1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1GCPhaseTimes.hpp"
  32 #include "gc/g1/heapRegion.inline.hpp"
  33 #include "gc/g1/heapRegionRemSet.hpp"
  34 #include "gc/shared/gcPolicyCounters.hpp"
  35 #include "logging/log.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _predictor(G1ConfidencePercent / 100.0),
  83   _parallel_gc_threads(ParallelGCThreads),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _non_young_other_cost_per_region_ms_seq(
 105                                          new TruncatedSeq(TruncatedSeqLength)),
 106 
 107   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 108   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 109 
 110   _pause_time_target_ms((double) MaxGCPauseMillis),
 111 
 112   _recent_prev_end_times_for_all_gcs_sec(
 113                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 114 
 115   _recent_avg_pause_time_ratio(0.0),
 116   _rs_lengths_prediction(0),
 117   _max_survivor_regions(0),
 118 
 119   _eden_used_bytes_before_gc(0),
 120   _survivor_used_bytes_before_gc(0),
 121   _old_used_bytes_before_gc(0),
 122   _heap_used_bytes_before_gc(0),
 123   _metaspace_used_bytes_before_gc(0),
 124   _eden_capacity_bytes_before_gc(0),
 125   _heap_capacity_bytes_before_gc(0),
 126 
 127   _eden_cset_region_length(0),
 128   _survivor_cset_region_length(0),
 129   _old_cset_region_length(0),
 130 
 131   _collection_set(NULL),
 132   _collection_set_bytes_used_before(0),
 133 
 134   // Incremental CSet attributes
 135   _inc_cset_build_state(Inactive),
 136   _inc_cset_head(NULL),
 137   _inc_cset_tail(NULL),
 138   _inc_cset_bytes_used_before(0),
 139   _inc_cset_max_finger(NULL),
 140   _inc_cset_recorded_rs_lengths(0),
 141   _inc_cset_recorded_rs_lengths_diffs(0),
 142   _inc_cset_predicted_elapsed_time_ms(0.0),
 143   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 144 
 145   // add here any more surv rate groups
 146   _recorded_survivor_regions(0),
 147   _recorded_survivor_head(NULL),
 148   _recorded_survivor_tail(NULL),
 149   _survivors_age_table(true),
 150 
 151   _gc_overhead_perc(0.0) {
 152 
 153   // SurvRateGroups below must be initialized after the predictor because they
 154   // indirectly use it through this object passed to their constructor.
 155   _short_lived_surv_rate_group =
 156     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 157   _survivor_surv_rate_group =
 158     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 159 
 160   // Set up the region size and associated fields. Given that the
 161   // policy is created before the heap, we have to set this up here,
 162   // so it's done as soon as possible.
 163 
 164   // It would have been natural to pass initial_heap_byte_size() and
 165   // max_heap_byte_size() to setup_heap_region_size() but those have
 166   // not been set up at this point since they should be aligned with
 167   // the region size. So, there is a circular dependency here. We base
 168   // the region size on the heap size, but the heap size should be
 169   // aligned with the region size. To get around this we use the
 170   // unaligned values for the heap.
 171   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 172   HeapRegionRemSet::setup_remset_size();
 173 
 174   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 175   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 176 
 177   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 178 
 179   int index = MIN2(_parallel_gc_threads - 1, 7);
 180 
 181   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 182   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 183   _cost_scan_hcc_seq->add(0.0);
 184   _young_cards_per_entry_ratio_seq->add(
 185                                   young_cards_per_entry_ratio_defaults[index]);
 186   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 187   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 188   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 189   _young_other_cost_per_region_ms_seq->add(
 190                                young_other_cost_per_region_ms_defaults[index]);
 191   _non_young_other_cost_per_region_ms_seq->add(
 192                            non_young_other_cost_per_region_ms_defaults[index]);
 193 
 194   // Below, we might need to calculate the pause time target based on
 195   // the pause interval. When we do so we are going to give G1 maximum
 196   // flexibility and allow it to do pauses when it needs to. So, we'll
 197   // arrange that the pause interval to be pause time target + 1 to
 198   // ensure that a) the pause time target is maximized with respect to
 199   // the pause interval and b) we maintain the invariant that pause
 200   // time target < pause interval. If the user does not want this
 201   // maximum flexibility, they will have to set the pause interval
 202   // explicitly.
 203 
 204   // First make sure that, if either parameter is set, its value is
 205   // reasonable.
 206   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 207     if (MaxGCPauseMillis < 1) {
 208       vm_exit_during_initialization("MaxGCPauseMillis should be "
 209                                     "greater than 0");
 210     }
 211   }
 212   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 213     if (GCPauseIntervalMillis < 1) {
 214       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 215                                     "greater than 0");
 216     }
 217   }
 218 
 219   // Then, if the pause time target parameter was not set, set it to
 220   // the default value.
 221   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 222     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 223       // The default pause time target in G1 is 200ms
 224       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 225     } else {
 226       // We do not allow the pause interval to be set without the
 227       // pause time target
 228       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 229                                     "without setting MaxGCPauseMillis");
 230     }
 231   }
 232 
 233   // Then, if the interval parameter was not set, set it according to
 234   // the pause time target (this will also deal with the case when the
 235   // pause time target is the default value).
 236   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 237     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 238   }
 239 
 240   // Finally, make sure that the two parameters are consistent.
 241   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 242     char buffer[256];
 243     jio_snprintf(buffer, 256,
 244                  "MaxGCPauseMillis (%u) should be less than "
 245                  "GCPauseIntervalMillis (%u)",
 246                  MaxGCPauseMillis, GCPauseIntervalMillis);
 247     vm_exit_during_initialization(buffer);
 248   }
 249 
 250   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 251   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 252   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 253 
 254   // start conservatively (around 50ms is about right)
 255   _concurrent_mark_remark_times_ms->add(0.05);
 256   _concurrent_mark_cleanup_times_ms->add(0.20);
 257   _tenuring_threshold = MaxTenuringThreshold;
 258 
 259   assert(GCTimeRatio > 0,
 260          "we should have set it to a default value set_g1_gc_flags() "
 261          "if a user set it to 0");
 262   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 263 
 264   uintx reserve_perc = G1ReservePercent;
 265   // Put an artificial ceiling on this so that it's not set to a silly value.
 266   if (reserve_perc > 50) {
 267     reserve_perc = 50;
 268     warning("G1ReservePercent is set to a value that is too large, "
 269             "it's been updated to " UINTX_FORMAT, reserve_perc);
 270   }
 271   _reserve_factor = (double) reserve_perc / 100.0;
 272   // This will be set when the heap is expanded
 273   // for the first time during initialization.
 274   _reserve_regions = 0;
 275 
 276   _collectionSetChooser = new CollectionSetChooser();
 277 }
 278 
 279 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 280   return _predictor.get_new_prediction(seq);
 281 }
 282 
 283 void G1CollectorPolicy::initialize_alignments() {
 284   _space_alignment = HeapRegion::GrainBytes;
 285   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 286   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 287   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 288 }
 289 
 290 void G1CollectorPolicy::initialize_flags() {
 291   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 292     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 293   }
 294 
 295   if (SurvivorRatio < 1) {
 296     vm_exit_during_initialization("Invalid survivor ratio specified");
 297   }
 298   CollectorPolicy::initialize_flags();
 299   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 300 }
 301 
 302 void G1CollectorPolicy::post_heap_initialize() {
 303   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 304   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 305   if (max_young_size != MaxNewSize) {
 306     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 307   }
 308 }
 309 
 310 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 311 
 312 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 313         _min_desired_young_length(0), _max_desired_young_length(0) {
 314   if (FLAG_IS_CMDLINE(NewRatio)) {
 315     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 316       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 317     } else {
 318       _sizer_kind = SizerNewRatio;
 319       _adaptive_size = false;
 320       return;
 321     }
 322   }
 323 
 324   if (NewSize > MaxNewSize) {
 325     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 326       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 327               "A new max generation size of " SIZE_FORMAT "k will be used.",
 328               NewSize/K, MaxNewSize/K, NewSize/K);
 329     }
 330     MaxNewSize = NewSize;
 331   }
 332 
 333   if (FLAG_IS_CMDLINE(NewSize)) {
 334     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 335                                      1U);
 336     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 337       _max_desired_young_length =
 338                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 339                                   1U);
 340       _sizer_kind = SizerMaxAndNewSize;
 341       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 342     } else {
 343       _sizer_kind = SizerNewSizeOnly;
 344     }
 345   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 346     _max_desired_young_length =
 347                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 348                                   1U);
 349     _sizer_kind = SizerMaxNewSizeOnly;
 350   }
 351 }
 352 
 353 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 354   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 355   return MAX2(1U, default_value);
 356 }
 357 
 358 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 359   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 360   return MAX2(1U, default_value);
 361 }
 362 
 363 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 364   assert(number_of_heap_regions > 0, "Heap must be initialized");
 365 
 366   switch (_sizer_kind) {
 367     case SizerDefaults:
 368       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 369       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 370       break;
 371     case SizerNewSizeOnly:
 372       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 373       *max_young_length = MAX2(*min_young_length, *max_young_length);
 374       break;
 375     case SizerMaxNewSizeOnly:
 376       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 377       *min_young_length = MIN2(*min_young_length, *max_young_length);
 378       break;
 379     case SizerMaxAndNewSize:
 380       // Do nothing. Values set on the command line, don't update them at runtime.
 381       break;
 382     case SizerNewRatio:
 383       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 384       *max_young_length = *min_young_length;
 385       break;
 386     default:
 387       ShouldNotReachHere();
 388   }
 389 
 390   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 391 }
 392 
 393 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 394   // We need to pass the desired values because recalculation may not update these
 395   // values in some cases.
 396   uint temp = _min_desired_young_length;
 397   uint result = _max_desired_young_length;
 398   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 399   return result;
 400 }
 401 
 402 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 403   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 404           &_max_desired_young_length);
 405 }
 406 
 407 void G1CollectorPolicy::init() {
 408   // Set aside an initial future to_space.
 409   _g1 = G1CollectedHeap::heap();
 410 
 411   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 412 
 413   initialize_gc_policy_counters();
 414 
 415   if (adaptive_young_list_length()) {
 416     _young_list_fixed_length = 0;
 417   } else {
 418     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 419   }
 420   _free_regions_at_end_of_collection = _g1->num_free_regions();
 421 
 422   update_young_list_max_and_target_length();
 423   // We may immediately start allocating regions and placing them on the
 424   // collection set list. Initialize the per-collection set info
 425   start_incremental_cset_building();
 426 }
 427 
 428 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 429   phase_times()->note_gc_start(num_active_workers);
 430 }
 431 
 432 // Create the jstat counters for the policy.
 433 void G1CollectorPolicy::initialize_gc_policy_counters() {
 434   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 435 }
 436 
 437 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 438                                          double base_time_ms,
 439                                          uint base_free_regions,
 440                                          double target_pause_time_ms) const {
 441   if (young_length >= base_free_regions) {
 442     // end condition 1: not enough space for the young regions
 443     return false;
 444   }
 445 
 446   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 447   size_t bytes_to_copy =
 448                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 449   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 450   double young_other_time_ms = predict_young_other_time_ms(young_length);
 451   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 452   if (pause_time_ms > target_pause_time_ms) {
 453     // end condition 2: prediction is over the target pause time
 454     return false;
 455   }
 456 
 457   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 458   if ((2.0 /* magic */ * _predictor.sigma()) * bytes_to_copy > free_bytes) {
 459     // end condition 3: out-of-space (conservatively!)
 460     return false;
 461   }
 462 
 463   // success!
 464   return true;
 465 }
 466 
 467 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 468   // re-calculate the necessary reserve
 469   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 470   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 471   // smaller than 1.0) we'll get 1.
 472   _reserve_regions = (uint) ceil(reserve_regions_d);
 473 
 474   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 475 }
 476 
 477 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 478                                                        uint base_min_length) const {
 479   uint desired_min_length = 0;
 480   if (adaptive_young_list_length()) {
 481     if (_alloc_rate_ms_seq->num() > 3) {
 482       double now_sec = os::elapsedTime();
 483       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 484       double alloc_rate_ms = predict_alloc_rate_ms();
 485       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 486     } else {
 487       // otherwise we don't have enough info to make the prediction
 488     }
 489   }
 490   desired_min_length += base_min_length;
 491   // make sure we don't go below any user-defined minimum bound
 492   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 493 }
 494 
 495 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 496   // Here, we might want to also take into account any additional
 497   // constraints (i.e., user-defined minimum bound). Currently, we
 498   // effectively don't set this bound.
 499   return _young_gen_sizer->max_desired_young_length();
 500 }
 501 
 502 void G1CollectorPolicy::update_young_list_max_and_target_length() {
 503   update_young_list_max_and_target_length(get_new_prediction(_rs_lengths_seq));
 504 }
 505 
 506 void G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 507   update_young_list_target_length(rs_lengths);
 508   update_max_gc_locker_expansion();
 509 }
 510 
 511 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 512   _young_list_target_length = bounded_young_list_target_length(rs_lengths);
 513 }
 514 
 515 void G1CollectorPolicy::update_young_list_target_length() {
 516   update_young_list_target_length(get_new_prediction(_rs_lengths_seq));
 517 }
 518 
 519 uint G1CollectorPolicy::bounded_young_list_target_length(size_t rs_lengths) const {
 520   // Calculate the absolute and desired min bounds.
 521 
 522   // This is how many young regions we already have (currently: the survivors).
 523   uint base_min_length = recorded_survivor_regions();
 524   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 525   // This is the absolute minimum young length. Ensure that we
 526   // will at least have one eden region available for allocation.
 527   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 528   // If we shrank the young list target it should not shrink below the current size.
 529   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 530   // Calculate the absolute and desired max bounds.
 531 
 532   // We will try our best not to "eat" into the reserve.
 533   uint absolute_max_length = 0;
 534   if (_free_regions_at_end_of_collection > _reserve_regions) {
 535     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 536   }
 537   uint desired_max_length = calculate_young_list_desired_max_length();
 538   if (desired_max_length > absolute_max_length) {
 539     desired_max_length = absolute_max_length;
 540   }
 541 
 542   uint young_list_target_length = 0;
 543   if (adaptive_young_list_length()) {
 544     if (collector_state()->gcs_are_young()) {
 545       young_list_target_length =
 546                         calculate_young_list_target_length(rs_lengths,
 547                                                            base_min_length,
 548                                                            desired_min_length,
 549                                                            desired_max_length);
 550     } else {
 551       // Don't calculate anything and let the code below bound it to
 552       // the desired_min_length, i.e., do the next GC as soon as
 553       // possible to maximize how many old regions we can add to it.
 554     }
 555   } else {
 556     // The user asked for a fixed young gen so we'll fix the young gen
 557     // whether the next GC is young or mixed.
 558     young_list_target_length = _young_list_fixed_length;
 559   }
 560 
 561   // Make sure we don't go over the desired max length, nor under the
 562   // desired min length. In case they clash, desired_min_length wins
 563   // which is why that test is second.
 564   if (young_list_target_length > desired_max_length) {
 565     young_list_target_length = desired_max_length;
 566   }
 567   if (young_list_target_length < desired_min_length) {
 568     young_list_target_length = desired_min_length;
 569   }
 570 
 571   assert(young_list_target_length > recorded_survivor_regions(),
 572          "we should be able to allocate at least one eden region");
 573   assert(young_list_target_length >= absolute_min_length, "post-condition");
 574 
 575   return young_list_target_length;
 576 }
 577 
 578 uint
 579 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 580                                                      uint base_min_length,
 581                                                      uint desired_min_length,
 582                                                      uint desired_max_length) const {
 583   assert(adaptive_young_list_length(), "pre-condition");
 584   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 585 
 586   // In case some edge-condition makes the desired max length too small...
 587   if (desired_max_length <= desired_min_length) {
 588     return desired_min_length;
 589   }
 590 
 591   // We'll adjust min_young_length and max_young_length not to include
 592   // the already allocated young regions (i.e., so they reflect the
 593   // min and max eden regions we'll allocate). The base_min_length
 594   // will be reflected in the predictions by the
 595   // survivor_regions_evac_time prediction.
 596   assert(desired_min_length > base_min_length, "invariant");
 597   uint min_young_length = desired_min_length - base_min_length;
 598   assert(desired_max_length > base_min_length, "invariant");
 599   uint max_young_length = desired_max_length - base_min_length;
 600 
 601   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 602   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 603   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 604   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 605   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 606   double base_time_ms =
 607     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 608     survivor_regions_evac_time;
 609   uint available_free_regions = _free_regions_at_end_of_collection;
 610   uint base_free_regions = 0;
 611   if (available_free_regions > _reserve_regions) {
 612     base_free_regions = available_free_regions - _reserve_regions;
 613   }
 614 
 615   // Here, we will make sure that the shortest young length that
 616   // makes sense fits within the target pause time.
 617 
 618   if (predict_will_fit(min_young_length, base_time_ms,
 619                        base_free_regions, target_pause_time_ms)) {
 620     // The shortest young length will fit into the target pause time;
 621     // we'll now check whether the absolute maximum number of young
 622     // regions will fit in the target pause time. If not, we'll do
 623     // a binary search between min_young_length and max_young_length.
 624     if (predict_will_fit(max_young_length, base_time_ms,
 625                          base_free_regions, target_pause_time_ms)) {
 626       // The maximum young length will fit into the target pause time.
 627       // We are done so set min young length to the maximum length (as
 628       // the result is assumed to be returned in min_young_length).
 629       min_young_length = max_young_length;
 630     } else {
 631       // The maximum possible number of young regions will not fit within
 632       // the target pause time so we'll search for the optimal
 633       // length. The loop invariants are:
 634       //
 635       // min_young_length < max_young_length
 636       // min_young_length is known to fit into the target pause time
 637       // max_young_length is known not to fit into the target pause time
 638       //
 639       // Going into the loop we know the above hold as we've just
 640       // checked them. Every time around the loop we check whether
 641       // the middle value between min_young_length and
 642       // max_young_length fits into the target pause time. If it
 643       // does, it becomes the new min. If it doesn't, it becomes
 644       // the new max. This way we maintain the loop invariants.
 645 
 646       assert(min_young_length < max_young_length, "invariant");
 647       uint diff = (max_young_length - min_young_length) / 2;
 648       while (diff > 0) {
 649         uint young_length = min_young_length + diff;
 650         if (predict_will_fit(young_length, base_time_ms,
 651                              base_free_regions, target_pause_time_ms)) {
 652           min_young_length = young_length;
 653         } else {
 654           max_young_length = young_length;
 655         }
 656         assert(min_young_length <  max_young_length, "invariant");
 657         diff = (max_young_length - min_young_length) / 2;
 658       }
 659       // The results is min_young_length which, according to the
 660       // loop invariants, should fit within the target pause time.
 661 
 662       // These are the post-conditions of the binary search above:
 663       assert(min_young_length < max_young_length,
 664              "otherwise we should have discovered that max_young_length "
 665              "fits into the pause target and not done the binary search");
 666       assert(predict_will_fit(min_young_length, base_time_ms,
 667                               base_free_regions, target_pause_time_ms),
 668              "min_young_length, the result of the binary search, should "
 669              "fit into the pause target");
 670       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 671                                base_free_regions, target_pause_time_ms),
 672              "min_young_length, the result of the binary search, should be "
 673              "optimal, so no larger length should fit into the pause target");
 674     }
 675   } else {
 676     // Even the minimum length doesn't fit into the pause time
 677     // target, return it as the result nevertheless.
 678   }
 679   return base_min_length + min_young_length;
 680 }
 681 
 682 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 683   double survivor_regions_evac_time = 0.0;
 684   for (HeapRegion * r = _recorded_survivor_head;
 685        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 686        r = r->get_next_young_region()) {
 687     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 688   }
 689   return survivor_regions_evac_time;
 690 }
 691 
 692 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 693   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 694 
 695   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 696   if (rs_lengths > _rs_lengths_prediction) {
 697     // add 10% to avoid having to recalculate often
 698     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 699     update_rs_lengths_prediction(rs_lengths_prediction);
 700 
 701     update_young_list_max_and_target_length(rs_lengths_prediction);
 702   }
 703 }
 704 
 705 void G1CollectorPolicy::update_rs_lengths_prediction() {
 706   update_rs_lengths_prediction(get_new_prediction(_rs_lengths_seq));
 707 }
 708 
 709 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 710   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 711     _rs_lengths_prediction = prediction;
 712   }
 713 }
 714 
 715 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 716                                                bool is_tlab,
 717                                                bool* gc_overhead_limit_was_exceeded) {
 718   guarantee(false, "Not using this policy feature yet.");
 719   return NULL;
 720 }
 721 
 722 // This method controls how a collector handles one or more
 723 // of its generations being fully allocated.
 724 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 725                                                        bool is_tlab) {
 726   guarantee(false, "Not using this policy feature yet.");
 727   return NULL;
 728 }
 729 
 730 
 731 #ifndef PRODUCT
 732 bool G1CollectorPolicy::verify_young_ages() {
 733   HeapRegion* head = _g1->young_list()->first_region();
 734   return
 735     verify_young_ages(head, _short_lived_surv_rate_group);
 736   // also call verify_young_ages on any additional surv rate groups
 737 }
 738 
 739 bool
 740 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 741                                      SurvRateGroup *surv_rate_group) {
 742   guarantee( surv_rate_group != NULL, "pre-condition" );
 743 
 744   const char* name = surv_rate_group->name();
 745   bool ret = true;
 746   int prev_age = -1;
 747 
 748   for (HeapRegion* curr = head;
 749        curr != NULL;
 750        curr = curr->get_next_young_region()) {
 751     SurvRateGroup* group = curr->surv_rate_group();
 752     if (group == NULL && !curr->is_survivor()) {
 753       log_info(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 754       ret = false;
 755     }
 756 
 757     if (surv_rate_group == group) {
 758       int age = curr->age_in_surv_rate_group();
 759 
 760       if (age < 0) {
 761         log_info(gc, verify)("## %s: encountered negative age", name);
 762         ret = false;
 763       }
 764 
 765       if (age <= prev_age) {
 766         log_info(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 767         ret = false;
 768       }
 769       prev_age = age;
 770     }
 771   }
 772 
 773   return ret;
 774 }
 775 #endif // PRODUCT
 776 
 777 void G1CollectorPolicy::record_full_collection_start() {
 778   _full_collection_start_sec = os::elapsedTime();
 779   record_heap_size_info_at_start(true /* full */);
 780   // Release the future to-space so that it is available for compaction into.
 781   collector_state()->set_full_collection(true);
 782 }
 783 
 784 void G1CollectorPolicy::record_full_collection_end() {
 785   // Consider this like a collection pause for the purposes of allocation
 786   // since last pause.
 787   double end_sec = os::elapsedTime();
 788   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 789   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 790 
 791   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 792 
 793   update_recent_gc_times(end_sec, full_gc_time_ms);
 794 
 795   collector_state()->set_full_collection(false);
 796 
 797   // "Nuke" the heuristics that control the young/mixed GC
 798   // transitions and make sure we start with young GCs after the Full GC.
 799   collector_state()->set_gcs_are_young(true);
 800   collector_state()->set_last_young_gc(false);
 801   collector_state()->set_initiate_conc_mark_if_possible(false);
 802   collector_state()->set_during_initial_mark_pause(false);
 803   collector_state()->set_in_marking_window(false);
 804   collector_state()->set_in_marking_window_im(false);
 805 
 806   _short_lived_surv_rate_group->start_adding_regions();
 807   // also call this on any additional surv rate groups
 808 
 809   record_survivor_regions(0, NULL, NULL);
 810 
 811   _free_regions_at_end_of_collection = _g1->num_free_regions();
 812   // Reset survivors SurvRateGroup.
 813   _survivor_surv_rate_group->reset();
 814   update_young_list_max_and_target_length();
 815   update_rs_lengths_prediction();
 816   _collectionSetChooser->clear();
 817 }
 818 
 819 void G1CollectorPolicy::record_stop_world_start() {
 820   _stop_world_start = os::elapsedTime();
 821 }
 822 
 823 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 824   // We only need to do this here as the policy will only be applied
 825   // to the GC we're about to start. so, no point is calculating this
 826   // every time we calculate / recalculate the target young length.
 827   update_survivors_policy();
 828 
 829   assert(_g1->used() == _g1->recalculate_used(),
 830          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 831          _g1->used(), _g1->recalculate_used());
 832 
 833   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 834   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 835   _stop_world_start = 0.0;
 836 
 837   record_heap_size_info_at_start(false /* full */);
 838 
 839   phase_times()->record_cur_collection_start_sec(start_time_sec);
 840   _pending_cards = _g1->pending_card_num();
 841 
 842   _collection_set_bytes_used_before = 0;
 843   _bytes_copied_during_gc = 0;
 844 
 845   collector_state()->set_last_gc_was_young(false);
 846 
 847   // do that for any other surv rate groups
 848   _short_lived_surv_rate_group->stop_adding_regions();
 849   _survivors_age_table.clear();
 850 
 851   assert( verify_young_ages(), "region age verification" );
 852 }
 853 
 854 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 855                                                    mark_init_elapsed_time_ms) {
 856   collector_state()->set_during_marking(true);
 857   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 858   collector_state()->set_during_initial_mark_pause(false);
 859   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 860 }
 861 
 862 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 863   _mark_remark_start_sec = os::elapsedTime();
 864   collector_state()->set_during_marking(false);
 865 }
 866 
 867 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 868   double end_time_sec = os::elapsedTime();
 869   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 870   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 871   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 872   _prev_collection_pause_end_ms += elapsed_time_ms;
 873 
 874   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec);
 875 }
 876 
 877 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 878   _mark_cleanup_start_sec = os::elapsedTime();
 879 }
 880 
 881 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 882   collector_state()->set_last_young_gc(true);
 883   collector_state()->set_in_marking_window(false);
 884 }
 885 
 886 void G1CollectorPolicy::record_concurrent_pause() {
 887   if (_stop_world_start > 0.0) {
 888     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 889     _trace_young_gen_time_data.record_yield_time(yield_ms);
 890   }
 891 }
 892 
 893 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 894   return phase_times()->average_time_ms(phase);
 895 }
 896 
 897 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 898   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 899     return false;
 900   }
 901 
 902   size_t marking_initiating_used_threshold =
 903     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 904   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 905   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 906 
 907   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 908     if (collector_state()->gcs_are_young() && !collector_state()->last_young_gc()) {
 909       log_debug(gc, ergo, conc)("Request concurrent cycle initiation (occupancy higher than threshold)"
 910                                 "occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (" UINTX_FORMAT "%%) source: %s",
 911                                 cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, InitiatingHeapOccupancyPercent, source);
 912       return true;
 913     } else {
 914       log_debug(gc, ergo, conc)("Do not request concurrent cycle initiation (still doing mixed collections)"
 915                                 "occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (" UINTX_FORMAT "%%) source: %s",
 916                                 cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, InitiatingHeapOccupancyPercent, source);    }
 917   }
 918 
 919   return false;
 920 }
 921 
 922 // Anything below that is considered to be zero
 923 #define MIN_TIMER_GRANULARITY 0.0000001
 924 
 925 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned) {
 926   double end_time_sec = os::elapsedTime();
 927   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 928          "otherwise, the subtraction below does not make sense");
 929   size_t rs_size =
 930             _cur_collection_pause_used_regions_at_start - cset_region_length();
 931   size_t cur_used_bytes = _g1->used();
 932   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 933   bool last_pause_included_initial_mark = false;
 934   bool update_stats = !_g1->evacuation_failed();
 935 
 936   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 937 
 938   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 939   if (last_pause_included_initial_mark) {
 940     record_concurrent_mark_init_end(0.0);
 941   } else if (need_to_start_conc_mark("end of GC")) {
 942     // Note: this might have already been set, if during the last
 943     // pause we decided to start a cycle but at the beginning of
 944     // this pause we decided to postpone it. That's OK.
 945     collector_state()->set_initiate_conc_mark_if_possible(true);
 946   }
 947 
 948   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0, end_time_sec);
 949 
 950   if (update_stats) {
 951     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
 952     // this is where we update the allocation rate of the application
 953     double app_time_ms =
 954       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 955     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 956       // This usually happens due to the timer not having the required
 957       // granularity. Some Linuxes are the usual culprits.
 958       // We'll just set it to something (arbitrarily) small.
 959       app_time_ms = 1.0;
 960     }
 961     // We maintain the invariant that all objects allocated by mutator
 962     // threads will be allocated out of eden regions. So, we can use
 963     // the eden region number allocated since the previous GC to
 964     // calculate the application's allocate rate. The only exception
 965     // to that is humongous objects that are allocated separately. But
 966     // given that humongous object allocations do not really affect
 967     // either the pause's duration nor when the next pause will take
 968     // place we can safely ignore them here.
 969     uint regions_allocated = eden_cset_region_length();
 970     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 971     _alloc_rate_ms_seq->add(alloc_rate_ms);
 972 
 973     double interval_ms =
 974       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 975     update_recent_gc_times(end_time_sec, pause_time_ms);
 976     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 977     if (recent_avg_pause_time_ratio() < 0.0 ||
 978         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 979 #ifndef PRODUCT
 980       // Dump info to allow post-facto debugging
 981       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
 982       gclog_or_tty->print_cr("-------------------------------------------");
 983       gclog_or_tty->print_cr("Recent GC Times (ms):");
 984       _recent_gc_times_ms->dump();
 985       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
 986       _recent_prev_end_times_for_all_gcs_sec->dump();
 987       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
 988                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
 989       // In debug mode, terminate the JVM if the user wants to debug at this point.
 990       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
 991 #endif  // !PRODUCT
 992       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 993       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 994       if (_recent_avg_pause_time_ratio < 0.0) {
 995         _recent_avg_pause_time_ratio = 0.0;
 996       } else {
 997         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
 998         _recent_avg_pause_time_ratio = 1.0;
 999       }
1000     }
1001   }
1002 
1003   bool new_in_marking_window = collector_state()->in_marking_window();
1004   bool new_in_marking_window_im = false;
1005   if (last_pause_included_initial_mark) {
1006     new_in_marking_window = true;
1007     new_in_marking_window_im = true;
1008   }
1009 
1010   if (collector_state()->last_young_gc()) {
1011     // This is supposed to to be the "last young GC" before we start
1012     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1013 
1014     if (!last_pause_included_initial_mark) {
1015       if (next_gc_should_be_mixed("start mixed GCs",
1016                                   "do not start mixed GCs")) {
1017         collector_state()->set_gcs_are_young(false);
1018       }
1019     } else {
1020       log_debug(gc, ergo)("Do not start mixed GCs (concurrent cycle is about to start)");
1021     }
1022     collector_state()->set_last_young_gc(false);
1023   }
1024 
1025   if (!collector_state()->last_gc_was_young()) {
1026     // This is a mixed GC. Here we decide whether to continue doing
1027     // mixed GCs or not.
1028 
1029     if (!next_gc_should_be_mixed("continue mixed GCs",
1030                                  "do not continue mixed GCs")) {
1031       collector_state()->set_gcs_are_young(true);
1032     }
1033   }
1034 
1035   _short_lived_surv_rate_group->start_adding_regions();
1036   // Do that for any other surv rate groups
1037 
1038   if (update_stats) {
1039     double cost_per_card_ms = 0.0;
1040     double cost_scan_hcc = average_time_ms(G1GCPhaseTimes::ScanHCC);
1041     if (_pending_cards > 0) {
1042       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - cost_scan_hcc) / (double) _pending_cards;
1043       _cost_per_card_ms_seq->add(cost_per_card_ms);
1044     }
1045     _cost_scan_hcc_seq->add(cost_scan_hcc);
1046 
1047     double cost_per_entry_ms = 0.0;
1048     if (cards_scanned > 10) {
1049       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1050       if (collector_state()->last_gc_was_young()) {
1051         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1052       } else {
1053         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1054       }
1055     }
1056 
1057     if (_max_rs_lengths > 0) {
1058       double cards_per_entry_ratio =
1059         (double) cards_scanned / (double) _max_rs_lengths;
1060       if (collector_state()->last_gc_was_young()) {
1061         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1062       } else {
1063         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1064       }
1065     }
1066 
1067     // This is defensive. For a while _max_rs_lengths could get
1068     // smaller than _recorded_rs_lengths which was causing
1069     // rs_length_diff to get very large and mess up the RSet length
1070     // predictions. The reason was unsafe concurrent updates to the
1071     // _inc_cset_recorded_rs_lengths field which the code below guards
1072     // against (see CR 7118202). This bug has now been fixed (see CR
1073     // 7119027). However, I'm still worried that
1074     // _inc_cset_recorded_rs_lengths might still end up somewhat
1075     // inaccurate. The concurrent refinement thread calculates an
1076     // RSet's length concurrently with other CR threads updating it
1077     // which might cause it to calculate the length incorrectly (if,
1078     // say, it's in mid-coarsening). So I'll leave in the defensive
1079     // conditional below just in case.
1080     size_t rs_length_diff = 0;
1081     if (_max_rs_lengths > _recorded_rs_lengths) {
1082       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1083     }
1084     _rs_length_diff_seq->add((double) rs_length_diff);
1085 
1086     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1087     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1088     double cost_per_byte_ms = 0.0;
1089 
1090     if (copied_bytes > 0) {
1091       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1092       if (collector_state()->in_marking_window()) {
1093         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1094       } else {
1095         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1096       }
1097     }
1098 
1099     double all_other_time_ms = pause_time_ms -
1100       (average_time_ms(G1GCPhaseTimes::UpdateRS) + average_time_ms(G1GCPhaseTimes::ScanRS) +
1101        average_time_ms(G1GCPhaseTimes::ObjCopy)  + average_time_ms(G1GCPhaseTimes::Termination));
1102 
1103     double young_other_time_ms = 0.0;
1104     if (young_cset_region_length() > 0) {
1105       young_other_time_ms =
1106         phase_times()->young_cset_choice_time_ms() +
1107         phase_times()->young_free_cset_time_ms();
1108       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1109                                           (double) young_cset_region_length());
1110     }
1111     double non_young_other_time_ms = 0.0;
1112     if (old_cset_region_length() > 0) {
1113       non_young_other_time_ms =
1114         phase_times()->non_young_cset_choice_time_ms() +
1115         phase_times()->non_young_free_cset_time_ms();
1116 
1117       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1118                                             (double) old_cset_region_length());
1119     }
1120 
1121     double constant_other_time_ms = all_other_time_ms -
1122       (young_other_time_ms + non_young_other_time_ms);
1123     _constant_other_time_ms_seq->add(constant_other_time_ms);
1124 
1125     double survival_ratio = 0.0;
1126     if (_collection_set_bytes_used_before > 0) {
1127       survival_ratio = (double) _bytes_copied_during_gc /
1128                                    (double) _collection_set_bytes_used_before;
1129     }
1130 
1131     _pending_cards_seq->add((double) _pending_cards);
1132     _rs_lengths_seq->add((double) _max_rs_lengths);
1133   }
1134 
1135   collector_state()->set_in_marking_window(new_in_marking_window);
1136   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1137   _free_regions_at_end_of_collection = _g1->num_free_regions();
1138   update_young_list_max_and_target_length();
1139   update_rs_lengths_prediction();
1140 
1141   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1142   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1143 
1144   double scan_hcc_time_ms = average_time_ms(G1GCPhaseTimes::ScanHCC);
1145 
1146   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1147     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1148                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1149                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1150 
1151     update_rs_time_goal_ms = 0;
1152   } else {
1153     update_rs_time_goal_ms -= scan_hcc_time_ms;
1154   }
1155   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1156                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1157                                update_rs_time_goal_ms);
1158 
1159   _collectionSetChooser->verify();
1160 }
1161 
1162 #define EXT_SIZE_FORMAT "%.1f%s"
1163 #define EXT_SIZE_PARAMS(bytes)                                  \
1164   byte_size_in_proper_unit((double)(bytes)),                    \
1165   proper_unit_for_byte_size((bytes))
1166 
1167 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1168   YoungList* young_list = _g1->young_list();
1169   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1170   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1171   _heap_capacity_bytes_before_gc = _g1->capacity();
1172   _heap_used_bytes_before_gc = _g1->used();
1173   _old_used_bytes_before_gc = _heap_used_bytes_before_gc - _survivor_used_bytes_before_gc - _eden_used_bytes_before_gc;
1174   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1175 
1176   _eden_capacity_bytes_before_gc =
1177          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1178 
1179   _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1180 }
1181 
1182 void G1CollectorPolicy::print_detailed_heap_transition() const {
1183   YoungList* young_list = _g1->young_list();
1184 
1185   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1186   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1187   size_t old_used_bytes_after_gc = _g1->used() - eden_used_bytes_after_gc - eden_used_bytes_after_gc;
1188 
1189   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1190   size_t eden_capacity_bytes_after_gc =
1191     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1192   size_t survivor_capacity_bytes_after_gc = _max_survivor_regions * HeapRegion::GrainBytes;
1193 
1194   log_info(gc, heap)("Eden: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1195       _eden_used_bytes_before_gc / K, eden_used_bytes_after_gc /K, eden_capacity_bytes_after_gc /K);
1196 
1197   log_info(gc, heap)("Survivor: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1198       _survivor_used_bytes_before_gc / K, survivor_used_bytes_after_gc /K, survivor_capacity_bytes_after_gc /K);
1199 
1200   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1201       _old_used_bytes_before_gc / K, old_used_bytes_after_gc /K, heap_capacity_bytes_after_gc /K);
1202 
1203   MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1204 }
1205 
1206 void G1CollectorPolicy::print_phases(double pause_time_sec) {
1207   phase_times()->print(pause_time_sec);
1208 }
1209 
1210 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1211                                                      double update_rs_processed_buffers,
1212                                                      double goal_ms) {
1213   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1214   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1215 
1216   if (G1UseAdaptiveConcRefinement) {
1217     const int k_gy = 3, k_gr = 6;
1218     const double inc_k = 1.1, dec_k = 0.9;
1219 
1220     int g = cg1r->green_zone();
1221     if (update_rs_time > goal_ms) {
1222       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1223     } else {
1224       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1225         g = (int)MAX2(g * inc_k, g + 1.0);
1226       }
1227     }
1228     // Change the refinement threads params
1229     cg1r->set_green_zone(g);
1230     cg1r->set_yellow_zone(g * k_gy);
1231     cg1r->set_red_zone(g * k_gr);
1232     cg1r->reinitialize_threads();
1233 
1234     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * _predictor.sigma()), 1);
1235     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1236                                     cg1r->yellow_zone());
1237     // Change the barrier params
1238     dcqs.set_process_completed_threshold(processing_threshold);
1239     dcqs.set_max_completed_queue(cg1r->red_zone());
1240   }
1241 
1242   int curr_queue_size = dcqs.completed_buffers_num();
1243   if (curr_queue_size >= cg1r->yellow_zone()) {
1244     dcqs.set_completed_queue_padding(curr_queue_size);
1245   } else {
1246     dcqs.set_completed_queue_padding(0);
1247   }
1248   dcqs.notify_if_necessary();
1249 }
1250 
1251 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1252   return (size_t) get_new_prediction(_rs_length_diff_seq);
1253 }
1254 
1255 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1256   return get_new_prediction(_alloc_rate_ms_seq);
1257 }
1258 
1259 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1260   return get_new_prediction(_cost_per_card_ms_seq);
1261 }
1262 
1263 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1264   return get_new_prediction(_cost_scan_hcc_seq);
1265 }
1266 
1267 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1268   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1269 }
1270 
1271 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1272   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1273 }
1274 
1275 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1276   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1277     return predict_young_cards_per_entry_ratio();
1278   } else {
1279     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1280   }
1281 }
1282 
1283 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1284   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1285 }
1286 
1287 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1288   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1289 }
1290 
1291 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1292   if (collector_state()->gcs_are_young()) {
1293     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1294   } else {
1295     return predict_mixed_rs_scan_time_ms(card_num);
1296   }
1297 }
1298 
1299 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1300   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1301     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1302   } else {
1303     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1304   }
1305 }
1306 
1307 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1308   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1309     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1310   } else {
1311     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1312   }
1313 }
1314 
1315 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1316   if (collector_state()->during_concurrent_mark()) {
1317     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1318   } else {
1319     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1320   }
1321 }
1322 
1323 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1324   return get_new_prediction(_constant_other_time_ms_seq);
1325 }
1326 
1327 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1328   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1329 }
1330 
1331 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1332   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1333 }
1334 
1335 double G1CollectorPolicy::predict_remark_time_ms() const {
1336   return get_new_prediction(_concurrent_mark_remark_times_ms);
1337 }
1338 
1339 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1340   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1341 }
1342 
1343 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1344   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1345   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1346   double pred = get_new_prediction(seq);
1347   if (pred > 1.0) {
1348     pred = 1.0;
1349   }
1350   return pred;
1351 }
1352 
1353 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1354   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1355 }
1356 
1357 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1358   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1359 }
1360 
1361 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1362                                                        size_t scanned_cards) const {
1363   return
1364     predict_rs_update_time_ms(pending_cards) +
1365     predict_rs_scan_time_ms(scanned_cards) +
1366     predict_constant_other_time_ms();
1367 }
1368 
1369 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1370   size_t rs_length = predict_rs_length_diff();
1371   size_t card_num;
1372   if (collector_state()->gcs_are_young()) {
1373     card_num = predict_young_card_num(rs_length);
1374   } else {
1375     card_num = predict_non_young_card_num(rs_length);
1376   }
1377   return predict_base_elapsed_time_ms(pending_cards, card_num);
1378 }
1379 
1380 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1381   size_t bytes_to_copy;
1382   if (hr->is_marked())
1383     bytes_to_copy = hr->max_live_bytes();
1384   else {
1385     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1386     int age = hr->age_in_surv_rate_group();
1387     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1388     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1389   }
1390   return bytes_to_copy;
1391 }
1392 
1393 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1394                                                          bool for_young_gc) const {
1395   size_t rs_length = hr->rem_set()->occupied();
1396   size_t card_num;
1397 
1398   // Predicting the number of cards is based on which type of GC
1399   // we're predicting for.
1400   if (for_young_gc) {
1401     card_num = predict_young_card_num(rs_length);
1402   } else {
1403     card_num = predict_non_young_card_num(rs_length);
1404   }
1405   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1406 
1407   double region_elapsed_time_ms =
1408     predict_rs_scan_time_ms(card_num) +
1409     predict_object_copy_time_ms(bytes_to_copy);
1410 
1411   // The prediction of the "other" time for this region is based
1412   // upon the region type and NOT the GC type.
1413   if (hr->is_young()) {
1414     region_elapsed_time_ms += predict_young_other_time_ms(1);
1415   } else {
1416     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1417   }
1418   return region_elapsed_time_ms;
1419 }
1420 
1421 void G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1422                                                  uint survivor_cset_region_length) {
1423   _eden_cset_region_length     = eden_cset_region_length;
1424   _survivor_cset_region_length = survivor_cset_region_length;
1425   _old_cset_region_length      = 0;
1426 }
1427 
1428 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1429   _recorded_rs_lengths = rs_lengths;
1430 }
1431 
1432 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1433                                                double elapsed_ms) {
1434   _recent_gc_times_ms->add(elapsed_ms);
1435   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1436   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1437 }
1438 
1439 size_t G1CollectorPolicy::expansion_amount() const {
1440   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1441   double threshold = _gc_overhead_perc;
1442   if (recent_gc_overhead > threshold) {
1443     // We will double the existing space, or take
1444     // G1ExpandByPercentOfAvailable % of the available expansion
1445     // space, whichever is smaller, bounded below by a minimum
1446     // expansion (unless that's all that's left.)
1447     const size_t min_expand_bytes = 1*M;
1448     size_t reserved_bytes = _g1->max_capacity();
1449     size_t committed_bytes = _g1->capacity();
1450     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1451     size_t expand_bytes;
1452     size_t expand_bytes_via_pct =
1453       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1454     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1455     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1456     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1457 
1458     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1459                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B calculated expansion amount: " SIZE_FORMAT "B (" INTX_FORMAT "%%)",
1460                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes_via_pct, G1ExpandByPercentOfAvailable);
1461 
1462     return expand_bytes;
1463   } else {
1464     return 0;
1465   }
1466 }
1467 
1468 void G1CollectorPolicy::print_tracing_info() const {
1469   _trace_young_gen_time_data.print();
1470   _trace_old_gen_time_data.print();
1471 }
1472 
1473 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1474 #ifndef PRODUCT
1475   _short_lived_surv_rate_group->print_surv_rate_summary();
1476   // add this call for any other surv rate groups
1477 #endif // PRODUCT
1478 }
1479 
1480 bool G1CollectorPolicy::is_young_list_full() const {
1481   uint young_list_length = _g1->young_list()->length();
1482   uint young_list_target_length = _young_list_target_length;
1483   return young_list_length >= young_list_target_length;
1484 }
1485 
1486 bool G1CollectorPolicy::can_expand_young_list() const {
1487   uint young_list_length = _g1->young_list()->length();
1488   uint young_list_max_length = _young_list_max_length;
1489   return young_list_length < young_list_max_length;
1490 }
1491 
1492 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1493   uint expansion_region_num = 0;
1494   if (GCLockerEdenExpansionPercent > 0) {
1495     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1496     double expansion_region_num_d = perc * (double) _young_list_target_length;
1497     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1498     // less than 1.0) we'll get 1.
1499     expansion_region_num = (uint) ceil(expansion_region_num_d);
1500   } else {
1501     assert(expansion_region_num == 0, "sanity");
1502   }
1503   _young_list_max_length = _young_list_target_length + expansion_region_num;
1504   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1505 }
1506 
1507 // Calculates survivor space parameters.
1508 void G1CollectorPolicy::update_survivors_policy() {
1509   double max_survivor_regions_d =
1510                  (double) _young_list_target_length / (double) SurvivorRatio;
1511   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1512   // smaller than 1.0) we'll get 1.
1513   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1514 
1515   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1516         HeapRegion::GrainWords * _max_survivor_regions, counters());
1517 }
1518 
1519 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1520                                                      GCCause::Cause gc_cause) {
1521   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1522   if (!during_cycle) {
1523     log_debug(gc, ergo, conc)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1524     collector_state()->set_initiate_conc_mark_if_possible(true);
1525     return true;
1526   } else {
1527     log_debug(gc, ergo, conc)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1528     return false;
1529   }
1530 }
1531 
1532 void
1533 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1534   // We are about to decide on whether this pause will be an
1535   // initial-mark pause.
1536 
1537   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1538   // will set it here if we have to. However, it should be cleared by
1539   // the end of the pause (it's only set for the duration of an
1540   // initial-mark pause).
1541   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1542 
1543   if (collector_state()->initiate_conc_mark_if_possible()) {
1544     // We had noticed on a previous pause that the heap occupancy has
1545     // gone over the initiating threshold and we should start a
1546     // concurrent marking cycle. So we might initiate one.
1547 
1548     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1549     if (!during_cycle) {
1550       // The concurrent marking thread is not "during a cycle", i.e.,
1551       // it has completed the last one. So we can go ahead and
1552       // initiate a new cycle.
1553 
1554       collector_state()->set_during_initial_mark_pause(true);
1555       // We do not allow mixed GCs during marking.
1556       if (!collector_state()->gcs_are_young()) {
1557         collector_state()->set_gcs_are_young(true);
1558         log_debug(gc, ergo)("End mixed GCs (concurrent cycle is about to start");
1559       }
1560 
1561       // And we can now clear initiate_conc_mark_if_possible() as
1562       // we've already acted on it.
1563       collector_state()->set_initiate_conc_mark_if_possible(false);
1564       log_debug(gc, ergo, conc)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1565     } else {
1566       // The concurrent marking thread is still finishing up the
1567       // previous cycle. If we start one right now the two cycles
1568       // overlap. In particular, the concurrent marking thread might
1569       // be in the process of clearing the next marking bitmap (which
1570       // we will use for the next cycle if we start one). Starting a
1571       // cycle now will be bad given that parts of the marking
1572       // information might get cleared by the marking thread. And we
1573       // cannot wait for the marking thread to finish the cycle as it
1574       // periodically yields while clearing the next marking bitmap
1575       // and, if it's in a yield point, it's waiting for us to
1576       // finish. So, at this point we will not start a cycle and we'll
1577       // let the concurrent marking thread complete the last one.
1578       log_debug(gc, ergo, conc)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1579     }
1580   }
1581 }
1582 
1583 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1584   G1CollectedHeap* _g1h;
1585   CSetChooserParUpdater _cset_updater;
1586 
1587 public:
1588   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1589                            uint chunk_size) :
1590     _g1h(G1CollectedHeap::heap()),
1591     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1592 
1593   bool doHeapRegion(HeapRegion* r) {
1594     // Do we have any marking information for this region?
1595     if (r->is_marked()) {
1596       // We will skip any region that's currently used as an old GC
1597       // alloc region (we should not consider those for collection
1598       // before we fill them up).
1599       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1600         _cset_updater.add_region(r);
1601       }
1602     }
1603     return false;
1604   }
1605 };
1606 
1607 class ParKnownGarbageTask: public AbstractGangTask {
1608   CollectionSetChooser* _hrSorted;
1609   uint _chunk_size;
1610   G1CollectedHeap* _g1;
1611   HeapRegionClaimer _hrclaimer;
1612 
1613 public:
1614   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1615       AbstractGangTask("ParKnownGarbageTask"),
1616       _hrSorted(hrSorted), _chunk_size(chunk_size),
1617       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1618 
1619   void work(uint worker_id) {
1620     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1621     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1622   }
1623 };
1624 
1625 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1626   assert(n_workers > 0, "Active gc workers should be greater than 0");
1627   const uint overpartition_factor = 4;
1628   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1629   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1630 }
1631 
1632 void
1633 G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1634   _collectionSetChooser->clear();
1635 
1636   WorkGang* workers = _g1->workers();
1637   uint n_workers = workers->active_workers();
1638 
1639   uint n_regions = _g1->num_regions();
1640   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1641   _collectionSetChooser->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1642   ParKnownGarbageTask par_known_garbage_task(_collectionSetChooser, chunk_size, n_workers);
1643   workers->run_task(&par_known_garbage_task);
1644 
1645   _collectionSetChooser->sort_regions();
1646 
1647   double end_sec = os::elapsedTime();
1648   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1649   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1650   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1651   _prev_collection_pause_end_ms += elapsed_time_ms;
1652   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec);
1653 }
1654 
1655 // Add the heap region at the head of the non-incremental collection set
1656 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1657   assert(_inc_cset_build_state == Active, "Precondition");
1658   assert(hr->is_old(), "the region should be old");
1659 
1660   assert(!hr->in_collection_set(), "should not already be in the CSet");
1661   _g1->register_old_region_with_cset(hr);
1662   hr->set_next_in_collection_set(_collection_set);
1663   _collection_set = hr;
1664   _collection_set_bytes_used_before += hr->used();
1665   size_t rs_length = hr->rem_set()->occupied();
1666   _recorded_rs_lengths += rs_length;
1667   _old_cset_region_length += 1;
1668 }
1669 
1670 // Initialize the per-collection-set information
1671 void G1CollectorPolicy::start_incremental_cset_building() {
1672   assert(_inc_cset_build_state == Inactive, "Precondition");
1673 
1674   _inc_cset_head = NULL;
1675   _inc_cset_tail = NULL;
1676   _inc_cset_bytes_used_before = 0;
1677 
1678   _inc_cset_max_finger = 0;
1679   _inc_cset_recorded_rs_lengths = 0;
1680   _inc_cset_recorded_rs_lengths_diffs = 0;
1681   _inc_cset_predicted_elapsed_time_ms = 0.0;
1682   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1683   _inc_cset_build_state = Active;
1684 }
1685 
1686 void G1CollectorPolicy::finalize_incremental_cset_building() {
1687   assert(_inc_cset_build_state == Active, "Precondition");
1688   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1689 
1690   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1691   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1692   // that adds a new region to the CSet. Further updates by the
1693   // concurrent refinement thread that samples the young RSet lengths
1694   // are accumulated in the *_diffs fields. Here we add the diffs to
1695   // the "main" fields.
1696 
1697   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1698     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1699   } else {
1700     // This is defensive. The diff should in theory be always positive
1701     // as RSets can only grow between GCs. However, given that we
1702     // sample their size concurrently with other threads updating them
1703     // it's possible that we might get the wrong size back, which
1704     // could make the calculations somewhat inaccurate.
1705     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1706     if (_inc_cset_recorded_rs_lengths >= diffs) {
1707       _inc_cset_recorded_rs_lengths -= diffs;
1708     } else {
1709       _inc_cset_recorded_rs_lengths = 0;
1710     }
1711   }
1712   _inc_cset_predicted_elapsed_time_ms +=
1713                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1714 
1715   _inc_cset_recorded_rs_lengths_diffs = 0;
1716   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1717 }
1718 
1719 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1720   // This routine is used when:
1721   // * adding survivor regions to the incremental cset at the end of an
1722   //   evacuation pause,
1723   // * adding the current allocation region to the incremental cset
1724   //   when it is retired, and
1725   // * updating existing policy information for a region in the
1726   //   incremental cset via young list RSet sampling.
1727   // Therefore this routine may be called at a safepoint by the
1728   // VM thread, or in-between safepoints by mutator threads (when
1729   // retiring the current allocation region) or a concurrent
1730   // refine thread (RSet sampling).
1731 
1732   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1733   size_t used_bytes = hr->used();
1734   _inc_cset_recorded_rs_lengths += rs_length;
1735   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1736   _inc_cset_bytes_used_before += used_bytes;
1737 
1738   // Cache the values we have added to the aggregated information
1739   // in the heap region in case we have to remove this region from
1740   // the incremental collection set, or it is updated by the
1741   // rset sampling code
1742   hr->set_recorded_rs_length(rs_length);
1743   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1744 }
1745 
1746 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1747                                                      size_t new_rs_length) {
1748   // Update the CSet information that is dependent on the new RS length
1749   assert(hr->is_young(), "Precondition");
1750   assert(!SafepointSynchronize::is_at_safepoint(),
1751                                                "should not be at a safepoint");
1752 
1753   // We could have updated _inc_cset_recorded_rs_lengths and
1754   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1755   // that atomically, as this code is executed by a concurrent
1756   // refinement thread, potentially concurrently with a mutator thread
1757   // allocating a new region and also updating the same fields. To
1758   // avoid the atomic operations we accumulate these updates on two
1759   // separate fields (*_diffs) and we'll just add them to the "main"
1760   // fields at the start of a GC.
1761 
1762   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1763   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1764   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1765 
1766   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1767   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1768   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1769   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1770 
1771   hr->set_recorded_rs_length(new_rs_length);
1772   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1773 }
1774 
1775 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1776   assert(hr->is_young(), "invariant");
1777   assert(hr->young_index_in_cset() > -1, "should have already been set");
1778   assert(_inc_cset_build_state == Active, "Precondition");
1779 
1780   // We need to clear and set the cached recorded/cached collection set
1781   // information in the heap region here (before the region gets added
1782   // to the collection set). An individual heap region's cached values
1783   // are calculated, aggregated with the policy collection set info,
1784   // and cached in the heap region here (initially) and (subsequently)
1785   // by the Young List sampling code.
1786 
1787   size_t rs_length = hr->rem_set()->occupied();
1788   add_to_incremental_cset_info(hr, rs_length);
1789 
1790   HeapWord* hr_end = hr->end();
1791   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1792 
1793   assert(!hr->in_collection_set(), "invariant");
1794   _g1->register_young_region_with_cset(hr);
1795   assert(hr->next_in_collection_set() == NULL, "invariant");
1796 }
1797 
1798 // Add the region at the RHS of the incremental cset
1799 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1800   // We should only ever be appending survivors at the end of a pause
1801   assert(hr->is_survivor(), "Logic");
1802 
1803   // Do the 'common' stuff
1804   add_region_to_incremental_cset_common(hr);
1805 
1806   // Now add the region at the right hand side
1807   if (_inc_cset_tail == NULL) {
1808     assert(_inc_cset_head == NULL, "invariant");
1809     _inc_cset_head = hr;
1810   } else {
1811     _inc_cset_tail->set_next_in_collection_set(hr);
1812   }
1813   _inc_cset_tail = hr;
1814 }
1815 
1816 // Add the region to the LHS of the incremental cset
1817 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1818   // Survivors should be added to the RHS at the end of a pause
1819   assert(hr->is_eden(), "Logic");
1820 
1821   // Do the 'common' stuff
1822   add_region_to_incremental_cset_common(hr);
1823 
1824   // Add the region at the left hand side
1825   hr->set_next_in_collection_set(_inc_cset_head);
1826   if (_inc_cset_head == NULL) {
1827     assert(_inc_cset_tail == NULL, "Invariant");
1828     _inc_cset_tail = hr;
1829   }
1830   _inc_cset_head = hr;
1831 }
1832 
1833 #ifndef PRODUCT
1834 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1835   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1836 
1837   st->print_cr("\nCollection_set:");
1838   HeapRegion* csr = list_head;
1839   while (csr != NULL) {
1840     HeapRegion* next = csr->next_in_collection_set();
1841     assert(csr->in_collection_set(), "bad CS");
1842     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
1843                  HR_FORMAT_PARAMS(csr),
1844                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
1845                  csr->age_in_surv_rate_group_cond());
1846     csr = next;
1847   }
1848 }
1849 #endif // !PRODUCT
1850 
1851 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1852   // Returns the given amount of reclaimable bytes (that represents
1853   // the amount of reclaimable space still to be collected) as a
1854   // percentage of the current heap capacity.
1855   size_t capacity_bytes = _g1->capacity();
1856   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1857 }
1858 
1859 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1860                                                 const char* false_action_str) const {
1861   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1862   if (cset_chooser->is_empty()) {
1863     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1864     return false;
1865   }
1866 
1867   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1868   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1869   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1870   double threshold = (double) G1HeapWastePercent;
1871   if (reclaimable_perc <= threshold) {
1872     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1873                         false_action_str, cset_chooser->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1874     return false;
1875   }
1876 
1877   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1878                       true_action_str, cset_chooser->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1879   return true;
1880 }
1881 
1882 uint G1CollectorPolicy::calc_min_old_cset_length() const {
1883   // The min old CSet region bound is based on the maximum desired
1884   // number of mixed GCs after a cycle. I.e., even if some old regions
1885   // look expensive, we should add them to the CSet anyway to make
1886   // sure we go through the available old regions in no more than the
1887   // maximum desired number of mixed GCs.
1888   //
1889   // The calculation is based on the number of marked regions we added
1890   // to the CSet chooser in the first place, not how many remain, so
1891   // that the result is the same during all mixed GCs that follow a cycle.
1892 
1893   const size_t region_num = (size_t) _collectionSetChooser->length();
1894   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1895   size_t result = region_num / gc_num;
1896   // emulate ceiling
1897   if (result * gc_num < region_num) {
1898     result += 1;
1899   }
1900   return (uint) result;
1901 }
1902 
1903 uint G1CollectorPolicy::calc_max_old_cset_length() const {
1904   // The max old CSet region bound is based on the threshold expressed
1905   // as a percentage of the heap size. I.e., it should bound the
1906   // number of old regions added to the CSet irrespective of how many
1907   // of them are available.
1908 
1909   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1910   const size_t region_num = g1h->num_regions();
1911   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1912   size_t result = region_num * perc / 100;
1913   // emulate ceiling
1914   if (100 * result < region_num * perc) {
1915     result += 1;
1916   }
1917   return (uint) result;
1918 }
1919 
1920 
1921 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
1922   double young_start_time_sec = os::elapsedTime();
1923 
1924   YoungList* young_list = _g1->young_list();
1925   finalize_incremental_cset_building();
1926 
1927   guarantee(target_pause_time_ms > 0.0,
1928             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
1929   guarantee(_collection_set == NULL, "Precondition");
1930 
1931   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1932   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1933 
1934   log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
1935                             _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1936 
1937   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
1938 
1939   if (collector_state()->last_gc_was_young()) {
1940     _trace_young_gen_time_data.increment_young_collection_count();
1941   } else {
1942     _trace_young_gen_time_data.increment_mixed_collection_count();
1943   }
1944 
1945   // The young list is laid with the survivor regions from the previous
1946   // pause are appended to the RHS of the young list, i.e.
1947   //   [Newly Young Regions ++ Survivors from last pause].
1948 
1949   uint survivor_region_length = young_list->survivor_length();
1950   uint eden_region_length = young_list->eden_length();
1951   init_cset_region_lengths(eden_region_length, survivor_region_length);
1952 
1953   HeapRegion* hr = young_list->first_survivor_region();
1954   while (hr != NULL) {
1955     assert(hr->is_survivor(), "badly formed young list");
1956     // There is a convention that all the young regions in the CSet
1957     // are tagged as "eden", so we do this for the survivors here. We
1958     // use the special set_eden_pre_gc() as it doesn't check that the
1959     // region is free (which is not the case here).
1960     hr->set_eden_pre_gc();
1961     hr = hr->get_next_young_region();
1962   }
1963 
1964   // Clear the fields that point to the survivor list - they are all young now.
1965   young_list->clear_survivors();
1966 
1967   _collection_set = _inc_cset_head;
1968   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1969   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1970 
1971   log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
1972                             eden_region_length, survivor_region_length, _inc_cset_predicted_elapsed_time_ms, target_pause_time_ms);
1973 
1974   // The number of recorded young regions is the incremental
1975   // collection set's current size
1976   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1977 
1978   double young_end_time_sec = os::elapsedTime();
1979   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1980 
1981   return time_remaining_ms;
1982 }
1983 
1984 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
1985   double non_young_start_time_sec = os::elapsedTime();
1986   double predicted_old_time_ms = 0.0;
1987 
1988 
1989   if (!collector_state()->gcs_are_young()) {
1990     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1991     cset_chooser->verify();
1992     const uint min_old_cset_length = calc_min_old_cset_length();
1993     const uint max_old_cset_length = calc_max_old_cset_length();
1994 
1995     uint expensive_region_num = 0;
1996     bool check_time_remaining = adaptive_young_list_length();
1997 
1998     HeapRegion* hr = cset_chooser->peek();
1999     while (hr != NULL) {
2000       if (old_cset_region_length() >= max_old_cset_length) {
2001         // Added maximum number of old regions to the CSet.
2002         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",
2003                                   old_cset_region_length(), max_old_cset_length);
2004         break;
2005       }
2006 
2007 
2008       // Stop adding regions if the remaining reclaimable space is
2009       // not above G1HeapWastePercent.
2010       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2011       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2012       double threshold = (double) G1HeapWastePercent;
2013       if (reclaimable_perc <= threshold) {
2014         // We've added enough old regions that the amount of uncollected
2015         // reclaimable space is at or below the waste threshold. Stop
2016         // adding old regions to the CSet.
2017         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
2018                                   "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
2019                                   old_cset_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2020         break;
2021       }
2022 
2023       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2024       if (check_time_remaining) {
2025         if (predicted_time_ms > time_remaining_ms) {
2026           // Too expensive for the current CSet.
2027 
2028           if (old_cset_region_length() >= min_old_cset_length) {
2029             // We have added the minimum number of old regions to the CSet,
2030             // we are done with this CSet.
2031             log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
2032                                       "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
2033                                       predicted_time_ms, time_remaining_ms, old_cset_region_length(), min_old_cset_length);
2034             break;
2035           }
2036 
2037           // We'll add it anyway given that we haven't reached the
2038           // minimum number of old regions.
2039           expensive_region_num += 1;
2040         }
2041       } else {
2042         if (old_cset_region_length() >= min_old_cset_length) {
2043           // In the non-auto-tuning case, we'll finish adding regions
2044           // to the CSet if we reach the minimum.
2045 
2046           log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",
2047                                     old_cset_region_length(), min_old_cset_length);
2048           break;
2049         }
2050       }
2051 
2052       // We will add this region to the CSet.
2053       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2054       predicted_old_time_ms += predicted_time_ms;
2055       cset_chooser->pop(); // already have region via peek()
2056       _g1->old_set_remove(hr);
2057       add_old_region_to_cset(hr);
2058 
2059       hr = cset_chooser->peek();
2060     }
2061     if (hr == NULL) {
2062       log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
2063     }
2064 
2065     if (expensive_region_num > 0) {
2066       // We print the information once here at the end, predicated on
2067       // whether we added any apparently expensive regions or not, to
2068       // avoid generating output per region.
2069       log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
2070                                 "old %u regions, expensive: %u regions, min %u regions, remaining time: %1.2fms",
2071                                 old_cset_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);
2072     }
2073 
2074     cset_chooser->verify();
2075   }
2076 
2077   stop_incremental_cset_building();
2078 
2079   log_debug(gc, ergo, cset)("Finish choosing CSet. old %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
2080                             old_cset_region_length(), predicted_old_time_ms, time_remaining_ms);
2081 
2082   double non_young_end_time_sec = os::elapsedTime();
2083   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2084 }
2085 
2086 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2087   if(TraceYoungGenTime) {
2088     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2089   }
2090 }
2091 
2092 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2093   if(TraceYoungGenTime) {
2094     _all_yield_times_ms.add(yield_time_ms);
2095   }
2096 }
2097 
2098 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2099   if(TraceYoungGenTime) {
2100     _total.add(pause_time_ms);
2101     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2102     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2103     _parallel.add(phase_times->cur_collection_par_time_ms());
2104     _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2105     _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2106     _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2107     _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2108     _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2109     _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2110 
2111     double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2112       phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2113       phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2114       phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2115       phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2116       phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2117 
2118     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2119     _parallel_other.add(parallel_other_time);
2120     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2121   }
2122 }
2123 
2124 void TraceYoungGenTimeData::increment_young_collection_count() {
2125   if(TraceYoungGenTime) {
2126     ++_young_pause_num;
2127   }
2128 }
2129 
2130 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2131   if(TraceYoungGenTime) {
2132     ++_mixed_pause_num;
2133   }
2134 }
2135 
2136 void TraceYoungGenTimeData::print_summary(const char* str,
2137                                           const NumberSeq* seq) const {
2138   double sum = seq->sum();
2139   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2140                 str, sum / 1000.0, seq->avg());
2141 }
2142 
2143 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2144                                              const NumberSeq* seq) const {
2145   print_summary(str, seq);
2146   gclog_or_tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2147                 "(num", seq->num(), seq->sd(), seq->maximum());
2148 }
2149 
2150 void TraceYoungGenTimeData::print() const {
2151   if (!TraceYoungGenTime) {
2152     return;
2153   }
2154 
2155   gclog_or_tty->print_cr("ALL PAUSES");
2156   print_summary_sd("   Total", &_total);
2157   gclog_or_tty->cr();
2158   gclog_or_tty->cr();
2159   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2160   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2161   gclog_or_tty->cr();
2162 
2163   gclog_or_tty->print_cr("EVACUATION PAUSES");
2164 
2165   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2166     gclog_or_tty->print_cr("none");
2167   } else {
2168     print_summary_sd("   Evacuation Pauses", &_total);
2169     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2170     print_summary("      Parallel Time", &_parallel);
2171     print_summary("         Ext Root Scanning", &_ext_root_scan);
2172     print_summary("         SATB Filtering", &_satb_filtering);
2173     print_summary("         Update RS", &_update_rs);
2174     print_summary("         Scan RS", &_scan_rs);
2175     print_summary("         Object Copy", &_obj_copy);
2176     print_summary("         Termination", &_termination);
2177     print_summary("         Parallel Other", &_parallel_other);
2178     print_summary("      Clear CT", &_clear_ct);
2179     print_summary("      Other", &_other);
2180   }
2181   gclog_or_tty->cr();
2182 
2183   gclog_or_tty->print_cr("MISC");
2184   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2185   print_summary_sd("   Yields", &_all_yield_times_ms);
2186 }
2187 
2188 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2189   if (TraceOldGenTime) {
2190     _all_full_gc_times.add(full_gc_time_ms);
2191   }
2192 }
2193 
2194 void TraceOldGenTimeData::print() const {
2195   if (!TraceOldGenTime) {
2196     return;
2197   }
2198 
2199   if (_all_full_gc_times.num() > 0) {
2200     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2201       _all_full_gc_times.num(),
2202       _all_full_gc_times.sum() / 1000.0);
2203     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2204     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2205       _all_full_gc_times.sd(),
2206       _all_full_gc_times.maximum());
2207   }
2208 }