1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
  27 
  28 #include "gc_implementation/shared/gcHeapSummary.hpp"
  29 #include "gc_implementation/shared/gSpaceCounters.hpp"
  30 #include "gc_implementation/shared/gcStats.hpp"
  31 #include "gc_implementation/shared/gcWhen.hpp"
  32 #include "gc_implementation/shared/generationCounters.hpp"
  33 #include "memory/cardGeneration.hpp"
  34 #include "memory/freeBlockDictionary.hpp"
  35 #include "memory/iterator.hpp"
  36 #include "memory/space.hpp"
  37 #include "runtime/mutexLocker.hpp"
  38 #include "runtime/virtualspace.hpp"
  39 #include "services/memoryService.hpp"
  40 #include "utilities/bitMap.inline.hpp"
  41 #include "utilities/stack.inline.hpp"
  42 #include "utilities/taskqueue.hpp"
  43 #include "utilities/yieldingWorkgroup.hpp"
  44 
  45 // ConcurrentMarkSweepGeneration is in support of a concurrent
  46 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
  47 // style. We assume, for now, that this generation is always the
  48 // seniormost generation and for simplicity
  49 // in the first implementation, that this generation is a single compactible
  50 // space. Neither of these restrictions appears essential, and will be
  51 // relaxed in the future when more time is available to implement the
  52 // greater generality (and there's a need for it).
  53 //
  54 // Concurrent mode failures are currently handled by
  55 // means of a sliding mark-compact.
  56 
  57 class AdaptiveSizePolicy;
  58 class CMSConcMarkingTask;
  59 class CMSGCAdaptivePolicyCounters;
  60 class CMSTracer;
  61 class ConcurrentGCTimer;
  62 class ConcurrentMarkSweepGeneration;
  63 class ConcurrentMarkSweepPolicy;
  64 class ConcurrentMarkSweepThread;
  65 class CompactibleFreeListSpace;
  66 class FreeChunk;
  67 class PromotionInfo;
  68 class ScanMarkedObjectsAgainCarefullyClosure;
  69 class TenuredGeneration;
  70 class SerialOldTracer;
  71 
  72 // A generic CMS bit map. It's the basis for both the CMS marking bit map
  73 // as well as for the mod union table (in each case only a subset of the
  74 // methods are used). This is essentially a wrapper around the BitMap class,
  75 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
  76 // we have _shifter == 0. and for the mod union table we have
  77 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
  78 // XXX 64-bit issues in BitMap?
  79 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
  80   friend class VMStructs;
  81 
  82   HeapWord* _bmStartWord;   // base address of range covered by map
  83   size_t    _bmWordSize;    // map size (in #HeapWords covered)
  84   const int _shifter;       // shifts to convert HeapWord to bit position
  85   VirtualSpace _virtual_space; // underlying the bit map
  86   BitMap    _bm;            // the bit map itself
  87  public:
  88   Mutex* const _lock;       // mutex protecting _bm;
  89 
  90  public:
  91   // constructor
  92   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
  93 
  94   // allocates the actual storage for the map
  95   bool allocate(MemRegion mr);
  96   // field getter
  97   Mutex* lock() const { return _lock; }
  98   // locking verifier convenience function
  99   void assert_locked() const PRODUCT_RETURN;
 100 
 101   // inquiries
 102   HeapWord* startWord()   const { return _bmStartWord; }
 103   size_t    sizeInWords() const { return _bmWordSize;  }
 104   size_t    sizeInBits()  const { return _bm.size();   }
 105   // the following is one past the last word in space
 106   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
 107 
 108   // reading marks
 109   bool isMarked(HeapWord* addr) const;
 110   bool par_isMarked(HeapWord* addr) const; // do not lock checks
 111   bool isUnmarked(HeapWord* addr) const;
 112   bool isAllClear() const;
 113 
 114   // writing marks
 115   void mark(HeapWord* addr);
 116   // For marking by parallel GC threads;
 117   // returns true if we did, false if another thread did
 118   bool par_mark(HeapWord* addr);
 119 
 120   void mark_range(MemRegion mr);
 121   void par_mark_range(MemRegion mr);
 122   void mark_large_range(MemRegion mr);
 123   void par_mark_large_range(MemRegion mr);
 124   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
 125   void clear_range(MemRegion mr);
 126   void par_clear_range(MemRegion mr);
 127   void clear_large_range(MemRegion mr);
 128   void par_clear_large_range(MemRegion mr);
 129   void clear_all();
 130   void clear_all_incrementally();  // Not yet implemented!!
 131 
 132   NOT_PRODUCT(
 133     // checks the memory region for validity
 134     void region_invariant(MemRegion mr);
 135   )
 136 
 137   // iteration
 138   void iterate(BitMapClosure* cl) {
 139     _bm.iterate(cl);
 140   }
 141   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
 142   void dirty_range_iterate_clear(MemRegionClosure* cl);
 143   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
 144 
 145   // auxiliary support for iteration
 146   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
 147   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
 148                                             HeapWord* end_addr) const;
 149   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
 150   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
 151                                               HeapWord* end_addr) const;
 152   MemRegion getAndClearMarkedRegion(HeapWord* addr);
 153   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
 154                                            HeapWord* end_addr);
 155 
 156   // conversion utilities
 157   HeapWord* offsetToHeapWord(size_t offset) const;
 158   size_t    heapWordToOffset(HeapWord* addr) const;
 159   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
 160 
 161   void print_on_error(outputStream* st, const char* prefix) const;
 162 
 163   // debugging
 164   // is this address range covered by the bit-map?
 165   NOT_PRODUCT(
 166     bool covers(MemRegion mr) const;
 167     bool covers(HeapWord* start, size_t size = 0) const;
 168   )
 169   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
 170 };
 171 
 172 // Represents a marking stack used by the CMS collector.
 173 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 174 class CMSMarkStack: public CHeapObj<mtGC>  {
 175   //
 176   friend class CMSCollector;   // To get at expansion stats further below.
 177   //
 178 
 179   VirtualSpace _virtual_space;  // Space for the stack
 180   oop*   _base;      // Bottom of stack
 181   size_t _index;     // One more than last occupied index
 182   size_t _capacity;  // Max #elements
 183   Mutex  _par_lock;  // An advisory lock used in case of parallel access
 184   NOT_PRODUCT(size_t _max_depth;)  // Max depth plumbed during run
 185 
 186  protected:
 187   size_t _hit_limit;      // We hit max stack size limit
 188   size_t _failed_double;  // We failed expansion before hitting limit
 189 
 190  public:
 191   CMSMarkStack():
 192     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
 193     _hit_limit(0),
 194     _failed_double(0) {}
 195 
 196   bool allocate(size_t size);
 197 
 198   size_t capacity() const { return _capacity; }
 199 
 200   oop pop() {
 201     if (!isEmpty()) {
 202       return _base[--_index] ;
 203     }
 204     return NULL;
 205   }
 206 
 207   bool push(oop ptr) {
 208     if (isFull()) {
 209       return false;
 210     } else {
 211       _base[_index++] = ptr;
 212       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 213       return true;
 214     }
 215   }
 216 
 217   bool isEmpty() const { return _index == 0; }
 218   bool isFull()  const {
 219     assert(_index <= _capacity, "buffer overflow");
 220     return _index == _capacity;
 221   }
 222 
 223   size_t length() { return _index; }
 224 
 225   // "Parallel versions" of some of the above
 226   oop par_pop() {
 227     // lock and pop
 228     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 229     return pop();
 230   }
 231 
 232   bool par_push(oop ptr) {
 233     // lock and push
 234     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 235     return push(ptr);
 236   }
 237 
 238   // Forcibly reset the stack, losing all of its contents.
 239   void reset() {
 240     _index = 0;
 241   }
 242 
 243   // Expand the stack, typically in response to an overflow condition.
 244   void expand();
 245 
 246   // Compute the least valued stack element.
 247   oop least_value(HeapWord* low) {
 248      oop least = (oop)low;
 249      for (size_t i = 0; i < _index; i++) {
 250        least = MIN2(least, _base[i]);
 251      }
 252      return least;
 253   }
 254 
 255   // Exposed here to allow stack expansion in || case.
 256   Mutex* par_lock() { return &_par_lock; }
 257 };
 258 
 259 class CardTableRS;
 260 class CMSParGCThreadState;
 261 
 262 class ModUnionClosure: public MemRegionClosure {
 263  protected:
 264   CMSBitMap* _t;
 265  public:
 266   ModUnionClosure(CMSBitMap* t): _t(t) { }
 267   void do_MemRegion(MemRegion mr);
 268 };
 269 
 270 class ModUnionClosurePar: public ModUnionClosure {
 271  public:
 272   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
 273   void do_MemRegion(MemRegion mr);
 274 };
 275 
 276 // Survivor Chunk Array in support of parallelization of
 277 // Survivor Space rescan.
 278 class ChunkArray: public CHeapObj<mtGC> {
 279   size_t _index;
 280   size_t _capacity;
 281   size_t _overflows;
 282   HeapWord** _array;   // storage for array
 283 
 284  public:
 285   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
 286   ChunkArray(HeapWord** a, size_t c):
 287     _index(0), _capacity(c), _overflows(0), _array(a) {}
 288 
 289   HeapWord** array() { return _array; }
 290   void set_array(HeapWord** a) { _array = a; }
 291 
 292   size_t capacity() { return _capacity; }
 293   void set_capacity(size_t c) { _capacity = c; }
 294 
 295   size_t end() {
 296     assert(_index <= capacity(),
 297            err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
 298                    _index, _capacity));
 299     return _index;
 300   }  // exclusive
 301 
 302   HeapWord* nth(size_t n) {
 303     assert(n < end(), "Out of bounds access");
 304     return _array[n];
 305   }
 306 
 307   void reset() {
 308     _index = 0;
 309     if (_overflows > 0 && PrintCMSStatistics > 1) {
 310       warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
 311               _capacity, _overflows);
 312     }
 313     _overflows = 0;
 314   }
 315 
 316   void record_sample(HeapWord* p, size_t sz) {
 317     // For now we do not do anything with the size
 318     if (_index < _capacity) {
 319       _array[_index++] = p;
 320     } else {
 321       ++_overflows;
 322       assert(_index == _capacity,
 323              err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
 324                      "): out of bounds at overflow#" SIZE_FORMAT,
 325                      _index, _capacity, _overflows));
 326     }
 327   }
 328 };
 329 
 330 //
 331 // Timing, allocation and promotion statistics for gc scheduling and incremental
 332 // mode pacing.  Most statistics are exponential averages.
 333 //
 334 class CMSStats VALUE_OBJ_CLASS_SPEC {
 335  private:
 336   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
 337 
 338   // The following are exponential averages with factor alpha:
 339   //   avg = (100 - alpha) * avg + alpha * cur_sample
 340   //
 341   //   The durations measure:  end_time[n] - start_time[n]
 342   //   The periods measure:    start_time[n] - start_time[n-1]
 343   //
 344   // The cms period and duration include only concurrent collections; time spent
 345   // in foreground cms collections due to System.gc() or because of a failure to
 346   // keep up are not included.
 347   //
 348   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
 349   // real value, but is used only after the first period.  A value of 100 is
 350   // used for the first sample so it gets the entire weight.
 351   unsigned int _saved_alpha; // 0-100
 352   unsigned int _gc0_alpha;
 353   unsigned int _cms_alpha;
 354 
 355   double _gc0_duration;
 356   double _gc0_period;
 357   size_t _gc0_promoted;         // bytes promoted per gc0
 358   double _cms_duration;
 359   double _cms_duration_pre_sweep; // time from initiation to start of sweep
 360   double _cms_period;
 361   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
 362 
 363   // Timers.
 364   elapsedTimer _cms_timer;
 365   TimeStamp    _gc0_begin_time;
 366   TimeStamp    _cms_begin_time;
 367   TimeStamp    _cms_end_time;
 368 
 369   // Snapshots of the amount used in the CMS generation.
 370   size_t _cms_used_at_gc0_begin;
 371   size_t _cms_used_at_gc0_end;
 372   size_t _cms_used_at_cms_begin;
 373 
 374   // Used to prevent the duty cycle from being reduced in the middle of a cms
 375   // cycle.
 376   bool _allow_duty_cycle_reduction;
 377 
 378   enum {
 379     _GC0_VALID = 0x1,
 380     _CMS_VALID = 0x2,
 381     _ALL_VALID = _GC0_VALID | _CMS_VALID
 382   };
 383 
 384   unsigned int _valid_bits;
 385 
 386  protected:
 387   // In support of adjusting of cms trigger ratios based on history
 388   // of concurrent mode failure.
 389   double cms_free_adjustment_factor(size_t free) const;
 390   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
 391 
 392  public:
 393   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
 394            unsigned int alpha = CMSExpAvgFactor);
 395 
 396   // Whether or not the statistics contain valid data; higher level statistics
 397   // cannot be called until this returns true (they require at least one young
 398   // gen and one cms cycle to have completed).
 399   bool valid() const;
 400 
 401   // Record statistics.
 402   void record_gc0_begin();
 403   void record_gc0_end(size_t cms_gen_bytes_used);
 404   void record_cms_begin();
 405   void record_cms_end();
 406 
 407   // Allow management of the cms timer, which must be stopped/started around
 408   // yield points.
 409   elapsedTimer& cms_timer()     { return _cms_timer; }
 410   void start_cms_timer()        { _cms_timer.start(); }
 411   void stop_cms_timer()         { _cms_timer.stop(); }
 412 
 413   // Basic statistics; units are seconds or bytes.
 414   double gc0_period() const     { return _gc0_period; }
 415   double gc0_duration() const   { return _gc0_duration; }
 416   size_t gc0_promoted() const   { return _gc0_promoted; }
 417   double cms_period() const          { return _cms_period; }
 418   double cms_duration() const        { return _cms_duration; }
 419   size_t cms_allocated() const       { return _cms_allocated; }
 420 
 421   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
 422 
 423   // Seconds since the last background cms cycle began or ended.
 424   double cms_time_since_begin() const;
 425   double cms_time_since_end() const;
 426 
 427   // Higher level statistics--caller must check that valid() returns true before
 428   // calling.
 429 
 430   // Returns bytes promoted per second of wall clock time.
 431   double promotion_rate() const;
 432 
 433   // Returns bytes directly allocated per second of wall clock time.
 434   double cms_allocation_rate() const;
 435 
 436   // Rate at which space in the cms generation is being consumed (sum of the
 437   // above two).
 438   double cms_consumption_rate() const;
 439 
 440   // Returns an estimate of the number of seconds until the cms generation will
 441   // fill up, assuming no collection work is done.
 442   double time_until_cms_gen_full() const;
 443 
 444   // Returns an estimate of the number of seconds remaining until
 445   // the cms generation collection should start.
 446   double time_until_cms_start() const;
 447 
 448   // End of higher level statistics.
 449 
 450   // Debugging.
 451   void print_on(outputStream* st) const PRODUCT_RETURN;
 452   void print() const { print_on(gclog_or_tty); }
 453 };
 454 
 455 // A closure related to weak references processing which
 456 // we embed in the CMSCollector, since we need to pass
 457 // it to the reference processor for secondary filtering
 458 // of references based on reachability of referent;
 459 // see role of _is_alive_non_header closure in the
 460 // ReferenceProcessor class.
 461 // For objects in the CMS generation, this closure checks
 462 // if the object is "live" (reachable). Used in weak
 463 // reference processing.
 464 class CMSIsAliveClosure: public BoolObjectClosure {
 465   const MemRegion  _span;
 466   const CMSBitMap* _bit_map;
 467 
 468   friend class CMSCollector;
 469  public:
 470   CMSIsAliveClosure(MemRegion span,
 471                     CMSBitMap* bit_map):
 472     _span(span),
 473     _bit_map(bit_map) {
 474     assert(!span.is_empty(), "Empty span could spell trouble");
 475   }
 476 
 477   bool do_object_b(oop obj);
 478 };
 479 
 480 
 481 // Implements AbstractRefProcTaskExecutor for CMS.
 482 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 483 public:
 484 
 485   CMSRefProcTaskExecutor(CMSCollector& collector)
 486     : _collector(collector)
 487   { }
 488 
 489   // Executes a task using worker threads.
 490   virtual void execute(ProcessTask& task);
 491   virtual void execute(EnqueueTask& task);
 492 private:
 493   CMSCollector& _collector;
 494 };
 495 
 496 
 497 class CMSCollector: public CHeapObj<mtGC> {
 498   friend class VMStructs;
 499   friend class ConcurrentMarkSweepThread;
 500   friend class ConcurrentMarkSweepGeneration;
 501   friend class CompactibleFreeListSpace;
 502   friend class CMSParMarkTask;
 503   friend class CMSParInitialMarkTask;
 504   friend class CMSParRemarkTask;
 505   friend class CMSConcMarkingTask;
 506   friend class CMSRefProcTaskProxy;
 507   friend class CMSRefProcTaskExecutor;
 508   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
 509   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
 510   friend class PushOrMarkClosure;             // to access _restart_addr
 511   friend class Par_PushOrMarkClosure;             // to access _restart_addr
 512   friend class MarkFromRootsClosure;          //  -- ditto --
 513                                               // ... and for clearing cards
 514   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
 515                                               // ... and for clearing cards
 516   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
 517   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
 518   friend class PushAndMarkVerifyClosure;      //  -- ditto --
 519   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
 520   friend class PushAndMarkClosure;            //  -- ditto --
 521   friend class Par_PushAndMarkClosure;        //  -- ditto --
 522   friend class CMSKeepAliveClosure;           //  -- ditto --
 523   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
 524   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
 525   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
 526   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
 527   friend class VM_CMS_Operation;
 528   friend class VM_CMS_Initial_Mark;
 529   friend class VM_CMS_Final_Remark;
 530   friend class TraceCMSMemoryManagerStats;
 531 
 532  private:
 533   jlong _time_of_last_gc;
 534   void update_time_of_last_gc(jlong now) {
 535     _time_of_last_gc = now;
 536   }
 537 
 538   OopTaskQueueSet* _task_queues;
 539 
 540   // Overflow list of grey objects, threaded through mark-word
 541   // Manipulated with CAS in the parallel/multi-threaded case.
 542   oop _overflow_list;
 543   // The following array-pair keeps track of mark words
 544   // displaced for accommodating overflow list above.
 545   // This code will likely be revisited under RFE#4922830.
 546   Stack<oop, mtGC>     _preserved_oop_stack;
 547   Stack<markOop, mtGC> _preserved_mark_stack;
 548 
 549   int*             _hash_seed;
 550 
 551   // In support of multi-threaded concurrent phases
 552   YieldingFlexibleWorkGang* _conc_workers;
 553 
 554   // Performance Counters
 555   CollectorCounters* _gc_counters;
 556 
 557   // Initialization Errors
 558   bool _completed_initialization;
 559 
 560   // In support of ExplicitGCInvokesConcurrent
 561   static bool _full_gc_requested;
 562   static GCCause::Cause _full_gc_cause;
 563   unsigned int _collection_count_start;
 564 
 565   // Should we unload classes this concurrent cycle?
 566   bool _should_unload_classes;
 567   unsigned int  _concurrent_cycles_since_last_unload;
 568   unsigned int concurrent_cycles_since_last_unload() const {
 569     return _concurrent_cycles_since_last_unload;
 570   }
 571   // Did we (allow) unload classes in the previous concurrent cycle?
 572   bool unloaded_classes_last_cycle() const {
 573     return concurrent_cycles_since_last_unload() == 0;
 574   }
 575   // Root scanning options for perm gen
 576   int _roots_scanning_options;
 577   int roots_scanning_options() const      { return _roots_scanning_options; }
 578   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
 579   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
 580 
 581   // Verification support
 582   CMSBitMap     _verification_mark_bm;
 583   void verify_after_remark_work_1();
 584   void verify_after_remark_work_2();
 585 
 586   // True if any verification flag is on.
 587   bool _verifying;
 588   bool verifying() const { return _verifying; }
 589   void set_verifying(bool v) { _verifying = v; }
 590 
 591   // Collector policy
 592   ConcurrentMarkSweepPolicy* _collector_policy;
 593   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
 594 
 595   void set_did_compact(bool v);
 596 
 597   // XXX Move these to CMSStats ??? FIX ME !!!
 598   elapsedTimer _inter_sweep_timer;   // Time between sweeps
 599   elapsedTimer _intra_sweep_timer;   // Time _in_ sweeps
 600   // Padded decaying average estimates of the above
 601   AdaptivePaddedAverage _inter_sweep_estimate;
 602   AdaptivePaddedAverage _intra_sweep_estimate;
 603 
 604   CMSTracer* _gc_tracer_cm;
 605   ConcurrentGCTimer* _gc_timer_cm;
 606 
 607   bool _cms_start_registered;
 608 
 609   GCHeapSummary _last_heap_summary;
 610   MetaspaceSummary _last_metaspace_summary;
 611 
 612   void register_gc_start(GCCause::Cause cause);
 613   void register_gc_end();
 614   void save_heap_summary();
 615   void report_heap_summary(GCWhen::Type when);
 616 
 617  protected:
 618   ConcurrentMarkSweepGeneration* _cmsGen;  // Old gen (CMS)
 619   MemRegion                      _span;    // Span covering above two
 620   CardTableRS*                   _ct;      // Card table
 621 
 622   // CMS marking support structures
 623   CMSBitMap     _markBitMap;
 624   CMSBitMap     _modUnionTable;
 625   CMSMarkStack  _markStack;
 626 
 627   HeapWord*     _restart_addr; // In support of marking stack overflow
 628   void          lower_restart_addr(HeapWord* low);
 629 
 630   // Counters in support of marking stack / work queue overflow handling:
 631   // a non-zero value indicates certain types of overflow events during
 632   // the current CMS cycle and could lead to stack resizing efforts at
 633   // an opportune future time.
 634   size_t        _ser_pmc_preclean_ovflw;
 635   size_t        _ser_pmc_remark_ovflw;
 636   size_t        _par_pmc_remark_ovflw;
 637   size_t        _ser_kac_preclean_ovflw;
 638   size_t        _ser_kac_ovflw;
 639   size_t        _par_kac_ovflw;
 640   NOT_PRODUCT(ssize_t _num_par_pushes;)
 641 
 642   // ("Weak") Reference processing support.
 643   ReferenceProcessor*            _ref_processor;
 644   CMSIsAliveClosure              _is_alive_closure;
 645   // Keep this textually after _markBitMap and _span; c'tor dependency.
 646 
 647   ConcurrentMarkSweepThread*     _cmsThread;   // The thread doing the work
 648   ModUnionClosure    _modUnionClosure;
 649   ModUnionClosurePar _modUnionClosurePar;
 650 
 651   // CMS abstract state machine
 652   // initial_state: Idling
 653   // next_state(Idling)            = {Marking}
 654   // next_state(Marking)           = {Precleaning, Sweeping}
 655   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
 656   // next_state(AbortablePreclean) = {FinalMarking}
 657   // next_state(FinalMarking)      = {Sweeping}
 658   // next_state(Sweeping)          = {Resizing}
 659   // next_state(Resizing)          = {Resetting}
 660   // next_state(Resetting)         = {Idling}
 661   // The numeric values below are chosen so that:
 662   // . _collectorState <= Idling ==  post-sweep && pre-mark
 663   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
 664   //                                            precleaning || abortablePrecleanb
 665  public:
 666   enum CollectorState {
 667     Resizing            = 0,
 668     Resetting           = 1,
 669     Idling              = 2,
 670     InitialMarking      = 3,
 671     Marking             = 4,
 672     Precleaning         = 5,
 673     AbortablePreclean   = 6,
 674     FinalMarking        = 7,
 675     Sweeping            = 8
 676   };
 677  protected:
 678   static CollectorState _collectorState;
 679 
 680   // State related to prologue/epilogue invocation for my generations
 681   bool _between_prologue_and_epilogue;
 682 
 683   // Signaling/State related to coordination between fore- and background GC
 684   // Note: When the baton has been passed from background GC to foreground GC,
 685   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
 686   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
 687                                  // wants to go active
 688   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
 689                                  // yet passed the baton to the foreground GC
 690 
 691   // Support for CMSScheduleRemark (abortable preclean)
 692   bool _abort_preclean;
 693   bool _start_sampling;
 694 
 695   int    _numYields;
 696   size_t _numDirtyCards;
 697   size_t _sweep_count;
 698 
 699   // Occupancy used for bootstrapping stats
 700   double _bootstrap_occupancy;
 701 
 702   // Timer
 703   elapsedTimer _timer;
 704 
 705   // Timing, allocation and promotion statistics, used for scheduling.
 706   CMSStats      _stats;
 707 
 708   enum CMS_op_type {
 709     CMS_op_checkpointRootsInitial,
 710     CMS_op_checkpointRootsFinal
 711   };
 712 
 713   void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
 714   bool stop_world_and_do(CMS_op_type op);
 715 
 716   OopTaskQueueSet* task_queues() { return _task_queues; }
 717   int*             hash_seed(int i) { return &_hash_seed[i]; }
 718   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
 719 
 720   // Support for parallelizing Eden rescan in CMS remark phase
 721   void sample_eden(); // ... sample Eden space top
 722 
 723  private:
 724   // Support for parallelizing young gen rescan in CMS remark phase
 725   ParNewGeneration* _young_gen;  // the younger gen
 726 
 727   HeapWord** _top_addr;    // ... Top of Eden
 728   HeapWord** _end_addr;    // ... End of Eden
 729   Mutex*     _eden_chunk_lock;
 730   HeapWord** _eden_chunk_array; // ... Eden partitioning array
 731   size_t     _eden_chunk_index; // ... top (exclusive) of array
 732   size_t     _eden_chunk_capacity;  // ... max entries in array
 733 
 734   // Support for parallelizing survivor space rescan
 735   HeapWord** _survivor_chunk_array;
 736   size_t     _survivor_chunk_index;
 737   size_t     _survivor_chunk_capacity;
 738   size_t*    _cursor;
 739   ChunkArray* _survivor_plab_array;
 740 
 741   // Support for marking stack overflow handling
 742   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
 743   bool par_take_from_overflow_list(size_t num,
 744                                    OopTaskQueue* to_work_q,
 745                                    int no_of_gc_threads);
 746   void push_on_overflow_list(oop p);
 747   void par_push_on_overflow_list(oop p);
 748   // The following is, obviously, not, in general, "MT-stable"
 749   bool overflow_list_is_empty() const;
 750 
 751   void preserve_mark_if_necessary(oop p);
 752   void par_preserve_mark_if_necessary(oop p);
 753   void preserve_mark_work(oop p, markOop m);
 754   void restore_preserved_marks_if_any();
 755   NOT_PRODUCT(bool no_preserved_marks() const;)
 756   // In support of testing overflow code
 757   NOT_PRODUCT(int _overflow_counter;)
 758   NOT_PRODUCT(bool simulate_overflow();)       // Sequential
 759   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
 760 
 761   // CMS work methods
 762   void checkpointRootsInitialWork(); // Initial checkpoint work
 763 
 764   // A return value of false indicates failure due to stack overflow
 765   bool markFromRootsWork();  // Concurrent marking work
 766 
 767  public:   // FIX ME!!! only for testing
 768   bool do_marking_st();      // Single-threaded marking
 769   bool do_marking_mt();      // Multi-threaded  marking
 770 
 771  private:
 772 
 773   // Concurrent precleaning work
 774   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
 775                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
 776   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
 777                              ScanMarkedObjectsAgainCarefullyClosure* cl);
 778   // Does precleaning work, returning a quantity indicative of
 779   // the amount of "useful work" done.
 780   size_t preclean_work(bool clean_refs, bool clean_survivors);
 781   void preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
 782   void abortable_preclean(); // Preclean while looking for possible abort
 783   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
 784   // Helper function for above; merge-sorts the per-thread plab samples
 785   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
 786   // Resets (i.e. clears) the per-thread plab sample vectors
 787   void reset_survivor_plab_arrays();
 788 
 789   // Final (second) checkpoint work
 790   void checkpointRootsFinalWork();
 791   // Work routine for parallel version of remark
 792   void do_remark_parallel();
 793   // Work routine for non-parallel version of remark
 794   void do_remark_non_parallel();
 795   // Reference processing work routine (during second checkpoint)
 796   void refProcessingWork();
 797 
 798   // Concurrent sweeping work
 799   void sweepWork(ConcurrentMarkSweepGeneration* gen);
 800 
 801   // (Concurrent) resetting of support data structures
 802   void reset(bool concurrent);
 803 
 804   // Clear _expansion_cause fields of constituent generations
 805   void clear_expansion_cause();
 806 
 807   // An auxiliary method used to record the ends of
 808   // used regions of each generation to limit the extent of sweep
 809   void save_sweep_limits();
 810 
 811   // A work method used by the foreground collector to do
 812   // a mark-sweep-compact.
 813   void do_compaction_work(bool clear_all_soft_refs);
 814 
 815   // Work methods for reporting concurrent mode interruption or failure
 816   bool is_external_interruption();
 817   void report_concurrent_mode_interruption();
 818 
 819   // If the background GC is active, acquire control from the background
 820   // GC and do the collection.
 821   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
 822 
 823   // For synchronizing passing of control from background to foreground
 824   // GC.  waitForForegroundGC() is called by the background
 825   // collector.  It if had to wait for a foreground collection,
 826   // it returns true and the background collection should assume
 827   // that the collection was finished by the foreground
 828   // collector.
 829   bool waitForForegroundGC();
 830 
 831   size_t block_size_using_printezis_bits(HeapWord* addr) const;
 832   size_t block_size_if_printezis_bits(HeapWord* addr) const;
 833   HeapWord* next_card_start_after_block(HeapWord* addr) const;
 834 
 835   void setup_cms_unloading_and_verification_state();
 836  public:
 837   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 838                CardTableRS*                   ct,
 839                ConcurrentMarkSweepPolicy*     cp);
 840   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
 841 
 842   ReferenceProcessor* ref_processor() { return _ref_processor; }
 843   void ref_processor_init();
 844 
 845   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
 846   static CollectorState abstract_state() { return _collectorState;  }
 847 
 848   bool should_abort_preclean() const; // Whether preclean should be aborted.
 849   size_t get_eden_used() const;
 850   size_t get_eden_capacity() const;
 851 
 852   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
 853 
 854   // Locking checks
 855   NOT_PRODUCT(static bool have_cms_token();)
 856 
 857   bool shouldConcurrentCollect();
 858 
 859   void collect(bool   full,
 860                bool   clear_all_soft_refs,
 861                size_t size,
 862                bool   tlab);
 863   void collect_in_background(GCCause::Cause cause);
 864 
 865   // In support of ExplicitGCInvokesConcurrent
 866   static void request_full_gc(unsigned int full_gc_count, GCCause::Cause cause);
 867   // Should we unload classes in a particular concurrent cycle?
 868   bool should_unload_classes() const {
 869     return _should_unload_classes;
 870   }
 871   void update_should_unload_classes();
 872 
 873   void direct_allocated(HeapWord* start, size_t size);
 874 
 875   // Object is dead if not marked and current phase is sweeping.
 876   bool is_dead_obj(oop obj) const;
 877 
 878   // After a promotion (of "start"), do any necessary marking.
 879   // If "par", then it's being done by a parallel GC thread.
 880   // The last two args indicate if we need precise marking
 881   // and if so the size of the object so it can be dirtied
 882   // in its entirety.
 883   void promoted(bool par, HeapWord* start,
 884                 bool is_obj_array, size_t obj_size);
 885 
 886   void getFreelistLocks() const;
 887   void releaseFreelistLocks() const;
 888   bool haveFreelistLocks() const;
 889 
 890   // Adjust size of underlying generation
 891   void compute_new_size();
 892 
 893   // GC prologue and epilogue
 894   void gc_prologue(bool full);
 895   void gc_epilogue(bool full);
 896 
 897   jlong time_of_last_gc(jlong now) {
 898     if (_collectorState <= Idling) {
 899       // gc not in progress
 900       return _time_of_last_gc;
 901     } else {
 902       // collection in progress
 903       return now;
 904     }
 905   }
 906 
 907   // Support for parallel remark of survivor space
 908   void* get_data_recorder(int thr_num);
 909   void sample_eden_chunk();
 910 
 911   CMSBitMap* markBitMap()  { return &_markBitMap; }
 912   void directAllocated(HeapWord* start, size_t size);
 913 
 914   // Main CMS steps and related support
 915   void checkpointRootsInitial();
 916   bool markFromRoots();  // a return value of false indicates failure
 917                          // due to stack overflow
 918   void preclean();
 919   void checkpointRootsFinal();
 920   void sweep();
 921 
 922   // Check that the currently executing thread is the expected
 923   // one (foreground collector or background collector).
 924   static void check_correct_thread_executing() PRODUCT_RETURN;
 925 
 926   bool is_cms_reachable(HeapWord* addr);
 927 
 928   // Performance Counter Support
 929   CollectorCounters* counters()    { return _gc_counters; }
 930 
 931   // Timer stuff
 932   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
 933   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
 934   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
 935   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
 936 
 937   int  yields()          { return _numYields; }
 938   void resetYields()     { _numYields = 0;    }
 939   void incrementYields() { _numYields++;      }
 940   void resetNumDirtyCards()               { _numDirtyCards = 0; }
 941   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
 942   size_t  numDirtyCards()                 { return _numDirtyCards; }
 943 
 944   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
 945   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
 946   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
 947   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
 948   size_t sweep_count() const             { return _sweep_count; }
 949   void   increment_sweep_count()         { _sweep_count++; }
 950 
 951   // Timers/stats for gc scheduling and incremental mode pacing.
 952   CMSStats& stats() { return _stats; }
 953 
 954   // Adaptive size policy
 955   AdaptiveSizePolicy* size_policy();
 956 
 957   static void print_on_error(outputStream* st);
 958 
 959   // Debugging
 960   void verify();
 961   bool verify_after_remark(bool silent = VerifySilently);
 962   void verify_ok_to_terminate() const PRODUCT_RETURN;
 963   void verify_work_stacks_empty() const PRODUCT_RETURN;
 964   void verify_overflow_empty() const PRODUCT_RETURN;
 965 
 966   // Convenience methods in support of debugging
 967   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
 968   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
 969 
 970   // Accessors
 971   CMSMarkStack* verification_mark_stack() { return &_markStack; }
 972   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
 973 
 974   // Initialization errors
 975   bool completed_initialization() { return _completed_initialization; }
 976 
 977   void print_eden_and_survivor_chunk_arrays();
 978 };
 979 
 980 class CMSExpansionCause : public AllStatic  {
 981  public:
 982   enum Cause {
 983     _no_expansion,
 984     _satisfy_free_ratio,
 985     _satisfy_promotion,
 986     _satisfy_allocation,
 987     _allocate_par_lab,
 988     _allocate_par_spooling_space,
 989     _adaptive_size_policy
 990   };
 991   // Return a string describing the cause of the expansion.
 992   static const char* to_string(CMSExpansionCause::Cause cause);
 993 };
 994 
 995 class ConcurrentMarkSweepGeneration: public CardGeneration {
 996   friend class VMStructs;
 997   friend class ConcurrentMarkSweepThread;
 998   friend class ConcurrentMarkSweep;
 999   friend class CMSCollector;
1000  protected:
1001   static CMSCollector*       _collector; // the collector that collects us
1002   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
1003 
1004   // Performance Counters
1005   GenerationCounters*      _gen_counters;
1006   GSpaceCounters*          _space_counters;
1007 
1008   // Words directly allocated, used by CMSStats.
1009   size_t _direct_allocated_words;
1010 
1011   // Non-product stat counters
1012   NOT_PRODUCT(
1013     size_t _numObjectsPromoted;
1014     size_t _numWordsPromoted;
1015     size_t _numObjectsAllocated;
1016     size_t _numWordsAllocated;
1017   )
1018 
1019   // Used for sizing decisions
1020   bool _incremental_collection_failed;
1021   bool incremental_collection_failed() {
1022     return _incremental_collection_failed;
1023   }
1024   void set_incremental_collection_failed() {
1025     _incremental_collection_failed = true;
1026   }
1027   void clear_incremental_collection_failed() {
1028     _incremental_collection_failed = false;
1029   }
1030 
1031   // accessors
1032   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
1033   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
1034 
1035   // Accessing spaces
1036   CompactibleSpace* space() const { return (CompactibleSpace*)_cmsSpace; }
1037 
1038  private:
1039   // For parallel young-gen GC support.
1040   CMSParGCThreadState** _par_gc_thread_states;
1041 
1042   // Reason generation was expanded
1043   CMSExpansionCause::Cause _expansion_cause;
1044 
1045   // In support of MinChunkSize being larger than min object size
1046   const double _dilatation_factor;
1047 
1048   // True if a compacting collection was done.
1049   bool _did_compact;
1050   bool did_compact() { return _did_compact; }
1051 
1052   // Fraction of current occupancy at which to start a CMS collection which
1053   // will collect this generation (at least).
1054   double _initiating_occupancy;
1055 
1056  protected:
1057   // Shrink generation by specified size (returns false if unable to shrink)
1058   void shrink_free_list_by(size_t bytes);
1059 
1060   // Update statistics for GC
1061   virtual void update_gc_stats(int level, bool full);
1062 
1063   // Maximum available space in the generation (including uncommitted)
1064   // space.
1065   size_t max_available() const;
1066 
1067   // getter and initializer for _initiating_occupancy field.
1068   double initiating_occupancy() const { return _initiating_occupancy; }
1069   void   init_initiating_occupancy(intx io, uintx tr);
1070 
1071   void expand_for_gc_cause(size_t bytes, size_t expand_bytes, CMSExpansionCause::Cause cause);
1072 
1073   void assert_correct_size_change_locking();
1074 
1075  public:
1076   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1077                                 int level, CardTableRS* ct,
1078                                 bool use_adaptive_freelists,
1079                                 FreeBlockDictionary<FreeChunk>::DictionaryChoice);
1080 
1081   // Accessors
1082   CMSCollector* collector() const { return _collector; }
1083   static void set_collector(CMSCollector* collector) {
1084     assert(_collector == NULL, "already set");
1085     _collector = collector;
1086   }
1087   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
1088 
1089   Mutex* freelistLock() const;
1090 
1091   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
1092 
1093   void set_did_compact(bool v) { _did_compact = v; }
1094 
1095   bool refs_discovery_is_atomic() const { return false; }
1096   bool refs_discovery_is_mt()     const {
1097     // Note: CMS does MT-discovery during the parallel-remark
1098     // phases. Use ReferenceProcessorMTMutator to make refs
1099     // discovery MT-safe during such phases or other parallel
1100     // discovery phases in the future. This may all go away
1101     // if/when we decide that refs discovery is sufficiently
1102     // rare that the cost of the CAS's involved is in the
1103     // noise. That's a measurement that should be done, and
1104     // the code simplified if that turns out to be the case.
1105     return ConcGCThreads > 1;
1106   }
1107 
1108   // Override
1109   virtual void ref_processor_init();
1110 
1111   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
1112 
1113   // Space enquiries
1114   double occupancy() const { return ((double)used())/((double)capacity()); }
1115   size_t contiguous_available() const;
1116   size_t unsafe_max_alloc_nogc() const;
1117 
1118   // over-rides
1119   MemRegion used_region_at_save_marks() const;
1120 
1121   // Does a "full" (forced) collection invoked on this generation collect
1122   // all younger generations as well? Note that the second conjunct is a
1123   // hack to allow the collection of the younger gen first if the flag is
1124   // set.
1125   virtual bool full_collects_younger_generations() const {
1126     return !ScavengeBeforeFullGC;
1127   }
1128 
1129   // Adjust quantities in the generation affected by
1130   // the compaction.
1131   void reset_after_compaction();
1132 
1133   // Allocation support
1134   HeapWord* allocate(size_t size, bool tlab);
1135   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
1136   oop       promote(oop obj, size_t obj_size);
1137   HeapWord* par_allocate(size_t size, bool tlab) {
1138     return allocate(size, tlab);
1139   }
1140 
1141 
1142   // Used by CMSStats to track direct allocation.  The value is sampled and
1143   // reset after each young gen collection.
1144   size_t direct_allocated_words() const { return _direct_allocated_words; }
1145   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
1146 
1147   // Overrides for parallel promotion.
1148   virtual oop par_promote(int thread_num,
1149                           oop obj, markOop m, size_t word_sz);
1150   virtual void par_promote_alloc_done(int thread_num);
1151   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
1152 
1153   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
1154 
1155   // Inform this (non-young) generation that a promotion failure was
1156   // encountered during a collection of a younger generation that
1157   // promotes into this generation.
1158   virtual void promotion_failure_occurred();
1159 
1160   bool should_collect(bool full, size_t size, bool tlab);
1161   virtual bool should_concurrent_collect() const;
1162   virtual bool is_too_full() const;
1163   void collect(bool   full,
1164                bool   clear_all_soft_refs,
1165                size_t size,
1166                bool   tlab);
1167 
1168   HeapWord* expand_and_allocate(size_t word_size,
1169                                 bool tlab,
1170                                 bool parallel = false);
1171 
1172   // GC prologue and epilogue
1173   void gc_prologue(bool full);
1174   void gc_prologue_work(bool full, bool registerClosure,
1175                         ModUnionClosure* modUnionClosure);
1176   void gc_epilogue(bool full);
1177   void gc_epilogue_work(bool full);
1178 
1179   // Time since last GC of this generation
1180   jlong time_of_last_gc(jlong now) {
1181     return collector()->time_of_last_gc(now);
1182   }
1183   void update_time_of_last_gc(jlong now) {
1184     collector()-> update_time_of_last_gc(now);
1185   }
1186 
1187   // Allocation failure
1188   void shrink(size_t bytes);
1189   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
1190   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
1191 
1192   // Iteration support and related enquiries
1193   void save_marks();
1194   bool no_allocs_since_save_marks();
1195 
1196   // Iteration support specific to CMS generations
1197   void save_sweep_limit();
1198 
1199   // More iteration support
1200   virtual void oop_iterate(ExtendedOopClosure* cl);
1201   virtual void safe_object_iterate(ObjectClosure* cl);
1202   virtual void object_iterate(ObjectClosure* cl);
1203 
1204   // Need to declare the full complement of closures, whether we'll
1205   // override them or not, or get message from the compiler:
1206   //   oop_since_save_marks_iterate_nv hides virtual function...
1207   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
1208     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
1209   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
1210 
1211   // Smart allocation  XXX -- move to CFLSpace?
1212   void setNearLargestChunk();
1213   bool isNearLargestChunk(HeapWord* addr);
1214 
1215   // Get the chunk at the end of the space.  Delegates to
1216   // the space.
1217   FreeChunk* find_chunk_at_end();
1218 
1219   void post_compact();
1220 
1221   // Debugging
1222   void prepare_for_verify();
1223   void verify();
1224   void print_statistics()               PRODUCT_RETURN;
1225 
1226   // Performance Counters support
1227   virtual void update_counters();
1228   virtual void update_counters(size_t used);
1229   void initialize_performance_counters();
1230   CollectorCounters* counters()  { return collector()->counters(); }
1231 
1232   // Support for parallel remark of survivor space
1233   void* get_data_recorder(int thr_num) {
1234     //Delegate to collector
1235     return collector()->get_data_recorder(thr_num);
1236   }
1237   void sample_eden_chunk() {
1238     //Delegate to collector
1239     return collector()->sample_eden_chunk();
1240   }
1241 
1242   // Printing
1243   const char* name() const;
1244   virtual const char* short_name() const { return "CMS"; }
1245   void        print() const;
1246   void printOccupancy(const char* s);
1247 
1248   // Resize the generation after a compacting GC.  The
1249   // generation can be treated as a contiguous space
1250   // after the compaction.
1251   virtual void compute_new_size();
1252   // Resize the generation after a non-compacting
1253   // collection.
1254   void compute_new_size_free_list();
1255 };
1256 
1257 //
1258 // Closures of various sorts used by CMS to accomplish its work
1259 //
1260 
1261 // This closure is used to do concurrent marking from the roots
1262 // following the first checkpoint.
1263 class MarkFromRootsClosure: public BitMapClosure {
1264   CMSCollector*  _collector;
1265   MemRegion      _span;
1266   CMSBitMap*     _bitMap;
1267   CMSBitMap*     _mut;
1268   CMSMarkStack*  _markStack;
1269   bool           _yield;
1270   int            _skipBits;
1271   HeapWord*      _finger;
1272   HeapWord*      _threshold;
1273   DEBUG_ONLY(bool _verifying;)
1274 
1275  public:
1276   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
1277                        CMSBitMap* bitMap,
1278                        CMSMarkStack*  markStack,
1279                        bool should_yield, bool verifying = false);
1280   bool do_bit(size_t offset);
1281   void reset(HeapWord* addr);
1282   inline void do_yield_check();
1283 
1284  private:
1285   void scanOopsInOop(HeapWord* ptr);
1286   void do_yield_work();
1287 };
1288 
1289 // This closure is used to do concurrent multi-threaded
1290 // marking from the roots following the first checkpoint.
1291 // XXX This should really be a subclass of The serial version
1292 // above, but i have not had the time to refactor things cleanly.
1293 class Par_MarkFromRootsClosure: public BitMapClosure {
1294   CMSCollector*  _collector;
1295   MemRegion      _whole_span;
1296   MemRegion      _span;
1297   CMSBitMap*     _bit_map;
1298   CMSBitMap*     _mut;
1299   OopTaskQueue*  _work_queue;
1300   CMSMarkStack*  _overflow_stack;
1301   int            _skip_bits;
1302   HeapWord*      _finger;
1303   HeapWord*      _threshold;
1304   CMSConcMarkingTask* _task;
1305  public:
1306   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
1307                        MemRegion span,
1308                        CMSBitMap* bit_map,
1309                        OopTaskQueue* work_queue,
1310                        CMSMarkStack*  overflow_stack);
1311   bool do_bit(size_t offset);
1312   inline void do_yield_check();
1313 
1314  private:
1315   void scan_oops_in_oop(HeapWord* ptr);
1316   void do_yield_work();
1317   bool get_work_from_overflow_stack();
1318 };
1319 
1320 // The following closures are used to do certain kinds of verification of
1321 // CMS marking.
1322 class PushAndMarkVerifyClosure: public MetadataAwareOopClosure {
1323   CMSCollector*    _collector;
1324   MemRegion        _span;
1325   CMSBitMap*       _verification_bm;
1326   CMSBitMap*       _cms_bm;
1327   CMSMarkStack*    _mark_stack;
1328  protected:
1329   void do_oop(oop p);
1330   template <class T> inline void do_oop_work(T *p) {
1331     oop obj = oopDesc::load_decode_heap_oop(p);
1332     do_oop(obj);
1333   }
1334  public:
1335   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
1336                            MemRegion span,
1337                            CMSBitMap* verification_bm,
1338                            CMSBitMap* cms_bm,
1339                            CMSMarkStack*  mark_stack);
1340   void do_oop(oop* p);
1341   void do_oop(narrowOop* p);
1342 
1343   // Deal with a stack overflow condition
1344   void handle_stack_overflow(HeapWord* lost);
1345 };
1346 
1347 class MarkFromRootsVerifyClosure: public BitMapClosure {
1348   CMSCollector*  _collector;
1349   MemRegion      _span;
1350   CMSBitMap*     _verification_bm;
1351   CMSBitMap*     _cms_bm;
1352   CMSMarkStack*  _mark_stack;
1353   HeapWord*      _finger;
1354   PushAndMarkVerifyClosure _pam_verify_closure;
1355  public:
1356   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
1357                              CMSBitMap* verification_bm,
1358                              CMSBitMap* cms_bm,
1359                              CMSMarkStack*  mark_stack);
1360   bool do_bit(size_t offset);
1361   void reset(HeapWord* addr);
1362 };
1363 
1364 
1365 // This closure is used to check that a certain set of bits is
1366 // "empty" (i.e. the bit vector doesn't have any 1-bits).
1367 class FalseBitMapClosure: public BitMapClosure {
1368  public:
1369   bool do_bit(size_t offset) {
1370     guarantee(false, "Should not have a 1 bit");
1371     return true;
1372   }
1373 };
1374 
1375 // A version of ObjectClosure with "memory" (see _previous_address below)
1376 class UpwardsObjectClosure: public BoolObjectClosure {
1377   HeapWord* _previous_address;
1378  public:
1379   UpwardsObjectClosure() : _previous_address(NULL) { }
1380   void set_previous(HeapWord* addr) { _previous_address = addr; }
1381   HeapWord* previous()              { return _previous_address; }
1382   // A return value of "true" can be used by the caller to decide
1383   // if this object's end should *NOT* be recorded in
1384   // _previous_address above.
1385   virtual bool do_object_bm(oop obj, MemRegion mr) = 0;
1386 };
1387 
1388 // This closure is used during the second checkpointing phase
1389 // to rescan the marked objects on the dirty cards in the mod
1390 // union table and the card table proper. It's invoked via
1391 // MarkFromDirtyCardsClosure below. It uses either
1392 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
1393 // declared in genOopClosures.hpp to accomplish some of its work.
1394 // In the parallel case the bitMap is shared, so access to
1395 // it needs to be suitably synchronized for updates by embedded
1396 // closures that update it; however, this closure itself only
1397 // reads the bit_map and because it is idempotent, is immune to
1398 // reading stale values.
1399 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
1400   #ifdef ASSERT
1401     CMSCollector*          _collector;
1402     MemRegion              _span;
1403     union {
1404       CMSMarkStack*        _mark_stack;
1405       OopTaskQueue*        _work_queue;
1406     };
1407   #endif // ASSERT
1408   bool                       _parallel;
1409   CMSBitMap*                 _bit_map;
1410   union {
1411     MarkRefsIntoAndScanClosure*     _scan_closure;
1412     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
1413   };
1414 
1415  public:
1416   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1417                                 MemRegion span,
1418                                 ReferenceProcessor* rp,
1419                                 CMSBitMap* bit_map,
1420                                 CMSMarkStack*  mark_stack,
1421                                 MarkRefsIntoAndScanClosure* cl):
1422     #ifdef ASSERT
1423       _collector(collector),
1424       _span(span),
1425       _mark_stack(mark_stack),
1426     #endif // ASSERT
1427     _parallel(false),
1428     _bit_map(bit_map),
1429     _scan_closure(cl) { }
1430 
1431   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1432                                 MemRegion span,
1433                                 ReferenceProcessor* rp,
1434                                 CMSBitMap* bit_map,
1435                                 OopTaskQueue* work_queue,
1436                                 Par_MarkRefsIntoAndScanClosure* cl):
1437     #ifdef ASSERT
1438       _collector(collector),
1439       _span(span),
1440       _work_queue(work_queue),
1441     #endif // ASSERT
1442     _parallel(true),
1443     _bit_map(bit_map),
1444     _par_scan_closure(cl) { }
1445 
1446   bool do_object_b(oop obj) {
1447     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
1448     return false;
1449   }
1450   bool do_object_bm(oop p, MemRegion mr);
1451 };
1452 
1453 // This closure is used during the second checkpointing phase
1454 // to rescan the marked objects on the dirty cards in the mod
1455 // union table and the card table proper. It invokes
1456 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
1457 // In the parallel case, the bit map is shared and requires
1458 // synchronized access.
1459 class MarkFromDirtyCardsClosure: public MemRegionClosure {
1460   CompactibleFreeListSpace*      _space;
1461   ScanMarkedObjectsAgainClosure  _scan_cl;
1462   size_t                         _num_dirty_cards;
1463 
1464  public:
1465   MarkFromDirtyCardsClosure(CMSCollector* collector,
1466                             MemRegion span,
1467                             CompactibleFreeListSpace* space,
1468                             CMSBitMap* bit_map,
1469                             CMSMarkStack* mark_stack,
1470                             MarkRefsIntoAndScanClosure* cl):
1471     _space(space),
1472     _num_dirty_cards(0),
1473     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1474                  mark_stack, cl) { }
1475 
1476   MarkFromDirtyCardsClosure(CMSCollector* collector,
1477                             MemRegion span,
1478                             CompactibleFreeListSpace* space,
1479                             CMSBitMap* bit_map,
1480                             OopTaskQueue* work_queue,
1481                             Par_MarkRefsIntoAndScanClosure* cl):
1482     _space(space),
1483     _num_dirty_cards(0),
1484     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1485              work_queue, cl) { }
1486 
1487   void do_MemRegion(MemRegion mr);
1488   void set_space(CompactibleFreeListSpace* space) { _space = space; }
1489   size_t num_dirty_cards() { return _num_dirty_cards; }
1490 };
1491 
1492 // This closure is used in the non-product build to check
1493 // that there are no MemRegions with a certain property.
1494 class FalseMemRegionClosure: public MemRegionClosure {
1495   void do_MemRegion(MemRegion mr) {
1496     guarantee(!mr.is_empty(), "Shouldn't be empty");
1497     guarantee(false, "Should never be here");
1498   }
1499 };
1500 
1501 // This closure is used during the precleaning phase
1502 // to "carefully" rescan marked objects on dirty cards.
1503 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
1504 // to accomplish some of its work.
1505 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
1506   CMSCollector*                  _collector;
1507   MemRegion                      _span;
1508   bool                           _yield;
1509   Mutex*                         _freelistLock;
1510   CMSBitMap*                     _bitMap;
1511   CMSMarkStack*                  _markStack;
1512   MarkRefsIntoAndScanClosure*    _scanningClosure;
1513 
1514  public:
1515   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
1516                                          MemRegion     span,
1517                                          CMSBitMap* bitMap,
1518                                          CMSMarkStack*  markStack,
1519                                          MarkRefsIntoAndScanClosure* cl,
1520                                          bool should_yield):
1521     _collector(collector),
1522     _span(span),
1523     _yield(should_yield),
1524     _bitMap(bitMap),
1525     _markStack(markStack),
1526     _scanningClosure(cl) {
1527   }
1528 
1529   void do_object(oop p) {
1530     guarantee(false, "call do_object_careful instead");
1531   }
1532 
1533   size_t      do_object_careful(oop p) {
1534     guarantee(false, "Unexpected caller");
1535     return 0;
1536   }
1537 
1538   size_t      do_object_careful_m(oop p, MemRegion mr);
1539 
1540   void setFreelistLock(Mutex* m) {
1541     _freelistLock = m;
1542     _scanningClosure->set_freelistLock(m);
1543   }
1544 
1545  private:
1546   inline bool do_yield_check();
1547 
1548   void do_yield_work();
1549 };
1550 
1551 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
1552   CMSCollector*                  _collector;
1553   MemRegion                      _span;
1554   bool                           _yield;
1555   CMSBitMap*                     _bit_map;
1556   CMSMarkStack*                  _mark_stack;
1557   PushAndMarkClosure*            _scanning_closure;
1558   unsigned int                   _before_count;
1559 
1560  public:
1561   SurvivorSpacePrecleanClosure(CMSCollector* collector,
1562                                MemRegion     span,
1563                                CMSBitMap*    bit_map,
1564                                CMSMarkStack* mark_stack,
1565                                PushAndMarkClosure* cl,
1566                                unsigned int  before_count,
1567                                bool          should_yield):
1568     _collector(collector),
1569     _span(span),
1570     _yield(should_yield),
1571     _bit_map(bit_map),
1572     _mark_stack(mark_stack),
1573     _scanning_closure(cl),
1574     _before_count(before_count)
1575   { }
1576 
1577   void do_object(oop p) {
1578     guarantee(false, "call do_object_careful instead");
1579   }
1580 
1581   size_t      do_object_careful(oop p);
1582 
1583   size_t      do_object_careful_m(oop p, MemRegion mr) {
1584     guarantee(false, "Unexpected caller");
1585     return 0;
1586   }
1587 
1588  private:
1589   inline void do_yield_check();
1590   void do_yield_work();
1591 };
1592 
1593 // This closure is used to accomplish the sweeping work
1594 // after the second checkpoint but before the concurrent reset
1595 // phase.
1596 //
1597 // Terminology
1598 //   left hand chunk (LHC) - block of one or more chunks currently being
1599 //     coalesced.  The LHC is available for coalescing with a new chunk.
1600 //   right hand chunk (RHC) - block that is currently being swept that is
1601 //     free or garbage that can be coalesced with the LHC.
1602 // _inFreeRange is true if there is currently a LHC
1603 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
1604 // _freeRangeInFreeLists is true if the LHC is in the free lists.
1605 // _freeFinger is the address of the current LHC
1606 class SweepClosure: public BlkClosureCareful {
1607   CMSCollector*                  _collector;  // collector doing the work
1608   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
1609   CompactibleFreeListSpace*      _sp;   // Space being swept
1610   HeapWord*                      _limit;// the address at or above which the sweep should stop
1611                                         // because we do not expect newly garbage blocks
1612                                         // eligible for sweeping past that address.
1613   Mutex*                         _freelistLock; // Free list lock (in space)
1614   CMSBitMap*                     _bitMap;       // Marking bit map (in
1615                                                 // generation)
1616   bool                           _inFreeRange;  // Indicates if we are in the
1617                                                 // midst of a free run
1618   bool                           _freeRangeInFreeLists;
1619                                         // Often, we have just found
1620                                         // a free chunk and started
1621                                         // a new free range; we do not
1622                                         // eagerly remove this chunk from
1623                                         // the free lists unless there is
1624                                         // a possibility of coalescing.
1625                                         // When true, this flag indicates
1626                                         // that the _freeFinger below
1627                                         // points to a potentially free chunk
1628                                         // that may still be in the free lists
1629   bool                           _lastFreeRangeCoalesced;
1630                                         // free range contains chunks
1631                                         // coalesced
1632   bool                           _yield;
1633                                         // Whether sweeping should be
1634                                         // done with yields. For instance
1635                                         // when done by the foreground
1636                                         // collector we shouldn't yield.
1637   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
1638                                                 // pointer to the "left hand
1639                                                 // chunk"
1640   size_t                         _freeRangeSize;
1641                                         // When _inFreeRange is set, this
1642                                         // indicates the accumulated size
1643                                         // of the "left hand chunk"
1644   NOT_PRODUCT(
1645     size_t                       _numObjectsFreed;
1646     size_t                       _numWordsFreed;
1647     size_t                       _numObjectsLive;
1648     size_t                       _numWordsLive;
1649     size_t                       _numObjectsAlreadyFree;
1650     size_t                       _numWordsAlreadyFree;
1651     FreeChunk*                   _last_fc;
1652   )
1653  private:
1654   // Code that is common to a free chunk or garbage when
1655   // encountered during sweeping.
1656   void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
1657   // Process a free chunk during sweeping.
1658   void do_already_free_chunk(FreeChunk *fc);
1659   // Work method called when processing an already free or a
1660   // freshly garbage chunk to do a lookahead and possibly a
1661   // preemptive flush if crossing over _limit.
1662   void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
1663   // Process a garbage chunk during sweeping.
1664   size_t do_garbage_chunk(FreeChunk *fc);
1665   // Process a live chunk during sweeping.
1666   size_t do_live_chunk(FreeChunk* fc);
1667 
1668   // Accessors.
1669   HeapWord* freeFinger() const          { return _freeFinger; }
1670   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
1671   bool inFreeRange()    const           { return _inFreeRange; }
1672   void set_inFreeRange(bool v)          { _inFreeRange = v; }
1673   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
1674   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
1675   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
1676   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
1677 
1678   // Initialize a free range.
1679   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
1680   // Return this chunk to the free lists.
1681   void flush_cur_free_chunk(HeapWord* chunk, size_t size);
1682 
1683   // Check if we should yield and do so when necessary.
1684   inline void do_yield_check(HeapWord* addr);
1685 
1686   // Yield
1687   void do_yield_work(HeapWord* addr);
1688 
1689   // Debugging/Printing
1690   void print_free_block_coalesced(FreeChunk* fc) const;
1691 
1692  public:
1693   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
1694                CMSBitMap* bitMap, bool should_yield);
1695   ~SweepClosure() PRODUCT_RETURN;
1696 
1697   size_t       do_blk_careful(HeapWord* addr);
1698   void         print() const { print_on(tty); }
1699   void         print_on(outputStream *st) const;
1700 };
1701 
1702 // Closures related to weak references processing
1703 
1704 // During CMS' weak reference processing, this is a
1705 // work-routine/closure used to complete transitive
1706 // marking of objects as live after a certain point
1707 // in which an initial set has been completely accumulated.
1708 // This closure is currently used both during the final
1709 // remark stop-world phase, as well as during the concurrent
1710 // precleaning of the discovered reference lists.
1711 class CMSDrainMarkingStackClosure: public VoidClosure {
1712   CMSCollector*        _collector;
1713   MemRegion            _span;
1714   CMSMarkStack*        _mark_stack;
1715   CMSBitMap*           _bit_map;
1716   CMSKeepAliveClosure* _keep_alive;
1717   bool                 _concurrent_precleaning;
1718  public:
1719   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
1720                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
1721                       CMSKeepAliveClosure* keep_alive,
1722                       bool cpc):
1723     _collector(collector),
1724     _span(span),
1725     _bit_map(bit_map),
1726     _mark_stack(mark_stack),
1727     _keep_alive(keep_alive),
1728     _concurrent_precleaning(cpc) {
1729     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
1730            "Mismatch");
1731   }
1732 
1733   void do_void();
1734 };
1735 
1736 // A parallel version of CMSDrainMarkingStackClosure above.
1737 class CMSParDrainMarkingStackClosure: public VoidClosure {
1738   CMSCollector*           _collector;
1739   MemRegion               _span;
1740   OopTaskQueue*           _work_queue;
1741   CMSBitMap*              _bit_map;
1742   CMSInnerParMarkAndPushClosure _mark_and_push;
1743 
1744  public:
1745   CMSParDrainMarkingStackClosure(CMSCollector* collector,
1746                                  MemRegion span, CMSBitMap* bit_map,
1747                                  OopTaskQueue* work_queue):
1748     _collector(collector),
1749     _span(span),
1750     _bit_map(bit_map),
1751     _work_queue(work_queue),
1752     _mark_and_push(collector, span, bit_map, work_queue) { }
1753 
1754  public:
1755   void trim_queue(uint max);
1756   void do_void();
1757 };
1758 
1759 // Allow yielding or short-circuiting of reference list
1760 // precleaning work.
1761 class CMSPrecleanRefsYieldClosure: public YieldClosure {
1762   CMSCollector* _collector;
1763   void do_yield_work();
1764  public:
1765   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
1766     _collector(collector) {}
1767   virtual bool should_return();
1768 };
1769 
1770 
1771 // Convenience class that locks free list locks for given CMS collector
1772 class FreelistLocker: public StackObj {
1773  private:
1774   CMSCollector* _collector;
1775  public:
1776   FreelistLocker(CMSCollector* collector):
1777     _collector(collector) {
1778     _collector->getFreelistLocks();
1779   }
1780 
1781   ~FreelistLocker() {
1782     _collector->releaseFreelistLocks();
1783   }
1784 };
1785 
1786 // Mark all dead objects in a given space.
1787 class MarkDeadObjectsClosure: public BlkClosure {
1788   const CMSCollector*             _collector;
1789   const CompactibleFreeListSpace* _sp;
1790   CMSBitMap*                      _live_bit_map;
1791   CMSBitMap*                      _dead_bit_map;
1792 public:
1793   MarkDeadObjectsClosure(const CMSCollector* collector,
1794                          const CompactibleFreeListSpace* sp,
1795                          CMSBitMap *live_bit_map,
1796                          CMSBitMap *dead_bit_map) :
1797     _collector(collector),
1798     _sp(sp),
1799     _live_bit_map(live_bit_map),
1800     _dead_bit_map(dead_bit_map) {}
1801   size_t do_blk(HeapWord* addr);
1802 };
1803 
1804 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
1805 
1806  public:
1807   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
1808 };
1809 
1810 
1811 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP