/* * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/concurrentG1Refine.hpp" #include "gc/g1/g1BlockOffsetTable.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/heapRegionManager.inline.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/shared/space.inline.hpp" #include "memory/allocation.hpp" #include "memory/padded.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.inline.hpp" #include "utilities/bitMap.inline.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/growableArray.hpp" class PerRegionTable: public CHeapObj { friend class OtherRegionsTable; friend class HeapRegionRemSetIterator; HeapRegion* _hr; BitMap _bm; jint _occupied; // next pointer for free/allocated 'all' list PerRegionTable* _next; // prev pointer for the allocated 'all' list PerRegionTable* _prev; // next pointer in collision list PerRegionTable * _collision_list_next; // Global free list of PRTs static PerRegionTable* _free_list; protected: // We need access in order to union things into the base table. BitMap* bm() { return &_bm; } void recount_occupied() { _occupied = (jint) bm()->count_one_bits(); } PerRegionTable(HeapRegion* hr) : _hr(hr), _occupied(0), _bm(HeapRegion::CardsPerRegion, false /* in-resource-area */), _collision_list_next(NULL), _next(NULL), _prev(NULL) {} void add_card_work(CardIdx_t from_card, bool par) { if (!_bm.at(from_card)) { if (par) { if (_bm.par_at_put(from_card, 1)) { Atomic::inc(&_occupied); } } else { _bm.at_put(from_card, 1); _occupied++; } } } void add_reference_work(OopOrNarrowOopStar from, bool par) { // Must make this robust in case "from" is not in "_hr", because of // concurrency. HeapRegion* loc_hr = hr(); // If the test below fails, then this table was reused concurrently // with this operation. This is OK, since the old table was coarsened, // and adding a bit to the new table is never incorrect. // If the table used to belong to a continues humongous region and is // now reused for the corresponding start humongous region, we need to // make sure that we detect this. Thus, we call is_in_reserved_raw() // instead of just is_in_reserved() here. if (loc_hr->is_in_reserved(from)) { size_t hw_offset = pointer_delta((HeapWord*)from, loc_hr->bottom()); CardIdx_t from_card = (CardIdx_t) hw_offset >> (CardTableModRefBS::card_shift - LogHeapWordSize); assert(0 <= from_card && (size_t)from_card < HeapRegion::CardsPerRegion, "Must be in range."); add_card_work(from_card, par); } } public: HeapRegion* hr() const { return _hr; } jint occupied() const { // Overkill, but if we ever need it... // guarantee(_occupied == _bm.count_one_bits(), "Check"); return _occupied; } void init(HeapRegion* hr, bool clear_links_to_all_list) { if (clear_links_to_all_list) { set_next(NULL); set_prev(NULL); } _hr = hr; _collision_list_next = NULL; _occupied = 0; _bm.clear(); } void add_reference(OopOrNarrowOopStar from) { add_reference_work(from, /*parallel*/ true); } void seq_add_reference(OopOrNarrowOopStar from) { add_reference_work(from, /*parallel*/ false); } void scrub(CardTableModRefBS* ctbs, BitMap* card_bm) { HeapWord* hr_bot = hr()->bottom(); size_t hr_first_card_index = ctbs->index_for(hr_bot); bm()->set_intersection_at_offset(*card_bm, hr_first_card_index); recount_occupied(); } void add_card(CardIdx_t from_card_index) { add_card_work(from_card_index, /*parallel*/ true); } void seq_add_card(CardIdx_t from_card_index) { add_card_work(from_card_index, /*parallel*/ false); } // (Destructively) union the bitmap of the current table into the given // bitmap (which is assumed to be of the same size.) void union_bitmap_into(BitMap* bm) { bm->set_union(_bm); } // Mem size in bytes. size_t mem_size() const { return sizeof(PerRegionTable) + _bm.size_in_words() * HeapWordSize; } // Requires "from" to be in "hr()". bool contains_reference(OopOrNarrowOopStar from) const { assert(hr()->is_in_reserved(from), "Precondition."); size_t card_ind = pointer_delta(from, hr()->bottom(), CardTableModRefBS::card_size); return _bm.at(card_ind); } // Bulk-free the PRTs from prt to last, assumes that they are // linked together using their _next field. static void bulk_free(PerRegionTable* prt, PerRegionTable* last) { while (true) { PerRegionTable* fl = _free_list; last->set_next(fl); PerRegionTable* res = (PerRegionTable*) Atomic::cmpxchg_ptr(prt, &_free_list, fl); if (res == fl) { return; } } ShouldNotReachHere(); } static void free(PerRegionTable* prt) { bulk_free(prt, prt); } // Returns an initialized PerRegionTable instance. static PerRegionTable* alloc(HeapRegion* hr) { PerRegionTable* fl = _free_list; while (fl != NULL) { PerRegionTable* nxt = fl->next(); PerRegionTable* res = (PerRegionTable*) Atomic::cmpxchg_ptr(nxt, &_free_list, fl); if (res == fl) { fl->init(hr, true); return fl; } else { fl = _free_list; } } assert(fl == NULL, "Loop condition."); return new PerRegionTable(hr); } PerRegionTable* next() const { return _next; } void set_next(PerRegionTable* next) { _next = next; } PerRegionTable* prev() const { return _prev; } void set_prev(PerRegionTable* prev) { _prev = prev; } // Accessor and Modification routines for the pointer for the // singly linked collision list that links the PRTs within the // OtherRegionsTable::_fine_grain_regions hash table. // // It might be useful to also make the collision list doubly linked // to avoid iteration over the collisions list during scrubbing/deletion. // OTOH there might not be many collisions. PerRegionTable* collision_list_next() const { return _collision_list_next; } void set_collision_list_next(PerRegionTable* next) { _collision_list_next = next; } PerRegionTable** collision_list_next_addr() { return &_collision_list_next; } static size_t fl_mem_size() { PerRegionTable* cur = _free_list; size_t res = 0; while (cur != NULL) { res += cur->mem_size(); cur = cur->next(); } return res; } static void test_fl_mem_size(); }; PerRegionTable* PerRegionTable::_free_list = NULL; size_t OtherRegionsTable::_max_fine_entries = 0; size_t OtherRegionsTable::_mod_max_fine_entries_mask = 0; size_t OtherRegionsTable::_fine_eviction_stride = 0; size_t OtherRegionsTable::_fine_eviction_sample_size = 0; OtherRegionsTable::OtherRegionsTable(HeapRegion* hr, Mutex* m) : _g1h(G1CollectedHeap::heap()), _hr(hr), _m(m), _coarse_map(G1CollectedHeap::heap()->max_regions(), false /* in-resource-area */), _fine_grain_regions(NULL), _first_all_fine_prts(NULL), _last_all_fine_prts(NULL), _n_fine_entries(0), _n_coarse_entries(0), _fine_eviction_start(0), _sparse_table(hr) { typedef PerRegionTable* PerRegionTablePtr; if (_max_fine_entries == 0) { assert(_mod_max_fine_entries_mask == 0, "Both or none."); size_t max_entries_log = (size_t)log2_long((jlong)G1RSetRegionEntries); _max_fine_entries = (size_t)1 << max_entries_log; _mod_max_fine_entries_mask = _max_fine_entries - 1; assert(_fine_eviction_sample_size == 0 && _fine_eviction_stride == 0, "All init at same time."); _fine_eviction_sample_size = MAX2((size_t)4, max_entries_log); _fine_eviction_stride = _max_fine_entries / _fine_eviction_sample_size; } _fine_grain_regions = NEW_C_HEAP_ARRAY3(PerRegionTablePtr, _max_fine_entries, mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL); if (_fine_grain_regions == NULL) { vm_exit_out_of_memory(sizeof(void*)*_max_fine_entries, OOM_MALLOC_ERROR, "Failed to allocate _fine_grain_entries."); } for (size_t i = 0; i < _max_fine_entries; i++) { _fine_grain_regions[i] = NULL; } } void OtherRegionsTable::link_to_all(PerRegionTable* prt) { // We always append to the beginning of the list for convenience; // the order of entries in this list does not matter. if (_first_all_fine_prts != NULL) { assert(_first_all_fine_prts->prev() == NULL, "invariant"); _first_all_fine_prts->set_prev(prt); prt->set_next(_first_all_fine_prts); } else { // this is the first element we insert. Adjust the "last" pointer _last_all_fine_prts = prt; assert(prt->next() == NULL, "just checking"); } // the new element is always the first element without a predecessor prt->set_prev(NULL); _first_all_fine_prts = prt; assert(prt->prev() == NULL, "just checking"); assert(_first_all_fine_prts == prt, "just checking"); assert((_first_all_fine_prts == NULL && _last_all_fine_prts == NULL) || (_first_all_fine_prts != NULL && _last_all_fine_prts != NULL), "just checking"); assert(_last_all_fine_prts == NULL || _last_all_fine_prts->next() == NULL, "just checking"); assert(_first_all_fine_prts == NULL || _first_all_fine_prts->prev() == NULL, "just checking"); } void OtherRegionsTable::unlink_from_all(PerRegionTable* prt) { if (prt->prev() != NULL) { assert(_first_all_fine_prts != prt, "just checking"); prt->prev()->set_next(prt->next()); // removing the last element in the list? if (_last_all_fine_prts == prt) { _last_all_fine_prts = prt->prev(); } } else { assert(_first_all_fine_prts == prt, "just checking"); _first_all_fine_prts = prt->next(); // list is empty now? if (_first_all_fine_prts == NULL) { _last_all_fine_prts = NULL; } } if (prt->next() != NULL) { prt->next()->set_prev(prt->prev()); } prt->set_next(NULL); prt->set_prev(NULL); assert((_first_all_fine_prts == NULL && _last_all_fine_prts == NULL) || (_first_all_fine_prts != NULL && _last_all_fine_prts != NULL), "just checking"); assert(_last_all_fine_prts == NULL || _last_all_fine_prts->next() == NULL, "just checking"); assert(_first_all_fine_prts == NULL || _first_all_fine_prts->prev() == NULL, "just checking"); } int** FromCardCache::_cache = NULL; uint FromCardCache::_max_regions = 0; size_t FromCardCache::_static_mem_size = 0; void FromCardCache::initialize(uint n_par_rs, uint max_num_regions) { guarantee(_cache == NULL, "Should not call this multiple times"); _max_regions = max_num_regions; _cache = Padded2DArray::create_unfreeable(n_par_rs, _max_regions, &_static_mem_size); invalidate(0, _max_regions); } void FromCardCache::invalidate(uint start_idx, size_t new_num_regions) { guarantee((size_t)start_idx + new_num_regions <= max_uintx, "Trying to invalidate beyond maximum region, from %u size " SIZE_FORMAT, start_idx, new_num_regions); for (uint i = 0; i < HeapRegionRemSet::num_par_rem_sets(); i++) { uint end_idx = (start_idx + (uint)new_num_regions); assert(end_idx <= _max_regions, "Must be within max."); for (uint j = start_idx; j < end_idx; j++) { set(i, j, InvalidCard); } } } #ifndef PRODUCT void FromCardCache::print(outputStream* out) { for (uint i = 0; i < HeapRegionRemSet::num_par_rem_sets(); i++) { for (uint j = 0; j < _max_regions; j++) { out->print_cr("_from_card_cache[%u][%u] = %d.", i, j, at(i, j)); } } } #endif void FromCardCache::clear(uint region_idx) { uint num_par_remsets = HeapRegionRemSet::num_par_rem_sets(); for (uint i = 0; i < num_par_remsets; i++) { set(i, region_idx, InvalidCard); } } void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, uint tid) { uint cur_hrm_ind = _hr->hrm_index(); int from_card = (int)(uintptr_t(from) >> CardTableModRefBS::card_shift); if (FromCardCache::contains_or_replace(tid, cur_hrm_ind, from_card)) { assert(contains_reference(from), "We just added it!"); return; } // Note that this may be a continued H region. HeapRegion* from_hr = _g1h->heap_region_containing(from); RegionIdx_t from_hrm_ind = (RegionIdx_t) from_hr->hrm_index(); // If the region is already coarsened, return. if (_coarse_map.at(from_hrm_ind)) { assert(contains_reference(from), "We just added it!"); return; } // Otherwise find a per-region table to add it to. size_t ind = from_hrm_ind & _mod_max_fine_entries_mask; PerRegionTable* prt = find_region_table(ind, from_hr); if (prt == NULL) { MutexLockerEx x(_m, Mutex::_no_safepoint_check_flag); // Confirm that it's really not there... prt = find_region_table(ind, from_hr); if (prt == NULL) { uintptr_t from_hr_bot_card_index = uintptr_t(from_hr->bottom()) >> CardTableModRefBS::card_shift; CardIdx_t card_index = from_card - from_hr_bot_card_index; assert(0 <= card_index && (size_t)card_index < HeapRegion::CardsPerRegion, "Must be in range."); if (G1HRRSUseSparseTable && _sparse_table.add_card(from_hrm_ind, card_index)) { assert(contains_reference_locked(from), "We just added it!"); return; } if (_n_fine_entries == _max_fine_entries) { prt = delete_region_table(); // There is no need to clear the links to the 'all' list here: // prt will be reused immediately, i.e. remain in the 'all' list. prt->init(from_hr, false /* clear_links_to_all_list */); } else { prt = PerRegionTable::alloc(from_hr); link_to_all(prt); } PerRegionTable* first_prt = _fine_grain_regions[ind]; prt->set_collision_list_next(first_prt); // The assignment into _fine_grain_regions allows the prt to // start being used concurrently. In addition to // collision_list_next which must be visible (else concurrent // parsing of the list, if any, may fail to see other entries), // the content of the prt must be visible (else for instance // some mark bits may not yet seem cleared or a 'later' update // performed by a concurrent thread could be undone when the // zeroing becomes visible). This requires store ordering. OrderAccess::release_store_ptr((volatile PerRegionTable*)&_fine_grain_regions[ind], prt); _n_fine_entries++; if (G1HRRSUseSparseTable) { // Transfer from sparse to fine-grain. SparsePRTEntry *sprt_entry = _sparse_table.get_entry(from_hrm_ind); assert(sprt_entry != NULL, "There should have been an entry"); for (int i = 0; i < SparsePRTEntry::cards_num(); i++) { CardIdx_t c = sprt_entry->card(i); if (c != SparsePRTEntry::NullEntry) { prt->add_card(c); } } // Now we can delete the sparse entry. bool res = _sparse_table.delete_entry(from_hrm_ind); assert(res, "It should have been there."); } } assert(prt != NULL && prt->hr() == from_hr, "consequence"); } // Note that we can't assert "prt->hr() == from_hr", because of the // possibility of concurrent reuse. But see head comment of // OtherRegionsTable for why this is OK. assert(prt != NULL, "Inv"); prt->add_reference(from); assert(contains_reference(from), "We just added it!"); } PerRegionTable* OtherRegionsTable::find_region_table(size_t ind, HeapRegion* hr) const { assert(ind < _max_fine_entries, "Preconditions."); PerRegionTable* prt = _fine_grain_regions[ind]; while (prt != NULL && prt->hr() != hr) { prt = prt->collision_list_next(); } // Loop postcondition is the method postcondition. return prt; } jint OtherRegionsTable::_n_coarsenings = 0; PerRegionTable* OtherRegionsTable::delete_region_table() { assert(_m->owned_by_self(), "Precondition"); assert(_n_fine_entries == _max_fine_entries, "Precondition"); PerRegionTable* max = NULL; jint max_occ = 0; PerRegionTable** max_prev = NULL; size_t max_ind; size_t i = _fine_eviction_start; for (size_t k = 0; k < _fine_eviction_sample_size; k++) { size_t ii = i; // Make sure we get a non-NULL sample. while (_fine_grain_regions[ii] == NULL) { ii++; if (ii == _max_fine_entries) ii = 0; guarantee(ii != i, "We must find one."); } PerRegionTable** prev = &_fine_grain_regions[ii]; PerRegionTable* cur = *prev; while (cur != NULL) { jint cur_occ = cur->occupied(); if (max == NULL || cur_occ > max_occ) { max = cur; max_prev = prev; max_ind = i; max_occ = cur_occ; } prev = cur->collision_list_next_addr(); cur = cur->collision_list_next(); } i = i + _fine_eviction_stride; if (i >= _n_fine_entries) i = i - _n_fine_entries; } _fine_eviction_start++; if (_fine_eviction_start >= _n_fine_entries) { _fine_eviction_start -= _n_fine_entries; } guarantee(max != NULL, "Since _n_fine_entries > 0"); guarantee(max_prev != NULL, "Since max != NULL."); // Set the corresponding coarse bit. size_t max_hrm_index = (size_t) max->hr()->hrm_index(); if (!_coarse_map.at(max_hrm_index)) { _coarse_map.at_put(max_hrm_index, true); _n_coarse_entries++; } // Unsplice. *max_prev = max->collision_list_next(); Atomic::inc(&_n_coarsenings); _n_fine_entries--; return max; } void OtherRegionsTable::scrub(CardTableModRefBS* ctbs, BitMap* region_bm, BitMap* card_bm) { // First eliminated garbage regions from the coarse map. log_develop_trace(gc, remset, scrub)("Scrubbing region %u:", _hr->hrm_index()); assert(_coarse_map.size() == region_bm->size(), "Precondition"); log_develop_trace(gc, remset, scrub)(" Coarse map: before = " SIZE_FORMAT "...", _n_coarse_entries); _coarse_map.set_intersection(*region_bm); _n_coarse_entries = _coarse_map.count_one_bits(); log_develop_trace(gc, remset, scrub)(" after = " SIZE_FORMAT ".", _n_coarse_entries); // Now do the fine-grained maps. for (size_t i = 0; i < _max_fine_entries; i++) { PerRegionTable* cur = _fine_grain_regions[i]; PerRegionTable** prev = &_fine_grain_regions[i]; while (cur != NULL) { PerRegionTable* nxt = cur->collision_list_next(); // If the entire region is dead, eliminate. log_develop_trace(gc, remset, scrub)(" For other region %u:", cur->hr()->hrm_index()); if (!region_bm->at((size_t) cur->hr()->hrm_index())) { *prev = nxt; cur->set_collision_list_next(NULL); _n_fine_entries--; log_develop_trace(gc, remset, scrub)(" deleted via region map."); unlink_from_all(cur); PerRegionTable::free(cur); } else { // Do fine-grain elimination. log_develop_trace(gc, remset, scrub)(" occ: before = %4d.", cur->occupied()); cur->scrub(ctbs, card_bm); log_develop_trace(gc, remset, scrub)(" after = %4d.", cur->occupied()); // Did that empty the table completely? if (cur->occupied() == 0) { *prev = nxt; cur->set_collision_list_next(NULL); _n_fine_entries--; unlink_from_all(cur); PerRegionTable::free(cur); } else { prev = cur->collision_list_next_addr(); } } cur = nxt; } } // Since we may have deleted a from_card_cache entry from the RS, clear // the FCC. clear_fcc(); } bool OtherRegionsTable::occupancy_less_or_equal_than(size_t limit) const { if (limit <= (size_t)G1RSetSparseRegionEntries) { return occ_coarse() == 0 && _first_all_fine_prts == NULL && occ_sparse() <= limit; } else { // Current uses of this method may only use values less than G1RSetSparseRegionEntries // for the limit. The solution, comparing against occupied() would be too slow // at this time. Unimplemented(); return false; } } bool OtherRegionsTable::is_empty() const { return occ_sparse() == 0 && occ_coarse() == 0 && _first_all_fine_prts == NULL; } size_t OtherRegionsTable::occupied() const { size_t sum = occ_fine(); sum += occ_sparse(); sum += occ_coarse(); return sum; } size_t OtherRegionsTable::occ_fine() const { size_t sum = 0; size_t num = 0; PerRegionTable * cur = _first_all_fine_prts; while (cur != NULL) { sum += cur->occupied(); cur = cur->next(); num++; } guarantee(num == _n_fine_entries, "just checking"); return sum; } size_t OtherRegionsTable::occ_coarse() const { return (_n_coarse_entries * HeapRegion::CardsPerRegion); } size_t OtherRegionsTable::occ_sparse() const { return _sparse_table.occupied(); } size_t OtherRegionsTable::mem_size() const { size_t sum = 0; // all PRTs are of the same size so it is sufficient to query only one of them. if (_first_all_fine_prts != NULL) { assert(_last_all_fine_prts != NULL && _first_all_fine_prts->mem_size() == _last_all_fine_prts->mem_size(), "check that mem_size() is constant"); sum += _first_all_fine_prts->mem_size() * _n_fine_entries; } sum += (sizeof(PerRegionTable*) * _max_fine_entries); sum += (_coarse_map.size_in_words() * HeapWordSize); sum += (_sparse_table.mem_size()); sum += sizeof(OtherRegionsTable) - sizeof(_sparse_table); // Avoid double counting above. return sum; } size_t OtherRegionsTable::static_mem_size() { return FromCardCache::static_mem_size(); } size_t OtherRegionsTable::fl_mem_size() { return PerRegionTable::fl_mem_size(); } void OtherRegionsTable::clear_fcc() { FromCardCache::clear(_hr->hrm_index()); } void OtherRegionsTable::clear() { // if there are no entries, skip this step if (_first_all_fine_prts != NULL) { guarantee(_first_all_fine_prts != NULL && _last_all_fine_prts != NULL, "just checking"); PerRegionTable::bulk_free(_first_all_fine_prts, _last_all_fine_prts); memset(_fine_grain_regions, 0, _max_fine_entries * sizeof(_fine_grain_regions[0])); } else { guarantee(_first_all_fine_prts == NULL && _last_all_fine_prts == NULL, "just checking"); } _first_all_fine_prts = _last_all_fine_prts = NULL; _sparse_table.clear(); _coarse_map.clear(); _n_fine_entries = 0; _n_coarse_entries = 0; clear_fcc(); } bool OtherRegionsTable::contains_reference(OopOrNarrowOopStar from) const { // Cast away const in this case. MutexLockerEx x((Mutex*)_m, Mutex::_no_safepoint_check_flag); return contains_reference_locked(from); } bool OtherRegionsTable::contains_reference_locked(OopOrNarrowOopStar from) const { HeapRegion* hr = _g1h->heap_region_containing(from); RegionIdx_t hr_ind = (RegionIdx_t) hr->hrm_index(); // Is this region in the coarse map? if (_coarse_map.at(hr_ind)) return true; PerRegionTable* prt = find_region_table(hr_ind & _mod_max_fine_entries_mask, hr); if (prt != NULL) { return prt->contains_reference(from); } else { uintptr_t from_card = (uintptr_t(from) >> CardTableModRefBS::card_shift); uintptr_t hr_bot_card_index = uintptr_t(hr->bottom()) >> CardTableModRefBS::card_shift; assert(from_card >= hr_bot_card_index, "Inv"); CardIdx_t card_index = from_card - hr_bot_card_index; assert(0 <= card_index && (size_t)card_index < HeapRegion::CardsPerRegion, "Must be in range."); return _sparse_table.contains_card(hr_ind, card_index); } } void OtherRegionsTable::do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task) { _sparse_table.do_cleanup_work(hrrs_cleanup_task); } // Determines how many threads can add records to an rset in parallel. // This can be done by either mutator threads together with the // concurrent refinement threads or GC threads. uint HeapRegionRemSet::num_par_rem_sets() { return MAX2(DirtyCardQueueSet::num_par_ids() + ConcurrentG1Refine::thread_num(), ParallelGCThreads); } HeapRegionRemSet::HeapRegionRemSet(G1BlockOffsetSharedArray* bosa, HeapRegion* hr) : _bosa(bosa), _m(Mutex::leaf, FormatBuffer<128>("HeapRegionRemSet lock #%u", hr->hrm_index()), true, Monitor::_safepoint_check_never), _code_roots(), _other_regions(hr, &_m), _iter_state(Unclaimed), _iter_claimed(0) { reset_for_par_iteration(); } void HeapRegionRemSet::setup_remset_size() { // Setup sparse and fine-grain tables sizes. // table_size = base * (log(region_size / 1M) + 1) const int LOG_M = 20; int region_size_log_mb = MAX2(HeapRegion::LogOfHRGrainBytes - LOG_M, 0); if (FLAG_IS_DEFAULT(G1RSetSparseRegionEntries)) { G1RSetSparseRegionEntries = G1RSetSparseRegionEntriesBase * (region_size_log_mb + 1); } if (FLAG_IS_DEFAULT(G1RSetRegionEntries)) { G1RSetRegionEntries = G1RSetRegionEntriesBase * (region_size_log_mb + 1); } guarantee(G1RSetSparseRegionEntries > 0 && G1RSetRegionEntries > 0 , "Sanity"); } bool HeapRegionRemSet::claim_iter() { if (_iter_state != Unclaimed) return false; jint res = Atomic::cmpxchg(Claimed, (jint*)(&_iter_state), Unclaimed); return (res == Unclaimed); } void HeapRegionRemSet::set_iter_complete() { _iter_state = Complete; } bool HeapRegionRemSet::iter_is_complete() { return _iter_state == Complete; } #ifndef PRODUCT void HeapRegionRemSet::print() { HeapRegionRemSetIterator iter(this); size_t card_index; while (iter.has_next(card_index)) { HeapWord* card_start = G1CollectedHeap::heap()->bot_shared()->address_for_index(card_index); tty->print_cr(" Card " PTR_FORMAT, p2i(card_start)); } if (iter.n_yielded() != occupied()) { tty->print_cr("Yielded disagrees with occupied:"); tty->print_cr(" " SIZE_FORMAT_W(6) " yielded (" SIZE_FORMAT_W(6) " coarse, " SIZE_FORMAT_W(6) " fine).", iter.n_yielded(), iter.n_yielded_coarse(), iter.n_yielded_fine()); tty->print_cr(" " SIZE_FORMAT_W(6) " occ (" SIZE_FORMAT_W(6) " coarse, " SIZE_FORMAT_W(6) " fine).", occupied(), occ_coarse(), occ_fine()); } guarantee(iter.n_yielded() == occupied(), "We should have yielded all the represented cards."); } #endif void HeapRegionRemSet::cleanup() { SparsePRT::cleanup_all(); } void HeapRegionRemSet::clear() { MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag); clear_locked(); } void HeapRegionRemSet::clear_locked() { _code_roots.clear(); _other_regions.clear(); assert(occupied_locked() == 0, "Should be clear."); reset_for_par_iteration(); } void HeapRegionRemSet::reset_for_par_iteration() { _iter_state = Unclaimed; _iter_claimed = 0; // It's good to check this to make sure that the two methods are in sync. assert(verify_ready_for_par_iteration(), "post-condition"); } void HeapRegionRemSet::scrub(CardTableModRefBS* ctbs, BitMap* region_bm, BitMap* card_bm) { _other_regions.scrub(ctbs, region_bm, card_bm); } // Code roots support // // The code root set is protected by two separate locking schemes // When at safepoint the per-hrrs lock must be held during modifications // except when doing a full gc. // When not at safepoint the CodeCache_lock must be held during modifications. // When concurrent readers access the contains() function // (during the evacuation phase) no removals are allowed. void HeapRegionRemSet::add_strong_code_root(nmethod* nm) { assert(nm != NULL, "sanity"); // Optimistic unlocked contains-check if (!_code_roots.contains(nm)) { MutexLockerEx ml(&_m, Mutex::_no_safepoint_check_flag); add_strong_code_root_locked(nm); } } void HeapRegionRemSet::add_strong_code_root_locked(nmethod* nm) { assert(nm != NULL, "sanity"); _code_roots.add(nm); } void HeapRegionRemSet::remove_strong_code_root(nmethod* nm) { assert(nm != NULL, "sanity"); assert_locked_or_safepoint(CodeCache_lock); MutexLockerEx ml(CodeCache_lock->owned_by_self() ? NULL : &_m, Mutex::_no_safepoint_check_flag); _code_roots.remove(nm); // Check that there were no duplicates guarantee(!_code_roots.contains(nm), "duplicate entry found"); } void HeapRegionRemSet::strong_code_roots_do(CodeBlobClosure* blk) const { _code_roots.nmethods_do(blk); } void HeapRegionRemSet::clean_strong_code_roots(HeapRegion* hr) { _code_roots.clean(hr); } size_t HeapRegionRemSet::strong_code_roots_mem_size() { return _code_roots.mem_size(); } HeapRegionRemSetIterator:: HeapRegionRemSetIterator(HeapRegionRemSet* hrrs) : _hrrs(hrrs), _g1h(G1CollectedHeap::heap()), _coarse_map(&hrrs->_other_regions._coarse_map), _bosa(hrrs->_bosa), _is(Sparse), // Set these values so that we increment to the first region. _coarse_cur_region_index(-1), _coarse_cur_region_cur_card(HeapRegion::CardsPerRegion-1), _cur_card_in_prt(HeapRegion::CardsPerRegion), _fine_cur_prt(NULL), _n_yielded_coarse(0), _n_yielded_fine(0), _n_yielded_sparse(0), _sparse_iter(&hrrs->_other_regions._sparse_table) {} bool HeapRegionRemSetIterator::coarse_has_next(size_t& card_index) { if (_hrrs->_other_regions._n_coarse_entries == 0) return false; // Go to the next card. _coarse_cur_region_cur_card++; // Was the last the last card in the current region? if (_coarse_cur_region_cur_card == HeapRegion::CardsPerRegion) { // Yes: find the next region. This may leave _coarse_cur_region_index // Set to the last index, in which case there are no more coarse // regions. _coarse_cur_region_index = (int) _coarse_map->get_next_one_offset(_coarse_cur_region_index + 1); if ((size_t)_coarse_cur_region_index < _coarse_map->size()) { _coarse_cur_region_cur_card = 0; HeapWord* r_bot = _g1h->region_at((uint) _coarse_cur_region_index)->bottom(); _cur_region_card_offset = _bosa->index_for(r_bot); } else { return false; } } // If we didn't return false above, then we can yield a card. card_index = _cur_region_card_offset + _coarse_cur_region_cur_card; return true; } bool HeapRegionRemSetIterator::fine_has_next(size_t& card_index) { if (fine_has_next()) { _cur_card_in_prt = _fine_cur_prt->_bm.get_next_one_offset(_cur_card_in_prt + 1); } if (_cur_card_in_prt == HeapRegion::CardsPerRegion) { // _fine_cur_prt may still be NULL in case if there are not PRTs at all for // the remembered set. if (_fine_cur_prt == NULL || _fine_cur_prt->next() == NULL) { return false; } PerRegionTable* next_prt = _fine_cur_prt->next(); switch_to_prt(next_prt); _cur_card_in_prt = _fine_cur_prt->_bm.get_next_one_offset(_cur_card_in_prt + 1); } card_index = _cur_region_card_offset + _cur_card_in_prt; guarantee(_cur_card_in_prt < HeapRegion::CardsPerRegion, "Card index " SIZE_FORMAT " must be within the region", _cur_card_in_prt); return true; } bool HeapRegionRemSetIterator::fine_has_next() { return _cur_card_in_prt != HeapRegion::CardsPerRegion; } void HeapRegionRemSetIterator::switch_to_prt(PerRegionTable* prt) { assert(prt != NULL, "Cannot switch to NULL prt"); _fine_cur_prt = prt; HeapWord* r_bot = _fine_cur_prt->hr()->bottom(); _cur_region_card_offset = _bosa->index_for(r_bot); // The bitmap scan for the PRT always scans from _cur_region_cur_card + 1. // To avoid special-casing this start case, and not miss the first bitmap // entry, initialize _cur_region_cur_card with -1 instead of 0. _cur_card_in_prt = (size_t)-1; } bool HeapRegionRemSetIterator::has_next(size_t& card_index) { switch (_is) { case Sparse: { if (_sparse_iter.has_next(card_index)) { _n_yielded_sparse++; return true; } // Otherwise, deliberate fall-through _is = Fine; PerRegionTable* initial_fine_prt = _hrrs->_other_regions._first_all_fine_prts; if (initial_fine_prt != NULL) { switch_to_prt(_hrrs->_other_regions._first_all_fine_prts); } } case Fine: if (fine_has_next(card_index)) { _n_yielded_fine++; return true; } // Otherwise, deliberate fall-through _is = Coarse; case Coarse: if (coarse_has_next(card_index)) { _n_yielded_coarse++; return true; } // Otherwise... break; } assert(ParallelGCThreads > 1 || n_yielded() == _hrrs->occupied(), "Should have yielded all the cards in the rem set " "(in the non-par case)."); return false; } void HeapRegionRemSet::reset_for_cleanup_tasks() { SparsePRT::reset_for_cleanup_tasks(); } void HeapRegionRemSet::do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task) { _other_regions.do_cleanup_work(hrrs_cleanup_task); } void HeapRegionRemSet::finish_cleanup_task(HRRSCleanupTask* hrrs_cleanup_task) { SparsePRT::finish_cleanup_task(hrrs_cleanup_task); } #ifndef PRODUCT void HeapRegionRemSet::test() { os::sleep(Thread::current(), (jlong)5000, false); G1CollectedHeap* g1h = G1CollectedHeap::heap(); // Run with "-XX:G1LogRSetRegionEntries=2", so that 1 and 5 end up in same // hash bucket. HeapRegion* hr0 = g1h->region_at(0); HeapRegion* hr1 = g1h->region_at(1); HeapRegion* hr2 = g1h->region_at(5); HeapRegion* hr3 = g1h->region_at(6); HeapRegion* hr4 = g1h->region_at(7); HeapRegion* hr5 = g1h->region_at(8); HeapWord* hr1_start = hr1->bottom(); HeapWord* hr1_mid = hr1_start + HeapRegion::GrainWords/2; HeapWord* hr1_last = hr1->end() - 1; HeapWord* hr2_start = hr2->bottom(); HeapWord* hr2_mid = hr2_start + HeapRegion::GrainWords/2; HeapWord* hr2_last = hr2->end() - 1; HeapWord* hr3_start = hr3->bottom(); HeapWord* hr3_mid = hr3_start + HeapRegion::GrainWords/2; HeapWord* hr3_last = hr3->end() - 1; HeapRegionRemSet* hrrs = hr0->rem_set(); // Make three references from region 0x101... hrrs->add_reference((OopOrNarrowOopStar)hr1_start); hrrs->add_reference((OopOrNarrowOopStar)hr1_mid); hrrs->add_reference((OopOrNarrowOopStar)hr1_last); hrrs->add_reference((OopOrNarrowOopStar)hr2_start); hrrs->add_reference((OopOrNarrowOopStar)hr2_mid); hrrs->add_reference((OopOrNarrowOopStar)hr2_last); hrrs->add_reference((OopOrNarrowOopStar)hr3_start); hrrs->add_reference((OopOrNarrowOopStar)hr3_mid); hrrs->add_reference((OopOrNarrowOopStar)hr3_last); // Now cause a coarsening. hrrs->add_reference((OopOrNarrowOopStar)hr4->bottom()); hrrs->add_reference((OopOrNarrowOopStar)hr5->bottom()); // Now, does iteration yield these three? HeapRegionRemSetIterator iter(hrrs); size_t sum = 0; size_t card_index; while (iter.has_next(card_index)) { HeapWord* card_start = G1CollectedHeap::heap()->bot_shared()->address_for_index(card_index); tty->print_cr(" Card " PTR_FORMAT ".", p2i(card_start)); sum++; } guarantee(sum == 11 - 3 + 2048, "Failure"); guarantee(sum == hrrs->occupied(), "Failure"); } #endif