1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/shared/cardTableRS.hpp"
  28 #include "gc/shared/collectorCounters.hpp"
  29 #include "gc/shared/gcHeapSummary.hpp"
  30 #include "gc/shared/gcLocker.inline.hpp"
  31 #include "gc/shared/gcPolicyCounters.hpp"
  32 #include "gc/shared/gcTimer.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/gcTraceTime.hpp"
  35 #include "gc/shared/genCollectedHeap.hpp"
  36 #include "gc/shared/genOopClosures.inline.hpp"
  37 #include "gc/shared/generationSpec.hpp"
  38 #include "gc/shared/referencePolicy.hpp"
  39 #include "gc/shared/space.inline.hpp"
  40 #include "gc/shared/spaceDecorator.hpp"
  41 #include "gc/shared/strongRootsScope.hpp"
  42 #include "logging/log.hpp"
  43 #include "memory/iterator.hpp"
  44 #include "oops/instanceRefKlass.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/prefetch.inline.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "utilities/copy.hpp"
  51 #include "utilities/globalDefinitions.hpp"
  52 #include "utilities/stack.inline.hpp"
  53 #if INCLUDE_ALL_GCS
  54 #include "gc/cms/parOopClosures.hpp"
  55 #endif
  56 
  57 //
  58 // DefNewGeneration functions.
  59 
  60 // Methods of protected closure types.
  61 
  62 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  63   assert(_young_gen->kind() == Generation::ParNew ||
  64          _young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  65 }
  66 
  67 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  68   return (HeapWord*)p >= _young_gen->reserved().end() || p->is_forwarded();
  69 }
  70 
  71 DefNewGeneration::KeepAliveClosure::
  72 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  73   _rs = GenCollectedHeap::heap()->rem_set();
  74 }
  75 
  76 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  77 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  78 
  79 
  80 DefNewGeneration::FastKeepAliveClosure::
  81 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  82   DefNewGeneration::KeepAliveClosure(cl) {
  83   _boundary = g->reserved().end();
  84 }
  85 
  86 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  87 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  88 
  89 DefNewGeneration::EvacuateFollowersClosure::
  90 EvacuateFollowersClosure(GenCollectedHeap* gch,
  91                          ScanClosure* cur,
  92                          ScanClosure* older) :
  93   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
  94 {}
  95 
  96 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  97   do {
  98     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
  99   } while (!_gch->no_allocs_since_save_marks());
 100 }
 101 
 102 DefNewGeneration::FastEvacuateFollowersClosure::
 103 FastEvacuateFollowersClosure(GenCollectedHeap* gch,
 104                              FastScanClosure* cur,
 105                              FastScanClosure* older) :
 106   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
 107 {
 108   assert(_gch->young_gen()->kind() == Generation::DefNew, "Generation should be DefNew");
 109   _young_gen = (DefNewGeneration*)_gch->young_gen();
 110 }
 111 
 112 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 113   do {
 114     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 115   } while (!_gch->no_allocs_since_save_marks());
 116   guarantee(_young_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 117 }
 118 
 119 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 120     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 121 {
 122   _boundary = _g->reserved().end();
 123 }
 124 
 125 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 126 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 127 
 128 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 129     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 130 {
 131   _boundary = _g->reserved().end();
 132 }
 133 
 134 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 135 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 136 
 137 void KlassScanClosure::do_klass(Klass* klass) {
 138 #ifndef PRODUCT
 139     ResourceMark rm;
 140   log_develop(gc, scavenge)("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 141                            p2i(klass),
 142                            klass->external_name(),
 143                            klass->has_modified_oops() ? "true" : "false");
 144 #endif
 145 
 146   // If the klass has not been dirtied we know that there's
 147   // no references into  the young gen and we can skip it.
 148   if (klass->has_modified_oops()) {
 149     if (_accumulate_modified_oops) {
 150       klass->accumulate_modified_oops();
 151     }
 152 
 153     // Clear this state since we're going to scavenge all the metadata.
 154     klass->clear_modified_oops();
 155 
 156     // Tell the closure which Klass is being scanned so that it can be dirtied
 157     // if oops are left pointing into the young gen.
 158     _scavenge_closure->set_scanned_klass(klass);
 159 
 160     klass->oops_do(_scavenge_closure);
 161 
 162     _scavenge_closure->set_scanned_klass(NULL);
 163   }
 164 }
 165 
 166 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 167   _g(g)
 168 {
 169   _boundary = _g->reserved().end();
 170 }
 171 
 172 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 173 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 174 
 175 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 176 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 177 
 178 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 179                                    KlassRemSet* klass_rem_set)
 180     : _scavenge_closure(scavenge_closure),
 181       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 182 
 183 
 184 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 185                                    size_t initial_size,
 186                                    const char* policy)
 187   : Generation(rs, initial_size),
 188     _promo_failure_drain_in_progress(false),
 189     _should_allocate_from_space(false)
 190 {
 191   MemRegion cmr((HeapWord*)_virtual_space.low(),
 192                 (HeapWord*)_virtual_space.high());
 193   GenCollectedHeap* gch = GenCollectedHeap::heap();
 194 
 195   gch->barrier_set()->resize_covered_region(cmr);
 196 
 197   _eden_space = new ContiguousSpace();
 198   _from_space = new ContiguousSpace();
 199   _to_space   = new ContiguousSpace();
 200 
 201   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
 202     vm_exit_during_initialization("Could not allocate a new gen space");
 203   }
 204 
 205   // Compute the maximum eden and survivor space sizes. These sizes
 206   // are computed assuming the entire reserved space is committed.
 207   // These values are exported as performance counters.
 208   uintx alignment = gch->collector_policy()->space_alignment();
 209   uintx size = _virtual_space.reserved_size();
 210   _max_survivor_size = compute_survivor_size(size, alignment);
 211   _max_eden_size = size - (2*_max_survivor_size);
 212 
 213   // allocate the performance counters
 214   GenCollectorPolicy* gcp = gch->gen_policy();
 215 
 216   // Generation counters -- generation 0, 3 subspaces
 217   _gen_counters = new GenerationCounters("new", 0, 3,
 218       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 219   _gc_counters = new CollectorCounters(policy, 0);
 220 
 221   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 222                                       _gen_counters);
 223   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 224                                       _gen_counters);
 225   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 226                                     _gen_counters);
 227 
 228   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 229   update_counters();
 230   _old_gen = NULL;
 231   _tenuring_threshold = MaxTenuringThreshold;
 232   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 233 
 234   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 235 }
 236 
 237 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 238                                                 bool clear_space,
 239                                                 bool mangle_space) {
 240   uintx alignment =
 241     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 242 
 243   // If the spaces are being cleared (only done at heap initialization
 244   // currently), the survivor spaces need not be empty.
 245   // Otherwise, no care is taken for used areas in the survivor spaces
 246   // so check.
 247   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 248     "Initialization of the survivor spaces assumes these are empty");
 249 
 250   // Compute sizes
 251   uintx size = _virtual_space.committed_size();
 252   uintx survivor_size = compute_survivor_size(size, alignment);
 253   uintx eden_size = size - (2*survivor_size);
 254   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 255 
 256   if (eden_size < minimum_eden_size) {
 257     // May happen due to 64Kb rounding, if so adjust eden size back up
 258     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 259     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 260     uintx unaligned_survivor_size =
 261       align_size_down(maximum_survivor_size, alignment);
 262     survivor_size = MAX2(unaligned_survivor_size, alignment);
 263     eden_size = size - (2*survivor_size);
 264     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 265     assert(eden_size >= minimum_eden_size, "just checking");
 266   }
 267 
 268   char *eden_start = _virtual_space.low();
 269   char *from_start = eden_start + eden_size;
 270   char *to_start   = from_start + survivor_size;
 271   char *to_end     = to_start   + survivor_size;
 272 
 273   assert(to_end == _virtual_space.high(), "just checking");
 274   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 275   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 276   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 277 
 278   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 279   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 280   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 281 
 282   // A minimum eden size implies that there is a part of eden that
 283   // is being used and that affects the initialization of any
 284   // newly formed eden.
 285   bool live_in_eden = minimum_eden_size > 0;
 286 
 287   // If not clearing the spaces, do some checking to verify that
 288   // the space are already mangled.
 289   if (!clear_space) {
 290     // Must check mangling before the spaces are reshaped.  Otherwise,
 291     // the bottom or end of one space may have moved into another
 292     // a failure of the check may not correctly indicate which space
 293     // is not properly mangled.
 294     if (ZapUnusedHeapArea) {
 295       HeapWord* limit = (HeapWord*) _virtual_space.high();
 296       eden()->check_mangled_unused_area(limit);
 297       from()->check_mangled_unused_area(limit);
 298         to()->check_mangled_unused_area(limit);
 299     }
 300   }
 301 
 302   // Reset the spaces for their new regions.
 303   eden()->initialize(edenMR,
 304                      clear_space && !live_in_eden,
 305                      SpaceDecorator::Mangle);
 306   // If clear_space and live_in_eden, we will not have cleared any
 307   // portion of eden above its top. This can cause newly
 308   // expanded space not to be mangled if using ZapUnusedHeapArea.
 309   // We explicitly do such mangling here.
 310   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 311     eden()->mangle_unused_area();
 312   }
 313   from()->initialize(fromMR, clear_space, mangle_space);
 314   to()->initialize(toMR, clear_space, mangle_space);
 315 
 316   // Set next compaction spaces.
 317   eden()->set_next_compaction_space(from());
 318   // The to-space is normally empty before a compaction so need
 319   // not be considered.  The exception is during promotion
 320   // failure handling when to-space can contain live objects.
 321   from()->set_next_compaction_space(NULL);
 322 }
 323 
 324 void DefNewGeneration::swap_spaces() {
 325   ContiguousSpace* s = from();
 326   _from_space        = to();
 327   _to_space          = s;
 328   eden()->set_next_compaction_space(from());
 329   // The to-space is normally empty before a compaction so need
 330   // not be considered.  The exception is during promotion
 331   // failure handling when to-space can contain live objects.
 332   from()->set_next_compaction_space(NULL);
 333 
 334   if (UsePerfData) {
 335     CSpaceCounters* c = _from_counters;
 336     _from_counters = _to_counters;
 337     _to_counters = c;
 338   }
 339 }
 340 
 341 bool DefNewGeneration::expand(size_t bytes) {
 342   MutexLocker x(ExpandHeap_lock);
 343   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 344   bool success = _virtual_space.expand_by(bytes);
 345   if (success && ZapUnusedHeapArea) {
 346     // Mangle newly committed space immediately because it
 347     // can be done here more simply that after the new
 348     // spaces have been computed.
 349     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 350     MemRegion mangle_region(prev_high, new_high);
 351     SpaceMangler::mangle_region(mangle_region);
 352   }
 353 
 354   // Do not attempt an expand-to-the reserve size.  The
 355   // request should properly observe the maximum size of
 356   // the generation so an expand-to-reserve should be
 357   // unnecessary.  Also a second call to expand-to-reserve
 358   // value potentially can cause an undue expansion.
 359   // For example if the first expand fail for unknown reasons,
 360   // but the second succeeds and expands the heap to its maximum
 361   // value.
 362   if (GC_locker::is_active()) {
 363     log_debug(gc)("Garbage collection disabled, expanded heap instead");
 364   }
 365 
 366   return success;
 367 }
 368 
 369 void DefNewGeneration::compute_new_size() {
 370   // This is called after a GC that includes the old generation, so from-space
 371   // will normally be empty.
 372   // Note that we check both spaces, since if scavenge failed they revert roles.
 373   // If not we bail out (otherwise we would have to relocate the objects).
 374   if (!from()->is_empty() || !to()->is_empty()) {
 375     return;
 376   }
 377 
 378   GenCollectedHeap* gch = GenCollectedHeap::heap();
 379 
 380   size_t old_size = gch->old_gen()->capacity();
 381   size_t new_size_before = _virtual_space.committed_size();
 382   size_t min_new_size = initial_size();
 383   size_t max_new_size = reserved().byte_size();
 384   assert(min_new_size <= new_size_before &&
 385          new_size_before <= max_new_size,
 386          "just checking");
 387   // All space sizes must be multiples of Generation::GenGrain.
 388   size_t alignment = Generation::GenGrain;
 389 
 390   // Compute desired new generation size based on NewRatio and
 391   // NewSizeThreadIncrease
 392   size_t desired_new_size = old_size/NewRatio;
 393   int threads_count = Threads::number_of_non_daemon_threads();
 394   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 395   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 396 
 397   // Adjust new generation size
 398   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 399   assert(desired_new_size <= max_new_size, "just checking");
 400 
 401   bool changed = false;
 402   if (desired_new_size > new_size_before) {
 403     size_t change = desired_new_size - new_size_before;
 404     assert(change % alignment == 0, "just checking");
 405     if (expand(change)) {
 406        changed = true;
 407     }
 408     // If the heap failed to expand to the desired size,
 409     // "changed" will be false.  If the expansion failed
 410     // (and at this point it was expected to succeed),
 411     // ignore the failure (leaving "changed" as false).
 412   }
 413   if (desired_new_size < new_size_before && eden()->is_empty()) {
 414     // bail out of shrinking if objects in eden
 415     size_t change = new_size_before - desired_new_size;
 416     assert(change % alignment == 0, "just checking");
 417     _virtual_space.shrink_by(change);
 418     changed = true;
 419   }
 420   if (changed) {
 421     // The spaces have already been mangled at this point but
 422     // may not have been cleared (set top = bottom) and should be.
 423     // Mangling was done when the heap was being expanded.
 424     compute_space_boundaries(eden()->used(),
 425                              SpaceDecorator::Clear,
 426                              SpaceDecorator::DontMangle);
 427     MemRegion cmr((HeapWord*)_virtual_space.low(),
 428                   (HeapWord*)_virtual_space.high());
 429     gch->barrier_set()->resize_covered_region(cmr);
 430 
 431     log_debug(gc, heap, ergo)(
 432         "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 433         new_size_before/K, _virtual_space.committed_size()/K,
 434         eden()->capacity()/K, from()->capacity()/K);
 435     log_trace(gc, heap, ergo)(
 436         "  [allowed " SIZE_FORMAT "K extra for %d threads]",
 437           thread_increase_size/K, threads_count);
 438       }
 439 }
 440 
 441 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 442   assert(false, "NYI -- are you sure you want to call this?");
 443 }
 444 
 445 
 446 size_t DefNewGeneration::capacity() const {
 447   return eden()->capacity()
 448        + from()->capacity();  // to() is only used during scavenge
 449 }
 450 
 451 
 452 size_t DefNewGeneration::used() const {
 453   return eden()->used()
 454        + from()->used();      // to() is only used during scavenge
 455 }
 456 
 457 
 458 size_t DefNewGeneration::free() const {
 459   return eden()->free()
 460        + from()->free();      // to() is only used during scavenge
 461 }
 462 
 463 size_t DefNewGeneration::max_capacity() const {
 464   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 465   const size_t reserved_bytes = reserved().byte_size();
 466   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 467 }
 468 
 469 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 470   return eden()->free();
 471 }
 472 
 473 size_t DefNewGeneration::capacity_before_gc() const {
 474   return eden()->capacity();
 475 }
 476 
 477 size_t DefNewGeneration::contiguous_available() const {
 478   return eden()->free();
 479 }
 480 
 481 
 482 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 483 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 484 
 485 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 486   eden()->object_iterate(blk);
 487   from()->object_iterate(blk);
 488 }
 489 
 490 
 491 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 492                                      bool usedOnly) {
 493   blk->do_space(eden());
 494   blk->do_space(from());
 495   blk->do_space(to());
 496 }
 497 
 498 // The last collection bailed out, we are running out of heap space,
 499 // so we try to allocate the from-space, too.
 500 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 501   bool should_try_alloc = should_allocate_from_space() || GC_locker::is_active_and_needs_gc();
 502 
 503   // If the Heap_lock is not locked by this thread, this will be called
 504   // again later with the Heap_lock held.
 505   bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
 506 
 507   HeapWord* result = NULL;
 508   if (do_alloc) {
 509     result = from()->allocate(size);
 510   }
 511 
 512   log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):  will_fail: %s  heap_lock: %s  free: " SIZE_FORMAT "%s%s returns %s",
 513                         size,
 514                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 515                           "true" : "false",
 516                         Heap_lock->is_locked() ? "locked" : "unlocked",
 517                 from()->free(),
 518                 should_try_alloc ? "" : "  should_allocate_from_space: NOT",
 519                 do_alloc ? "  Heap_lock is not owned by self" : "",
 520                 result == NULL ? "NULL" : "object");
 521 
 522   return result;
 523 }
 524 
 525 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 526                                                 bool   is_tlab,
 527                                                 bool   parallel) {
 528   // We don't attempt to expand the young generation (but perhaps we should.)
 529   return allocate(size, is_tlab);
 530 }
 531 
 532 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 533   // Set the desired survivor size to half the real survivor space
 534   GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->collector_policy()->counters();
 535   _tenuring_threshold =
 536     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize, gc_counters);
 537 }
 538 
 539 void DefNewGeneration::collect(bool   full,
 540                                bool   clear_all_soft_refs,
 541                                size_t size,
 542                                bool   is_tlab) {
 543   assert(full || size > 0, "otherwise we don't want to collect");
 544 
 545   GenCollectedHeap* gch = GenCollectedHeap::heap();
 546 
 547   _gc_timer->register_gc_start();
 548   DefNewTracer gc_tracer;
 549   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 550 
 551   _old_gen = gch->old_gen();
 552 
 553   // If the next generation is too full to accommodate promotion
 554   // from this generation, pass on collection; let the next generation
 555   // do it.
 556   if (!collection_attempt_is_safe()) {
 557     log_trace(gc)(":: Collection attempt not safe ::");
 558     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 559     return;
 560   }
 561   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 562 
 563   init_assuming_no_promotion_failure();
 564 
 565   GCTraceTime(Trace, gc) tm("DefNew", NULL, gch->gc_cause());
 566 
 567   gch->trace_heap_before_gc(&gc_tracer);
 568 
 569   // These can be shared for all code paths
 570   IsAliveClosure is_alive(this);
 571   ScanWeakRefClosure scan_weak_ref(this);
 572 
 573   age_table()->clear();
 574   to()->clear(SpaceDecorator::Mangle);
 575 
 576   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 577 
 578   assert(gch->no_allocs_since_save_marks(),
 579          "save marks have not been newly set.");
 580 
 581   // Not very pretty.
 582   CollectorPolicy* cp = gch->collector_policy();
 583 
 584   FastScanClosure fsc_with_no_gc_barrier(this, false);
 585   FastScanClosure fsc_with_gc_barrier(this, true);
 586 
 587   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 588                                       gch->rem_set()->klass_rem_set());
 589   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 590                                            &fsc_with_no_gc_barrier,
 591                                            false);
 592 
 593   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 594   FastEvacuateFollowersClosure evacuate_followers(gch,
 595                                                   &fsc_with_no_gc_barrier,
 596                                                   &fsc_with_gc_barrier);
 597 
 598   assert(gch->no_allocs_since_save_marks(),
 599          "save marks have not been newly set.");
 600 
 601   {
 602     // DefNew needs to run with n_threads == 0, to make sure the serial
 603     // version of the card table scanning code is used.
 604     // See: CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel.
 605     StrongRootsScope srs(0);
 606 
 607     gch->gen_process_roots(&srs,
 608                            GenCollectedHeap::YoungGen,
 609                            true,  // Process younger gens, if any,
 610                                   // as strong roots.
 611                            GenCollectedHeap::SO_ScavengeCodeCache,
 612                            GenCollectedHeap::StrongAndWeakRoots,
 613                            &fsc_with_no_gc_barrier,
 614                            &fsc_with_gc_barrier,
 615                            &cld_scan_closure);
 616   }
 617 
 618   // "evacuate followers".
 619   evacuate_followers.do_void();
 620 
 621   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 622   ReferenceProcessor* rp = ref_processor();
 623   rp->setup_policy(clear_all_soft_refs);
 624   const ReferenceProcessorStats& stats =
 625   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 626                                     NULL, _gc_timer);
 627   gc_tracer.report_gc_reference_stats(stats);
 628   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 629 
 630   if (!_promotion_failed) {
 631     // Swap the survivor spaces.
 632     eden()->clear(SpaceDecorator::Mangle);
 633     from()->clear(SpaceDecorator::Mangle);
 634     if (ZapUnusedHeapArea) {
 635       // This is now done here because of the piece-meal mangling which
 636       // can check for valid mangling at intermediate points in the
 637       // collection(s).  When a young collection fails to collect
 638       // sufficient space resizing of the young generation can occur
 639       // an redistribute the spaces in the young generation.  Mangle
 640       // here so that unzapped regions don't get distributed to
 641       // other spaces.
 642       to()->mangle_unused_area();
 643     }
 644     swap_spaces();
 645 
 646     assert(to()->is_empty(), "to space should be empty now");
 647 
 648     adjust_desired_tenuring_threshold();
 649 
 650     // A successful scavenge should restart the GC time limit count which is
 651     // for full GC's.
 652     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 653     size_policy->reset_gc_overhead_limit_count();
 654     assert(!gch->incremental_collection_failed(), "Should be clear");
 655   } else {
 656     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 657     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 658 
 659     remove_forwarding_pointers();
 660     log_debug(gc)("Promotion failed");
 661     // Add to-space to the list of space to compact
 662     // when a promotion failure has occurred.  In that
 663     // case there can be live objects in to-space
 664     // as a result of a partial evacuation of eden
 665     // and from-space.
 666     swap_spaces();   // For uniformity wrt ParNewGeneration.
 667     from()->set_next_compaction_space(to());
 668     gch->set_incremental_collection_failed();
 669 
 670     // Inform the next generation that a promotion failure occurred.
 671     _old_gen->promotion_failure_occurred();
 672     gc_tracer.report_promotion_failed(_promotion_failed_info);
 673 
 674     // Reset the PromotionFailureALot counters.
 675     NOT_PRODUCT(gch->reset_promotion_should_fail();)
 676   }
 677   // set new iteration safe limit for the survivor spaces
 678   from()->set_concurrent_iteration_safe_limit(from()->top());
 679   to()->set_concurrent_iteration_safe_limit(to()->top());
 680 
 681   // We need to use a monotonically non-decreasing time in ms
 682   // or we will see time-warp warnings and os::javaTimeMillis()
 683   // does not guarantee monotonicity.
 684   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 685   update_time_of_last_gc(now);
 686 
 687   gch->trace_heap_after_gc(&gc_tracer);
 688 
 689   _gc_timer->register_gc_end();
 690 
 691   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 692 }
 693 
 694 class RemoveForwardPointerClosure: public ObjectClosure {
 695 public:
 696   void do_object(oop obj) {
 697     obj->init_mark();
 698   }
 699 };
 700 
 701 void DefNewGeneration::init_assuming_no_promotion_failure() {
 702   _promotion_failed = false;
 703   _promotion_failed_info.reset();
 704   from()->set_next_compaction_space(NULL);
 705 }
 706 
 707 void DefNewGeneration::remove_forwarding_pointers() {
 708   RemoveForwardPointerClosure rspc;
 709   eden()->object_iterate(&rspc);
 710   from()->object_iterate(&rspc);
 711 
 712   // Now restore saved marks, if any.
 713   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 714          "should be the same");
 715   while (!_objs_with_preserved_marks.is_empty()) {
 716     oop obj   = _objs_with_preserved_marks.pop();
 717     markOop m = _preserved_marks_of_objs.pop();
 718     obj->set_mark(m);
 719   }
 720   _objs_with_preserved_marks.clear(true);
 721   _preserved_marks_of_objs.clear(true);
 722 }
 723 
 724 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 725   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 726          "Oversaving!");
 727   _objs_with_preserved_marks.push(obj);
 728   _preserved_marks_of_objs.push(m);
 729 }
 730 
 731 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 732   if (m->must_be_preserved_for_promotion_failure(obj)) {
 733     preserve_mark(obj, m);
 734   }
 735 }
 736 
 737 void DefNewGeneration::handle_promotion_failure(oop old) {
 738   log_debug(promotion)("Promotion failure size = %d) ", old->size());
 739 
 740   _promotion_failed = true;
 741   _promotion_failed_info.register_copy_failure(old->size());
 742   preserve_mark_if_necessary(old, old->mark());
 743   // forward to self
 744   old->forward_to(old);
 745 
 746   _promo_failure_scan_stack.push(old);
 747 
 748   if (!_promo_failure_drain_in_progress) {
 749     // prevent recursion in copy_to_survivor_space()
 750     _promo_failure_drain_in_progress = true;
 751     drain_promo_failure_scan_stack();
 752     _promo_failure_drain_in_progress = false;
 753   }
 754 }
 755 
 756 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 757   assert(is_in_reserved(old) && !old->is_forwarded(),
 758          "shouldn't be scavenging this oop");
 759   size_t s = old->size();
 760   oop obj = NULL;
 761 
 762   // Try allocating obj in to-space (unless too old)
 763   if (old->age() < tenuring_threshold()) {
 764     obj = (oop) to()->allocate_aligned(s);
 765   }
 766 
 767   // Otherwise try allocating obj tenured
 768   if (obj == NULL) {
 769     obj = _old_gen->promote(old, s);
 770     if (obj == NULL) {
 771       handle_promotion_failure(old);
 772       return old;
 773     }
 774   } else {
 775     // Prefetch beyond obj
 776     const intx interval = PrefetchCopyIntervalInBytes;
 777     Prefetch::write(obj, interval);
 778 
 779     // Copy obj
 780     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 781 
 782     // Increment age if obj still in new generation
 783     obj->incr_age();
 784     age_table()->add(obj, s);
 785   }
 786 
 787   // Done, insert forward pointer to obj in this header
 788   old->forward_to(obj);
 789 
 790   return obj;
 791 }
 792 
 793 void DefNewGeneration::drain_promo_failure_scan_stack() {
 794   while (!_promo_failure_scan_stack.is_empty()) {
 795      oop obj = _promo_failure_scan_stack.pop();
 796      obj->oop_iterate(_promo_failure_scan_stack_closure);
 797   }
 798 }
 799 
 800 void DefNewGeneration::save_marks() {
 801   eden()->set_saved_mark();
 802   to()->set_saved_mark();
 803   from()->set_saved_mark();
 804 }
 805 
 806 
 807 void DefNewGeneration::reset_saved_marks() {
 808   eden()->reset_saved_mark();
 809   to()->reset_saved_mark();
 810   from()->reset_saved_mark();
 811 }
 812 
 813 
 814 bool DefNewGeneration::no_allocs_since_save_marks() {
 815   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 816   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 817   return to()->saved_mark_at_top();
 818 }
 819 
 820 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 821                                                                 \
 822 void DefNewGeneration::                                         \
 823 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 824   cl->set_generation(this);                                     \
 825   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 826   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 827   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 828   cl->reset_generation();                                       \
 829   save_marks();                                                 \
 830 }
 831 
 832 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 833 
 834 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 835 
 836 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 837                                          size_t max_alloc_words) {
 838   if (requestor == this || _promotion_failed) {
 839     return;
 840   }
 841   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 842 
 843   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 844   if (to_space->top() > to_space->bottom()) {
 845     trace("to_space not empty when contribute_scratch called");
 846   }
 847   */
 848 
 849   ContiguousSpace* to_space = to();
 850   assert(to_space->end() >= to_space->top(), "pointers out of order");
 851   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 852   if (free_words >= MinFreeScratchWords) {
 853     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 854     sb->num_words = free_words;
 855     sb->next = list;
 856     list = sb;
 857   }
 858 }
 859 
 860 void DefNewGeneration::reset_scratch() {
 861   // If contributing scratch in to_space, mangle all of
 862   // to_space if ZapUnusedHeapArea.  This is needed because
 863   // top is not maintained while using to-space as scratch.
 864   if (ZapUnusedHeapArea) {
 865     to()->mangle_unused_area_complete();
 866   }
 867 }
 868 
 869 bool DefNewGeneration::collection_attempt_is_safe() {
 870   if (!to()->is_empty()) {
 871     log_trace(gc)(":: to is not empty ::");
 872     return false;
 873   }
 874   if (_old_gen == NULL) {
 875     GenCollectedHeap* gch = GenCollectedHeap::heap();
 876     _old_gen = gch->old_gen();
 877   }
 878   return _old_gen->promotion_attempt_is_safe(used());
 879 }
 880 
 881 void DefNewGeneration::gc_epilogue(bool full) {
 882   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 883 
 884   assert(!GC_locker::is_active(), "We should not be executing here");
 885   // Check if the heap is approaching full after a collection has
 886   // been done.  Generally the young generation is empty at
 887   // a minimum at the end of a collection.  If it is not, then
 888   // the heap is approaching full.
 889   GenCollectedHeap* gch = GenCollectedHeap::heap();
 890   if (full) {
 891     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 892     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 893       log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 894                             GCCause::to_string(gch->gc_cause()));
 895       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 896       set_should_allocate_from_space(); // we seem to be running out of space
 897     } else {
 898       log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 899                             GCCause::to_string(gch->gc_cause()));
 900       gch->clear_incremental_collection_failed(); // We just did a full collection
 901       clear_should_allocate_from_space(); // if set
 902     }
 903   } else {
 904 #ifdef ASSERT
 905     // It is possible that incremental_collection_failed() == true
 906     // here, because an attempted scavenge did not succeed. The policy
 907     // is normally expected to cause a full collection which should
 908     // clear that condition, so we should not be here twice in a row
 909     // with incremental_collection_failed() == true without having done
 910     // a full collection in between.
 911     if (!seen_incremental_collection_failed &&
 912         gch->incremental_collection_failed()) {
 913       log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 914                             GCCause::to_string(gch->gc_cause()));
 915       seen_incremental_collection_failed = true;
 916     } else if (seen_incremental_collection_failed) {
 917       log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 918                             GCCause::to_string(gch->gc_cause()));
 919       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 920              (GCCause::is_user_requested_gc(gch->gc_cause()) && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 921              !gch->incremental_collection_failed(),
 922              "Twice in a row");
 923       seen_incremental_collection_failed = false;
 924     }
 925 #endif // ASSERT
 926   }
 927 
 928   if (ZapUnusedHeapArea) {
 929     eden()->check_mangled_unused_area_complete();
 930     from()->check_mangled_unused_area_complete();
 931     to()->check_mangled_unused_area_complete();
 932   }
 933 
 934   if (!CleanChunkPoolAsync) {
 935     Chunk::clean_chunk_pool();
 936   }
 937 
 938   // update the generation and space performance counters
 939   update_counters();
 940   gch->collector_policy()->counters()->update_counters();
 941 }
 942 
 943 void DefNewGeneration::record_spaces_top() {
 944   assert(ZapUnusedHeapArea, "Not mangling unused space");
 945   eden()->set_top_for_allocations();
 946   to()->set_top_for_allocations();
 947   from()->set_top_for_allocations();
 948 }
 949 
 950 void DefNewGeneration::ref_processor_init() {
 951   Generation::ref_processor_init();
 952 }
 953 
 954 
 955 void DefNewGeneration::update_counters() {
 956   if (UsePerfData) {
 957     _eden_counters->update_all();
 958     _from_counters->update_all();
 959     _to_counters->update_all();
 960     _gen_counters->update_all();
 961   }
 962 }
 963 
 964 void DefNewGeneration::verify() {
 965   eden()->verify();
 966   from()->verify();
 967     to()->verify();
 968 }
 969 
 970 void DefNewGeneration::print_on(outputStream* st) const {
 971   Generation::print_on(st);
 972   st->print("  eden");
 973   eden()->print_on(st);
 974   st->print("  from");
 975   from()->print_on(st);
 976   st->print("  to  ");
 977   to()->print_on(st);
 978 }
 979 
 980 
 981 const char* DefNewGeneration::name() const {
 982   return "def new generation";
 983 }
 984 
 985 // Moved from inline file as they are not called inline
 986 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
 987   return eden();
 988 }
 989 
 990 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
 991   // This is the slow-path allocation for the DefNewGeneration.
 992   // Most allocations are fast-path in compiled code.
 993   // We try to allocate from the eden.  If that works, we are happy.
 994   // Note that since DefNewGeneration supports lock-free allocation, we
 995   // have to use it here, as well.
 996   HeapWord* result = eden()->par_allocate(word_size);
 997   if (result != NULL) {
 998     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
 999       _old_gen->sample_eden_chunk();
1000     }
1001   } else {
1002     // If the eden is full and the last collection bailed out, we are running
1003     // out of heap space, and we try to allocate the from-space, too.
1004     // allocate_from_space can't be inlined because that would introduce a
1005     // circular dependency at compile time.
1006     result = allocate_from_space(word_size);
1007   }
1008   return result;
1009 }
1010 
1011 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1012                                          bool is_tlab) {
1013   HeapWord* res = eden()->par_allocate(word_size);
1014   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1015     _old_gen->sample_eden_chunk();
1016   }
1017   return res;
1018 }
1019 
1020 size_t DefNewGeneration::tlab_capacity() const {
1021   return eden()->capacity();
1022 }
1023 
1024 size_t DefNewGeneration::tlab_used() const {
1025   return eden()->used();
1026 }
1027 
1028 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1029   return unsafe_max_alloc_nogc();
1030 }