1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/gcTimer.hpp"
  27 #include "gc_implementation/shared/gcTrace.hpp"
  28 #include "gc_implementation/shared/spaceDecorator.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/blockOffsetTable.inline.hpp"
  32 #include "memory/cardTableRS.hpp"
  33 #include "memory/gcLocker.inline.hpp"
  34 #include "memory/genCollectedHeap.hpp"
  35 #include "memory/genMarkSweep.hpp"
  36 #include "memory/genOopClosures.hpp"
  37 #include "memory/genOopClosures.inline.hpp"
  38 #include "memory/generation.hpp"
  39 #include "memory/space.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "runtime/java.hpp"
  42 #include "utilities/copy.hpp"
  43 #include "utilities/events.hpp"
  44 
  45 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  46 
  47 Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
  48   _level(level),
  49   _ref_processor(NULL) {
  50   if (!_virtual_space.initialize(rs, initial_size)) {
  51     vm_exit_during_initialization("Could not reserve enough space for "
  52                     "object heap");
  53   }
  54   // Mangle all of the the initial generation.
  55   if (ZapUnusedHeapArea) {
  56     MemRegion mangle_region((HeapWord*)_virtual_space.low(),
  57       (HeapWord*)_virtual_space.high());
  58     SpaceMangler::mangle_region(mangle_region);
  59   }
  60   _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
  61           (HeapWord*)_virtual_space.high_boundary());
  62 }
  63 
  64 GenerationSpec* Generation::spec() {
  65   GenCollectedHeap* gch = GenCollectedHeap::heap();
  66   assert(0 <= level() && level() < gch->_n_gens, "Bad gen level");
  67   return gch->_gen_specs[level()];
  68 }
  69 
  70 size_t Generation::max_capacity() const {
  71   return reserved().byte_size();
  72 }
  73 
  74 void Generation::print_heap_change(size_t prev_used) const {
  75   if (PrintGCDetails && Verbose) {
  76     gclog_or_tty->print(" "  SIZE_FORMAT
  77                         "->" SIZE_FORMAT
  78                         "("  SIZE_FORMAT ")",
  79                         prev_used, used(), capacity());
  80   } else {
  81     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  82                         "->" SIZE_FORMAT "K"
  83                         "("  SIZE_FORMAT "K)",
  84                         prev_used / K, used() / K, capacity() / K);
  85   }
  86 }
  87 
  88 // By default we get a single threaded default reference processor;
  89 // generations needing multi-threaded refs processing or discovery override this method.
  90 void Generation::ref_processor_init() {
  91   assert(_ref_processor == NULL, "a reference processor already exists");
  92   assert(!_reserved.is_empty(), "empty generation?");
  93   _ref_processor = new ReferenceProcessor(_reserved);    // a vanilla reference processor
  94   if (_ref_processor == NULL) {
  95     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
  96   }
  97 }
  98 
  99 void Generation::print() const { print_on(tty); }
 100 
 101 void Generation::print_on(outputStream* st)  const {
 102   st->print(" %-20s", name());
 103   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 104              capacity()/K, used()/K);
 105   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 106               _virtual_space.low_boundary(),
 107               _virtual_space.high(),
 108               _virtual_space.high_boundary());
 109 }
 110 
 111 void Generation::print_summary_info() { print_summary_info_on(tty); }
 112 
 113 void Generation::print_summary_info_on(outputStream* st) {
 114   StatRecord* sr = stat_record();
 115   double time = sr->accumulated_time.seconds();
 116   st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
 117                "%d GC's, avg GC time %3.7f]",
 118                level(), time, sr->invocations,
 119                sr->invocations > 0 ? time / sr->invocations : 0.0);
 120 }
 121 
 122 // Utility iterator classes
 123 
 124 class GenerationIsInReservedClosure : public SpaceClosure {
 125  public:
 126   const void* _p;
 127   Space* sp;
 128   virtual void do_space(Space* s) {
 129     if (sp == NULL) {
 130       if (s->is_in_reserved(_p)) sp = s;
 131     }
 132   }
 133   GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
 134 };
 135 
 136 class GenerationIsInClosure : public SpaceClosure {
 137  public:
 138   const void* _p;
 139   Space* sp;
 140   virtual void do_space(Space* s) {
 141     if (sp == NULL) {
 142       if (s->is_in(_p)) sp = s;
 143     }
 144   }
 145   GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
 146 };
 147 
 148 bool Generation::is_in(const void* p) const {
 149   GenerationIsInClosure blk(p);
 150   ((Generation*)this)->space_iterate(&blk);
 151   return blk.sp != NULL;
 152 }
 153 
 154 Generation* Generation::next_gen() const {
 155   GenCollectedHeap* gch = GenCollectedHeap::heap();
 156   int next = level() + 1;
 157   if (next < gch->_n_gens) {
 158     return gch->_gens[next];
 159   } else {
 160     return NULL;
 161   }
 162 }
 163 
 164 size_t Generation::max_contiguous_available() const {
 165   // The largest number of contiguous free words in this or any higher generation.
 166   size_t max = 0;
 167   for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
 168     size_t avail = gen->contiguous_available();
 169     if (avail > max) {
 170       max = avail;
 171     }
 172   }
 173   return max;
 174 }
 175 
 176 bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 177   size_t available = max_contiguous_available();
 178   bool   res = (available >= max_promotion_in_bytes);
 179   if (PrintGC && Verbose) {
 180     gclog_or_tty->print_cr(
 181       "Generation: promo attempt is%s safe: available("SIZE_FORMAT") %s max_promo("SIZE_FORMAT")",
 182       res? "":" not", available, res? ">=":"<",
 183       max_promotion_in_bytes);
 184   }
 185   return res;
 186 }
 187 
 188 // Ignores "ref" and calls allocate().
 189 oop Generation::promote(oop obj, size_t obj_size) {
 190   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 191 
 192 #ifndef PRODUCT
 193   if (Universe::heap()->promotion_should_fail()) {
 194     return NULL;
 195   }
 196 #endif  // #ifndef PRODUCT
 197 
 198   HeapWord* result = allocate(obj_size, false);
 199   if (result != NULL) {
 200     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
 201     return oop(result);
 202   } else {
 203     GenCollectedHeap* gch = GenCollectedHeap::heap();
 204     return gch->handle_failed_promotion(this, obj, obj_size);
 205   }
 206 }
 207 
 208 oop Generation::par_promote(int thread_num,
 209                             oop obj, markOop m, size_t word_sz) {
 210   // Could do a bad general impl here that gets a lock.  But no.
 211   ShouldNotCallThis();
 212   return NULL;
 213 }
 214 
 215 Space* Generation::space_containing(const void* p) const {
 216   GenerationIsInReservedClosure blk(p);
 217   // Cast away const
 218   ((Generation*)this)->space_iterate(&blk);
 219   return blk.sp;
 220 }
 221 
 222 // Some of these are mediocre general implementations.  Should be
 223 // overridden to get better performance.
 224 
 225 class GenerationBlockStartClosure : public SpaceClosure {
 226  public:
 227   const void* _p;
 228   HeapWord* _start;
 229   virtual void do_space(Space* s) {
 230     if (_start == NULL && s->is_in_reserved(_p)) {
 231       _start = s->block_start(_p);
 232     }
 233   }
 234   GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
 235 };
 236 
 237 HeapWord* Generation::block_start(const void* p) const {
 238   GenerationBlockStartClosure blk(p);
 239   // Cast away const
 240   ((Generation*)this)->space_iterate(&blk);
 241   return blk._start;
 242 }
 243 
 244 class GenerationBlockSizeClosure : public SpaceClosure {
 245  public:
 246   const HeapWord* _p;
 247   size_t size;
 248   virtual void do_space(Space* s) {
 249     if (size == 0 && s->is_in_reserved(_p)) {
 250       size = s->block_size(_p);
 251     }
 252   }
 253   GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
 254 };
 255 
 256 size_t Generation::block_size(const HeapWord* p) const {
 257   GenerationBlockSizeClosure blk(p);
 258   // Cast away const
 259   ((Generation*)this)->space_iterate(&blk);
 260   assert(blk.size > 0, "seems reasonable");
 261   return blk.size;
 262 }
 263 
 264 class GenerationBlockIsObjClosure : public SpaceClosure {
 265  public:
 266   const HeapWord* _p;
 267   bool is_obj;
 268   virtual void do_space(Space* s) {
 269     if (!is_obj && s->is_in_reserved(_p)) {
 270       is_obj |= s->block_is_obj(_p);
 271     }
 272   }
 273   GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
 274 };
 275 
 276 bool Generation::block_is_obj(const HeapWord* p) const {
 277   GenerationBlockIsObjClosure blk(p);
 278   // Cast away const
 279   ((Generation*)this)->space_iterate(&blk);
 280   return blk.is_obj;
 281 }
 282 
 283 class GenerationOopIterateClosure : public SpaceClosure {
 284  public:
 285   ExtendedOopClosure* _cl;
 286   virtual void do_space(Space* s) {
 287     s->oop_iterate(_cl);
 288   }
 289   GenerationOopIterateClosure(ExtendedOopClosure* cl) :
 290     _cl(cl) {}
 291 };
 292 
 293 void Generation::oop_iterate(ExtendedOopClosure* cl) {
 294   GenerationOopIterateClosure blk(cl);
 295   space_iterate(&blk);
 296 }
 297 
 298 void Generation::younger_refs_in_space_iterate(Space* sp,
 299                                                OopsInGenClosure* cl) {
 300   GenRemSet* rs = SharedHeap::heap()->rem_set();
 301   rs->younger_refs_in_space_iterate(sp, cl);
 302 }
 303 
 304 class GenerationObjIterateClosure : public SpaceClosure {
 305  private:
 306   ObjectClosure* _cl;
 307  public:
 308   virtual void do_space(Space* s) {
 309     s->object_iterate(_cl);
 310   }
 311   GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
 312 };
 313 
 314 void Generation::object_iterate(ObjectClosure* cl) {
 315   GenerationObjIterateClosure blk(cl);
 316   space_iterate(&blk);
 317 }
 318 
 319 class GenerationSafeObjIterateClosure : public SpaceClosure {
 320  private:
 321   ObjectClosure* _cl;
 322  public:
 323   virtual void do_space(Space* s) {
 324     s->safe_object_iterate(_cl);
 325   }
 326   GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
 327 };
 328 
 329 void Generation::safe_object_iterate(ObjectClosure* cl) {
 330   GenerationSafeObjIterateClosure blk(cl);
 331   space_iterate(&blk);
 332 }
 333 
 334 void Generation::prepare_for_compaction(CompactPoint* cp) {
 335   // Generic implementation, can be specialized
 336   CompactibleSpace* space = first_compaction_space();
 337   while (space != NULL) {
 338     space->prepare_for_compaction(cp);
 339     space = space->next_compaction_space();
 340   }
 341 }
 342 
 343 class AdjustPointersClosure: public SpaceClosure {
 344  public:
 345   void do_space(Space* sp) {
 346     sp->adjust_pointers();
 347   }
 348 };
 349 
 350 void Generation::adjust_pointers() {
 351   // Note that this is done over all spaces, not just the compactible
 352   // ones.
 353   AdjustPointersClosure blk;
 354   space_iterate(&blk, true);
 355 }
 356 
 357 void Generation::compact() {
 358   CompactibleSpace* sp = first_compaction_space();
 359   while (sp != NULL) {
 360     sp->compact();
 361     sp = sp->next_compaction_space();
 362   }
 363 }
 364 
 365 CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
 366                                int level,
 367                                GenRemSet* remset) :
 368   Generation(rs, initial_byte_size, level), _rs(remset),
 369   _shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(),
 370   _used_at_prologue()
 371 {
 372   HeapWord* start = (HeapWord*)rs.base();
 373   size_t reserved_byte_size = rs.size();
 374   assert((uintptr_t(start) & 3) == 0, "bad alignment");
 375   assert((reserved_byte_size & 3) == 0, "bad alignment");
 376   MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
 377   _bts = new BlockOffsetSharedArray(reserved_mr,
 378                                     heap_word_size(initial_byte_size));
 379   MemRegion committed_mr(start, heap_word_size(initial_byte_size));
 380   _rs->resize_covered_region(committed_mr);
 381   if (_bts == NULL)
 382     vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
 383 
 384   // Verify that the start and end of this generation is the start of a card.
 385   // If this wasn't true, a single card could span more than on generation,
 386   // which would cause problems when we commit/uncommit memory, and when we
 387   // clear and dirty cards.
 388   guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
 389   if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
 390     // Don't check at the very end of the heap as we'll assert that we're probing off
 391     // the end if we try.
 392     guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
 393   }
 394   _min_heap_delta_bytes = MinHeapDeltaBytes;
 395   _capacity_at_prologue = initial_byte_size;
 396   _used_at_prologue = 0;
 397 }
 398 
 399 bool CardGeneration::expand(size_t bytes, size_t expand_bytes) {
 400   assert_locked_or_safepoint(Heap_lock);
 401   if (bytes == 0) {
 402     return true;  // That's what grow_by(0) would return
 403   }
 404   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
 405   if (aligned_bytes == 0){
 406     // The alignment caused the number of bytes to wrap.  An expand_by(0) will
 407     // return true with the implication that an expansion was done when it
 408     // was not.  A call to expand implies a best effort to expand by "bytes"
 409     // but not a guarantee.  Align down to give a best effort.  This is likely
 410     // the most that the generation can expand since it has some capacity to
 411     // start with.
 412     aligned_bytes = ReservedSpace::page_align_size_down(bytes);
 413   }
 414   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
 415   bool success = false;
 416   if (aligned_expand_bytes > aligned_bytes) {
 417     success = grow_by(aligned_expand_bytes);
 418   }
 419   if (!success) {
 420     success = grow_by(aligned_bytes);
 421   }
 422   if (!success) {
 423     success = grow_to_reserved();
 424   }
 425   if (PrintGC && Verbose) {
 426     if (success && GC_locker::is_active_and_needs_gc()) {
 427       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
 428     }
 429   }
 430 
 431   return success;
 432 }
 433 
 434 
 435 // No young generation references, clear this generation's cards.
 436 void CardGeneration::clear_remembered_set() {
 437   _rs->clear(reserved());
 438 }
 439 
 440 
 441 // Objects in this generation may have moved, invalidate this
 442 // generation's cards.
 443 void CardGeneration::invalidate_remembered_set() {
 444   _rs->invalidate(used_region());
 445 }
 446 
 447 
 448 void CardGeneration::compute_new_size() {
 449   assert(_shrink_factor <= 100, "invalid shrink factor");
 450   size_t current_shrink_factor = _shrink_factor;
 451   _shrink_factor = 0;
 452 
 453   // We don't have floating point command-line arguments
 454   // Note:  argument processing ensures that MinHeapFreeRatio < 100.
 455   const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
 456   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
 457 
 458   // Compute some numbers about the state of the heap.
 459   const size_t used_after_gc = used();
 460   const size_t capacity_after_gc = capacity();
 461 
 462   const double min_tmp = used_after_gc / maximum_used_percentage;
 463   size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx));
 464   // Don't shrink less than the initial generation size
 465   minimum_desired_capacity = MAX2(minimum_desired_capacity,
 466                                   spec()->init_size());
 467   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
 468 
 469   if (PrintGC && Verbose) {
 470     const size_t free_after_gc = free();
 471     const double free_percentage = ((double)free_after_gc) / capacity_after_gc;
 472     gclog_or_tty->print_cr("TenuredGeneration::compute_new_size: ");
 473     gclog_or_tty->print_cr("  "
 474                   "  minimum_free_percentage: %6.2f"
 475                   "  maximum_used_percentage: %6.2f",
 476                   minimum_free_percentage,
 477                   maximum_used_percentage);
 478     gclog_or_tty->print_cr("  "
 479                   "   free_after_gc   : %6.1fK"
 480                   "   used_after_gc   : %6.1fK"
 481                   "   capacity_after_gc   : %6.1fK",
 482                   free_after_gc / (double) K,
 483                   used_after_gc / (double) K,
 484                   capacity_after_gc / (double) K);
 485     gclog_or_tty->print_cr("  "
 486                   "   free_percentage: %6.2f",
 487                   free_percentage);
 488   }
 489 
 490   if (capacity_after_gc < minimum_desired_capacity) {
 491     // If we have less free space than we want then expand
 492     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
 493     // Don't expand unless it's significant
 494     if (expand_bytes >= _min_heap_delta_bytes) {
 495       expand(expand_bytes, 0); // safe if expansion fails
 496     }
 497     if (PrintGC && Verbose) {
 498       gclog_or_tty->print_cr("    expanding:"
 499                     "  minimum_desired_capacity: %6.1fK"
 500                     "  expand_bytes: %6.1fK"
 501                     "  _min_heap_delta_bytes: %6.1fK",
 502                     minimum_desired_capacity / (double) K,
 503                     expand_bytes / (double) K,
 504                     _min_heap_delta_bytes / (double) K);
 505     }
 506     return;
 507   }
 508 
 509   // No expansion, now see if we want to shrink
 510   size_t shrink_bytes = 0;
 511   // We would never want to shrink more than this
 512   size_t max_shrink_bytes = capacity_after_gc - minimum_desired_capacity;
 513 
 514   if (MaxHeapFreeRatio < 100) {
 515     const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
 516     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
 517     const double max_tmp = used_after_gc / minimum_used_percentage;
 518     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
 519     maximum_desired_capacity = MAX2(maximum_desired_capacity,
 520                                     spec()->init_size());
 521     if (PrintGC && Verbose) {
 522       gclog_or_tty->print_cr("  "
 523                              "  maximum_free_percentage: %6.2f"
 524                              "  minimum_used_percentage: %6.2f",
 525                              maximum_free_percentage,
 526                              minimum_used_percentage);
 527       gclog_or_tty->print_cr("  "
 528                              "  _capacity_at_prologue: %6.1fK"
 529                              "  minimum_desired_capacity: %6.1fK"
 530                              "  maximum_desired_capacity: %6.1fK",
 531                              _capacity_at_prologue / (double) K,
 532                              minimum_desired_capacity / (double) K,
 533                              maximum_desired_capacity / (double) K);
 534     }
 535     assert(minimum_desired_capacity <= maximum_desired_capacity,
 536            "sanity check");
 537 
 538     if (capacity_after_gc > maximum_desired_capacity) {
 539       // Capacity too large, compute shrinking size
 540       shrink_bytes = capacity_after_gc - maximum_desired_capacity;
 541       // We don't want shrink all the way back to initSize if people call
 542       // System.gc(), because some programs do that between "phases" and then
 543       // we'd just have to grow the heap up again for the next phase.  So we
 544       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
 545       // on the third call, and 100% by the fourth call.  But if we recompute
 546       // size without shrinking, it goes back to 0%.
 547       shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
 548       assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
 549       if (current_shrink_factor == 0) {
 550         _shrink_factor = 10;
 551       } else {
 552         _shrink_factor = MIN2(current_shrink_factor * 4, (size_t) 100);
 553       }
 554       if (PrintGC && Verbose) {
 555         gclog_or_tty->print_cr("  "
 556                       "  shrinking:"
 557                       "  initSize: %.1fK"
 558                       "  maximum_desired_capacity: %.1fK",
 559                       spec()->init_size() / (double) K,
 560                       maximum_desired_capacity / (double) K);
 561         gclog_or_tty->print_cr("  "
 562                       "  shrink_bytes: %.1fK"
 563                       "  current_shrink_factor: " SIZE_FORMAT
 564                       "  new shrink factor: " SIZE_FORMAT
 565                       "  _min_heap_delta_bytes: %.1fK",
 566                       shrink_bytes / (double) K,
 567                       current_shrink_factor,
 568                       _shrink_factor,
 569                       _min_heap_delta_bytes / (double) K);
 570       }
 571     }
 572   }
 573 
 574   if (capacity_after_gc > _capacity_at_prologue) {
 575     // We might have expanded for promotions, in which case we might want to
 576     // take back that expansion if there's room after GC.  That keeps us from
 577     // stretching the heap with promotions when there's plenty of room.
 578     size_t expansion_for_promotion = capacity_after_gc - _capacity_at_prologue;
 579     expansion_for_promotion = MIN2(expansion_for_promotion, max_shrink_bytes);
 580     // We have two shrinking computations, take the largest
 581     shrink_bytes = MAX2(shrink_bytes, expansion_for_promotion);
 582     assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
 583     if (PrintGC && Verbose) {
 584       gclog_or_tty->print_cr("  "
 585                              "  aggressive shrinking:"
 586                              "  _capacity_at_prologue: %.1fK"
 587                              "  capacity_after_gc: %.1fK"
 588                              "  expansion_for_promotion: %.1fK"
 589                              "  shrink_bytes: %.1fK",
 590                              capacity_after_gc / (double) K,
 591                              _capacity_at_prologue / (double) K,
 592                              expansion_for_promotion / (double) K,
 593                              shrink_bytes / (double) K);
 594     }
 595   }
 596   // Don't shrink unless it's significant
 597   if (shrink_bytes >= _min_heap_delta_bytes) {
 598     shrink(shrink_bytes);
 599   }
 600 }
 601 
 602 // Currently nothing to do.
 603 void CardGeneration::prepare_for_verify() {}
 604