1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/events.hpp"
  35 
  36 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  37 // is an abstract class: there may be many different kinds of heaps.  This
  38 // class defines the functions that a heap must implement, and contains
  39 // infrastructure common to all heaps.
  40 
  41 class AdaptiveSizePolicy;
  42 class BarrierSet;
  43 class CollectorPolicy;
  44 class GCHeapSummary;
  45 class GCTimer;
  46 class GCTracer;
  47 class MetaspaceSummary;
  48 class Thread;
  49 class ThreadClosure;
  50 class VirtualSpaceSummary;
  51 class nmethod;
  52 
  53 class GCMessage : public FormatBuffer<1024> {
  54  public:
  55   bool is_before;
  56 
  57  public:
  58   GCMessage() {}
  59 };
  60 
  61 class GCHeapLog : public EventLogBase<GCMessage> {
  62  private:
  63   void log_heap(bool before);
  64 
  65  public:
  66   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  67 
  68   void log_heap_before() {
  69     log_heap(true);
  70   }
  71   void log_heap_after() {
  72     log_heap(false);
  73   }
  74 };
  75 
  76 //
  77 // CollectedHeap
  78 //   GenCollectedHeap
  79 //   G1CollectedHeap
  80 //   ParallelScavengeHeap
  81 //
  82 class CollectedHeap : public CHeapObj<mtInternal> {
  83   friend class VMStructs;
  84   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  85 
  86  private:
  87 #ifdef ASSERT
  88   static int       _fire_out_of_memory_count;
  89 #endif
  90 
  91   GCHeapLog* _gc_heap_log;
  92 
  93   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
  94   // or INCLUDE_JVMCI is being used
  95   bool _defer_initial_card_mark;
  96 
  97   MemRegion _reserved;
  98 
  99  protected:
 100   BarrierSet* _barrier_set;
 101   bool _is_gc_active;
 102 
 103   // Used for filler objects (static, but initialized in ctor).
 104   static size_t _filler_array_max_size;
 105 
 106   unsigned int _total_collections;          // ... started
 107   unsigned int _total_full_collections;     // ... started
 108   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 109   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 110 
 111   // Reason for current garbage collection.  Should be set to
 112   // a value reflecting no collection between collections.
 113   GCCause::Cause _gc_cause;
 114   GCCause::Cause _gc_lastcause;
 115   PerfStringVariable* _perf_gc_cause;
 116   PerfStringVariable* _perf_gc_lastcause;
 117 
 118   // Constructor
 119   CollectedHeap();
 120 
 121   // Do common initializations that must follow instance construction,
 122   // for example, those needing virtual calls.
 123   // This code could perhaps be moved into initialize() but would
 124   // be slightly more awkward because we want the latter to be a
 125   // pure virtual.
 126   void pre_initialize();
 127 
 128   // Create a new tlab. All TLAB allocations must go through this.
 129   virtual HeapWord* allocate_new_tlab(size_t size);
 130 
 131   // Accumulate statistics on all tlabs.
 132   virtual void accumulate_statistics_all_tlabs();
 133 
 134   // Reinitialize tlabs before resuming mutators.
 135   virtual void resize_all_tlabs();
 136 
 137   // Allocate from the current thread's TLAB, with broken-out slow path.
 138   inline static HeapWord* allocate_from_tlab(KlassHandle klass, Thread* thread, size_t size);
 139   static HeapWord* allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size);
 140 
 141   // Allocate an uninitialized block of the given size, or returns NULL if
 142   // this is impossible.
 143   inline static HeapWord* common_mem_allocate_noinit(KlassHandle klass, size_t size, TRAPS);
 144 
 145   // Like allocate_init, but the block returned by a successful allocation
 146   // is guaranteed initialized to zeros.
 147   inline static HeapWord* common_mem_allocate_init(KlassHandle klass, size_t size, TRAPS);
 148 
 149   // Helper functions for (VM) allocation.
 150   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
 151   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
 152                                                             HeapWord* objPtr);
 153 
 154   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, int size);
 155 
 156   inline static void post_allocation_setup_array(KlassHandle klass,
 157                                                  HeapWord* obj, int length);
 158 
 159   // Clears an allocated object.
 160   inline static void init_obj(HeapWord* obj, size_t size);
 161 
 162   // Filler object utilities.
 163   static inline size_t filler_array_hdr_size();
 164   static inline size_t filler_array_min_size();
 165 
 166   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 167   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 168 
 169   // Fill with a single array; caller must ensure filler_array_min_size() <=
 170   // words <= filler_array_max_size().
 171   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 172 
 173   // Fill with a single object (either an int array or a java.lang.Object).
 174   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 175 
 176   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 177 
 178   // Verification functions
 179   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 180     PRODUCT_RETURN;
 181   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 182     PRODUCT_RETURN;
 183   debug_only(static void check_for_valid_allocation_state();)
 184 
 185  public:
 186   enum Name {
 187     GenCollectedHeap,
 188     ParallelScavengeHeap,
 189     G1CollectedHeap
 190   };
 191 
 192   static inline size_t filler_array_max_size() {
 193     return _filler_array_max_size;
 194   }
 195 
 196   virtual Name kind() const = 0;
 197 
 198   /**
 199    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 200    * and JNI_OK on success.
 201    */
 202   virtual jint initialize() = 0;
 203 
 204   // In many heaps, there will be a need to perform some initialization activities
 205   // after the Universe is fully formed, but before general heap allocation is allowed.
 206   // This is the correct place to place such initialization methods.
 207   virtual void post_initialize();
 208 
 209   // Stop any onging concurrent work and prepare for exit.
 210   virtual void stop() {}
 211 
 212   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 213   MemRegion reserved_region() const { return _reserved; }
 214   address base() const { return (address)reserved_region().start(); }
 215 
 216   virtual size_t capacity() const = 0;
 217   virtual size_t used() const = 0;
 218 
 219   // Return "true" if the part of the heap that allocates Java
 220   // objects has reached the maximal committed limit that it can
 221   // reach, without a garbage collection.
 222   virtual bool is_maximal_no_gc() const = 0;
 223 
 224   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 225   // memory that the vm could make available for storing 'normal' java objects.
 226   // This is based on the reserved address space, but should not include space
 227   // that the vm uses internally for bookkeeping or temporary storage
 228   // (e.g., in the case of the young gen, one of the survivor
 229   // spaces).
 230   virtual size_t max_capacity() const = 0;
 231 
 232   // Returns "TRUE" if "p" points into the reserved area of the heap.
 233   bool is_in_reserved(const void* p) const {
 234     return _reserved.contains(p);
 235   }
 236 
 237   bool is_in_reserved_or_null(const void* p) const {
 238     return p == NULL || is_in_reserved(p);
 239   }
 240 
 241   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 242   // This method can be expensive so avoid using it in performance critical
 243   // code.
 244   virtual bool is_in(const void* p) const = 0;
 245 
 246   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 247 
 248   // Let's define some terms: a "closed" subset of a heap is one that
 249   //
 250   // 1) contains all currently-allocated objects, and
 251   //
 252   // 2) is closed under reference: no object in the closed subset
 253   //    references one outside the closed subset.
 254   //
 255   // Membership in a heap's closed subset is useful for assertions.
 256   // Clearly, the entire heap is a closed subset, so the default
 257   // implementation is to use "is_in_reserved".  But this may not be too
 258   // liberal to perform useful checking.  Also, the "is_in" predicate
 259   // defines a closed subset, but may be too expensive, since "is_in"
 260   // verifies that its argument points to an object head.  The
 261   // "closed_subset" method allows a heap to define an intermediate
 262   // predicate, allowing more precise checking than "is_in_reserved" at
 263   // lower cost than "is_in."
 264 
 265   // One important case is a heap composed of disjoint contiguous spaces,
 266   // such as the Garbage-First collector.  Such heaps have a convenient
 267   // closed subset consisting of the allocated portions of those
 268   // contiguous spaces.
 269 
 270   // Return "TRUE" iff the given pointer points into the heap's defined
 271   // closed subset (which defaults to the entire heap).
 272   virtual bool is_in_closed_subset(const void* p) const {
 273     return is_in_reserved(p);
 274   }
 275 
 276   bool is_in_closed_subset_or_null(const void* p) const {
 277     return p == NULL || is_in_closed_subset(p);
 278   }
 279 
 280   // An object is scavengable if its location may move during a scavenge.
 281   // (A scavenge is a GC which is not a full GC.)
 282   virtual bool is_scavengable(const void *p) = 0;
 283 
 284   void set_gc_cause(GCCause::Cause v) {
 285      if (UsePerfData) {
 286        _gc_lastcause = _gc_cause;
 287        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 288        _perf_gc_cause->set_value(GCCause::to_string(v));
 289      }
 290     _gc_cause = v;
 291   }
 292   GCCause::Cause gc_cause() { return _gc_cause; }
 293 
 294   // General obj/array allocation facilities.
 295   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
 296   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
 297   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
 298 
 299   inline static void post_allocation_install_obj_klass(KlassHandle klass,
 300                                                        oop obj);
 301 
 302   // Raw memory allocation facilities
 303   // The obj and array allocate methods are covers for these methods.
 304   // mem_allocate() should never be
 305   // called to allocate TLABs, only individual objects.
 306   virtual HeapWord* mem_allocate(size_t size,
 307                                  bool* gc_overhead_limit_was_exceeded) = 0;
 308 
 309   // Utilities for turning raw memory into filler objects.
 310   //
 311   // min_fill_size() is the smallest region that can be filled.
 312   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 313   // multiple objects.  fill_with_object() is for regions known to be smaller
 314   // than the largest array of integers; it uses a single object to fill the
 315   // region and has slightly less overhead.
 316   static size_t min_fill_size() {
 317     return size_t(align_object_size(oopDesc::header_size()));
 318   }
 319 
 320   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 321 
 322   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 323   static void fill_with_object(MemRegion region, bool zap = true) {
 324     fill_with_object(region.start(), region.word_size(), zap);
 325   }
 326   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 327     fill_with_object(start, pointer_delta(end, start), zap);
 328   }
 329 
 330   // Return the address "addr" aligned by "alignment_in_bytes" if such
 331   // an address is below "end".  Return NULL otherwise.
 332   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 333                                                    HeapWord* end,
 334                                                    unsigned short alignment_in_bytes);
 335 
 336   // Some heaps may offer a contiguous region for shared non-blocking
 337   // allocation, via inlined code (by exporting the address of the top and
 338   // end fields defining the extent of the contiguous allocation region.)
 339 
 340   // This function returns "true" iff the heap supports this kind of
 341   // allocation.  (Default is "no".)
 342   virtual bool supports_inline_contig_alloc() const {
 343     return false;
 344   }
 345   // These functions return the addresses of the fields that define the
 346   // boundaries of the contiguous allocation area.  (These fields should be
 347   // physically near to one another.)
 348   virtual HeapWord** top_addr() const {
 349     guarantee(false, "inline contiguous allocation not supported");
 350     return NULL;
 351   }
 352   virtual HeapWord** end_addr() const {
 353     guarantee(false, "inline contiguous allocation not supported");
 354     return NULL;
 355   }
 356 
 357   // Some heaps may be in an unparseable state at certain times between
 358   // collections. This may be necessary for efficient implementation of
 359   // certain allocation-related activities. Calling this function before
 360   // attempting to parse a heap ensures that the heap is in a parsable
 361   // state (provided other concurrent activity does not introduce
 362   // unparsability). It is normally expected, therefore, that this
 363   // method is invoked with the world stopped.
 364   // NOTE: if you override this method, make sure you call
 365   // super::ensure_parsability so that the non-generational
 366   // part of the work gets done. See implementation of
 367   // CollectedHeap::ensure_parsability and, for instance,
 368   // that of GenCollectedHeap::ensure_parsability().
 369   // The argument "retire_tlabs" controls whether existing TLABs
 370   // are merely filled or also retired, thus preventing further
 371   // allocation from them and necessitating allocation of new TLABs.
 372   virtual void ensure_parsability(bool retire_tlabs);
 373 
 374   // Section on thread-local allocation buffers (TLABs)
 375   // If the heap supports thread-local allocation buffers, it should override
 376   // the following methods:
 377   // Returns "true" iff the heap supports thread-local allocation buffers.
 378   // The default is "no".
 379   virtual bool supports_tlab_allocation() const = 0;
 380 
 381   // The amount of space available for thread-local allocation buffers.
 382   virtual size_t tlab_capacity(Thread *thr) const = 0;
 383 
 384   // The amount of used space for thread-local allocation buffers for the given thread.
 385   virtual size_t tlab_used(Thread *thr) const = 0;
 386 
 387   virtual size_t max_tlab_size() const;
 388 
 389   // An estimate of the maximum allocation that could be performed
 390   // for thread-local allocation buffers without triggering any
 391   // collection or expansion activity.
 392   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 393     guarantee(false, "thread-local allocation buffers not supported");
 394     return 0;
 395   }
 396 
 397   // Can a compiler initialize a new object without store barriers?
 398   // This permission only extends from the creation of a new object
 399   // via a TLAB up to the first subsequent safepoint. If such permission
 400   // is granted for this heap type, the compiler promises to call
 401   // defer_store_barrier() below on any slow path allocation of
 402   // a new object for which such initializing store barriers will
 403   // have been elided.
 404   virtual bool can_elide_tlab_store_barriers() const = 0;
 405 
 406   // If a compiler is eliding store barriers for TLAB-allocated objects,
 407   // there is probably a corresponding slow path which can produce
 408   // an object allocated anywhere.  The compiler's runtime support
 409   // promises to call this function on such a slow-path-allocated
 410   // object before performing initializations that have elided
 411   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 412   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 413 
 414   // Answers whether an initializing store to a new object currently
 415   // allocated at the given address doesn't need a store
 416   // barrier. Returns "true" if it doesn't need an initializing
 417   // store barrier; answers "false" if it does.
 418   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 419 
 420   // If a compiler is eliding store barriers for TLAB-allocated objects,
 421   // we will be informed of a slow-path allocation by a call
 422   // to new_store_pre_barrier() above. Such a call precedes the
 423   // initialization of the object itself, and no post-store-barriers will
 424   // be issued. Some heap types require that the barrier strictly follows
 425   // the initializing stores. (This is currently implemented by deferring the
 426   // barrier until the next slow-path allocation or gc-related safepoint.)
 427   // This interface answers whether a particular heap type needs the card
 428   // mark to be thus strictly sequenced after the stores.
 429   virtual bool card_mark_must_follow_store() const = 0;
 430 
 431   // If the CollectedHeap was asked to defer a store barrier above,
 432   // this informs it to flush such a deferred store barrier to the
 433   // remembered set.
 434   virtual void flush_deferred_store_barrier(JavaThread* thread);
 435 
 436   // Perform a collection of the heap; intended for use in implementing
 437   // "System.gc".  This probably implies as full a collection as the
 438   // "CollectedHeap" supports.
 439   virtual void collect(GCCause::Cause cause) = 0;
 440 
 441   // Perform a full collection
 442   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 443 
 444   // This interface assumes that it's being called by the
 445   // vm thread. It collects the heap assuming that the
 446   // heap lock is already held and that we are executing in
 447   // the context of the vm thread.
 448   virtual void collect_as_vm_thread(GCCause::Cause cause);
 449 
 450   // Returns the barrier set for this heap
 451   BarrierSet* barrier_set() { return _barrier_set; }
 452   void set_barrier_set(BarrierSet* barrier_set);
 453 
 454   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 455   // that it should answer "false" for the concurrent part of a concurrent
 456   // collector -- dld).
 457   bool is_gc_active() const { return _is_gc_active; }
 458 
 459   // Total number of GC collections (started)
 460   unsigned int total_collections() const { return _total_collections; }
 461   unsigned int total_full_collections() const { return _total_full_collections;}
 462 
 463   // Increment total number of GC collections (started)
 464   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 465   void increment_total_collections(bool full = false) {
 466     _total_collections++;
 467     if (full) {
 468       increment_total_full_collections();
 469     }
 470   }
 471 
 472   void increment_total_full_collections() { _total_full_collections++; }
 473 
 474   // Return the AdaptiveSizePolicy for the heap.
 475   virtual AdaptiveSizePolicy* size_policy() = 0;
 476 
 477   // Return the CollectorPolicy for the heap
 478   virtual CollectorPolicy* collector_policy() const = 0;
 479 
 480   // Iterate over all objects, calling "cl.do_object" on each.
 481   virtual void object_iterate(ObjectClosure* cl) = 0;
 482 
 483   // Similar to object_iterate() except iterates only
 484   // over live objects.
 485   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 486 
 487   // NOTE! There is no requirement that a collector implement these
 488   // functions.
 489   //
 490   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 491   // each address in the (reserved) heap is a member of exactly
 492   // one block.  The defining characteristic of a block is that it is
 493   // possible to find its size, and thus to progress forward to the next
 494   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 495   // represent Java objects, or they might be free blocks in a
 496   // free-list-based heap (or subheap), as long as the two kinds are
 497   // distinguishable and the size of each is determinable.
 498 
 499   // Returns the address of the start of the "block" that contains the
 500   // address "addr".  We say "blocks" instead of "object" since some heaps
 501   // may not pack objects densely; a chunk may either be an object or a
 502   // non-object.
 503   virtual HeapWord* block_start(const void* addr) const = 0;
 504 
 505   // Requires "addr" to be the start of a chunk, and returns its size.
 506   // "addr + size" is required to be the start of a new chunk, or the end
 507   // of the active area of the heap.
 508   virtual size_t block_size(const HeapWord* addr) const = 0;
 509 
 510   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 511   // the block is an object.
 512   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 513 
 514   // Returns the longest time (in ms) that has elapsed since the last
 515   // time that any part of the heap was examined by a garbage collection.
 516   virtual jlong millis_since_last_gc() = 0;
 517 
 518   // Perform any cleanup actions necessary before allowing a verification.
 519   virtual void prepare_for_verify() = 0;
 520 
 521   // Generate any dumps preceding or following a full gc
 522   void pre_full_gc_dump(GCTimer* timer);
 523   void post_full_gc_dump(GCTimer* timer);
 524 
 525   VirtualSpaceSummary create_heap_space_summary();
 526   GCHeapSummary create_heap_summary();
 527 
 528   MetaspaceSummary create_metaspace_summary();
 529 
 530   // Print heap information on the given outputStream.
 531   virtual void print_on(outputStream* st) const = 0;
 532   // The default behavior is to call print_on() on tty.
 533   virtual void print() const {
 534     print_on(tty);
 535   }
 536   // Print more detailed heap information on the given
 537   // outputStream. The default behavior is to call print_on(). It is
 538   // up to each subclass to override it and add any additional output
 539   // it needs.
 540   virtual void print_extended_on(outputStream* st) const {
 541     print_on(st);
 542   }
 543 
 544   virtual void print_on_error(outputStream* st) const;
 545 
 546   // Print all GC threads (other than the VM thread)
 547   // used by this heap.
 548   virtual void print_gc_threads_on(outputStream* st) const = 0;
 549   // The default behavior is to call print_gc_threads_on() on tty.
 550   void print_gc_threads() {
 551     print_gc_threads_on(tty);
 552   }
 553   // Iterator for all GC threads (other than VM thread)
 554   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 555 
 556   // Print any relevant tracing info that flags imply.
 557   // Default implementation does nothing.
 558   virtual void print_tracing_info() const = 0;
 559 
 560   void print_heap_before_gc();
 561   void print_heap_after_gc();
 562 
 563   // Registering and unregistering an nmethod (compiled code) with the heap.
 564   // Override with specific mechanism for each specialized heap type.
 565   virtual void register_nmethod(nmethod* nm);
 566   virtual void unregister_nmethod(nmethod* nm);
 567 
 568   void trace_heap_before_gc(const GCTracer* gc_tracer);
 569   void trace_heap_after_gc(const GCTracer* gc_tracer);
 570 
 571   // Heap verification
 572   virtual void verify(bool silent, VerifyOption option) = 0;
 573 
 574   // Non product verification and debugging.
 575 #ifndef PRODUCT
 576   // Support for PromotionFailureALot.  Return true if it's time to cause a
 577   // promotion failure.  The no-argument version uses
 578   // this->_promotion_failure_alot_count as the counter.
 579   inline bool promotion_should_fail(volatile size_t* count);
 580   inline bool promotion_should_fail();
 581 
 582   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 583   // GC in which promotion failure occurred.
 584   inline void reset_promotion_should_fail(volatile size_t* count);
 585   inline void reset_promotion_should_fail();
 586 #endif  // #ifndef PRODUCT
 587 
 588 #ifdef ASSERT
 589   static int fired_fake_oom() {
 590     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 591   }
 592 #endif
 593 
 594  public:
 595   // Copy the current allocation context statistics for the specified contexts.
 596   // For each context in contexts, set the corresponding entries in the totals
 597   // and accuracy arrays to the current values held by the statistics.  Each
 598   // array should be of length len.
 599   // Returns true if there are more stats available.
 600   virtual bool copy_allocation_context_stats(const jint* contexts,
 601                                              jlong* totals,
 602                                              jbyte* accuracy,
 603                                              jint len) {
 604     return false;
 605   }
 606 
 607   /////////////// Unit tests ///////////////
 608 
 609   NOT_PRODUCT(static void test_is_in();)
 610 };
 611 
 612 // Class to set and reset the GC cause for a CollectedHeap.
 613 
 614 class GCCauseSetter : StackObj {
 615   CollectedHeap* _heap;
 616   GCCause::Cause _previous_cause;
 617  public:
 618   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 619     assert(SafepointSynchronize::is_at_safepoint(),
 620            "This method manipulates heap state without locking");
 621     _heap = heap;
 622     _previous_cause = _heap->gc_cause();
 623     _heap->set_gc_cause(cause);
 624   }
 625 
 626   ~GCCauseSetter() {
 627     assert(SafepointSynchronize::is_at_safepoint(),
 628           "This method manipulates heap state without locking");
 629     _heap->set_gc_cause(_previous_cause);
 630   }
 631 };
 632 
 633 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP