1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/parallel/gcTaskManager.hpp"
  30 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  31 #include "gc/parallel/pcTasks.hpp"
  32 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  33 #include "gc/parallel/psCompactionManager.inline.hpp"
  34 #include "gc/parallel/psMarkSweep.hpp"
  35 #include "gc/parallel/psMarkSweepDecorator.hpp"
  36 #include "gc/parallel/psOldGen.hpp"
  37 #include "gc/parallel/psParallelCompact.inline.hpp"
  38 #include "gc/parallel/psPromotionManager.inline.hpp"
  39 #include "gc/parallel/psScavenge.hpp"
  40 #include "gc/parallel/psYoungGen.hpp"
  41 #include "gc/shared/gcCause.hpp"
  42 #include "gc/shared/gcHeapSummary.hpp"
  43 #include "gc/shared/gcId.hpp"
  44 #include "gc/shared/gcLocker.inline.hpp"
  45 #include "gc/shared/gcTimer.hpp"
  46 #include "gc/shared/gcTrace.hpp"
  47 #include "gc/shared/gcTraceTime.hpp"
  48 #include "gc/shared/isGCActiveMark.hpp"
  49 #include "gc/shared/referencePolicy.hpp"
  50 #include "gc/shared/referenceProcessor.hpp"
  51 #include "gc/shared/spaceDecorator.hpp"
  52 #include "oops/instanceKlass.inline.hpp"
  53 #include "oops/instanceMirrorKlass.inline.hpp"
  54 #include "oops/methodData.hpp"
  55 #include "oops/objArrayKlass.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "runtime/atomic.inline.hpp"
  58 #include "runtime/fprofiler.hpp"
  59 #include "runtime/safepoint.hpp"
  60 #include "runtime/vmThread.hpp"
  61 #include "services/management.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "services/memoryService.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/stack.inline.hpp"
  66 
  67 #include <math.h>
  68 
  69 // All sizes are in HeapWords.
  70 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  71 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  72 const size_t ParallelCompactData::RegionSizeBytes =
  73   RegionSize << LogHeapWordSize;
  74 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  75 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  76 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  77 
  78 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  79 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  80 const size_t ParallelCompactData::BlockSizeBytes  =
  81   BlockSize << LogHeapWordSize;
  82 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  83 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  84 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  85 
  86 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
  87 const size_t ParallelCompactData::Log2BlocksPerRegion =
  88   Log2RegionSize - Log2BlockSize;
  89 
  90 const ParallelCompactData::RegionData::region_sz_t
  91 ParallelCompactData::RegionData::dc_shift = 27;
  92 
  93 const ParallelCompactData::RegionData::region_sz_t
  94 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
  95 
  96 const ParallelCompactData::RegionData::region_sz_t
  97 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
  98 
  99 const ParallelCompactData::RegionData::region_sz_t
 100 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 101 
 102 const ParallelCompactData::RegionData::region_sz_t
 103 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 104 
 105 const ParallelCompactData::RegionData::region_sz_t
 106 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 107 
 108 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 109 bool      PSParallelCompact::_print_phases = false;
 110 
 111 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 112 
 113 double PSParallelCompact::_dwl_mean;
 114 double PSParallelCompact::_dwl_std_dev;
 115 double PSParallelCompact::_dwl_first_term;
 116 double PSParallelCompact::_dwl_adjustment;
 117 #ifdef  ASSERT
 118 bool   PSParallelCompact::_dwl_initialized = false;
 119 #endif  // #ifdef ASSERT
 120 
 121 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 122                        HeapWord* destination)
 123 {
 124   assert(src_region_idx != 0, "invalid src_region_idx");
 125   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 126   assert(destination != NULL, "invalid destination argument");
 127 
 128   _src_region_idx = src_region_idx;
 129   _partial_obj_size = partial_obj_size;
 130   _destination = destination;
 131 
 132   // These fields may not be updated below, so make sure they're clear.
 133   assert(_dest_region_addr == NULL, "should have been cleared");
 134   assert(_first_src_addr == NULL, "should have been cleared");
 135 
 136   // Determine the number of destination regions for the partial object.
 137   HeapWord* const last_word = destination + partial_obj_size - 1;
 138   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 139   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 140   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 141 
 142   if (beg_region_addr == end_region_addr) {
 143     // One destination region.
 144     _destination_count = 1;
 145     if (end_region_addr == destination) {
 146       // The destination falls on a region boundary, thus the first word of the
 147       // partial object will be the first word copied to the destination region.
 148       _dest_region_addr = end_region_addr;
 149       _first_src_addr = sd.region_to_addr(src_region_idx);
 150     }
 151   } else {
 152     // Two destination regions.  When copied, the partial object will cross a
 153     // destination region boundary, so a word somewhere within the partial
 154     // object will be the first word copied to the second destination region.
 155     _destination_count = 2;
 156     _dest_region_addr = end_region_addr;
 157     const size_t ofs = pointer_delta(end_region_addr, destination);
 158     assert(ofs < _partial_obj_size, "sanity");
 159     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 160   }
 161 }
 162 
 163 void SplitInfo::clear()
 164 {
 165   _src_region_idx = 0;
 166   _partial_obj_size = 0;
 167   _destination = NULL;
 168   _destination_count = 0;
 169   _dest_region_addr = NULL;
 170   _first_src_addr = NULL;
 171   assert(!is_valid(), "sanity");
 172 }
 173 
 174 #ifdef  ASSERT
 175 void SplitInfo::verify_clear()
 176 {
 177   assert(_src_region_idx == 0, "not clear");
 178   assert(_partial_obj_size == 0, "not clear");
 179   assert(_destination == NULL, "not clear");
 180   assert(_destination_count == 0, "not clear");
 181   assert(_dest_region_addr == NULL, "not clear");
 182   assert(_first_src_addr == NULL, "not clear");
 183 }
 184 #endif  // #ifdef ASSERT
 185 
 186 
 187 void PSParallelCompact::print_on_error(outputStream* st) {
 188   _mark_bitmap.print_on_error(st);
 189 }
 190 
 191 #ifndef PRODUCT
 192 const char* PSParallelCompact::space_names[] = {
 193   "old ", "eden", "from", "to  "
 194 };
 195 
 196 void PSParallelCompact::print_region_ranges()
 197 {
 198   tty->print_cr("space  bottom     top        end        new_top");
 199   tty->print_cr("------ ---------- ---------- ---------- ----------");
 200 
 201   for (unsigned int id = 0; id < last_space_id; ++id) {
 202     const MutableSpace* space = _space_info[id].space();
 203     tty->print_cr("%u %s "
 204                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 205                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 206                   id, space_names[id],
 207                   summary_data().addr_to_region_idx(space->bottom()),
 208                   summary_data().addr_to_region_idx(space->top()),
 209                   summary_data().addr_to_region_idx(space->end()),
 210                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
 211   }
 212 }
 213 
 214 void
 215 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 216 {
 217 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 218 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 219 
 220   ParallelCompactData& sd = PSParallelCompact::summary_data();
 221   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 222   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
 223                 REGION_IDX_FORMAT " " PTR_FORMAT " "
 224                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 225                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 226                 i, p2i(c->data_location()), dci, p2i(c->destination()),
 227                 c->partial_obj_size(), c->live_obj_size(),
 228                 c->data_size(), c->source_region(), c->destination_count());
 229 
 230 #undef  REGION_IDX_FORMAT
 231 #undef  REGION_DATA_FORMAT
 232 }
 233 
 234 void
 235 print_generic_summary_data(ParallelCompactData& summary_data,
 236                            HeapWord* const beg_addr,
 237                            HeapWord* const end_addr)
 238 {
 239   size_t total_words = 0;
 240   size_t i = summary_data.addr_to_region_idx(beg_addr);
 241   const size_t last = summary_data.addr_to_region_idx(end_addr);
 242   HeapWord* pdest = 0;
 243 
 244   while (i <= last) {
 245     ParallelCompactData::RegionData* c = summary_data.region(i);
 246     if (c->data_size() != 0 || c->destination() != pdest) {
 247       print_generic_summary_region(i, c);
 248       total_words += c->data_size();
 249       pdest = c->destination();
 250     }
 251     ++i;
 252   }
 253 
 254   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 255 }
 256 
 257 void
 258 print_generic_summary_data(ParallelCompactData& summary_data,
 259                            SpaceInfo* space_info)
 260 {
 261   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 262     const MutableSpace* space = space_info[id].space();
 263     print_generic_summary_data(summary_data, space->bottom(),
 264                                MAX2(space->top(), space_info[id].new_top()));
 265   }
 266 }
 267 
 268 void
 269 print_initial_summary_region(size_t i,
 270                              const ParallelCompactData::RegionData* c,
 271                              bool newline = true)
 272 {
 273   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
 274              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
 275              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 276              i, p2i(c->destination()),
 277              c->partial_obj_size(), c->live_obj_size(),
 278              c->data_size(), c->source_region(), c->destination_count());
 279   if (newline) tty->cr();
 280 }
 281 
 282 void
 283 print_initial_summary_data(ParallelCompactData& summary_data,
 284                            const MutableSpace* space) {
 285   if (space->top() == space->bottom()) {
 286     return;
 287   }
 288 
 289   const size_t region_size = ParallelCompactData::RegionSize;
 290   typedef ParallelCompactData::RegionData RegionData;
 291   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 292   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 293   const RegionData* c = summary_data.region(end_region - 1);
 294   HeapWord* end_addr = c->destination() + c->data_size();
 295   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 296 
 297   // Print (and count) the full regions at the beginning of the space.
 298   size_t full_region_count = 0;
 299   size_t i = summary_data.addr_to_region_idx(space->bottom());
 300   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 301     print_initial_summary_region(i, summary_data.region(i));
 302     ++full_region_count;
 303     ++i;
 304   }
 305 
 306   size_t live_to_right = live_in_space - full_region_count * region_size;
 307 
 308   double max_reclaimed_ratio = 0.0;
 309   size_t max_reclaimed_ratio_region = 0;
 310   size_t max_dead_to_right = 0;
 311   size_t max_live_to_right = 0;
 312 
 313   // Print the 'reclaimed ratio' for regions while there is something live in
 314   // the region or to the right of it.  The remaining regions are empty (and
 315   // uninteresting), and computing the ratio will result in division by 0.
 316   while (i < end_region && live_to_right > 0) {
 317     c = summary_data.region(i);
 318     HeapWord* const region_addr = summary_data.region_to_addr(i);
 319     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 320     const size_t dead_to_right = used_to_right - live_to_right;
 321     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 322 
 323     if (reclaimed_ratio > max_reclaimed_ratio) {
 324             max_reclaimed_ratio = reclaimed_ratio;
 325             max_reclaimed_ratio_region = i;
 326             max_dead_to_right = dead_to_right;
 327             max_live_to_right = live_to_right;
 328     }
 329 
 330     print_initial_summary_region(i, c, false);
 331     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 332                   reclaimed_ratio, dead_to_right, live_to_right);
 333 
 334     live_to_right -= c->data_size();
 335     ++i;
 336   }
 337 
 338   // Any remaining regions are empty.  Print one more if there is one.
 339   if (i < end_region) {
 340     print_initial_summary_region(i, summary_data.region(i));
 341   }
 342 
 343   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
 344                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 345                 max_reclaimed_ratio_region, max_dead_to_right,
 346                 max_live_to_right, max_reclaimed_ratio);
 347 }
 348 
 349 void
 350 print_initial_summary_data(ParallelCompactData& summary_data,
 351                            SpaceInfo* space_info) {
 352   unsigned int id = PSParallelCompact::old_space_id;
 353   const MutableSpace* space;
 354   do {
 355     space = space_info[id].space();
 356     print_initial_summary_data(summary_data, space);
 357   } while (++id < PSParallelCompact::eden_space_id);
 358 
 359   do {
 360     space = space_info[id].space();
 361     print_generic_summary_data(summary_data, space->bottom(), space->top());
 362   } while (++id < PSParallelCompact::last_space_id);
 363 }
 364 #endif  // #ifndef PRODUCT
 365 
 366 #ifdef  ASSERT
 367 size_t add_obj_count;
 368 size_t add_obj_size;
 369 size_t mark_bitmap_count;
 370 size_t mark_bitmap_size;
 371 #endif  // #ifdef ASSERT
 372 
 373 ParallelCompactData::ParallelCompactData()
 374 {
 375   _region_start = 0;
 376 
 377   _region_vspace = 0;
 378   _reserved_byte_size = 0;
 379   _region_data = 0;
 380   _region_count = 0;
 381 
 382   _block_vspace = 0;
 383   _block_data = 0;
 384   _block_count = 0;
 385 }
 386 
 387 bool ParallelCompactData::initialize(MemRegion covered_region)
 388 {
 389   _region_start = covered_region.start();
 390   const size_t region_size = covered_region.word_size();
 391   DEBUG_ONLY(_region_end = _region_start + region_size;)
 392 
 393   assert(region_align_down(_region_start) == _region_start,
 394          "region start not aligned");
 395   assert((region_size & RegionSizeOffsetMask) == 0,
 396          "region size not a multiple of RegionSize");
 397 
 398   bool result = initialize_region_data(region_size) && initialize_block_data();
 399   return result;
 400 }
 401 
 402 PSVirtualSpace*
 403 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 404 {
 405   const size_t raw_bytes = count * element_size;
 406   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 407   const size_t granularity = os::vm_allocation_granularity();
 408   _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
 409 
 410   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 411     MAX2(page_sz, granularity);
 412   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 413   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
 414                        rs.size());
 415 
 416   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 417 
 418   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 419   if (vspace != 0) {
 420     if (vspace->expand_by(_reserved_byte_size)) {
 421       return vspace;
 422     }
 423     delete vspace;
 424     // Release memory reserved in the space.
 425     rs.release();
 426   }
 427 
 428   return 0;
 429 }
 430 
 431 bool ParallelCompactData::initialize_region_data(size_t region_size)
 432 {
 433   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 434   _region_vspace = create_vspace(count, sizeof(RegionData));
 435   if (_region_vspace != 0) {
 436     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 437     _region_count = count;
 438     return true;
 439   }
 440   return false;
 441 }
 442 
 443 bool ParallelCompactData::initialize_block_data()
 444 {
 445   assert(_region_count != 0, "region data must be initialized first");
 446   const size_t count = _region_count << Log2BlocksPerRegion;
 447   _block_vspace = create_vspace(count, sizeof(BlockData));
 448   if (_block_vspace != 0) {
 449     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 450     _block_count = count;
 451     return true;
 452   }
 453   return false;
 454 }
 455 
 456 void ParallelCompactData::clear()
 457 {
 458   memset(_region_data, 0, _region_vspace->committed_size());
 459   memset(_block_data, 0, _block_vspace->committed_size());
 460 }
 461 
 462 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 463   assert(beg_region <= _region_count, "beg_region out of range");
 464   assert(end_region <= _region_count, "end_region out of range");
 465   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 466 
 467   const size_t region_cnt = end_region - beg_region;
 468   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 469 
 470   const size_t beg_block = beg_region * BlocksPerRegion;
 471   const size_t block_cnt = region_cnt * BlocksPerRegion;
 472   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 473 }
 474 
 475 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 476 {
 477   const RegionData* cur_cp = region(region_idx);
 478   const RegionData* const end_cp = region(region_count() - 1);
 479 
 480   HeapWord* result = region_to_addr(region_idx);
 481   if (cur_cp < end_cp) {
 482     do {
 483       result += cur_cp->partial_obj_size();
 484     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 485   }
 486   return result;
 487 }
 488 
 489 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 490 {
 491   const size_t obj_ofs = pointer_delta(addr, _region_start);
 492   const size_t beg_region = obj_ofs >> Log2RegionSize;
 493   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 494 
 495   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 496   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 497 
 498   if (beg_region == end_region) {
 499     // All in one region.
 500     _region_data[beg_region].add_live_obj(len);
 501     return;
 502   }
 503 
 504   // First region.
 505   const size_t beg_ofs = region_offset(addr);
 506   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 507 
 508   Klass* klass = ((oop)addr)->klass();
 509   // Middle regions--completely spanned by this object.
 510   for (size_t region = beg_region + 1; region < end_region; ++region) {
 511     _region_data[region].set_partial_obj_size(RegionSize);
 512     _region_data[region].set_partial_obj_addr(addr);
 513   }
 514 
 515   // Last region.
 516   const size_t end_ofs = region_offset(addr + len - 1);
 517   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 518   _region_data[end_region].set_partial_obj_addr(addr);
 519 }
 520 
 521 void
 522 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 523 {
 524   assert(region_offset(beg) == 0, "not RegionSize aligned");
 525   assert(region_offset(end) == 0, "not RegionSize aligned");
 526 
 527   size_t cur_region = addr_to_region_idx(beg);
 528   const size_t end_region = addr_to_region_idx(end);
 529   HeapWord* addr = beg;
 530   while (cur_region < end_region) {
 531     _region_data[cur_region].set_destination(addr);
 532     _region_data[cur_region].set_destination_count(0);
 533     _region_data[cur_region].set_source_region(cur_region);
 534     _region_data[cur_region].set_data_location(addr);
 535 
 536     // Update live_obj_size so the region appears completely full.
 537     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 538     _region_data[cur_region].set_live_obj_size(live_size);
 539 
 540     ++cur_region;
 541     addr += RegionSize;
 542   }
 543 }
 544 
 545 // Find the point at which a space can be split and, if necessary, record the
 546 // split point.
 547 //
 548 // If the current src region (which overflowed the destination space) doesn't
 549 // have a partial object, the split point is at the beginning of the current src
 550 // region (an "easy" split, no extra bookkeeping required).
 551 //
 552 // If the current src region has a partial object, the split point is in the
 553 // region where that partial object starts (call it the split_region).  If
 554 // split_region has a partial object, then the split point is just after that
 555 // partial object (a "hard" split where we have to record the split data and
 556 // zero the partial_obj_size field).  With a "hard" split, we know that the
 557 // partial_obj ends within split_region because the partial object that caused
 558 // the overflow starts in split_region.  If split_region doesn't have a partial
 559 // obj, then the split is at the beginning of split_region (another "easy"
 560 // split).
 561 HeapWord*
 562 ParallelCompactData::summarize_split_space(size_t src_region,
 563                                            SplitInfo& split_info,
 564                                            HeapWord* destination,
 565                                            HeapWord* target_end,
 566                                            HeapWord** target_next)
 567 {
 568   assert(destination <= target_end, "sanity");
 569   assert(destination + _region_data[src_region].data_size() > target_end,
 570     "region should not fit into target space");
 571   assert(is_region_aligned(target_end), "sanity");
 572 
 573   size_t split_region = src_region;
 574   HeapWord* split_destination = destination;
 575   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 576 
 577   if (destination + partial_obj_size > target_end) {
 578     // The split point is just after the partial object (if any) in the
 579     // src_region that contains the start of the object that overflowed the
 580     // destination space.
 581     //
 582     // Find the start of the "overflow" object and set split_region to the
 583     // region containing it.
 584     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 585     split_region = addr_to_region_idx(overflow_obj);
 586 
 587     // Clear the source_region field of all destination regions whose first word
 588     // came from data after the split point (a non-null source_region field
 589     // implies a region must be filled).
 590     //
 591     // An alternative to the simple loop below:  clear during post_compact(),
 592     // which uses memcpy instead of individual stores, and is easy to
 593     // parallelize.  (The downside is that it clears the entire RegionData
 594     // object as opposed to just one field.)
 595     //
 596     // post_compact() would have to clear the summary data up to the highest
 597     // address that was written during the summary phase, which would be
 598     //
 599     //         max(top, max(new_top, clear_top))
 600     //
 601     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 602     // to target_end.
 603     const RegionData* const sr = region(split_region);
 604     const size_t beg_idx =
 605       addr_to_region_idx(region_align_up(sr->destination() +
 606                                          sr->partial_obj_size()));
 607     const size_t end_idx = addr_to_region_idx(target_end);
 608 
 609     if (TraceParallelOldGCSummaryPhase) {
 610         gclog_or_tty->print_cr("split:  clearing source_region field in ["
 611                                SIZE_FORMAT ", " SIZE_FORMAT ")",
 612                                beg_idx, end_idx);
 613     }
 614     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 615       _region_data[idx].set_source_region(0);
 616     }
 617 
 618     // Set split_destination and partial_obj_size to reflect the split region.
 619     split_destination = sr->destination();
 620     partial_obj_size = sr->partial_obj_size();
 621   }
 622 
 623   // The split is recorded only if a partial object extends onto the region.
 624   if (partial_obj_size != 0) {
 625     _region_data[split_region].set_partial_obj_size(0);
 626     split_info.record(split_region, partial_obj_size, split_destination);
 627   }
 628 
 629   // Setup the continuation addresses.
 630   *target_next = split_destination + partial_obj_size;
 631   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 632 
 633   if (TraceParallelOldGCSummaryPhase) {
 634     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 635     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
 636                            " pos=" SIZE_FORMAT,
 637                            split_type, p2i(source_next), split_region,
 638                            partial_obj_size);
 639     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
 640                            " tn=" PTR_FORMAT,
 641                            split_type, p2i(split_destination),
 642                            addr_to_region_idx(split_destination),
 643                            p2i(*target_next));
 644 
 645     if (partial_obj_size != 0) {
 646       HeapWord* const po_beg = split_info.destination();
 647       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 648       gclog_or_tty->print_cr("%s split:  "
 649                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
 650                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
 651                              split_type,
 652                              p2i(po_beg), addr_to_region_idx(po_beg),
 653                              p2i(po_end), addr_to_region_idx(po_end));
 654     }
 655   }
 656 
 657   return source_next;
 658 }
 659 
 660 bool ParallelCompactData::summarize(SplitInfo& split_info,
 661                                     HeapWord* source_beg, HeapWord* source_end,
 662                                     HeapWord** source_next,
 663                                     HeapWord* target_beg, HeapWord* target_end,
 664                                     HeapWord** target_next)
 665 {
 666   if (TraceParallelOldGCSummaryPhase) {
 667     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 668     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 669                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 670                   p2i(source_beg), p2i(source_end), p2i(source_next_val),
 671                   p2i(target_beg), p2i(target_end), p2i(*target_next));
 672   }
 673 
 674   size_t cur_region = addr_to_region_idx(source_beg);
 675   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 676 
 677   HeapWord *dest_addr = target_beg;
 678   while (cur_region < end_region) {
 679     // The destination must be set even if the region has no data.
 680     _region_data[cur_region].set_destination(dest_addr);
 681 
 682     size_t words = _region_data[cur_region].data_size();
 683     if (words > 0) {
 684       // If cur_region does not fit entirely into the target space, find a point
 685       // at which the source space can be 'split' so that part is copied to the
 686       // target space and the rest is copied elsewhere.
 687       if (dest_addr + words > target_end) {
 688         assert(source_next != NULL, "source_next is NULL when splitting");
 689         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 690                                              target_end, target_next);
 691         return false;
 692       }
 693 
 694       // Compute the destination_count for cur_region, and if necessary, update
 695       // source_region for a destination region.  The source_region field is
 696       // updated if cur_region is the first (left-most) region to be copied to a
 697       // destination region.
 698       //
 699       // The destination_count calculation is a bit subtle.  A region that has
 700       // data that compacts into itself does not count itself as a destination.
 701       // This maintains the invariant that a zero count means the region is
 702       // available and can be claimed and then filled.
 703       uint destination_count = 0;
 704       if (split_info.is_split(cur_region)) {
 705         // The current region has been split:  the partial object will be copied
 706         // to one destination space and the remaining data will be copied to
 707         // another destination space.  Adjust the initial destination_count and,
 708         // if necessary, set the source_region field if the partial object will
 709         // cross a destination region boundary.
 710         destination_count = split_info.destination_count();
 711         if (destination_count == 2) {
 712           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 713           _region_data[dest_idx].set_source_region(cur_region);
 714         }
 715       }
 716 
 717       HeapWord* const last_addr = dest_addr + words - 1;
 718       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 719       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 720 
 721       // Initially assume that the destination regions will be the same and
 722       // adjust the value below if necessary.  Under this assumption, if
 723       // cur_region == dest_region_2, then cur_region will be compacted
 724       // completely into itself.
 725       destination_count += cur_region == dest_region_2 ? 0 : 1;
 726       if (dest_region_1 != dest_region_2) {
 727         // Destination regions differ; adjust destination_count.
 728         destination_count += 1;
 729         // Data from cur_region will be copied to the start of dest_region_2.
 730         _region_data[dest_region_2].set_source_region(cur_region);
 731       } else if (region_offset(dest_addr) == 0) {
 732         // Data from cur_region will be copied to the start of the destination
 733         // region.
 734         _region_data[dest_region_1].set_source_region(cur_region);
 735       }
 736 
 737       _region_data[cur_region].set_destination_count(destination_count);
 738       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 739       dest_addr += words;
 740     }
 741 
 742     ++cur_region;
 743   }
 744 
 745   *target_next = dest_addr;
 746   return true;
 747 }
 748 
 749 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
 750   assert(addr != NULL, "Should detect NULL oop earlier");
 751   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 752   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 753 
 754   // Region covering the object.
 755   RegionData* const region_ptr = addr_to_region_ptr(addr);
 756   HeapWord* result = region_ptr->destination();
 757 
 758   // If the entire Region is live, the new location is region->destination + the
 759   // offset of the object within in the Region.
 760 
 761   // Run some performance tests to determine if this special case pays off.  It
 762   // is worth it for pointers into the dense prefix.  If the optimization to
 763   // avoid pointer updates in regions that only point to the dense prefix is
 764   // ever implemented, this should be revisited.
 765   if (region_ptr->data_size() == RegionSize) {
 766     result += region_offset(addr);
 767     return result;
 768   }
 769 
 770   // Otherwise, the new location is region->destination + block offset + the
 771   // number of live words in the Block that are (a) to the left of addr and (b)
 772   // due to objects that start in the Block.
 773 
 774   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 775   // threads may fill the block table for a region (harmless, since it is
 776   // idempotent).
 777   if (!region_ptr->blocks_filled()) {
 778     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 779     region_ptr->set_blocks_filled();
 780   }
 781 
 782   HeapWord* const search_start = block_align_down(addr);
 783   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 784 
 785   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 786   const size_t live = bitmap->live_words_in_range(search_start, oop(addr));
 787   result += block_offset + live;
 788   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 789   return result;
 790 }
 791 
 792 #ifdef ASSERT
 793 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 794 {
 795   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 796   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 797   for (const size_t* p = beg; p < end; ++p) {
 798     assert(*p == 0, "not zero");
 799   }
 800 }
 801 
 802 void ParallelCompactData::verify_clear()
 803 {
 804   verify_clear(_region_vspace);
 805   verify_clear(_block_vspace);
 806 }
 807 #endif  // #ifdef ASSERT
 808 
 809 STWGCTimer          PSParallelCompact::_gc_timer;
 810 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 811 elapsedTimer        PSParallelCompact::_accumulated_time;
 812 unsigned int        PSParallelCompact::_total_invocations = 0;
 813 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 814 jlong               PSParallelCompact::_time_of_last_gc = 0;
 815 CollectorCounters*  PSParallelCompact::_counters = NULL;
 816 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 817 ParallelCompactData PSParallelCompact::_summary_data;
 818 
 819 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 820 
 821 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 822 
 823 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
 824 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
 825 
 826 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
 827   klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
 828 }
 829 
 830 void PSParallelCompact::post_initialize() {
 831   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 832   MemRegion mr = heap->reserved_region();
 833   _ref_processor =
 834     new ReferenceProcessor(mr,            // span
 835                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 836                            ParallelGCThreads, // mt processing degree
 837                            true,              // mt discovery
 838                            ParallelGCThreads, // mt discovery degree
 839                            true,              // atomic_discovery
 840                            &_is_alive_closure); // non-header is alive closure
 841   _counters = new CollectorCounters("PSParallelCompact", 1);
 842 
 843   // Initialize static fields in ParCompactionManager.
 844   ParCompactionManager::initialize(mark_bitmap());
 845 }
 846 
 847 bool PSParallelCompact::initialize() {
 848   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 849   MemRegion mr = heap->reserved_region();
 850 
 851   // Was the old gen get allocated successfully?
 852   if (!heap->old_gen()->is_allocated()) {
 853     return false;
 854   }
 855 
 856   initialize_space_info();
 857   initialize_dead_wood_limiter();
 858 
 859   if (!_mark_bitmap.initialize(mr)) {
 860     vm_shutdown_during_initialization(
 861       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 862       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 863       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 864     return false;
 865   }
 866 
 867   if (!_summary_data.initialize(mr)) {
 868     vm_shutdown_during_initialization(
 869       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 870       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 871       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 872     return false;
 873   }
 874 
 875   return true;
 876 }
 877 
 878 void PSParallelCompact::initialize_space_info()
 879 {
 880   memset(&_space_info, 0, sizeof(_space_info));
 881 
 882   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 883   PSYoungGen* young_gen = heap->young_gen();
 884 
 885   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 886   _space_info[eden_space_id].set_space(young_gen->eden_space());
 887   _space_info[from_space_id].set_space(young_gen->from_space());
 888   _space_info[to_space_id].set_space(young_gen->to_space());
 889 
 890   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 891 }
 892 
 893 void PSParallelCompact::initialize_dead_wood_limiter()
 894 {
 895   const size_t max = 100;
 896   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 897   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 898   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 899   DEBUG_ONLY(_dwl_initialized = true;)
 900   _dwl_adjustment = normal_distribution(1.0);
 901 }
 902 
 903 // Simple class for storing info about the heap at the start of GC, to be used
 904 // after GC for comparison/printing.
 905 class PreGCValues {
 906 public:
 907   PreGCValues() { }
 908   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
 909 
 910   void fill(ParallelScavengeHeap* heap) {
 911     _heap_used      = heap->used();
 912     _young_gen_used = heap->young_gen()->used_in_bytes();
 913     _old_gen_used   = heap->old_gen()->used_in_bytes();
 914     _metadata_used  = MetaspaceAux::used_bytes();
 915   };
 916 
 917   size_t heap_used() const      { return _heap_used; }
 918   size_t young_gen_used() const { return _young_gen_used; }
 919   size_t old_gen_used() const   { return _old_gen_used; }
 920   size_t metadata_used() const  { return _metadata_used; }
 921 
 922 private:
 923   size_t _heap_used;
 924   size_t _young_gen_used;
 925   size_t _old_gen_used;
 926   size_t _metadata_used;
 927 };
 928 
 929 void
 930 PSParallelCompact::clear_data_covering_space(SpaceId id)
 931 {
 932   // At this point, top is the value before GC, new_top() is the value that will
 933   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 934   // should be marked above top.  The summary data is cleared to the larger of
 935   // top & new_top.
 936   MutableSpace* const space = _space_info[id].space();
 937   HeapWord* const bot = space->bottom();
 938   HeapWord* const top = space->top();
 939   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 940 
 941   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 942   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 943   _mark_bitmap.clear_range(beg_bit, end_bit);
 944 
 945   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 946   const size_t end_region =
 947     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 948   _summary_data.clear_range(beg_region, end_region);
 949 
 950   // Clear the data used to 'split' regions.
 951   SplitInfo& split_info = _space_info[id].split_info();
 952   if (split_info.is_valid()) {
 953     split_info.clear();
 954   }
 955   DEBUG_ONLY(split_info.verify_clear();)
 956 }
 957 
 958 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
 959 {
 960   // Update the from & to space pointers in space_info, since they are swapped
 961   // at each young gen gc.  Do the update unconditionally (even though a
 962   // promotion failure does not swap spaces) because an unknown number of young
 963   // collections will have swapped the spaces an unknown number of times.
 964   GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer);
 965   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 966   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 967   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 968 
 969   pre_gc_values->fill(heap);
 970 
 971   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 972   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 973 
 974   // Increment the invocation count
 975   heap->increment_total_collections(true);
 976 
 977   // We need to track unique mark sweep invocations as well.
 978   _total_invocations++;
 979 
 980   heap->print_heap_before_gc();
 981   heap->trace_heap_before_gc(&_gc_tracer);
 982 
 983   // Fill in TLABs
 984   heap->accumulate_statistics_all_tlabs();
 985   heap->ensure_parsability(true);  // retire TLABs
 986 
 987   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 988     HandleMark hm;  // Discard invalid handles created during verification
 989     Universe::verify(" VerifyBeforeGC:");
 990   }
 991 
 992   // Verify object start arrays
 993   if (VerifyObjectStartArray &&
 994       VerifyBeforeGC) {
 995     heap->old_gen()->verify_object_start_array();
 996   }
 997 
 998   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 999   DEBUG_ONLY(summary_data().verify_clear();)
1000 
1001   // Have worker threads release resources the next time they run a task.
1002   gc_task_manager()->release_all_resources();
1003 }
1004 
1005 void PSParallelCompact::post_compact()
1006 {
1007   GCTraceTime tm("post compact", print_phases(), true, &_gc_timer);
1008 
1009   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1010     // Clear the marking bitmap, summary data and split info.
1011     clear_data_covering_space(SpaceId(id));
1012     // Update top().  Must be done after clearing the bitmap and summary data.
1013     _space_info[id].publish_new_top();
1014   }
1015 
1016   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1017   MutableSpace* const from_space = _space_info[from_space_id].space();
1018   MutableSpace* const to_space   = _space_info[to_space_id].space();
1019 
1020   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1021   bool eden_empty = eden_space->is_empty();
1022   if (!eden_empty) {
1023     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1024                                             heap->young_gen(), heap->old_gen());
1025   }
1026 
1027   // Update heap occupancy information which is used as input to the soft ref
1028   // clearing policy at the next gc.
1029   Universe::update_heap_info_at_gc();
1030 
1031   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1032     to_space->is_empty();
1033 
1034   ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1035   MemRegion old_mr = heap->old_gen()->reserved();
1036   if (young_gen_empty) {
1037     modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1038   } else {
1039     modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1040   }
1041 
1042   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1043   ClassLoaderDataGraph::purge();
1044   MetaspaceAux::verify_metrics();
1045 
1046   CodeCache::gc_epilogue();
1047   JvmtiExport::gc_epilogue();
1048 
1049 #if defined(COMPILER2) || INCLUDE_JVMCI
1050   DerivedPointerTable::update_pointers();
1051 #endif
1052 
1053   ref_processor()->enqueue_discovered_references(NULL);
1054 
1055   if (ZapUnusedHeapArea) {
1056     heap->gen_mangle_unused_area();
1057   }
1058 
1059   // Update time of last GC
1060   reset_millis_since_last_gc();
1061 }
1062 
1063 HeapWord*
1064 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1065                                                     bool maximum_compaction)
1066 {
1067   const size_t region_size = ParallelCompactData::RegionSize;
1068   const ParallelCompactData& sd = summary_data();
1069 
1070   const MutableSpace* const space = _space_info[id].space();
1071   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1072   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1073   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1074 
1075   // Skip full regions at the beginning of the space--they are necessarily part
1076   // of the dense prefix.
1077   size_t full_count = 0;
1078   const RegionData* cp;
1079   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1080     ++full_count;
1081   }
1082 
1083   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1084   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1085   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1086   if (maximum_compaction || cp == end_cp || interval_ended) {
1087     _maximum_compaction_gc_num = total_invocations();
1088     return sd.region_to_addr(cp);
1089   }
1090 
1091   HeapWord* const new_top = _space_info[id].new_top();
1092   const size_t space_live = pointer_delta(new_top, space->bottom());
1093   const size_t space_used = space->used_in_words();
1094   const size_t space_capacity = space->capacity_in_words();
1095 
1096   const double cur_density = double(space_live) / space_capacity;
1097   const double deadwood_density =
1098     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1099   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1100 
1101   if (TraceParallelOldGCDensePrefix) {
1102     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1103                   cur_density, deadwood_density, deadwood_goal);
1104     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1105                   "space_cap=" SIZE_FORMAT,
1106                   space_live, space_used,
1107                   space_capacity);
1108   }
1109 
1110   // XXX - Use binary search?
1111   HeapWord* dense_prefix = sd.region_to_addr(cp);
1112   const RegionData* full_cp = cp;
1113   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1114   while (cp < end_cp) {
1115     HeapWord* region_destination = cp->destination();
1116     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1117     if (TraceParallelOldGCDensePrefix && Verbose) {
1118       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1119                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1120                     sd.region(cp), p2i(region_destination),
1121                     p2i(dense_prefix), cur_deadwood);
1122     }
1123 
1124     if (cur_deadwood >= deadwood_goal) {
1125       // Found the region that has the correct amount of deadwood to the left.
1126       // This typically occurs after crossing a fairly sparse set of regions, so
1127       // iterate backwards over those sparse regions, looking for the region
1128       // that has the lowest density of live objects 'to the right.'
1129       size_t space_to_left = sd.region(cp) * region_size;
1130       size_t live_to_left = space_to_left - cur_deadwood;
1131       size_t space_to_right = space_capacity - space_to_left;
1132       size_t live_to_right = space_live - live_to_left;
1133       double density_to_right = double(live_to_right) / space_to_right;
1134       while (cp > full_cp) {
1135         --cp;
1136         const size_t prev_region_live_to_right = live_to_right -
1137           cp->data_size();
1138         const size_t prev_region_space_to_right = space_to_right + region_size;
1139         double prev_region_density_to_right =
1140           double(prev_region_live_to_right) / prev_region_space_to_right;
1141         if (density_to_right <= prev_region_density_to_right) {
1142           return dense_prefix;
1143         }
1144         if (TraceParallelOldGCDensePrefix && Verbose) {
1145           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1146                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1147                         prev_region_density_to_right);
1148         }
1149         dense_prefix -= region_size;
1150         live_to_right = prev_region_live_to_right;
1151         space_to_right = prev_region_space_to_right;
1152         density_to_right = prev_region_density_to_right;
1153       }
1154       return dense_prefix;
1155     }
1156 
1157     dense_prefix += region_size;
1158     ++cp;
1159   }
1160 
1161   return dense_prefix;
1162 }
1163 
1164 #ifndef PRODUCT
1165 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1166                                                  const SpaceId id,
1167                                                  const bool maximum_compaction,
1168                                                  HeapWord* const addr)
1169 {
1170   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1171   RegionData* const cp = summary_data().region(region_idx);
1172   const MutableSpace* const space = _space_info[id].space();
1173   HeapWord* const new_top = _space_info[id].new_top();
1174 
1175   const size_t space_live = pointer_delta(new_top, space->bottom());
1176   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1177   const size_t space_cap = space->capacity_in_words();
1178   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1179   const size_t live_to_right = new_top - cp->destination();
1180   const size_t dead_to_right = space->top() - addr - live_to_right;
1181 
1182   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1183                 "spl=" SIZE_FORMAT " "
1184                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1185                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1186                 " ratio=%10.8f",
1187                 algorithm, p2i(addr), region_idx,
1188                 space_live,
1189                 dead_to_left, dead_to_left_pct,
1190                 dead_to_right, live_to_right,
1191                 double(dead_to_right) / live_to_right);
1192 }
1193 #endif  // #ifndef PRODUCT
1194 
1195 // Return a fraction indicating how much of the generation can be treated as
1196 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1197 // based on the density of live objects in the generation to determine a limit,
1198 // which is then adjusted so the return value is min_percent when the density is
1199 // 1.
1200 //
1201 // The following table shows some return values for a different values of the
1202 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1203 // min_percent is 1.
1204 //
1205 //                          fraction allowed as dead wood
1206 //         -----------------------------------------------------------------
1207 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1208 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1209 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1210 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1211 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1212 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1213 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1214 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1215 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1216 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1217 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1218 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1219 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1220 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1221 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1222 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1223 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1224 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1225 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1226 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1227 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1228 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1229 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1230 
1231 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1232 {
1233   assert(_dwl_initialized, "uninitialized");
1234 
1235   // The raw limit is the value of the normal distribution at x = density.
1236   const double raw_limit = normal_distribution(density);
1237 
1238   // Adjust the raw limit so it becomes the minimum when the density is 1.
1239   //
1240   // First subtract the adjustment value (which is simply the precomputed value
1241   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1242   // Then add the minimum value, so the minimum is returned when the density is
1243   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1244   const double min = double(min_percent) / 100.0;
1245   const double limit = raw_limit - _dwl_adjustment + min;
1246   return MAX2(limit, 0.0);
1247 }
1248 
1249 ParallelCompactData::RegionData*
1250 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1251                                            const RegionData* end)
1252 {
1253   const size_t region_size = ParallelCompactData::RegionSize;
1254   ParallelCompactData& sd = summary_data();
1255   size_t left = sd.region(beg);
1256   size_t right = end > beg ? sd.region(end) - 1 : left;
1257 
1258   // Binary search.
1259   while (left < right) {
1260     // Equivalent to (left + right) / 2, but does not overflow.
1261     const size_t middle = left + (right - left) / 2;
1262     RegionData* const middle_ptr = sd.region(middle);
1263     HeapWord* const dest = middle_ptr->destination();
1264     HeapWord* const addr = sd.region_to_addr(middle);
1265     assert(dest != NULL, "sanity");
1266     assert(dest <= addr, "must move left");
1267 
1268     if (middle > left && dest < addr) {
1269       right = middle - 1;
1270     } else if (middle < right && middle_ptr->data_size() == region_size) {
1271       left = middle + 1;
1272     } else {
1273       return middle_ptr;
1274     }
1275   }
1276   return sd.region(left);
1277 }
1278 
1279 ParallelCompactData::RegionData*
1280 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1281                                           const RegionData* end,
1282                                           size_t dead_words)
1283 {
1284   ParallelCompactData& sd = summary_data();
1285   size_t left = sd.region(beg);
1286   size_t right = end > beg ? sd.region(end) - 1 : left;
1287 
1288   // Binary search.
1289   while (left < right) {
1290     // Equivalent to (left + right) / 2, but does not overflow.
1291     const size_t middle = left + (right - left) / 2;
1292     RegionData* const middle_ptr = sd.region(middle);
1293     HeapWord* const dest = middle_ptr->destination();
1294     HeapWord* const addr = sd.region_to_addr(middle);
1295     assert(dest != NULL, "sanity");
1296     assert(dest <= addr, "must move left");
1297 
1298     const size_t dead_to_left = pointer_delta(addr, dest);
1299     if (middle > left && dead_to_left > dead_words) {
1300       right = middle - 1;
1301     } else if (middle < right && dead_to_left < dead_words) {
1302       left = middle + 1;
1303     } else {
1304       return middle_ptr;
1305     }
1306   }
1307   return sd.region(left);
1308 }
1309 
1310 // The result is valid during the summary phase, after the initial summarization
1311 // of each space into itself, and before final summarization.
1312 inline double
1313 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1314                                    HeapWord* const bottom,
1315                                    HeapWord* const top,
1316                                    HeapWord* const new_top)
1317 {
1318   ParallelCompactData& sd = summary_data();
1319 
1320   assert(cp != NULL, "sanity");
1321   assert(bottom != NULL, "sanity");
1322   assert(top != NULL, "sanity");
1323   assert(new_top != NULL, "sanity");
1324   assert(top >= new_top, "summary data problem?");
1325   assert(new_top > bottom, "space is empty; should not be here");
1326   assert(new_top >= cp->destination(), "sanity");
1327   assert(top >= sd.region_to_addr(cp), "sanity");
1328 
1329   HeapWord* const destination = cp->destination();
1330   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1331   const size_t compacted_region_live = pointer_delta(new_top, destination);
1332   const size_t compacted_region_used = pointer_delta(top,
1333                                                      sd.region_to_addr(cp));
1334   const size_t reclaimable = compacted_region_used - compacted_region_live;
1335 
1336   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1337   return double(reclaimable) / divisor;
1338 }
1339 
1340 // Return the address of the end of the dense prefix, a.k.a. the start of the
1341 // compacted region.  The address is always on a region boundary.
1342 //
1343 // Completely full regions at the left are skipped, since no compaction can
1344 // occur in those regions.  Then the maximum amount of dead wood to allow is
1345 // computed, based on the density (amount live / capacity) of the generation;
1346 // the region with approximately that amount of dead space to the left is
1347 // identified as the limit region.  Regions between the last completely full
1348 // region and the limit region are scanned and the one that has the best
1349 // (maximum) reclaimed_ratio() is selected.
1350 HeapWord*
1351 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1352                                         bool maximum_compaction)
1353 {
1354   const size_t region_size = ParallelCompactData::RegionSize;
1355   const ParallelCompactData& sd = summary_data();
1356 
1357   const MutableSpace* const space = _space_info[id].space();
1358   HeapWord* const top = space->top();
1359   HeapWord* const top_aligned_up = sd.region_align_up(top);
1360   HeapWord* const new_top = _space_info[id].new_top();
1361   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1362   HeapWord* const bottom = space->bottom();
1363   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1364   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1365   const RegionData* const new_top_cp =
1366     sd.addr_to_region_ptr(new_top_aligned_up);
1367 
1368   // Skip full regions at the beginning of the space--they are necessarily part
1369   // of the dense prefix.
1370   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1371   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1372          space->is_empty(), "no dead space allowed to the left");
1373   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1374          "region must have dead space");
1375 
1376   // The gc number is saved whenever a maximum compaction is done, and used to
1377   // determine when the maximum compaction interval has expired.  This avoids
1378   // successive max compactions for different reasons.
1379   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1380   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1381   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1382     total_invocations() == HeapFirstMaximumCompactionCount;
1383   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1384     _maximum_compaction_gc_num = total_invocations();
1385     return sd.region_to_addr(full_cp);
1386   }
1387 
1388   const size_t space_live = pointer_delta(new_top, bottom);
1389   const size_t space_used = space->used_in_words();
1390   const size_t space_capacity = space->capacity_in_words();
1391 
1392   const double density = double(space_live) / double(space_capacity);
1393   const size_t min_percent_free = MarkSweepDeadRatio;
1394   const double limiter = dead_wood_limiter(density, min_percent_free);
1395   const size_t dead_wood_max = space_used - space_live;
1396   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1397                                       dead_wood_max);
1398 
1399   if (TraceParallelOldGCDensePrefix) {
1400     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1401                   "space_cap=" SIZE_FORMAT,
1402                   space_live, space_used,
1403                   space_capacity);
1404     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1405                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1406                   density, min_percent_free, limiter,
1407                   dead_wood_max, dead_wood_limit);
1408   }
1409 
1410   // Locate the region with the desired amount of dead space to the left.
1411   const RegionData* const limit_cp =
1412     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1413 
1414   // Scan from the first region with dead space to the limit region and find the
1415   // one with the best (largest) reclaimed ratio.
1416   double best_ratio = 0.0;
1417   const RegionData* best_cp = full_cp;
1418   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1419     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1420     if (tmp_ratio > best_ratio) {
1421       best_cp = cp;
1422       best_ratio = tmp_ratio;
1423     }
1424   }
1425 
1426   return sd.region_to_addr(best_cp);
1427 }
1428 
1429 void PSParallelCompact::summarize_spaces_quick()
1430 {
1431   for (unsigned int i = 0; i < last_space_id; ++i) {
1432     const MutableSpace* space = _space_info[i].space();
1433     HeapWord** nta = _space_info[i].new_top_addr();
1434     bool result = _summary_data.summarize(_space_info[i].split_info(),
1435                                           space->bottom(), space->top(), NULL,
1436                                           space->bottom(), space->end(), nta);
1437     assert(result, "space must fit into itself");
1438     _space_info[i].set_dense_prefix(space->bottom());
1439   }
1440 }
1441 
1442 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1443 {
1444   HeapWord* const dense_prefix_end = dense_prefix(id);
1445   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1446   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1447   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1448     // Only enough dead space is filled so that any remaining dead space to the
1449     // left is larger than the minimum filler object.  (The remainder is filled
1450     // during the copy/update phase.)
1451     //
1452     // The size of the dead space to the right of the boundary is not a
1453     // concern, since compaction will be able to use whatever space is
1454     // available.
1455     //
1456     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1457     // surrounds the space to be filled with an object.
1458     //
1459     // In the 32-bit VM, each bit represents two 32-bit words:
1460     //                              +---+
1461     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1462     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1463     //                              +---+
1464     //
1465     // In the 64-bit VM, each bit represents one 64-bit word:
1466     //                              +------------+
1467     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1468     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1469     //                              +------------+
1470     //                          +-------+
1471     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1472     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1473     //                          +-------+
1474     //                      +-----------+
1475     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1476     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1477     //                      +-----------+
1478     //                          +-------+
1479     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1480     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1481     //                          +-------+
1482 
1483     // Initially assume case a, c or e will apply.
1484     size_t obj_len = CollectedHeap::min_fill_size();
1485     HeapWord* obj_beg = dense_prefix_end - obj_len;
1486 
1487 #ifdef  _LP64
1488     if (MinObjAlignment > 1) { // object alignment > heap word size
1489       // Cases a, c or e.
1490     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1491       // Case b above.
1492       obj_beg = dense_prefix_end - 1;
1493     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1494                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1495       // Case d above.
1496       obj_beg = dense_prefix_end - 3;
1497       obj_len = 3;
1498     }
1499 #endif  // #ifdef _LP64
1500 
1501     CollectedHeap::fill_with_object(obj_beg, obj_len);
1502     _mark_bitmap.mark_obj(obj_beg, obj_len);
1503     _summary_data.add_obj(obj_beg, obj_len);
1504     assert(start_array(id) != NULL, "sanity");
1505     start_array(id)->allocate_block(obj_beg);
1506   }
1507 }
1508 
1509 void
1510 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
1511 {
1512   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
1513   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
1514   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
1515   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
1516     cur->set_source_region(0);
1517   }
1518 }
1519 
1520 void
1521 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1522 {
1523   assert(id < last_space_id, "id out of range");
1524   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1525          "should have been reset in summarize_spaces_quick()");
1526 
1527   const MutableSpace* space = _space_info[id].space();
1528   if (_space_info[id].new_top() != space->bottom()) {
1529     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1530     _space_info[id].set_dense_prefix(dense_prefix_end);
1531 
1532 #ifndef PRODUCT
1533     if (TraceParallelOldGCDensePrefix) {
1534       print_dense_prefix_stats("ratio", id, maximum_compaction,
1535                                dense_prefix_end);
1536       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1537       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1538     }
1539 #endif  // #ifndef PRODUCT
1540 
1541     // Recompute the summary data, taking into account the dense prefix.  If
1542     // every last byte will be reclaimed, then the existing summary data which
1543     // compacts everything can be left in place.
1544     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1545       // If dead space crosses the dense prefix boundary, it is (at least
1546       // partially) filled with a dummy object, marked live and added to the
1547       // summary data.  This simplifies the copy/update phase and must be done
1548       // before the final locations of objects are determined, to prevent
1549       // leaving a fragment of dead space that is too small to fill.
1550       fill_dense_prefix_end(id);
1551 
1552       // Compute the destination of each Region, and thus each object.
1553       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1554       _summary_data.summarize(_space_info[id].split_info(),
1555                               dense_prefix_end, space->top(), NULL,
1556                               dense_prefix_end, space->end(),
1557                               _space_info[id].new_top_addr());
1558     }
1559   }
1560 
1561   if (TraceParallelOldGCSummaryPhase) {
1562     const size_t region_size = ParallelCompactData::RegionSize;
1563     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1564     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1565     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1566     HeapWord* const new_top = _space_info[id].new_top();
1567     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1568     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1569     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1570                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1571                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1572                   id, space->capacity_in_words(), p2i(dense_prefix_end),
1573                   dp_region, dp_words / region_size,
1574                   cr_words / region_size, p2i(new_top));
1575   }
1576 }
1577 
1578 #ifndef PRODUCT
1579 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1580                                           HeapWord* dst_beg, HeapWord* dst_end,
1581                                           SpaceId src_space_id,
1582                                           HeapWord* src_beg, HeapWord* src_end)
1583 {
1584   if (TraceParallelOldGCSummaryPhase) {
1585     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
1586                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
1587                   SIZE_FORMAT "-" SIZE_FORMAT " "
1588                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1589                   SIZE_FORMAT "-" SIZE_FORMAT,
1590                   src_space_id, space_names[src_space_id],
1591                   dst_space_id, space_names[dst_space_id],
1592                   p2i(src_beg), p2i(src_end),
1593                   _summary_data.addr_to_region_idx(src_beg),
1594                   _summary_data.addr_to_region_idx(src_end),
1595                   p2i(dst_beg), p2i(dst_end),
1596                   _summary_data.addr_to_region_idx(dst_beg),
1597                   _summary_data.addr_to_region_idx(dst_end));
1598   }
1599 }
1600 #endif  // #ifndef PRODUCT
1601 
1602 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1603                                       bool maximum_compaction)
1604 {
1605   GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer);
1606   // trace("2");
1607 
1608 #ifdef  ASSERT
1609   if (TraceParallelOldGCMarkingPhase) {
1610     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1611                   "add_obj_bytes=" SIZE_FORMAT,
1612                   add_obj_count, add_obj_size * HeapWordSize);
1613     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1614                   "mark_bitmap_bytes=" SIZE_FORMAT,
1615                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1616   }
1617 #endif  // #ifdef ASSERT
1618 
1619   // Quick summarization of each space into itself, to see how much is live.
1620   summarize_spaces_quick();
1621 
1622   if (TraceParallelOldGCSummaryPhase) {
1623     tty->print_cr("summary_phase:  after summarizing each space to self");
1624     Universe::print();
1625     NOT_PRODUCT(print_region_ranges());
1626     if (Verbose) {
1627       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1628     }
1629   }
1630 
1631   // The amount of live data that will end up in old space (assuming it fits).
1632   size_t old_space_total_live = 0;
1633   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1634     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1635                                           _space_info[id].space()->bottom());
1636   }
1637 
1638   MutableSpace* const old_space = _space_info[old_space_id].space();
1639   const size_t old_capacity = old_space->capacity_in_words();
1640   if (old_space_total_live > old_capacity) {
1641     // XXX - should also try to expand
1642     maximum_compaction = true;
1643   }
1644 
1645   // Old generations.
1646   summarize_space(old_space_id, maximum_compaction);
1647 
1648   // Summarize the remaining spaces in the young gen.  The initial target space
1649   // is the old gen.  If a space does not fit entirely into the target, then the
1650   // remainder is compacted into the space itself and that space becomes the new
1651   // target.
1652   SpaceId dst_space_id = old_space_id;
1653   HeapWord* dst_space_end = old_space->end();
1654   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1655   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1656     const MutableSpace* space = _space_info[id].space();
1657     const size_t live = pointer_delta(_space_info[id].new_top(),
1658                                       space->bottom());
1659     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1660 
1661     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1662                                   SpaceId(id), space->bottom(), space->top());)
1663     if (live > 0 && live <= available) {
1664       // All the live data will fit.
1665       bool done = _summary_data.summarize(_space_info[id].split_info(),
1666                                           space->bottom(), space->top(),
1667                                           NULL,
1668                                           *new_top_addr, dst_space_end,
1669                                           new_top_addr);
1670       assert(done, "space must fit into old gen");
1671 
1672       // Reset the new_top value for the space.
1673       _space_info[id].set_new_top(space->bottom());
1674     } else if (live > 0) {
1675       // Attempt to fit part of the source space into the target space.
1676       HeapWord* next_src_addr = NULL;
1677       bool done = _summary_data.summarize(_space_info[id].split_info(),
1678                                           space->bottom(), space->top(),
1679                                           &next_src_addr,
1680                                           *new_top_addr, dst_space_end,
1681                                           new_top_addr);
1682       assert(!done, "space should not fit into old gen");
1683       assert(next_src_addr != NULL, "sanity");
1684 
1685       // The source space becomes the new target, so the remainder is compacted
1686       // within the space itself.
1687       dst_space_id = SpaceId(id);
1688       dst_space_end = space->end();
1689       new_top_addr = _space_info[id].new_top_addr();
1690       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1691                                     space->bottom(), dst_space_end,
1692                                     SpaceId(id), next_src_addr, space->top());)
1693       done = _summary_data.summarize(_space_info[id].split_info(),
1694                                      next_src_addr, space->top(),
1695                                      NULL,
1696                                      space->bottom(), dst_space_end,
1697                                      new_top_addr);
1698       assert(done, "space must fit when compacted into itself");
1699       assert(*new_top_addr <= space->top(), "usage should not grow");
1700     }
1701   }
1702 
1703   if (TraceParallelOldGCSummaryPhase) {
1704     tty->print_cr("summary_phase:  after final summarization");
1705     Universe::print();
1706     NOT_PRODUCT(print_region_ranges());
1707     if (Verbose) {
1708       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
1709     }
1710   }
1711 }
1712 
1713 // This method should contain all heap-specific policy for invoking a full
1714 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1715 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1716 // before full gc, or any other specialized behavior, it needs to be added here.
1717 //
1718 // Note that this method should only be called from the vm_thread while at a
1719 // safepoint.
1720 //
1721 // Note that the all_soft_refs_clear flag in the collector policy
1722 // may be true because this method can be called without intervening
1723 // activity.  For example when the heap space is tight and full measure
1724 // are being taken to free space.
1725 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1726   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1727   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1728          "should be in vm thread");
1729 
1730   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1731   GCCause::Cause gc_cause = heap->gc_cause();
1732   assert(!heap->is_gc_active(), "not reentrant");
1733 
1734   PSAdaptiveSizePolicy* policy = heap->size_policy();
1735   IsGCActiveMark mark;
1736 
1737   if (ScavengeBeforeFullGC) {
1738     PSScavenge::invoke_no_policy();
1739   }
1740 
1741   const bool clear_all_soft_refs =
1742     heap->collector_policy()->should_clear_all_soft_refs();
1743 
1744   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1745                                       maximum_heap_compaction);
1746 }
1747 
1748 // This method contains no policy. You should probably
1749 // be calling invoke() instead.
1750 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1751   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1752   assert(ref_processor() != NULL, "Sanity");
1753 
1754   if (GC_locker::check_active_before_gc()) {
1755     return false;
1756   }
1757 
1758   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1759 
1760   GCIdMark gc_id_mark;
1761   _gc_timer.register_gc_start();
1762   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1763 
1764   TimeStamp marking_start;
1765   TimeStamp compaction_start;
1766   TimeStamp collection_exit;
1767 
1768   GCCause::Cause gc_cause = heap->gc_cause();
1769   PSYoungGen* young_gen = heap->young_gen();
1770   PSOldGen* old_gen = heap->old_gen();
1771   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1772 
1773   // The scope of casr should end after code that can change
1774   // CollectorPolicy::_should_clear_all_soft_refs.
1775   ClearedAllSoftRefs casr(maximum_heap_compaction,
1776                           heap->collector_policy());
1777 
1778   if (ZapUnusedHeapArea) {
1779     // Save information needed to minimize mangling
1780     heap->record_gen_tops_before_GC();
1781   }
1782 
1783   heap->pre_full_gc_dump(&_gc_timer);
1784 
1785   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
1786 
1787   // Make sure data structures are sane, make the heap parsable, and do other
1788   // miscellaneous bookkeeping.
1789   PreGCValues pre_gc_values;
1790   pre_compact(&pre_gc_values);
1791 
1792   // Get the compaction manager reserved for the VM thread.
1793   ParCompactionManager* const vmthread_cm =
1794     ParCompactionManager::manager_array(gc_task_manager()->workers());
1795 
1796   // Place after pre_compact() where the number of invocations is incremented.
1797   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
1798 
1799   {
1800     ResourceMark rm;
1801     HandleMark hm;
1802 
1803     // Set the number of GC threads to be used in this collection
1804     gc_task_manager()->set_active_gang();
1805     gc_task_manager()->task_idle_workers();
1806 
1807     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1808     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
1809     TraceCollectorStats tcs(counters());
1810     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
1811 
1812     if (TraceOldGenTime) accumulated_time()->start();
1813 
1814     // Let the size policy know we're starting
1815     size_policy->major_collection_begin();
1816 
1817     CodeCache::gc_prologue();
1818 
1819 #if defined(COMPILER2) || INCLUDE_JVMCI
1820     DerivedPointerTable::clear();
1821 #endif
1822 
1823     ref_processor()->enable_discovery();
1824     ref_processor()->setup_policy(maximum_heap_compaction);
1825 
1826     bool marked_for_unloading = false;
1827 
1828     marking_start.update();
1829     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1830 
1831     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1832       && GCCause::is_user_requested_gc(gc_cause);
1833     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1834 
1835 #if defined(COMPILER2) || INCLUDE_JVMCI
1836     assert(DerivedPointerTable::is_active(), "Sanity");
1837     DerivedPointerTable::set_active(false);
1838 #endif
1839 
1840     // adjust_roots() updates Universe::_intArrayKlassObj which is
1841     // needed by the compaction for filling holes in the dense prefix.
1842     adjust_roots();
1843 
1844     compaction_start.update();
1845     compact();
1846 
1847     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1848     // done before resizing.
1849     post_compact();
1850 
1851     // Let the size policy know we're done
1852     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1853 
1854     if (UseAdaptiveSizePolicy) {
1855       if (PrintAdaptiveSizePolicy) {
1856         gclog_or_tty->print("AdaptiveSizeStart: ");
1857         gclog_or_tty->stamp();
1858         gclog_or_tty->print_cr(" collection: %d ",
1859                        heap->total_collections());
1860         if (Verbose) {
1861           gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
1862             " young_gen_capacity: " SIZE_FORMAT,
1863             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1864         }
1865       }
1866 
1867       // Don't check if the size_policy is ready here.  Let
1868       // the size_policy check that internally.
1869       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1870           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1871         // Swap the survivor spaces if from_space is empty. The
1872         // resize_young_gen() called below is normally used after
1873         // a successful young GC and swapping of survivor spaces;
1874         // otherwise, it will fail to resize the young gen with
1875         // the current implementation.
1876         if (young_gen->from_space()->is_empty()) {
1877           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1878           young_gen->swap_spaces();
1879         }
1880 
1881         // Calculate optimal free space amounts
1882         assert(young_gen->max_size() >
1883           young_gen->from_space()->capacity_in_bytes() +
1884           young_gen->to_space()->capacity_in_bytes(),
1885           "Sizes of space in young gen are out-of-bounds");
1886 
1887         size_t young_live = young_gen->used_in_bytes();
1888         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1889         size_t old_live = old_gen->used_in_bytes();
1890         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1891         size_t max_old_gen_size = old_gen->max_gen_size();
1892         size_t max_eden_size = young_gen->max_size() -
1893           young_gen->from_space()->capacity_in_bytes() -
1894           young_gen->to_space()->capacity_in_bytes();
1895 
1896         // Used for diagnostics
1897         size_policy->clear_generation_free_space_flags();
1898 
1899         size_policy->compute_generations_free_space(young_live,
1900                                                     eden_live,
1901                                                     old_live,
1902                                                     cur_eden,
1903                                                     max_old_gen_size,
1904                                                     max_eden_size,
1905                                                     true /* full gc*/);
1906 
1907         size_policy->check_gc_overhead_limit(young_live,
1908                                              eden_live,
1909                                              max_old_gen_size,
1910                                              max_eden_size,
1911                                              true /* full gc*/,
1912                                              gc_cause,
1913                                              heap->collector_policy());
1914 
1915         size_policy->decay_supplemental_growth(true /* full gc*/);
1916 
1917         heap->resize_old_gen(
1918           size_policy->calculated_old_free_size_in_bytes());
1919 
1920         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1921                                size_policy->calculated_survivor_size_in_bytes());
1922       }
1923       if (PrintAdaptiveSizePolicy) {
1924         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
1925                        heap->total_collections());
1926       }
1927     }
1928 
1929     if (UsePerfData) {
1930       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1931       counters->update_counters();
1932       counters->update_old_capacity(old_gen->capacity_in_bytes());
1933       counters->update_young_capacity(young_gen->capacity_in_bytes());
1934     }
1935 
1936     heap->resize_all_tlabs();
1937 
1938     // Resize the metaspace capacity after a collection
1939     MetaspaceGC::compute_new_size();
1940 
1941     if (TraceOldGenTime) accumulated_time()->stop();
1942 
1943     if (PrintGC) {
1944       if (PrintGCDetails) {
1945         // No GC timestamp here.  This is after GC so it would be confusing.
1946         young_gen->print_used_change(pre_gc_values.young_gen_used());
1947         old_gen->print_used_change(pre_gc_values.old_gen_used());
1948         heap->print_heap_change(pre_gc_values.heap_used());
1949         MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
1950       } else {
1951         heap->print_heap_change(pre_gc_values.heap_used());
1952       }
1953     }
1954 
1955     // Track memory usage and detect low memory
1956     MemoryService::track_memory_usage();
1957     heap->update_counters();
1958     gc_task_manager()->release_idle_workers();
1959   }
1960 
1961 #ifdef ASSERT
1962   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1963     ParCompactionManager* const cm =
1964       ParCompactionManager::manager_array(int(i));
1965     assert(cm->marking_stack()->is_empty(),       "should be empty");
1966     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
1967   }
1968 #endif // ASSERT
1969 
1970   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1971     HandleMark hm;  // Discard invalid handles created during verification
1972     Universe::verify(" VerifyAfterGC:");
1973   }
1974 
1975   // Re-verify object start arrays
1976   if (VerifyObjectStartArray &&
1977       VerifyAfterGC) {
1978     old_gen->verify_object_start_array();
1979   }
1980 
1981   if (ZapUnusedHeapArea) {
1982     old_gen->object_space()->check_mangled_unused_area_complete();
1983   }
1984 
1985   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1986 
1987   collection_exit.update();
1988 
1989   heap->print_heap_after_gc();
1990   heap->trace_heap_after_gc(&_gc_tracer);
1991 
1992   if (PrintGCTaskTimeStamps) {
1993     gclog_or_tty->print_cr("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " "
1994                            JLONG_FORMAT,
1995                            marking_start.ticks(), compaction_start.ticks(),
1996                            collection_exit.ticks());
1997     gc_task_manager()->print_task_time_stamps();
1998   }
1999 
2000   heap->post_full_gc_dump(&_gc_timer);
2001 
2002 #ifdef TRACESPINNING
2003   ParallelTaskTerminator::print_termination_counts();
2004 #endif
2005 
2006   _gc_timer.register_gc_end();
2007 
2008   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
2009   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
2010 
2011   return true;
2012 }
2013 
2014 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
2015                                              PSYoungGen* young_gen,
2016                                              PSOldGen* old_gen) {
2017   MutableSpace* const eden_space = young_gen->eden_space();
2018   assert(!eden_space->is_empty(), "eden must be non-empty");
2019   assert(young_gen->virtual_space()->alignment() ==
2020          old_gen->virtual_space()->alignment(), "alignments do not match");
2021 
2022   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
2023     return false;
2024   }
2025 
2026   // Both generations must be completely committed.
2027   if (young_gen->virtual_space()->uncommitted_size() != 0) {
2028     return false;
2029   }
2030   if (old_gen->virtual_space()->uncommitted_size() != 0) {
2031     return false;
2032   }
2033 
2034   // Figure out how much to take from eden.  Include the average amount promoted
2035   // in the total; otherwise the next young gen GC will simply bail out to a
2036   // full GC.
2037   const size_t alignment = old_gen->virtual_space()->alignment();
2038   const size_t eden_used = eden_space->used_in_bytes();
2039   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2040   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2041   const size_t eden_capacity = eden_space->capacity_in_bytes();
2042 
2043   if (absorb_size >= eden_capacity) {
2044     return false; // Must leave some space in eden.
2045   }
2046 
2047   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2048   if (new_young_size < young_gen->min_gen_size()) {
2049     return false; // Respect young gen minimum size.
2050   }
2051 
2052   if (TraceAdaptiveGCBoundary && Verbose) {
2053     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
2054                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2055                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2056                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2057                         absorb_size / K,
2058                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2059                         young_gen->from_space()->used_in_bytes() / K,
2060                         young_gen->to_space()->used_in_bytes() / K,
2061                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2062   }
2063 
2064   // Fill the unused part of the old gen.
2065   MutableSpace* const old_space = old_gen->object_space();
2066   HeapWord* const unused_start = old_space->top();
2067   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2068 
2069   if (unused_words > 0) {
2070     if (unused_words < CollectedHeap::min_fill_size()) {
2071       return false;  // If the old gen cannot be filled, must give up.
2072     }
2073     CollectedHeap::fill_with_objects(unused_start, unused_words);
2074   }
2075 
2076   // Take the live data from eden and set both top and end in the old gen to
2077   // eden top.  (Need to set end because reset_after_change() mangles the region
2078   // from end to virtual_space->high() in debug builds).
2079   HeapWord* const new_top = eden_space->top();
2080   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2081                                         absorb_size);
2082   young_gen->reset_after_change();
2083   old_space->set_top(new_top);
2084   old_space->set_end(new_top);
2085   old_gen->reset_after_change();
2086 
2087   // Update the object start array for the filler object and the data from eden.
2088   ObjectStartArray* const start_array = old_gen->start_array();
2089   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2090     start_array->allocate_block(p);
2091   }
2092 
2093   // Could update the promoted average here, but it is not typically updated at
2094   // full GCs and the value to use is unclear.  Something like
2095   //
2096   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2097 
2098   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2099   return true;
2100 }
2101 
2102 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2103   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2104     "shouldn't return NULL");
2105   return ParallelScavengeHeap::gc_task_manager();
2106 }
2107 
2108 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2109                                       bool maximum_heap_compaction,
2110                                       ParallelOldTracer *gc_tracer) {
2111   // Recursively traverse all live objects and mark them
2112   GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer);
2113 
2114   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2115   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2116   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2117   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2118   ParallelTaskTerminator terminator(active_gc_threads, qset);
2119 
2120   ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2121   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2122 
2123   // Need new claim bits before marking starts.
2124   ClassLoaderDataGraph::clear_claimed_marks();
2125 
2126   {
2127     GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer);
2128 
2129     ParallelScavengeHeap::ParStrongRootsScope psrs;
2130 
2131     GCTaskQueue* q = GCTaskQueue::create();
2132 
2133     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2134     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2135     // We scan the thread roots in parallel
2136     Threads::create_thread_roots_marking_tasks(q);
2137     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2138     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2139     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2140     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2141     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2142     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2143     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2144 
2145     if (active_gc_threads > 1) {
2146       for (uint j = 0; j < active_gc_threads; j++) {
2147         q->enqueue(new StealMarkingTask(&terminator));
2148       }
2149     }
2150 
2151     gc_task_manager()->execute_and_wait(q);
2152   }
2153 
2154   // Process reference objects found during marking
2155   {
2156     GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer);
2157 
2158     ReferenceProcessorStats stats;
2159     if (ref_processor()->processing_is_mt()) {
2160       RefProcTaskExecutor task_executor;
2161       stats = ref_processor()->process_discovered_references(
2162         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2163         &task_executor, &_gc_timer);
2164     } else {
2165       stats = ref_processor()->process_discovered_references(
2166         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2167         &_gc_timer);
2168     }
2169 
2170     gc_tracer->report_gc_reference_stats(stats);
2171   }
2172 
2173   GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer);
2174 
2175   // This is the point where the entire marking should have completed.
2176   assert(cm->marking_stacks_empty(), "Marking should have completed");
2177 
2178   // Follow system dictionary roots and unload classes.
2179   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2180 
2181   // Unload nmethods.
2182   CodeCache::do_unloading(is_alive_closure(), purged_class);
2183 
2184   // Prune dead klasses from subklass/sibling/implementor lists.
2185   Klass::clean_weak_klass_links(is_alive_closure());
2186 
2187   // Delete entries for dead interned strings.
2188   StringTable::unlink(is_alive_closure());
2189 
2190   // Clean up unreferenced symbols in symbol table.
2191   SymbolTable::unlink();
2192   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2193 }
2194 
2195 // This should be moved to the shared markSweep code!
2196 class PSAlwaysTrueClosure: public BoolObjectClosure {
2197 public:
2198   bool do_object_b(oop p) { return true; }
2199 };
2200 static PSAlwaysTrueClosure always_true;
2201 
2202 void PSParallelCompact::adjust_roots() {
2203   // Adjust the pointers to reflect the new locations
2204   GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer);
2205 
2206   // Need new claim bits when tracing through and adjusting pointers.
2207   ClassLoaderDataGraph::clear_claimed_marks();
2208 
2209   // General strong roots.
2210   Universe::oops_do(adjust_pointer_closure());
2211   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
2212   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
2213   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
2214   ObjectSynchronizer::oops_do(adjust_pointer_closure());
2215   FlatProfiler::oops_do(adjust_pointer_closure());
2216   Management::oops_do(adjust_pointer_closure());
2217   JvmtiExport::oops_do(adjust_pointer_closure());
2218   SystemDictionary::oops_do(adjust_pointer_closure());
2219   ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
2220 
2221   // Now adjust pointers in remaining weak roots.  (All of which should
2222   // have been cleared if they pointed to non-surviving objects.)
2223   // Global (weak) JNI handles
2224   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
2225 
2226   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
2227   CodeCache::blobs_do(&adjust_from_blobs);
2228   StringTable::oops_do(adjust_pointer_closure());
2229   ref_processor()->weak_oops_do(adjust_pointer_closure());
2230   // Roots were visited so references into the young gen in roots
2231   // may have been scanned.  Process them also.
2232   // Should the reference processor have a span that excludes
2233   // young gen objects?
2234   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
2235 }
2236 
2237 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2238                                                       uint parallel_gc_threads)
2239 {
2240   GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer);
2241 
2242   // Find the threads that are active
2243   unsigned int which = 0;
2244 
2245   const uint task_count = MAX2(parallel_gc_threads, 1U);
2246   for (uint j = 0; j < task_count; j++) {
2247     q->enqueue(new DrainStacksCompactionTask(j));
2248     ParCompactionManager::verify_region_list_empty(j);
2249     // Set the region stacks variables to "no" region stack values
2250     // so that they will be recognized and needing a region stack
2251     // in the stealing tasks if they do not get one by executing
2252     // a draining stack.
2253     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
2254     cm->set_region_stack(NULL);
2255     cm->set_region_stack_index((uint)max_uintx);
2256   }
2257   ParCompactionManager::reset_recycled_stack_index();
2258 
2259   // Find all regions that are available (can be filled immediately) and
2260   // distribute them to the thread stacks.  The iteration is done in reverse
2261   // order (high to low) so the regions will be removed in ascending order.
2262 
2263   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2264 
2265   size_t fillable_regions = 0;   // A count for diagnostic purposes.
2266   // A region index which corresponds to the tasks created above.
2267   // "which" must be 0 <= which < task_count
2268 
2269   which = 0;
2270   // id + 1 is used to test termination so unsigned  can
2271   // be used with an old_space_id == 0.
2272   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2273     SpaceInfo* const space_info = _space_info + id;
2274     MutableSpace* const space = space_info->space();
2275     HeapWord* const new_top = space_info->new_top();
2276 
2277     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2278     const size_t end_region =
2279       sd.addr_to_region_idx(sd.region_align_up(new_top));
2280 
2281     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2282       if (sd.region(cur)->claim_unsafe()) {
2283         ParCompactionManager::region_list_push(which, cur);
2284 
2285         if (TraceParallelOldGCCompactionPhase && Verbose) {
2286           const size_t count_mod_8 = fillable_regions & 7;
2287           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2288           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
2289           if (count_mod_8 == 7) gclog_or_tty->cr();
2290         }
2291 
2292         NOT_PRODUCT(++fillable_regions;)
2293 
2294         // Assign regions to tasks in round-robin fashion.
2295         if (++which == task_count) {
2296           assert(which <= parallel_gc_threads,
2297             "Inconsistent number of workers");
2298           which = 0;
2299         }
2300       }
2301     }
2302   }
2303 
2304   if (TraceParallelOldGCCompactionPhase) {
2305     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
2306     gclog_or_tty->print_cr(SIZE_FORMAT " initially fillable regions", fillable_regions);
2307   }
2308 }
2309 
2310 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2311 
2312 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2313                                                     uint parallel_gc_threads) {
2314   GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer);
2315 
2316   ParallelCompactData& sd = PSParallelCompact::summary_data();
2317 
2318   // Iterate over all the spaces adding tasks for updating
2319   // regions in the dense prefix.  Assume that 1 gc thread
2320   // will work on opening the gaps and the remaining gc threads
2321   // will work on the dense prefix.
2322   unsigned int space_id;
2323   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2324     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2325     const MutableSpace* const space = _space_info[space_id].space();
2326 
2327     if (dense_prefix_end == space->bottom()) {
2328       // There is no dense prefix for this space.
2329       continue;
2330     }
2331 
2332     // The dense prefix is before this region.
2333     size_t region_index_end_dense_prefix =
2334         sd.addr_to_region_idx(dense_prefix_end);
2335     RegionData* const dense_prefix_cp =
2336       sd.region(region_index_end_dense_prefix);
2337     assert(dense_prefix_end == space->end() ||
2338            dense_prefix_cp->available() ||
2339            dense_prefix_cp->claimed(),
2340            "The region after the dense prefix should always be ready to fill");
2341 
2342     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2343 
2344     // Is there dense prefix work?
2345     size_t total_dense_prefix_regions =
2346       region_index_end_dense_prefix - region_index_start;
2347     // How many regions of the dense prefix should be given to
2348     // each thread?
2349     if (total_dense_prefix_regions > 0) {
2350       uint tasks_for_dense_prefix = 1;
2351       if (total_dense_prefix_regions <=
2352           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2353         // Don't over partition.  This assumes that
2354         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2355         // so there are not many regions to process.
2356         tasks_for_dense_prefix = parallel_gc_threads;
2357       } else {
2358         // Over partition
2359         tasks_for_dense_prefix = parallel_gc_threads *
2360           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2361       }
2362       size_t regions_per_thread = total_dense_prefix_regions /
2363         tasks_for_dense_prefix;
2364       // Give each thread at least 1 region.
2365       if (regions_per_thread == 0) {
2366         regions_per_thread = 1;
2367       }
2368 
2369       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2370         if (region_index_start >= region_index_end_dense_prefix) {
2371           break;
2372         }
2373         // region_index_end is not processed
2374         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2375                                        region_index_end_dense_prefix);
2376         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2377                                              region_index_start,
2378                                              region_index_end));
2379         region_index_start = region_index_end;
2380       }
2381     }
2382     // This gets any part of the dense prefix that did not
2383     // fit evenly.
2384     if (region_index_start < region_index_end_dense_prefix) {
2385       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2386                                            region_index_start,
2387                                            region_index_end_dense_prefix));
2388     }
2389   }
2390 }
2391 
2392 void PSParallelCompact::enqueue_region_stealing_tasks(
2393                                      GCTaskQueue* q,
2394                                      ParallelTaskTerminator* terminator_ptr,
2395                                      uint parallel_gc_threads) {
2396   GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer);
2397 
2398   // Once a thread has drained it's stack, it should try to steal regions from
2399   // other threads.
2400   if (parallel_gc_threads > 1) {
2401     for (uint j = 0; j < parallel_gc_threads; j++) {
2402       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2403     }
2404   }
2405 }
2406 
2407 #ifdef ASSERT
2408 // Write a histogram of the number of times the block table was filled for a
2409 // region.
2410 void PSParallelCompact::write_block_fill_histogram(outputStream* const out)
2411 {
2412   if (!TraceParallelOldGCCompactionPhase) return;
2413 
2414   typedef ParallelCompactData::RegionData rd_t;
2415   ParallelCompactData& sd = summary_data();
2416 
2417   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2418     MutableSpace* const spc = _space_info[id].space();
2419     if (spc->bottom() != spc->top()) {
2420       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2421       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2422       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2423 
2424       size_t histo[5] = { 0, 0, 0, 0, 0 };
2425       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2426       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2427 
2428       for (const rd_t* cur = beg; cur < end; ++cur) {
2429         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2430       }
2431       out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2432       for (size_t i = 0; i < histo_len; ++i) {
2433         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2434                    histo[i], 100.0 * histo[i] / region_cnt);
2435       }
2436       out->cr();
2437     }
2438   }
2439 }
2440 #endif // #ifdef ASSERT
2441 
2442 void PSParallelCompact::compact() {
2443   // trace("5");
2444   GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer);
2445 
2446   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2447   PSOldGen* old_gen = heap->old_gen();
2448   old_gen->start_array()->reset();
2449   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2450   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2451   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2452   ParallelTaskTerminator terminator(active_gc_threads, qset);
2453 
2454   GCTaskQueue* q = GCTaskQueue::create();
2455   enqueue_region_draining_tasks(q, active_gc_threads);
2456   enqueue_dense_prefix_tasks(q, active_gc_threads);
2457   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2458 
2459   {
2460     GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer);
2461 
2462     gc_task_manager()->execute_and_wait(q);
2463 
2464 #ifdef  ASSERT
2465     // Verify that all regions have been processed before the deferred updates.
2466     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2467       verify_complete(SpaceId(id));
2468     }
2469 #endif
2470   }
2471 
2472   {
2473     // Update the deferred objects, if any.  Any compaction manager can be used.
2474     GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer);
2475     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2476     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2477       update_deferred_objects(cm, SpaceId(id));
2478     }
2479   }
2480 
2481   DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty));
2482 }
2483 
2484 #ifdef  ASSERT
2485 void PSParallelCompact::verify_complete(SpaceId space_id) {
2486   // All Regions between space bottom() to new_top() should be marked as filled
2487   // and all Regions between new_top() and top() should be available (i.e.,
2488   // should have been emptied).
2489   ParallelCompactData& sd = summary_data();
2490   SpaceInfo si = _space_info[space_id];
2491   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2492   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2493   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2494   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2495   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2496 
2497   bool issued_a_warning = false;
2498 
2499   size_t cur_region;
2500   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2501     const RegionData* const c = sd.region(cur_region);
2502     if (!c->completed()) {
2503       warning("region " SIZE_FORMAT " not filled:  "
2504               "destination_count=%u",
2505               cur_region, c->destination_count());
2506       issued_a_warning = true;
2507     }
2508   }
2509 
2510   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2511     const RegionData* const c = sd.region(cur_region);
2512     if (!c->available()) {
2513       warning("region " SIZE_FORMAT " not empty:   "
2514               "destination_count=%u",
2515               cur_region, c->destination_count());
2516       issued_a_warning = true;
2517     }
2518   }
2519 
2520   if (issued_a_warning) {
2521     print_region_ranges();
2522   }
2523 }
2524 #endif  // #ifdef ASSERT
2525 
2526 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2527   _start_array->allocate_block(addr);
2528   compaction_manager()->update_contents(oop(addr));
2529 }
2530 
2531 // Update interior oops in the ranges of regions [beg_region, end_region).
2532 void
2533 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2534                                                        SpaceId space_id,
2535                                                        size_t beg_region,
2536                                                        size_t end_region) {
2537   ParallelCompactData& sd = summary_data();
2538   ParMarkBitMap* const mbm = mark_bitmap();
2539 
2540   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2541   HeapWord* const end_addr = sd.region_to_addr(end_region);
2542   assert(beg_region <= end_region, "bad region range");
2543   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2544 
2545 #ifdef  ASSERT
2546   // Claim the regions to avoid triggering an assert when they are marked as
2547   // filled.
2548   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2549     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2550   }
2551 #endif  // #ifdef ASSERT
2552 
2553   if (beg_addr != space(space_id)->bottom()) {
2554     // Find the first live object or block of dead space that *starts* in this
2555     // range of regions.  If a partial object crosses onto the region, skip it;
2556     // it will be marked for 'deferred update' when the object head is
2557     // processed.  If dead space crosses onto the region, it is also skipped; it
2558     // will be filled when the prior region is processed.  If neither of those
2559     // apply, the first word in the region is the start of a live object or dead
2560     // space.
2561     assert(beg_addr > space(space_id)->bottom(), "sanity");
2562     const RegionData* const cp = sd.region(beg_region);
2563     if (cp->partial_obj_size() != 0) {
2564       beg_addr = sd.partial_obj_end(beg_region);
2565     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2566       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2567     }
2568   }
2569 
2570   if (beg_addr < end_addr) {
2571     // A live object or block of dead space starts in this range of Regions.
2572      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2573 
2574     // Create closures and iterate.
2575     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2576     FillClosure fill_closure(cm, space_id);
2577     ParMarkBitMap::IterationStatus status;
2578     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2579                           dense_prefix_end);
2580     if (status == ParMarkBitMap::incomplete) {
2581       update_closure.do_addr(update_closure.source());
2582     }
2583   }
2584 
2585   // Mark the regions as filled.
2586   RegionData* const beg_cp = sd.region(beg_region);
2587   RegionData* const end_cp = sd.region(end_region);
2588   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2589     cp->set_completed();
2590   }
2591 }
2592 
2593 // Return the SpaceId for the space containing addr.  If addr is not in the
2594 // heap, last_space_id is returned.  In debug mode it expects the address to be
2595 // in the heap and asserts such.
2596 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2597   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2598 
2599   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2600     if (_space_info[id].space()->contains(addr)) {
2601       return SpaceId(id);
2602     }
2603   }
2604 
2605   assert(false, "no space contains the addr");
2606   return last_space_id;
2607 }
2608 
2609 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2610                                                 SpaceId id) {
2611   assert(id < last_space_id, "bad space id");
2612 
2613   ParallelCompactData& sd = summary_data();
2614   const SpaceInfo* const space_info = _space_info + id;
2615   ObjectStartArray* const start_array = space_info->start_array();
2616 
2617   const MutableSpace* const space = space_info->space();
2618   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2619   HeapWord* const beg_addr = space_info->dense_prefix();
2620   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2621 
2622   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2623   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2624   const RegionData* cur_region;
2625   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2626     HeapWord* const addr = cur_region->deferred_obj_addr();
2627     if (addr != NULL) {
2628       if (start_array != NULL) {
2629         start_array->allocate_block(addr);
2630       }
2631       cm->update_contents(oop(addr));
2632       assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2633     }
2634   }
2635 }
2636 
2637 // Skip over count live words starting from beg, and return the address of the
2638 // next live word.  Unless marked, the word corresponding to beg is assumed to
2639 // be dead.  Callers must either ensure beg does not correspond to the middle of
2640 // an object, or account for those live words in some other way.  Callers must
2641 // also ensure that there are enough live words in the range [beg, end) to skip.
2642 HeapWord*
2643 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2644 {
2645   assert(count > 0, "sanity");
2646 
2647   ParMarkBitMap* m = mark_bitmap();
2648   idx_t bits_to_skip = m->words_to_bits(count);
2649   idx_t cur_beg = m->addr_to_bit(beg);
2650   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2651 
2652   do {
2653     cur_beg = m->find_obj_beg(cur_beg, search_end);
2654     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2655     const size_t obj_bits = cur_end - cur_beg + 1;
2656     if (obj_bits > bits_to_skip) {
2657       return m->bit_to_addr(cur_beg + bits_to_skip);
2658     }
2659     bits_to_skip -= obj_bits;
2660     cur_beg = cur_end + 1;
2661   } while (bits_to_skip > 0);
2662 
2663   // Skipping the desired number of words landed just past the end of an object.
2664   // Find the start of the next object.
2665   cur_beg = m->find_obj_beg(cur_beg, search_end);
2666   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2667   return m->bit_to_addr(cur_beg);
2668 }
2669 
2670 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2671                                             SpaceId src_space_id,
2672                                             size_t src_region_idx)
2673 {
2674   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2675 
2676   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2677   if (split_info.dest_region_addr() == dest_addr) {
2678     // The partial object ending at the split point contains the first word to
2679     // be copied to dest_addr.
2680     return split_info.first_src_addr();
2681   }
2682 
2683   const ParallelCompactData& sd = summary_data();
2684   ParMarkBitMap* const bitmap = mark_bitmap();
2685   const size_t RegionSize = ParallelCompactData::RegionSize;
2686 
2687   assert(sd.is_region_aligned(dest_addr), "not aligned");
2688   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2689   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2690   HeapWord* const src_region_destination = src_region_ptr->destination();
2691 
2692   assert(dest_addr >= src_region_destination, "wrong src region");
2693   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2694 
2695   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2696   HeapWord* const src_region_end = src_region_beg + RegionSize;
2697 
2698   HeapWord* addr = src_region_beg;
2699   if (dest_addr == src_region_destination) {
2700     // Return the first live word in the source region.
2701     if (partial_obj_size == 0) {
2702       addr = bitmap->find_obj_beg(addr, src_region_end);
2703       assert(addr < src_region_end, "no objects start in src region");
2704     }
2705     return addr;
2706   }
2707 
2708   // Must skip some live data.
2709   size_t words_to_skip = dest_addr - src_region_destination;
2710   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2711 
2712   if (partial_obj_size >= words_to_skip) {
2713     // All the live words to skip are part of the partial object.
2714     addr += words_to_skip;
2715     if (partial_obj_size == words_to_skip) {
2716       // Find the first live word past the partial object.
2717       addr = bitmap->find_obj_beg(addr, src_region_end);
2718       assert(addr < src_region_end, "wrong src region");
2719     }
2720     return addr;
2721   }
2722 
2723   // Skip over the partial object (if any).
2724   if (partial_obj_size != 0) {
2725     words_to_skip -= partial_obj_size;
2726     addr += partial_obj_size;
2727   }
2728 
2729   // Skip over live words due to objects that start in the region.
2730   addr = skip_live_words(addr, src_region_end, words_to_skip);
2731   assert(addr < src_region_end, "wrong src region");
2732   return addr;
2733 }
2734 
2735 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2736                                                      SpaceId src_space_id,
2737                                                      size_t beg_region,
2738                                                      HeapWord* end_addr)
2739 {
2740   ParallelCompactData& sd = summary_data();
2741 
2742 #ifdef ASSERT
2743   MutableSpace* const src_space = _space_info[src_space_id].space();
2744   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2745   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2746          "src_space_id does not match beg_addr");
2747   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2748          "src_space_id does not match end_addr");
2749 #endif // #ifdef ASSERT
2750 
2751   RegionData* const beg = sd.region(beg_region);
2752   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2753 
2754   // Regions up to new_top() are enqueued if they become available.
2755   HeapWord* const new_top = _space_info[src_space_id].new_top();
2756   RegionData* const enqueue_end =
2757     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2758 
2759   for (RegionData* cur = beg; cur < end; ++cur) {
2760     assert(cur->data_size() > 0, "region must have live data");
2761     cur->decrement_destination_count();
2762     if (cur < enqueue_end && cur->available() && cur->claim()) {
2763       cm->push_region(sd.region(cur));
2764     }
2765   }
2766 }
2767 
2768 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2769                                           SpaceId& src_space_id,
2770                                           HeapWord*& src_space_top,
2771                                           HeapWord* end_addr)
2772 {
2773   typedef ParallelCompactData::RegionData RegionData;
2774 
2775   ParallelCompactData& sd = PSParallelCompact::summary_data();
2776   const size_t region_size = ParallelCompactData::RegionSize;
2777 
2778   size_t src_region_idx = 0;
2779 
2780   // Skip empty regions (if any) up to the top of the space.
2781   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2782   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2783   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2784   const RegionData* const top_region_ptr =
2785     sd.addr_to_region_ptr(top_aligned_up);
2786   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2787     ++src_region_ptr;
2788   }
2789 
2790   if (src_region_ptr < top_region_ptr) {
2791     // The next source region is in the current space.  Update src_region_idx
2792     // and the source address to match src_region_ptr.
2793     src_region_idx = sd.region(src_region_ptr);
2794     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2795     if (src_region_addr > closure.source()) {
2796       closure.set_source(src_region_addr);
2797     }
2798     return src_region_idx;
2799   }
2800 
2801   // Switch to a new source space and find the first non-empty region.
2802   unsigned int space_id = src_space_id + 1;
2803   assert(space_id < last_space_id, "not enough spaces");
2804 
2805   HeapWord* const destination = closure.destination();
2806 
2807   do {
2808     MutableSpace* space = _space_info[space_id].space();
2809     HeapWord* const bottom = space->bottom();
2810     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2811 
2812     // Iterate over the spaces that do not compact into themselves.
2813     if (bottom_cp->destination() != bottom) {
2814       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2815       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2816 
2817       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2818         if (src_cp->live_obj_size() > 0) {
2819           // Found it.
2820           assert(src_cp->destination() == destination,
2821                  "first live obj in the space must match the destination");
2822           assert(src_cp->partial_obj_size() == 0,
2823                  "a space cannot begin with a partial obj");
2824 
2825           src_space_id = SpaceId(space_id);
2826           src_space_top = space->top();
2827           const size_t src_region_idx = sd.region(src_cp);
2828           closure.set_source(sd.region_to_addr(src_region_idx));
2829           return src_region_idx;
2830         } else {
2831           assert(src_cp->data_size() == 0, "sanity");
2832         }
2833       }
2834     }
2835   } while (++space_id < last_space_id);
2836 
2837   assert(false, "no source region was found");
2838   return 0;
2839 }
2840 
2841 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2842 {
2843   typedef ParMarkBitMap::IterationStatus IterationStatus;
2844   const size_t RegionSize = ParallelCompactData::RegionSize;
2845   ParMarkBitMap* const bitmap = mark_bitmap();
2846   ParallelCompactData& sd = summary_data();
2847   RegionData* const region_ptr = sd.region(region_idx);
2848 
2849   // Get the items needed to construct the closure.
2850   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2851   SpaceId dest_space_id = space_id(dest_addr);
2852   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2853   HeapWord* new_top = _space_info[dest_space_id].new_top();
2854   assert(dest_addr < new_top, "sanity");
2855   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2856 
2857   // Get the source region and related info.
2858   size_t src_region_idx = region_ptr->source_region();
2859   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2860   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2861 
2862   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2863   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2864 
2865   // Adjust src_region_idx to prepare for decrementing destination counts (the
2866   // destination count is not decremented when a region is copied to itself).
2867   if (src_region_idx == region_idx) {
2868     src_region_idx += 1;
2869   }
2870 
2871   if (bitmap->is_unmarked(closure.source())) {
2872     // The first source word is in the middle of an object; copy the remainder
2873     // of the object or as much as will fit.  The fact that pointer updates were
2874     // deferred will be noted when the object header is processed.
2875     HeapWord* const old_src_addr = closure.source();
2876     closure.copy_partial_obj();
2877     if (closure.is_full()) {
2878       decrement_destination_counts(cm, src_space_id, src_region_idx,
2879                                    closure.source());
2880       region_ptr->set_deferred_obj_addr(NULL);
2881       region_ptr->set_completed();
2882       return;
2883     }
2884 
2885     HeapWord* const end_addr = sd.region_align_down(closure.source());
2886     if (sd.region_align_down(old_src_addr) != end_addr) {
2887       // The partial object was copied from more than one source region.
2888       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2889 
2890       // Move to the next source region, possibly switching spaces as well.  All
2891       // args except end_addr may be modified.
2892       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2893                                        end_addr);
2894     }
2895   }
2896 
2897   do {
2898     HeapWord* const cur_addr = closure.source();
2899     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2900                                     src_space_top);
2901     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2902 
2903     if (status == ParMarkBitMap::incomplete) {
2904       // The last obj that starts in the source region does not end in the
2905       // region.
2906       assert(closure.source() < end_addr, "sanity");
2907       HeapWord* const obj_beg = closure.source();
2908       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2909                                        src_space_top);
2910       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2911       if (obj_end < range_end) {
2912         // The end was found; the entire object will fit.
2913         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2914         assert(status != ParMarkBitMap::would_overflow, "sanity");
2915       } else {
2916         // The end was not found; the object will not fit.
2917         assert(range_end < src_space_top, "obj cannot cross space boundary");
2918         status = ParMarkBitMap::would_overflow;
2919       }
2920     }
2921 
2922     if (status == ParMarkBitMap::would_overflow) {
2923       // The last object did not fit.  Note that interior oop updates were
2924       // deferred, then copy enough of the object to fill the region.
2925       region_ptr->set_deferred_obj_addr(closure.destination());
2926       status = closure.copy_until_full(); // copies from closure.source()
2927 
2928       decrement_destination_counts(cm, src_space_id, src_region_idx,
2929                                    closure.source());
2930       region_ptr->set_completed();
2931       return;
2932     }
2933 
2934     if (status == ParMarkBitMap::full) {
2935       decrement_destination_counts(cm, src_space_id, src_region_idx,
2936                                    closure.source());
2937       region_ptr->set_deferred_obj_addr(NULL);
2938       region_ptr->set_completed();
2939       return;
2940     }
2941 
2942     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2943 
2944     // Move to the next source region, possibly switching spaces as well.  All
2945     // args except end_addr may be modified.
2946     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2947                                      end_addr);
2948   } while (true);
2949 }
2950 
2951 void PSParallelCompact::fill_blocks(size_t region_idx)
2952 {
2953   // Fill in the block table elements for the specified region.  Each block
2954   // table element holds the number of live words in the region that are to the
2955   // left of the first object that starts in the block.  Thus only blocks in
2956   // which an object starts need to be filled.
2957   //
2958   // The algorithm scans the section of the bitmap that corresponds to the
2959   // region, keeping a running total of the live words.  When an object start is
2960   // found, if it's the first to start in the block that contains it, the
2961   // current total is written to the block table element.
2962   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2963   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2964   const size_t RegionSize = ParallelCompactData::RegionSize;
2965 
2966   ParallelCompactData& sd = summary_data();
2967   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2968   if (partial_obj_size >= RegionSize) {
2969     return; // No objects start in this region.
2970   }
2971 
2972   // Ensure the first loop iteration decides that the block has changed.
2973   size_t cur_block = sd.block_count();
2974 
2975   const ParMarkBitMap* const bitmap = mark_bitmap();
2976 
2977   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2978   assert((size_t)1 << Log2BitsPerBlock ==
2979          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2980 
2981   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2982   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2983   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2984   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2985   while (beg_bit < range_end) {
2986     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2987     if (new_block != cur_block) {
2988       cur_block = new_block;
2989       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2990     }
2991 
2992     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2993     if (end_bit < range_end - 1) {
2994       live_bits += end_bit - beg_bit + 1;
2995       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2996     } else {
2997       return;
2998     }
2999   }
3000 }
3001 
3002 void
3003 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3004   const MutableSpace* sp = space(space_id);
3005   if (sp->is_empty()) {
3006     return;
3007   }
3008 
3009   ParallelCompactData& sd = PSParallelCompact::summary_data();
3010   ParMarkBitMap* const bitmap = mark_bitmap();
3011   HeapWord* const dp_addr = dense_prefix(space_id);
3012   HeapWord* beg_addr = sp->bottom();
3013   HeapWord* end_addr = sp->top();
3014 
3015   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3016 
3017   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3018   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3019   if (beg_region < dp_region) {
3020     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3021   }
3022 
3023   // The destination of the first live object that starts in the region is one
3024   // past the end of the partial object entering the region (if any).
3025   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3026   HeapWord* const new_top = _space_info[space_id].new_top();
3027   assert(new_top >= dest_addr, "bad new_top value");
3028   const size_t words = pointer_delta(new_top, dest_addr);
3029 
3030   if (words > 0) {
3031     ObjectStartArray* start_array = _space_info[space_id].start_array();
3032     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3033 
3034     ParMarkBitMap::IterationStatus status;
3035     status = bitmap->iterate(&closure, dest_addr, end_addr);
3036     assert(status == ParMarkBitMap::full, "iteration not complete");
3037     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3038            "live objects skipped because closure is full");
3039   }
3040 }
3041 
3042 jlong PSParallelCompact::millis_since_last_gc() {
3043   // We need a monotonically non-decreasing time in ms but
3044   // os::javaTimeMillis() does not guarantee monotonicity.
3045   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3046   jlong ret_val = now - _time_of_last_gc;
3047   // XXX See note in genCollectedHeap::millis_since_last_gc().
3048   if (ret_val < 0) {
3049     NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);)
3050     return 0;
3051   }
3052   return ret_val;
3053 }
3054 
3055 void PSParallelCompact::reset_millis_since_last_gc() {
3056   // We need a monotonically non-decreasing time in ms but
3057   // os::javaTimeMillis() does not guarantee monotonicity.
3058   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3059 }
3060 
3061 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3062 {
3063   if (source() != destination()) {
3064     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3065     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3066   }
3067   update_state(words_remaining());
3068   assert(is_full(), "sanity");
3069   return ParMarkBitMap::full;
3070 }
3071 
3072 void MoveAndUpdateClosure::copy_partial_obj()
3073 {
3074   size_t words = words_remaining();
3075 
3076   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3077   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3078   if (end_addr < range_end) {
3079     words = bitmap()->obj_size(source(), end_addr);
3080   }
3081 
3082   // This test is necessary; if omitted, the pointer updates to a partial object
3083   // that crosses the dense prefix boundary could be overwritten.
3084   if (source() != destination()) {
3085     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3086     Copy::aligned_conjoint_words(source(), destination(), words);
3087   }
3088   update_state(words);
3089 }
3090 
3091 void InstanceKlass::oop_pc_update_pointers(oop obj) {
3092   oop_oop_iterate_oop_maps<true>(obj, PSParallelCompact::adjust_pointer_closure());
3093 }
3094 
3095 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj) {
3096   InstanceKlass::oop_pc_update_pointers(obj);
3097 
3098   oop_oop_iterate_statics<true>(obj, PSParallelCompact::adjust_pointer_closure());
3099 }
3100 
3101 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj) {
3102   InstanceKlass::oop_pc_update_pointers(obj);
3103 }
3104 
3105 #ifdef ASSERT
3106 template <class T> static void trace_reference_gc(const char *s, oop obj,
3107                                                   T* referent_addr,
3108                                                   T* next_addr,
3109                                                   T* discovered_addr) {
3110   if(TraceReferenceGC && PrintGCDetails) {
3111     gclog_or_tty->print_cr("%s obj " PTR_FORMAT, s, p2i(obj));
3112     gclog_or_tty->print_cr("     referent_addr/* " PTR_FORMAT " / "
3113                            PTR_FORMAT, p2i(referent_addr),
3114                            referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3115     gclog_or_tty->print_cr("     next_addr/* " PTR_FORMAT " / "
3116                            PTR_FORMAT, p2i(next_addr),
3117                            next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3118     gclog_or_tty->print_cr("     discovered_addr/* " PTR_FORMAT " / "
3119                            PTR_FORMAT, p2i(discovered_addr),
3120                            discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3121   }
3122 }
3123 #endif
3124 
3125 template <class T>
3126 static void oop_pc_update_pointers_specialized(oop obj) {
3127   T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3128   PSParallelCompact::adjust_pointer(referent_addr);
3129   T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3130   PSParallelCompact::adjust_pointer(next_addr);
3131   T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3132   PSParallelCompact::adjust_pointer(discovered_addr);
3133   debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3134                                 referent_addr, next_addr, discovered_addr);)
3135 }
3136 
3137 void InstanceRefKlass::oop_pc_update_pointers(oop obj) {
3138   InstanceKlass::oop_pc_update_pointers(obj);
3139 
3140   if (UseCompressedOops) {
3141     oop_pc_update_pointers_specialized<narrowOop>(obj);
3142   } else {
3143     oop_pc_update_pointers_specialized<oop>(obj);
3144   }
3145 }
3146 
3147 void ObjArrayKlass::oop_pc_update_pointers(oop obj) {
3148   assert(obj->is_objArray(), "obj must be obj array");
3149   oop_oop_iterate_elements<true>(objArrayOop(obj), PSParallelCompact::adjust_pointer_closure());
3150 }
3151 
3152 void TypeArrayKlass::oop_pc_update_pointers(oop obj) {
3153   assert(obj->is_typeArray(),"must be a type array");
3154 }
3155 
3156 ParMarkBitMapClosure::IterationStatus
3157 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3158   assert(destination() != NULL, "sanity");
3159   assert(bitmap()->obj_size(addr) == words, "bad size");
3160 
3161   _source = addr;
3162   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
3163          destination(), "wrong destination");
3164 
3165   if (words > words_remaining()) {
3166     return ParMarkBitMap::would_overflow;
3167   }
3168 
3169   // The start_array must be updated even if the object is not moving.
3170   if (_start_array != NULL) {
3171     _start_array->allocate_block(destination());
3172   }
3173 
3174   if (destination() != source()) {
3175     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3176     Copy::aligned_conjoint_words(source(), destination(), words);
3177   }
3178 
3179   oop moved_oop = (oop) destination();
3180   compaction_manager()->update_contents(moved_oop);
3181   assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3182 
3183   update_state(words);
3184   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3185   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3186 }
3187 
3188 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3189                                      ParCompactionManager* cm,
3190                                      PSParallelCompact::SpaceId space_id) :
3191   ParMarkBitMapClosure(mbm, cm),
3192   _space_id(space_id),
3193   _start_array(PSParallelCompact::start_array(space_id))
3194 {
3195 }
3196 
3197 // Updates the references in the object to their new values.
3198 ParMarkBitMapClosure::IterationStatus
3199 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3200   do_addr(addr);
3201   return ParMarkBitMap::incomplete;
3202 }