1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1IHOPControl.hpp"
  32 #include "gc/g1/g1GCPhaseTimes.hpp"
  33 #include "gc/g1/heapRegion.inline.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 #include "utilities/pair.hpp"
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 G1CollectorPolicy::G1CollectorPolicy() :
  83   _predictor(G1ConfidencePercent / 100.0),
  84   _parallel_gc_threads(ParallelGCThreads),
  85 
  86   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  87   _stop_world_start(0.0),
  88 
  89   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  91 
  92   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _prev_collection_pause_end_ms(0.0),
  94   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _non_young_other_cost_per_region_ms_seq(
 106                                          new TruncatedSeq(TruncatedSeqLength)),
 107 
 108   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 109   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 110 
 111   _pause_time_target_ms((double) MaxGCPauseMillis),
 112 
 113   _recent_prev_end_times_for_all_gcs_sec(
 114                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 115 
 116   _recent_avg_pause_time_ratio(0.0),
 117   _rs_lengths_prediction(0),
 118   _max_survivor_regions(0),
 119 
 120   _eden_used_bytes_before_gc(0),
 121   _survivor_used_bytes_before_gc(0),
 122   _old_used_bytes_before_gc(0),
 123   _humongous_used_bytes_before_gc(0),
 124   _heap_used_bytes_before_gc(0),
 125   _metaspace_used_bytes_before_gc(0),
 126   _eden_capacity_bytes_before_gc(0),
 127   _heap_capacity_bytes_before_gc(0),
 128 
 129   _eden_cset_region_length(0),
 130   _survivor_cset_region_length(0),
 131   _old_cset_region_length(0),
 132 
 133   _collection_set(NULL),
 134   _collection_set_bytes_used_before(0),
 135 
 136   // Incremental CSet attributes
 137   _inc_cset_build_state(Inactive),
 138   _inc_cset_head(NULL),
 139   _inc_cset_tail(NULL),
 140   _inc_cset_bytes_used_before(0),
 141   _inc_cset_max_finger(NULL),
 142   _inc_cset_recorded_rs_lengths(0),
 143   _inc_cset_recorded_rs_lengths_diffs(0),
 144   _inc_cset_predicted_elapsed_time_ms(0.0),
 145   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 146 
 147   // add here any more surv rate groups
 148   _recorded_survivor_regions(0),
 149   _recorded_survivor_head(NULL),
 150   _recorded_survivor_tail(NULL),
 151   _survivors_age_table(true),
 152 
 153   _gc_overhead_perc(0.0),
 154 
 155   _bytes_allocated_in_old_since_last_gc(0),
 156   _ihop_control(NULL),
 157   _initial_mark_to_mixed() {
 158 
 159   // SurvRateGroups below must be initialized after the predictor because they
 160   // indirectly use it through this object passed to their constructor.
 161   _short_lived_surv_rate_group =
 162     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 163   _survivor_surv_rate_group =
 164     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 165 
 166   // Set up the region size and associated fields. Given that the
 167   // policy is created before the heap, we have to set this up here,
 168   // so it's done as soon as possible.
 169 
 170   // It would have been natural to pass initial_heap_byte_size() and
 171   // max_heap_byte_size() to setup_heap_region_size() but those have
 172   // not been set up at this point since they should be aligned with
 173   // the region size. So, there is a circular dependency here. We base
 174   // the region size on the heap size, but the heap size should be
 175   // aligned with the region size. To get around this we use the
 176   // unaligned values for the heap.
 177   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 178   HeapRegionRemSet::setup_remset_size();
 179 
 180   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 181   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 182   clear_ratio_check_data();
 183 
 184   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 185 
 186   int index = MIN2(_parallel_gc_threads - 1, 7);
 187 
 188   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 189   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 190   _cost_scan_hcc_seq->add(0.0);
 191   _young_cards_per_entry_ratio_seq->add(
 192                                   young_cards_per_entry_ratio_defaults[index]);
 193   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 194   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 195   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 196   _young_other_cost_per_region_ms_seq->add(
 197                                young_other_cost_per_region_ms_defaults[index]);
 198   _non_young_other_cost_per_region_ms_seq->add(
 199                            non_young_other_cost_per_region_ms_defaults[index]);
 200 
 201   // Below, we might need to calculate the pause time target based on
 202   // the pause interval. When we do so we are going to give G1 maximum
 203   // flexibility and allow it to do pauses when it needs to. So, we'll
 204   // arrange that the pause interval to be pause time target + 1 to
 205   // ensure that a) the pause time target is maximized with respect to
 206   // the pause interval and b) we maintain the invariant that pause
 207   // time target < pause interval. If the user does not want this
 208   // maximum flexibility, they will have to set the pause interval
 209   // explicitly.
 210 
 211   // First make sure that, if either parameter is set, its value is
 212   // reasonable.
 213   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 214     if (MaxGCPauseMillis < 1) {
 215       vm_exit_during_initialization("MaxGCPauseMillis should be "
 216                                     "greater than 0");
 217     }
 218   }
 219   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 220     if (GCPauseIntervalMillis < 1) {
 221       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 222                                     "greater than 0");
 223     }
 224   }
 225 
 226   // Then, if the pause time target parameter was not set, set it to
 227   // the default value.
 228   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 229     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 230       // The default pause time target in G1 is 200ms
 231       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 232     } else {
 233       // We do not allow the pause interval to be set without the
 234       // pause time target
 235       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 236                                     "without setting MaxGCPauseMillis");
 237     }
 238   }
 239 
 240   // Then, if the interval parameter was not set, set it according to
 241   // the pause time target (this will also deal with the case when the
 242   // pause time target is the default value).
 243   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 244     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 245   }
 246 
 247   // Finally, make sure that the two parameters are consistent.
 248   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 249     char buffer[256];
 250     jio_snprintf(buffer, 256,
 251                  "MaxGCPauseMillis (%u) should be less than "
 252                  "GCPauseIntervalMillis (%u)",
 253                  MaxGCPauseMillis, GCPauseIntervalMillis);
 254     vm_exit_during_initialization(buffer);
 255   }
 256 
 257   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 258   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 259   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 260 
 261   // start conservatively (around 50ms is about right)
 262   _concurrent_mark_remark_times_ms->add(0.05);
 263   _concurrent_mark_cleanup_times_ms->add(0.20);
 264   _tenuring_threshold = MaxTenuringThreshold;
 265 
 266   assert(GCTimeRatio > 0,
 267          "we should have set it to a default value set_g1_gc_flags() "
 268          "if a user set it to 0");
 269   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 270 
 271   uintx reserve_perc = G1ReservePercent;
 272   // Put an artificial ceiling on this so that it's not set to a silly value.
 273   if (reserve_perc > 50) {
 274     reserve_perc = 50;
 275     warning("G1ReservePercent is set to a value that is too large, "
 276             "it's been updated to " UINTX_FORMAT, reserve_perc);
 277   }
 278   _reserve_factor = (double) reserve_perc / 100.0;
 279   // This will be set when the heap is expanded
 280   // for the first time during initialization.
 281   _reserve_regions = 0;
 282 
 283   _cset_chooser = new CollectionSetChooser();
 284 }
 285 
 286 G1CollectorPolicy::~G1CollectorPolicy() {
 287   delete _ihop_control;
 288 }
 289 
 290 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 291   return _predictor.get_new_prediction(seq);
 292 }
 293 
 294 void G1CollectorPolicy::initialize_alignments() {
 295   _space_alignment = HeapRegion::GrainBytes;
 296   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 297   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 298   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 299 }
 300 
 301 void G1CollectorPolicy::initialize_flags() {
 302   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 303     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 304   }
 305 
 306   if (SurvivorRatio < 1) {
 307     vm_exit_during_initialization("Invalid survivor ratio specified");
 308   }
 309   CollectorPolicy::initialize_flags();
 310   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 311 }
 312 
 313 void G1CollectorPolicy::post_heap_initialize() {
 314   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 315   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 316   if (max_young_size != MaxNewSize) {
 317     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 318   }
 319 
 320   _ihop_control = create_ihop_control();
 321 }
 322 
 323 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 324 
 325 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 326         _min_desired_young_length(0), _max_desired_young_length(0) {
 327   if (FLAG_IS_CMDLINE(NewRatio)) {
 328     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 329       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 330     } else {
 331       _sizer_kind = SizerNewRatio;
 332       _adaptive_size = false;
 333       return;
 334     }
 335   }
 336 
 337   if (NewSize > MaxNewSize) {
 338     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 339       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 340               "A new max generation size of " SIZE_FORMAT "k will be used.",
 341               NewSize/K, MaxNewSize/K, NewSize/K);
 342     }
 343     MaxNewSize = NewSize;
 344   }
 345 
 346   if (FLAG_IS_CMDLINE(NewSize)) {
 347     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 348                                      1U);
 349     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 350       _max_desired_young_length =
 351                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 352                                   1U);
 353       _sizer_kind = SizerMaxAndNewSize;
 354       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 355     } else {
 356       _sizer_kind = SizerNewSizeOnly;
 357     }
 358   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 359     _max_desired_young_length =
 360                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 361                                   1U);
 362     _sizer_kind = SizerMaxNewSizeOnly;
 363   }
 364 }
 365 
 366 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 367   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 368   return MAX2(1U, default_value);
 369 }
 370 
 371 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 372   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 373   return MAX2(1U, default_value);
 374 }
 375 
 376 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 377   assert(number_of_heap_regions > 0, "Heap must be initialized");
 378 
 379   switch (_sizer_kind) {
 380     case SizerDefaults:
 381       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 382       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 383       break;
 384     case SizerNewSizeOnly:
 385       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 386       *max_young_length = MAX2(*min_young_length, *max_young_length);
 387       break;
 388     case SizerMaxNewSizeOnly:
 389       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 390       *min_young_length = MIN2(*min_young_length, *max_young_length);
 391       break;
 392     case SizerMaxAndNewSize:
 393       // Do nothing. Values set on the command line, don't update them at runtime.
 394       break;
 395     case SizerNewRatio:
 396       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 397       *max_young_length = *min_young_length;
 398       break;
 399     default:
 400       ShouldNotReachHere();
 401   }
 402 
 403   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 404 }
 405 
 406 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 407   // We need to pass the desired values because recalculation may not update these
 408   // values in some cases.
 409   uint temp = _min_desired_young_length;
 410   uint result = _max_desired_young_length;
 411   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 412   return result;
 413 }
 414 
 415 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 416   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 417           &_max_desired_young_length);
 418 }
 419 
 420 void G1CollectorPolicy::init() {
 421   // Set aside an initial future to_space.
 422   _g1 = G1CollectedHeap::heap();
 423 
 424   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 425 
 426   initialize_gc_policy_counters();
 427 
 428   if (adaptive_young_list_length()) {
 429     _young_list_fixed_length = 0;
 430   } else {
 431     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 432   }
 433   _free_regions_at_end_of_collection = _g1->num_free_regions();
 434 
 435   update_young_list_max_and_target_length();
 436   // We may immediately start allocating regions and placing them on the
 437   // collection set list. Initialize the per-collection set info
 438   start_incremental_cset_building();
 439 }
 440 
 441 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 442   phase_times()->note_gc_start(num_active_workers);
 443 }
 444 
 445 // Create the jstat counters for the policy.
 446 void G1CollectorPolicy::initialize_gc_policy_counters() {
 447   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 448 }
 449 
 450 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 451                                          double base_time_ms,
 452                                          uint base_free_regions,
 453                                          double target_pause_time_ms) const {
 454   if (young_length >= base_free_regions) {
 455     // end condition 1: not enough space for the young regions
 456     return false;
 457   }
 458 
 459   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 460   size_t bytes_to_copy =
 461                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 462   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 463   double young_other_time_ms = predict_young_other_time_ms(young_length);
 464   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 465   if (pause_time_ms > target_pause_time_ms) {
 466     // end condition 2: prediction is over the target pause time
 467     return false;
 468   }
 469 
 470   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 471 
 472   // When copying, we will likely need more bytes free than is live in the region.
 473   // Add some safety margin to factor in the confidence of our guess, and the
 474   // natural expected waste.
 475   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 476   // of the calculation: the lower the confidence, the more headroom.
 477   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 478   // copying due to anticipated waste in the PLABs.
 479   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 480   size_t expected_bytes_to_copy = safety_factor * bytes_to_copy;
 481 
 482   if (expected_bytes_to_copy > free_bytes) {
 483     // end condition 3: out-of-space
 484     return false;
 485   }
 486 
 487   // success!
 488   return true;
 489 }
 490 
 491 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 492   // re-calculate the necessary reserve
 493   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 494   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 495   // smaller than 1.0) we'll get 1.
 496   _reserve_regions = (uint) ceil(reserve_regions_d);
 497 
 498   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 499 }
 500 
 501 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 502                                                        uint base_min_length) const {
 503   uint desired_min_length = 0;
 504   if (adaptive_young_list_length()) {
 505     if (_alloc_rate_ms_seq->num() > 3) {
 506       double now_sec = os::elapsedTime();
 507       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 508       double alloc_rate_ms = predict_alloc_rate_ms();
 509       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 510     } else {
 511       // otherwise we don't have enough info to make the prediction
 512     }
 513   }
 514   desired_min_length += base_min_length;
 515   // make sure we don't go below any user-defined minimum bound
 516   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 517 }
 518 
 519 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 520   // Here, we might want to also take into account any additional
 521   // constraints (i.e., user-defined minimum bound). Currently, we
 522   // effectively don't set this bound.
 523   return _young_gen_sizer->max_desired_young_length();
 524 }
 525 
 526 uint G1CollectorPolicy::update_young_list_max_and_target_length() {
 527   return update_young_list_max_and_target_length(get_new_prediction(_rs_lengths_seq));
 528 }
 529 
 530 uint G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 531   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 532   update_max_gc_locker_expansion();
 533   return unbounded_target_length;
 534 }
 535 
 536 uint G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 537   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 538   _young_list_target_length = young_lengths.first;
 539   return young_lengths.second;
 540 }
 541 
 542 G1CollectorPolicy::YoungTargetLengths G1CollectorPolicy::young_list_target_lengths(size_t rs_lengths) const {
 543   YoungTargetLengths result;
 544 
 545   // Calculate the absolute and desired min bounds first.
 546 
 547   // This is how many young regions we already have (currently: the survivors).
 548   uint base_min_length = recorded_survivor_regions();
 549   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 550   // This is the absolute minimum young length. Ensure that we
 551   // will at least have one eden region available for allocation.
 552   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 553   // If we shrank the young list target it should not shrink below the current size.
 554   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 555   // Calculate the absolute and desired max bounds.
 556 
 557   uint desired_max_length = calculate_young_list_desired_max_length();
 558 
 559   uint young_list_target_length = 0;
 560   if (adaptive_young_list_length()) {
 561     if (collector_state()->gcs_are_young()) {
 562       young_list_target_length =
 563                         calculate_young_list_target_length(rs_lengths,
 564                                                            base_min_length,
 565                                                            desired_min_length,
 566                                                            desired_max_length);
 567     } else {
 568       // Don't calculate anything and let the code below bound it to
 569       // the desired_min_length, i.e., do the next GC as soon as
 570       // possible to maximize how many old regions we can add to it.
 571     }
 572   } else {
 573     // The user asked for a fixed young gen so we'll fix the young gen
 574     // whether the next GC is young or mixed.
 575     young_list_target_length = _young_list_fixed_length;
 576   }
 577 
 578   result.second = young_list_target_length;
 579 
 580   // We will try our best not to "eat" into the reserve.
 581   uint absolute_max_length = 0;
 582   if (_free_regions_at_end_of_collection > _reserve_regions) {
 583     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 584   }
 585   if (desired_max_length > absolute_max_length) {
 586     desired_max_length = absolute_max_length;
 587   }
 588 
 589   // Make sure we don't go over the desired max length, nor under the
 590   // desired min length. In case they clash, desired_min_length wins
 591   // which is why that test is second.
 592   if (young_list_target_length > desired_max_length) {
 593     young_list_target_length = desired_max_length;
 594   }
 595   if (young_list_target_length < desired_min_length) {
 596     young_list_target_length = desired_min_length;
 597   }
 598 
 599   assert(young_list_target_length > recorded_survivor_regions(),
 600          "we should be able to allocate at least one eden region");
 601   assert(young_list_target_length >= absolute_min_length, "post-condition");
 602 
 603   result.first = young_list_target_length;
 604   return result;
 605 }
 606 
 607 uint
 608 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 609                                                      uint base_min_length,
 610                                                      uint desired_min_length,
 611                                                      uint desired_max_length) const {
 612   assert(adaptive_young_list_length(), "pre-condition");
 613   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 614 
 615   // In case some edge-condition makes the desired max length too small...
 616   if (desired_max_length <= desired_min_length) {
 617     return desired_min_length;
 618   }
 619 
 620   // We'll adjust min_young_length and max_young_length not to include
 621   // the already allocated young regions (i.e., so they reflect the
 622   // min and max eden regions we'll allocate). The base_min_length
 623   // will be reflected in the predictions by the
 624   // survivor_regions_evac_time prediction.
 625   assert(desired_min_length > base_min_length, "invariant");
 626   uint min_young_length = desired_min_length - base_min_length;
 627   assert(desired_max_length > base_min_length, "invariant");
 628   uint max_young_length = desired_max_length - base_min_length;
 629 
 630   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 631   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 632   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 633   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 634   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 635   double base_time_ms =
 636     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 637     survivor_regions_evac_time;
 638   uint available_free_regions = _free_regions_at_end_of_collection;
 639   uint base_free_regions = 0;
 640   if (available_free_regions > _reserve_regions) {
 641     base_free_regions = available_free_regions - _reserve_regions;
 642   }
 643 
 644   // Here, we will make sure that the shortest young length that
 645   // makes sense fits within the target pause time.
 646 
 647   if (predict_will_fit(min_young_length, base_time_ms,
 648                        base_free_regions, target_pause_time_ms)) {
 649     // The shortest young length will fit into the target pause time;
 650     // we'll now check whether the absolute maximum number of young
 651     // regions will fit in the target pause time. If not, we'll do
 652     // a binary search between min_young_length and max_young_length.
 653     if (predict_will_fit(max_young_length, base_time_ms,
 654                          base_free_regions, target_pause_time_ms)) {
 655       // The maximum young length will fit into the target pause time.
 656       // We are done so set min young length to the maximum length (as
 657       // the result is assumed to be returned in min_young_length).
 658       min_young_length = max_young_length;
 659     } else {
 660       // The maximum possible number of young regions will not fit within
 661       // the target pause time so we'll search for the optimal
 662       // length. The loop invariants are:
 663       //
 664       // min_young_length < max_young_length
 665       // min_young_length is known to fit into the target pause time
 666       // max_young_length is known not to fit into the target pause time
 667       //
 668       // Going into the loop we know the above hold as we've just
 669       // checked them. Every time around the loop we check whether
 670       // the middle value between min_young_length and
 671       // max_young_length fits into the target pause time. If it
 672       // does, it becomes the new min. If it doesn't, it becomes
 673       // the new max. This way we maintain the loop invariants.
 674 
 675       assert(min_young_length < max_young_length, "invariant");
 676       uint diff = (max_young_length - min_young_length) / 2;
 677       while (diff > 0) {
 678         uint young_length = min_young_length + diff;
 679         if (predict_will_fit(young_length, base_time_ms,
 680                              base_free_regions, target_pause_time_ms)) {
 681           min_young_length = young_length;
 682         } else {
 683           max_young_length = young_length;
 684         }
 685         assert(min_young_length <  max_young_length, "invariant");
 686         diff = (max_young_length - min_young_length) / 2;
 687       }
 688       // The results is min_young_length which, according to the
 689       // loop invariants, should fit within the target pause time.
 690 
 691       // These are the post-conditions of the binary search above:
 692       assert(min_young_length < max_young_length,
 693              "otherwise we should have discovered that max_young_length "
 694              "fits into the pause target and not done the binary search");
 695       assert(predict_will_fit(min_young_length, base_time_ms,
 696                               base_free_regions, target_pause_time_ms),
 697              "min_young_length, the result of the binary search, should "
 698              "fit into the pause target");
 699       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 700                                base_free_regions, target_pause_time_ms),
 701              "min_young_length, the result of the binary search, should be "
 702              "optimal, so no larger length should fit into the pause target");
 703     }
 704   } else {
 705     // Even the minimum length doesn't fit into the pause time
 706     // target, return it as the result nevertheless.
 707   }
 708   return base_min_length + min_young_length;
 709 }
 710 
 711 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 712   double survivor_regions_evac_time = 0.0;
 713   for (HeapRegion * r = _recorded_survivor_head;
 714        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 715        r = r->get_next_young_region()) {
 716     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 717   }
 718   return survivor_regions_evac_time;
 719 }
 720 
 721 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 722   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 723 
 724   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 725   if (rs_lengths > _rs_lengths_prediction) {
 726     // add 10% to avoid having to recalculate often
 727     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 728     update_rs_lengths_prediction(rs_lengths_prediction);
 729 
 730     update_young_list_max_and_target_length(rs_lengths_prediction);
 731   }
 732 }
 733 
 734 void G1CollectorPolicy::update_rs_lengths_prediction() {
 735   update_rs_lengths_prediction(get_new_prediction(_rs_lengths_seq));
 736 }
 737 
 738 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 739   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 740     _rs_lengths_prediction = prediction;
 741   }
 742 }
 743 
 744 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 745                                                bool is_tlab,
 746                                                bool* gc_overhead_limit_was_exceeded) {
 747   guarantee(false, "Not using this policy feature yet.");
 748   return NULL;
 749 }
 750 
 751 // This method controls how a collector handles one or more
 752 // of its generations being fully allocated.
 753 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 754                                                        bool is_tlab) {
 755   guarantee(false, "Not using this policy feature yet.");
 756   return NULL;
 757 }
 758 
 759 
 760 #ifndef PRODUCT
 761 bool G1CollectorPolicy::verify_young_ages() {
 762   HeapRegion* head = _g1->young_list()->first_region();
 763   return
 764     verify_young_ages(head, _short_lived_surv_rate_group);
 765   // also call verify_young_ages on any additional surv rate groups
 766 }
 767 
 768 bool
 769 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 770                                      SurvRateGroup *surv_rate_group) {
 771   guarantee( surv_rate_group != NULL, "pre-condition" );
 772 
 773   const char* name = surv_rate_group->name();
 774   bool ret = true;
 775   int prev_age = -1;
 776 
 777   for (HeapRegion* curr = head;
 778        curr != NULL;
 779        curr = curr->get_next_young_region()) {
 780     SurvRateGroup* group = curr->surv_rate_group();
 781     if (group == NULL && !curr->is_survivor()) {
 782       log_info(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 783       ret = false;
 784     }
 785 
 786     if (surv_rate_group == group) {
 787       int age = curr->age_in_surv_rate_group();
 788 
 789       if (age < 0) {
 790         log_info(gc, verify)("## %s: encountered negative age", name);
 791         ret = false;
 792       }
 793 
 794       if (age <= prev_age) {
 795         log_info(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 796         ret = false;
 797       }
 798       prev_age = age;
 799     }
 800   }
 801 
 802   return ret;
 803 }
 804 #endif // PRODUCT
 805 
 806 void G1CollectorPolicy::record_full_collection_start() {
 807   _full_collection_start_sec = os::elapsedTime();
 808   record_heap_size_info_at_start(true /* full */);
 809   // Release the future to-space so that it is available for compaction into.
 810   collector_state()->set_full_collection(true);
 811 }
 812 
 813 void G1CollectorPolicy::record_full_collection_end() {
 814   // Consider this like a collection pause for the purposes of allocation
 815   // since last pause.
 816   double end_sec = os::elapsedTime();
 817   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 818   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 819 
 820   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 821 
 822   update_recent_gc_times(end_sec, full_gc_time_ms);
 823 
 824   collector_state()->set_full_collection(false);
 825 
 826   // "Nuke" the heuristics that control the young/mixed GC
 827   // transitions and make sure we start with young GCs after the Full GC.
 828   collector_state()->set_gcs_are_young(true);
 829   collector_state()->set_last_young_gc(false);
 830   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 831   collector_state()->set_during_initial_mark_pause(false);
 832   collector_state()->set_in_marking_window(false);
 833   collector_state()->set_in_marking_window_im(false);
 834 
 835   _short_lived_surv_rate_group->start_adding_regions();
 836   // also call this on any additional surv rate groups
 837 
 838   record_survivor_regions(0, NULL, NULL);
 839 
 840   _free_regions_at_end_of_collection = _g1->num_free_regions();
 841   // Reset survivors SurvRateGroup.
 842   _survivor_surv_rate_group->reset();
 843   update_young_list_max_and_target_length();
 844   update_rs_lengths_prediction();
 845   cset_chooser()->clear();
 846 
 847   _bytes_allocated_in_old_since_last_gc = 0;
 848 
 849   record_pause(FullGC, _full_collection_start_sec, end_sec);
 850 }
 851 
 852 void G1CollectorPolicy::record_stop_world_start() {
 853   _stop_world_start = os::elapsedTime();
 854 }
 855 
 856 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 857   // We only need to do this here as the policy will only be applied
 858   // to the GC we're about to start. so, no point is calculating this
 859   // every time we calculate / recalculate the target young length.
 860   update_survivors_policy();
 861 
 862   assert(_g1->used() == _g1->recalculate_used(),
 863          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 864          _g1->used(), _g1->recalculate_used());
 865 
 866   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 867   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 868   _stop_world_start = 0.0;
 869 
 870   record_heap_size_info_at_start(false /* full */);
 871 
 872   phase_times()->record_cur_collection_start_sec(start_time_sec);
 873   _pending_cards = _g1->pending_card_num();
 874 
 875   _collection_set_bytes_used_before = 0;
 876   _bytes_copied_during_gc = 0;
 877 
 878   collector_state()->set_last_gc_was_young(false);
 879 
 880   // do that for any other surv rate groups
 881   _short_lived_surv_rate_group->stop_adding_regions();
 882   _survivors_age_table.clear();
 883 
 884   assert( verify_young_ages(), "region age verification" );
 885 }
 886 
 887 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 888                                                    mark_init_elapsed_time_ms) {
 889   collector_state()->set_during_marking(true);
 890   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 891   collector_state()->set_during_initial_mark_pause(false);
 892 }
 893 
 894 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 895   _mark_remark_start_sec = os::elapsedTime();
 896   collector_state()->set_during_marking(false);
 897 }
 898 
 899 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 900   double end_time_sec = os::elapsedTime();
 901   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 902   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 903   _prev_collection_pause_end_ms += elapsed_time_ms;
 904 
 905   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 906 }
 907 
 908 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 909   _mark_cleanup_start_sec = os::elapsedTime();
 910 }
 911 
 912 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 913   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 914                                                               "skip last young-only gc");
 915   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 916   // We skip the marking phase.
 917   if (!should_continue_with_reclaim) {
 918     abort_time_to_mixed_tracking();
 919   }
 920   collector_state()->set_in_marking_window(false);
 921 }
 922 
 923 void G1CollectorPolicy::record_concurrent_pause() {
 924   if (_stop_world_start > 0.0) {
 925     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 926     _trace_young_gen_time_data.record_yield_time(yield_ms);
 927   }
 928 }
 929 
 930 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 931   return phase_times()->average_time_ms(phase);
 932 }
 933 
 934 double G1CollectorPolicy::young_other_time_ms() const {
 935   return phase_times()->young_cset_choice_time_ms() +
 936          phase_times()->young_free_cset_time_ms();
 937 }
 938 
 939 double G1CollectorPolicy::non_young_other_time_ms() const {
 940   return phase_times()->non_young_cset_choice_time_ms() +
 941          phase_times()->non_young_free_cset_time_ms();
 942 
 943 }
 944 
 945 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 946   return pause_time_ms -
 947          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 948          average_time_ms(G1GCPhaseTimes::ScanRS) -
 949          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 950          average_time_ms(G1GCPhaseTimes::Termination);
 951 }
 952 
 953 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 954   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 955 }
 956 
 957 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 958   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 959 }
 960 
 961 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 962   if (about_to_start_mixed_phase()) {
 963     return false;
 964   }
 965 
 966   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 967 
 968   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 969   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 970   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 971 
 972   bool result = false;
 973   if (marking_request_bytes > marking_initiating_used_threshold) {
 974     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 975     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 976                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 977                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 978   }
 979 
 980   return result;
 981 }
 982 
 983 // Anything below that is considered to be zero
 984 #define MIN_TIMER_GRANULARITY 0.0000001
 985 
 986 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned) {
 987   double end_time_sec = os::elapsedTime();
 988 
 989   size_t cur_used_bytes = _g1->used();
 990   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 991   bool last_pause_included_initial_mark = false;
 992   bool update_stats = !_g1->evacuation_failed();
 993 
 994   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 995 
 996   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 997 
 998   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 999   if (last_pause_included_initial_mark) {
1000     record_concurrent_mark_init_end(0.0);
1001   } else {
1002     maybe_start_marking();
1003   }
1004 
1005   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
1006   if (app_time_ms < MIN_TIMER_GRANULARITY) {
1007     // This usually happens due to the timer not having the required
1008     // granularity. Some Linuxes are the usual culprits.
1009     // We'll just set it to something (arbitrarily) small.
1010     app_time_ms = 1.0;
1011   }
1012 
1013   if (update_stats) {
1014     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
1015     // We maintain the invariant that all objects allocated by mutator
1016     // threads will be allocated out of eden regions. So, we can use
1017     // the eden region number allocated since the previous GC to
1018     // calculate the application's allocate rate. The only exception
1019     // to that is humongous objects that are allocated separately. But
1020     // given that humongous object allocations do not really affect
1021     // either the pause's duration nor when the next pause will take
1022     // place we can safely ignore them here.
1023     uint regions_allocated = eden_cset_region_length();
1024     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1025     _alloc_rate_ms_seq->add(alloc_rate_ms);
1026 
1027     double interval_ms =
1028       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1029     update_recent_gc_times(end_time_sec, pause_time_ms);
1030     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1031     if (recent_avg_pause_time_ratio() < 0.0 ||
1032         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1033       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1034       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1035       if (_recent_avg_pause_time_ratio < 0.0) {
1036         _recent_avg_pause_time_ratio = 0.0;
1037       } else {
1038         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1039         _recent_avg_pause_time_ratio = 1.0;
1040       }
1041     }
1042 
1043     // Compute the ratio of just this last pause time to the entire time range stored
1044     // in the vectors. Comparing this pause to the entire range, rather than only the
1045     // most recent interval, has the effect of smoothing over a possible transient 'burst'
1046     // of more frequent pauses that don't really reflect a change in heap occupancy.
1047     // This reduces the likelihood of a needless heap expansion being triggered.
1048     _last_pause_time_ratio =
1049       (pause_time_ms * _recent_prev_end_times_for_all_gcs_sec->num()) / interval_ms;
1050   }
1051 
1052   bool new_in_marking_window = collector_state()->in_marking_window();
1053   bool new_in_marking_window_im = false;
1054   if (last_pause_included_initial_mark) {
1055     new_in_marking_window = true;
1056     new_in_marking_window_im = true;
1057   }
1058 
1059   if (collector_state()->last_young_gc()) {
1060     // This is supposed to to be the "last young GC" before we start
1061     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1062     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
1063 
1064     if (next_gc_should_be_mixed("start mixed GCs",
1065                                 "do not start mixed GCs")) {
1066       collector_state()->set_gcs_are_young(false);
1067     } else {
1068       // We aborted the mixed GC phase early.
1069       abort_time_to_mixed_tracking();
1070     }
1071 
1072     collector_state()->set_last_young_gc(false);
1073   }
1074 
1075   if (!collector_state()->last_gc_was_young()) {
1076     // This is a mixed GC. Here we decide whether to continue doing
1077     // mixed GCs or not.
1078     if (!next_gc_should_be_mixed("continue mixed GCs",
1079                                  "do not continue mixed GCs")) {
1080       collector_state()->set_gcs_are_young(true);
1081 
1082       maybe_start_marking();
1083     }
1084   }
1085 
1086   _short_lived_surv_rate_group->start_adding_regions();
1087   // Do that for any other surv rate groups
1088 
1089   if (update_stats) {
1090     double cost_per_card_ms = 0.0;
1091     double cost_scan_hcc = average_time_ms(G1GCPhaseTimes::ScanHCC);
1092     if (_pending_cards > 0) {
1093       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - cost_scan_hcc) / (double) _pending_cards;
1094       _cost_per_card_ms_seq->add(cost_per_card_ms);
1095     }
1096     _cost_scan_hcc_seq->add(cost_scan_hcc);
1097 
1098     double cost_per_entry_ms = 0.0;
1099     if (cards_scanned > 10) {
1100       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1101       if (collector_state()->last_gc_was_young()) {
1102         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1103       } else {
1104         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1105       }
1106     }
1107 
1108     if (_max_rs_lengths > 0) {
1109       double cards_per_entry_ratio =
1110         (double) cards_scanned / (double) _max_rs_lengths;
1111       if (collector_state()->last_gc_was_young()) {
1112         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1113       } else {
1114         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1115       }
1116     }
1117 
1118     // This is defensive. For a while _max_rs_lengths could get
1119     // smaller than _recorded_rs_lengths which was causing
1120     // rs_length_diff to get very large and mess up the RSet length
1121     // predictions. The reason was unsafe concurrent updates to the
1122     // _inc_cset_recorded_rs_lengths field which the code below guards
1123     // against (see CR 7118202). This bug has now been fixed (see CR
1124     // 7119027). However, I'm still worried that
1125     // _inc_cset_recorded_rs_lengths might still end up somewhat
1126     // inaccurate. The concurrent refinement thread calculates an
1127     // RSet's length concurrently with other CR threads updating it
1128     // which might cause it to calculate the length incorrectly (if,
1129     // say, it's in mid-coarsening). So I'll leave in the defensive
1130     // conditional below just in case.
1131     size_t rs_length_diff = 0;
1132     if (_max_rs_lengths > _recorded_rs_lengths) {
1133       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1134     }
1135     _rs_length_diff_seq->add((double) rs_length_diff);
1136 
1137     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1138     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1139     double cost_per_byte_ms = 0.0;
1140 
1141     if (copied_bytes > 0) {
1142       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1143       if (collector_state()->in_marking_window()) {
1144         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1145       } else {
1146         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1147       }
1148     }
1149 
1150     if (young_cset_region_length() > 0) {
1151       _young_other_cost_per_region_ms_seq->add(young_other_time_ms() /
1152                                                young_cset_region_length());
1153     }
1154 
1155     if (old_cset_region_length() > 0) {
1156       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms() /
1157                                                    old_cset_region_length());
1158     }
1159 
1160     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1161 
1162     _pending_cards_seq->add((double) _pending_cards);
1163     _rs_lengths_seq->add((double) _max_rs_lengths);
1164   }
1165 
1166   collector_state()->set_in_marking_window(new_in_marking_window);
1167   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1168   _free_regions_at_end_of_collection = _g1->num_free_regions();
1169   // IHOP control wants to know the expected young gen length if it were not
1170   // restrained by the heap reserve. Using the actual length would make the
1171   // prediction too small and the limit the young gen every time we get to the
1172   // predicted target occupancy.
1173   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
1174   update_rs_lengths_prediction();
1175 
1176   update_ihop_prediction(app_time_ms / 1000.0,
1177                          _bytes_allocated_in_old_since_last_gc,
1178                          last_unrestrained_young_length * HeapRegion::GrainBytes);
1179   _bytes_allocated_in_old_since_last_gc = 0;
1180 
1181   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
1182 
1183   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1184   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1185 
1186   double scan_hcc_time_ms = average_time_ms(G1GCPhaseTimes::ScanHCC);
1187 
1188   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1189     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1190                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1191                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1192 
1193     update_rs_time_goal_ms = 0;
1194   } else {
1195     update_rs_time_goal_ms -= scan_hcc_time_ms;
1196   }
1197   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1198                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1199                                update_rs_time_goal_ms);
1200 
1201   cset_chooser()->verify();
1202 }
1203 
1204 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
1205   if (G1UseAdaptiveIHOP) {
1206     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
1207                                      G1CollectedHeap::heap()->max_capacity(),
1208                                      &_predictor,
1209                                      G1ReservePercent,
1210                                      G1HeapWastePercent);
1211   } else {
1212     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent,
1213                                    G1CollectedHeap::heap()->max_capacity());
1214   }
1215 }
1216 
1217 void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,
1218                                                size_t mutator_alloc_bytes,
1219                                                size_t young_gen_size) {
1220   // Always try to update IHOP prediction. Even evacuation failures give information
1221   // about e.g. whether to start IHOP earlier next time.
1222 
1223   // Avoid using really small application times that might create samples with
1224   // very high or very low values. They may be caused by e.g. back-to-back gcs.
1225   double const min_valid_time = 1e-6;
1226 
1227   bool report = false;
1228 
1229   double marking_to_mixed_time = -1.0;
1230   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
1231     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
1232     assert(marking_to_mixed_time > 0.0,
1233            "Initial mark to mixed time must be larger than zero but is %.3f",
1234            marking_to_mixed_time);
1235     if (marking_to_mixed_time > min_valid_time) {
1236       _ihop_control->update_marking_length(marking_to_mixed_time);
1237       report = true;
1238     }
1239   }
1240 
1241   // As an approximation for the young gc promotion rates during marking we use
1242   // all of them. In many applications there are only a few if any young gcs during
1243   // marking, which makes any prediction useless. This increases the accuracy of the
1244   // prediction.
1245   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
1246     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1247     report = true;
1248   }
1249 
1250   if (report) {
1251     report_ihop_statistics();
1252   }
1253 }
1254 
1255 void G1CollectorPolicy::report_ihop_statistics() {
1256   _ihop_control->print();
1257 }
1258 
1259 #define EXT_SIZE_FORMAT "%.1f%s"
1260 #define EXT_SIZE_PARAMS(bytes)                                  \
1261   byte_size_in_proper_unit((double)(bytes)),                    \
1262   proper_unit_for_byte_size((bytes))
1263 
1264 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1265   YoungList* young_list = _g1->young_list();
1266   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1267   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1268   _heap_capacity_bytes_before_gc = _g1->capacity();
1269   _old_used_bytes_before_gc = _g1->old_regions_count() * HeapRegion::GrainBytes;
1270   _humongous_used_bytes_before_gc = _g1->humongous_regions_count() * HeapRegion::GrainBytes;
1271   _heap_used_bytes_before_gc = _g1->used();
1272   _eden_capacity_bytes_before_gc = (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1273   _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1274 }
1275 
1276 void G1CollectorPolicy::print_detailed_heap_transition() const {
1277   YoungList* young_list = _g1->young_list();
1278 
1279   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1280   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1281   size_t heap_used_bytes_after_gc = _g1->used();
1282   size_t old_used_bytes_after_gc = _g1->old_regions_count() * HeapRegion::GrainBytes;
1283   size_t humongous_used_bytes_after_gc = _g1->humongous_regions_count() * HeapRegion::GrainBytes;
1284 
1285   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1286   size_t eden_capacity_bytes_after_gc =
1287     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1288   size_t survivor_capacity_bytes_after_gc = _max_survivor_regions * HeapRegion::GrainBytes;
1289 
1290   log_info(gc, heap)("Eden: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1291                      _eden_used_bytes_before_gc / K, eden_used_bytes_after_gc /K, eden_capacity_bytes_after_gc /K);
1292   log_info(gc, heap)("Survivor: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1293                      _survivor_used_bytes_before_gc / K, survivor_used_bytes_after_gc /K, survivor_capacity_bytes_after_gc /K);
1294   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K",
1295                      _old_used_bytes_before_gc / K, old_used_bytes_after_gc /K);
1296   log_info(gc, heap)("Humongous: " SIZE_FORMAT "K->" SIZE_FORMAT "K",
1297                      _humongous_used_bytes_before_gc / K, humongous_used_bytes_after_gc /K);
1298 
1299   MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1300 }
1301 
1302 void G1CollectorPolicy::print_phases(double pause_time_sec) {
1303   phase_times()->print(pause_time_sec);
1304 }
1305 
1306 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1307                                                      double update_rs_processed_buffers,
1308                                                      double goal_ms) {
1309   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1310   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1311 
1312   if (G1UseAdaptiveConcRefinement) {
1313     const int k_gy = 3, k_gr = 6;
1314     const double inc_k = 1.1, dec_k = 0.9;
1315 
1316     int g = cg1r->green_zone();
1317     if (update_rs_time > goal_ms) {
1318       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1319     } else {
1320       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1321         g = (int)MAX2(g * inc_k, g + 1.0);
1322       }
1323     }
1324     // Change the refinement threads params
1325     cg1r->set_green_zone(g);
1326     cg1r->set_yellow_zone(g * k_gy);
1327     cg1r->set_red_zone(g * k_gr);
1328     cg1r->reinitialize_threads();
1329 
1330     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * _predictor.sigma()), 1);
1331     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1332                                     cg1r->yellow_zone());
1333     // Change the barrier params
1334     dcqs.set_process_completed_threshold(processing_threshold);
1335     dcqs.set_max_completed_queue(cg1r->red_zone());
1336   }
1337 
1338   int curr_queue_size = dcqs.completed_buffers_num();
1339   if (curr_queue_size >= cg1r->yellow_zone()) {
1340     dcqs.set_completed_queue_padding(curr_queue_size);
1341   } else {
1342     dcqs.set_completed_queue_padding(0);
1343   }
1344   dcqs.notify_if_necessary();
1345 }
1346 
1347 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1348   return (size_t) get_new_prediction(_rs_length_diff_seq);
1349 }
1350 
1351 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1352   return get_new_prediction(_alloc_rate_ms_seq);
1353 }
1354 
1355 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1356   return get_new_prediction(_cost_per_card_ms_seq);
1357 }
1358 
1359 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1360   return get_new_prediction(_cost_scan_hcc_seq);
1361 }
1362 
1363 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1364   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1365 }
1366 
1367 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1368   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1369 }
1370 
1371 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1372   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1373     return predict_young_cards_per_entry_ratio();
1374   } else {
1375     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1376   }
1377 }
1378 
1379 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1380   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1381 }
1382 
1383 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1384   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1385 }
1386 
1387 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1388   if (collector_state()->gcs_are_young()) {
1389     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1390   } else {
1391     return predict_mixed_rs_scan_time_ms(card_num);
1392   }
1393 }
1394 
1395 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1396   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1397     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1398   } else {
1399     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1400   }
1401 }
1402 
1403 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1404   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1405     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1406   } else {
1407     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1408   }
1409 }
1410 
1411 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1412   if (collector_state()->during_concurrent_mark()) {
1413     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1414   } else {
1415     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1416   }
1417 }
1418 
1419 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1420   return get_new_prediction(_constant_other_time_ms_seq);
1421 }
1422 
1423 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1424   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1425 }
1426 
1427 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1428   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1429 }
1430 
1431 double G1CollectorPolicy::predict_remark_time_ms() const {
1432   return get_new_prediction(_concurrent_mark_remark_times_ms);
1433 }
1434 
1435 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1436   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1437 }
1438 
1439 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1440   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1441   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1442   double pred = get_new_prediction(seq);
1443   if (pred > 1.0) {
1444     pred = 1.0;
1445   }
1446   return pred;
1447 }
1448 
1449 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1450   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1451 }
1452 
1453 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1454   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1455 }
1456 
1457 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1458                                                        size_t scanned_cards) const {
1459   return
1460     predict_rs_update_time_ms(pending_cards) +
1461     predict_rs_scan_time_ms(scanned_cards) +
1462     predict_constant_other_time_ms();
1463 }
1464 
1465 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1466   size_t rs_length = predict_rs_length_diff();
1467   size_t card_num;
1468   if (collector_state()->gcs_are_young()) {
1469     card_num = predict_young_card_num(rs_length);
1470   } else {
1471     card_num = predict_non_young_card_num(rs_length);
1472   }
1473   return predict_base_elapsed_time_ms(pending_cards, card_num);
1474 }
1475 
1476 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1477   size_t bytes_to_copy;
1478   if (hr->is_marked())
1479     bytes_to_copy = hr->max_live_bytes();
1480   else {
1481     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1482     int age = hr->age_in_surv_rate_group();
1483     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1484     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1485   }
1486   return bytes_to_copy;
1487 }
1488 
1489 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1490                                                          bool for_young_gc) const {
1491   size_t rs_length = hr->rem_set()->occupied();
1492   size_t card_num;
1493 
1494   // Predicting the number of cards is based on which type of GC
1495   // we're predicting for.
1496   if (for_young_gc) {
1497     card_num = predict_young_card_num(rs_length);
1498   } else {
1499     card_num = predict_non_young_card_num(rs_length);
1500   }
1501   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1502 
1503   double region_elapsed_time_ms =
1504     predict_rs_scan_time_ms(card_num) +
1505     predict_object_copy_time_ms(bytes_to_copy);
1506 
1507   // The prediction of the "other" time for this region is based
1508   // upon the region type and NOT the GC type.
1509   if (hr->is_young()) {
1510     region_elapsed_time_ms += predict_young_other_time_ms(1);
1511   } else {
1512     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1513   }
1514   return region_elapsed_time_ms;
1515 }
1516 
1517 void G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1518                                                  uint survivor_cset_region_length) {
1519   _eden_cset_region_length     = eden_cset_region_length;
1520   _survivor_cset_region_length = survivor_cset_region_length;
1521   _old_cset_region_length      = 0;
1522 }
1523 
1524 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1525   _recorded_rs_lengths = rs_lengths;
1526 }
1527 
1528 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1529                                                double elapsed_ms) {
1530   _recent_gc_times_ms->add(elapsed_ms);
1531   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1532   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1533 }
1534 
1535 void G1CollectorPolicy::clear_ratio_check_data() {
1536   _ratio_over_threshold_count = 0;
1537   _ratio_over_threshold_sum = 0.0;
1538   _pauses_since_start = 0;
1539 }
1540 
1541 size_t G1CollectorPolicy::expansion_amount() {
1542   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1543   double last_gc_overhead = _last_pause_time_ratio * 100.0;
1544   double threshold = _gc_overhead_perc;
1545   size_t expand_bytes = 0;
1546 
1547   // If the heap is at less than half its maximum size, scale the threshold down,
1548   // to a limit of 1. Thus the smaller the heap is, the more likely it is to expand,
1549   // though the scaling code will likely keep the increase small.
1550   if (_g1->capacity() <= _g1->max_capacity() / 2) {
1551     threshold *= (double)_g1->capacity() / (double)(_g1->max_capacity() / 2);
1552     threshold = MAX2(threshold, 1.0);
1553   }
1554 
1555   // If the last GC time ratio is over the threshold, increment the count of
1556   // times it has been exceeded, and add this ratio to the sum of exceeded
1557   // ratios.
1558   if (last_gc_overhead > threshold) {
1559     _ratio_over_threshold_count++;
1560     _ratio_over_threshold_sum += last_gc_overhead;
1561   }
1562 
1563   // Check if we've had enough GC time ratio checks that were over the
1564   // threshold to trigger an expansion. We'll also expand if we've
1565   // reached the end of the history buffer and the average of all entries
1566   // is still over the threshold. This indicates a smaller number of GCs were
1567   // long enough to make the average exceed the threshold.
1568   bool filled_history_buffer = _pauses_since_start == NumPrevPausesForHeuristics;
1569   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
1570       (filled_history_buffer && (recent_gc_overhead > threshold))) {
1571     size_t min_expand_bytes = HeapRegion::GrainBytes;
1572     size_t reserved_bytes = _g1->max_capacity();
1573     size_t committed_bytes = _g1->capacity();
1574     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1575     size_t expand_bytes_via_pct =
1576       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1577     double scale_factor = 1.0;
1578 
1579     // If the current size is less than 1/4 of the Initial heap size, expand
1580     // by half of the delta between the current and Initial sizes. IE, grow
1581     // back quickly.
1582     //
1583     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
1584     // the available expansion space, whichever is smaller, as the base
1585     // expansion size. Then possibly scale this size according to how much the
1586     // threshold has (on average) been exceeded by. If the delta is small
1587     // (less than the StartScaleDownAt value), scale the size down linearly, but
1588     // not by less than MinScaleDownFactor. If the delta is large (greater than
1589     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
1590     // times the base size. The scaling will be linear in the range from
1591     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
1592     // ScaleUpRange sets the rate of scaling up.
1593     if (committed_bytes < InitialHeapSize / 4) {
1594       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
1595     } else {
1596       double const MinScaleDownFactor = 0.2;
1597       double const MaxScaleUpFactor = 2;
1598       double const StartScaleDownAt = _gc_overhead_perc;
1599       double const StartScaleUpAt = _gc_overhead_perc * 1.5;
1600       double const ScaleUpRange = _gc_overhead_perc * 2.0;
1601 
1602       double ratio_delta;
1603       if (filled_history_buffer) {
1604         ratio_delta = recent_gc_overhead - threshold;
1605       } else {
1606         ratio_delta = (_ratio_over_threshold_sum/_ratio_over_threshold_count) - threshold;
1607       }
1608 
1609       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1610       if (ratio_delta < StartScaleDownAt) {
1611         scale_factor = ratio_delta / StartScaleDownAt;
1612         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
1613       } else if (ratio_delta > StartScaleUpAt) {
1614         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
1615         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
1616       }
1617     }
1618 
1619     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1620                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B base expansion amount and scale: " SIZE_FORMAT "B (%1.2f%%)",
1621                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes, scale_factor * 100);
1622 
1623     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
1624 
1625     // Ensure the expansion size is at least the minimum growth amount
1626     // and at most the remaining uncommitted byte size.
1627     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1628     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1629 
1630     clear_ratio_check_data();
1631   } else {
1632     // An expansion was not triggered. If we've started counting, increment
1633     // the number of checks we've made in the current window.  If we've
1634     // reached the end of the window without resizing, clear the counters to
1635     // start again the next time we see a ratio above the threshold.
1636     if (_ratio_over_threshold_count > 0) {
1637       _pauses_since_start++;
1638       if (_pauses_since_start > NumPrevPausesForHeuristics) {
1639         clear_ratio_check_data();
1640       }
1641     }
1642   }
1643 
1644   return expand_bytes;
1645 }
1646 
1647 void G1CollectorPolicy::print_tracing_info() const {
1648   _trace_young_gen_time_data.print();
1649   _trace_old_gen_time_data.print();
1650 }
1651 
1652 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1653 #ifndef PRODUCT
1654   _short_lived_surv_rate_group->print_surv_rate_summary();
1655   // add this call for any other surv rate groups
1656 #endif // PRODUCT
1657 }
1658 
1659 bool G1CollectorPolicy::is_young_list_full() const {
1660   uint young_list_length = _g1->young_list()->length();
1661   uint young_list_target_length = _young_list_target_length;
1662   return young_list_length >= young_list_target_length;
1663 }
1664 
1665 bool G1CollectorPolicy::can_expand_young_list() const {
1666   uint young_list_length = _g1->young_list()->length();
1667   uint young_list_max_length = _young_list_max_length;
1668   return young_list_length < young_list_max_length;
1669 }
1670 
1671 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1672   uint expansion_region_num = 0;
1673   if (GCLockerEdenExpansionPercent > 0) {
1674     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1675     double expansion_region_num_d = perc * (double) _young_list_target_length;
1676     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1677     // less than 1.0) we'll get 1.
1678     expansion_region_num = (uint) ceil(expansion_region_num_d);
1679   } else {
1680     assert(expansion_region_num == 0, "sanity");
1681   }
1682   _young_list_max_length = _young_list_target_length + expansion_region_num;
1683   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1684 }
1685 
1686 // Calculates survivor space parameters.
1687 void G1CollectorPolicy::update_survivors_policy() {
1688   double max_survivor_regions_d =
1689                  (double) _young_list_target_length / (double) SurvivorRatio;
1690   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1691   // smaller than 1.0) we'll get 1.
1692   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1693 
1694   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1695         HeapRegion::GrainWords * _max_survivor_regions, counters());
1696 }
1697 
1698 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1699   // We actually check whether we are marking here and not if we are in a
1700   // reclamation phase. This means that we will schedule a concurrent mark
1701   // even while we are still in the process of reclaiming memory.
1702   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1703   if (!during_cycle) {
1704     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1705     collector_state()->set_initiate_conc_mark_if_possible(true);
1706     return true;
1707   } else {
1708     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1709     return false;
1710   }
1711 }
1712 
1713 void G1CollectorPolicy::initiate_conc_mark() {
1714   collector_state()->set_during_initial_mark_pause(true);
1715   collector_state()->set_initiate_conc_mark_if_possible(false);
1716 }
1717 
1718 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1719   // We are about to decide on whether this pause will be an
1720   // initial-mark pause.
1721 
1722   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1723   // will set it here if we have to. However, it should be cleared by
1724   // the end of the pause (it's only set for the duration of an
1725   // initial-mark pause).
1726   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1727 
1728   if (collector_state()->initiate_conc_mark_if_possible()) {
1729     // We had noticed on a previous pause that the heap occupancy has
1730     // gone over the initiating threshold and we should start a
1731     // concurrent marking cycle. So we might initiate one.
1732 
1733     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1734       // Initiate a new initial mark if there is no marking or reclamation going on.
1735       initiate_conc_mark();
1736       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1737     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
1738       // Initiate a user requested initial mark. An initial mark must be young only
1739       // GC, so the collector state must be updated to reflect this.
1740       collector_state()->set_gcs_are_young(true);
1741       collector_state()->set_last_young_gc(false);
1742 
1743       abort_time_to_mixed_tracking();
1744       initiate_conc_mark();
1745       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1746     } else {
1747       // The concurrent marking thread is still finishing up the
1748       // previous cycle. If we start one right now the two cycles
1749       // overlap. In particular, the concurrent marking thread might
1750       // be in the process of clearing the next marking bitmap (which
1751       // we will use for the next cycle if we start one). Starting a
1752       // cycle now will be bad given that parts of the marking
1753       // information might get cleared by the marking thread. And we
1754       // cannot wait for the marking thread to finish the cycle as it
1755       // periodically yields while clearing the next marking bitmap
1756       // and, if it's in a yield point, it's waiting for us to
1757       // finish. So, at this point we will not start a cycle and we'll
1758       // let the concurrent marking thread complete the last one.
1759       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1760     }
1761   }
1762 }
1763 
1764 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1765   G1CollectedHeap* _g1h;
1766   CSetChooserParUpdater _cset_updater;
1767 
1768 public:
1769   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1770                            uint chunk_size) :
1771     _g1h(G1CollectedHeap::heap()),
1772     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1773 
1774   bool doHeapRegion(HeapRegion* r) {
1775     // Do we have any marking information for this region?
1776     if (r->is_marked()) {
1777       // We will skip any region that's currently used as an old GC
1778       // alloc region (we should not consider those for collection
1779       // before we fill them up).
1780       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1781         _cset_updater.add_region(r);
1782       }
1783     }
1784     return false;
1785   }
1786 };
1787 
1788 class ParKnownGarbageTask: public AbstractGangTask {
1789   CollectionSetChooser* _hrSorted;
1790   uint _chunk_size;
1791   G1CollectedHeap* _g1;
1792   HeapRegionClaimer _hrclaimer;
1793 
1794 public:
1795   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1796       AbstractGangTask("ParKnownGarbageTask"),
1797       _hrSorted(hrSorted), _chunk_size(chunk_size),
1798       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1799 
1800   void work(uint worker_id) {
1801     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1802     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1803   }
1804 };
1805 
1806 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1807   assert(n_workers > 0, "Active gc workers should be greater than 0");
1808   const uint overpartition_factor = 4;
1809   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1810   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1811 }
1812 
1813 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1814   cset_chooser()->clear();
1815 
1816   WorkGang* workers = _g1->workers();
1817   uint n_workers = workers->active_workers();
1818 
1819   uint n_regions = _g1->num_regions();
1820   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1821   cset_chooser()->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1822   ParKnownGarbageTask par_known_garbage_task(cset_chooser(), chunk_size, n_workers);
1823   workers->run_task(&par_known_garbage_task);
1824 
1825   cset_chooser()->sort_regions();
1826 
1827   double end_sec = os::elapsedTime();
1828   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1829   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1830   _prev_collection_pause_end_ms += elapsed_time_ms;
1831 
1832   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1833 }
1834 
1835 // Add the heap region at the head of the non-incremental collection set
1836 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1837   assert(_inc_cset_build_state == Active, "Precondition");
1838   assert(hr->is_old(), "the region should be old");
1839 
1840   assert(!hr->in_collection_set(), "should not already be in the CSet");
1841   _g1->register_old_region_with_cset(hr);
1842   hr->set_next_in_collection_set(_collection_set);
1843   _collection_set = hr;
1844   _collection_set_bytes_used_before += hr->used();
1845   size_t rs_length = hr->rem_set()->occupied();
1846   _recorded_rs_lengths += rs_length;
1847   _old_cset_region_length += 1;
1848 }
1849 
1850 // Initialize the per-collection-set information
1851 void G1CollectorPolicy::start_incremental_cset_building() {
1852   assert(_inc_cset_build_state == Inactive, "Precondition");
1853 
1854   _inc_cset_head = NULL;
1855   _inc_cset_tail = NULL;
1856   _inc_cset_bytes_used_before = 0;
1857 
1858   _inc_cset_max_finger = 0;
1859   _inc_cset_recorded_rs_lengths = 0;
1860   _inc_cset_recorded_rs_lengths_diffs = 0;
1861   _inc_cset_predicted_elapsed_time_ms = 0.0;
1862   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1863   _inc_cset_build_state = Active;
1864 }
1865 
1866 void G1CollectorPolicy::finalize_incremental_cset_building() {
1867   assert(_inc_cset_build_state == Active, "Precondition");
1868   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1869 
1870   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1871   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1872   // that adds a new region to the CSet. Further updates by the
1873   // concurrent refinement thread that samples the young RSet lengths
1874   // are accumulated in the *_diffs fields. Here we add the diffs to
1875   // the "main" fields.
1876 
1877   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1878     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1879   } else {
1880     // This is defensive. The diff should in theory be always positive
1881     // as RSets can only grow between GCs. However, given that we
1882     // sample their size concurrently with other threads updating them
1883     // it's possible that we might get the wrong size back, which
1884     // could make the calculations somewhat inaccurate.
1885     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1886     if (_inc_cset_recorded_rs_lengths >= diffs) {
1887       _inc_cset_recorded_rs_lengths -= diffs;
1888     } else {
1889       _inc_cset_recorded_rs_lengths = 0;
1890     }
1891   }
1892   _inc_cset_predicted_elapsed_time_ms +=
1893                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1894 
1895   _inc_cset_recorded_rs_lengths_diffs = 0;
1896   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1897 }
1898 
1899 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1900   // This routine is used when:
1901   // * adding survivor regions to the incremental cset at the end of an
1902   //   evacuation pause,
1903   // * adding the current allocation region to the incremental cset
1904   //   when it is retired, and
1905   // * updating existing policy information for a region in the
1906   //   incremental cset via young list RSet sampling.
1907   // Therefore this routine may be called at a safepoint by the
1908   // VM thread, or in-between safepoints by mutator threads (when
1909   // retiring the current allocation region) or a concurrent
1910   // refine thread (RSet sampling).
1911 
1912   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1913   size_t used_bytes = hr->used();
1914   _inc_cset_recorded_rs_lengths += rs_length;
1915   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1916   _inc_cset_bytes_used_before += used_bytes;
1917 
1918   // Cache the values we have added to the aggregated information
1919   // in the heap region in case we have to remove this region from
1920   // the incremental collection set, or it is updated by the
1921   // rset sampling code
1922   hr->set_recorded_rs_length(rs_length);
1923   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1924 }
1925 
1926 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1927                                                      size_t new_rs_length) {
1928   // Update the CSet information that is dependent on the new RS length
1929   assert(hr->is_young(), "Precondition");
1930   assert(!SafepointSynchronize::is_at_safepoint(),
1931                                                "should not be at a safepoint");
1932 
1933   // We could have updated _inc_cset_recorded_rs_lengths and
1934   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1935   // that atomically, as this code is executed by a concurrent
1936   // refinement thread, potentially concurrently with a mutator thread
1937   // allocating a new region and also updating the same fields. To
1938   // avoid the atomic operations we accumulate these updates on two
1939   // separate fields (*_diffs) and we'll just add them to the "main"
1940   // fields at the start of a GC.
1941 
1942   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1943   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1944   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1945 
1946   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1947   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1948   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1949   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1950 
1951   hr->set_recorded_rs_length(new_rs_length);
1952   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1953 }
1954 
1955 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1956   assert(hr->is_young(), "invariant");
1957   assert(hr->young_index_in_cset() > -1, "should have already been set");
1958   assert(_inc_cset_build_state == Active, "Precondition");
1959 
1960   // We need to clear and set the cached recorded/cached collection set
1961   // information in the heap region here (before the region gets added
1962   // to the collection set). An individual heap region's cached values
1963   // are calculated, aggregated with the policy collection set info,
1964   // and cached in the heap region here (initially) and (subsequently)
1965   // by the Young List sampling code.
1966 
1967   size_t rs_length = hr->rem_set()->occupied();
1968   add_to_incremental_cset_info(hr, rs_length);
1969 
1970   HeapWord* hr_end = hr->end();
1971   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1972 
1973   assert(!hr->in_collection_set(), "invariant");
1974   _g1->register_young_region_with_cset(hr);
1975   assert(hr->next_in_collection_set() == NULL, "invariant");
1976 }
1977 
1978 // Add the region at the RHS of the incremental cset
1979 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1980   // We should only ever be appending survivors at the end of a pause
1981   assert(hr->is_survivor(), "Logic");
1982 
1983   // Do the 'common' stuff
1984   add_region_to_incremental_cset_common(hr);
1985 
1986   // Now add the region at the right hand side
1987   if (_inc_cset_tail == NULL) {
1988     assert(_inc_cset_head == NULL, "invariant");
1989     _inc_cset_head = hr;
1990   } else {
1991     _inc_cset_tail->set_next_in_collection_set(hr);
1992   }
1993   _inc_cset_tail = hr;
1994 }
1995 
1996 // Add the region to the LHS of the incremental cset
1997 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1998   // Survivors should be added to the RHS at the end of a pause
1999   assert(hr->is_eden(), "Logic");
2000 
2001   // Do the 'common' stuff
2002   add_region_to_incremental_cset_common(hr);
2003 
2004   // Add the region at the left hand side
2005   hr->set_next_in_collection_set(_inc_cset_head);
2006   if (_inc_cset_head == NULL) {
2007     assert(_inc_cset_tail == NULL, "Invariant");
2008     _inc_cset_tail = hr;
2009   }
2010   _inc_cset_head = hr;
2011 }
2012 
2013 #ifndef PRODUCT
2014 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2015   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2016 
2017   st->print_cr("\nCollection_set:");
2018   HeapRegion* csr = list_head;
2019   while (csr != NULL) {
2020     HeapRegion* next = csr->next_in_collection_set();
2021     assert(csr->in_collection_set(), "bad CS");
2022     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
2023                  HR_FORMAT_PARAMS(csr),
2024                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
2025                  csr->age_in_surv_rate_group_cond());
2026     csr = next;
2027   }
2028 }
2029 #endif // !PRODUCT
2030 
2031 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
2032   // Returns the given amount of reclaimable bytes (that represents
2033   // the amount of reclaimable space still to be collected) as a
2034   // percentage of the current heap capacity.
2035   size_t capacity_bytes = _g1->capacity();
2036   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
2037 }
2038 
2039 void G1CollectorPolicy::maybe_start_marking() {
2040   if (need_to_start_conc_mark("end of GC")) {
2041     // Note: this might have already been set, if during the last
2042     // pause we decided to start a cycle but at the beginning of
2043     // this pause we decided to postpone it. That's OK.
2044     collector_state()->set_initiate_conc_mark_if_possible(true);
2045   }
2046 }
2047 
2048 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
2049   assert(!collector_state()->full_collection(), "must be");
2050   if (collector_state()->during_initial_mark_pause()) {
2051     assert(collector_state()->last_gc_was_young(), "must be");
2052     assert(!collector_state()->last_young_gc(), "must be");
2053     return InitialMarkGC;
2054   } else if (collector_state()->last_young_gc()) {
2055     assert(!collector_state()->during_initial_mark_pause(), "must be");
2056     assert(collector_state()->last_gc_was_young(), "must be");
2057     return LastYoungGC;
2058   } else if (!collector_state()->last_gc_was_young()) {
2059     assert(!collector_state()->during_initial_mark_pause(), "must be");
2060     assert(!collector_state()->last_young_gc(), "must be");
2061     return MixedGC;
2062   } else {
2063     assert(collector_state()->last_gc_was_young(), "must be");
2064     assert(!collector_state()->during_initial_mark_pause(), "must be");
2065     assert(!collector_state()->last_young_gc(), "must be");
2066     return YoungOnlyGC;
2067   }
2068 }
2069 
2070 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
2071   // Manage the MMU tracker. For some reason it ignores Full GCs.
2072   if (kind != FullGC) {
2073     _mmu_tracker->add_pause(start, end);
2074   }
2075   // Manage the mutator time tracking from initial mark to first mixed gc.
2076   switch (kind) {
2077     case FullGC:
2078       abort_time_to_mixed_tracking();
2079       break;
2080     case Cleanup:
2081     case Remark:
2082     case YoungOnlyGC:
2083     case LastYoungGC:
2084       _initial_mark_to_mixed.add_pause(end - start);
2085       break;
2086     case InitialMarkGC:
2087       _initial_mark_to_mixed.record_initial_mark_end(end);
2088       break;
2089     case MixedGC:
2090       _initial_mark_to_mixed.record_mixed_gc_start(start);
2091       break;
2092     default:
2093       ShouldNotReachHere();
2094   }
2095 }
2096 
2097 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
2098   _initial_mark_to_mixed.reset();
2099 }
2100 
2101 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
2102                                                 const char* false_action_str) const {
2103   if (cset_chooser()->is_empty()) {
2104     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
2105     return false;
2106   }
2107 
2108   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
2109   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2110   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2111   double threshold = (double) G1HeapWastePercent;
2112   if (reclaimable_perc <= threshold) {
2113     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2114                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2115     return false;
2116   }
2117   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2118                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2119   return true;
2120 }
2121 
2122 uint G1CollectorPolicy::calc_min_old_cset_length() const {
2123   // The min old CSet region bound is based on the maximum desired
2124   // number of mixed GCs after a cycle. I.e., even if some old regions
2125   // look expensive, we should add them to the CSet anyway to make
2126   // sure we go through the available old regions in no more than the
2127   // maximum desired number of mixed GCs.
2128   //
2129   // The calculation is based on the number of marked regions we added
2130   // to the CSet chooser in the first place, not how many remain, so
2131   // that the result is the same during all mixed GCs that follow a cycle.
2132 
2133   const size_t region_num = (size_t) cset_chooser()->length();
2134   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
2135   size_t result = region_num / gc_num;
2136   // emulate ceiling
2137   if (result * gc_num < region_num) {
2138     result += 1;
2139   }
2140   return (uint) result;
2141 }
2142 
2143 uint G1CollectorPolicy::calc_max_old_cset_length() const {
2144   // The max old CSet region bound is based on the threshold expressed
2145   // as a percentage of the heap size. I.e., it should bound the
2146   // number of old regions added to the CSet irrespective of how many
2147   // of them are available.
2148 
2149   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
2150   const size_t region_num = g1h->num_regions();
2151   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
2152   size_t result = region_num * perc / 100;
2153   // emulate ceiling
2154   if (100 * result < region_num * perc) {
2155     result += 1;
2156   }
2157   return (uint) result;
2158 }
2159 
2160 
2161 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
2162   double young_start_time_sec = os::elapsedTime();
2163 
2164   YoungList* young_list = _g1->young_list();
2165   finalize_incremental_cset_building();
2166 
2167   guarantee(target_pause_time_ms > 0.0,
2168             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
2169   guarantee(_collection_set == NULL, "Precondition");
2170 
2171   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2172   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
2173 
2174   log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
2175                             _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
2176 
2177   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
2178 
2179   if (collector_state()->last_gc_was_young()) {
2180     _trace_young_gen_time_data.increment_young_collection_count();
2181   } else {
2182     _trace_young_gen_time_data.increment_mixed_collection_count();
2183   }
2184 
2185   // The young list is laid with the survivor regions from the previous
2186   // pause are appended to the RHS of the young list, i.e.
2187   //   [Newly Young Regions ++ Survivors from last pause].
2188 
2189   uint survivor_region_length = young_list->survivor_length();
2190   uint eden_region_length = young_list->eden_length();
2191   init_cset_region_lengths(eden_region_length, survivor_region_length);
2192 
2193   HeapRegion* hr = young_list->first_survivor_region();
2194   while (hr != NULL) {
2195     assert(hr->is_survivor(), "badly formed young list");
2196     // There is a convention that all the young regions in the CSet
2197     // are tagged as "eden", so we do this for the survivors here. We
2198     // use the special set_eden_pre_gc() as it doesn't check that the
2199     // region is free (which is not the case here).
2200     hr->set_eden_pre_gc();
2201     hr = hr->get_next_young_region();
2202   }
2203 
2204   // Clear the fields that point to the survivor list - they are all young now.
2205   young_list->clear_survivors();
2206 
2207   _collection_set = _inc_cset_head;
2208   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2209   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2210 
2211   log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
2212                             eden_region_length, survivor_region_length, _inc_cset_predicted_elapsed_time_ms, target_pause_time_ms);
2213 
2214   // The number of recorded young regions is the incremental
2215   // collection set's current size
2216   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2217 
2218   double young_end_time_sec = os::elapsedTime();
2219   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2220 
2221   return time_remaining_ms;
2222 }
2223 
2224 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
2225   double non_young_start_time_sec = os::elapsedTime();
2226   double predicted_old_time_ms = 0.0;
2227 
2228 
2229   if (!collector_state()->gcs_are_young()) {
2230     cset_chooser()->verify();
2231     const uint min_old_cset_length = calc_min_old_cset_length();
2232     const uint max_old_cset_length = calc_max_old_cset_length();
2233 
2234     uint expensive_region_num = 0;
2235     bool check_time_remaining = adaptive_young_list_length();
2236 
2237     HeapRegion* hr = cset_chooser()->peek();
2238     while (hr != NULL) {
2239       if (old_cset_region_length() >= max_old_cset_length) {
2240         // Added maximum number of old regions to the CSet.
2241         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",
2242                                   old_cset_region_length(), max_old_cset_length);
2243         break;
2244       }
2245 
2246 
2247       // Stop adding regions if the remaining reclaimable space is
2248       // not above G1HeapWastePercent.
2249       size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2250       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2251       double threshold = (double) G1HeapWastePercent;
2252       if (reclaimable_perc <= threshold) {
2253         // We've added enough old regions that the amount of uncollected
2254         // reclaimable space is at or below the waste threshold. Stop
2255         // adding old regions to the CSet.
2256         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
2257                                   "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
2258                                   old_cset_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2259         break;
2260       }
2261 
2262       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2263       if (check_time_remaining) {
2264         if (predicted_time_ms > time_remaining_ms) {
2265           // Too expensive for the current CSet.
2266 
2267           if (old_cset_region_length() >= min_old_cset_length) {
2268             // We have added the minimum number of old regions to the CSet,
2269             // we are done with this CSet.
2270             log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
2271                                       "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
2272                                       predicted_time_ms, time_remaining_ms, old_cset_region_length(), min_old_cset_length);
2273             break;
2274           }
2275 
2276           // We'll add it anyway given that we haven't reached the
2277           // minimum number of old regions.
2278           expensive_region_num += 1;
2279         }
2280       } else {
2281         if (old_cset_region_length() >= min_old_cset_length) {
2282           // In the non-auto-tuning case, we'll finish adding regions
2283           // to the CSet if we reach the minimum.
2284 
2285           log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",
2286                                     old_cset_region_length(), min_old_cset_length);
2287           break;
2288         }
2289       }
2290 
2291       // We will add this region to the CSet.
2292       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2293       predicted_old_time_ms += predicted_time_ms;
2294       cset_chooser()->pop(); // already have region via peek()
2295       _g1->old_set_remove(hr);
2296       add_old_region_to_cset(hr);
2297 
2298       hr = cset_chooser()->peek();
2299     }
2300     if (hr == NULL) {
2301       log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
2302     }
2303 
2304     if (expensive_region_num > 0) {
2305       // We print the information once here at the end, predicated on
2306       // whether we added any apparently expensive regions or not, to
2307       // avoid generating output per region.
2308       log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
2309                                 "old %u regions, expensive: %u regions, min %u regions, remaining time: %1.2fms",
2310                                 old_cset_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);
2311     }
2312 
2313     cset_chooser()->verify();
2314   }
2315 
2316   stop_incremental_cset_building();
2317 
2318   log_debug(gc, ergo, cset)("Finish choosing CSet. old %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
2319                             old_cset_region_length(), predicted_old_time_ms, time_remaining_ms);
2320 
2321   double non_young_end_time_sec = os::elapsedTime();
2322   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2323 }
2324 
2325 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2326   if(TraceYoungGenTime) {
2327     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2328   }
2329 }
2330 
2331 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2332   if(TraceYoungGenTime) {
2333     _all_yield_times_ms.add(yield_time_ms);
2334   }
2335 }
2336 
2337 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2338   if(TraceYoungGenTime) {
2339     _total.add(pause_time_ms);
2340     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2341     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2342     _parallel.add(phase_times->cur_collection_par_time_ms());
2343     _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2344     _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2345     _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2346     _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2347     _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2348     _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2349 
2350     double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2351       phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2352       phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2353       phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2354       phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2355       phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2356 
2357     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2358     _parallel_other.add(parallel_other_time);
2359     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2360   }
2361 }
2362 
2363 void TraceYoungGenTimeData::increment_young_collection_count() {
2364   if(TraceYoungGenTime) {
2365     ++_young_pause_num;
2366   }
2367 }
2368 
2369 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2370   if(TraceYoungGenTime) {
2371     ++_mixed_pause_num;
2372   }
2373 }
2374 
2375 void TraceYoungGenTimeData::print_summary(const char* str,
2376                                           const NumberSeq* seq) const {
2377   double sum = seq->sum();
2378   tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2379                 str, sum / 1000.0, seq->avg());
2380 }
2381 
2382 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2383                                              const NumberSeq* seq) const {
2384   print_summary(str, seq);
2385   tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2386                 "(num", seq->num(), seq->sd(), seq->maximum());
2387 }
2388 
2389 void TraceYoungGenTimeData::print() const {
2390   if (!TraceYoungGenTime) {
2391     return;
2392   }
2393 
2394   tty->print_cr("ALL PAUSES");
2395   print_summary_sd("   Total", &_total);
2396   tty->cr();
2397   tty->cr();
2398   tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2399   tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2400   tty->cr();
2401 
2402   tty->print_cr("EVACUATION PAUSES");
2403 
2404   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2405     tty->print_cr("none");
2406   } else {
2407     print_summary_sd("   Evacuation Pauses", &_total);
2408     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2409     print_summary("      Parallel Time", &_parallel);
2410     print_summary("         Ext Root Scanning", &_ext_root_scan);
2411     print_summary("         SATB Filtering", &_satb_filtering);
2412     print_summary("         Update RS", &_update_rs);
2413     print_summary("         Scan RS", &_scan_rs);
2414     print_summary("         Object Copy", &_obj_copy);
2415     print_summary("         Termination", &_termination);
2416     print_summary("         Parallel Other", &_parallel_other);
2417     print_summary("      Clear CT", &_clear_ct);
2418     print_summary("      Other", &_other);
2419   }
2420   tty->cr();
2421 
2422   tty->print_cr("MISC");
2423   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2424   print_summary_sd("   Yields", &_all_yield_times_ms);
2425 }
2426 
2427 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2428   if (TraceOldGenTime) {
2429     _all_full_gc_times.add(full_gc_time_ms);
2430   }
2431 }
2432 
2433 void TraceOldGenTimeData::print() const {
2434   if (!TraceOldGenTime) {
2435     return;
2436   }
2437 
2438   if (_all_full_gc_times.num() > 0) {
2439     tty->print("\n%4d full_gcs: total time = %8.2f s",
2440       _all_full_gc_times.num(),
2441       _all_full_gc_times.sum() / 1000.0);
2442     tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2443     tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2444       _all_full_gc_times.sd(),
2445       _all_full_gc_times.maximum());
2446   }
2447 }