< prev index next >

src/share/vm/gc/g1/g1CollectorPolicy.cpp

Print this page




  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1ErgoVerbose.hpp"
  32 #include "gc/g1/g1GCPhaseTimes.hpp"
  33 #include "gc/g1/g1Log.hpp"
  34 #include "gc/g1/heapRegion.inline.hpp"
  35 #include "gc/g1/heapRegionRemSet.hpp"
  36 #include "gc/shared/gcPolicyCounters.hpp"

  37 #include "runtime/arguments.hpp"
  38 #include "runtime/java.hpp"
  39 #include "runtime/mutexLocker.hpp"
  40 #include "utilities/debug.hpp"
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double young_cards_per_entry_ratio_defaults[] = {


 102   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _non_young_other_cost_per_region_ms_seq(
 106                                          new TruncatedSeq(TruncatedSeqLength)),
 107 
 108   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 109   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 110 
 111   _pause_time_target_ms((double) MaxGCPauseMillis),
 112 
 113   _recent_prev_end_times_for_all_gcs_sec(
 114                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 115 
 116   _recent_avg_pause_time_ratio(0.0),
 117   _rs_lengths_prediction(0),
 118   _max_survivor_regions(0),
 119 
 120   _eden_used_bytes_before_gc(0),
 121   _survivor_used_bytes_before_gc(0),

 122   _heap_used_bytes_before_gc(0),
 123   _metaspace_used_bytes_before_gc(0),
 124   _eden_capacity_bytes_before_gc(0),
 125   _heap_capacity_bytes_before_gc(0),
 126 
 127   _eden_cset_region_length(0),
 128   _survivor_cset_region_length(0),
 129   _old_cset_region_length(0),
 130 
 131   _collection_set(NULL),
 132   _collection_set_bytes_used_before(0),
 133 
 134   // Incremental CSet attributes
 135   _inc_cset_build_state(Inactive),
 136   _inc_cset_head(NULL),
 137   _inc_cset_tail(NULL),
 138   _inc_cset_bytes_used_before(0),
 139   _inc_cset_max_finger(NULL),
 140   _inc_cset_recorded_rs_lengths(0),
 141   _inc_cset_recorded_rs_lengths_diffs(0),


 154   // indirectly use it through this object passed to their constructor.
 155   _short_lived_surv_rate_group =
 156     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 157   _survivor_surv_rate_group =
 158     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 159 
 160   // Set up the region size and associated fields. Given that the
 161   // policy is created before the heap, we have to set this up here,
 162   // so it's done as soon as possible.
 163 
 164   // It would have been natural to pass initial_heap_byte_size() and
 165   // max_heap_byte_size() to setup_heap_region_size() but those have
 166   // not been set up at this point since they should be aligned with
 167   // the region size. So, there is a circular dependency here. We base
 168   // the region size on the heap size, but the heap size should be
 169   // aligned with the region size. To get around this we use the
 170   // unaligned values for the heap.
 171   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 172   HeapRegionRemSet::setup_remset_size();
 173 
 174   G1ErgoVerbose::initialize();
 175   if (PrintAdaptiveSizePolicy) {
 176     // Currently, we only use a single switch for all the heuristics.
 177     G1ErgoVerbose::set_enabled(true);
 178     // Given that we don't currently have a verboseness level
 179     // parameter, we'll hardcode this to high. This can be easily
 180     // changed in the future.
 181     G1ErgoVerbose::set_level(ErgoHigh);
 182   } else {
 183     G1ErgoVerbose::set_enabled(false);
 184   }
 185 
 186   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 187   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 188 
 189   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 190 
 191   int index = MIN2(_parallel_gc_threads - 1, 7);
 192 
 193   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 194   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 195   _cost_scan_hcc_seq->add(0.0);
 196   _young_cards_per_entry_ratio_seq->add(
 197                                   young_cards_per_entry_ratio_defaults[index]);
 198   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 199   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 200   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 201   _young_other_cost_per_region_ms_seq->add(
 202                                young_other_cost_per_region_ms_defaults[index]);
 203   _non_young_other_cost_per_region_ms_seq->add(
 204                            non_young_other_cost_per_region_ms_defaults[index]);
 205 


 756   HeapRegion* head = _g1->young_list()->first_region();
 757   return
 758     verify_young_ages(head, _short_lived_surv_rate_group);
 759   // also call verify_young_ages on any additional surv rate groups
 760 }
 761 
 762 bool
 763 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 764                                      SurvRateGroup *surv_rate_group) {
 765   guarantee( surv_rate_group != NULL, "pre-condition" );
 766 
 767   const char* name = surv_rate_group->name();
 768   bool ret = true;
 769   int prev_age = -1;
 770 
 771   for (HeapRegion* curr = head;
 772        curr != NULL;
 773        curr = curr->get_next_young_region()) {
 774     SurvRateGroup* group = curr->surv_rate_group();
 775     if (group == NULL && !curr->is_survivor()) {
 776       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 777       ret = false;
 778     }
 779 
 780     if (surv_rate_group == group) {
 781       int age = curr->age_in_surv_rate_group();
 782 
 783       if (age < 0) {
 784         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 785         ret = false;
 786       }
 787 
 788       if (age <= prev_age) {
 789         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 790                                "(%d, %d)", name, age, prev_age);
 791         ret = false;
 792       }
 793       prev_age = age;
 794     }
 795   }
 796 
 797   return ret;
 798 }
 799 #endif // PRODUCT
 800 
 801 void G1CollectorPolicy::record_full_collection_start() {
 802   _full_collection_start_sec = os::elapsedTime();
 803   record_heap_size_info_at_start(true /* full */);
 804   // Release the future to-space so that it is available for compaction into.
 805   collector_state()->set_full_collection(true);
 806 }
 807 
 808 void G1CollectorPolicy::record_full_collection_end() {
 809   // Consider this like a collection pause for the purposes of allocation
 810   // since last pause.


 942 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 943   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 944 }
 945 
 946 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 947   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 948 }
 949 
 950 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 951   if (about_to_start_mixed_phase()) {
 952     return false;
 953   }
 954 
 955   size_t marking_initiating_used_threshold =
 956     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 957   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 958   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 959 
 960   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 961     if (collector_state()->gcs_are_young() && !collector_state()->last_young_gc()) {
 962       ergo_verbose5(ErgoConcCycles,
 963         "request concurrent cycle initiation",
 964         ergo_format_reason("occupancy higher than threshold")
 965         ergo_format_byte("occupancy")
 966         ergo_format_byte("allocation request")
 967         ergo_format_byte_perc("threshold")
 968         ergo_format_str("source"),
 969         cur_used_bytes,
 970         alloc_byte_size,
 971         marking_initiating_used_threshold,
 972         (double) InitiatingHeapOccupancyPercent,
 973         source);
 974       return true;
 975     } else {
 976       ergo_verbose5(ErgoConcCycles,
 977         "do not request concurrent cycle initiation",
 978         ergo_format_reason("still doing mixed collections")
 979         ergo_format_byte("occupancy")
 980         ergo_format_byte("allocation request")
 981         ergo_format_byte_perc("threshold")
 982         ergo_format_str("source"),
 983         cur_used_bytes,
 984         alloc_byte_size,
 985         marking_initiating_used_threshold,
 986         (double) InitiatingHeapOccupancyPercent,
 987         source);
 988     }
 989   }
 990 
 991   return false;
 992 }
 993 
 994 // Anything below that is considered to be zero
 995 #define MIN_TIMER_GRANULARITY 0.0000001
 996 
 997 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned) {
 998   double end_time_sec = os::elapsedTime();
 999   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
1000          "otherwise, the subtraction below does not make sense");
1001   size_t rs_size =
1002             _cur_collection_pause_used_regions_at_start - cset_region_length();
1003   size_t cur_used_bytes = _g1->used();
1004   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1005   bool last_pause_included_initial_mark = false;
1006   bool update_stats = !_g1->evacuation_failed();
1007 
1008 #ifndef PRODUCT
1009   if (G1YoungSurvRateVerbose) {
1010     gclog_or_tty->cr();
1011     _short_lived_surv_rate_group->print();
1012     // do that for any other surv rate groups too
1013   }
1014 #endif // PRODUCT
1015 
1016   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
1017   if (last_pause_included_initial_mark) {
1018     record_concurrent_mark_init_end(0.0);
1019   } else {
1020     maybe_start_marking();
1021   }
1022 
1023   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0, end_time_sec);
1024 
1025   if (update_stats) {
1026     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
1027     // this is where we update the allocation rate of the application
1028     double app_time_ms =
1029       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
1030     if (app_time_ms < MIN_TIMER_GRANULARITY) {
1031       // This usually happens due to the timer not having the required
1032       // granularity. Some Linuxes are the usual culprits.
1033       // We'll just set it to something (arbitrarily) small.
1034       app_time_ms = 1.0;


1169     }
1170 
1171     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1172 
1173     _pending_cards_seq->add((double) _pending_cards);
1174     _rs_lengths_seq->add((double) _max_rs_lengths);
1175   }
1176 
1177   collector_state()->set_in_marking_window(new_in_marking_window);
1178   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1179   _free_regions_at_end_of_collection = _g1->num_free_regions();
1180   update_young_list_max_and_target_length();
1181   update_rs_lengths_prediction();
1182 
1183   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1184   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1185 
1186   double scan_hcc_time_ms = average_time_ms(G1GCPhaseTimes::ScanHCC);
1187 
1188   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1189     ergo_verbose2(ErgoTiming,
1190                   "adjust concurrent refinement thresholds",
1191                   ergo_format_reason("Scanning the HCC expected to take longer than Update RS time goal")
1192                   ergo_format_ms("Update RS time goal")
1193                   ergo_format_ms("Scan HCC time"),
1194                   update_rs_time_goal_ms,
1195                   scan_hcc_time_ms);
1196 
1197     update_rs_time_goal_ms = 0;
1198   } else {
1199     update_rs_time_goal_ms -= scan_hcc_time_ms;
1200   }
1201   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1202                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1203                                update_rs_time_goal_ms);
1204 
1205   _collectionSetChooser->verify();
1206 }
1207 
1208 #define EXT_SIZE_FORMAT "%.1f%s"
1209 #define EXT_SIZE_PARAMS(bytes)                                  \
1210   byte_size_in_proper_unit((double)(bytes)),                    \
1211   proper_unit_for_byte_size((bytes))
1212 
1213 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1214   YoungList* young_list = _g1->young_list();
1215   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1216   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1217   _heap_capacity_bytes_before_gc = _g1->capacity();
1218   _heap_used_bytes_before_gc = _g1->used();

1219   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1220 
1221   _eden_capacity_bytes_before_gc =
1222          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1223 
1224   if (full) {
1225     _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1226   }
1227 }
1228 
1229 void G1CollectorPolicy::print_heap_transition(size_t bytes_before) const {
1230   size_t bytes_after = _g1->used();
1231   size_t capacity = _g1->capacity();
1232 
1233   gclog_or_tty->print(" " SIZE_FORMAT "%s->" SIZE_FORMAT "%s(" SIZE_FORMAT "%s)",
1234       byte_size_in_proper_unit(bytes_before),
1235       proper_unit_for_byte_size(bytes_before),
1236       byte_size_in_proper_unit(bytes_after),
1237       proper_unit_for_byte_size(bytes_after),
1238       byte_size_in_proper_unit(capacity),
1239       proper_unit_for_byte_size(capacity));
1240 }
1241 
1242 void G1CollectorPolicy::print_heap_transition() const {
1243   print_heap_transition(_heap_used_bytes_before_gc);
1244 }
1245 
1246 void G1CollectorPolicy::print_detailed_heap_transition(bool full) const {
1247   YoungList* young_list = _g1->young_list();
1248 
1249   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1250   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1251   size_t heap_used_bytes_after_gc = _g1->used();
1252 
1253   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1254   size_t eden_capacity_bytes_after_gc =
1255     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;

1256 
1257   gclog_or_tty->print(
1258     "   [Eden: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->" EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ") "
1259     "Survivors: " EXT_SIZE_FORMAT "->" EXT_SIZE_FORMAT " "
1260     "Heap: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->"
1261     EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")]",
1262     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1263     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1264     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1265     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1266     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1267     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1268     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1269     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1270     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1271     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1272 
1273   if (full) {
1274     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1275   }
1276 
1277   gclog_or_tty->cr();



1278 }
1279 
1280 void G1CollectorPolicy::print_phases(double pause_time_sec) {
1281   phase_times()->print(pause_time_sec);
1282 }
1283 
1284 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1285                                                      double update_rs_processed_buffers,
1286                                                      double goal_ms) {
1287   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1288   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1289 
1290   if (G1UseAdaptiveConcRefinement) {
1291     const int k_gy = 3, k_gr = 6;
1292     const double inc_k = 1.1, dec_k = 0.9;
1293 
1294     int g = cg1r->green_zone();
1295     if (update_rs_time > goal_ms) {
1296       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1297     } else {


1512 
1513 size_t G1CollectorPolicy::expansion_amount() const {
1514   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1515   double threshold = _gc_overhead_perc;
1516   if (recent_gc_overhead > threshold) {
1517     // We will double the existing space, or take
1518     // G1ExpandByPercentOfAvailable % of the available expansion
1519     // space, whichever is smaller, bounded below by a minimum
1520     // expansion (unless that's all that's left.)
1521     const size_t min_expand_bytes = 1*M;
1522     size_t reserved_bytes = _g1->max_capacity();
1523     size_t committed_bytes = _g1->capacity();
1524     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1525     size_t expand_bytes;
1526     size_t expand_bytes_via_pct =
1527       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1528     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1529     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1530     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1531 
1532     ergo_verbose5(ErgoHeapSizing,
1533                   "attempt heap expansion",
1534                   ergo_format_reason("recent GC overhead higher than "
1535                                      "threshold after GC")
1536                   ergo_format_perc("recent GC overhead")
1537                   ergo_format_perc("threshold")
1538                   ergo_format_byte("uncommitted")
1539                   ergo_format_byte_perc("calculated expansion amount"),
1540                   recent_gc_overhead, threshold,
1541                   uncommitted_bytes,
1542                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1543 
1544     return expand_bytes;
1545   } else {
1546     return 0;
1547   }
1548 }
1549 
1550 void G1CollectorPolicy::print_tracing_info() const {
1551   _trace_young_gen_time_data.print();
1552   _trace_old_gen_time_data.print();
1553 }
1554 
1555 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1556 #ifndef PRODUCT
1557   _short_lived_surv_rate_group->print_surv_rate_summary();
1558   // add this call for any other surv rate groups
1559 #endif // PRODUCT
1560 }
1561 
1562 bool G1CollectorPolicy::is_young_list_full() const {


1587 }
1588 
1589 // Calculates survivor space parameters.
1590 void G1CollectorPolicy::update_survivors_policy() {
1591   double max_survivor_regions_d =
1592                  (double) _young_list_target_length / (double) SurvivorRatio;
1593   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1594   // smaller than 1.0) we'll get 1.
1595   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1596 
1597   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1598         HeapRegion::GrainWords * _max_survivor_regions, counters());
1599 }
1600 
1601 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1602   // We actually check whether we are marking here and not if we are in a
1603   // reclamation phase. This means that we will schedule a concurrent mark
1604   // even while we are still in the process of reclaiming memory.
1605   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1606   if (!during_cycle) {
1607     ergo_verbose1(ErgoConcCycles,
1608                   "request concurrent cycle initiation",
1609                   ergo_format_reason("requested by GC cause")
1610                   ergo_format_str("GC cause"),
1611                   GCCause::to_string(gc_cause));
1612     collector_state()->set_initiate_conc_mark_if_possible(true);
1613     return true;
1614   } else {
1615     ergo_verbose1(ErgoConcCycles,
1616                   "do not request concurrent cycle initiation",
1617                   ergo_format_reason("concurrent cycle already in progress")
1618                   ergo_format_str("GC cause"),
1619                   GCCause::to_string(gc_cause));
1620     return false;
1621   }
1622 }
1623 
1624 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1625   // We are about to decide on whether this pause will be an
1626   // initial-mark pause.
1627 
1628   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1629   // will set it here if we have to. However, it should be cleared by
1630   // the end of the pause (it's only set for the duration of an
1631   // initial-mark pause).
1632   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1633 
1634   if (collector_state()->initiate_conc_mark_if_possible()) {
1635     // We had noticed on a previous pause that the heap occupancy has
1636     // gone over the initiating threshold and we should start a
1637     // concurrent marking cycle. So we might initiate one.
1638 
1639     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1640       // Initiate a new initial mark only if there is no marking or reclamation going
1641       // on.
1642 
1643       collector_state()->set_during_initial_mark_pause(true);
1644       // And we can now clear initiate_conc_mark_if_possible() as
1645       // we've already acted on it.
1646       collector_state()->set_initiate_conc_mark_if_possible(false);
1647 
1648       ergo_verbose0(ErgoConcCycles,
1649                   "initiate concurrent cycle",
1650                   ergo_format_reason("concurrent cycle initiation requested"));
1651     } else {
1652       // The concurrent marking thread is still finishing up the
1653       // previous cycle. If we start one right now the two cycles
1654       // overlap. In particular, the concurrent marking thread might
1655       // be in the process of clearing the next marking bitmap (which
1656       // we will use for the next cycle if we start one). Starting a
1657       // cycle now will be bad given that parts of the marking
1658       // information might get cleared by the marking thread. And we
1659       // cannot wait for the marking thread to finish the cycle as it
1660       // periodically yields while clearing the next marking bitmap
1661       // and, if it's in a yield point, it's waiting for us to
1662       // finish. So, at this point we will not start a cycle and we'll
1663       // let the concurrent marking thread complete the last one.
1664       ergo_verbose0(ErgoConcCycles,
1665                     "do not initiate concurrent cycle",
1666                     ergo_format_reason("concurrent cycle already in progress"));
1667     }
1668   }
1669 }
1670 
1671 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1672   G1CollectedHeap* _g1h;
1673   CSetChooserParUpdater _cset_updater;
1674 
1675 public:
1676   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1677                            uint chunk_size) :
1678     _g1h(G1CollectedHeap::heap()),
1679     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1680 
1681   bool doHeapRegion(HeapRegion* r) {
1682     // Do we have any marking information for this region?
1683     if (r->is_marked()) {
1684       // We will skip any region that's currently used as an old GC
1685       // alloc region (we should not consider those for collection
1686       // before we fill them up).


1940   // Returns the given amount of reclaimable bytes (that represents
1941   // the amount of reclaimable space still to be collected) as a
1942   // percentage of the current heap capacity.
1943   size_t capacity_bytes = _g1->capacity();
1944   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1945 }
1946 
1947 void G1CollectorPolicy::maybe_start_marking() {
1948   if (need_to_start_conc_mark("end of GC")) {
1949     // Note: this might have already been set, if during the last
1950     // pause we decided to start a cycle but at the beginning of
1951     // this pause we decided to postpone it. That's OK.
1952     collector_state()->set_initiate_conc_mark_if_possible(true);
1953   }
1954 }
1955 
1956 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1957                                                 const char* false_action_str) const {
1958   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1959   if (cset_chooser->is_empty()) {
1960     ergo_verbose0(ErgoMixedGCs,
1961                   false_action_str,
1962                   ergo_format_reason("candidate old regions not available"));
1963     return false;
1964   }
1965 
1966   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1967   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1968   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1969   double threshold = (double) G1HeapWastePercent;
1970   if (reclaimable_perc <= threshold) {
1971     ergo_verbose4(ErgoMixedGCs,
1972               false_action_str,
1973               ergo_format_reason("reclaimable percentage not over threshold")
1974               ergo_format_region("candidate old regions")
1975               ergo_format_byte_perc("reclaimable")
1976               ergo_format_perc("threshold"),
1977               cset_chooser->remaining_regions(),
1978               reclaimable_bytes,
1979               reclaimable_perc, threshold);
1980     return false;
1981   }
1982 
1983   ergo_verbose4(ErgoMixedGCs,
1984                 true_action_str,
1985                 ergo_format_reason("candidate old regions available")
1986                 ergo_format_region("candidate old regions")
1987                 ergo_format_byte_perc("reclaimable")
1988                 ergo_format_perc("threshold"),
1989                 cset_chooser->remaining_regions(),
1990                 reclaimable_bytes,
1991                 reclaimable_perc, threshold);
1992   return true;
1993 }
1994 
1995 uint G1CollectorPolicy::calc_min_old_cset_length() const {
1996   // The min old CSet region bound is based on the maximum desired
1997   // number of mixed GCs after a cycle. I.e., even if some old regions
1998   // look expensive, we should add them to the CSet anyway to make
1999   // sure we go through the available old regions in no more than the
2000   // maximum desired number of mixed GCs.
2001   //
2002   // The calculation is based on the number of marked regions we added
2003   // to the CSet chooser in the first place, not how many remain, so
2004   // that the result is the same during all mixed GCs that follow a cycle.
2005 
2006   const size_t region_num = (size_t) _collectionSetChooser->length();
2007   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
2008   size_t result = region_num / gc_num;
2009   // emulate ceiling
2010   if (result * gc_num < region_num) {
2011     result += 1;


2027   if (100 * result < region_num * perc) {
2028     result += 1;
2029   }
2030   return (uint) result;
2031 }
2032 
2033 
2034 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
2035   double young_start_time_sec = os::elapsedTime();
2036 
2037   YoungList* young_list = _g1->young_list();
2038   finalize_incremental_cset_building();
2039 
2040   guarantee(target_pause_time_ms > 0.0,
2041             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
2042   guarantee(_collection_set == NULL, "Precondition");
2043 
2044   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2045   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
2046 
2047   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
2048                 "start choosing CSet",
2049                 ergo_format_size("_pending_cards")
2050                 ergo_format_ms("predicted base time")
2051                 ergo_format_ms("remaining time")
2052                 ergo_format_ms("target pause time"),
2053                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
2054 
2055   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
2056 
2057   if (collector_state()->last_gc_was_young()) {
2058     _trace_young_gen_time_data.increment_young_collection_count();
2059   } else {
2060     _trace_young_gen_time_data.increment_mixed_collection_count();
2061   }
2062 
2063   // The young list is laid with the survivor regions from the previous
2064   // pause are appended to the RHS of the young list, i.e.
2065   //   [Newly Young Regions ++ Survivors from last pause].
2066 
2067   uint survivor_region_length = young_list->survivor_length();
2068   uint eden_region_length = young_list->eden_length();
2069   init_cset_region_lengths(eden_region_length, survivor_region_length);
2070 
2071   HeapRegion* hr = young_list->first_survivor_region();
2072   while (hr != NULL) {
2073     assert(hr->is_survivor(), "badly formed young list");
2074     // There is a convention that all the young regions in the CSet
2075     // are tagged as "eden", so we do this for the survivors here. We
2076     // use the special set_eden_pre_gc() as it doesn't check that the
2077     // region is free (which is not the case here).
2078     hr->set_eden_pre_gc();
2079     hr = hr->get_next_young_region();
2080   }
2081 
2082   // Clear the fields that point to the survivor list - they are all young now.
2083   young_list->clear_survivors();
2084 
2085   _collection_set = _inc_cset_head;
2086   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2087   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2088 
2089   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
2090                 "add young regions to CSet",
2091                 ergo_format_region("eden")
2092                 ergo_format_region("survivors")
2093                 ergo_format_ms("predicted young region time")
2094                 ergo_format_ms("target pause time"),
2095                 eden_region_length, survivor_region_length,
2096                 _inc_cset_predicted_elapsed_time_ms,
2097                 target_pause_time_ms);
2098 
2099   // The number of recorded young regions is the incremental
2100   // collection set's current size
2101   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2102 
2103   double young_end_time_sec = os::elapsedTime();
2104   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2105 
2106   return time_remaining_ms;
2107 }
2108 
2109 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
2110   double non_young_start_time_sec = os::elapsedTime();
2111   double predicted_old_time_ms = 0.0;
2112 
2113 
2114   if (!collector_state()->gcs_are_young()) {
2115     CollectionSetChooser* cset_chooser = _collectionSetChooser;
2116     cset_chooser->verify();
2117     const uint min_old_cset_length = calc_min_old_cset_length();
2118     const uint max_old_cset_length = calc_max_old_cset_length();
2119 
2120     uint expensive_region_num = 0;
2121     bool check_time_remaining = adaptive_young_list_length();
2122 
2123     HeapRegion* hr = cset_chooser->peek();
2124     while (hr != NULL) {
2125       if (old_cset_region_length() >= max_old_cset_length) {
2126         // Added maximum number of old regions to the CSet.
2127         ergo_verbose2(ErgoCSetConstruction,
2128                       "finish adding old regions to CSet",
2129                       ergo_format_reason("old CSet region num reached max")
2130                       ergo_format_region("old")
2131                       ergo_format_region("max"),
2132                       old_cset_region_length(), max_old_cset_length);
2133         break;
2134       }
2135 
2136 
2137       // Stop adding regions if the remaining reclaimable space is
2138       // not above G1HeapWastePercent.
2139       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2140       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2141       double threshold = (double) G1HeapWastePercent;
2142       if (reclaimable_perc <= threshold) {
2143         // We've added enough old regions that the amount of uncollected
2144         // reclaimable space is at or below the waste threshold. Stop
2145         // adding old regions to the CSet.
2146         ergo_verbose5(ErgoCSetConstruction,
2147                       "finish adding old regions to CSet",
2148                       ergo_format_reason("reclaimable percentage not over threshold")
2149                       ergo_format_region("old")
2150                       ergo_format_region("max")
2151                       ergo_format_byte_perc("reclaimable")
2152                       ergo_format_perc("threshold"),
2153                       old_cset_region_length(),
2154                       max_old_cset_length,
2155                       reclaimable_bytes,
2156                       reclaimable_perc, threshold);
2157         break;
2158       }
2159 
2160       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2161       if (check_time_remaining) {
2162         if (predicted_time_ms > time_remaining_ms) {
2163           // Too expensive for the current CSet.
2164 
2165           if (old_cset_region_length() >= min_old_cset_length) {
2166             // We have added the minimum number of old regions to the CSet,
2167             // we are done with this CSet.
2168             ergo_verbose4(ErgoCSetConstruction,
2169                           "finish adding old regions to CSet",
2170                           ergo_format_reason("predicted time is too high")
2171                           ergo_format_ms("predicted time")
2172                           ergo_format_ms("remaining time")
2173                           ergo_format_region("old")
2174                           ergo_format_region("min"),
2175                           predicted_time_ms, time_remaining_ms,
2176                           old_cset_region_length(), min_old_cset_length);
2177             break;
2178           }
2179 
2180           // We'll add it anyway given that we haven't reached the
2181           // minimum number of old regions.
2182           expensive_region_num += 1;
2183         }
2184       } else {
2185         if (old_cset_region_length() >= min_old_cset_length) {
2186           // In the non-auto-tuning case, we'll finish adding regions
2187           // to the CSet if we reach the minimum.
2188           ergo_verbose2(ErgoCSetConstruction,
2189                         "finish adding old regions to CSet",
2190                         ergo_format_reason("old CSet region num reached min")
2191                         ergo_format_region("old")
2192                         ergo_format_region("min"),
2193                         old_cset_region_length(), min_old_cset_length);
2194           break;
2195         }
2196       }
2197 
2198       // We will add this region to the CSet.
2199       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2200       predicted_old_time_ms += predicted_time_ms;
2201       cset_chooser->pop(); // already have region via peek()
2202       _g1->old_set_remove(hr);
2203       add_old_region_to_cset(hr);
2204 
2205       hr = cset_chooser->peek();
2206     }
2207     if (hr == NULL) {
2208       ergo_verbose0(ErgoCSetConstruction,
2209                     "finish adding old regions to CSet",
2210                     ergo_format_reason("candidate old regions not available"));
2211     }
2212 
2213     if (expensive_region_num > 0) {
2214       // We print the information once here at the end, predicated on
2215       // whether we added any apparently expensive regions or not, to
2216       // avoid generating output per region.
2217       ergo_verbose4(ErgoCSetConstruction,
2218                     "added expensive regions to CSet",
2219                     ergo_format_reason("old CSet region num not reached min")
2220                     ergo_format_region("old")
2221                     ergo_format_region("expensive")
2222                     ergo_format_region("min")
2223                     ergo_format_ms("remaining time"),
2224                     old_cset_region_length(),
2225                     expensive_region_num,
2226                     min_old_cset_length,
2227                     time_remaining_ms);
2228     }
2229 
2230     cset_chooser->verify();
2231   }
2232 
2233   stop_incremental_cset_building();
2234 
2235   ergo_verbose3(ErgoCSetConstruction,
2236                 "finish choosing CSet",
2237                 ergo_format_region("old")
2238                 ergo_format_ms("predicted old region time")
2239                 ergo_format_ms("time remaining"),
2240                 old_cset_region_length(),
2241                 predicted_old_time_ms, time_remaining_ms);
2242 
2243   double non_young_end_time_sec = os::elapsedTime();
2244   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2245 }
2246 
2247 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2248   if(TraceYoungGenTime) {
2249     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2250   }
2251 }
2252 
2253 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2254   if(TraceYoungGenTime) {
2255     _all_yield_times_ms.add(yield_time_ms);
2256   }
2257 }
2258 
2259 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2260   if(TraceYoungGenTime) {
2261     _total.add(pause_time_ms);


2280     _parallel_other.add(parallel_other_time);
2281     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2282   }
2283 }
2284 
2285 void TraceYoungGenTimeData::increment_young_collection_count() {
2286   if(TraceYoungGenTime) {
2287     ++_young_pause_num;
2288   }
2289 }
2290 
2291 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2292   if(TraceYoungGenTime) {
2293     ++_mixed_pause_num;
2294   }
2295 }
2296 
2297 void TraceYoungGenTimeData::print_summary(const char* str,
2298                                           const NumberSeq* seq) const {
2299   double sum = seq->sum();
2300   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2301                 str, sum / 1000.0, seq->avg());
2302 }
2303 
2304 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2305                                              const NumberSeq* seq) const {
2306   print_summary(str, seq);
2307   gclog_or_tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2308                 "(num", seq->num(), seq->sd(), seq->maximum());
2309 }
2310 
2311 void TraceYoungGenTimeData::print() const {
2312   if (!TraceYoungGenTime) {
2313     return;
2314   }
2315 
2316   gclog_or_tty->print_cr("ALL PAUSES");
2317   print_summary_sd("   Total", &_total);
2318   gclog_or_tty->cr();
2319   gclog_or_tty->cr();
2320   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2321   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2322   gclog_or_tty->cr();
2323 
2324   gclog_or_tty->print_cr("EVACUATION PAUSES");
2325 
2326   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2327     gclog_or_tty->print_cr("none");
2328   } else {
2329     print_summary_sd("   Evacuation Pauses", &_total);
2330     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2331     print_summary("      Parallel Time", &_parallel);
2332     print_summary("         Ext Root Scanning", &_ext_root_scan);
2333     print_summary("         SATB Filtering", &_satb_filtering);
2334     print_summary("         Update RS", &_update_rs);
2335     print_summary("         Scan RS", &_scan_rs);
2336     print_summary("         Object Copy", &_obj_copy);
2337     print_summary("         Termination", &_termination);
2338     print_summary("         Parallel Other", &_parallel_other);
2339     print_summary("      Clear CT", &_clear_ct);
2340     print_summary("      Other", &_other);
2341   }
2342   gclog_or_tty->cr();
2343 
2344   gclog_or_tty->print_cr("MISC");
2345   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2346   print_summary_sd("   Yields", &_all_yield_times_ms);
2347 }
2348 
2349 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2350   if (TraceOldGenTime) {
2351     _all_full_gc_times.add(full_gc_time_ms);
2352   }
2353 }
2354 
2355 void TraceOldGenTimeData::print() const {
2356   if (!TraceOldGenTime) {
2357     return;
2358   }
2359 
2360   if (_all_full_gc_times.num() > 0) {
2361     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2362       _all_full_gc_times.num(),
2363       _all_full_gc_times.sum() / 1000.0);
2364     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2365     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2366       _all_full_gc_times.sd(),
2367       _all_full_gc_times.maximum());
2368   }
2369 }


  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"

  31 #include "gc/g1/g1GCPhaseTimes.hpp"

  32 #include "gc/g1/heapRegion.inline.hpp"
  33 #include "gc/g1/heapRegionRemSet.hpp"
  34 #include "gc/shared/gcPolicyCounters.hpp"
  35 #include "logging/log.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {


 101   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _non_young_other_cost_per_region_ms_seq(
 105                                          new TruncatedSeq(TruncatedSeqLength)),
 106 
 107   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 108   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 109 
 110   _pause_time_target_ms((double) MaxGCPauseMillis),
 111 
 112   _recent_prev_end_times_for_all_gcs_sec(
 113                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 114 
 115   _recent_avg_pause_time_ratio(0.0),
 116   _rs_lengths_prediction(0),
 117   _max_survivor_regions(0),
 118 
 119   _eden_used_bytes_before_gc(0),
 120   _survivor_used_bytes_before_gc(0),
 121   _old_used_bytes_before_gc(0),
 122   _heap_used_bytes_before_gc(0),
 123   _metaspace_used_bytes_before_gc(0),
 124   _eden_capacity_bytes_before_gc(0),
 125   _heap_capacity_bytes_before_gc(0),
 126 
 127   _eden_cset_region_length(0),
 128   _survivor_cset_region_length(0),
 129   _old_cset_region_length(0),
 130 
 131   _collection_set(NULL),
 132   _collection_set_bytes_used_before(0),
 133 
 134   // Incremental CSet attributes
 135   _inc_cset_build_state(Inactive),
 136   _inc_cset_head(NULL),
 137   _inc_cset_tail(NULL),
 138   _inc_cset_bytes_used_before(0),
 139   _inc_cset_max_finger(NULL),
 140   _inc_cset_recorded_rs_lengths(0),
 141   _inc_cset_recorded_rs_lengths_diffs(0),


 154   // indirectly use it through this object passed to their constructor.
 155   _short_lived_surv_rate_group =
 156     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 157   _survivor_surv_rate_group =
 158     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 159 
 160   // Set up the region size and associated fields. Given that the
 161   // policy is created before the heap, we have to set this up here,
 162   // so it's done as soon as possible.
 163 
 164   // It would have been natural to pass initial_heap_byte_size() and
 165   // max_heap_byte_size() to setup_heap_region_size() but those have
 166   // not been set up at this point since they should be aligned with
 167   // the region size. So, there is a circular dependency here. We base
 168   // the region size on the heap size, but the heap size should be
 169   // aligned with the region size. To get around this we use the
 170   // unaligned values for the heap.
 171   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 172   HeapRegionRemSet::setup_remset_size();
 173 












 174   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 175   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 176 
 177   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 178 
 179   int index = MIN2(_parallel_gc_threads - 1, 7);
 180 
 181   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 182   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 183   _cost_scan_hcc_seq->add(0.0);
 184   _young_cards_per_entry_ratio_seq->add(
 185                                   young_cards_per_entry_ratio_defaults[index]);
 186   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 187   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 188   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 189   _young_other_cost_per_region_ms_seq->add(
 190                                young_other_cost_per_region_ms_defaults[index]);
 191   _non_young_other_cost_per_region_ms_seq->add(
 192                            non_young_other_cost_per_region_ms_defaults[index]);
 193 


 744   HeapRegion* head = _g1->young_list()->first_region();
 745   return
 746     verify_young_ages(head, _short_lived_surv_rate_group);
 747   // also call verify_young_ages on any additional surv rate groups
 748 }
 749 
 750 bool
 751 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 752                                      SurvRateGroup *surv_rate_group) {
 753   guarantee( surv_rate_group != NULL, "pre-condition" );
 754 
 755   const char* name = surv_rate_group->name();
 756   bool ret = true;
 757   int prev_age = -1;
 758 
 759   for (HeapRegion* curr = head;
 760        curr != NULL;
 761        curr = curr->get_next_young_region()) {
 762     SurvRateGroup* group = curr->surv_rate_group();
 763     if (group == NULL && !curr->is_survivor()) {
 764       log_info(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 765       ret = false;
 766     }
 767 
 768     if (surv_rate_group == group) {
 769       int age = curr->age_in_surv_rate_group();
 770 
 771       if (age < 0) {
 772         log_info(gc, verify)("## %s: encountered negative age", name);
 773         ret = false;
 774       }
 775 
 776       if (age <= prev_age) {
 777         log_info(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);

 778         ret = false;
 779       }
 780       prev_age = age;
 781     }
 782   }
 783 
 784   return ret;
 785 }
 786 #endif // PRODUCT
 787 
 788 void G1CollectorPolicy::record_full_collection_start() {
 789   _full_collection_start_sec = os::elapsedTime();
 790   record_heap_size_info_at_start(true /* full */);
 791   // Release the future to-space so that it is available for compaction into.
 792   collector_state()->set_full_collection(true);
 793 }
 794 
 795 void G1CollectorPolicy::record_full_collection_end() {
 796   // Consider this like a collection pause for the purposes of allocation
 797   // since last pause.


 929 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 930   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 931 }
 932 
 933 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 934   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 935 }
 936 
 937 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 938   if (about_to_start_mixed_phase()) {
 939     return false;
 940   }
 941 
 942   size_t marking_initiating_used_threshold =
 943     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 944   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 945   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 946 
 947   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 948     if (collector_state()->gcs_are_young() && !collector_state()->last_young_gc()) {
 949       log_debug(gc, ergo)("Request concurrent cycle initiation (occupancy higher than threshold)"
 950                           "occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (" UINTX_FORMAT "%%) source: %s",
 951                           cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, InitiatingHeapOccupancyPercent, source);









 952       return true;
 953     } else {
 954       log_debug(gc, ergo)("Do not request concurrent cycle initiation (still doing mixed collections)"
 955                           "occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (" UINTX_FORMAT "%%) source: %s",
 956                           cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, InitiatingHeapOccupancyPercent, source);    }










 957   }
 958 
 959   return false;
 960 }
 961 
 962 // Anything below that is considered to be zero
 963 #define MIN_TIMER_GRANULARITY 0.0000001
 964 
 965 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned) {
 966   double end_time_sec = os::elapsedTime();
 967   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 968          "otherwise, the subtraction below does not make sense");
 969   size_t rs_size =
 970             _cur_collection_pause_used_regions_at_start - cset_region_length();
 971   size_t cur_used_bytes = _g1->used();
 972   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 973   bool last_pause_included_initial_mark = false;
 974   bool update_stats = !_g1->evacuation_failed();
 975 
 976   NOT_PRODUCT(_short_lived_surv_rate_group->print());






 977 
 978   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 979   if (last_pause_included_initial_mark) {
 980     record_concurrent_mark_init_end(0.0);
 981   } else {
 982     maybe_start_marking();
 983   }
 984 
 985   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0, end_time_sec);
 986 
 987   if (update_stats) {
 988     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
 989     // this is where we update the allocation rate of the application
 990     double app_time_ms =
 991       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 992     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 993       // This usually happens due to the timer not having the required
 994       // granularity. Some Linuxes are the usual culprits.
 995       // We'll just set it to something (arbitrarily) small.
 996       app_time_ms = 1.0;


1131     }
1132 
1133     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1134 
1135     _pending_cards_seq->add((double) _pending_cards);
1136     _rs_lengths_seq->add((double) _max_rs_lengths);
1137   }
1138 
1139   collector_state()->set_in_marking_window(new_in_marking_window);
1140   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1141   _free_regions_at_end_of_collection = _g1->num_free_regions();
1142   update_young_list_max_and_target_length();
1143   update_rs_lengths_prediction();
1144 
1145   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1146   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1147 
1148   double scan_hcc_time_ms = average_time_ms(G1GCPhaseTimes::ScanHCC);
1149 
1150   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1151     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1152                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1153                                 update_rs_time_goal_ms, scan_hcc_time_ms);




1154 
1155     update_rs_time_goal_ms = 0;
1156   } else {
1157     update_rs_time_goal_ms -= scan_hcc_time_ms;
1158   }
1159   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1160                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1161                                update_rs_time_goal_ms);
1162 
1163   _collectionSetChooser->verify();
1164 }
1165 
1166 #define EXT_SIZE_FORMAT "%.1f%s"
1167 #define EXT_SIZE_PARAMS(bytes)                                  \
1168   byte_size_in_proper_unit((double)(bytes)),                    \
1169   proper_unit_for_byte_size((bytes))
1170 
1171 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1172   YoungList* young_list = _g1->young_list();
1173   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1174   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1175   _heap_capacity_bytes_before_gc = _g1->capacity();
1176   _heap_used_bytes_before_gc = _g1->used();
1177   _old_used_bytes_before_gc = _heap_used_bytes_before_gc - _survivor_used_bytes_before_gc - _eden_used_bytes_before_gc;
1178   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1179 
1180   _eden_capacity_bytes_before_gc =
1181          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1182 

1183   _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();

1184 }
1185 
1186 void G1CollectorPolicy::print_detailed_heap_transition() const {

















1187   YoungList* young_list = _g1->young_list();
1188 
1189   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1190   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1191   size_t old_used_bytes_after_gc = _g1->used() - eden_used_bytes_after_gc - survivor_used_bytes_after_gc;
1192 
1193   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1194   size_t eden_capacity_bytes_after_gc =
1195     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1196   size_t survivor_capacity_bytes_after_gc = _max_survivor_regions * HeapRegion::GrainBytes;
1197 
1198   log_info(gc, heap)("Eden: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1199       _eden_used_bytes_before_gc / K, eden_used_bytes_after_gc /K, eden_capacity_bytes_after_gc /K);













1200 
1201   log_info(gc, heap)("Survivor: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1202       _survivor_used_bytes_before_gc / K, survivor_used_bytes_after_gc /K, survivor_capacity_bytes_after_gc /K);

1203 
1204   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1205       _old_used_bytes_before_gc / K, old_used_bytes_after_gc /K, heap_capacity_bytes_after_gc /K);
1206 
1207   MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1208 }
1209 
1210 void G1CollectorPolicy::print_phases(double pause_time_sec) {
1211   phase_times()->print(pause_time_sec);
1212 }
1213 
1214 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1215                                                      double update_rs_processed_buffers,
1216                                                      double goal_ms) {
1217   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1218   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1219 
1220   if (G1UseAdaptiveConcRefinement) {
1221     const int k_gy = 3, k_gr = 6;
1222     const double inc_k = 1.1, dec_k = 0.9;
1223 
1224     int g = cg1r->green_zone();
1225     if (update_rs_time > goal_ms) {
1226       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1227     } else {


1442 
1443 size_t G1CollectorPolicy::expansion_amount() const {
1444   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1445   double threshold = _gc_overhead_perc;
1446   if (recent_gc_overhead > threshold) {
1447     // We will double the existing space, or take
1448     // G1ExpandByPercentOfAvailable % of the available expansion
1449     // space, whichever is smaller, bounded below by a minimum
1450     // expansion (unless that's all that's left.)
1451     const size_t min_expand_bytes = 1*M;
1452     size_t reserved_bytes = _g1->max_capacity();
1453     size_t committed_bytes = _g1->capacity();
1454     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1455     size_t expand_bytes;
1456     size_t expand_bytes_via_pct =
1457       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1458     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1459     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1460     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1461 
1462     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1463                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B calculated expansion amount: " SIZE_FORMAT "B (" INTX_FORMAT "%%)",
1464                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes_via_pct, G1ExpandByPercentOfAvailable);








1465 
1466     return expand_bytes;
1467   } else {
1468     return 0;
1469   }
1470 }
1471 
1472 void G1CollectorPolicy::print_tracing_info() const {
1473   _trace_young_gen_time_data.print();
1474   _trace_old_gen_time_data.print();
1475 }
1476 
1477 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1478 #ifndef PRODUCT
1479   _short_lived_surv_rate_group->print_surv_rate_summary();
1480   // add this call for any other surv rate groups
1481 #endif // PRODUCT
1482 }
1483 
1484 bool G1CollectorPolicy::is_young_list_full() const {


1509 }
1510 
1511 // Calculates survivor space parameters.
1512 void G1CollectorPolicy::update_survivors_policy() {
1513   double max_survivor_regions_d =
1514                  (double) _young_list_target_length / (double) SurvivorRatio;
1515   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1516   // smaller than 1.0) we'll get 1.
1517   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1518 
1519   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1520         HeapRegion::GrainWords * _max_survivor_regions, counters());
1521 }
1522 
1523 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1524   // We actually check whether we are marking here and not if we are in a
1525   // reclamation phase. This means that we will schedule a concurrent mark
1526   // even while we are still in the process of reclaiming memory.
1527   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1528   if (!during_cycle) {
1529     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));




1530     collector_state()->set_initiate_conc_mark_if_possible(true);
1531     return true;
1532   } else {
1533     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));




1534     return false;
1535   }
1536 }
1537 
1538 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1539   // We are about to decide on whether this pause will be an
1540   // initial-mark pause.
1541 
1542   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1543   // will set it here if we have to. However, it should be cleared by
1544   // the end of the pause (it's only set for the duration of an
1545   // initial-mark pause).
1546   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1547 
1548   if (collector_state()->initiate_conc_mark_if_possible()) {
1549     // We had noticed on a previous pause that the heap occupancy has
1550     // gone over the initiating threshold and we should start a
1551     // concurrent marking cycle. So we might initiate one.
1552 
1553     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1554       // Initiate a new initial mark only if there is no marking or reclamation going
1555       // on.
1556 
1557       collector_state()->set_during_initial_mark_pause(true);
1558       // And we can now clear initiate_conc_mark_if_possible() as
1559       // we've already acted on it.
1560       collector_state()->set_initiate_conc_mark_if_possible(false);
1561 
1562       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");


1563     } else {
1564       // The concurrent marking thread is still finishing up the
1565       // previous cycle. If we start one right now the two cycles
1566       // overlap. In particular, the concurrent marking thread might
1567       // be in the process of clearing the next marking bitmap (which
1568       // we will use for the next cycle if we start one). Starting a
1569       // cycle now will be bad given that parts of the marking
1570       // information might get cleared by the marking thread. And we
1571       // cannot wait for the marking thread to finish the cycle as it
1572       // periodically yields while clearing the next marking bitmap
1573       // and, if it's in a yield point, it's waiting for us to
1574       // finish. So, at this point we will not start a cycle and we'll
1575       // let the concurrent marking thread complete the last one.
1576       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");


1577     }
1578   }
1579 }
1580 
1581 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1582   G1CollectedHeap* _g1h;
1583   CSetChooserParUpdater _cset_updater;
1584 
1585 public:
1586   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1587                            uint chunk_size) :
1588     _g1h(G1CollectedHeap::heap()),
1589     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1590 
1591   bool doHeapRegion(HeapRegion* r) {
1592     // Do we have any marking information for this region?
1593     if (r->is_marked()) {
1594       // We will skip any region that's currently used as an old GC
1595       // alloc region (we should not consider those for collection
1596       // before we fill them up).


1850   // Returns the given amount of reclaimable bytes (that represents
1851   // the amount of reclaimable space still to be collected) as a
1852   // percentage of the current heap capacity.
1853   size_t capacity_bytes = _g1->capacity();
1854   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1855 }
1856 
1857 void G1CollectorPolicy::maybe_start_marking() {
1858   if (need_to_start_conc_mark("end of GC")) {
1859     // Note: this might have already been set, if during the last
1860     // pause we decided to start a cycle but at the beginning of
1861     // this pause we decided to postpone it. That's OK.
1862     collector_state()->set_initiate_conc_mark_if_possible(true);
1863   }
1864 }
1865 
1866 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1867                                                 const char* false_action_str) const {
1868   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1869   if (cset_chooser->is_empty()) {
1870     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);


1871     return false;
1872   }
1873 
1874   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1875   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1876   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1877   double threshold = (double) G1HeapWastePercent;
1878   if (reclaimable_perc <= threshold) {
1879     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1880                         false_action_str, cset_chooser->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);







1881     return false;
1882   }
1883 
1884   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1885                       true_action_str, cset_chooser->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);







1886   return true;
1887 }
1888 
1889 uint G1CollectorPolicy::calc_min_old_cset_length() const {
1890   // The min old CSet region bound is based on the maximum desired
1891   // number of mixed GCs after a cycle. I.e., even if some old regions
1892   // look expensive, we should add them to the CSet anyway to make
1893   // sure we go through the available old regions in no more than the
1894   // maximum desired number of mixed GCs.
1895   //
1896   // The calculation is based on the number of marked regions we added
1897   // to the CSet chooser in the first place, not how many remain, so
1898   // that the result is the same during all mixed GCs that follow a cycle.
1899 
1900   const size_t region_num = (size_t) _collectionSetChooser->length();
1901   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1902   size_t result = region_num / gc_num;
1903   // emulate ceiling
1904   if (result * gc_num < region_num) {
1905     result += 1;


1921   if (100 * result < region_num * perc) {
1922     result += 1;
1923   }
1924   return (uint) result;
1925 }
1926 
1927 
1928 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
1929   double young_start_time_sec = os::elapsedTime();
1930 
1931   YoungList* young_list = _g1->young_list();
1932   finalize_incremental_cset_building();
1933 
1934   guarantee(target_pause_time_ms > 0.0,
1935             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
1936   guarantee(_collection_set == NULL, "Precondition");
1937 
1938   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1939   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1940 
1941   log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",





1942                             _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1943 
1944   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
1945 
1946   if (collector_state()->last_gc_was_young()) {
1947     _trace_young_gen_time_data.increment_young_collection_count();
1948   } else {
1949     _trace_young_gen_time_data.increment_mixed_collection_count();
1950   }
1951 
1952   // The young list is laid with the survivor regions from the previous
1953   // pause are appended to the RHS of the young list, i.e.
1954   //   [Newly Young Regions ++ Survivors from last pause].
1955 
1956   uint survivor_region_length = young_list->survivor_length();
1957   uint eden_region_length = young_list->eden_length();
1958   init_cset_region_lengths(eden_region_length, survivor_region_length);
1959 
1960   HeapRegion* hr = young_list->first_survivor_region();
1961   while (hr != NULL) {
1962     assert(hr->is_survivor(), "badly formed young list");
1963     // There is a convention that all the young regions in the CSet
1964     // are tagged as "eden", so we do this for the survivors here. We
1965     // use the special set_eden_pre_gc() as it doesn't check that the
1966     // region is free (which is not the case here).
1967     hr->set_eden_pre_gc();
1968     hr = hr->get_next_young_region();
1969   }
1970 
1971   // Clear the fields that point to the survivor list - they are all young now.
1972   young_list->clear_survivors();
1973 
1974   _collection_set = _inc_cset_head;
1975   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1976   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1977 
1978   log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
1979                             eden_region_length, survivor_region_length, _inc_cset_predicted_elapsed_time_ms, target_pause_time_ms);







1980 
1981   // The number of recorded young regions is the incremental
1982   // collection set's current size
1983   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1984 
1985   double young_end_time_sec = os::elapsedTime();
1986   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1987 
1988   return time_remaining_ms;
1989 }
1990 
1991 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
1992   double non_young_start_time_sec = os::elapsedTime();
1993   double predicted_old_time_ms = 0.0;
1994 
1995 
1996   if (!collector_state()->gcs_are_young()) {
1997     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1998     cset_chooser->verify();
1999     const uint min_old_cset_length = calc_min_old_cset_length();
2000     const uint max_old_cset_length = calc_max_old_cset_length();
2001 
2002     uint expensive_region_num = 0;
2003     bool check_time_remaining = adaptive_young_list_length();
2004 
2005     HeapRegion* hr = cset_chooser->peek();
2006     while (hr != NULL) {
2007       if (old_cset_region_length() >= max_old_cset_length) {
2008         // Added maximum number of old regions to the CSet.
2009         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",




2010                                   old_cset_region_length(), max_old_cset_length);
2011         break;
2012       }
2013 
2014 
2015       // Stop adding regions if the remaining reclaimable space is
2016       // not above G1HeapWastePercent.
2017       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2018       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2019       double threshold = (double) G1HeapWastePercent;
2020       if (reclaimable_perc <= threshold) {
2021         // We've added enough old regions that the amount of uncollected
2022         // reclaimable space is at or below the waste threshold. Stop
2023         // adding old regions to the CSet.
2024         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
2025                                   "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
2026                                   old_cset_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);








2027         break;
2028       }
2029 
2030       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2031       if (check_time_remaining) {
2032         if (predicted_time_ms > time_remaining_ms) {
2033           // Too expensive for the current CSet.
2034 
2035           if (old_cset_region_length() >= min_old_cset_length) {
2036             // We have added the minimum number of old regions to the CSet,
2037             // we are done with this CSet.
2038             log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
2039                                       "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
2040                                       predicted_time_ms, time_remaining_ms, old_cset_region_length(), min_old_cset_length);






2041             break;
2042           }
2043 
2044           // We'll add it anyway given that we haven't reached the
2045           // minimum number of old regions.
2046           expensive_region_num += 1;
2047         }
2048       } else {
2049         if (old_cset_region_length() >= min_old_cset_length) {
2050           // In the non-auto-tuning case, we'll finish adding regions
2051           // to the CSet if we reach the minimum.
2052 
2053           log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",



2054                                     old_cset_region_length(), min_old_cset_length);
2055           break;
2056         }
2057       }
2058 
2059       // We will add this region to the CSet.
2060       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2061       predicted_old_time_ms += predicted_time_ms;
2062       cset_chooser->pop(); // already have region via peek()
2063       _g1->old_set_remove(hr);
2064       add_old_region_to_cset(hr);
2065 
2066       hr = cset_chooser->peek();
2067     }
2068     if (hr == NULL) {
2069       log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");


2070     }
2071 
2072     if (expensive_region_num > 0) {
2073       // We print the information once here at the end, predicated on
2074       // whether we added any apparently expensive regions or not, to
2075       // avoid generating output per region.
2076       log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
2077                                 "old %u regions, expensive: %u regions, min %u regions, remaining time: %1.2fms",
2078                                 old_cset_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);








2079     }
2080 
2081     cset_chooser->verify();
2082   }
2083 
2084   stop_incremental_cset_building();
2085 
2086   log_debug(gc, ergo, cset)("Finish choosing CSet. old %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
2087                             old_cset_region_length(), predicted_old_time_ms, time_remaining_ms);





2088 
2089   double non_young_end_time_sec = os::elapsedTime();
2090   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2091 }
2092 
2093 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2094   if(TraceYoungGenTime) {
2095     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2096   }
2097 }
2098 
2099 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2100   if(TraceYoungGenTime) {
2101     _all_yield_times_ms.add(yield_time_ms);
2102   }
2103 }
2104 
2105 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2106   if(TraceYoungGenTime) {
2107     _total.add(pause_time_ms);


2126     _parallel_other.add(parallel_other_time);
2127     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2128   }
2129 }
2130 
2131 void TraceYoungGenTimeData::increment_young_collection_count() {
2132   if(TraceYoungGenTime) {
2133     ++_young_pause_num;
2134   }
2135 }
2136 
2137 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2138   if(TraceYoungGenTime) {
2139     ++_mixed_pause_num;
2140   }
2141 }
2142 
2143 void TraceYoungGenTimeData::print_summary(const char* str,
2144                                           const NumberSeq* seq) const {
2145   double sum = seq->sum();
2146   tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2147                 str, sum / 1000.0, seq->avg());
2148 }
2149 
2150 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2151                                              const NumberSeq* seq) const {
2152   print_summary(str, seq);
2153   tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2154                 "(num", seq->num(), seq->sd(), seq->maximum());
2155 }
2156 
2157 void TraceYoungGenTimeData::print() const {
2158   if (!TraceYoungGenTime) {
2159     return;
2160   }
2161 
2162   tty->print_cr("ALL PAUSES");
2163   print_summary_sd("   Total", &_total);
2164   tty->cr();
2165   tty->cr();
2166   tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2167   tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2168   tty->cr();
2169 
2170   tty->print_cr("EVACUATION PAUSES");
2171 
2172   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2173     tty->print_cr("none");
2174   } else {
2175     print_summary_sd("   Evacuation Pauses", &_total);
2176     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2177     print_summary("      Parallel Time", &_parallel);
2178     print_summary("         Ext Root Scanning", &_ext_root_scan);
2179     print_summary("         SATB Filtering", &_satb_filtering);
2180     print_summary("         Update RS", &_update_rs);
2181     print_summary("         Scan RS", &_scan_rs);
2182     print_summary("         Object Copy", &_obj_copy);
2183     print_summary("         Termination", &_termination);
2184     print_summary("         Parallel Other", &_parallel_other);
2185     print_summary("      Clear CT", &_clear_ct);
2186     print_summary("      Other", &_other);
2187   }
2188   tty->cr();
2189 
2190   tty->print_cr("MISC");
2191   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2192   print_summary_sd("   Yields", &_all_yield_times_ms);
2193 }
2194 
2195 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2196   if (TraceOldGenTime) {
2197     _all_full_gc_times.add(full_gc_time_ms);
2198   }
2199 }
2200 
2201 void TraceOldGenTimeData::print() const {
2202   if (!TraceOldGenTime) {
2203     return;
2204   }
2205 
2206   if (_all_full_gc_times.num() > 0) {
2207     tty->print("\n%4d full_gcs: total time = %8.2f s",
2208       _all_full_gc_times.num(),
2209       _all_full_gc_times.sum() / 1000.0);
2210     tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2211     tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2212       _all_full_gc_times.sd(),
2213       _all_full_gc_times.maximum());
2214   }
2215 }
< prev index next >