1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1IHOPControl.hpp"
  32 #include "gc/g1/g1GCPhaseTimes.hpp"
  33 #include "gc/g1/heapRegion.inline.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 #include "utilities/pair.hpp"
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 G1CollectorPolicy::G1CollectorPolicy() :
  83   _predictor(G1ConfidencePercent / 100.0),
  84   _parallel_gc_threads(ParallelGCThreads),
  85 
  86   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  87   _stop_world_start(0.0),
  88 
  89   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  91 
  92   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _prev_collection_pause_end_ms(0.0),
  94   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _non_young_other_cost_per_region_ms_seq(
 106                                          new TruncatedSeq(TruncatedSeqLength)),
 107 
 108   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 109   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 110 
 111   _pause_time_target_ms((double) MaxGCPauseMillis),
 112 
 113   _recent_prev_end_times_for_all_gcs_sec(
 114                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 115 
 116   _recent_avg_pause_time_ratio(0.0),
 117   _rs_lengths_prediction(0),
 118   _max_survivor_regions(0),
 119 
 120   _eden_used_bytes_before_gc(0),
 121   _survivor_used_bytes_before_gc(0),
 122   _old_used_bytes_before_gc(0),
 123   _humongous_used_bytes_before_gc(0),
 124   _heap_used_bytes_before_gc(0),
 125   _metaspace_used_bytes_before_gc(0),
 126   _eden_capacity_bytes_before_gc(0),
 127   _heap_capacity_bytes_before_gc(0),
 128 
 129   _eden_cset_region_length(0),
 130   _survivor_cset_region_length(0),
 131   _old_cset_region_length(0),
 132 
 133   _collection_set(NULL),
 134   _collection_set_bytes_used_before(0),
 135 
 136   // Incremental CSet attributes
 137   _inc_cset_build_state(Inactive),
 138   _inc_cset_head(NULL),
 139   _inc_cset_tail(NULL),
 140   _inc_cset_bytes_used_before(0),
 141   _inc_cset_max_finger(NULL),
 142   _inc_cset_recorded_rs_lengths(0),
 143   _inc_cset_recorded_rs_lengths_diffs(0),
 144   _inc_cset_predicted_elapsed_time_ms(0.0),
 145   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 146 
 147   // add here any more surv rate groups
 148   _recorded_survivor_regions(0),
 149   _recorded_survivor_head(NULL),
 150   _recorded_survivor_tail(NULL),
 151   _survivors_age_table(true),
 152 
 153   _gc_overhead_perc(0.0),
 154 
 155   _bytes_allocated_in_old_since_last_gc(0),
 156   _ihop_control(NULL),
 157   _initial_mark_to_mixed() {
 158 
 159   // SurvRateGroups below must be initialized after the predictor because they
 160   // indirectly use it through this object passed to their constructor.
 161   _short_lived_surv_rate_group =
 162     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 163   _survivor_surv_rate_group =
 164     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 165 
 166   // Set up the region size and associated fields. Given that the
 167   // policy is created before the heap, we have to set this up here,
 168   // so it's done as soon as possible.
 169 
 170   // It would have been natural to pass initial_heap_byte_size() and
 171   // max_heap_byte_size() to setup_heap_region_size() but those have
 172   // not been set up at this point since they should be aligned with
 173   // the region size. So, there is a circular dependency here. We base
 174   // the region size on the heap size, but the heap size should be
 175   // aligned with the region size. To get around this we use the
 176   // unaligned values for the heap.
 177   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 178   HeapRegionRemSet::setup_remset_size();
 179 
 180   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 181   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 182   clear_ratio_check_data();
 183 
 184   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 185 
 186   int index = MIN2(_parallel_gc_threads - 1, 7);
 187 
 188   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 189   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 190   _cost_scan_hcc_seq->add(0.0);
 191   _young_cards_per_entry_ratio_seq->add(
 192                                   young_cards_per_entry_ratio_defaults[index]);
 193   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 194   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 195   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 196   _young_other_cost_per_region_ms_seq->add(
 197                                young_other_cost_per_region_ms_defaults[index]);
 198   _non_young_other_cost_per_region_ms_seq->add(
 199                            non_young_other_cost_per_region_ms_defaults[index]);
 200 
 201   // Below, we might need to calculate the pause time target based on
 202   // the pause interval. When we do so we are going to give G1 maximum
 203   // flexibility and allow it to do pauses when it needs to. So, we'll
 204   // arrange that the pause interval to be pause time target + 1 to
 205   // ensure that a) the pause time target is maximized with respect to
 206   // the pause interval and b) we maintain the invariant that pause
 207   // time target < pause interval. If the user does not want this
 208   // maximum flexibility, they will have to set the pause interval
 209   // explicitly.
 210 
 211   // First make sure that, if either parameter is set, its value is
 212   // reasonable.
 213   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 214     if (MaxGCPauseMillis < 1) {
 215       vm_exit_during_initialization("MaxGCPauseMillis should be "
 216                                     "greater than 0");
 217     }
 218   }
 219   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 220     if (GCPauseIntervalMillis < 1) {
 221       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 222                                     "greater than 0");
 223     }
 224   }
 225 
 226   // Then, if the pause time target parameter was not set, set it to
 227   // the default value.
 228   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 229     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 230       // The default pause time target in G1 is 200ms
 231       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 232     } else {
 233       // We do not allow the pause interval to be set without the
 234       // pause time target
 235       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 236                                     "without setting MaxGCPauseMillis");
 237     }
 238   }
 239 
 240   // Then, if the interval parameter was not set, set it according to
 241   // the pause time target (this will also deal with the case when the
 242   // pause time target is the default value).
 243   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 244     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 245   }
 246 
 247   // Finally, make sure that the two parameters are consistent.
 248   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 249     char buffer[256];
 250     jio_snprintf(buffer, 256,
 251                  "MaxGCPauseMillis (%u) should be less than "
 252                  "GCPauseIntervalMillis (%u)",
 253                  MaxGCPauseMillis, GCPauseIntervalMillis);
 254     vm_exit_during_initialization(buffer);
 255   }
 256 
 257   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 258   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 259   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 260 
 261   // start conservatively (around 50ms is about right)
 262   _concurrent_mark_remark_times_ms->add(0.05);
 263   _concurrent_mark_cleanup_times_ms->add(0.20);
 264   _tenuring_threshold = MaxTenuringThreshold;
 265 
 266   assert(GCTimeRatio > 0,
 267          "we should have set it to a default value set_g1_gc_flags() "
 268          "if a user set it to 0");
 269   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 270 
 271   uintx reserve_perc = G1ReservePercent;
 272   // Put an artificial ceiling on this so that it's not set to a silly value.
 273   if (reserve_perc > 50) {
 274     reserve_perc = 50;
 275     warning("G1ReservePercent is set to a value that is too large, "
 276             "it's been updated to " UINTX_FORMAT, reserve_perc);
 277   }
 278   _reserve_factor = (double) reserve_perc / 100.0;
 279   // This will be set when the heap is expanded
 280   // for the first time during initialization.
 281   _reserve_regions = 0;
 282 
 283   _cset_chooser = new CollectionSetChooser();
 284 }
 285 
 286 G1CollectorPolicy::~G1CollectorPolicy() {
 287   delete _ihop_control;
 288 }
 289 
 290 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 291   return _predictor.get_new_prediction(seq);
 292 }
 293 
 294 void G1CollectorPolicy::initialize_alignments() {
 295   _space_alignment = HeapRegion::GrainBytes;
 296   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 297   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 298   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 299 }
 300 
 301 void G1CollectorPolicy::initialize_flags() {
 302   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 303     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 304   }
 305 
 306   if (SurvivorRatio < 1) {
 307     vm_exit_during_initialization("Invalid survivor ratio specified");
 308   }
 309   CollectorPolicy::initialize_flags();
 310   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 311 }
 312 
 313 void G1CollectorPolicy::post_heap_initialize() {
 314   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 315   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 316   if (max_young_size != MaxNewSize) {
 317     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 318   }
 319 
 320   _ihop_control = create_ihop_control();
 321 }
 322 
 323 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 324 
 325 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 326         _min_desired_young_length(0), _max_desired_young_length(0) {
 327   if (FLAG_IS_CMDLINE(NewRatio)) {
 328     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 329       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 330     } else {
 331       _sizer_kind = SizerNewRatio;
 332       _adaptive_size = false;
 333       return;
 334     }
 335   }
 336 
 337   if (NewSize > MaxNewSize) {
 338     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 339       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 340               "A new max generation size of " SIZE_FORMAT "k will be used.",
 341               NewSize/K, MaxNewSize/K, NewSize/K);
 342     }
 343     MaxNewSize = NewSize;
 344   }
 345 
 346   if (FLAG_IS_CMDLINE(NewSize)) {
 347     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 348                                      1U);
 349     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 350       _max_desired_young_length =
 351                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 352                                   1U);
 353       _sizer_kind = SizerMaxAndNewSize;
 354       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 355     } else {
 356       _sizer_kind = SizerNewSizeOnly;
 357     }
 358   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 359     _max_desired_young_length =
 360                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 361                                   1U);
 362     _sizer_kind = SizerMaxNewSizeOnly;
 363   }
 364 }
 365 
 366 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 367   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 368   return MAX2(1U, default_value);
 369 }
 370 
 371 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 372   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 373   return MAX2(1U, default_value);
 374 }
 375 
 376 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 377   assert(number_of_heap_regions > 0, "Heap must be initialized");
 378 
 379   switch (_sizer_kind) {
 380     case SizerDefaults:
 381       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 382       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 383       break;
 384     case SizerNewSizeOnly:
 385       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 386       *max_young_length = MAX2(*min_young_length, *max_young_length);
 387       break;
 388     case SizerMaxNewSizeOnly:
 389       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 390       *min_young_length = MIN2(*min_young_length, *max_young_length);
 391       break;
 392     case SizerMaxAndNewSize:
 393       // Do nothing. Values set on the command line, don't update them at runtime.
 394       break;
 395     case SizerNewRatio:
 396       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 397       *max_young_length = *min_young_length;
 398       break;
 399     default:
 400       ShouldNotReachHere();
 401   }
 402 
 403   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 404 }
 405 
 406 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 407   // We need to pass the desired values because recalculation may not update these
 408   // values in some cases.
 409   uint temp = _min_desired_young_length;
 410   uint result = _max_desired_young_length;
 411   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 412   return result;
 413 }
 414 
 415 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 416   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 417           &_max_desired_young_length);
 418 }
 419 
 420 void G1CollectorPolicy::init() {
 421   // Set aside an initial future to_space.
 422   _g1 = G1CollectedHeap::heap();
 423 
 424   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 425 
 426   initialize_gc_policy_counters();
 427 
 428   if (adaptive_young_list_length()) {
 429     _young_list_fixed_length = 0;
 430   } else {
 431     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 432   }
 433   _free_regions_at_end_of_collection = _g1->num_free_regions();
 434 
 435   update_young_list_max_and_target_length();
 436   // We may immediately start allocating regions and placing them on the
 437   // collection set list. Initialize the per-collection set info
 438   start_incremental_cset_building();
 439 }
 440 
 441 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 442   phase_times()->note_gc_start(num_active_workers);
 443 }
 444 
 445 // Create the jstat counters for the policy.
 446 void G1CollectorPolicy::initialize_gc_policy_counters() {
 447   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 448 }
 449 
 450 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 451                                          double base_time_ms,
 452                                          uint base_free_regions,
 453                                          double target_pause_time_ms) const {
 454   if (young_length >= base_free_regions) {
 455     // end condition 1: not enough space for the young regions
 456     return false;
 457   }
 458 
 459   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 460   size_t bytes_to_copy =
 461                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 462   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 463   double young_other_time_ms = predict_young_other_time_ms(young_length);
 464   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 465   if (pause_time_ms > target_pause_time_ms) {
 466     // end condition 2: prediction is over the target pause time
 467     return false;
 468   }
 469 
 470   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 471 
 472   // When copying, we will likely need more bytes free than is live in the region.
 473   // Add some safety margin to factor in the confidence of our guess, and the
 474   // natural expected waste.
 475   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 476   // of the calculation: the lower the confidence, the more headroom.
 477   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 478   // copying due to anticipated waste in the PLABs.
 479   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 480   size_t expected_bytes_to_copy = safety_factor * bytes_to_copy;
 481 
 482   if (expected_bytes_to_copy > free_bytes) {
 483     // end condition 3: out-of-space
 484     return false;
 485   }
 486 
 487   // success!
 488   return true;
 489 }
 490 
 491 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 492   // re-calculate the necessary reserve
 493   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 494   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 495   // smaller than 1.0) we'll get 1.
 496   _reserve_regions = (uint) ceil(reserve_regions_d);
 497 
 498   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 499 }
 500 
 501 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 502                                                        uint base_min_length) const {
 503   uint desired_min_length = 0;
 504   if (adaptive_young_list_length()) {
 505     if (_alloc_rate_ms_seq->num() > 3) {
 506       double now_sec = os::elapsedTime();
 507       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 508       double alloc_rate_ms = predict_alloc_rate_ms();
 509       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 510     } else {
 511       // otherwise we don't have enough info to make the prediction
 512     }
 513   }
 514   desired_min_length += base_min_length;
 515   // make sure we don't go below any user-defined minimum bound
 516   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 517 }
 518 
 519 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 520   // Here, we might want to also take into account any additional
 521   // constraints (i.e., user-defined minimum bound). Currently, we
 522   // effectively don't set this bound.
 523   return _young_gen_sizer->max_desired_young_length();
 524 }
 525 
 526 uint G1CollectorPolicy::update_young_list_max_and_target_length() {
 527   return update_young_list_max_and_target_length(get_new_prediction(_rs_lengths_seq));
 528 }
 529 
 530 uint G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 531   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 532   update_max_gc_locker_expansion();
 533   return unbounded_target_length;
 534 }
 535 
 536 uint G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 537   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 538   _young_list_target_length = young_lengths.first;
 539   return young_lengths.second;
 540 }
 541 
 542 G1CollectorPolicy::YoungTargetLengths G1CollectorPolicy::young_list_target_lengths(size_t rs_lengths) const {
 543   YoungTargetLengths result;
 544 
 545   // Calculate the absolute and desired min bounds first.
 546 
 547   // This is how many young regions we already have (currently: the survivors).
 548   uint base_min_length = recorded_survivor_regions();
 549   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 550   // This is the absolute minimum young length. Ensure that we
 551   // will at least have one eden region available for allocation.
 552   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 553   // If we shrank the young list target it should not shrink below the current size.
 554   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 555   // Calculate the absolute and desired max bounds.
 556 
 557   uint desired_max_length = calculate_young_list_desired_max_length();
 558 
 559   uint young_list_target_length = 0;
 560   if (adaptive_young_list_length()) {
 561     if (collector_state()->gcs_are_young()) {
 562       young_list_target_length =
 563                         calculate_young_list_target_length(rs_lengths,
 564                                                            base_min_length,
 565                                                            desired_min_length,
 566                                                            desired_max_length);
 567     } else {
 568       // Don't calculate anything and let the code below bound it to
 569       // the desired_min_length, i.e., do the next GC as soon as
 570       // possible to maximize how many old regions we can add to it.
 571     }
 572   } else {
 573     // The user asked for a fixed young gen so we'll fix the young gen
 574     // whether the next GC is young or mixed.
 575     young_list_target_length = _young_list_fixed_length;
 576   }
 577 
 578   result.second = young_list_target_length;
 579 
 580   // We will try our best not to "eat" into the reserve.
 581   uint absolute_max_length = 0;
 582   if (_free_regions_at_end_of_collection > _reserve_regions) {
 583     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 584   }
 585   if (desired_max_length > absolute_max_length) {
 586     desired_max_length = absolute_max_length;
 587   }
 588 
 589   // Make sure we don't go over the desired max length, nor under the
 590   // desired min length. In case they clash, desired_min_length wins
 591   // which is why that test is second.
 592   if (young_list_target_length > desired_max_length) {
 593     young_list_target_length = desired_max_length;
 594   }
 595   if (young_list_target_length < desired_min_length) {
 596     young_list_target_length = desired_min_length;
 597   }
 598 
 599   assert(young_list_target_length > recorded_survivor_regions(),
 600          "we should be able to allocate at least one eden region");
 601   assert(young_list_target_length >= absolute_min_length, "post-condition");
 602 
 603   result.first = young_list_target_length;
 604   return result;
 605 }
 606 
 607 uint
 608 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 609                                                      uint base_min_length,
 610                                                      uint desired_min_length,
 611                                                      uint desired_max_length) const {
 612   assert(adaptive_young_list_length(), "pre-condition");
 613   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 614 
 615   // In case some edge-condition makes the desired max length too small...
 616   if (desired_max_length <= desired_min_length) {
 617     return desired_min_length;
 618   }
 619 
 620   // We'll adjust min_young_length and max_young_length not to include
 621   // the already allocated young regions (i.e., so they reflect the
 622   // min and max eden regions we'll allocate). The base_min_length
 623   // will be reflected in the predictions by the
 624   // survivor_regions_evac_time prediction.
 625   assert(desired_min_length > base_min_length, "invariant");
 626   uint min_young_length = desired_min_length - base_min_length;
 627   assert(desired_max_length > base_min_length, "invariant");
 628   uint max_young_length = desired_max_length - base_min_length;
 629 
 630   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 631   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 632   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 633   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 634   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 635   double base_time_ms =
 636     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 637     survivor_regions_evac_time;
 638   uint available_free_regions = _free_regions_at_end_of_collection;
 639   uint base_free_regions = 0;
 640   if (available_free_regions > _reserve_regions) {
 641     base_free_regions = available_free_regions - _reserve_regions;
 642   }
 643 
 644   // Here, we will make sure that the shortest young length that
 645   // makes sense fits within the target pause time.
 646 
 647   if (predict_will_fit(min_young_length, base_time_ms,
 648                        base_free_regions, target_pause_time_ms)) {
 649     // The shortest young length will fit into the target pause time;
 650     // we'll now check whether the absolute maximum number of young
 651     // regions will fit in the target pause time. If not, we'll do
 652     // a binary search between min_young_length and max_young_length.
 653     if (predict_will_fit(max_young_length, base_time_ms,
 654                          base_free_regions, target_pause_time_ms)) {
 655       // The maximum young length will fit into the target pause time.
 656       // We are done so set min young length to the maximum length (as
 657       // the result is assumed to be returned in min_young_length).
 658       min_young_length = max_young_length;
 659     } else {
 660       // The maximum possible number of young regions will not fit within
 661       // the target pause time so we'll search for the optimal
 662       // length. The loop invariants are:
 663       //
 664       // min_young_length < max_young_length
 665       // min_young_length is known to fit into the target pause time
 666       // max_young_length is known not to fit into the target pause time
 667       //
 668       // Going into the loop we know the above hold as we've just
 669       // checked them. Every time around the loop we check whether
 670       // the middle value between min_young_length and
 671       // max_young_length fits into the target pause time. If it
 672       // does, it becomes the new min. If it doesn't, it becomes
 673       // the new max. This way we maintain the loop invariants.
 674 
 675       assert(min_young_length < max_young_length, "invariant");
 676       uint diff = (max_young_length - min_young_length) / 2;
 677       while (diff > 0) {
 678         uint young_length = min_young_length + diff;
 679         if (predict_will_fit(young_length, base_time_ms,
 680                              base_free_regions, target_pause_time_ms)) {
 681           min_young_length = young_length;
 682         } else {
 683           max_young_length = young_length;
 684         }
 685         assert(min_young_length <  max_young_length, "invariant");
 686         diff = (max_young_length - min_young_length) / 2;
 687       }
 688       // The results is min_young_length which, according to the
 689       // loop invariants, should fit within the target pause time.
 690 
 691       // These are the post-conditions of the binary search above:
 692       assert(min_young_length < max_young_length,
 693              "otherwise we should have discovered that max_young_length "
 694              "fits into the pause target and not done the binary search");
 695       assert(predict_will_fit(min_young_length, base_time_ms,
 696                               base_free_regions, target_pause_time_ms),
 697              "min_young_length, the result of the binary search, should "
 698              "fit into the pause target");
 699       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 700                                base_free_regions, target_pause_time_ms),
 701              "min_young_length, the result of the binary search, should be "
 702              "optimal, so no larger length should fit into the pause target");
 703     }
 704   } else {
 705     // Even the minimum length doesn't fit into the pause time
 706     // target, return it as the result nevertheless.
 707   }
 708   return base_min_length + min_young_length;
 709 }
 710 
 711 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 712   double survivor_regions_evac_time = 0.0;
 713   for (HeapRegion * r = _recorded_survivor_head;
 714        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 715        r = r->get_next_young_region()) {
 716     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 717   }
 718   return survivor_regions_evac_time;
 719 }
 720 
 721 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 722   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 723 
 724   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 725   if (rs_lengths > _rs_lengths_prediction) {
 726     // add 10% to avoid having to recalculate often
 727     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 728     update_rs_lengths_prediction(rs_lengths_prediction);
 729 
 730     update_young_list_max_and_target_length(rs_lengths_prediction);
 731   }
 732 }
 733 
 734 void G1CollectorPolicy::update_rs_lengths_prediction() {
 735   update_rs_lengths_prediction(get_new_prediction(_rs_lengths_seq));
 736 }
 737 
 738 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 739   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 740     _rs_lengths_prediction = prediction;
 741   }
 742 }
 743 
 744 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 745                                                bool is_tlab,
 746                                                bool* gc_overhead_limit_was_exceeded) {
 747   guarantee(false, "Not using this policy feature yet.");
 748   return NULL;
 749 }
 750 
 751 // This method controls how a collector handles one or more
 752 // of its generations being fully allocated.
 753 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 754                                                        bool is_tlab) {
 755   guarantee(false, "Not using this policy feature yet.");
 756   return NULL;
 757 }
 758 
 759 
 760 #ifndef PRODUCT
 761 bool G1CollectorPolicy::verify_young_ages() {
 762   HeapRegion* head = _g1->young_list()->first_region();
 763   return
 764     verify_young_ages(head, _short_lived_surv_rate_group);
 765   // also call verify_young_ages on any additional surv rate groups
 766 }
 767 
 768 bool
 769 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 770                                      SurvRateGroup *surv_rate_group) {
 771   guarantee( surv_rate_group != NULL, "pre-condition" );
 772 
 773   const char* name = surv_rate_group->name();
 774   bool ret = true;
 775   int prev_age = -1;
 776 
 777   for (HeapRegion* curr = head;
 778        curr != NULL;
 779        curr = curr->get_next_young_region()) {
 780     SurvRateGroup* group = curr->surv_rate_group();
 781     if (group == NULL && !curr->is_survivor()) {
 782       log_info(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 783       ret = false;
 784     }
 785 
 786     if (surv_rate_group == group) {
 787       int age = curr->age_in_surv_rate_group();
 788 
 789       if (age < 0) {
 790         log_info(gc, verify)("## %s: encountered negative age", name);
 791         ret = false;
 792       }
 793 
 794       if (age <= prev_age) {
 795         log_info(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 796         ret = false;
 797       }
 798       prev_age = age;
 799     }
 800   }
 801 
 802   return ret;
 803 }
 804 #endif // PRODUCT
 805 
 806 void G1CollectorPolicy::record_full_collection_start() {
 807   _full_collection_start_sec = os::elapsedTime();
 808   record_heap_size_info_at_start(true /* full */);
 809   // Release the future to-space so that it is available for compaction into.
 810   collector_state()->set_full_collection(true);
 811 }
 812 
 813 void G1CollectorPolicy::record_full_collection_end() {
 814   // Consider this like a collection pause for the purposes of allocation
 815   // since last pause.
 816   double end_sec = os::elapsedTime();
 817   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 818   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 819 
 820   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 821 
 822   update_recent_gc_times(end_sec, full_gc_time_ms);
 823 
 824   collector_state()->set_full_collection(false);
 825 
 826   // "Nuke" the heuristics that control the young/mixed GC
 827   // transitions and make sure we start with young GCs after the Full GC.
 828   collector_state()->set_gcs_are_young(true);
 829   collector_state()->set_last_young_gc(false);
 830   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 831   collector_state()->set_during_initial_mark_pause(false);
 832   collector_state()->set_in_marking_window(false);
 833   collector_state()->set_in_marking_window_im(false);
 834 
 835   _short_lived_surv_rate_group->start_adding_regions();
 836   // also call this on any additional surv rate groups
 837 
 838   record_survivor_regions(0, NULL, NULL);
 839 
 840   _free_regions_at_end_of_collection = _g1->num_free_regions();
 841   // Reset survivors SurvRateGroup.
 842   _survivor_surv_rate_group->reset();
 843   update_young_list_max_and_target_length();
 844   update_rs_lengths_prediction();
 845   cset_chooser()->clear();
 846 
 847   _bytes_allocated_in_old_since_last_gc = 0;
 848 
 849   record_pause(FullGC, _full_collection_start_sec, end_sec);
 850 }
 851 
 852 void G1CollectorPolicy::record_stop_world_start() {
 853   _stop_world_start = os::elapsedTime();
 854 }
 855 
 856 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 857   // We only need to do this here as the policy will only be applied
 858   // to the GC we're about to start. so, no point is calculating this
 859   // every time we calculate / recalculate the target young length.
 860   update_survivors_policy();
 861 
 862   assert(_g1->used() == _g1->recalculate_used(),
 863          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 864          _g1->used(), _g1->recalculate_used());
 865 
 866   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 867   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 868   _stop_world_start = 0.0;
 869 
 870   record_heap_size_info_at_start(false /* full */);
 871 
 872   phase_times()->record_cur_collection_start_sec(start_time_sec);
 873   _pending_cards = _g1->pending_card_num();
 874 
 875   _collection_set_bytes_used_before = 0;
 876   _bytes_copied_during_gc = 0;
 877 
 878   collector_state()->set_last_gc_was_young(false);
 879 
 880   // do that for any other surv rate groups
 881   _short_lived_surv_rate_group->stop_adding_regions();
 882   _survivors_age_table.clear();
 883 
 884   assert( verify_young_ages(), "region age verification" );
 885 }
 886 
 887 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 888                                                    mark_init_elapsed_time_ms) {
 889   collector_state()->set_during_marking(true);
 890   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 891   collector_state()->set_during_initial_mark_pause(false);
 892   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 893 }
 894 
 895 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 896   _mark_remark_start_sec = os::elapsedTime();
 897   collector_state()->set_during_marking(false);
 898 }
 899 
 900 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 901   double end_time_sec = os::elapsedTime();
 902   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 903   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 904   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 905   _prev_collection_pause_end_ms += elapsed_time_ms;
 906 
 907   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 908 }
 909 
 910 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 911   _mark_cleanup_start_sec = os::elapsedTime();
 912 }
 913 
 914 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 915   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 916                                                               "skip last young-only gc");
 917   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 918   // We skip the marking phase.
 919   if (!should_continue_with_reclaim) {
 920     abort_time_to_mixed_tracking();
 921   }
 922   collector_state()->set_in_marking_window(false);
 923 }
 924 
 925 void G1CollectorPolicy::record_concurrent_pause() {
 926   if (_stop_world_start > 0.0) {
 927     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 928     _trace_young_gen_time_data.record_yield_time(yield_ms);
 929   }
 930 }
 931 
 932 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 933   return phase_times()->average_time_ms(phase);
 934 }
 935 
 936 double G1CollectorPolicy::young_other_time_ms() const {
 937   return phase_times()->young_cset_choice_time_ms() +
 938          phase_times()->young_free_cset_time_ms();
 939 }
 940 
 941 double G1CollectorPolicy::non_young_other_time_ms() const {
 942   return phase_times()->non_young_cset_choice_time_ms() +
 943          phase_times()->non_young_free_cset_time_ms();
 944 
 945 }
 946 
 947 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 948   return pause_time_ms -
 949          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 950          average_time_ms(G1GCPhaseTimes::ScanRS) -
 951          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 952          average_time_ms(G1GCPhaseTimes::Termination);
 953 }
 954 
 955 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 956   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 957 }
 958 
 959 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 960   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 961 }
 962 
 963 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 964   if (about_to_start_mixed_phase()) {
 965     return false;
 966   }
 967 
 968   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 969 
 970   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 971   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 972   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 973 
 974   bool result = false;
 975   if (marking_request_bytes > marking_initiating_used_threshold) {
 976     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 977     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 978                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 979                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 980   }
 981 
 982   return result;
 983 }
 984 
 985 // Anything below that is considered to be zero
 986 #define MIN_TIMER_GRANULARITY 0.0000001
 987 
 988 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned) {
 989   double end_time_sec = os::elapsedTime();
 990 
 991   size_t cur_used_bytes = _g1->used();
 992   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 993   bool last_pause_included_initial_mark = false;
 994   bool update_stats = !_g1->evacuation_failed();
 995 
 996   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 997 
 998   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 999 
1000   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
1001   if (last_pause_included_initial_mark) {
1002     record_concurrent_mark_init_end(0.0);
1003   } else {
1004     maybe_start_marking();
1005   }
1006 
1007   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
1008   if (app_time_ms < MIN_TIMER_GRANULARITY) {
1009     // This usually happens due to the timer not having the required
1010     // granularity. Some Linuxes are the usual culprits.
1011     // We'll just set it to something (arbitrarily) small.
1012     app_time_ms = 1.0;
1013   }
1014 
1015   if (update_stats) {
1016     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
1017     // We maintain the invariant that all objects allocated by mutator
1018     // threads will be allocated out of eden regions. So, we can use
1019     // the eden region number allocated since the previous GC to
1020     // calculate the application's allocate rate. The only exception
1021     // to that is humongous objects that are allocated separately. But
1022     // given that humongous object allocations do not really affect
1023     // either the pause's duration nor when the next pause will take
1024     // place we can safely ignore them here.
1025     uint regions_allocated = eden_cset_region_length();
1026     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1027     _alloc_rate_ms_seq->add(alloc_rate_ms);
1028 
1029     double interval_ms =
1030       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1031     update_recent_gc_times(end_time_sec, pause_time_ms);
1032     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1033     if (recent_avg_pause_time_ratio() < 0.0 ||
1034         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1035       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1036       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1037       if (_recent_avg_pause_time_ratio < 0.0) {
1038         _recent_avg_pause_time_ratio = 0.0;
1039       } else {
1040         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1041         _recent_avg_pause_time_ratio = 1.0;
1042       }
1043     }
1044 
1045     // Compute the ratio of just this last pause time to the entire time range stored
1046     // in the vectors. Comparing this pause to the entire range, rather than only the
1047     // most recent interval, has the effect of smoothing over a possible transient 'burst'
1048     // of more frequent pauses that don't really reflect a change in heap occupancy.
1049     // This reduces the likelihood of a needless heap expansion being triggered.
1050     _last_pause_time_ratio =
1051       (pause_time_ms * _recent_prev_end_times_for_all_gcs_sec->num()) / interval_ms;
1052   }
1053 
1054   bool new_in_marking_window = collector_state()->in_marking_window();
1055   bool new_in_marking_window_im = false;
1056   if (last_pause_included_initial_mark) {
1057     new_in_marking_window = true;
1058     new_in_marking_window_im = true;
1059   }
1060 
1061   if (collector_state()->last_young_gc()) {
1062     // This is supposed to to be the "last young GC" before we start
1063     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1064     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
1065 
1066     if (next_gc_should_be_mixed("start mixed GCs",
1067                                 "do not start mixed GCs")) {
1068       collector_state()->set_gcs_are_young(false);
1069     } else {
1070       // We aborted the mixed GC phase early.
1071       abort_time_to_mixed_tracking();
1072     }
1073 
1074     collector_state()->set_last_young_gc(false);
1075   }
1076 
1077   if (!collector_state()->last_gc_was_young()) {
1078     // This is a mixed GC. Here we decide whether to continue doing
1079     // mixed GCs or not.
1080     if (!next_gc_should_be_mixed("continue mixed GCs",
1081                                  "do not continue mixed GCs")) {
1082       collector_state()->set_gcs_are_young(true);
1083 
1084       maybe_start_marking();
1085     }
1086   }
1087 
1088   _short_lived_surv_rate_group->start_adding_regions();
1089   // Do that for any other surv rate groups
1090 
1091   if (update_stats) {
1092     double cost_per_card_ms = 0.0;
1093     double cost_scan_hcc = average_time_ms(G1GCPhaseTimes::ScanHCC);
1094     if (_pending_cards > 0) {
1095       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - cost_scan_hcc) / (double) _pending_cards;
1096       _cost_per_card_ms_seq->add(cost_per_card_ms);
1097     }
1098     _cost_scan_hcc_seq->add(cost_scan_hcc);
1099 
1100     double cost_per_entry_ms = 0.0;
1101     if (cards_scanned > 10) {
1102       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1103       if (collector_state()->last_gc_was_young()) {
1104         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1105       } else {
1106         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1107       }
1108     }
1109 
1110     if (_max_rs_lengths > 0) {
1111       double cards_per_entry_ratio =
1112         (double) cards_scanned / (double) _max_rs_lengths;
1113       if (collector_state()->last_gc_was_young()) {
1114         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1115       } else {
1116         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1117       }
1118     }
1119 
1120     // This is defensive. For a while _max_rs_lengths could get
1121     // smaller than _recorded_rs_lengths which was causing
1122     // rs_length_diff to get very large and mess up the RSet length
1123     // predictions. The reason was unsafe concurrent updates to the
1124     // _inc_cset_recorded_rs_lengths field which the code below guards
1125     // against (see CR 7118202). This bug has now been fixed (see CR
1126     // 7119027). However, I'm still worried that
1127     // _inc_cset_recorded_rs_lengths might still end up somewhat
1128     // inaccurate. The concurrent refinement thread calculates an
1129     // RSet's length concurrently with other CR threads updating it
1130     // which might cause it to calculate the length incorrectly (if,
1131     // say, it's in mid-coarsening). So I'll leave in the defensive
1132     // conditional below just in case.
1133     size_t rs_length_diff = 0;
1134     if (_max_rs_lengths > _recorded_rs_lengths) {
1135       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1136     }
1137     _rs_length_diff_seq->add((double) rs_length_diff);
1138 
1139     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1140     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1141     double cost_per_byte_ms = 0.0;
1142 
1143     if (copied_bytes > 0) {
1144       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1145       if (collector_state()->in_marking_window()) {
1146         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1147       } else {
1148         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1149       }
1150     }
1151 
1152     if (young_cset_region_length() > 0) {
1153       _young_other_cost_per_region_ms_seq->add(young_other_time_ms() /
1154                                                young_cset_region_length());
1155     }
1156 
1157     if (old_cset_region_length() > 0) {
1158       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms() /
1159                                                    old_cset_region_length());
1160     }
1161 
1162     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1163 
1164     _pending_cards_seq->add((double) _pending_cards);
1165     _rs_lengths_seq->add((double) _max_rs_lengths);
1166   }
1167 
1168   collector_state()->set_in_marking_window(new_in_marking_window);
1169   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1170   _free_regions_at_end_of_collection = _g1->num_free_regions();
1171   // IHOP control wants to know the expected young gen length if it were not
1172   // restrained by the heap reserve. Using the actual length would make the
1173   // prediction too small and the limit the young gen every time we get to the
1174   // predicted target occupancy.
1175   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
1176   update_rs_lengths_prediction();
1177 
1178   update_ihop_prediction(app_time_ms / 1000.0,
1179                          _bytes_allocated_in_old_since_last_gc,
1180                          last_unrestrained_young_length * HeapRegion::GrainBytes);
1181   _bytes_allocated_in_old_since_last_gc = 0;
1182 
1183   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
1184 
1185   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1186   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1187 
1188   double scan_hcc_time_ms = average_time_ms(G1GCPhaseTimes::ScanHCC);
1189 
1190   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1191     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1192                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1193                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1194 
1195     update_rs_time_goal_ms = 0;
1196   } else {
1197     update_rs_time_goal_ms -= scan_hcc_time_ms;
1198   }
1199   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1200                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1201                                update_rs_time_goal_ms);
1202 
1203   cset_chooser()->verify();
1204 }
1205 
1206 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
1207   if (G1UseAdaptiveIHOP) {
1208     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
1209                                      G1CollectedHeap::heap()->max_capacity(),
1210                                      &_predictor,
1211                                      G1ReservePercent,
1212                                      G1HeapWastePercent);
1213   } else {
1214     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent,
1215                                    G1CollectedHeap::heap()->max_capacity());
1216   }
1217 }
1218 
1219 void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,
1220                                                size_t mutator_alloc_bytes,
1221                                                size_t young_gen_size) {
1222   // Always try to update IHOP prediction. Even evacuation failures give information
1223   // about e.g. whether to start IHOP earlier next time.
1224 
1225   // Avoid using really small application times that might create samples with
1226   // very high or very low values. They may be caused by e.g. back-to-back gcs.
1227   double const min_valid_time = 1e-6;
1228 
1229   bool report = false;
1230 
1231   double marking_to_mixed_time = -1.0;
1232   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
1233     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
1234     assert(marking_to_mixed_time > 0.0,
1235            "Initial mark to mixed time must be larger than zero but is %.3f",
1236            marking_to_mixed_time);
1237     if (marking_to_mixed_time > min_valid_time) {
1238       _ihop_control->update_marking_length(marking_to_mixed_time);
1239       report = true;
1240     }
1241   }
1242 
1243   // As an approximation for the young gc promotion rates during marking we use
1244   // all of them. In many applications there are only a few if any young gcs during
1245   // marking, which makes any prediction useless. This increases the accuracy of the
1246   // prediction.
1247   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
1248     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1249     report = true;
1250   }
1251 
1252   if (report) {
1253     report_ihop_statistics();
1254   }
1255 }
1256 
1257 void G1CollectorPolicy::report_ihop_statistics() {
1258   _ihop_control->print();
1259 }
1260 
1261 #define EXT_SIZE_FORMAT "%.1f%s"
1262 #define EXT_SIZE_PARAMS(bytes)                                  \
1263   byte_size_in_proper_unit((double)(bytes)),                    \
1264   proper_unit_for_byte_size((bytes))
1265 
1266 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1267   YoungList* young_list = _g1->young_list();
1268   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1269   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1270   _heap_capacity_bytes_before_gc = _g1->capacity();
1271   _old_used_bytes_before_gc = _g1->old_regions_count() * HeapRegion::GrainBytes;
1272   _humongous_used_bytes_before_gc = _g1->humongous_regions_count() * HeapRegion::GrainBytes;
1273   _heap_used_bytes_before_gc = _g1->used();
1274   _eden_capacity_bytes_before_gc = (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1275   _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1276 }
1277 
1278 void G1CollectorPolicy::print_detailed_heap_transition() const {
1279   YoungList* young_list = _g1->young_list();
1280 
1281   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1282   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1283   size_t heap_used_bytes_after_gc = _g1->used();
1284   size_t old_used_bytes_after_gc = _g1->old_regions_count() * HeapRegion::GrainBytes;
1285   size_t humongous_used_bytes_after_gc = _g1->humongous_regions_count() * HeapRegion::GrainBytes;
1286 
1287   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1288   size_t eden_capacity_bytes_after_gc =
1289     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1290   size_t survivor_capacity_bytes_after_gc = _max_survivor_regions * HeapRegion::GrainBytes;
1291 
1292   log_info(gc, heap)("Eden: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1293                      _eden_used_bytes_before_gc / K, eden_used_bytes_after_gc /K, eden_capacity_bytes_after_gc /K);
1294   log_info(gc, heap)("Survivor: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1295                      _survivor_used_bytes_before_gc / K, survivor_used_bytes_after_gc /K, survivor_capacity_bytes_after_gc /K);
1296   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K",
1297                      _old_used_bytes_before_gc / K, old_used_bytes_after_gc /K);
1298   log_info(gc, heap)("Humongous: " SIZE_FORMAT "K->" SIZE_FORMAT "K",
1299                      _humongous_used_bytes_before_gc / K, humongous_used_bytes_after_gc /K);
1300 
1301   MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1302 }
1303 
1304 void G1CollectorPolicy::print_phases(double pause_time_sec) {
1305   phase_times()->print(pause_time_sec);
1306 }
1307 
1308 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1309                                                      double update_rs_processed_buffers,
1310                                                      double goal_ms) {
1311   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1312   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1313 
1314   if (G1UseAdaptiveConcRefinement) {
1315     const int k_gy = 3, k_gr = 6;
1316     const double inc_k = 1.1, dec_k = 0.9;
1317 
1318     int g = cg1r->green_zone();
1319     if (update_rs_time > goal_ms) {
1320       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1321     } else {
1322       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1323         g = (int)MAX2(g * inc_k, g + 1.0);
1324       }
1325     }
1326     // Change the refinement threads params
1327     cg1r->set_green_zone(g);
1328     cg1r->set_yellow_zone(g * k_gy);
1329     cg1r->set_red_zone(g * k_gr);
1330     cg1r->reinitialize_threads();
1331 
1332     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * _predictor.sigma()), 1);
1333     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1334                                     cg1r->yellow_zone());
1335     // Change the barrier params
1336     dcqs.set_process_completed_threshold(processing_threshold);
1337     dcqs.set_max_completed_queue(cg1r->red_zone());
1338   }
1339 
1340   int curr_queue_size = dcqs.completed_buffers_num();
1341   if (curr_queue_size >= cg1r->yellow_zone()) {
1342     dcqs.set_completed_queue_padding(curr_queue_size);
1343   } else {
1344     dcqs.set_completed_queue_padding(0);
1345   }
1346   dcqs.notify_if_necessary();
1347 }
1348 
1349 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1350   return (size_t) get_new_prediction(_rs_length_diff_seq);
1351 }
1352 
1353 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1354   return get_new_prediction(_alloc_rate_ms_seq);
1355 }
1356 
1357 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1358   return get_new_prediction(_cost_per_card_ms_seq);
1359 }
1360 
1361 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1362   return get_new_prediction(_cost_scan_hcc_seq);
1363 }
1364 
1365 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1366   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1367 }
1368 
1369 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1370   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1371 }
1372 
1373 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1374   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1375     return predict_young_cards_per_entry_ratio();
1376   } else {
1377     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1378   }
1379 }
1380 
1381 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1382   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1383 }
1384 
1385 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1386   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1387 }
1388 
1389 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1390   if (collector_state()->gcs_are_young()) {
1391     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1392   } else {
1393     return predict_mixed_rs_scan_time_ms(card_num);
1394   }
1395 }
1396 
1397 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1398   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1399     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1400   } else {
1401     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1402   }
1403 }
1404 
1405 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1406   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1407     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1408   } else {
1409     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1410   }
1411 }
1412 
1413 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1414   if (collector_state()->during_concurrent_mark()) {
1415     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1416   } else {
1417     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1418   }
1419 }
1420 
1421 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1422   return get_new_prediction(_constant_other_time_ms_seq);
1423 }
1424 
1425 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1426   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1427 }
1428 
1429 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1430   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1431 }
1432 
1433 double G1CollectorPolicy::predict_remark_time_ms() const {
1434   return get_new_prediction(_concurrent_mark_remark_times_ms);
1435 }
1436 
1437 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1438   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1439 }
1440 
1441 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1442   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1443   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1444   double pred = get_new_prediction(seq);
1445   if (pred > 1.0) {
1446     pred = 1.0;
1447   }
1448   return pred;
1449 }
1450 
1451 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1452   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1453 }
1454 
1455 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1456   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1457 }
1458 
1459 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1460                                                        size_t scanned_cards) const {
1461   return
1462     predict_rs_update_time_ms(pending_cards) +
1463     predict_rs_scan_time_ms(scanned_cards) +
1464     predict_constant_other_time_ms();
1465 }
1466 
1467 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1468   size_t rs_length = predict_rs_length_diff();
1469   size_t card_num;
1470   if (collector_state()->gcs_are_young()) {
1471     card_num = predict_young_card_num(rs_length);
1472   } else {
1473     card_num = predict_non_young_card_num(rs_length);
1474   }
1475   return predict_base_elapsed_time_ms(pending_cards, card_num);
1476 }
1477 
1478 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1479   size_t bytes_to_copy;
1480   if (hr->is_marked())
1481     bytes_to_copy = hr->max_live_bytes();
1482   else {
1483     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1484     int age = hr->age_in_surv_rate_group();
1485     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1486     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1487   }
1488   return bytes_to_copy;
1489 }
1490 
1491 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1492                                                          bool for_young_gc) const {
1493   size_t rs_length = hr->rem_set()->occupied();
1494   size_t card_num;
1495 
1496   // Predicting the number of cards is based on which type of GC
1497   // we're predicting for.
1498   if (for_young_gc) {
1499     card_num = predict_young_card_num(rs_length);
1500   } else {
1501     card_num = predict_non_young_card_num(rs_length);
1502   }
1503   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1504 
1505   double region_elapsed_time_ms =
1506     predict_rs_scan_time_ms(card_num) +
1507     predict_object_copy_time_ms(bytes_to_copy);
1508 
1509   // The prediction of the "other" time for this region is based
1510   // upon the region type and NOT the GC type.
1511   if (hr->is_young()) {
1512     region_elapsed_time_ms += predict_young_other_time_ms(1);
1513   } else {
1514     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1515   }
1516   return region_elapsed_time_ms;
1517 }
1518 
1519 void G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1520                                                  uint survivor_cset_region_length) {
1521   _eden_cset_region_length     = eden_cset_region_length;
1522   _survivor_cset_region_length = survivor_cset_region_length;
1523   _old_cset_region_length      = 0;
1524 }
1525 
1526 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1527   _recorded_rs_lengths = rs_lengths;
1528 }
1529 
1530 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1531                                                double elapsed_ms) {
1532   _recent_gc_times_ms->add(elapsed_ms);
1533   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1534   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1535 }
1536 
1537 void G1CollectorPolicy::clear_ratio_check_data() {
1538   _ratio_over_threshold_count = 0;
1539   _ratio_over_threshold_sum = 0.0;
1540   _pauses_since_start = 0;
1541 }
1542 
1543 size_t G1CollectorPolicy::expansion_amount() {
1544   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1545   double last_gc_overhead = _last_pause_time_ratio * 100.0;
1546   double threshold = _gc_overhead_perc;
1547   size_t expand_bytes = 0;
1548 
1549   // If the heap is at less than half its maximum size, scale the threshold down,
1550   // to a limit of 1. Thus the smaller the heap is, the more likely it is to expand,
1551   // though the scaling code will likely keep the increase small.
1552   if (_g1->capacity() <= _g1->max_capacity() / 2) {
1553     threshold *= (double)_g1->capacity() / (double)(_g1->max_capacity() / 2);
1554     threshold = MAX2(threshold, 1.0);
1555   }
1556 
1557   // If the last GC time ratio is over the threshold, increment the count of
1558   // times it has been exceeded, and add this ratio to the sum of exceeded
1559   // ratios.
1560   if (last_gc_overhead > threshold) {
1561     _ratio_over_threshold_count++;
1562     _ratio_over_threshold_sum += last_gc_overhead;
1563   }
1564 
1565   // Check if we've had enough GC time ratio checks that were over the
1566   // threshold to trigger an expansion. We'll also expand if we've
1567   // reached the end of the history buffer and the average of all entries
1568   // is still over the threshold. This indicates a smaller number of GCs were
1569   // long enough to make the average exceed the threshold.
1570   bool filled_history_buffer = _pauses_since_start == NumPrevPausesForHeuristics;
1571   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
1572       (filled_history_buffer && (recent_gc_overhead > threshold))) {
1573     size_t min_expand_bytes = HeapRegion::GrainBytes;
1574     size_t reserved_bytes = _g1->max_capacity();
1575     size_t committed_bytes = _g1->capacity();
1576     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1577     size_t expand_bytes_via_pct =
1578       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1579     double scale_factor = 1.0;
1580 
1581     // If the current size is less than 1/4 of the Initial heap size, expand
1582     // by half of the delta between the current and Initial sizes. IE, grow
1583     // back quickly.
1584     //
1585     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
1586     // the available expansion space, whichever is smaller, as the base
1587     // expansion size. Then possibly scale this size according to how much the
1588     // threshold has (on average) been exceeded by. If the delta is small
1589     // (less than the StartScaleDownAt value), scale the size down linearly, but
1590     // not by less than MinScaleDownFactor. If the delta is large (greater than
1591     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
1592     // times the base size. The scaling will be linear in the range from
1593     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
1594     // ScaleUpRange sets the rate of scaling up.
1595     if (committed_bytes < InitialHeapSize / 4) {
1596       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
1597     } else {
1598       double const MinScaleDownFactor = 0.2;
1599       double const MaxScaleUpFactor = 2;
1600       double const StartScaleDownAt = _gc_overhead_perc;
1601       double const StartScaleUpAt = _gc_overhead_perc * 1.5;
1602       double const ScaleUpRange = _gc_overhead_perc * 2.0;
1603 
1604       double ratio_delta;
1605       if (filled_history_buffer) {
1606         ratio_delta = recent_gc_overhead - threshold;
1607       } else {
1608         ratio_delta = (_ratio_over_threshold_sum/_ratio_over_threshold_count) - threshold;
1609       }
1610 
1611       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1612       if (ratio_delta < StartScaleDownAt) {
1613         scale_factor = ratio_delta / StartScaleDownAt;
1614         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
1615       } else if (ratio_delta > StartScaleUpAt) {
1616         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
1617         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
1618       }
1619     }
1620 
1621     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1622                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B base expansion amount and scale: " SIZE_FORMAT "B (%1.2f%%)",
1623                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes, scale_factor * 100);
1624 
1625     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
1626 
1627     // Ensure the expansion size is at least the minimum growth amount
1628     // and at most the remaining uncommitted byte size.
1629     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1630     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1631 
1632     clear_ratio_check_data();
1633   } else {
1634     // An expansion was not triggered. If we've started counting, increment
1635     // the number of checks we've made in the current window.  If we've
1636     // reached the end of the window without resizing, clear the counters to
1637     // start again the next time we see a ratio above the threshold.
1638     if (_ratio_over_threshold_count > 0) {
1639       _pauses_since_start++;
1640       if (_pauses_since_start > NumPrevPausesForHeuristics) {
1641         clear_ratio_check_data();
1642       }
1643     }
1644   }
1645 
1646   return expand_bytes;
1647 }
1648 
1649 void G1CollectorPolicy::print_tracing_info() const {
1650   _trace_young_gen_time_data.print();
1651   _trace_old_gen_time_data.print();
1652 }
1653 
1654 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1655 #ifndef PRODUCT
1656   _short_lived_surv_rate_group->print_surv_rate_summary();
1657   // add this call for any other surv rate groups
1658 #endif // PRODUCT
1659 }
1660 
1661 bool G1CollectorPolicy::is_young_list_full() const {
1662   uint young_list_length = _g1->young_list()->length();
1663   uint young_list_target_length = _young_list_target_length;
1664   return young_list_length >= young_list_target_length;
1665 }
1666 
1667 bool G1CollectorPolicy::can_expand_young_list() const {
1668   uint young_list_length = _g1->young_list()->length();
1669   uint young_list_max_length = _young_list_max_length;
1670   return young_list_length < young_list_max_length;
1671 }
1672 
1673 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1674   uint expansion_region_num = 0;
1675   if (GCLockerEdenExpansionPercent > 0) {
1676     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1677     double expansion_region_num_d = perc * (double) _young_list_target_length;
1678     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1679     // less than 1.0) we'll get 1.
1680     expansion_region_num = (uint) ceil(expansion_region_num_d);
1681   } else {
1682     assert(expansion_region_num == 0, "sanity");
1683   }
1684   _young_list_max_length = _young_list_target_length + expansion_region_num;
1685   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1686 }
1687 
1688 // Calculates survivor space parameters.
1689 void G1CollectorPolicy::update_survivors_policy() {
1690   double max_survivor_regions_d =
1691                  (double) _young_list_target_length / (double) SurvivorRatio;
1692   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1693   // smaller than 1.0) we'll get 1.
1694   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1695 
1696   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1697         HeapRegion::GrainWords * _max_survivor_regions, counters());
1698 }
1699 
1700 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1701   // We actually check whether we are marking here and not if we are in a
1702   // reclamation phase. This means that we will schedule a concurrent mark
1703   // even while we are still in the process of reclaiming memory.
1704   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1705   if (!during_cycle) {
1706     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1707     collector_state()->set_initiate_conc_mark_if_possible(true);
1708     return true;
1709   } else {
1710     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1711     return false;
1712   }
1713 }
1714 
1715 void G1CollectorPolicy::initiate_conc_mark() {
1716   collector_state()->set_during_initial_mark_pause(true);
1717   collector_state()->set_initiate_conc_mark_if_possible(false);
1718 }
1719 
1720 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1721   // We are about to decide on whether this pause will be an
1722   // initial-mark pause.
1723 
1724   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1725   // will set it here if we have to. However, it should be cleared by
1726   // the end of the pause (it's only set for the duration of an
1727   // initial-mark pause).
1728   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1729 
1730   if (collector_state()->initiate_conc_mark_if_possible()) {
1731     // We had noticed on a previous pause that the heap occupancy has
1732     // gone over the initiating threshold and we should start a
1733     // concurrent marking cycle. So we might initiate one.
1734 
1735     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1736       // Initiate a new initial mark if there is no marking or reclamation going on.
1737       initiate_conc_mark();
1738       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1739     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
1740       // Initiate a user requested initial mark. An initial mark must be young only
1741       // GC, so the collector state must be updated to reflect this.
1742       collector_state()->set_gcs_are_young(true);
1743       collector_state()->set_last_young_gc(false);
1744 
1745       abort_time_to_mixed_tracking();
1746       initiate_conc_mark();
1747       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1748     } else {
1749       // The concurrent marking thread is still finishing up the
1750       // previous cycle. If we start one right now the two cycles
1751       // overlap. In particular, the concurrent marking thread might
1752       // be in the process of clearing the next marking bitmap (which
1753       // we will use for the next cycle if we start one). Starting a
1754       // cycle now will be bad given that parts of the marking
1755       // information might get cleared by the marking thread. And we
1756       // cannot wait for the marking thread to finish the cycle as it
1757       // periodically yields while clearing the next marking bitmap
1758       // and, if it's in a yield point, it's waiting for us to
1759       // finish. So, at this point we will not start a cycle and we'll
1760       // let the concurrent marking thread complete the last one.
1761       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1762     }
1763   }
1764 }
1765 
1766 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1767   G1CollectedHeap* _g1h;
1768   CSetChooserParUpdater _cset_updater;
1769 
1770 public:
1771   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1772                            uint chunk_size) :
1773     _g1h(G1CollectedHeap::heap()),
1774     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1775 
1776   bool doHeapRegion(HeapRegion* r) {
1777     // Do we have any marking information for this region?
1778     if (r->is_marked()) {
1779       // We will skip any region that's currently used as an old GC
1780       // alloc region (we should not consider those for collection
1781       // before we fill them up).
1782       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1783         _cset_updater.add_region(r);
1784       }
1785     }
1786     return false;
1787   }
1788 };
1789 
1790 class ParKnownGarbageTask: public AbstractGangTask {
1791   CollectionSetChooser* _hrSorted;
1792   uint _chunk_size;
1793   G1CollectedHeap* _g1;
1794   HeapRegionClaimer _hrclaimer;
1795 
1796 public:
1797   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1798       AbstractGangTask("ParKnownGarbageTask"),
1799       _hrSorted(hrSorted), _chunk_size(chunk_size),
1800       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1801 
1802   void work(uint worker_id) {
1803     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1804     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1805   }
1806 };
1807 
1808 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1809   assert(n_workers > 0, "Active gc workers should be greater than 0");
1810   const uint overpartition_factor = 4;
1811   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1812   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1813 }
1814 
1815 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1816   cset_chooser()->clear();
1817 
1818   WorkGang* workers = _g1->workers();
1819   uint n_workers = workers->active_workers();
1820 
1821   uint n_regions = _g1->num_regions();
1822   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1823   cset_chooser()->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1824   ParKnownGarbageTask par_known_garbage_task(cset_chooser(), chunk_size, n_workers);
1825   workers->run_task(&par_known_garbage_task);
1826 
1827   cset_chooser()->sort_regions();
1828 
1829   double end_sec = os::elapsedTime();
1830   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1831   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1832   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1833   _prev_collection_pause_end_ms += elapsed_time_ms;
1834 
1835   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1836 }
1837 
1838 // Add the heap region at the head of the non-incremental collection set
1839 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1840   assert(_inc_cset_build_state == Active, "Precondition");
1841   assert(hr->is_old(), "the region should be old");
1842 
1843   assert(!hr->in_collection_set(), "should not already be in the CSet");
1844   _g1->register_old_region_with_cset(hr);
1845   hr->set_next_in_collection_set(_collection_set);
1846   _collection_set = hr;
1847   _collection_set_bytes_used_before += hr->used();
1848   size_t rs_length = hr->rem_set()->occupied();
1849   _recorded_rs_lengths += rs_length;
1850   _old_cset_region_length += 1;
1851 }
1852 
1853 // Initialize the per-collection-set information
1854 void G1CollectorPolicy::start_incremental_cset_building() {
1855   assert(_inc_cset_build_state == Inactive, "Precondition");
1856 
1857   _inc_cset_head = NULL;
1858   _inc_cset_tail = NULL;
1859   _inc_cset_bytes_used_before = 0;
1860 
1861   _inc_cset_max_finger = 0;
1862   _inc_cset_recorded_rs_lengths = 0;
1863   _inc_cset_recorded_rs_lengths_diffs = 0;
1864   _inc_cset_predicted_elapsed_time_ms = 0.0;
1865   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1866   _inc_cset_build_state = Active;
1867 }
1868 
1869 void G1CollectorPolicy::finalize_incremental_cset_building() {
1870   assert(_inc_cset_build_state == Active, "Precondition");
1871   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1872 
1873   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1874   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1875   // that adds a new region to the CSet. Further updates by the
1876   // concurrent refinement thread that samples the young RSet lengths
1877   // are accumulated in the *_diffs fields. Here we add the diffs to
1878   // the "main" fields.
1879 
1880   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1881     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1882   } else {
1883     // This is defensive. The diff should in theory be always positive
1884     // as RSets can only grow between GCs. However, given that we
1885     // sample their size concurrently with other threads updating them
1886     // it's possible that we might get the wrong size back, which
1887     // could make the calculations somewhat inaccurate.
1888     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1889     if (_inc_cset_recorded_rs_lengths >= diffs) {
1890       _inc_cset_recorded_rs_lengths -= diffs;
1891     } else {
1892       _inc_cset_recorded_rs_lengths = 0;
1893     }
1894   }
1895   _inc_cset_predicted_elapsed_time_ms +=
1896                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1897 
1898   _inc_cset_recorded_rs_lengths_diffs = 0;
1899   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1900 }
1901 
1902 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1903   // This routine is used when:
1904   // * adding survivor regions to the incremental cset at the end of an
1905   //   evacuation pause,
1906   // * adding the current allocation region to the incremental cset
1907   //   when it is retired, and
1908   // * updating existing policy information for a region in the
1909   //   incremental cset via young list RSet sampling.
1910   // Therefore this routine may be called at a safepoint by the
1911   // VM thread, or in-between safepoints by mutator threads (when
1912   // retiring the current allocation region) or a concurrent
1913   // refine thread (RSet sampling).
1914 
1915   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1916   size_t used_bytes = hr->used();
1917   _inc_cset_recorded_rs_lengths += rs_length;
1918   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1919   _inc_cset_bytes_used_before += used_bytes;
1920 
1921   // Cache the values we have added to the aggregated information
1922   // in the heap region in case we have to remove this region from
1923   // the incremental collection set, or it is updated by the
1924   // rset sampling code
1925   hr->set_recorded_rs_length(rs_length);
1926   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1927 }
1928 
1929 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1930                                                      size_t new_rs_length) {
1931   // Update the CSet information that is dependent on the new RS length
1932   assert(hr->is_young(), "Precondition");
1933   assert(!SafepointSynchronize::is_at_safepoint(),
1934                                                "should not be at a safepoint");
1935 
1936   // We could have updated _inc_cset_recorded_rs_lengths and
1937   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1938   // that atomically, as this code is executed by a concurrent
1939   // refinement thread, potentially concurrently with a mutator thread
1940   // allocating a new region and also updating the same fields. To
1941   // avoid the atomic operations we accumulate these updates on two
1942   // separate fields (*_diffs) and we'll just add them to the "main"
1943   // fields at the start of a GC.
1944 
1945   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1946   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1947   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1948 
1949   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1950   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1951   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1952   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1953 
1954   hr->set_recorded_rs_length(new_rs_length);
1955   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1956 }
1957 
1958 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1959   assert(hr->is_young(), "invariant");
1960   assert(hr->young_index_in_cset() > -1, "should have already been set");
1961   assert(_inc_cset_build_state == Active, "Precondition");
1962 
1963   // We need to clear and set the cached recorded/cached collection set
1964   // information in the heap region here (before the region gets added
1965   // to the collection set). An individual heap region's cached values
1966   // are calculated, aggregated with the policy collection set info,
1967   // and cached in the heap region here (initially) and (subsequently)
1968   // by the Young List sampling code.
1969 
1970   size_t rs_length = hr->rem_set()->occupied();
1971   add_to_incremental_cset_info(hr, rs_length);
1972 
1973   HeapWord* hr_end = hr->end();
1974   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1975 
1976   assert(!hr->in_collection_set(), "invariant");
1977   _g1->register_young_region_with_cset(hr);
1978   assert(hr->next_in_collection_set() == NULL, "invariant");
1979 }
1980 
1981 // Add the region at the RHS of the incremental cset
1982 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1983   // We should only ever be appending survivors at the end of a pause
1984   assert(hr->is_survivor(), "Logic");
1985 
1986   // Do the 'common' stuff
1987   add_region_to_incremental_cset_common(hr);
1988 
1989   // Now add the region at the right hand side
1990   if (_inc_cset_tail == NULL) {
1991     assert(_inc_cset_head == NULL, "invariant");
1992     _inc_cset_head = hr;
1993   } else {
1994     _inc_cset_tail->set_next_in_collection_set(hr);
1995   }
1996   _inc_cset_tail = hr;
1997 }
1998 
1999 // Add the region to the LHS of the incremental cset
2000 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
2001   // Survivors should be added to the RHS at the end of a pause
2002   assert(hr->is_eden(), "Logic");
2003 
2004   // Do the 'common' stuff
2005   add_region_to_incremental_cset_common(hr);
2006 
2007   // Add the region at the left hand side
2008   hr->set_next_in_collection_set(_inc_cset_head);
2009   if (_inc_cset_head == NULL) {
2010     assert(_inc_cset_tail == NULL, "Invariant");
2011     _inc_cset_tail = hr;
2012   }
2013   _inc_cset_head = hr;
2014 }
2015 
2016 #ifndef PRODUCT
2017 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2018   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2019 
2020   st->print_cr("\nCollection_set:");
2021   HeapRegion* csr = list_head;
2022   while (csr != NULL) {
2023     HeapRegion* next = csr->next_in_collection_set();
2024     assert(csr->in_collection_set(), "bad CS");
2025     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
2026                  HR_FORMAT_PARAMS(csr),
2027                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
2028                  csr->age_in_surv_rate_group_cond());
2029     csr = next;
2030   }
2031 }
2032 #endif // !PRODUCT
2033 
2034 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
2035   // Returns the given amount of reclaimable bytes (that represents
2036   // the amount of reclaimable space still to be collected) as a
2037   // percentage of the current heap capacity.
2038   size_t capacity_bytes = _g1->capacity();
2039   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
2040 }
2041 
2042 void G1CollectorPolicy::maybe_start_marking() {
2043   if (need_to_start_conc_mark("end of GC")) {
2044     // Note: this might have already been set, if during the last
2045     // pause we decided to start a cycle but at the beginning of
2046     // this pause we decided to postpone it. That's OK.
2047     collector_state()->set_initiate_conc_mark_if_possible(true);
2048   }
2049 }
2050 
2051 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
2052   assert(!collector_state()->full_collection(), "must be");
2053   if (collector_state()->during_initial_mark_pause()) {
2054     assert(collector_state()->last_gc_was_young(), "must be");
2055     assert(!collector_state()->last_young_gc(), "must be");
2056     return InitialMarkGC;
2057   } else if (collector_state()->last_young_gc()) {
2058     assert(!collector_state()->during_initial_mark_pause(), "must be");
2059     assert(collector_state()->last_gc_was_young(), "must be");
2060     return LastYoungGC;
2061   } else if (!collector_state()->last_gc_was_young()) {
2062     assert(!collector_state()->during_initial_mark_pause(), "must be");
2063     assert(!collector_state()->last_young_gc(), "must be");
2064     return MixedGC;
2065   } else {
2066     assert(collector_state()->last_gc_was_young(), "must be");
2067     assert(!collector_state()->during_initial_mark_pause(), "must be");
2068     assert(!collector_state()->last_young_gc(), "must be");
2069     return YoungOnlyGC;
2070   }
2071 }
2072 
2073 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
2074   // Manage the MMU tracker. For some reason it ignores Full GCs.
2075   if (kind != FullGC) {
2076     _mmu_tracker->add_pause(start, end);
2077   }
2078   // Manage the mutator time tracking from initial mark to first mixed gc.
2079   switch (kind) {
2080     case FullGC:
2081       abort_time_to_mixed_tracking();
2082       break;
2083     case Cleanup:
2084     case Remark:
2085     case YoungOnlyGC:
2086     case LastYoungGC:
2087       _initial_mark_to_mixed.add_pause(end - start);
2088       break;
2089     case InitialMarkGC:
2090       _initial_mark_to_mixed.record_initial_mark_end(end);
2091       break;
2092     case MixedGC:
2093       _initial_mark_to_mixed.record_mixed_gc_start(start);
2094       break;
2095     default:
2096       ShouldNotReachHere();
2097   }
2098 }
2099 
2100 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
2101   _initial_mark_to_mixed.reset();
2102 }
2103 
2104 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
2105                                                 const char* false_action_str) const {
2106   if (cset_chooser()->is_empty()) {
2107     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
2108     return false;
2109   }
2110 
2111   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
2112   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2113   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2114   double threshold = (double) G1HeapWastePercent;
2115   if (reclaimable_perc <= threshold) {
2116     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2117                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2118     return false;
2119   }
2120   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2121                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2122   return true;
2123 }
2124 
2125 uint G1CollectorPolicy::calc_min_old_cset_length() const {
2126   // The min old CSet region bound is based on the maximum desired
2127   // number of mixed GCs after a cycle. I.e., even if some old regions
2128   // look expensive, we should add them to the CSet anyway to make
2129   // sure we go through the available old regions in no more than the
2130   // maximum desired number of mixed GCs.
2131   //
2132   // The calculation is based on the number of marked regions we added
2133   // to the CSet chooser in the first place, not how many remain, so
2134   // that the result is the same during all mixed GCs that follow a cycle.
2135 
2136   const size_t region_num = (size_t) cset_chooser()->length();
2137   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
2138   size_t result = region_num / gc_num;
2139   // emulate ceiling
2140   if (result * gc_num < region_num) {
2141     result += 1;
2142   }
2143   return (uint) result;
2144 }
2145 
2146 uint G1CollectorPolicy::calc_max_old_cset_length() const {
2147   // The max old CSet region bound is based on the threshold expressed
2148   // as a percentage of the heap size. I.e., it should bound the
2149   // number of old regions added to the CSet irrespective of how many
2150   // of them are available.
2151 
2152   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
2153   const size_t region_num = g1h->num_regions();
2154   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
2155   size_t result = region_num * perc / 100;
2156   // emulate ceiling
2157   if (100 * result < region_num * perc) {
2158     result += 1;
2159   }
2160   return (uint) result;
2161 }
2162 
2163 
2164 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
2165   double young_start_time_sec = os::elapsedTime();
2166 
2167   YoungList* young_list = _g1->young_list();
2168   finalize_incremental_cset_building();
2169 
2170   guarantee(target_pause_time_ms > 0.0,
2171             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
2172   guarantee(_collection_set == NULL, "Precondition");
2173 
2174   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2175   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
2176 
2177   log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
2178                             _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
2179 
2180   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
2181 
2182   if (collector_state()->last_gc_was_young()) {
2183     _trace_young_gen_time_data.increment_young_collection_count();
2184   } else {
2185     _trace_young_gen_time_data.increment_mixed_collection_count();
2186   }
2187 
2188   // The young list is laid with the survivor regions from the previous
2189   // pause are appended to the RHS of the young list, i.e.
2190   //   [Newly Young Regions ++ Survivors from last pause].
2191 
2192   uint survivor_region_length = young_list->survivor_length();
2193   uint eden_region_length = young_list->eden_length();
2194   init_cset_region_lengths(eden_region_length, survivor_region_length);
2195 
2196   HeapRegion* hr = young_list->first_survivor_region();
2197   while (hr != NULL) {
2198     assert(hr->is_survivor(), "badly formed young list");
2199     // There is a convention that all the young regions in the CSet
2200     // are tagged as "eden", so we do this for the survivors here. We
2201     // use the special set_eden_pre_gc() as it doesn't check that the
2202     // region is free (which is not the case here).
2203     hr->set_eden_pre_gc();
2204     hr = hr->get_next_young_region();
2205   }
2206 
2207   // Clear the fields that point to the survivor list - they are all young now.
2208   young_list->clear_survivors();
2209 
2210   _collection_set = _inc_cset_head;
2211   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2212   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2213 
2214   log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
2215                             eden_region_length, survivor_region_length, _inc_cset_predicted_elapsed_time_ms, target_pause_time_ms);
2216 
2217   // The number of recorded young regions is the incremental
2218   // collection set's current size
2219   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2220 
2221   double young_end_time_sec = os::elapsedTime();
2222   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2223 
2224   return time_remaining_ms;
2225 }
2226 
2227 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
2228   double non_young_start_time_sec = os::elapsedTime();
2229   double predicted_old_time_ms = 0.0;
2230 
2231 
2232   if (!collector_state()->gcs_are_young()) {
2233     cset_chooser()->verify();
2234     const uint min_old_cset_length = calc_min_old_cset_length();
2235     const uint max_old_cset_length = calc_max_old_cset_length();
2236 
2237     uint expensive_region_num = 0;
2238     bool check_time_remaining = adaptive_young_list_length();
2239 
2240     HeapRegion* hr = cset_chooser()->peek();
2241     while (hr != NULL) {
2242       if (old_cset_region_length() >= max_old_cset_length) {
2243         // Added maximum number of old regions to the CSet.
2244         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",
2245                                   old_cset_region_length(), max_old_cset_length);
2246         break;
2247       }
2248 
2249 
2250       // Stop adding regions if the remaining reclaimable space is
2251       // not above G1HeapWastePercent.
2252       size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2253       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2254       double threshold = (double) G1HeapWastePercent;
2255       if (reclaimable_perc <= threshold) {
2256         // We've added enough old regions that the amount of uncollected
2257         // reclaimable space is at or below the waste threshold. Stop
2258         // adding old regions to the CSet.
2259         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
2260                                   "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
2261                                   old_cset_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2262         break;
2263       }
2264 
2265       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2266       if (check_time_remaining) {
2267         if (predicted_time_ms > time_remaining_ms) {
2268           // Too expensive for the current CSet.
2269 
2270           if (old_cset_region_length() >= min_old_cset_length) {
2271             // We have added the minimum number of old regions to the CSet,
2272             // we are done with this CSet.
2273             log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
2274                                       "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
2275                                       predicted_time_ms, time_remaining_ms, old_cset_region_length(), min_old_cset_length);
2276             break;
2277           }
2278 
2279           // We'll add it anyway given that we haven't reached the
2280           // minimum number of old regions.
2281           expensive_region_num += 1;
2282         }
2283       } else {
2284         if (old_cset_region_length() >= min_old_cset_length) {
2285           // In the non-auto-tuning case, we'll finish adding regions
2286           // to the CSet if we reach the minimum.
2287 
2288           log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",
2289                                     old_cset_region_length(), min_old_cset_length);
2290           break;
2291         }
2292       }
2293 
2294       // We will add this region to the CSet.
2295       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2296       predicted_old_time_ms += predicted_time_ms;
2297       cset_chooser()->pop(); // already have region via peek()
2298       _g1->old_set_remove(hr);
2299       add_old_region_to_cset(hr);
2300 
2301       hr = cset_chooser()->peek();
2302     }
2303     if (hr == NULL) {
2304       log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
2305     }
2306 
2307     if (expensive_region_num > 0) {
2308       // We print the information once here at the end, predicated on
2309       // whether we added any apparently expensive regions or not, to
2310       // avoid generating output per region.
2311       log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
2312                                 "old %u regions, expensive: %u regions, min %u regions, remaining time: %1.2fms",
2313                                 old_cset_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);
2314     }
2315 
2316     cset_chooser()->verify();
2317   }
2318 
2319   stop_incremental_cset_building();
2320 
2321   log_debug(gc, ergo, cset)("Finish choosing CSet. old %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
2322                             old_cset_region_length(), predicted_old_time_ms, time_remaining_ms);
2323 
2324   double non_young_end_time_sec = os::elapsedTime();
2325   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2326 }
2327 
2328 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2329   if(TraceYoungGenTime) {
2330     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2331   }
2332 }
2333 
2334 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2335   if(TraceYoungGenTime) {
2336     _all_yield_times_ms.add(yield_time_ms);
2337   }
2338 }
2339 
2340 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2341   if(TraceYoungGenTime) {
2342     _total.add(pause_time_ms);
2343     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2344     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2345     _parallel.add(phase_times->cur_collection_par_time_ms());
2346     _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2347     _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2348     _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2349     _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2350     _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2351     _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2352 
2353     double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2354       phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2355       phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2356       phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2357       phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2358       phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2359 
2360     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2361     _parallel_other.add(parallel_other_time);
2362     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2363   }
2364 }
2365 
2366 void TraceYoungGenTimeData::increment_young_collection_count() {
2367   if(TraceYoungGenTime) {
2368     ++_young_pause_num;
2369   }
2370 }
2371 
2372 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2373   if(TraceYoungGenTime) {
2374     ++_mixed_pause_num;
2375   }
2376 }
2377 
2378 void TraceYoungGenTimeData::print_summary(const char* str,
2379                                           const NumberSeq* seq) const {
2380   double sum = seq->sum();
2381   tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2382                 str, sum / 1000.0, seq->avg());
2383 }
2384 
2385 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2386                                              const NumberSeq* seq) const {
2387   print_summary(str, seq);
2388   tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2389                 "(num", seq->num(), seq->sd(), seq->maximum());
2390 }
2391 
2392 void TraceYoungGenTimeData::print() const {
2393   if (!TraceYoungGenTime) {
2394     return;
2395   }
2396 
2397   tty->print_cr("ALL PAUSES");
2398   print_summary_sd("   Total", &_total);
2399   tty->cr();
2400   tty->cr();
2401   tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2402   tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2403   tty->cr();
2404 
2405   tty->print_cr("EVACUATION PAUSES");
2406 
2407   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2408     tty->print_cr("none");
2409   } else {
2410     print_summary_sd("   Evacuation Pauses", &_total);
2411     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2412     print_summary("      Parallel Time", &_parallel);
2413     print_summary("         Ext Root Scanning", &_ext_root_scan);
2414     print_summary("         SATB Filtering", &_satb_filtering);
2415     print_summary("         Update RS", &_update_rs);
2416     print_summary("         Scan RS", &_scan_rs);
2417     print_summary("         Object Copy", &_obj_copy);
2418     print_summary("         Termination", &_termination);
2419     print_summary("         Parallel Other", &_parallel_other);
2420     print_summary("      Clear CT", &_clear_ct);
2421     print_summary("      Other", &_other);
2422   }
2423   tty->cr();
2424 
2425   tty->print_cr("MISC");
2426   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2427   print_summary_sd("   Yields", &_all_yield_times_ms);
2428 }
2429 
2430 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2431   if (TraceOldGenTime) {
2432     _all_full_gc_times.add(full_gc_time_ms);
2433   }
2434 }
2435 
2436 void TraceOldGenTimeData::print() const {
2437   if (!TraceOldGenTime) {
2438     return;
2439   }
2440 
2441   if (_all_full_gc_times.num() > 0) {
2442     tty->print("\n%4d full_gcs: total time = %8.2f s",
2443       _all_full_gc_times.num(),
2444       _all_full_gc_times.sum() / 1000.0);
2445     tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2446     tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2447       _all_full_gc_times.sd(),
2448       _all_full_gc_times.maximum());
2449   }
2450 }