1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc/g1/collectionSetChooser.hpp"
  29 #include "gc/g1/g1CollectorState.hpp"
  30 #include "gc/g1/g1GCPhaseTimes.hpp"
  31 #include "gc/g1/g1InCSetState.hpp"
  32 #include "gc/g1/g1InitialMarkToMixedTimeTracker.hpp"
  33 #include "gc/g1/g1MMUTracker.hpp"
  34 #include "gc/g1/g1Predictions.hpp"
  35 #include "gc/shared/collectorPolicy.hpp"
  36 #include "utilities/pair.hpp"
  37 
  38 // A G1CollectorPolicy makes policy decisions that determine the
  39 // characteristics of the collector.  Examples include:
  40 //   * choice of collection set.
  41 //   * when to collect.
  42 
  43 class HeapRegion;
  44 class CollectionSetChooser;
  45 class G1IHOPControl;
  46 
  47 // TraceYoungGenTime collects data on _both_ young and mixed evacuation pauses
  48 // (the latter may contain non-young regions - i.e. regions that are
  49 // technically in old) while TraceOldGenTime collects data about full GCs.
  50 class TraceYoungGenTimeData : public CHeapObj<mtGC> {
  51  private:
  52   unsigned  _young_pause_num;
  53   unsigned  _mixed_pause_num;
  54 
  55   NumberSeq _all_stop_world_times_ms;
  56   NumberSeq _all_yield_times_ms;
  57 
  58   NumberSeq _total;
  59   NumberSeq _other;
  60   NumberSeq _root_region_scan_wait;
  61   NumberSeq _parallel;
  62   NumberSeq _ext_root_scan;
  63   NumberSeq _satb_filtering;
  64   NumberSeq _update_rs;
  65   NumberSeq _scan_rs;
  66   NumberSeq _obj_copy;
  67   NumberSeq _termination;
  68   NumberSeq _parallel_other;
  69   NumberSeq _clear_ct;
  70 
  71   void print_summary(const char* str, const NumberSeq* seq) const;
  72   void print_summary_sd(const char* str, const NumberSeq* seq) const;
  73 
  74 public:
  75    TraceYoungGenTimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  76   void record_start_collection(double time_to_stop_the_world_ms);
  77   void record_yield_time(double yield_time_ms);
  78   void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
  79   void increment_young_collection_count();
  80   void increment_mixed_collection_count();
  81   void print() const;
  82 };
  83 
  84 class TraceOldGenTimeData : public CHeapObj<mtGC> {
  85  private:
  86   NumberSeq _all_full_gc_times;
  87 
  88  public:
  89   void record_full_collection(double full_gc_time_ms);
  90   void print() const;
  91 };
  92 
  93 // There are three command line options related to the young gen size:
  94 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
  95 // just a short form for NewSize==MaxNewSize). G1 will use its internal
  96 // heuristics to calculate the actual young gen size, so these options
  97 // basically only limit the range within which G1 can pick a young gen
  98 // size. Also, these are general options taking byte sizes. G1 will
  99 // internally work with a number of regions instead. So, some rounding
 100 // will occur.
 101 //
 102 // If nothing related to the the young gen size is set on the command
 103 // line we should allow the young gen to be between G1NewSizePercent
 104 // and G1MaxNewSizePercent of the heap size. This means that every time
 105 // the heap size changes, the limits for the young gen size will be
 106 // recalculated.
 107 //
 108 // If only -XX:NewSize is set we should use the specified value as the
 109 // minimum size for young gen. Still using G1MaxNewSizePercent of the
 110 // heap as maximum.
 111 //
 112 // If only -XX:MaxNewSize is set we should use the specified value as the
 113 // maximum size for young gen. Still using G1NewSizePercent of the heap
 114 // as minimum.
 115 //
 116 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
 117 // No updates when the heap size changes. There is a special case when
 118 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
 119 // different heuristic for calculating the collection set when we do mixed
 120 // collection.
 121 //
 122 // If only -XX:NewRatio is set we should use the specified ratio of the heap
 123 // as both min and max. This will be interpreted as "fixed" just like the
 124 // NewSize==MaxNewSize case above. But we will update the min and max
 125 // every time the heap size changes.
 126 //
 127 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
 128 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
 129 class G1YoungGenSizer : public CHeapObj<mtGC> {
 130 private:
 131   enum SizerKind {
 132     SizerDefaults,
 133     SizerNewSizeOnly,
 134     SizerMaxNewSizeOnly,
 135     SizerMaxAndNewSize,
 136     SizerNewRatio
 137   };
 138   SizerKind _sizer_kind;
 139   uint _min_desired_young_length;
 140   uint _max_desired_young_length;
 141   bool _adaptive_size;
 142   uint calculate_default_min_length(uint new_number_of_heap_regions);
 143   uint calculate_default_max_length(uint new_number_of_heap_regions);
 144 
 145   // Update the given values for minimum and maximum young gen length in regions
 146   // given the number of heap regions depending on the kind of sizing algorithm.
 147   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
 148 
 149 public:
 150   G1YoungGenSizer();
 151   // Calculate the maximum length of the young gen given the number of regions
 152   // depending on the sizing algorithm.
 153   uint max_young_length(uint number_of_heap_regions);
 154 
 155   void heap_size_changed(uint new_number_of_heap_regions);
 156   uint min_desired_young_length() {
 157     return _min_desired_young_length;
 158   }
 159   uint max_desired_young_length() {
 160     return _max_desired_young_length;
 161   }
 162   bool adaptive_young_list_length() const {
 163     return _adaptive_size;
 164   }
 165 };
 166 
 167 class G1CollectorPolicy: public CollectorPolicy {
 168  private:
 169   G1IHOPControl* _ihop_control;
 170 
 171   G1IHOPControl* create_ihop_control() const;
 172   // Update the IHOP control with necessary statistics.
 173   void update_ihop_prediction(double mutator_time_s,
 174                               size_t mutator_alloc_bytes,
 175                               size_t young_gen_size);
 176   void report_ihop_statistics();
 177 
 178   G1Predictions _predictor;
 179 
 180   double get_new_prediction(TruncatedSeq const* seq) const;
 181 
 182   // either equal to the number of parallel threads, if ParallelGCThreads
 183   // has been set, or 1 otherwise
 184   int _parallel_gc_threads;
 185 
 186   // The number of GC threads currently active.
 187   uintx _no_of_gc_threads;
 188 
 189   G1MMUTracker* _mmu_tracker;
 190 
 191   void initialize_alignments();
 192   void initialize_flags();
 193 
 194   CollectionSetChooser* _cset_chooser;
 195 
 196   double _full_collection_start_sec;
 197 
 198   // These exclude marking times.
 199   TruncatedSeq* _recent_gc_times_ms;
 200 
 201   TruncatedSeq* _concurrent_mark_remark_times_ms;
 202   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 203 
 204   // Ratio check data for determining if heap growth is necessary.
 205   uint _ratio_over_threshold_count;
 206   double _ratio_over_threshold_sum;
 207   uint _pauses_since_start;
 208 
 209   TraceYoungGenTimeData _trace_young_gen_time_data;
 210   TraceOldGenTimeData   _trace_old_gen_time_data;
 211 
 212   double _stop_world_start;
 213 
 214   uint _young_list_target_length;
 215   uint _young_list_fixed_length;
 216 
 217   // The max number of regions we can extend the eden by while the GC
 218   // locker is active. This should be >= _young_list_target_length;
 219   uint _young_list_max_length;
 220 
 221   SurvRateGroup* _short_lived_surv_rate_group;
 222   SurvRateGroup* _survivor_surv_rate_group;
 223   // add here any more surv rate groups
 224 
 225   double _gc_overhead_perc;
 226 
 227   double _reserve_factor;
 228   uint   _reserve_regions;
 229 
 230   enum PredictionConstants {
 231     TruncatedSeqLength = 10,
 232     NumPrevPausesForHeuristics = 10,
 233     // MinOverThresholdForGrowth must be less than NumPrevPausesForHeuristics,
 234     // representing the minimum number of pause time ratios that exceed
 235     // GCTimeRatio before a heap expansion will be triggered.
 236     MinOverThresholdForGrowth = 4
 237   };
 238 
 239   TruncatedSeq* _alloc_rate_ms_seq;
 240   double        _prev_collection_pause_end_ms;
 241 
 242   TruncatedSeq* _rs_length_diff_seq;
 243   TruncatedSeq* _cost_per_card_ms_seq;
 244   TruncatedSeq* _cost_scan_hcc_seq;
 245   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 246   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 247   TruncatedSeq* _cost_per_entry_ms_seq;
 248   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 249   TruncatedSeq* _cost_per_byte_ms_seq;
 250   TruncatedSeq* _constant_other_time_ms_seq;
 251   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 252   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 253 
 254   TruncatedSeq* _pending_cards_seq;
 255   TruncatedSeq* _rs_lengths_seq;
 256 
 257   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 258 
 259   G1YoungGenSizer* _young_gen_sizer;
 260 
 261   uint _eden_cset_region_length;
 262   uint _survivor_cset_region_length;
 263   uint _old_cset_region_length;
 264 
 265   void init_cset_region_lengths(uint eden_cset_region_length,
 266                                 uint survivor_cset_region_length);
 267 
 268   uint eden_cset_region_length() const     { return _eden_cset_region_length;     }
 269   uint survivor_cset_region_length() const { return _survivor_cset_region_length; }
 270   uint old_cset_region_length() const      { return _old_cset_region_length;      }
 271 
 272   uint _free_regions_at_end_of_collection;
 273 
 274   size_t _recorded_rs_lengths;
 275   size_t _max_rs_lengths;
 276 
 277   size_t _rs_lengths_prediction;
 278 
 279 #ifndef PRODUCT
 280   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 281 #endif // PRODUCT
 282 
 283   void adjust_concurrent_refinement(double update_rs_time,
 284                                     double update_rs_processed_buffers,
 285                                     double goal_ms);
 286 
 287   uintx no_of_gc_threads() { return _no_of_gc_threads; }
 288   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
 289 
 290   double _pause_time_target_ms;
 291 
 292   size_t _pending_cards;
 293 
 294   // The amount of allocated bytes in old gen during the last mutator and the following
 295   // young GC phase.
 296   size_t _bytes_allocated_in_old_since_last_gc;
 297 
 298   G1InitialMarkToMixedTimeTracker _initial_mark_to_mixed;
 299 public:
 300   const G1Predictions& predictor() const { return _predictor; }
 301 
 302   // Add the given number of bytes to the total number of allocated bytes in the old gen.
 303   void add_bytes_allocated_in_old_since_last_gc(size_t bytes) { _bytes_allocated_in_old_since_last_gc += bytes; }
 304 
 305   // Accessors
 306 
 307   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 308     hr->set_eden();
 309     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 310     hr->set_young_index_in_cset(young_index_in_cset);
 311   }
 312 
 313   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 314     assert(hr->is_survivor(), "pre-condition");
 315     hr->install_surv_rate_group(_survivor_surv_rate_group);
 316     hr->set_young_index_in_cset(young_index_in_cset);
 317   }
 318 
 319 #ifndef PRODUCT
 320   bool verify_young_ages();
 321 #endif // PRODUCT
 322 
 323   void record_max_rs_lengths(size_t rs_lengths) {
 324     _max_rs_lengths = rs_lengths;
 325   }
 326 
 327   size_t predict_rs_length_diff() const;
 328 
 329   double predict_alloc_rate_ms() const;
 330 
 331   double predict_cost_per_card_ms() const;
 332 
 333   double predict_scan_hcc_ms() const;
 334 
 335   double predict_rs_update_time_ms(size_t pending_cards) const;
 336 
 337   double predict_young_cards_per_entry_ratio() const;
 338 
 339   double predict_mixed_cards_per_entry_ratio() const;
 340 
 341   size_t predict_young_card_num(size_t rs_length) const;
 342 
 343   size_t predict_non_young_card_num(size_t rs_length) const;
 344 
 345   double predict_rs_scan_time_ms(size_t card_num) const;
 346 
 347   double predict_mixed_rs_scan_time_ms(size_t card_num) const;
 348 
 349   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const;
 350 
 351   double predict_object_copy_time_ms(size_t bytes_to_copy) const;
 352 
 353   double predict_constant_other_time_ms() const;
 354 
 355   double predict_young_other_time_ms(size_t young_num) const;
 356 
 357   double predict_non_young_other_time_ms(size_t non_young_num) const;
 358 
 359   double predict_base_elapsed_time_ms(size_t pending_cards) const;
 360   double predict_base_elapsed_time_ms(size_t pending_cards,
 361                                       size_t scanned_cards) const;
 362   size_t predict_bytes_to_copy(HeapRegion* hr) const;
 363   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc) const;
 364 
 365   void set_recorded_rs_lengths(size_t rs_lengths);
 366 
 367   uint cset_region_length() const       { return young_cset_region_length() +
 368                                            old_cset_region_length(); }
 369   uint young_cset_region_length() const { return eden_cset_region_length() +
 370                                            survivor_cset_region_length(); }
 371 
 372   double predict_survivor_regions_evac_time() const;
 373 
 374   bool should_update_surv_rate_group_predictors() {
 375     return collector_state()->last_gc_was_young() && !collector_state()->in_marking_window();
 376   }
 377 
 378   void cset_regions_freed() {
 379     bool update = should_update_surv_rate_group_predictors();
 380 
 381     _short_lived_surv_rate_group->all_surviving_words_recorded(update);
 382     _survivor_surv_rate_group->all_surviving_words_recorded(update);
 383   }
 384 
 385   G1MMUTracker* mmu_tracker() {
 386     return _mmu_tracker;
 387   }
 388 
 389   const G1MMUTracker* mmu_tracker() const {
 390     return _mmu_tracker;
 391   }
 392 
 393   double max_pause_time_ms() const {
 394     return _mmu_tracker->max_gc_time() * 1000.0;
 395   }
 396 
 397   double predict_remark_time_ms() const;
 398 
 399   double predict_cleanup_time_ms() const;
 400 
 401   // Returns an estimate of the survival rate of the region at yg-age
 402   // "yg_age".
 403   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const;
 404 
 405   double predict_yg_surv_rate(int age) const;
 406 
 407   double accum_yg_surv_rate_pred(int age) const;
 408 
 409 protected:
 410   virtual double average_time_ms(G1GCPhaseTimes::GCParPhases phase) const;
 411   virtual double other_time_ms(double pause_time_ms) const;
 412 
 413   double young_other_time_ms() const;
 414   double non_young_other_time_ms() const;
 415   double constant_other_time_ms(double pause_time_ms) const;
 416 
 417   CollectionSetChooser* cset_chooser() const {
 418     return _cset_chooser;
 419   }
 420 
 421 private:
 422   // Statistics kept per GC stoppage, pause or full.
 423   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 424 
 425   // Add a new GC of the given duration and end time to the record.
 426   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 427 
 428   // The head of the list (via "next_in_collection_set()") representing the
 429   // current collection set. Set from the incrementally built collection
 430   // set at the start of the pause.
 431   HeapRegion* _collection_set;
 432 
 433   // The number of bytes in the collection set before the pause. Set from
 434   // the incrementally built collection set at the start of an evacuation
 435   // pause, and incremented in finalize_old_cset_part() when adding old regions
 436   // (if any) to the collection set.
 437   size_t _collection_set_bytes_used_before;
 438 
 439   // The number of bytes copied during the GC.
 440   size_t _bytes_copied_during_gc;
 441 
 442   // The associated information that is maintained while the incremental
 443   // collection set is being built with young regions. Used to populate
 444   // the recorded info for the evacuation pause.
 445 
 446   enum CSetBuildType {
 447     Active,             // We are actively building the collection set
 448     Inactive            // We are not actively building the collection set
 449   };
 450 
 451   CSetBuildType _inc_cset_build_state;
 452 
 453   // The head of the incrementally built collection set.
 454   HeapRegion* _inc_cset_head;
 455 
 456   // The tail of the incrementally built collection set.
 457   HeapRegion* _inc_cset_tail;
 458 
 459   // The number of bytes in the incrementally built collection set.
 460   // Used to set _collection_set_bytes_used_before at the start of
 461   // an evacuation pause.
 462   size_t _inc_cset_bytes_used_before;
 463 
 464   // Used to record the highest end of heap region in collection set
 465   HeapWord* _inc_cset_max_finger;
 466 
 467   // The RSet lengths recorded for regions in the CSet. It is updated
 468   // by the thread that adds a new region to the CSet. We assume that
 469   // only one thread can be allocating a new CSet region (currently,
 470   // it does so after taking the Heap_lock) hence no need to
 471   // synchronize updates to this field.
 472   size_t _inc_cset_recorded_rs_lengths;
 473 
 474   // A concurrent refinement thread periodically samples the young
 475   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
 476   // the RSets grow. Instead of having to synchronize updates to that
 477   // field we accumulate them in this field and add it to
 478   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
 479   ssize_t _inc_cset_recorded_rs_lengths_diffs;
 480 
 481   // The predicted elapsed time it will take to collect the regions in
 482   // the CSet. This is updated by the thread that adds a new region to
 483   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 484   // MT-safety assumptions.
 485   double _inc_cset_predicted_elapsed_time_ms;
 486 
 487   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 488   double _inc_cset_predicted_elapsed_time_ms_diffs;
 489 
 490   // Stash a pointer to the g1 heap.
 491   G1CollectedHeap* _g1;
 492 
 493   G1GCPhaseTimes* _phase_times;
 494 
 495   // The ratio of gc time to elapsed time, computed over recent pauses,
 496   // and the ratio for just the last pause.
 497   double _recent_avg_pause_time_ratio;
 498   double _last_pause_time_ratio;
 499 
 500   double recent_avg_pause_time_ratio() const {
 501     return _recent_avg_pause_time_ratio;
 502   }
 503 
 504   // This set of variables tracks the collector efficiency, in order to
 505   // determine whether we should initiate a new marking.
 506   double _cur_mark_stop_world_time_ms;
 507   double _mark_remark_start_sec;
 508   double _mark_cleanup_start_sec;
 509 
 510   // Updates the internal young list maximum and target lengths. Returns the
 511   // unbounded young list target length.
 512   uint update_young_list_max_and_target_length();
 513   uint update_young_list_max_and_target_length(size_t rs_lengths);
 514 
 515   // Update the young list target length either by setting it to the
 516   // desired fixed value or by calculating it using G1's pause
 517   // prediction model. If no rs_lengths parameter is passed, predict
 518   // the RS lengths using the prediction model, otherwise use the
 519   // given rs_lengths as the prediction.
 520   // Returns the unbounded young list target length.
 521   uint update_young_list_target_length(size_t rs_lengths);
 522 
 523   // Calculate and return the minimum desired young list target
 524   // length. This is the minimum desired young list length according
 525   // to the user's inputs.
 526   uint calculate_young_list_desired_min_length(uint base_min_length) const;
 527 
 528   // Calculate and return the maximum desired young list target
 529   // length. This is the maximum desired young list length according
 530   // to the user's inputs.
 531   uint calculate_young_list_desired_max_length() const;
 532 
 533   // Calculate and return the maximum young list target length that
 534   // can fit into the pause time goal. The parameters are: rs_lengths
 535   // represent the prediction of how large the young RSet lengths will
 536   // be, base_min_length is the already existing number of regions in
 537   // the young list, min_length and max_length are the desired min and
 538   // max young list length according to the user's inputs.
 539   uint calculate_young_list_target_length(size_t rs_lengths,
 540                                           uint base_min_length,
 541                                           uint desired_min_length,
 542                                           uint desired_max_length) const;
 543 
 544   // Result of the bounded_young_list_target_length() method, containing both the
 545   // bounded as well as the unbounded young list target lengths in this order.
 546   typedef Pair<uint, uint, StackObj> YoungTargetLengths;
 547   YoungTargetLengths young_list_target_lengths(size_t rs_lengths) const;
 548 
 549   void update_rs_lengths_prediction();
 550   void update_rs_lengths_prediction(size_t prediction);
 551 
 552   // Calculate and return chunk size (in number of regions) for parallel
 553   // concurrent mark cleanup.
 554   uint calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const;
 555 
 556   // Check whether a given young length (young_length) fits into the
 557   // given target pause time and whether the prediction for the amount
 558   // of objects to be copied for the given length will fit into the
 559   // given free space (expressed by base_free_regions).  It is used by
 560   // calculate_young_list_target_length().
 561   bool predict_will_fit(uint young_length, double base_time_ms,
 562                         uint base_free_regions, double target_pause_time_ms) const;
 563 
 564   // Calculate the minimum number of old regions we'll add to the CSet
 565   // during a mixed GC.
 566   uint calc_min_old_cset_length() const;
 567 
 568   // Calculate the maximum number of old regions we'll add to the CSet
 569   // during a mixed GC.
 570   uint calc_max_old_cset_length() const;
 571 
 572   // Returns the given amount of uncollected reclaimable space
 573   // as a percentage of the current heap capacity.
 574   double reclaimable_bytes_perc(size_t reclaimable_bytes) const;
 575 
 576   // Sets up marking if proper conditions are met.
 577   void maybe_start_marking();
 578 
 579   // The kind of STW pause.
 580   enum PauseKind {
 581     FullGC,
 582     YoungOnlyGC,
 583     MixedGC,
 584     LastYoungGC,
 585     InitialMarkGC,
 586     Cleanup,
 587     Remark
 588   };
 589 
 590   // Calculate PauseKind from internal state.
 591   PauseKind young_gc_pause_kind() const;
 592   // Record the given STW pause with the given start and end times (in s).
 593   void record_pause(PauseKind kind, double start, double end);
 594   // Indicate that we aborted marking before doing any mixed GCs.
 595   void abort_time_to_mixed_tracking();
 596 public:
 597 
 598   G1CollectorPolicy();
 599 
 600   virtual ~G1CollectorPolicy();
 601 
 602   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 603 
 604   G1CollectorState* collector_state() const;
 605 
 606   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 607 
 608   // Check the current value of the young list RSet lengths and
 609   // compare it against the last prediction. If the current value is
 610   // higher, recalculate the young list target length prediction.
 611   void revise_young_list_target_length_if_necessary();
 612 
 613   // This should be called after the heap is resized.
 614   void record_new_heap_size(uint new_number_of_regions);
 615 
 616   void init();
 617 
 618   virtual void note_gc_start(uint num_active_workers);
 619 
 620   // Create jstat counters for the policy.
 621   virtual void initialize_gc_policy_counters();
 622 
 623   virtual HeapWord* mem_allocate_work(size_t size,
 624                                       bool is_tlab,
 625                                       bool* gc_overhead_limit_was_exceeded);
 626 
 627   // This method controls how a collector handles one or more
 628   // of its generations being fully allocated.
 629   virtual HeapWord* satisfy_failed_allocation(size_t size,
 630                                               bool is_tlab);
 631 
 632   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 633 
 634   bool about_to_start_mixed_phase() const;
 635 
 636   // Record the start and end of an evacuation pause.
 637   void record_collection_pause_start(double start_time_sec);
 638   void record_collection_pause_end(double pause_time_ms, size_t cards_scanned);
 639 
 640   // Record the start and end of a full collection.
 641   void record_full_collection_start();
 642   void record_full_collection_end();
 643 
 644   // Must currently be called while the world is stopped.
 645   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
 646 
 647   // Record start and end of remark.
 648   void record_concurrent_mark_remark_start();
 649   void record_concurrent_mark_remark_end();
 650 
 651   // Record start, end, and completion of cleanup.
 652   void record_concurrent_mark_cleanup_start();
 653   void record_concurrent_mark_cleanup_end();
 654   void record_concurrent_mark_cleanup_completed();
 655 
 656   // Records the information about the heap size for reporting in
 657   // print_detailed_heap_transition
 658   void record_heap_size_info_at_start(bool full);
 659 
 660   // Print heap sizing transition (with less and more detail).
 661 
 662   void print_heap_transition(size_t bytes_before) const;
 663   void print_heap_transition() const;
 664   void print_detailed_heap_transition(bool full = false) const;
 665 
 666   virtual void print_phases(double pause_time_sec);
 667 
 668   void record_stop_world_start();
 669   void record_concurrent_pause();
 670 
 671   // Record how much space we copied during a GC. This is typically
 672   // called when a GC alloc region is being retired.
 673   void record_bytes_copied_during_gc(size_t bytes) {
 674     _bytes_copied_during_gc += bytes;
 675   }
 676 
 677   // The amount of space we copied during a GC.
 678   size_t bytes_copied_during_gc() const {
 679     return _bytes_copied_during_gc;
 680   }
 681 
 682   size_t collection_set_bytes_used_before() const {
 683     return _collection_set_bytes_used_before;
 684   }
 685 
 686   // Determine whether there are candidate regions so that the
 687   // next GC should be mixed. The two action strings are used
 688   // in the ergo output when the method returns true or false.
 689   bool next_gc_should_be_mixed(const char* true_action_str,
 690                                const char* false_action_str) const;
 691 
 692   // Choose a new collection set.  Marks the chosen regions as being
 693   // "in_collection_set", and links them together.  The head and number of
 694   // the collection set are available via access methods.
 695   double finalize_young_cset_part(double target_pause_time_ms);
 696   virtual void finalize_old_cset_part(double time_remaining_ms);
 697 
 698   // The head of the list (via "next_in_collection_set()") representing the
 699   // current collection set.
 700   HeapRegion* collection_set() { return _collection_set; }
 701 
 702   void clear_collection_set() { _collection_set = NULL; }
 703 
 704   // Add old region "hr" to the CSet.
 705   void add_old_region_to_cset(HeapRegion* hr);
 706 
 707   // Incremental CSet Support
 708 
 709   // The head of the incrementally built collection set.
 710   HeapRegion* inc_cset_head() { return _inc_cset_head; }
 711 
 712   // The tail of the incrementally built collection set.
 713   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
 714 
 715   // Initialize incremental collection set info.
 716   void start_incremental_cset_building();
 717 
 718   // Perform any final calculations on the incremental CSet fields
 719   // before we can use them.
 720   void finalize_incremental_cset_building();
 721 
 722   void clear_incremental_cset() {
 723     _inc_cset_head = NULL;
 724     _inc_cset_tail = NULL;
 725   }
 726 
 727   // Stop adding regions to the incremental collection set
 728   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
 729 
 730   // Add information about hr to the aggregated information for the
 731   // incrementally built collection set.
 732   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
 733 
 734   // Update information about hr in the aggregated information for
 735   // the incrementally built collection set.
 736   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 737 
 738 private:
 739   // Update the incremental cset information when adding a region
 740   // (should not be called directly).
 741   void add_region_to_incremental_cset_common(HeapRegion* hr);
 742 
 743   // Set the state to start a concurrent marking cycle and clear
 744   // _initiate_conc_mark_if_possible because it has now been
 745   // acted on.
 746   void initiate_conc_mark();
 747 
 748 public:
 749   // Add hr to the LHS of the incremental collection set.
 750   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 751 
 752   // Add hr to the RHS of the incremental collection set.
 753   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 754 
 755 #ifndef PRODUCT
 756   void print_collection_set(HeapRegion* list_head, outputStream* st);
 757 #endif // !PRODUCT
 758 
 759   // This sets the initiate_conc_mark_if_possible() flag to start a
 760   // new cycle, as long as we are not already in one. It's best if it
 761   // is called during a safepoint when the test whether a cycle is in
 762   // progress or not is stable.
 763   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 764 
 765   // This is called at the very beginning of an evacuation pause (it
 766   // has to be the first thing that the pause does). If
 767   // initiate_conc_mark_if_possible() is true, and the concurrent
 768   // marking thread has completed its work during the previous cycle,
 769   // it will set during_initial_mark_pause() to so that the pause does
 770   // the initial-mark work and start a marking cycle.
 771   void decide_on_conc_mark_initiation();
 772 
 773   // If an expansion would be appropriate, because recent GC overhead had
 774   // exceeded the desired limit, return an amount to expand by.
 775   virtual size_t expansion_amount();
 776 
 777   // Clear ratio tracking data used by expansion_amount().
 778   void clear_ratio_check_data();
 779 
 780   // Print tracing information.
 781   void print_tracing_info() const;
 782 
 783   // Print stats on young survival ratio
 784   void print_yg_surv_rate_info() const;
 785 
 786   void finished_recalculating_age_indexes(bool is_survivors) {
 787     if (is_survivors) {
 788       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 789     } else {
 790       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 791     }
 792     // do that for any other surv rate groups
 793   }
 794 
 795   size_t young_list_target_length() const { return _young_list_target_length; }
 796 
 797   bool is_young_list_full() const;
 798 
 799   bool can_expand_young_list() const;
 800 
 801   uint young_list_max_length() const {
 802     return _young_list_max_length;
 803   }
 804 
 805   bool adaptive_young_list_length() const {
 806     return _young_gen_sizer->adaptive_young_list_length();
 807   }
 808 
 809   virtual bool should_process_references() const {
 810     return true;
 811   }
 812 
 813 private:
 814   //
 815   // Survivor regions policy.
 816   //
 817 
 818   // Current tenuring threshold, set to 0 if the collector reaches the
 819   // maximum amount of survivors regions.
 820   uint _tenuring_threshold;
 821 
 822   // The limit on the number of regions allocated for survivors.
 823   uint _max_survivor_regions;
 824 
 825   // For reporting purposes.
 826   // The value of _heap_bytes_before_gc is also used to calculate
 827   // the cost of copying.
 828 
 829   size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
 830   size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
 831   size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
 832   size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC
 833 
 834   size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
 835   size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
 836 
 837   // The amount of survivor regions after a collection.
 838   uint _recorded_survivor_regions;
 839   // List of survivor regions.
 840   HeapRegion* _recorded_survivor_head;
 841   HeapRegion* _recorded_survivor_tail;
 842 
 843   ageTable _survivors_age_table;
 844 
 845 public:
 846   uint tenuring_threshold() const { return _tenuring_threshold; }
 847 
 848   static const uint REGIONS_UNLIMITED = (uint) -1;
 849 
 850   uint max_regions(InCSetState dest) const {
 851     switch (dest.value()) {
 852       case InCSetState::Young:
 853         return _max_survivor_regions;
 854       case InCSetState::Old:
 855         return REGIONS_UNLIMITED;
 856       default:
 857         assert(false, "Unknown dest state: " CSETSTATE_FORMAT, dest.value());
 858         break;
 859     }
 860     // keep some compilers happy
 861     return 0;
 862   }
 863 
 864   void note_start_adding_survivor_regions() {
 865     _survivor_surv_rate_group->start_adding_regions();
 866   }
 867 
 868   void note_stop_adding_survivor_regions() {
 869     _survivor_surv_rate_group->stop_adding_regions();
 870   }
 871 
 872   void record_survivor_regions(uint regions,
 873                                HeapRegion* head,
 874                                HeapRegion* tail) {
 875     _recorded_survivor_regions = regions;
 876     _recorded_survivor_head    = head;
 877     _recorded_survivor_tail    = tail;
 878   }
 879 
 880   uint recorded_survivor_regions() const {
 881     return _recorded_survivor_regions;
 882   }
 883 
 884   void record_age_table(ageTable* age_table) {
 885     _survivors_age_table.merge(age_table);
 886   }
 887 
 888   void update_max_gc_locker_expansion();
 889 
 890   // Calculates survivor space parameters.
 891   void update_survivors_policy();
 892 
 893   virtual void post_heap_initialize();
 894 };
 895 
 896 #endif // SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP