1 /*
   2  * Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentG1RefineThread.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1RemSet.inline.hpp"
  30 #include "gc/g1/g1RemSetSummary.hpp"
  31 #include "gc/g1/heapRegion.hpp"
  32 #include "gc/g1/heapRegionRemSet.hpp"
  33 #include "runtime/thread.inline.hpp"
  34 
  35 class GetRSThreadVTimeClosure : public ThreadClosure {
  36 private:
  37   G1RemSetSummary* _summary;
  38   uint _counter;
  39 
  40 public:
  41   GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) {
  42     assert(_summary != NULL, "just checking");
  43   }
  44 
  45   virtual void do_thread(Thread* t) {
  46     ConcurrentG1RefineThread* crt = (ConcurrentG1RefineThread*) t;
  47     _summary->set_rs_thread_vtime(_counter, crt->vtime_accum());
  48     _counter++;
  49   }
  50 };
  51 
  52 void G1RemSetSummary::update() {
  53   _num_refined_cards = remset()->conc_refine_cards();
  54   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  55   _num_processed_buf_mutator = dcqs.processed_buffers_mut();
  56   _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread();
  57 
  58   _num_coarsenings = HeapRegionRemSet::n_coarsenings();
  59 
  60   ConcurrentG1Refine * cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  61   if (_rs_threads_vtimes != NULL) {
  62     GetRSThreadVTimeClosure p(this);
  63     cg1r->worker_threads_do(&p);
  64   }
  65   set_sampling_thread_vtime(cg1r->sampling_thread()->vtime_accum());
  66 }
  67 
  68 void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) {
  69   assert(_rs_threads_vtimes != NULL, "just checking");
  70   assert(thread < _num_vtimes, "just checking");
  71   _rs_threads_vtimes[thread] = value;
  72 }
  73 
  74 double G1RemSetSummary::rs_thread_vtime(uint thread) const {
  75   assert(_rs_threads_vtimes != NULL, "just checking");
  76   assert(thread < _num_vtimes, "just checking");
  77   return _rs_threads_vtimes[thread];
  78 }
  79 
  80 void G1RemSetSummary::initialize(G1RemSet* remset) {
  81   assert(_rs_threads_vtimes == NULL, "just checking");
  82   assert(remset != NULL, "just checking");
  83 
  84   _remset = remset;
  85   _num_vtimes = ConcurrentG1Refine::thread_num();
  86   _rs_threads_vtimes = NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC);
  87   memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes);
  88 
  89   update();
  90 }
  91 
  92 void G1RemSetSummary::set(G1RemSetSummary* other) {
  93   assert(other != NULL, "just checking");
  94   assert(remset() == other->remset(), "just checking");
  95   assert(_num_vtimes == other->_num_vtimes, "just checking");
  96 
  97   _num_refined_cards = other->num_concurrent_refined_cards();
  98 
  99   _num_processed_buf_mutator = other->num_processed_buf_mutator();
 100   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads();
 101 
 102   _num_coarsenings = other->_num_coarsenings;
 103 
 104   memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes);
 105 
 106   set_sampling_thread_vtime(other->sampling_thread_vtime());
 107 }
 108 
 109 void G1RemSetSummary::subtract_from(G1RemSetSummary* other) {
 110   assert(other != NULL, "just checking");
 111   assert(remset() == other->remset(), "just checking");
 112   assert(_num_vtimes == other->_num_vtimes, "just checking");
 113 
 114   _num_refined_cards = other->num_concurrent_refined_cards() - _num_refined_cards;
 115 
 116   _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator;
 117   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads;
 118 
 119   _num_coarsenings = other->num_coarsenings() - _num_coarsenings;
 120 
 121   for (uint i = 0; i < _num_vtimes; i++) {
 122     set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i));
 123   }
 124 
 125   _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime;
 126 }
 127 
 128 static double percent_of(size_t numerator, size_t denominator) {
 129   if (denominator != 0) {
 130     return (double)numerator / denominator * 100.0f;
 131   } else {
 132     return 0.0f;
 133   }
 134 }
 135 
 136 static size_t round_to_K(size_t value) {
 137   return value / K;
 138 }
 139 
 140 class RegionTypeCounter VALUE_OBJ_CLASS_SPEC {
 141 private:
 142   const char* _name;
 143 
 144   size_t _rs_mem_size;
 145   size_t _cards_occupied;
 146   size_t _amount;
 147 
 148   size_t _code_root_mem_size;
 149   size_t _code_root_elems;
 150 
 151   double rs_mem_size_percent_of(size_t total) {
 152     return percent_of(_rs_mem_size, total);
 153   }
 154 
 155   double cards_occupied_percent_of(size_t total) {
 156     return percent_of(_cards_occupied, total);
 157   }
 158 
 159   double code_root_mem_size_percent_of(size_t total) {
 160     return percent_of(_code_root_mem_size, total);
 161   }
 162 
 163   double code_root_elems_percent_of(size_t total) {
 164     return percent_of(_code_root_elems, total);
 165   }
 166 
 167   size_t amount() const { return _amount; }
 168 
 169 public:
 170 
 171   RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0),
 172     _amount(0), _code_root_mem_size(0), _code_root_elems(0) { }
 173 
 174   void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size,
 175     size_t code_root_elems) {
 176     _rs_mem_size += rs_mem_size;
 177     _cards_occupied += cards_occupied;
 178     _code_root_mem_size += code_root_mem_size;
 179     _code_root_elems += code_root_elems;
 180     _amount++;
 181   }
 182 
 183   size_t rs_mem_size() const { return _rs_mem_size; }
 184   size_t cards_occupied() const { return _cards_occupied; }
 185 
 186   size_t code_root_mem_size() const { return _code_root_mem_size; }
 187   size_t code_root_elems() const { return _code_root_elems; }
 188 
 189   void print_rs_mem_info_on(outputStream * out, size_t total) {
 190     out->print_cr("    " SIZE_FORMAT_W(8) "K (%5.1f%%) by " SIZE_FORMAT " %s regions",
 191         round_to_K(rs_mem_size()), rs_mem_size_percent_of(total), amount(), _name);
 192   }
 193 
 194   void print_cards_occupied_info_on(outputStream * out, size_t total) {
 195     out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) entries by " SIZE_FORMAT " %s regions",
 196         cards_occupied(), cards_occupied_percent_of(total), amount(), _name);
 197   }
 198 
 199   void print_code_root_mem_info_on(outputStream * out, size_t total) {
 200     out->print_cr("    " SIZE_FORMAT_W(8) "K (%5.1f%%) by " SIZE_FORMAT " %s regions",
 201         round_to_K(code_root_mem_size()), code_root_mem_size_percent_of(total), amount(), _name);
 202   }
 203 
 204   void print_code_root_elems_info_on(outputStream * out, size_t total) {
 205     out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) elements by " SIZE_FORMAT " %s regions",
 206         code_root_elems(), code_root_elems_percent_of(total), amount(), _name);
 207   }
 208 };
 209 
 210 
 211 class HRRSStatsIter: public HeapRegionClosure {
 212 private:
 213   RegionTypeCounter _young;
 214   RegionTypeCounter _humonguous;
 215   RegionTypeCounter _free;
 216   RegionTypeCounter _old;
 217   RegionTypeCounter _all;
 218 
 219   size_t _max_rs_mem_sz;
 220   HeapRegion* _max_rs_mem_sz_region;
 221 
 222   size_t total_rs_mem_sz() const            { return _all.rs_mem_size(); }
 223   size_t total_cards_occupied() const       { return _all.cards_occupied(); }
 224 
 225   size_t max_rs_mem_sz() const              { return _max_rs_mem_sz; }
 226   HeapRegion* max_rs_mem_sz_region() const  { return _max_rs_mem_sz_region; }
 227 
 228   size_t _max_code_root_mem_sz;
 229   HeapRegion* _max_code_root_mem_sz_region;
 230 
 231   size_t total_code_root_mem_sz() const     { return _all.code_root_mem_size(); }
 232   size_t total_code_root_elems() const      { return _all.code_root_elems(); }
 233 
 234   size_t max_code_root_mem_sz() const       { return _max_code_root_mem_sz; }
 235   HeapRegion* max_code_root_mem_sz_region() const { return _max_code_root_mem_sz_region; }
 236 
 237 public:
 238   HRRSStatsIter() : _all("All"), _young("Young"), _humonguous("Humonguous"),
 239     _free("Free"), _old("Old"), _max_code_root_mem_sz_region(NULL), _max_rs_mem_sz_region(NULL),
 240     _max_rs_mem_sz(0), _max_code_root_mem_sz(0)
 241   {}
 242 
 243   bool doHeapRegion(HeapRegion* r) {
 244     HeapRegionRemSet* hrrs = r->rem_set();
 245 
 246     // HeapRegionRemSet::mem_size() includes the
 247     // size of the strong code roots
 248     size_t rs_mem_sz = hrrs->mem_size();
 249     if (rs_mem_sz > _max_rs_mem_sz) {
 250       _max_rs_mem_sz = rs_mem_sz;
 251       _max_rs_mem_sz_region = r;
 252     }
 253     size_t occupied_cards = hrrs->occupied();
 254     size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size();
 255     if (code_root_mem_sz > max_code_root_mem_sz()) {
 256       _max_code_root_mem_sz = code_root_mem_sz;
 257       _max_code_root_mem_sz_region = r;
 258     }
 259     size_t code_root_elems = hrrs->strong_code_roots_list_length();
 260 
 261     RegionTypeCounter* current = NULL;
 262     if (r->is_free()) {
 263       current = &_free;
 264     } else if (r->is_young()) {
 265       current = &_young;
 266     } else if (r->is_humongous()) {
 267       current = &_humonguous;
 268     } else if (r->is_old()) {
 269       current = &_old;
 270     } else {
 271       ShouldNotReachHere();
 272     }
 273     current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
 274     _all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
 275 
 276     return false;
 277   }
 278 
 279   void print_summary_on(outputStream* out) {
 280     RegionTypeCounter* counters[] = { &_young, &_humonguous, &_free, &_old, NULL };
 281 
 282     out->print_cr("\n Current rem set statistics");
 283     out->print_cr("  Total per region rem sets sizes = " SIZE_FORMAT "K."
 284                   " Max = " SIZE_FORMAT "K.",
 285                   round_to_K(total_rs_mem_sz()), round_to_K(max_rs_mem_sz()));
 286     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 287       (*current)->print_rs_mem_info_on(out, total_rs_mem_sz());
 288     }
 289 
 290     out->print_cr("   Static structures = " SIZE_FORMAT "K,"
 291                   " free_lists = " SIZE_FORMAT "K.",
 292                   round_to_K(HeapRegionRemSet::static_mem_size()),
 293                   round_to_K(HeapRegionRemSet::fl_mem_size()));
 294 
 295     out->print_cr("    " SIZE_FORMAT " occupied cards represented.",
 296                   total_cards_occupied());
 297     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 298       (*current)->print_cards_occupied_info_on(out, total_cards_occupied());
 299     }
 300 
 301     // Largest sized rem set region statistics
 302     HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set();
 303     out->print_cr("    Region with largest rem set = " HR_FORMAT ", "
 304                   "size = " SIZE_FORMAT "K, occupied = " SIZE_FORMAT "K.",
 305                   HR_FORMAT_PARAMS(max_rs_mem_sz_region()),
 306                   round_to_K(rem_set->mem_size()),
 307                   round_to_K(rem_set->occupied()));
 308 
 309     // Strong code root statistics
 310     HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set();
 311     out->print_cr("  Total heap region code root sets sizes = " SIZE_FORMAT "K."
 312                   "  Max = " SIZE_FORMAT "K.",
 313                   round_to_K(total_code_root_mem_sz()),
 314                   round_to_K(max_code_root_rem_set->strong_code_roots_mem_size()));
 315     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 316       (*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz());
 317     }
 318 
 319     out->print_cr("    " SIZE_FORMAT " code roots represented.",
 320                   total_code_root_elems());
 321     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 322       (*current)->print_code_root_elems_info_on(out, total_code_root_elems());
 323     }
 324 
 325     out->print_cr("    Region with largest amount of code roots = " HR_FORMAT ", "
 326                   "size = " SIZE_FORMAT "K, num_elems = " SIZE_FORMAT ".",
 327                   HR_FORMAT_PARAMS(max_code_root_mem_sz_region()),
 328                   round_to_K(max_code_root_rem_set->strong_code_roots_mem_size()),
 329                   round_to_K(max_code_root_rem_set->strong_code_roots_list_length()));
 330   }
 331 };
 332 
 333 void G1RemSetSummary::print_on(outputStream* out) {
 334   out->print_cr("\n Recent concurrent refinement statistics");
 335   out->print_cr("  Processed " SIZE_FORMAT " cards",
 336                 num_concurrent_refined_cards());
 337   out->print_cr("  Of " SIZE_FORMAT " completed buffers:", num_processed_buf_total());
 338   out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) by concurrent RS threads.",
 339                 num_processed_buf_total(),
 340                 percent_of(num_processed_buf_rs_threads(), num_processed_buf_total()));
 341   out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) by mutator threads.",
 342                 num_processed_buf_mutator(),
 343                 percent_of(num_processed_buf_mutator(), num_processed_buf_total()));
 344   out->print_cr("  Did " SIZE_FORMAT " coarsenings.", num_coarsenings());
 345   out->print_cr("  Concurrent RS threads times (s)");
 346   out->print("     ");
 347   for (uint i = 0; i < _num_vtimes; i++) {
 348     out->print("    %5.2f", rs_thread_vtime(i));
 349   }
 350   out->cr();
 351   out->print_cr("  Concurrent sampling threads times (s)");
 352   out->print_cr("         %5.2f", sampling_thread_vtime());
 353 
 354   HRRSStatsIter blk;
 355   G1CollectedHeap::heap()->heap_region_iterate(&blk);
 356   blk.print_summary_on(out);
 357 }