1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/heapRegion.inline.hpp"
  31 #include "gc/g1/heapRegionBounds.inline.hpp"
  32 #include "gc/g1/heapRegionManager.inline.hpp"
  33 #include "gc/g1/heapRegionRemSet.hpp"
  34 #include "gc/shared/genOopClosures.inline.hpp"
  35 #include "gc/shared/liveRange.hpp"
  36 #include "gc/shared/space.inline.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/iterator.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "runtime/atomic.inline.hpp"
  41 #include "runtime/orderAccess.inline.hpp"
  42 
  43 int    HeapRegion::LogOfHRGrainBytes = 0;
  44 int    HeapRegion::LogOfHRGrainWords = 0;
  45 size_t HeapRegion::GrainBytes        = 0;
  46 size_t HeapRegion::GrainWords        = 0;
  47 size_t HeapRegion::CardsPerRegion    = 0;
  48 
  49 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  50                                  HeapRegion* hr,
  51                                  G1ParPushHeapRSClosure* cl,
  52                                  CardTableModRefBS::PrecisionStyle precision) :
  53   DirtyCardToOopClosure(hr, cl, precision, NULL),
  54   _hr(hr), _rs_scan(cl), _g1(g1) { }
  55 
  56 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  57                                                    OopClosure* oc) :
  58   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  59 
  60 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  61                                       HeapWord* bottom,
  62                                       HeapWord* top) {
  63   G1CollectedHeap* g1h = _g1;
  64   size_t oop_size;
  65   HeapWord* cur = bottom;
  66 
  67   // Start filtering what we add to the remembered set. If the object is
  68   // not considered dead, either because it is marked (in the mark bitmap)
  69   // or it was allocated after marking finished, then we add it. Otherwise
  70   // we can safely ignore the object.
  71   if (!g1h->is_obj_dead(oop(cur))) {
  72     oop_size = oop(cur)->oop_iterate_size(_rs_scan, mr);
  73   } else {
  74     oop_size = _hr->block_size(cur);
  75   }
  76 
  77   cur += oop_size;
  78 
  79   if (cur < top) {
  80     oop cur_oop = oop(cur);
  81     oop_size = _hr->block_size(cur);
  82     HeapWord* next_obj = cur + oop_size;
  83     while (next_obj < top) {
  84       // Keep filtering the remembered set.
  85       if (!g1h->is_obj_dead(cur_oop)) {
  86         // Bottom lies entirely below top, so we can call the
  87         // non-memRegion version of oop_iterate below.
  88         cur_oop->oop_iterate(_rs_scan);
  89       }
  90       cur = next_obj;
  91       cur_oop = oop(cur);
  92       oop_size = _hr->block_size(cur);
  93       next_obj = cur + oop_size;
  94     }
  95 
  96     // Last object. Need to do dead-obj filtering here too.
  97     if (!g1h->is_obj_dead(oop(cur))) {
  98       oop(cur)->oop_iterate(_rs_scan, mr);
  99     }
 100   }
 101 }
 102 
 103 size_t HeapRegion::max_region_size() {
 104   return HeapRegionBounds::max_size();
 105 }
 106 
 107 size_t HeapRegion::min_region_size_in_words() {
 108   return HeapRegionBounds::min_size() >> LogHeapWordSize;
 109 }
 110 
 111 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 112   size_t region_size = G1HeapRegionSize;
 113   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 114     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 115     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 116                        HeapRegionBounds::min_size());
 117   }
 118 
 119   int region_size_log = log2_long((jlong) region_size);
 120   // Recalculate the region size to make sure it's a power of
 121   // 2. This means that region_size is the largest power of 2 that's
 122   // <= what we've calculated so far.
 123   region_size = ((size_t)1 << region_size_log);
 124 
 125   // Now make sure that we don't go over or under our limits.
 126   if (region_size < HeapRegionBounds::min_size()) {
 127     region_size = HeapRegionBounds::min_size();
 128   } else if (region_size > HeapRegionBounds::max_size()) {
 129     region_size = HeapRegionBounds::max_size();
 130   }
 131 
 132   // And recalculate the log.
 133   region_size_log = log2_long((jlong) region_size);
 134 
 135   // Now, set up the globals.
 136   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 137   LogOfHRGrainBytes = region_size_log;
 138 
 139   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 140   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 141 
 142   guarantee(GrainBytes == 0, "we should only set it once");
 143   // The cast to int is safe, given that we've bounded region_size by
 144   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 145   GrainBytes = region_size;
 146 
 147   guarantee(GrainWords == 0, "we should only set it once");
 148   GrainWords = GrainBytes >> LogHeapWordSize;
 149   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 150 
 151   guarantee(CardsPerRegion == 0, "we should only set it once");
 152   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 153 }
 154 
 155 void HeapRegion::reset_after_compaction() {
 156   G1OffsetTableContigSpace::reset_after_compaction();
 157   // After a compaction the mark bitmap is invalid, so we must
 158   // treat all objects as being inside the unmarked area.
 159   zero_marked_bytes();
 160   init_top_at_mark_start();
 161 }
 162 
 163 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 164   assert(_humongous_start_region == NULL,
 165          "we should have already filtered out humongous regions");
 166   assert(!in_collection_set(),
 167          "Should not clear heap region %u in the collection set", hrm_index());
 168 
 169   set_allocation_context(AllocationContext::system());
 170   set_young_index_in_cset(-1);
 171   uninstall_surv_rate_group();
 172   set_free();
 173   reset_pre_dummy_top();
 174 
 175   if (!par) {
 176     // If this is parallel, this will be done later.
 177     HeapRegionRemSet* hrrs = rem_set();
 178     if (locked) {
 179       hrrs->clear_locked();
 180     } else {
 181       hrrs->clear();
 182     }
 183   }
 184   zero_marked_bytes();
 185 
 186   _offsets.resize(HeapRegion::GrainWords);
 187   init_top_at_mark_start();
 188   if (clear_space) clear(SpaceDecorator::Mangle);
 189 }
 190 
 191 void HeapRegion::par_clear() {
 192   assert(used() == 0, "the region should have been already cleared");
 193   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 194   HeapRegionRemSet* hrrs = rem_set();
 195   hrrs->clear();
 196   CardTableModRefBS* ct_bs =
 197     barrier_set_cast<CardTableModRefBS>(G1CollectedHeap::heap()->barrier_set());
 198   ct_bs->clear(MemRegion(bottom(), end()));
 199 }
 200 
 201 void HeapRegion::calc_gc_efficiency() {
 202   // GC efficiency is the ratio of how much space would be
 203   // reclaimed over how long we predict it would take to reclaim it.
 204   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 205   G1CollectorPolicy* g1p = g1h->g1_policy();
 206 
 207   // Retrieve a prediction of the elapsed time for this region for
 208   // a mixed gc because the region will only be evacuated during a
 209   // mixed gc.
 210   double region_elapsed_time_ms =
 211     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 212   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 213 }
 214 
 215 void HeapRegion::set_starts_humongous(HeapWord* obj_top) {
 216   assert(!is_humongous(), "sanity / pre-condition");
 217   assert(top() == bottom(), "should be empty");
 218 
 219   _type.set_starts_humongous();
 220   _humongous_start_region = this;
 221 
 222   _offsets.set_for_starts_humongous(obj_top);
 223 }
 224 
 225 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 226   assert(!is_humongous(), "sanity / pre-condition");
 227   assert(top() == bottom(), "should be empty");
 228   assert(first_hr->is_starts_humongous(), "pre-condition");
 229 
 230   _type.set_continues_humongous();
 231   _humongous_start_region = first_hr;
 232 }
 233 
 234 void HeapRegion::clear_humongous() {
 235   assert(is_humongous(), "pre-condition");
 236 
 237   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 238   _humongous_start_region = NULL;
 239 }
 240 
 241 HeapRegion::HeapRegion(uint hrm_index,
 242                        G1BlockOffsetSharedArray* sharedOffsetArray,
 243                        MemRegion mr) :
 244     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 245     _hrm_index(hrm_index),
 246     _allocation_context(AllocationContext::system()),
 247     _humongous_start_region(NULL),
 248     _next_in_special_set(NULL),
 249     _evacuation_failed(false),
 250     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 251     _next_young_region(NULL),
 252     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 253 #ifdef ASSERT
 254     _containing_set(NULL),
 255 #endif // ASSERT
 256      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 257     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 258     _predicted_bytes_to_copy(0)
 259 {
 260   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 261   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 262 
 263   initialize(mr);
 264 }
 265 
 266 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 267   assert(_rem_set->is_empty(), "Remembered set must be empty");
 268 
 269   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 270 
 271   hr_clear(false /*par*/, false /*clear_space*/);
 272   set_top(bottom());
 273   record_timestamp();
 274 }
 275 
 276 CompactibleSpace* HeapRegion::next_compaction_space() const {
 277   return G1CollectedHeap::heap()->next_compaction_region(this);
 278 }
 279 
 280 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 281                                                     bool during_conc_mark) {
 282   // We always recreate the prev marking info and we'll explicitly
 283   // mark all objects we find to be self-forwarded on the prev
 284   // bitmap. So all objects need to be below PTAMS.
 285   _prev_marked_bytes = 0;
 286 
 287   if (during_initial_mark) {
 288     // During initial-mark, we'll also explicitly mark all objects
 289     // we find to be self-forwarded on the next bitmap. So all
 290     // objects need to be below NTAMS.
 291     _next_top_at_mark_start = top();
 292     _next_marked_bytes = 0;
 293   } else if (during_conc_mark) {
 294     // During concurrent mark, all objects in the CSet (including
 295     // the ones we find to be self-forwarded) are implicitly live.
 296     // So all objects need to be above NTAMS.
 297     _next_top_at_mark_start = bottom();
 298     _next_marked_bytes = 0;
 299   }
 300 }
 301 
 302 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 303                                                   bool during_conc_mark,
 304                                                   size_t marked_bytes) {
 305   assert(marked_bytes <= used(),
 306          "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
 307   _prev_top_at_mark_start = top();
 308   _prev_marked_bytes = marked_bytes;
 309 }
 310 
 311 HeapWord*
 312 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 313                                                  ObjectClosure* cl) {
 314   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 315   // We used to use "block_start_careful" here.  But we're actually happy
 316   // to update the BOT while we do this...
 317   HeapWord* cur = block_start(mr.start());
 318   mr = mr.intersection(used_region());
 319   if (mr.is_empty()) return NULL;
 320   // Otherwise, find the obj that extends onto mr.start().
 321 
 322   assert(cur <= mr.start()
 323          && (oop(cur)->klass_or_null() == NULL ||
 324              cur + oop(cur)->size() > mr.start()),
 325          "postcondition of block_start");
 326   oop obj;
 327   while (cur < mr.end()) {
 328     obj = oop(cur);
 329     if (obj->klass_or_null() == NULL) {
 330       // Ran into an unparseable point.
 331       return cur;
 332     } else if (!g1h->is_obj_dead(obj)) {
 333       cl->do_object(obj);
 334     }
 335     cur += block_size(cur);
 336   }
 337   return NULL;
 338 }
 339 
 340 HeapWord*
 341 HeapRegion::
 342 oops_on_card_seq_iterate_careful(MemRegion mr,
 343                                  FilterOutOfRegionClosure* cl,
 344                                  bool filter_young,
 345                                  jbyte* card_ptr) {
 346   // Currently, we should only have to clean the card if filter_young
 347   // is true and vice versa.
 348   if (filter_young) {
 349     assert(card_ptr != NULL, "pre-condition");
 350   } else {
 351     assert(card_ptr == NULL, "pre-condition");
 352   }
 353   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 354 
 355   // If we're within a stop-world GC, then we might look at a card in a
 356   // GC alloc region that extends onto a GC LAB, which may not be
 357   // parseable.  Stop such at the "scan_top" of the region.
 358   if (g1h->is_gc_active()) {
 359     mr = mr.intersection(MemRegion(bottom(), scan_top()));
 360   } else {
 361     mr = mr.intersection(used_region());
 362   }
 363   if (mr.is_empty()) return NULL;
 364   // Otherwise, find the obj that extends onto mr.start().
 365 
 366   // The intersection of the incoming mr (for the card) and the
 367   // allocated part of the region is non-empty. This implies that
 368   // we have actually allocated into this region. The code in
 369   // G1CollectedHeap.cpp that allocates a new region sets the
 370   // is_young tag on the region before allocating. Thus we
 371   // safely know if this region is young.
 372   if (is_young() && filter_young) {
 373     return NULL;
 374   }
 375 
 376   assert(!is_young(), "check value of filter_young");
 377 
 378   // We can only clean the card here, after we make the decision that
 379   // the card is not young. And we only clean the card if we have been
 380   // asked to (i.e., card_ptr != NULL).
 381   if (card_ptr != NULL) {
 382     *card_ptr = CardTableModRefBS::clean_card_val();
 383     // We must complete this write before we do any of the reads below.
 384     OrderAccess::storeload();
 385   }
 386 
 387   // Cache the boundaries of the memory region in some const locals
 388   HeapWord* const start = mr.start();
 389   HeapWord* const end = mr.end();
 390 
 391   // We used to use "block_start_careful" here.  But we're actually happy
 392   // to update the BOT while we do this...
 393   HeapWord* cur = block_start(start);
 394   assert(cur <= start, "Postcondition");
 395 
 396   oop obj;
 397 
 398   HeapWord* next = cur;
 399   do {
 400     cur = next;
 401     obj = oop(cur);
 402     if (obj->klass_or_null() == NULL) {
 403       // Ran into an unparseable point.
 404       return cur;
 405     }
 406     // Otherwise...
 407     next = cur + block_size(cur);
 408   } while (next <= start);
 409 
 410   // If we finish the above loop...We have a parseable object that
 411   // begins on or before the start of the memory region, and ends
 412   // inside or spans the entire region.
 413   assert(cur <= start, "Loop postcondition");
 414   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 415 
 416   do {
 417     obj = oop(cur);
 418     assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
 419     if (obj->klass_or_null() == NULL) {
 420       // Ran into an unparseable point.
 421       return cur;
 422     }
 423 
 424     // Advance the current pointer. "obj" still points to the object to iterate.
 425     cur = cur + block_size(cur);
 426 
 427     if (!g1h->is_obj_dead(obj)) {
 428       // Non-objArrays are sometimes marked imprecise at the object start. We
 429       // always need to iterate over them in full.
 430       // We only iterate over object arrays in full if they are completely contained
 431       // in the memory region.
 432       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
 433         obj->oop_iterate(cl);
 434       } else {
 435         obj->oop_iterate(cl, mr);
 436       }
 437     }
 438   } while (cur < end);
 439 
 440   return NULL;
 441 }
 442 
 443 // Code roots support
 444 
 445 void HeapRegion::add_strong_code_root(nmethod* nm) {
 446   HeapRegionRemSet* hrrs = rem_set();
 447   hrrs->add_strong_code_root(nm);
 448 }
 449 
 450 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 451   assert_locked_or_safepoint(CodeCache_lock);
 452   HeapRegionRemSet* hrrs = rem_set();
 453   hrrs->add_strong_code_root_locked(nm);
 454 }
 455 
 456 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 457   HeapRegionRemSet* hrrs = rem_set();
 458   hrrs->remove_strong_code_root(nm);
 459 }
 460 
 461 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 462   HeapRegionRemSet* hrrs = rem_set();
 463   hrrs->strong_code_roots_do(blk);
 464 }
 465 
 466 class VerifyStrongCodeRootOopClosure: public OopClosure {
 467   const HeapRegion* _hr;
 468   nmethod* _nm;
 469   bool _failures;
 470   bool _has_oops_in_region;
 471 
 472   template <class T> void do_oop_work(T* p) {
 473     T heap_oop = oopDesc::load_heap_oop(p);
 474     if (!oopDesc::is_null(heap_oop)) {
 475       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 476 
 477       // Note: not all the oops embedded in the nmethod are in the
 478       // current region. We only look at those which are.
 479       if (_hr->is_in(obj)) {
 480         // Object is in the region. Check that its less than top
 481         if (_hr->top() <= (HeapWord*)obj) {
 482           // Object is above top
 483           log_info(gc, verify)("Object " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ") is above top " PTR_FORMAT,
 484                                p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
 485           _failures = true;
 486           return;
 487         }
 488         // Nmethod has at least one oop in the current region
 489         _has_oops_in_region = true;
 490       }
 491     }
 492   }
 493 
 494 public:
 495   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 496     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 497 
 498   void do_oop(narrowOop* p) { do_oop_work(p); }
 499   void do_oop(oop* p)       { do_oop_work(p); }
 500 
 501   bool failures()           { return _failures; }
 502   bool has_oops_in_region() { return _has_oops_in_region; }
 503 };
 504 
 505 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 506   const HeapRegion* _hr;
 507   bool _failures;
 508 public:
 509   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 510     _hr(hr), _failures(false) {}
 511 
 512   void do_code_blob(CodeBlob* cb) {
 513     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 514     if (nm != NULL) {
 515       // Verify that the nemthod is live
 516       if (!nm->is_alive()) {
 517         log_info(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots",
 518                              p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 519         _failures = true;
 520       } else {
 521         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 522         nm->oops_do(&oop_cl);
 523         if (!oop_cl.has_oops_in_region()) {
 524           log_info(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region",
 525                                p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 526           _failures = true;
 527         } else if (oop_cl.failures()) {
 528           log_info(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT,
 529                                p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 530           _failures = true;
 531         }
 532       }
 533     }
 534   }
 535 
 536   bool failures()       { return _failures; }
 537 };
 538 
 539 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 540   if (!G1VerifyHeapRegionCodeRoots) {
 541     // We're not verifying code roots.
 542     return;
 543   }
 544   if (vo == VerifyOption_G1UseMarkWord) {
 545     // Marking verification during a full GC is performed after class
 546     // unloading, code cache unloading, etc so the strong code roots
 547     // attached to each heap region are in an inconsistent state. They won't
 548     // be consistent until the strong code roots are rebuilt after the
 549     // actual GC. Skip verifying the strong code roots in this particular
 550     // time.
 551     assert(VerifyDuringGC, "only way to get here");
 552     return;
 553   }
 554 
 555   HeapRegionRemSet* hrrs = rem_set();
 556   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 557 
 558   // if this region is empty then there should be no entries
 559   // on its strong code root list
 560   if (is_empty()) {
 561     if (strong_code_roots_length > 0) {
 562       log_info(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] is empty but has " SIZE_FORMAT " code root entries",
 563                            p2i(bottom()), p2i(end()), strong_code_roots_length);
 564       *failures = true;
 565     }
 566     return;
 567   }
 568 
 569   if (is_continues_humongous()) {
 570     if (strong_code_roots_length > 0) {
 571       log_info(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries",
 572                            HR_FORMAT_PARAMS(this), strong_code_roots_length);
 573       *failures = true;
 574     }
 575     return;
 576   }
 577 
 578   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 579   strong_code_roots_do(&cb_cl);
 580 
 581   if (cb_cl.failures()) {
 582     *failures = true;
 583   }
 584 }
 585 
 586 void HeapRegion::print() const { print_on(tty); }
 587 void HeapRegion::print_on(outputStream* st) const {
 588   st->print("AC%4u", allocation_context());
 589 
 590   st->print(" %2s", get_short_type_str());
 591   if (in_collection_set())
 592     st->print(" CS");
 593   else
 594     st->print("   ");
 595   st->print(" TS %5d", _gc_time_stamp);
 596   st->print(" PTAMS " PTR_FORMAT " NTAMS " PTR_FORMAT,
 597             p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()));
 598   G1OffsetTableContigSpace::print_on(st);
 599 }
 600 
 601 class VerifyLiveClosure: public OopClosure {
 602 private:
 603   G1CollectedHeap* _g1h;
 604   CardTableModRefBS* _bs;
 605   oop _containing_obj;
 606   bool _failures;
 607   int _n_failures;
 608   VerifyOption _vo;
 609 public:
 610   // _vo == UsePrevMarking -> use "prev" marking information,
 611   // _vo == UseNextMarking -> use "next" marking information,
 612   // _vo == UseMarkWord    -> use mark word from object header.
 613   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 614     _g1h(g1h), _bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
 615     _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo)
 616   { }
 617 
 618   void set_containing_obj(oop obj) {
 619     _containing_obj = obj;
 620   }
 621 
 622   bool failures() { return _failures; }
 623   int n_failures() { return _n_failures; }
 624 
 625   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 626   virtual void do_oop(      oop* p) { do_oop_work(p); }
 627 
 628   void print_object(outputStream* out, oop obj) {
 629 #ifdef PRODUCT
 630     Klass* k = obj->klass();
 631     const char* class_name = k->external_name();
 632     out->print_cr("class name %s", class_name);
 633 #else // PRODUCT
 634     obj->print_on(out);
 635 #endif // PRODUCT
 636   }
 637 
 638   template <class T>
 639   void do_oop_work(T* p) {
 640     assert(_containing_obj != NULL, "Precondition");
 641     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 642            "Precondition");
 643     T heap_oop = oopDesc::load_heap_oop(p);
 644     LogHandle(gc, verify) log;
 645     if (!oopDesc::is_null(heap_oop)) {
 646       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 647       bool failed = false;
 648       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 649         MutexLockerEx x(ParGCRareEvent_lock,
 650                         Mutex::_no_safepoint_check_flag);
 651 
 652         if (!_failures) {
 653           log.info("----------");
 654         }
 655         ResourceMark rm;
 656         if (!_g1h->is_in_closed_subset(obj)) {
 657           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 658           log.info("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 659                    p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
 660           print_object(log.info_stream(), _containing_obj);
 661           log.info("points to obj " PTR_FORMAT " not in the heap", p2i(obj));
 662         } else {
 663           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 664           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 665           log.info("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 666                    p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
 667           print_object(log.info_stream(), _containing_obj);
 668           log.info("points to dead obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 669                    p2i(obj), p2i(to->bottom()), p2i(to->end()));
 670           print_object(log.info_stream(), obj);
 671         }
 672         log.info("----------");
 673         _failures = true;
 674         failed = true;
 675         _n_failures++;
 676       }
 677 
 678       if (!_g1h->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) {
 679         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 680         HeapRegion* to   = _g1h->heap_region_containing(obj);
 681         if (from != NULL && to != NULL &&
 682             from != to &&
 683             !to->is_pinned()) {
 684           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 685           jbyte cv_field = *_bs->byte_for_const(p);
 686           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 687 
 688           bool is_bad = !(from->is_young()
 689                           || to->rem_set()->contains_reference(p)
 690                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 691                               (_containing_obj->is_objArray() ?
 692                                   cv_field == dirty
 693                                : cv_obj == dirty || cv_field == dirty));
 694           if (is_bad) {
 695             MutexLockerEx x(ParGCRareEvent_lock,
 696                             Mutex::_no_safepoint_check_flag);
 697 
 698             if (!_failures) {
 699               log.info("----------");
 700             }
 701             log.info("Missing rem set entry:");
 702             log.info("Field " PTR_FORMAT " of obj " PTR_FORMAT ", in region " HR_FORMAT,
 703                      p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 704             ResourceMark rm;
 705             _containing_obj->print_on(log.info_stream());
 706             log.info("points to obj " PTR_FORMAT " in region " HR_FORMAT, p2i(obj), HR_FORMAT_PARAMS(to));
 707             obj->print_on(log.info_stream());
 708             log.info("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field);
 709             log.info("----------");
 710             _failures = true;
 711             if (!failed) _n_failures++;
 712           }
 713         }
 714       }
 715     }
 716   }
 717 };
 718 
 719 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 720 // We would need a mechanism to make that code skip dead objects.
 721 
 722 void HeapRegion::verify(VerifyOption vo,
 723                         bool* failures) const {
 724   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 725   *failures = false;
 726   HeapWord* p = bottom();
 727   HeapWord* prev_p = NULL;
 728   VerifyLiveClosure vl_cl(g1, vo);
 729   bool is_region_humongous = is_humongous();
 730   size_t object_num = 0;
 731   while (p < top()) {
 732     oop obj = oop(p);
 733     size_t obj_size = block_size(p);
 734     object_num += 1;
 735 
 736     if (is_region_humongous != g1->is_humongous(obj_size) &&
 737         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 738       log_info(gc, verify)("obj " PTR_FORMAT " is of %shumongous size ("
 739                            SIZE_FORMAT " words) in a %shumongous region",
 740                            p2i(p), g1->is_humongous(obj_size) ? "" : "non-",
 741                            obj_size, is_region_humongous ? "" : "non-");
 742        *failures = true;
 743        return;
 744     }
 745 
 746     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 747       if (obj->is_oop()) {
 748         Klass* klass = obj->klass();
 749         bool is_metaspace_object = Metaspace::contains(klass) ||
 750                                    (vo == VerifyOption_G1UsePrevMarking &&
 751                                    ClassLoaderDataGraph::unload_list_contains(klass));
 752         if (!is_metaspace_object) {
 753           log_info(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 754                                "not metadata", p2i(klass), p2i(obj));
 755           *failures = true;
 756           return;
 757         } else if (!klass->is_klass()) {
 758           log_info(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 759                                "not a klass", p2i(klass), p2i(obj));
 760           *failures = true;
 761           return;
 762         } else {
 763           vl_cl.set_containing_obj(obj);
 764           obj->oop_iterate_no_header(&vl_cl);
 765           if (vl_cl.failures()) {
 766             *failures = true;
 767           }
 768           if (G1MaxVerifyFailures >= 0 &&
 769               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 770             return;
 771           }
 772         }
 773       } else {
 774         log_info(gc, verify)(PTR_FORMAT " no an oop", p2i(obj));
 775         *failures = true;
 776         return;
 777       }
 778     }
 779     prev_p = p;
 780     p += obj_size;
 781   }
 782 
 783   if (!is_young() && !is_empty()) {
 784     _offsets.verify();
 785   }
 786 
 787   if (is_region_humongous) {
 788     oop obj = oop(this->humongous_start_region()->bottom());
 789     if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
 790       log_info(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
 791     }
 792   }
 793 
 794   if (!is_region_humongous && p != top()) {
 795     log_info(gc, verify)("end of last object " PTR_FORMAT " "
 796                          "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
 797     *failures = true;
 798     return;
 799   }
 800 
 801   HeapWord* the_end = end();
 802   // Do some extra BOT consistency checking for addresses in the
 803   // range [top, end). BOT look-ups in this range should yield
 804   // top. No point in doing that if top == end (there's nothing there).
 805   if (p < the_end) {
 806     // Look up top
 807     HeapWord* addr_1 = p;
 808     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 809     if (b_start_1 != p) {
 810       log_info(gc, verify)("BOT look up for top: " PTR_FORMAT " "
 811                            " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 812                            p2i(addr_1), p2i(b_start_1), p2i(p));
 813       *failures = true;
 814       return;
 815     }
 816 
 817     // Look up top + 1
 818     HeapWord* addr_2 = p + 1;
 819     if (addr_2 < the_end) {
 820       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 821       if (b_start_2 != p) {
 822         log_info(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " "
 823                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 824                              p2i(addr_2), p2i(b_start_2), p2i(p));
 825         *failures = true;
 826         return;
 827       }
 828     }
 829 
 830     // Look up an address between top and end
 831     size_t diff = pointer_delta(the_end, p) / 2;
 832     HeapWord* addr_3 = p + diff;
 833     if (addr_3 < the_end) {
 834       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 835       if (b_start_3 != p) {
 836         log_info(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " "
 837                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 838                              p2i(addr_3), p2i(b_start_3), p2i(p));
 839         *failures = true;
 840         return;
 841       }
 842     }
 843 
 844     // Look up end - 1
 845     HeapWord* addr_4 = the_end - 1;
 846     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 847     if (b_start_4 != p) {
 848       log_info(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " "
 849                            " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 850                            p2i(addr_4), p2i(b_start_4), p2i(p));
 851       *failures = true;
 852       return;
 853     }
 854   }
 855 
 856   if (is_region_humongous && object_num > 1) {
 857     log_info(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] is humongous "
 858                          "but has " SIZE_FORMAT ", objects",
 859                          p2i(bottom()), p2i(end()), object_num);
 860     *failures = true;
 861     return;
 862   }
 863 
 864   verify_strong_code_roots(vo, failures);
 865 }
 866 
 867 void HeapRegion::verify() const {
 868   bool dummy = false;
 869   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 870 }
 871 
 872 void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
 873   scan_and_forward(this, cp);
 874 }
 875 
 876 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 877 // away eventually.
 878 
 879 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 880   set_top(bottom());
 881   _scan_top = bottom();
 882   CompactibleSpace::clear(mangle_space);
 883   reset_bot();
 884 }
 885 
 886 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 887   Space::set_bottom(new_bottom);
 888   _offsets.set_bottom(new_bottom);
 889 }
 890 
 891 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 892   assert(new_end == _bottom + HeapRegion::GrainWords, "set_end should only ever be set to _bottom + HeapRegion::GrainWords");
 893   Space::set_end(new_end);
 894   _offsets.resize(new_end - bottom());
 895 }
 896 
 897 #ifndef PRODUCT
 898 void G1OffsetTableContigSpace::mangle_unused_area() {
 899   mangle_unused_area_complete();
 900 }
 901 
 902 void G1OffsetTableContigSpace::mangle_unused_area_complete() {
 903   SpaceMangler::mangle_region(MemRegion(top(), end()));
 904 }
 905 #endif
 906 
 907 void G1OffsetTableContigSpace::print() const {
 908   print_short();
 909   tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 910                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 911                 p2i(bottom()), p2i(top()), p2i(_offsets.threshold()), p2i(end()));
 912 }
 913 
 914 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 915   return _offsets.initialize_threshold();
 916 }
 917 
 918 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
 919                                                     HeapWord* end) {
 920   _offsets.alloc_block(start, end);
 921   return _offsets.threshold();
 922 }
 923 
 924 HeapWord* G1OffsetTableContigSpace::scan_top() const {
 925   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 926   HeapWord* local_top = top();
 927   OrderAccess::loadload();
 928   const unsigned local_time_stamp = _gc_time_stamp;
 929   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
 930   if (local_time_stamp < g1h->get_gc_time_stamp()) {
 931     return local_top;
 932   } else {
 933     return _scan_top;
 934   }
 935 }
 936 
 937 void G1OffsetTableContigSpace::record_timestamp() {
 938   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 939   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
 940 
 941   if (_gc_time_stamp < curr_gc_time_stamp) {
 942     // Setting the time stamp here tells concurrent readers to look at
 943     // scan_top to know the maximum allowed address to look at.
 944 
 945     // scan_top should be bottom for all regions except for the
 946     // retained old alloc region which should have scan_top == top
 947     HeapWord* st = _scan_top;
 948     guarantee(st == _bottom || st == _top, "invariant");
 949 
 950     _gc_time_stamp = curr_gc_time_stamp;
 951   }
 952 }
 953 
 954 void G1OffsetTableContigSpace::record_retained_region() {
 955   // scan_top is the maximum address where it's safe for the next gc to
 956   // scan this region.
 957   _scan_top = top();
 958 }
 959 
 960 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
 961   object_iterate(blk);
 962 }
 963 
 964 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
 965   HeapWord* p = bottom();
 966   while (p < top()) {
 967     if (block_is_obj(p)) {
 968       blk->do_object(oop(p));
 969     }
 970     p += block_size(p);
 971   }
 972 }
 973 
 974 G1OffsetTableContigSpace::
 975 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 976                          MemRegion mr) :
 977   _offsets(sharedOffsetArray, mr),
 978   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
 979   _gc_time_stamp(0)
 980 {
 981   _offsets.set_space(this);
 982 }
 983 
 984 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 985   CompactibleSpace::initialize(mr, clear_space, mangle_space);
 986   _top = bottom();
 987   _scan_top = bottom();
 988   set_saved_mark_word(NULL);
 989   reset_bot();
 990 }
 991