647      case Bytecodes::_fast_lputfield: __ push_l(rax); break;
2648 
2649      default:
2650        ShouldNotReachHere();
2651      }
2652      __ mov(rcx, rsp);              // points to jvalue on the stack
2653      // access constant pool cache entry
2654      __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
2655      __ verify_oop(rbx);
2656      // rbx,: object pointer copied above
2657      // rax,: cache entry pointer
2658      // rcx: jvalue object on the stack
2659      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
2660 
2661      switch (bytecode()) {             // restore tos values
2662      case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
2663      case Bytecodes::_fast_bputfield: // fall through
2664      case Bytecodes::_fast_sputfield: // fall through
2665      case Bytecodes::_fast_cputfield: // fall through
2666      case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
2667      case Bytecodes::_fast_dputfield: __ pop_d(); break;
2668      case Bytecodes::_fast_fputfield: __ pop_f(); break;
2669      case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
2670      }
2671      __ bind(L2);
2672   }
2673 }
2674 
2675 void TemplateTable::fast_storefield(TosState state) {
2676   transition(state, vtos);
2677 
2678   ByteSize base = ConstantPoolCache::base_offset();
2679 
2680   jvmti_post_fast_field_mod();
2681 
2682   // access constant pool cache
2683   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2684 
2685   // test for volatile with rdx but rdx is tos register for lputfield.
2686   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
2687   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
2688                        ConstantPoolCacheEntry::flags_offset())));
2689 
2690   // replace index with field offset from cache entry
2691   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2692 
2693   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2694   // volatile_barrier( );
2695 
2696   Label notVolatile, Done;
2697   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2698   __ andl(rdx, 0x1);
2699   // Check for volatile store
2700   __ testl(rdx, rdx);
2701   __ jcc(Assembler::zero, notVolatile);
2702 
2703   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2704 
2705   // Get object from stack
2706   pop_and_check_object(rcx);
2707 
2708   // field addresses
2709   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
2710   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
2711 
2712   // access field
2713   switch (bytecode()) {
2714     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2715     case Bytecodes::_fast_sputfield: // fall through
2716     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2717     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2718     case Bytecodes::_fast_lputfield:
2719       NOT_LP64(__ movptr(hi, rdx));
2720       __ movptr(lo, rax);
2721       break;
2722     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2723     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2724     case Bytecodes::_fast_aputfield: {
2725       do_oop_store(_masm, lo, rax, _bs->kind(), false);
2726       break;
2727     }
2728     default:
2729       ShouldNotReachHere();
2730   }
2731 
2732   Label done;
2733   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2734                                                Assembler::StoreStore));
2735   // Barriers are so large that short branch doesn't reach!
2736   __ jmp(done);
2737 
2738   // Same code as above, but don't need rdx to test for volatile.
2739   __ bind(notVolatile);
2740 
2741   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2742 
2743   // Get object from stack
2744   pop_and_check_object(rcx);
2745 
2746   // access field
2747   switch (bytecode()) {
2748     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2749     case Bytecodes::_fast_sputfield: // fall through
2750     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2751     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2752     case Bytecodes::_fast_lputfield:
2753       NOT_LP64(__ movptr(hi, rdx));
2754       __ movptr(lo, rax);
2755       break;
2756     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2757     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2758     case Bytecodes::_fast_aputfield: {
2759       do_oop_store(_masm, lo, rax, _bs->kind(), false);
2760       break;
2761     }
2762     default:
2763       ShouldNotReachHere();
2764   }
2765   __ bind(done);
2766 }
2767 
2768 
2769 void TemplateTable::fast_accessfield(TosState state) {
2770   transition(atos, state);
2771 
2772   // do the JVMTI work here to avoid disturbing the register state below
2773   if (JvmtiExport::can_post_field_access()) {
2774     // Check to see if a field access watch has been set before we take
2775     // the time to call into the VM.
2776     Label L1;
2777     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2778     __ testl(rcx,rcx);
2779     __ jcc(Assembler::zero, L1);
2780     // access constant pool cache entry
2781     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
2782     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2783     __ verify_oop(rax);
2784     // rax,: object pointer copied above
2785     // rcx: cache entry pointer
2786     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
2787     __ pop_ptr(rax);   // restore object pointer
2788     __ bind(L1);
2789   }
2790 
2791   // access constant pool cache
2792   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2793   // replace index with field offset from cache entry
2794   __ movptr(rbx, Address(rcx,
2795                          rbx,
2796                          Address::times_ptr,
2797                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2798 
2799 
2800   // rax,: object
2801   __ verify_oop(rax);
2802   __ null_check(rax);
2803   // field addresses
2804   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2805   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
2806 
2807   // access field
2808   switch (bytecode()) {
2809     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
2810     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
2811     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
2812     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
2813     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
2814     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
2815     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
2816     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
2817     default:
2818       ShouldNotReachHere();
2819   }
2820 
2821   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
2822   // volatile_barrier( );
2823 }
2824 
2825 void TemplateTable::fast_xaccess(TosState state) {
2826   transition(vtos, state);
2827   // get receiver
2828   __ movptr(rax, aaddress(0));
2829   // access constant pool cache
2830   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2831   __ movptr(rbx, Address(rcx,
2832                          rdx,
2833                          Address::times_ptr,
2834                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2835   // make sure exception is reported in correct bcp range (getfield is next instruction)
2836   __ increment(rsi);
2837   __ null_check(rax);
2838   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2839   if (state == itos) {
2840     __ movl(rax, lo);
2841   } else if (state == atos) {
2842     __ movptr(rax, lo);
2843     __ verify_oop(rax);
2844   } else if (state == ftos) {
2845     __ fld_s(lo);
2846   } else {
2847     ShouldNotReachHere();
2848   }
2849   __ decrement(rsi);
2850 }
2851 
2852 
2853 
2854 //----------------------------------------------------------------------------------------------------
2855 // Calls
2856 
2857 void TemplateTable::count_calls(Register method, Register temp) {
2858   // implemented elsewhere
2859   ShouldNotReachHere();
2860 }
2861 
2862 
2863 void TemplateTable::prepare_invoke(int byte_no,
2864                                    Register method,  // linked method (or i-klass)
2865                                    Register index,   // itable index, MethodType, etc.
2866                                    Register recv,    // if caller wants to see it
2867                                    Register flags    // if caller wants to test it
2868                                    ) {
2869   // determine flags
2870   const Bytecodes::Code code = bytecode();
2871   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2872   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2873   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2874   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2875   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2876   const bool load_receiver       = (recv  != noreg);
2877   const bool save_flags          = (flags != noreg);
2878   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2879   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
2880   assert(flags == noreg || flags == rdx, "");
2881   assert(recv  == noreg || recv  == rcx, "");
2882 
2883   // setup registers & access constant pool cache
2884   if (recv  == noreg)  recv  = rcx;
2885   if (flags == noreg)  flags = rdx;
2886   assert_different_registers(method, index, recv, flags);
2887 
2888   // save 'interpreter return address'
2889   __ save_bcp();
2890 
2891   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2892 
2893   // maybe push appendix to arguments (just before return address)
2894   if (is_invokedynamic || is_invokehandle) {
2895     Label L_no_push;
2896     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
2897     __ jccb(Assembler::zero, L_no_push);
2898     // Push the appendix as a trailing parameter.
2899     // This must be done before we get the receiver,
2900     // since the parameter_size includes it.
2901     __ push(rbx);
2902     __ mov(rbx, index);
2903     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2904     __ load_resolved_reference_at_index(index, rbx);
2905     __ pop(rbx);
2906     __ push(index);  // push appendix (MethodType, CallSite, etc.)
2907     __ bind(L_no_push);
2908   }
2909 
2910   // load receiver if needed (note: no return address pushed yet)
2911   if (load_receiver) {
2912     __ movl(recv, flags);
2913     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
2914     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
2915     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
2916     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
2917     __ movptr(recv, recv_addr);
2918     __ verify_oop(recv);
2919   }
2920 
2921   if (save_flags) {
2922     __ mov(rsi, flags);
2923   }
2924 
2925   // compute return type
2926   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2927   // Make sure we don't need to mask flags after the above shift
2928   ConstantPoolCacheEntry::verify_tos_state_shift();
2929   // load return address
2930   {
2931     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2932     ExternalAddress table(table_addr);
2933     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
2934   }
2935 
2936   // push return address
2937   __ push(flags);
2938 
2939   // Restore flags value from the constant pool cache, and restore rsi
2940   // for later null checks.  rsi is the bytecode pointer
2941   if (save_flags) {
2942     __ mov(flags, rsi);
2943     __ restore_bcp();
2944   }
2945 }
2946 
2947 
2948 void TemplateTable::invokevirtual_helper(Register index,
2949                                          Register recv,
2950                                          Register flags) {
2951   // Uses temporary registers rax, rdx
2952   assert_different_registers(index, recv, rax, rdx);
2953   assert(index == rbx, "");
2954   assert(recv  == rcx, "");
2955 
2956   // Test for an invoke of a final method
2957   Label notFinal;
2958   __ movl(rax, flags);
2959   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
2960   __ jcc(Assembler::zero, notFinal);
2961 
2962   const Register method = index;  // method must be rbx
2963   assert(method == rbx,
2964          "Method* must be rbx for interpreter calling convention");
2965 
2966   // do the call - the index is actually the method to call
2967   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
2968 
2969   // It's final, need a null check here!
2970   __ null_check(recv);
2971 
2972   // profile this call
2973   __ profile_final_call(rax);
2974   __ profile_arguments_type(rax, method, rsi, true);
2975 
2976   __ jump_from_interpreted(method, rax);
2977 
2978   __ bind(notFinal);
2979 
2980   // get receiver klass
2981   __ null_check(recv, oopDesc::klass_offset_in_bytes());
2982   __ load_klass(rax, recv);
2983 
2984   // profile this call
2985   __ profile_virtual_call(rax, rdi, rdx);
2986 
2987   // get target Method* & entry point
2988   __ lookup_virtual_method(rax, index, method);
2989   __ profile_arguments_type(rdx, method, rsi, true);
2990   __ jump_from_interpreted(method, rdx);
2991 }
2992 
2993 
2994 void TemplateTable::invokevirtual(int byte_no) {
2995   transition(vtos, vtos);
2996   assert(byte_no == f2_byte, "use this argument");
2997   prepare_invoke(byte_no,
2998                  rbx,    // method or vtable index
2999                  noreg,  // unused itable index
3000                  rcx, rdx); // recv, flags
3001 
3002   // rbx: index
3003   // rcx: receiver
3004   // rdx: flags
3005 
3006   invokevirtual_helper(rbx, rcx, rdx);
3007 }
3008 
3009 
3010 void TemplateTable::invokespecial(int byte_no) {
3011   transition(vtos, vtos);
3012   assert(byte_no == f1_byte, "use this argument");
3013   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3014                  rcx);  // get receiver also for null check
3015   __ verify_oop(rcx);
3016   __ null_check(rcx);
3017   // do the call
3018   __ profile_call(rax);
3019   __ profile_arguments_type(rax, rbx, rsi, false);
3020   __ jump_from_interpreted(rbx, rax);
3021 }
3022 
3023 
3024 void TemplateTable::invokestatic(int byte_no) {
3025   transition(vtos, vtos);
3026   assert(byte_no == f1_byte, "use this argument");
3027   prepare_invoke(byte_no, rbx);  // get f1 Method*
3028   // do the call
3029   __ profile_call(rax);
3030   __ profile_arguments_type(rax, rbx, rsi, false);
3031   __ jump_from_interpreted(rbx, rax);
3032 }
3033 
3034 
3035 void TemplateTable::fast_invokevfinal(int byte_no) {
3036   transition(vtos, vtos);
3037   assert(byte_no == f2_byte, "use this argument");
3038   __ stop("fast_invokevfinal not used on x86");
3039 }
3040 
3041 
3042 void TemplateTable::invokeinterface(int byte_no) {
3043   transition(vtos, vtos);
3044   assert(byte_no == f1_byte, "use this argument");
3045   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
3046                  rcx, rdx); // recv, flags
3047 
3048   // rax: interface klass (from f1)
3049   // rbx: itable index (from f2)
3050   // rcx: receiver
3051   // rdx: flags
3052 
3053   // Special case of invokeinterface called for virtual method of
3054   // java.lang.Object.  See cpCacheOop.cpp for details.
3055   // This code isn't produced by javac, but could be produced by
3056   // another compliant java compiler.
3057   Label notMethod;
3058   __ movl(rdi, rdx);
3059   __ andl(rdi, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3060   __ jcc(Assembler::zero, notMethod);
3061 
3062   invokevirtual_helper(rbx, rcx, rdx);
3063   __ bind(notMethod);
3064 
3065   // Get receiver klass into rdx - also a null check
3066   __ restore_locals();  // restore rdi
3067   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3068   __ load_klass(rdx, rcx);
3069 
3070   // profile this call
3071   __ profile_virtual_call(rdx, rsi, rdi);
3072 
3073   Label no_such_interface, no_such_method;
3074 
3075   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3076                              rdx, rax, rbx,
3077                              // outputs: method, scan temp. reg
3078                              rbx, rsi,
3079                              no_such_interface);
3080 
3081   // rbx: Method* to call
3082   // rcx: receiver
3083   // Check for abstract method error
3084   // Note: This should be done more efficiently via a throw_abstract_method_error
3085   //       interpreter entry point and a conditional jump to it in case of a null
3086   //       method.
3087   __ testptr(rbx, rbx);
3088   __ jcc(Assembler::zero, no_such_method);
3089 
3090   __ profile_arguments_type(rdx, rbx, rsi, true);
3091 
3092   // do the call
3093   // rcx: receiver
3094   // rbx,: Method*
3095   __ jump_from_interpreted(rbx, rdx);
3096   __ should_not_reach_here();
3097 
3098   // exception handling code follows...
3099   // note: must restore interpreter registers to canonical
3100   //       state for exception handling to work correctly!
3101 
3102   __ bind(no_such_method);
3103   // throw exception
3104   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3105   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
3106   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3107   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3108   // the call_VM checks for exception, so we should never return here.
3109   __ should_not_reach_here();
3110 
3111   __ bind(no_such_interface);
3112   // throw exception
3113   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3114   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
3115   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3116   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3117                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3118   // the call_VM checks for exception, so we should never return here.
3119   __ should_not_reach_here();
3120 }
3121 
3122 void TemplateTable::invokehandle(int byte_no) {
3123   transition(vtos, vtos);
3124   assert(byte_no == f1_byte, "use this argument");
3125   const Register rbx_method = rbx;
3126   const Register rax_mtype  = rax;
3127   const Register rcx_recv   = rcx;
3128   const Register rdx_flags  = rdx;
3129 
3130   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3131   __ verify_method_ptr(rbx_method);
3132   __ verify_oop(rcx_recv);
3133   __ null_check(rcx_recv);
3134 
3135   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3136   // rbx: MH.invokeExact_MT method (from f2)
3137 
3138   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3139 
3140   // FIXME: profile the LambdaForm also
3141   __ profile_final_call(rax);
3142   __ profile_arguments_type(rdx, rbx_method, rsi, true);
3143 
3144   __ jump_from_interpreted(rbx_method, rdx);
3145 }
3146 
3147 
3148 void TemplateTable::invokedynamic(int byte_no) {
3149   transition(vtos, vtos);
3150   assert(byte_no == f1_byte, "use this argument");
3151 
3152   const Register rbx_method   = rbx;
3153   const Register rax_callsite = rax;
3154 
3155   prepare_invoke(byte_no, rbx_method, rax_callsite);
3156 
3157   // rax: CallSite object (from cpool->resolved_references[f1])
3158   // rbx: MH.linkToCallSite method (from f2)
3159 
3160   // Note:  rax_callsite is already pushed by prepare_invoke
3161 
3162   // %%% should make a type profile for any invokedynamic that takes a ref argument
3163   // profile this call
3164   __ profile_call(rsi);
3165   __ profile_arguments_type(rdx, rbx, rsi, false);
3166 
3167   __ verify_oop(rax_callsite);
3168 
3169   __ jump_from_interpreted(rbx_method, rdx);
3170 }
3171 
3172 //----------------------------------------------------------------------------------------------------
3173 // Allocation
3174 
3175 void TemplateTable::_new() {
3176   transition(vtos, atos);
3177   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3178   Label slow_case;
3179   Label slow_case_no_pop;
3180   Label done;
3181   Label initialize_header;
3182   Label initialize_object;  // including clearing the fields
3183   Label allocate_shared;
3184 
3185   __ get_cpool_and_tags(rcx, rax);
3186 
3187   // Make sure the class we're about to instantiate has been resolved.
3188   // This is done before loading InstanceKlass to be consistent with the order
3189   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3190   const int tags_offset = Array<u1>::base_offset_in_bytes();
3191   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3192   __ jcc(Assembler::notEqual, slow_case_no_pop);
3193 
3194   // get InstanceKlass
3195   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool)));
3196   __ push(rcx);  // save the contexts of klass for initializing the header
3197 
3198   // make sure klass is initialized & doesn't have finalizer
3199   // make sure klass is fully initialized
3200   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
3201   __ jcc(Assembler::notEqual, slow_case);
3202 
3203   // get instance_size in InstanceKlass (scaled to a count of bytes)
3204   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
3205   // test to see if it has a finalizer or is malformed in some way
3206   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3207   __ jcc(Assembler::notZero, slow_case);
3208 
3209   //
3210   // Allocate the instance
3211   // 1) Try to allocate in the TLAB
3212   // 2) if fail and the object is large allocate in the shared Eden
3213   // 3) if the above fails (or is not applicable), go to a slow case
3214   // (creates a new TLAB, etc.)
3215 
3216   const bool allow_shared_alloc =
3217     Universe::heap()->supports_inline_contig_alloc();
3218 
3219   const Register thread = rcx;
3220   if (UseTLAB || allow_shared_alloc) {
3221     __ get_thread(thread);
3222   }
3223 
3224   if (UseTLAB) {
3225     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
3226     __ lea(rbx, Address(rax, rdx, Address::times_1));
3227     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
3228     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3229     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3230     if (ZeroTLAB) {
3231       // the fields have been already cleared
3232       __ jmp(initialize_header);
3233     } else {
3234       // initialize both the header and fields
3235       __ jmp(initialize_object);
3236     }
3237   }
3238 
3239   // Allocation in the shared Eden, if allowed.
3240   //
3241   // rdx: instance size in bytes
3242   if (allow_shared_alloc) {
3243     __ bind(allocate_shared);
3244 
3245     ExternalAddress heap_top((address)Universe::heap()->top_addr());
3246 
3247     Label retry;
3248     __ bind(retry);
3249     __ movptr(rax, heap_top);
3250     __ lea(rbx, Address(rax, rdx, Address::times_1));
3251     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
3252     __ jcc(Assembler::above, slow_case);
3253 
3254     // Compare rax, with the top addr, and if still equal, store the new
3255     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
3256     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3257     //
3258     // rax,: object begin
3259     // rbx,: object end
3260     // rdx: instance size in bytes
3261     __ locked_cmpxchgptr(rbx, heap_top);
3262 
3263     // if someone beat us on the allocation, try again, otherwise continue
3264     __ jcc(Assembler::notEqual, retry);
3265 
3266     __ incr_allocated_bytes(thread, rdx, 0);
3267   }
3268 
3269   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3270     // The object is initialized before the header.  If the object size is
3271     // zero, go directly to the header initialization.
3272     __ bind(initialize_object);
3273     __ decrement(rdx, sizeof(oopDesc));
3274     __ jcc(Assembler::zero, initialize_header);
3275 
3276     // Initialize topmost object field, divide rdx by 8, check if odd and
3277     // test if zero.
3278     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
3279     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
3280 
3281     // rdx must have been multiple of 8
3282 #ifdef ASSERT
3283     // make sure rdx was multiple of 8
3284     Label L;
3285     // Ignore partial flag stall after shrl() since it is debug VM
3286     __ jccb(Assembler::carryClear, L);
3287     __ stop("object size is not multiple of 2 - adjust this code");
3288     __ bind(L);
3289     // rdx must be > 0, no extra check needed here
3290 #endif
3291 
3292     // initialize remaining object fields: rdx was a multiple of 8
3293     { Label loop;
3294     __ bind(loop);
3295     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
3296     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
3297     __ decrement(rdx);
3298     __ jcc(Assembler::notZero, loop);
3299     }
3300 
3301     // initialize object header only.
3302     __ bind(initialize_header);
3303     if (UseBiasedLocking) {
3304       __ pop(rcx);   // get saved klass back in the register.
3305       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
3306       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
3307     } else {
3308       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
3309                 (int32_t)markOopDesc::prototype()); // header
3310       __ pop(rcx);   // get saved klass back in the register.
3311     }
3312     __ store_klass(rax, rcx);  // klass
3313 
3314     {
3315       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
3316       // Trigger dtrace event for fastpath
3317       __ push(atos);
3318       __ call_VM_leaf(
3319            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3320       __ pop(atos);
3321     }
3322 
3323     __ jmp(done);
3324   }
3325 
3326   // slow case
3327   __ bind(slow_case);
3328   __ pop(rcx);   // restore stack pointer to what it was when we came in.
3329   __ bind(slow_case_no_pop);
3330   __ get_constant_pool(rax);
3331   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3332   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
3333 
3334   // continue
3335   __ bind(done);
3336 }
3337 
3338 
3339 void TemplateTable::newarray() {
3340   transition(itos, atos);
3341   __ push_i(rax);                                 // make sure everything is on the stack
3342   __ load_unsigned_byte(rdx, at_bcp(1));
3343   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
3344   __ pop_i(rdx);                                  // discard size
3345 }
3346 
3347 
3348 void TemplateTable::anewarray() {
3349   transition(itos, atos);
3350   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3351   __ get_constant_pool(rcx);
3352   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
3353 }
3354 
3355 
3356 void TemplateTable::arraylength() {
3357   transition(atos, itos);
3358   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3359   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3360 }
3361 
3362 
3363 void TemplateTable::checkcast() {
3364   transition(atos, atos);
3365   Label done, is_null, ok_is_subtype, quicked, resolved;
3366   __ testptr(rax, rax);   // Object is in EAX
3367   __ jcc(Assembler::zero, is_null);
3368 
3369   // Get cpool & tags index
3370   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3371   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3372   // See if bytecode has already been quicked
3373   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
3374   __ jcc(Assembler::equal, quicked);
3375 
3376   __ push(atos);
3377   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3378   // vm_result_2 has metadata result
3379   // borrow rdi from locals
3380   __ get_thread(rdi);
3381   __ get_vm_result_2(rax, rdi);
3382   __ restore_locals();
3383   __ pop_ptr(rdx);
3384   __ jmpb(resolved);
3385 
3386   // Get superklass in EAX and subklass in EBX
3387   __ bind(quicked);
3388   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
3389   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
3390 
3391   __ bind(resolved);
3392   __ load_klass(rbx, rdx);
3393 
3394   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
3395   // Superklass in EAX.  Subklass in EBX.
3396   __ gen_subtype_check( rbx, ok_is_subtype );
3397 
3398   // Come here on failure
3399   __ push(rdx);
3400   // object is at TOS
3401   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3402 
3403   // Come here on success
3404   __ bind(ok_is_subtype);
3405   __ mov(rax,rdx);           // Restore object in EDX
3406 
3407   // Collect counts on whether this check-cast sees NULLs a lot or not.
3408   if (ProfileInterpreter) {
3409     __ jmp(done);
3410     __ bind(is_null);
3411     __ profile_null_seen(rcx);
3412   } else {
3413     __ bind(is_null);   // same as 'done'
3414   }
3415   __ bind(done);
3416 }
3417 
3418 
3419 void TemplateTable::instanceof() {
3420   transition(atos, itos);
3421   Label done, is_null, ok_is_subtype, quicked, resolved;
3422   __ testptr(rax, rax);
3423   __ jcc(Assembler::zero, is_null);
3424 
3425   // Get cpool & tags index
3426   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3427   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3428   // See if bytecode has already been quicked
3429   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
3430   __ jcc(Assembler::equal, quicked);
3431 
3432   __ push(atos);
3433   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3434   // vm_result_2 has metadata result
3435   // borrow rdi from locals
3436   __ get_thread(rdi);
3437   __ get_vm_result_2(rax, rdi);
3438   __ restore_locals();
3439   __ pop_ptr(rdx);
3440   __ load_klass(rdx, rdx);
3441   __ jmp(resolved);
3442 
3443   // Get superklass in EAX and subklass in EDX
3444   __ bind(quicked);
3445   __ load_klass(rdx, rax);
3446   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
3447 
3448   __ bind(resolved);
3449 
3450   // Generate subtype check.  Blows ECX.  Resets EDI.
3451   // Superklass in EAX.  Subklass in EDX.
3452   __ gen_subtype_check( rdx, ok_is_subtype );
3453 
3454   // Come here on failure
3455   __ xorl(rax,rax);
3456   __ jmpb(done);
3457   // Come here on success
3458   __ bind(ok_is_subtype);
3459   __ movl(rax, 1);
3460 
3461   // Collect counts on whether this test sees NULLs a lot or not.
3462   if (ProfileInterpreter) {
3463     __ jmp(done);
3464     __ bind(is_null);
3465     __ profile_null_seen(rcx);
3466   } else {
3467     __ bind(is_null);   // same as 'done'
3468   }
3469   __ bind(done);
3470   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
3471   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
3472 }
3473 
3474 
3475 //----------------------------------------------------------------------------------------------------
3476 // Breakpoints
3477 void TemplateTable::_breakpoint() {
3478 
3479   // Note: We get here even if we are single stepping..
3480   // jbug inists on setting breakpoints at every bytecode
3481   // even if we are in single step mode.
3482 
3483   transition(vtos, vtos);
3484 
3485   // get the unpatched byte code
3486   __ get_method(rcx);
3487   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
3488   __ mov(rbx, rax);
3489 
3490   // post the breakpoint event
3491   __ get_method(rcx);
3492   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
3493 
3494   // complete the execution of original bytecode
3495   __ dispatch_only_normal(vtos);
3496 }
3497 
3498 
3499 //----------------------------------------------------------------------------------------------------
3500 // Exceptions
3501 
3502 void TemplateTable::athrow() {
3503   transition(atos, vtos);
3504   __ null_check(rax);
3505   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3506 }
3507 
3508 
3509 //----------------------------------------------------------------------------------------------------
3510 // Synchronization
3511 //
3512 // Note: monitorenter & exit are symmetric routines; which is reflected
3513 //       in the assembly code structure as well
3514 //
3515 // Stack layout:
3516 //
3517 // [expressions  ] <--- rsp               = expression stack top
3518 // ..
3519 // [expressions  ]
3520 // [monitor entry] <--- monitor block top = expression stack bot
3521 // ..
3522 // [monitor entry]
3523 // [frame data   ] <--- monitor block bot
3524 // ...
3525 // [saved rbp,    ] <--- rbp,
3526 
3527 
3528 void TemplateTable::monitorenter() {
3529   transition(atos, vtos);
3530 
3531   // check for NULL object
3532   __ null_check(rax);
3533 
3534   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3535   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
3536   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
3537   Label allocated;
3538 
3539   // initialize entry pointer
3540   __ xorl(rdx, rdx);                             // points to free slot or NULL
3541 
3542   // find a free slot in the monitor block (result in rdx)
3543   { Label entry, loop, exit;
3544     __ movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
3545 
3546     __ lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
3547     __ jmpb(entry);
3548 
3549     __ bind(loop);
3550     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
3551     __ cmovptr(Assembler::equal, rdx, rcx);      // if not used then remember entry in rdx
3552     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
3553     __ jccb(Assembler::equal, exit);             // if same object then stop searching
3554     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
3555     __ bind(entry);
3556     __ cmpptr(rcx, rbx);                         // check if bottom reached
3557     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
3558     __ bind(exit);
3559   }
3560 
3561   __ testptr(rdx, rdx);                          // check if a slot has been found
3562   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
3563 
3564   // allocate one if there's no free slot
3565   { Label entry, loop;
3566     // 1. compute new pointers                   // rsp: old expression stack top
3567     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
3568     __ subptr(rsp, entry_size);                  // move expression stack top
3569     __ subptr(rdx, entry_size);                  // move expression stack bottom
3570     __ mov(rcx, rsp);                            // set start value for copy loop
3571     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
3572     __ jmp(entry);
3573     // 2. move expression stack contents
3574     __ bind(loop);
3575     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
3576     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
3577     __ addptr(rcx, wordSize);                    // advance to next word
3578     __ bind(entry);
3579     __ cmpptr(rcx, rdx);                         // check if bottom reached
3580     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
3581   }
3582 
3583   // call run-time routine
3584   // rdx: points to monitor entry
3585   __ bind(allocated);
3586 
3587   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3588   // The object has already been poped from the stack, so the expression stack looks correct.
3589   __ increment(rsi);
3590 
3591   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
3592   __ lock_object(rdx);
3593 
3594   // check to make sure this monitor doesn't cause stack overflow after locking
3595   __ save_bcp();  // in case of exception
3596   __ generate_stack_overflow_check(0);
3597 
3598   // The bcp has already been incremented. Just need to dispatch to next instruction.
3599   __ dispatch_next(vtos);
3600 }
3601 
3602 
3603 void TemplateTable::monitorexit() {
3604   transition(atos, vtos);
3605 
3606   // check for NULL object
3607   __ null_check(rax);
3608 
3609   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3610   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
3611   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
3612   Label found;
3613 
3614   // find matching slot
3615   { Label entry, loop;
3616     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
3617     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
3618     __ jmpb(entry);
3619 
3620     __ bind(loop);
3621     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
3622     __ jcc(Assembler::equal, found);             // if same object then stop searching
3623     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
3624     __ bind(entry);
3625     __ cmpptr(rdx, rbx);                         // check if bottom reached
3626     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
3627   }
3628 
3629   // error handling. Unlocking was not block-structured
3630   Label end;
3631   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3632   __ should_not_reach_here();
3633 
3634   // call run-time routine
3635   // rcx: points to monitor entry
3636   __ bind(found);
3637   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
3638   __ unlock_object(rdx);
3639   __ pop_ptr(rax);                                  // discard object
3640   __ bind(end);
3641 }
3642 
3643 
3644 //----------------------------------------------------------------------------------------------------
3645 // Wide instructions
3646 
3647 void TemplateTable::wide() {
3648   transition(vtos, vtos);
3649   __ load_unsigned_byte(rbx, at_bcp(1));
3650   ExternalAddress wtable((address)Interpreter::_wentry_point);
3651   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
3652   // Note: the rsi increment step is part of the individual wide bytecode implementations
3653 }
3654 
3655 
3656 //----------------------------------------------------------------------------------------------------
3657 // Multi arrays
3658 
3659 void TemplateTable::multianewarray() {
3660   transition(vtos, atos);
3661   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3662   // last dim is on top of stack; we want address of first one:
3663   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
3664   // the latter wordSize to point to the beginning of the array.
3665   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
3666   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
3667   __ load_unsigned_byte(rbx, at_bcp(3));
3668   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
3669 }
3670 
3671 #endif /* !CC_INTERP */