/* * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/parallel/adjoiningGenerations.hpp" #include "gc/parallel/adjoiningVirtualSpaces.hpp" #include "gc/parallel/generationSizer.hpp" #include "gc/parallel/parallelScavengeHeap.hpp" #include "logging/log.hpp" #include "memory/resourceArea.hpp" #include "utilities/ostream.hpp" // If boundary moving is being used, create the young gen and old // gen with ASPSYoungGen and ASPSOldGen, respectively. Revert to // the old behavior otherwise (with PSYoungGen and PSOldGen). AdjoiningGenerations::AdjoiningGenerations(ReservedSpace old_young_rs, GenerationSizer* policy, size_t alignment) : _virtual_spaces(old_young_rs, policy->min_old_size(), policy->min_young_size(), alignment) { size_t init_low_byte_size = policy->initial_old_size(); size_t min_low_byte_size = policy->min_old_size(); size_t max_low_byte_size = policy->max_old_size(); size_t init_high_byte_size = policy->initial_young_size(); size_t min_high_byte_size = policy->min_young_size(); size_t max_high_byte_size = policy->max_young_size(); assert(min_low_byte_size <= init_low_byte_size && init_low_byte_size <= max_low_byte_size, "Parameter check"); assert(min_high_byte_size <= init_high_byte_size && init_high_byte_size <= max_high_byte_size, "Parameter check"); // Create the generations differently based on the option to // move the boundary. if (UseAdaptiveGCBoundary) { // Initialize the adjoining virtual spaces. Then pass the // a virtual to each generation for initialization of the // generation. // Does the actual creation of the virtual spaces _virtual_spaces.initialize(max_low_byte_size, init_low_byte_size, init_high_byte_size); // Place the young gen at the high end. Passes in the virtual space. _young_gen = new ASPSYoungGen(_virtual_spaces.high(), _virtual_spaces.high()->committed_size(), min_high_byte_size, _virtual_spaces.high_byte_size_limit()); // Place the old gen at the low end. Passes in the virtual space. _old_gen = new ASPSOldGen(_virtual_spaces.low(), _virtual_spaces.low()->committed_size(), min_low_byte_size, _virtual_spaces.low_byte_size_limit(), "old", 1); young_gen()->initialize_work(); assert(young_gen()->reserved().byte_size() <= young_gen()->gen_size_limit(), "Consistency check"); assert(old_young_rs.size() >= young_gen()->gen_size_limit(), "Consistency check"); old_gen()->initialize_work("old", 1); assert(old_gen()->reserved().byte_size() <= old_gen()->gen_size_limit(), "Consistency check"); assert(old_young_rs.size() >= old_gen()->gen_size_limit(), "Consistency check"); } else { // Layout the reserved space for the generations. ReservedSpace old_rs = virtual_spaces()->reserved_space().first_part(max_low_byte_size); ReservedSpace heap_rs = virtual_spaces()->reserved_space().last_part(max_low_byte_size); ReservedSpace young_rs = heap_rs.first_part(max_high_byte_size); assert(young_rs.size() == heap_rs.size(), "Didn't reserve all of the heap"); // Create the generations. Virtual spaces are not passed in. _young_gen = new PSYoungGen(init_high_byte_size, min_high_byte_size, max_high_byte_size); _old_gen = new PSOldGen(init_low_byte_size, min_low_byte_size, max_low_byte_size, "old", 1); // The virtual spaces are created by the initialization of the gens. _young_gen->initialize(young_rs, alignment); assert(young_gen()->gen_size_limit() == young_rs.size(), "Consistency check"); _old_gen->initialize(old_rs, alignment, "old", 1); assert(old_gen()->gen_size_limit() == old_rs.size(), "Consistency check"); } } size_t AdjoiningGenerations::reserved_byte_size() { return virtual_spaces()->reserved_space().size(); } void log_before_expansion(bool old, size_t expand_in_bytes, size_t change_in_bytes, size_t max_size) { LogHandle(heap, ergo) log; if (!log.is_debug()) { return; } log.debug("Before expansion of %s gen with boundary move", old ? "old" : "young"); log.debug(" Requested change: " SIZE_FORMAT_HEX " Attempted change: " SIZE_FORMAT_HEX, expand_in_bytes, change_in_bytes); ResourceMark rm; ParallelScavengeHeap::heap()->print_on(log.debug_stream()); log.debug(" PS%sGen max size: " SIZE_FORMAT "K", old ? "Old" : "Young", max_size/K); } void log_after_expansion(bool old, size_t max_size) { LogHandle(heap, ergo) log; if (!log.is_debug()) { return; } log.debug("After expansion of %s gen with boundary move", old ? "old" : "young"); ResourceMark rm; ParallelScavengeHeap::heap()->print_on(log.debug_stream()); log.debug(" PS%sGen max size: " SIZE_FORMAT "K", old ? "Old" : "Young", max_size/K); } // Make checks on the current sizes of the generations and // the constraints on the sizes of the generations. Push // up the boundary within the constraints. A partial // push can occur. void AdjoiningGenerations::request_old_gen_expansion(size_t expand_in_bytes) { assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check"); assert_lock_strong(ExpandHeap_lock); assert_locked_or_safepoint(Heap_lock); // These sizes limit the amount the boundaries can move. Effectively, // the generation says how much it is willing to yield to the other // generation. const size_t young_gen_available = young_gen()->available_for_contraction(); const size_t old_gen_available = old_gen()->available_for_expansion(); const size_t alignment = virtual_spaces()->alignment(); size_t change_in_bytes = MIN3(young_gen_available, old_gen_available, align_size_up_(expand_in_bytes, alignment)); if (change_in_bytes == 0) { return; } log_before_expansion(true /* old */, expand_in_bytes, change_in_bytes, old_gen()->max_gen_size()); // Move the boundary between the generations up (smaller young gen). if (virtual_spaces()->adjust_boundary_up(change_in_bytes)) { young_gen()->reset_after_change(); old_gen()->reset_after_change(); } // The total reserved for the generations should match the sum // of the two even if the boundary is moving. assert(reserved_byte_size() == old_gen()->max_gen_size() + young_gen()->max_size(), "Space is missing"); young_gen()->space_invariants(); old_gen()->space_invariants(); log_after_expansion(true /* old */, old_gen()->max_gen_size()); } // See comments on request_old_gen_expansion() bool AdjoiningGenerations::request_young_gen_expansion(size_t expand_in_bytes) { assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check"); // If eden is not empty, the boundary can be moved but no advantage // can be made of the move since eden cannot be moved. if (!young_gen()->eden_space()->is_empty()) { return false; } bool result = false; const size_t young_gen_available = young_gen()->available_for_expansion(); const size_t old_gen_available = old_gen()->available_for_contraction(); const size_t alignment = virtual_spaces()->alignment(); size_t change_in_bytes = MIN3(young_gen_available, old_gen_available, align_size_up_(expand_in_bytes, alignment)); if (change_in_bytes == 0) { return false; } log_before_expansion(false /* old */, expand_in_bytes, change_in_bytes, young_gen()->max_size()); // Move the boundary between the generations down (smaller old gen). MutexLocker x(ExpandHeap_lock); if (virtual_spaces()->adjust_boundary_down(change_in_bytes)) { young_gen()->reset_after_change(); old_gen()->reset_after_change(); result = true; } // The total reserved for the generations should match the sum // of the two even if the boundary is moving. assert(reserved_byte_size() == old_gen()->max_gen_size() + young_gen()->max_size(), "Space is missing"); young_gen()->space_invariants(); old_gen()->space_invariants(); log_after_expansion(false /* old */, young_gen()->max_size()); return result; } // Additional space is needed in the old generation. Try to move the boundary // up to meet the need. Moves boundary up only void AdjoiningGenerations::adjust_boundary_for_old_gen_needs( size_t desired_free_space) { assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check"); // Stress testing. if (PSAdaptiveSizePolicyResizeVirtualSpaceAlot == 1) { MutexLocker x(ExpandHeap_lock); request_old_gen_expansion(virtual_spaces()->alignment() * 3 / 2); } // Expand only if the entire generation is already committed. if (old_gen()->virtual_space()->uncommitted_size() == 0) { if (old_gen()->free_in_bytes() < desired_free_space) { MutexLocker x(ExpandHeap_lock); request_old_gen_expansion(desired_free_space); } } } // See comment on adjust_boundary_for_old_gen_needss(). // Adjust boundary down only. void AdjoiningGenerations::adjust_boundary_for_young_gen_needs(size_t eden_size, size_t survivor_size) { assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check"); // Stress testing. if (PSAdaptiveSizePolicyResizeVirtualSpaceAlot == 0) { request_young_gen_expansion(virtual_spaces()->alignment() * 3 / 2); eden_size = young_gen()->eden_space()->capacity_in_bytes(); } // Expand only if the entire generation is already committed. if (young_gen()->virtual_space()->uncommitted_size() == 0) { size_t desired_size = eden_size + 2 * survivor_size; const size_t committed = young_gen()->virtual_space()->committed_size(); if (desired_size > committed) { request_young_gen_expansion(desired_size - committed); } } }