1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.inline.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "logging/log.hpp"
  57 #include "memory/allocation.hpp"
  58 #include "memory/iterator.inline.hpp"
  59 #include "memory/padded.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "runtime/atomic.inline.hpp"
  64 #include "runtime/globals_extension.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/timer.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "services/memoryService.hpp"
  71 #include "services/runtimeService.hpp"
  72 #include "utilities/stack.inline.hpp"
  73 
  74 // statics
  75 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  76 bool CMSCollector::_full_gc_requested = false;
  77 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  78 
  79 //////////////////////////////////////////////////////////////////
  80 // In support of CMS/VM thread synchronization
  81 //////////////////////////////////////////////////////////////////
  82 // We split use of the CGC_lock into 2 "levels".
  83 // The low-level locking is of the usual CGC_lock monitor. We introduce
  84 // a higher level "token" (hereafter "CMS token") built on top of the
  85 // low level monitor (hereafter "CGC lock").
  86 // The token-passing protocol gives priority to the VM thread. The
  87 // CMS-lock doesn't provide any fairness guarantees, but clients
  88 // should ensure that it is only held for very short, bounded
  89 // durations.
  90 //
  91 // When either of the CMS thread or the VM thread is involved in
  92 // collection operations during which it does not want the other
  93 // thread to interfere, it obtains the CMS token.
  94 //
  95 // If either thread tries to get the token while the other has
  96 // it, that thread waits. However, if the VM thread and CMS thread
  97 // both want the token, then the VM thread gets priority while the
  98 // CMS thread waits. This ensures, for instance, that the "concurrent"
  99 // phases of the CMS thread's work do not block out the VM thread
 100 // for long periods of time as the CMS thread continues to hog
 101 // the token. (See bug 4616232).
 102 //
 103 // The baton-passing functions are, however, controlled by the
 104 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 105 // and here the low-level CMS lock, not the high level token,
 106 // ensures mutual exclusion.
 107 //
 108 // Two important conditions that we have to satisfy:
 109 // 1. if a thread does a low-level wait on the CMS lock, then it
 110 //    relinquishes the CMS token if it were holding that token
 111 //    when it acquired the low-level CMS lock.
 112 // 2. any low-level notifications on the low-level lock
 113 //    should only be sent when a thread has relinquished the token.
 114 //
 115 // In the absence of either property, we'd have potential deadlock.
 116 //
 117 // We protect each of the CMS (concurrent and sequential) phases
 118 // with the CMS _token_, not the CMS _lock_.
 119 //
 120 // The only code protected by CMS lock is the token acquisition code
 121 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 122 // baton-passing code.
 123 //
 124 // Unfortunately, i couldn't come up with a good abstraction to factor and
 125 // hide the naked CGC_lock manipulation in the baton-passing code
 126 // further below. That's something we should try to do. Also, the proof
 127 // of correctness of this 2-level locking scheme is far from obvious,
 128 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 129 // that there may be a theoretical possibility of delay/starvation in the
 130 // low-level lock/wait/notify scheme used for the baton-passing because of
 131 // potential interference with the priority scheme embodied in the
 132 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 133 // invocation further below and marked with "XXX 20011219YSR".
 134 // Indeed, as we note elsewhere, this may become yet more slippery
 135 // in the presence of multiple CMS and/or multiple VM threads. XXX
 136 
 137 class CMSTokenSync: public StackObj {
 138  private:
 139   bool _is_cms_thread;
 140  public:
 141   CMSTokenSync(bool is_cms_thread):
 142     _is_cms_thread(is_cms_thread) {
 143     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 144            "Incorrect argument to constructor");
 145     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 146   }
 147 
 148   ~CMSTokenSync() {
 149     assert(_is_cms_thread ?
 150              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 151              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 152           "Incorrect state");
 153     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 154   }
 155 };
 156 
 157 // Convenience class that does a CMSTokenSync, and then acquires
 158 // upto three locks.
 159 class CMSTokenSyncWithLocks: public CMSTokenSync {
 160  private:
 161   // Note: locks are acquired in textual declaration order
 162   // and released in the opposite order
 163   MutexLockerEx _locker1, _locker2, _locker3;
 164  public:
 165   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 166                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 167     CMSTokenSync(is_cms_thread),
 168     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 169     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 170     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 171   { }
 172 };
 173 
 174 
 175 //////////////////////////////////////////////////////////////////
 176 //  Concurrent Mark-Sweep Generation /////////////////////////////
 177 //////////////////////////////////////////////////////////////////
 178 
 179 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 180 
 181 // This struct contains per-thread things necessary to support parallel
 182 // young-gen collection.
 183 class CMSParGCThreadState: public CHeapObj<mtGC> {
 184  public:
 185   CFLS_LAB lab;
 186   PromotionInfo promo;
 187 
 188   // Constructor.
 189   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 190     promo.setSpace(cfls);
 191   }
 192 };
 193 
 194 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 195      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 196   CardGeneration(rs, initial_byte_size, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _did_compact(false)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 212   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 213   _cmsSpace->_old_gen = this;
 214 
 215   _gc_stats = new CMSGCStats();
 216 
 217   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 218   // offsets match. The ability to tell free chunks from objects
 219   // depends on this property.
 220   debug_only(
 221     FreeChunk* junk = NULL;
 222     assert(UseCompressedClassPointers ||
 223            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 224            "Offset of FreeChunk::_prev within FreeChunk must match"
 225            "  that of OopDesc::_klass within OopDesc");
 226   )
 227 
 228   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 229   for (uint i = 0; i < ParallelGCThreads; i++) {
 230     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 231   }
 232 
 233   _incremental_collection_failed = false;
 234   // The "dilatation_factor" is the expansion that can occur on
 235   // account of the fact that the minimum object size in the CMS
 236   // generation may be larger than that in, say, a contiguous young
 237   //  generation.
 238   // Ideally, in the calculation below, we'd compute the dilatation
 239   // factor as: MinChunkSize/(promoting_gen's min object size)
 240   // Since we do not have such a general query interface for the
 241   // promoting generation, we'll instead just use the minimum
 242   // object size (which today is a header's worth of space);
 243   // note that all arithmetic is in units of HeapWords.
 244   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 245   assert(_dilatation_factor >= 1.0, "from previous assert");
 246 }
 247 
 248 
 249 // The field "_initiating_occupancy" represents the occupancy percentage
 250 // at which we trigger a new collection cycle.  Unless explicitly specified
 251 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 252 // is calculated by:
 253 //
 254 //   Let "f" be MinHeapFreeRatio in
 255 //
 256 //    _initiating_occupancy = 100-f +
 257 //                           f * (CMSTriggerRatio/100)
 258 //   where CMSTriggerRatio is the argument "tr" below.
 259 //
 260 // That is, if we assume the heap is at its desired maximum occupancy at the
 261 // end of a collection, we let CMSTriggerRatio of the (purported) free
 262 // space be allocated before initiating a new collection cycle.
 263 //
 264 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 265   assert(io <= 100 && tr <= 100, "Check the arguments");
 266   if (io >= 0) {
 267     _initiating_occupancy = (double)io / 100.0;
 268   } else {
 269     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 270                              (double)(tr * MinHeapFreeRatio) / 100.0)
 271                             / 100.0;
 272   }
 273 }
 274 
 275 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 276   assert(collector() != NULL, "no collector");
 277   collector()->ref_processor_init();
 278 }
 279 
 280 void CMSCollector::ref_processor_init() {
 281   if (_ref_processor == NULL) {
 282     // Allocate and initialize a reference processor
 283     _ref_processor =
 284       new ReferenceProcessor(_span,                               // span
 285                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 286                              ParallelGCThreads,                   // mt processing degree
 287                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 288                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 289                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 290                              &_is_alive_closure);                 // closure for liveness info
 291     // Initialize the _ref_processor field of CMSGen
 292     _cmsGen->set_ref_processor(_ref_processor);
 293 
 294   }
 295 }
 296 
 297 AdaptiveSizePolicy* CMSCollector::size_policy() {
 298   GenCollectedHeap* gch = GenCollectedHeap::heap();
 299   return gch->gen_policy()->size_policy();
 300 }
 301 
 302 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 303 
 304   const char* gen_name = "old";
 305   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 306   // Generation Counters - generation 1, 1 subspace
 307   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 308       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 309 
 310   _space_counters = new GSpaceCounters(gen_name, 0,
 311                                        _virtual_space.reserved_size(),
 312                                        this, _gen_counters);
 313 }
 314 
 315 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 316   _cms_gen(cms_gen)
 317 {
 318   assert(alpha <= 100, "bad value");
 319   _saved_alpha = alpha;
 320 
 321   // Initialize the alphas to the bootstrap value of 100.
 322   _gc0_alpha = _cms_alpha = 100;
 323 
 324   _cms_begin_time.update();
 325   _cms_end_time.update();
 326 
 327   _gc0_duration = 0.0;
 328   _gc0_period = 0.0;
 329   _gc0_promoted = 0;
 330 
 331   _cms_duration = 0.0;
 332   _cms_period = 0.0;
 333   _cms_allocated = 0;
 334 
 335   _cms_used_at_gc0_begin = 0;
 336   _cms_used_at_gc0_end = 0;
 337   _allow_duty_cycle_reduction = false;
 338   _valid_bits = 0;
 339 }
 340 
 341 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 342   // TBD: CR 6909490
 343   return 1.0;
 344 }
 345 
 346 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 347 }
 348 
 349 // If promotion failure handling is on use
 350 // the padded average size of the promotion for each
 351 // young generation collection.
 352 double CMSStats::time_until_cms_gen_full() const {
 353   size_t cms_free = _cms_gen->cmsSpace()->free();
 354   GenCollectedHeap* gch = GenCollectedHeap::heap();
 355   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 356                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 357   if (cms_free > expected_promotion) {
 358     // Start a cms collection if there isn't enough space to promote
 359     // for the next young collection.  Use the padded average as
 360     // a safety factor.
 361     cms_free -= expected_promotion;
 362 
 363     // Adjust by the safety factor.
 364     double cms_free_dbl = (double)cms_free;
 365     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 366     // Apply a further correction factor which tries to adjust
 367     // for recent occurance of concurrent mode failures.
 368     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 369     cms_free_dbl = cms_free_dbl * cms_adjustment;
 370 
 371     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 372                   cms_free, expected_promotion);
 373     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 374     // Add 1 in case the consumption rate goes to zero.
 375     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 376   }
 377   return 0.0;
 378 }
 379 
 380 // Compare the duration of the cms collection to the
 381 // time remaining before the cms generation is empty.
 382 // Note that the time from the start of the cms collection
 383 // to the start of the cms sweep (less than the total
 384 // duration of the cms collection) can be used.  This
 385 // has been tried and some applications experienced
 386 // promotion failures early in execution.  This was
 387 // possibly because the averages were not accurate
 388 // enough at the beginning.
 389 double CMSStats::time_until_cms_start() const {
 390   // We add "gc0_period" to the "work" calculation
 391   // below because this query is done (mostly) at the
 392   // end of a scavenge, so we need to conservatively
 393   // account for that much possible delay
 394   // in the query so as to avoid concurrent mode failures
 395   // due to starting the collection just a wee bit too
 396   // late.
 397   double work = cms_duration() + gc0_period();
 398   double deadline = time_until_cms_gen_full();
 399   // If a concurrent mode failure occurred recently, we want to be
 400   // more conservative and halve our expected time_until_cms_gen_full()
 401   if (work > deadline) {
 402     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 403                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 404     return 0.0;
 405   }
 406   return work - deadline;
 407 }
 408 
 409 #ifndef PRODUCT
 410 void CMSStats::print_on(outputStream *st) const {
 411   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 412   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 413                gc0_duration(), gc0_period(), gc0_promoted());
 414   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 415             cms_duration(), cms_period(), cms_allocated());
 416   st->print(",cms_since_beg=%g,cms_since_end=%g",
 417             cms_time_since_begin(), cms_time_since_end());
 418   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 419             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 420 
 421   if (valid()) {
 422     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 423               promotion_rate(), cms_allocation_rate());
 424     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 425               cms_consumption_rate(), time_until_cms_gen_full());
 426   }
 427   st->print(" ");
 428 }
 429 #endif // #ifndef PRODUCT
 430 
 431 CMSCollector::CollectorState CMSCollector::_collectorState =
 432                              CMSCollector::Idling;
 433 bool CMSCollector::_foregroundGCIsActive = false;
 434 bool CMSCollector::_foregroundGCShouldWait = false;
 435 
 436 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 437                            CardTableRS*                   ct,
 438                            ConcurrentMarkSweepPolicy*     cp):
 439   _cmsGen(cmsGen),
 440   _ct(ct),
 441   _ref_processor(NULL),    // will be set later
 442   _conc_workers(NULL),     // may be set later
 443   _abort_preclean(false),
 444   _start_sampling(false),
 445   _between_prologue_and_epilogue(false),
 446   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 447   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 448                  -1 /* lock-free */, "No_lock" /* dummy */),
 449   _modUnionClosurePar(&_modUnionTable),
 450   // Adjust my span to cover old (cms) gen
 451   _span(cmsGen->reserved()),
 452   // Construct the is_alive_closure with _span & markBitMap
 453   _is_alive_closure(_span, &_markBitMap),
 454   _restart_addr(NULL),
 455   _overflow_list(NULL),
 456   _stats(cmsGen),
 457   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 458                              //verify that this lock should be acquired with safepoint check.
 459                              Monitor::_safepoint_check_sometimes)),
 460   _eden_chunk_array(NULL),     // may be set in ctor body
 461   _eden_chunk_capacity(0),     // -- ditto --
 462   _eden_chunk_index(0),        // -- ditto --
 463   _survivor_plab_array(NULL),  // -- ditto --
 464   _survivor_chunk_array(NULL), // -- ditto --
 465   _survivor_chunk_capacity(0), // -- ditto --
 466   _survivor_chunk_index(0),    // -- ditto --
 467   _ser_pmc_preclean_ovflw(0),
 468   _ser_kac_preclean_ovflw(0),
 469   _ser_pmc_remark_ovflw(0),
 470   _par_pmc_remark_ovflw(0),
 471   _ser_kac_ovflw(0),
 472   _par_kac_ovflw(0),
 473 #ifndef PRODUCT
 474   _num_par_pushes(0),
 475 #endif
 476   _collection_count_start(0),
 477   _verifying(false),
 478   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 479   _completed_initialization(false),
 480   _collector_policy(cp),
 481   _should_unload_classes(CMSClassUnloadingEnabled),
 482   _concurrent_cycles_since_last_unload(0),
 483   _roots_scanning_options(GenCollectedHeap::SO_None),
 484   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 485   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 486   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 487   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 488   _cms_start_registered(false)
 489 {
 490   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 491     ExplicitGCInvokesConcurrent = true;
 492   }
 493   // Now expand the span and allocate the collection support structures
 494   // (MUT, marking bit map etc.) to cover both generations subject to
 495   // collection.
 496 
 497   // For use by dirty card to oop closures.
 498   _cmsGen->cmsSpace()->set_collector(this);
 499 
 500   // Allocate MUT and marking bit map
 501   {
 502     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 503     if (!_markBitMap.allocate(_span)) {
 504       warning("Failed to allocate CMS Bit Map");
 505       return;
 506     }
 507     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 508   }
 509   {
 510     _modUnionTable.allocate(_span);
 511     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 512   }
 513 
 514   if (!_markStack.allocate(MarkStackSize)) {
 515     warning("Failed to allocate CMS Marking Stack");
 516     return;
 517   }
 518 
 519   // Support for multi-threaded concurrent phases
 520   if (CMSConcurrentMTEnabled) {
 521     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 522       // just for now
 523       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 524     }
 525     if (ConcGCThreads > 1) {
 526       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 527                                  ConcGCThreads, true);
 528       if (_conc_workers == NULL) {
 529         warning("GC/CMS: _conc_workers allocation failure: "
 530               "forcing -CMSConcurrentMTEnabled");
 531         CMSConcurrentMTEnabled = false;
 532       } else {
 533         _conc_workers->initialize_workers();
 534       }
 535     } else {
 536       CMSConcurrentMTEnabled = false;
 537     }
 538   }
 539   if (!CMSConcurrentMTEnabled) {
 540     ConcGCThreads = 0;
 541   } else {
 542     // Turn off CMSCleanOnEnter optimization temporarily for
 543     // the MT case where it's not fixed yet; see 6178663.
 544     CMSCleanOnEnter = false;
 545   }
 546   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 547          "Inconsistency");
 548 
 549   // Parallel task queues; these are shared for the
 550   // concurrent and stop-world phases of CMS, but
 551   // are not shared with parallel scavenge (ParNew).
 552   {
 553     uint i;
 554     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 555 
 556     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 557          || ParallelRefProcEnabled)
 558         && num_queues > 0) {
 559       _task_queues = new OopTaskQueueSet(num_queues);
 560       if (_task_queues == NULL) {
 561         warning("task_queues allocation failure.");
 562         return;
 563       }
 564       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 565       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 566       for (i = 0; i < num_queues; i++) {
 567         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 568         if (q == NULL) {
 569           warning("work_queue allocation failure.");
 570           return;
 571         }
 572         _task_queues->register_queue(i, q);
 573       }
 574       for (i = 0; i < num_queues; i++) {
 575         _task_queues->queue(i)->initialize();
 576         _hash_seed[i] = 17;  // copied from ParNew
 577       }
 578     }
 579   }
 580 
 581   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 582 
 583   // Clip CMSBootstrapOccupancy between 0 and 100.
 584   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 585 
 586   // Now tell CMS generations the identity of their collector
 587   ConcurrentMarkSweepGeneration::set_collector(this);
 588 
 589   // Create & start a CMS thread for this CMS collector
 590   _cmsThread = ConcurrentMarkSweepThread::start(this);
 591   assert(cmsThread() != NULL, "CMS Thread should have been created");
 592   assert(cmsThread()->collector() == this,
 593          "CMS Thread should refer to this gen");
 594   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 595 
 596   // Support for parallelizing young gen rescan
 597   GenCollectedHeap* gch = GenCollectedHeap::heap();
 598   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 599   _young_gen = (ParNewGeneration*)gch->young_gen();
 600   if (gch->supports_inline_contig_alloc()) {
 601     _top_addr = gch->top_addr();
 602     _end_addr = gch->end_addr();
 603     assert(_young_gen != NULL, "no _young_gen");
 604     _eden_chunk_index = 0;
 605     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 606     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 607   }
 608 
 609   // Support for parallelizing survivor space rescan
 610   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 611     const size_t max_plab_samples =
 612       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 613 
 614     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 615     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 616     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 617     _survivor_chunk_capacity = max_plab_samples;
 618     for (uint i = 0; i < ParallelGCThreads; i++) {
 619       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 620       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 621       assert(cur->end() == 0, "Should be 0");
 622       assert(cur->array() == vec, "Should be vec");
 623       assert(cur->capacity() == max_plab_samples, "Error");
 624     }
 625   }
 626 
 627   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 628   _gc_counters = new CollectorCounters("CMS", 1);
 629   _completed_initialization = true;
 630   _inter_sweep_timer.start();  // start of time
 631 }
 632 
 633 const char* ConcurrentMarkSweepGeneration::name() const {
 634   return "concurrent mark-sweep generation";
 635 }
 636 void ConcurrentMarkSweepGeneration::update_counters() {
 637   if (UsePerfData) {
 638     _space_counters->update_all();
 639     _gen_counters->update_all();
 640   }
 641 }
 642 
 643 // this is an optimized version of update_counters(). it takes the
 644 // used value as a parameter rather than computing it.
 645 //
 646 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 647   if (UsePerfData) {
 648     _space_counters->update_used(used);
 649     _space_counters->update_capacity();
 650     _gen_counters->update_all();
 651   }
 652 }
 653 
 654 void ConcurrentMarkSweepGeneration::print() const {
 655   Generation::print();
 656   cmsSpace()->print();
 657 }
 658 
 659 #ifndef PRODUCT
 660 void ConcurrentMarkSweepGeneration::print_statistics() {
 661   cmsSpace()->printFLCensus(0);
 662 }
 663 #endif
 664 
 665 size_t
 666 ConcurrentMarkSweepGeneration::contiguous_available() const {
 667   // dld proposes an improvement in precision here. If the committed
 668   // part of the space ends in a free block we should add that to
 669   // uncommitted size in the calculation below. Will make this
 670   // change later, staying with the approximation below for the
 671   // time being. -- ysr.
 672   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 673 }
 674 
 675 size_t
 676 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 677   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 678 }
 679 
 680 size_t ConcurrentMarkSweepGeneration::max_available() const {
 681   return free() + _virtual_space.uncommitted_size();
 682 }
 683 
 684 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 685   size_t available = max_available();
 686   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 687   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 688   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 689                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 690   return res;
 691 }
 692 
 693 // At a promotion failure dump information on block layout in heap
 694 // (cms old generation).
 695 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 696   LogHandle(gc, promotion) log;
 697   if (log.is_trace()) {
 698     ResourceMark rm;
 699     cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
 700   }
 701 }
 702 
 703 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 704   // Clear the promotion information.  These pointers can be adjusted
 705   // along with all the other pointers into the heap but
 706   // compaction is expected to be a rare event with
 707   // a heap using cms so don't do it without seeing the need.
 708   for (uint i = 0; i < ParallelGCThreads; i++) {
 709     _par_gc_thread_states[i]->promo.reset();
 710   }
 711 }
 712 
 713 void ConcurrentMarkSweepGeneration::compute_new_size() {
 714   assert_locked_or_safepoint(Heap_lock);
 715 
 716   // If incremental collection failed, we just want to expand
 717   // to the limit.
 718   if (incremental_collection_failed()) {
 719     clear_incremental_collection_failed();
 720     grow_to_reserved();
 721     return;
 722   }
 723 
 724   // The heap has been compacted but not reset yet.
 725   // Any metric such as free() or used() will be incorrect.
 726 
 727   CardGeneration::compute_new_size();
 728 
 729   // Reset again after a possible resizing
 730   if (did_compact()) {
 731     cmsSpace()->reset_after_compaction();
 732   }
 733 }
 734 
 735 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 736   assert_locked_or_safepoint(Heap_lock);
 737 
 738   // If incremental collection failed, we just want to expand
 739   // to the limit.
 740   if (incremental_collection_failed()) {
 741     clear_incremental_collection_failed();
 742     grow_to_reserved();
 743     return;
 744   }
 745 
 746   double free_percentage = ((double) free()) / capacity();
 747   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 748   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 749 
 750   // compute expansion delta needed for reaching desired free percentage
 751   if (free_percentage < desired_free_percentage) {
 752     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 753     assert(desired_capacity >= capacity(), "invalid expansion size");
 754     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 755     LogHandle(gc) log;
 756     if (log.is_trace()) {
 757       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 758       log.trace("From compute_new_size: ");
 759       log.trace("  Free fraction %f", free_percentage);
 760       log.trace("  Desired free fraction %f", desired_free_percentage);
 761       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 762       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 763       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 764       GenCollectedHeap* gch = GenCollectedHeap::heap();
 765       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 766       size_t young_size = gch->young_gen()->capacity();
 767       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 768       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 769       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 770       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 771     }
 772     // safe if expansion fails
 773     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 774     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 775   } else {
 776     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 777     assert(desired_capacity <= capacity(), "invalid expansion size");
 778     size_t shrink_bytes = capacity() - desired_capacity;
 779     // Don't shrink unless the delta is greater than the minimum shrink we want
 780     if (shrink_bytes >= MinHeapDeltaBytes) {
 781       shrink_free_list_by(shrink_bytes);
 782     }
 783   }
 784 }
 785 
 786 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 787   return cmsSpace()->freelistLock();
 788 }
 789 
 790 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 791   CMSSynchronousYieldRequest yr;
 792   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 793   return have_lock_and_allocate(size, tlab);
 794 }
 795 
 796 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 797                                                                 bool   tlab /* ignored */) {
 798   assert_lock_strong(freelistLock());
 799   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 800   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 801   // Allocate the object live (grey) if the background collector has
 802   // started marking. This is necessary because the marker may
 803   // have passed this address and consequently this object will
 804   // not otherwise be greyed and would be incorrectly swept up.
 805   // Note that if this object contains references, the writing
 806   // of those references will dirty the card containing this object
 807   // allowing the object to be blackened (and its references scanned)
 808   // either during a preclean phase or at the final checkpoint.
 809   if (res != NULL) {
 810     // We may block here with an uninitialized object with
 811     // its mark-bit or P-bits not yet set. Such objects need
 812     // to be safely navigable by block_start().
 813     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 814     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 815     collector()->direct_allocated(res, adjustedSize);
 816     _direct_allocated_words += adjustedSize;
 817     // allocation counters
 818     NOT_PRODUCT(
 819       _numObjectsAllocated++;
 820       _numWordsAllocated += (int)adjustedSize;
 821     )
 822   }
 823   return res;
 824 }
 825 
 826 // In the case of direct allocation by mutators in a generation that
 827 // is being concurrently collected, the object must be allocated
 828 // live (grey) if the background collector has started marking.
 829 // This is necessary because the marker may
 830 // have passed this address and consequently this object will
 831 // not otherwise be greyed and would be incorrectly swept up.
 832 // Note that if this object contains references, the writing
 833 // of those references will dirty the card containing this object
 834 // allowing the object to be blackened (and its references scanned)
 835 // either during a preclean phase or at the final checkpoint.
 836 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 837   assert(_markBitMap.covers(start, size), "Out of bounds");
 838   if (_collectorState >= Marking) {
 839     MutexLockerEx y(_markBitMap.lock(),
 840                     Mutex::_no_safepoint_check_flag);
 841     // [see comments preceding SweepClosure::do_blk() below for details]
 842     //
 843     // Can the P-bits be deleted now?  JJJ
 844     //
 845     // 1. need to mark the object as live so it isn't collected
 846     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 847     // 3. need to mark the end of the object so marking, precleaning or sweeping
 848     //    can skip over uninitialized or unparsable objects. An allocated
 849     //    object is considered uninitialized for our purposes as long as
 850     //    its klass word is NULL.  All old gen objects are parsable
 851     //    as soon as they are initialized.)
 852     _markBitMap.mark(start);          // object is live
 853     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 854     _markBitMap.mark(start + size - 1);
 855                                       // mark end of object
 856   }
 857   // check that oop looks uninitialized
 858   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 859 }
 860 
 861 void CMSCollector::promoted(bool par, HeapWord* start,
 862                             bool is_obj_array, size_t obj_size) {
 863   assert(_markBitMap.covers(start), "Out of bounds");
 864   // See comment in direct_allocated() about when objects should
 865   // be allocated live.
 866   if (_collectorState >= Marking) {
 867     // we already hold the marking bit map lock, taken in
 868     // the prologue
 869     if (par) {
 870       _markBitMap.par_mark(start);
 871     } else {
 872       _markBitMap.mark(start);
 873     }
 874     // We don't need to mark the object as uninitialized (as
 875     // in direct_allocated above) because this is being done with the
 876     // world stopped and the object will be initialized by the
 877     // time the marking, precleaning or sweeping get to look at it.
 878     // But see the code for copying objects into the CMS generation,
 879     // where we need to ensure that concurrent readers of the
 880     // block offset table are able to safely navigate a block that
 881     // is in flux from being free to being allocated (and in
 882     // transition while being copied into) and subsequently
 883     // becoming a bona-fide object when the copy/promotion is complete.
 884     assert(SafepointSynchronize::is_at_safepoint(),
 885            "expect promotion only at safepoints");
 886 
 887     if (_collectorState < Sweeping) {
 888       // Mark the appropriate cards in the modUnionTable, so that
 889       // this object gets scanned before the sweep. If this is
 890       // not done, CMS generation references in the object might
 891       // not get marked.
 892       // For the case of arrays, which are otherwise precisely
 893       // marked, we need to dirty the entire array, not just its head.
 894       if (is_obj_array) {
 895         // The [par_]mark_range() method expects mr.end() below to
 896         // be aligned to the granularity of a bit's representation
 897         // in the heap. In the case of the MUT below, that's a
 898         // card size.
 899         MemRegion mr(start,
 900                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 901                         CardTableModRefBS::card_size /* bytes */));
 902         if (par) {
 903           _modUnionTable.par_mark_range(mr);
 904         } else {
 905           _modUnionTable.mark_range(mr);
 906         }
 907       } else {  // not an obj array; we can just mark the head
 908         if (par) {
 909           _modUnionTable.par_mark(start);
 910         } else {
 911           _modUnionTable.mark(start);
 912         }
 913       }
 914     }
 915   }
 916 }
 917 
 918 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 919   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 920   // allocate, copy and if necessary update promoinfo --
 921   // delegate to underlying space.
 922   assert_lock_strong(freelistLock());
 923 
 924 #ifndef PRODUCT
 925   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 926     return NULL;
 927   }
 928 #endif  // #ifndef PRODUCT
 929 
 930   oop res = _cmsSpace->promote(obj, obj_size);
 931   if (res == NULL) {
 932     // expand and retry
 933     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 934     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 935     // Since this is the old generation, we don't try to promote
 936     // into a more senior generation.
 937     res = _cmsSpace->promote(obj, obj_size);
 938   }
 939   if (res != NULL) {
 940     // See comment in allocate() about when objects should
 941     // be allocated live.
 942     assert(obj->is_oop(), "Will dereference klass pointer below");
 943     collector()->promoted(false,           // Not parallel
 944                           (HeapWord*)res, obj->is_objArray(), obj_size);
 945     // promotion counters
 946     NOT_PRODUCT(
 947       _numObjectsPromoted++;
 948       _numWordsPromoted +=
 949         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 950     )
 951   }
 952   return res;
 953 }
 954 
 955 
 956 // IMPORTANT: Notes on object size recognition in CMS.
 957 // ---------------------------------------------------
 958 // A block of storage in the CMS generation is always in
 959 // one of three states. A free block (FREE), an allocated
 960 // object (OBJECT) whose size() method reports the correct size,
 961 // and an intermediate state (TRANSIENT) in which its size cannot
 962 // be accurately determined.
 963 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 964 // -----------------------------------------------------
 965 // FREE:      klass_word & 1 == 1; mark_word holds block size
 966 //
 967 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 968 //            obj->size() computes correct size
 969 //
 970 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 971 //
 972 // STATE IDENTIFICATION: (64 bit+COOPS)
 973 // ------------------------------------
 974 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 975 //
 976 // OBJECT:    klass_word installed; klass_word != 0;
 977 //            obj->size() computes correct size
 978 //
 979 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 980 //
 981 //
 982 // STATE TRANSITION DIAGRAM
 983 //
 984 //        mut / parnew                     mut  /  parnew
 985 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 986 //  ^                                                                   |
 987 //  |------------------------ DEAD <------------------------------------|
 988 //         sweep                            mut
 989 //
 990 // While a block is in TRANSIENT state its size cannot be determined
 991 // so readers will either need to come back later or stall until
 992 // the size can be determined. Note that for the case of direct
 993 // allocation, P-bits, when available, may be used to determine the
 994 // size of an object that may not yet have been initialized.
 995 
 996 // Things to support parallel young-gen collection.
 997 oop
 998 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
 999                                            oop old, markOop m,
1000                                            size_t word_sz) {
1001 #ifndef PRODUCT
1002   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1003     return NULL;
1004   }
1005 #endif  // #ifndef PRODUCT
1006 
1007   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1008   PromotionInfo* promoInfo = &ps->promo;
1009   // if we are tracking promotions, then first ensure space for
1010   // promotion (including spooling space for saving header if necessary).
1011   // then allocate and copy, then track promoted info if needed.
1012   // When tracking (see PromotionInfo::track()), the mark word may
1013   // be displaced and in this case restoration of the mark word
1014   // occurs in the (oop_since_save_marks_)iterate phase.
1015   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1016     // Out of space for allocating spooling buffers;
1017     // try expanding and allocating spooling buffers.
1018     if (!expand_and_ensure_spooling_space(promoInfo)) {
1019       return NULL;
1020     }
1021   }
1022   assert(promoInfo->has_spooling_space(), "Control point invariant");
1023   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1024   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1025   if (obj_ptr == NULL) {
1026      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1027      if (obj_ptr == NULL) {
1028        return NULL;
1029      }
1030   }
1031   oop obj = oop(obj_ptr);
1032   OrderAccess::storestore();
1033   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1034   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1035   // IMPORTANT: See note on object initialization for CMS above.
1036   // Otherwise, copy the object.  Here we must be careful to insert the
1037   // klass pointer last, since this marks the block as an allocated object.
1038   // Except with compressed oops it's the mark word.
1039   HeapWord* old_ptr = (HeapWord*)old;
1040   // Restore the mark word copied above.
1041   obj->set_mark(m);
1042   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1043   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1044   OrderAccess::storestore();
1045 
1046   if (UseCompressedClassPointers) {
1047     // Copy gap missed by (aligned) header size calculation below
1048     obj->set_klass_gap(old->klass_gap());
1049   }
1050   if (word_sz > (size_t)oopDesc::header_size()) {
1051     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1052                                  obj_ptr + oopDesc::header_size(),
1053                                  word_sz - oopDesc::header_size());
1054   }
1055 
1056   // Now we can track the promoted object, if necessary.  We take care
1057   // to delay the transition from uninitialized to full object
1058   // (i.e., insertion of klass pointer) until after, so that it
1059   // atomically becomes a promoted object.
1060   if (promoInfo->tracking()) {
1061     promoInfo->track((PromotedObject*)obj, old->klass());
1062   }
1063   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1064   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1065   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1066 
1067   // Finally, install the klass pointer (this should be volatile).
1068   OrderAccess::storestore();
1069   obj->set_klass(old->klass());
1070   // We should now be able to calculate the right size for this object
1071   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1072 
1073   collector()->promoted(true,          // parallel
1074                         obj_ptr, old->is_objArray(), word_sz);
1075 
1076   NOT_PRODUCT(
1077     Atomic::inc_ptr(&_numObjectsPromoted);
1078     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1079   )
1080 
1081   return obj;
1082 }
1083 
1084 void
1085 ConcurrentMarkSweepGeneration::
1086 par_promote_alloc_done(int thread_num) {
1087   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1088   ps->lab.retire(thread_num);
1089 }
1090 
1091 void
1092 ConcurrentMarkSweepGeneration::
1093 par_oop_since_save_marks_iterate_done(int thread_num) {
1094   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1095   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1096   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1097 }
1098 
1099 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1100                                                    size_t size,
1101                                                    bool   tlab)
1102 {
1103   // We allow a STW collection only if a full
1104   // collection was requested.
1105   return full || should_allocate(size, tlab); // FIX ME !!!
1106   // This and promotion failure handling are connected at the
1107   // hip and should be fixed by untying them.
1108 }
1109 
1110 bool CMSCollector::shouldConcurrentCollect() {
1111   if (_full_gc_requested) {
1112     log_trace(gc)("CMSCollector: collect because of explicit  gc request (or gc_locker)");
1113     return true;
1114   }
1115 
1116   FreelistLocker x(this);
1117   // ------------------------------------------------------------------
1118   // Print out lots of information which affects the initiation of
1119   // a collection.
1120   LogHandle(gc) log;
1121   if (log.is_trace() && stats().valid()) {
1122     log.trace("CMSCollector shouldConcurrentCollect: ");
1123     ResourceMark rm;
1124     stats().print_on(log.debug_stream());
1125     log.trace("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1126     log.trace("free=" SIZE_FORMAT, _cmsGen->free());
1127     log.trace("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1128     log.trace("promotion_rate=%g", stats().promotion_rate());
1129     log.trace("cms_allocation_rate=%g", stats().cms_allocation_rate());
1130     log.trace("occupancy=%3.7f", _cmsGen->occupancy());
1131     log.trace("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1132     log.trace("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1133     log.trace("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1134     log.trace("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1135   }
1136   // ------------------------------------------------------------------
1137 
1138   // If the estimated time to complete a cms collection (cms_duration())
1139   // is less than the estimated time remaining until the cms generation
1140   // is full, start a collection.
1141   if (!UseCMSInitiatingOccupancyOnly) {
1142     if (stats().valid()) {
1143       if (stats().time_until_cms_start() == 0.0) {
1144         return true;
1145       }
1146     } else {
1147       // We want to conservatively collect somewhat early in order
1148       // to try and "bootstrap" our CMS/promotion statistics;
1149       // this branch will not fire after the first successful CMS
1150       // collection because the stats should then be valid.
1151       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1152         log_trace(gc)(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1153                       _cmsGen->occupancy(), _bootstrap_occupancy);
1154         return true;
1155       }
1156     }
1157   }
1158 
1159   // Otherwise, we start a collection cycle if
1160   // old gen want a collection cycle started. Each may use
1161   // an appropriate criterion for making this decision.
1162   // XXX We need to make sure that the gen expansion
1163   // criterion dovetails well with this. XXX NEED TO FIX THIS
1164   if (_cmsGen->should_concurrent_collect()) {
1165     log_trace(gc)("CMS old gen initiated");
1166     return true;
1167   }
1168 
1169   // We start a collection if we believe an incremental collection may fail;
1170   // this is not likely to be productive in practice because it's probably too
1171   // late anyway.
1172   GenCollectedHeap* gch = GenCollectedHeap::heap();
1173   assert(gch->collector_policy()->is_generation_policy(),
1174          "You may want to check the correctness of the following");
1175   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1176     log_trace(gc)("CMSCollector: collect because incremental collection will fail ");
1177     return true;
1178   }
1179 
1180   if (MetaspaceGC::should_concurrent_collect()) {
1181     log_trace(gc)("CMSCollector: collect for metadata allocation ");
1182     return true;
1183   }
1184 
1185   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1186   if (CMSTriggerInterval >= 0) {
1187     if (CMSTriggerInterval == 0) {
1188       // Trigger always
1189       return true;
1190     }
1191 
1192     // Check the CMS time since begin (we do not check the stats validity
1193     // as we want to be able to trigger the first CMS cycle as well)
1194     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1195       if (stats().valid()) {
1196         log_trace(gc)("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1197                       stats().cms_time_since_begin());
1198       } else {
1199         log_trace(gc)("CMSCollector: collect because of trigger interval (first collection)");
1200       }
1201       return true;
1202     }
1203   }
1204 
1205   return false;
1206 }
1207 
1208 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1209 
1210 // Clear _expansion_cause fields of constituent generations
1211 void CMSCollector::clear_expansion_cause() {
1212   _cmsGen->clear_expansion_cause();
1213 }
1214 
1215 // We should be conservative in starting a collection cycle.  To
1216 // start too eagerly runs the risk of collecting too often in the
1217 // extreme.  To collect too rarely falls back on full collections,
1218 // which works, even if not optimum in terms of concurrent work.
1219 // As a work around for too eagerly collecting, use the flag
1220 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1221 // giving the user an easily understandable way of controlling the
1222 // collections.
1223 // We want to start a new collection cycle if any of the following
1224 // conditions hold:
1225 // . our current occupancy exceeds the configured initiating occupancy
1226 //   for this generation, or
1227 // . we recently needed to expand this space and have not, since that
1228 //   expansion, done a collection of this generation, or
1229 // . the underlying space believes that it may be a good idea to initiate
1230 //   a concurrent collection (this may be based on criteria such as the
1231 //   following: the space uses linear allocation and linear allocation is
1232 //   going to fail, or there is believed to be excessive fragmentation in
1233 //   the generation, etc... or ...
1234 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1235 //   the case of the old generation; see CR 6543076):
1236 //   we may be approaching a point at which allocation requests may fail because
1237 //   we will be out of sufficient free space given allocation rate estimates.]
1238 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1239 
1240   assert_lock_strong(freelistLock());
1241   if (occupancy() > initiating_occupancy()) {
1242     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1243                   short_name(), occupancy(), initiating_occupancy());
1244     return true;
1245   }
1246   if (UseCMSInitiatingOccupancyOnly) {
1247     return false;
1248   }
1249   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1250     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1251     return true;
1252   }
1253   return false;
1254 }
1255 
1256 void ConcurrentMarkSweepGeneration::collect(bool   full,
1257                                             bool   clear_all_soft_refs,
1258                                             size_t size,
1259                                             bool   tlab)
1260 {
1261   collector()->collect(full, clear_all_soft_refs, size, tlab);
1262 }
1263 
1264 void CMSCollector::collect(bool   full,
1265                            bool   clear_all_soft_refs,
1266                            size_t size,
1267                            bool   tlab)
1268 {
1269   // The following "if" branch is present for defensive reasons.
1270   // In the current uses of this interface, it can be replaced with:
1271   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1272   // But I am not placing that assert here to allow future
1273   // generality in invoking this interface.
1274   if (GC_locker::is_active()) {
1275     // A consistency test for GC_locker
1276     assert(GC_locker::needs_gc(), "Should have been set already");
1277     // Skip this foreground collection, instead
1278     // expanding the heap if necessary.
1279     // Need the free list locks for the call to free() in compute_new_size()
1280     compute_new_size();
1281     return;
1282   }
1283   acquire_control_and_collect(full, clear_all_soft_refs);
1284 }
1285 
1286 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1287   GenCollectedHeap* gch = GenCollectedHeap::heap();
1288   unsigned int gc_count = gch->total_full_collections();
1289   if (gc_count == full_gc_count) {
1290     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1291     _full_gc_requested = true;
1292     _full_gc_cause = cause;
1293     CGC_lock->notify();   // nudge CMS thread
1294   } else {
1295     assert(gc_count > full_gc_count, "Error: causal loop");
1296   }
1297 }
1298 
1299 bool CMSCollector::is_external_interruption() {
1300   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1301   return GCCause::is_user_requested_gc(cause) ||
1302          GCCause::is_serviceability_requested_gc(cause);
1303 }
1304 
1305 void CMSCollector::report_concurrent_mode_interruption() {
1306   if (is_external_interruption()) {
1307     log_debug(gc)("Concurrent mode interrupted");
1308   } else {
1309     log_debug(gc)("Concurrent mode failure");
1310     _gc_tracer_cm->report_concurrent_mode_failure();
1311   }
1312 }
1313 
1314 
1315 // The foreground and background collectors need to coordinate in order
1316 // to make sure that they do not mutually interfere with CMS collections.
1317 // When a background collection is active,
1318 // the foreground collector may need to take over (preempt) and
1319 // synchronously complete an ongoing collection. Depending on the
1320 // frequency of the background collections and the heap usage
1321 // of the application, this preemption can be seldom or frequent.
1322 // There are only certain
1323 // points in the background collection that the "collection-baton"
1324 // can be passed to the foreground collector.
1325 //
1326 // The foreground collector will wait for the baton before
1327 // starting any part of the collection.  The foreground collector
1328 // will only wait at one location.
1329 //
1330 // The background collector will yield the baton before starting a new
1331 // phase of the collection (e.g., before initial marking, marking from roots,
1332 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1333 // of the loop which switches the phases. The background collector does some
1334 // of the phases (initial mark, final re-mark) with the world stopped.
1335 // Because of locking involved in stopping the world,
1336 // the foreground collector should not block waiting for the background
1337 // collector when it is doing a stop-the-world phase.  The background
1338 // collector will yield the baton at an additional point just before
1339 // it enters a stop-the-world phase.  Once the world is stopped, the
1340 // background collector checks the phase of the collection.  If the
1341 // phase has not changed, it proceeds with the collection.  If the
1342 // phase has changed, it skips that phase of the collection.  See
1343 // the comments on the use of the Heap_lock in collect_in_background().
1344 //
1345 // Variable used in baton passing.
1346 //   _foregroundGCIsActive - Set to true by the foreground collector when
1347 //      it wants the baton.  The foreground clears it when it has finished
1348 //      the collection.
1349 //   _foregroundGCShouldWait - Set to true by the background collector
1350 //        when it is running.  The foreground collector waits while
1351 //      _foregroundGCShouldWait is true.
1352 //  CGC_lock - monitor used to protect access to the above variables
1353 //      and to notify the foreground and background collectors.
1354 //  _collectorState - current state of the CMS collection.
1355 //
1356 // The foreground collector
1357 //   acquires the CGC_lock
1358 //   sets _foregroundGCIsActive
1359 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1360 //     various locks acquired in preparation for the collection
1361 //     are released so as not to block the background collector
1362 //     that is in the midst of a collection
1363 //   proceeds with the collection
1364 //   clears _foregroundGCIsActive
1365 //   returns
1366 //
1367 // The background collector in a loop iterating on the phases of the
1368 //      collection
1369 //   acquires the CGC_lock
1370 //   sets _foregroundGCShouldWait
1371 //   if _foregroundGCIsActive is set
1372 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1373 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1374 //     and exits the loop.
1375 //   otherwise
1376 //     proceed with that phase of the collection
1377 //     if the phase is a stop-the-world phase,
1378 //       yield the baton once more just before enqueueing
1379 //       the stop-world CMS operation (executed by the VM thread).
1380 //   returns after all phases of the collection are done
1381 //
1382 
1383 void CMSCollector::acquire_control_and_collect(bool full,
1384         bool clear_all_soft_refs) {
1385   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1386   assert(!Thread::current()->is_ConcurrentGC_thread(),
1387          "shouldn't try to acquire control from self!");
1388 
1389   // Start the protocol for acquiring control of the
1390   // collection from the background collector (aka CMS thread).
1391   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1392          "VM thread should have CMS token");
1393   // Remember the possibly interrupted state of an ongoing
1394   // concurrent collection
1395   CollectorState first_state = _collectorState;
1396 
1397   // Signal to a possibly ongoing concurrent collection that
1398   // we want to do a foreground collection.
1399   _foregroundGCIsActive = true;
1400 
1401   // release locks and wait for a notify from the background collector
1402   // releasing the locks in only necessary for phases which
1403   // do yields to improve the granularity of the collection.
1404   assert_lock_strong(bitMapLock());
1405   // We need to lock the Free list lock for the space that we are
1406   // currently collecting.
1407   assert(haveFreelistLocks(), "Must be holding free list locks");
1408   bitMapLock()->unlock();
1409   releaseFreelistLocks();
1410   {
1411     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1412     if (_foregroundGCShouldWait) {
1413       // We are going to be waiting for action for the CMS thread;
1414       // it had better not be gone (for instance at shutdown)!
1415       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1416              "CMS thread must be running");
1417       // Wait here until the background collector gives us the go-ahead
1418       ConcurrentMarkSweepThread::clear_CMS_flag(
1419         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1420       // Get a possibly blocked CMS thread going:
1421       //   Note that we set _foregroundGCIsActive true above,
1422       //   without protection of the CGC_lock.
1423       CGC_lock->notify();
1424       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1425              "Possible deadlock");
1426       while (_foregroundGCShouldWait) {
1427         // wait for notification
1428         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1429         // Possibility of delay/starvation here, since CMS token does
1430         // not know to give priority to VM thread? Actually, i think
1431         // there wouldn't be any delay/starvation, but the proof of
1432         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1433       }
1434       ConcurrentMarkSweepThread::set_CMS_flag(
1435         ConcurrentMarkSweepThread::CMS_vm_has_token);
1436     }
1437   }
1438   // The CMS_token is already held.  Get back the other locks.
1439   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1440          "VM thread should have CMS token");
1441   getFreelistLocks();
1442   bitMapLock()->lock_without_safepoint_check();
1443   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1444                        p2i(Thread::current()), first_state);
1445   log_debug(gc, state)("    gets control with state %d", _collectorState);
1446 
1447   // Inform cms gen if this was due to partial collection failing.
1448   // The CMS gen may use this fact to determine its expansion policy.
1449   GenCollectedHeap* gch = GenCollectedHeap::heap();
1450   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1451     assert(!_cmsGen->incremental_collection_failed(),
1452            "Should have been noticed, reacted to and cleared");
1453     _cmsGen->set_incremental_collection_failed();
1454   }
1455 
1456   if (first_state > Idling) {
1457     report_concurrent_mode_interruption();
1458   }
1459 
1460   set_did_compact(true);
1461 
1462   // If the collection is being acquired from the background
1463   // collector, there may be references on the discovered
1464   // references lists.  Abandon those references, since some
1465   // of them may have become unreachable after concurrent
1466   // discovery; the STW compacting collector will redo discovery
1467   // more precisely, without being subject to floating garbage.
1468   // Leaving otherwise unreachable references in the discovered
1469   // lists would require special handling.
1470   ref_processor()->disable_discovery();
1471   ref_processor()->abandon_partial_discovery();
1472   ref_processor()->verify_no_references_recorded();
1473 
1474   if (first_state > Idling) {
1475     save_heap_summary();
1476   }
1477 
1478   do_compaction_work(clear_all_soft_refs);
1479 
1480   // Has the GC time limit been exceeded?
1481   size_t max_eden_size = _young_gen->max_eden_size();
1482   GCCause::Cause gc_cause = gch->gc_cause();
1483   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1484                                          _young_gen->eden()->used(),
1485                                          _cmsGen->max_capacity(),
1486                                          max_eden_size,
1487                                          full,
1488                                          gc_cause,
1489                                          gch->collector_policy());
1490 
1491   // Reset the expansion cause, now that we just completed
1492   // a collection cycle.
1493   clear_expansion_cause();
1494   _foregroundGCIsActive = false;
1495   return;
1496 }
1497 
1498 // Resize the tenured generation
1499 // after obtaining the free list locks for the
1500 // two generations.
1501 void CMSCollector::compute_new_size() {
1502   assert_locked_or_safepoint(Heap_lock);
1503   FreelistLocker z(this);
1504   MetaspaceGC::compute_new_size();
1505   _cmsGen->compute_new_size_free_list();
1506 }
1507 
1508 // A work method used by the foreground collector to do
1509 // a mark-sweep-compact.
1510 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1511   GenCollectedHeap* gch = GenCollectedHeap::heap();
1512 
1513   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1514   gc_timer->register_gc_start();
1515 
1516   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1517   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1518 
1519   GCTraceTime(Trace, gc) t("CMS:MSC");
1520 
1521   // Temporarily widen the span of the weak reference processing to
1522   // the entire heap.
1523   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1524   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1525   // Temporarily, clear the "is_alive_non_header" field of the
1526   // reference processor.
1527   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1528   // Temporarily make reference _processing_ single threaded (non-MT).
1529   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1530   // Temporarily make refs discovery atomic
1531   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1532   // Temporarily make reference _discovery_ single threaded (non-MT)
1533   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1534 
1535   ref_processor()->set_enqueuing_is_done(false);
1536   ref_processor()->enable_discovery();
1537   ref_processor()->setup_policy(clear_all_soft_refs);
1538   // If an asynchronous collection finishes, the _modUnionTable is
1539   // all clear.  If we are assuming the collection from an asynchronous
1540   // collection, clear the _modUnionTable.
1541   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1542     "_modUnionTable should be clear if the baton was not passed");
1543   _modUnionTable.clear_all();
1544   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1545     "mod union for klasses should be clear if the baton was passed");
1546   _ct->klass_rem_set()->clear_mod_union();
1547 
1548   // We must adjust the allocation statistics being maintained
1549   // in the free list space. We do so by reading and clearing
1550   // the sweep timer and updating the block flux rate estimates below.
1551   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1552   if (_inter_sweep_timer.is_active()) {
1553     _inter_sweep_timer.stop();
1554     // Note that we do not use this sample to update the _inter_sweep_estimate.
1555     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1556                                             _inter_sweep_estimate.padded_average(),
1557                                             _intra_sweep_estimate.padded_average());
1558   }
1559 
1560   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1561   #ifdef ASSERT
1562     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1563     size_t free_size = cms_space->free();
1564     assert(free_size ==
1565            pointer_delta(cms_space->end(), cms_space->compaction_top())
1566            * HeapWordSize,
1567       "All the free space should be compacted into one chunk at top");
1568     assert(cms_space->dictionary()->total_chunk_size(
1569                                       debug_only(cms_space->freelistLock())) == 0 ||
1570            cms_space->totalSizeInIndexedFreeLists() == 0,
1571       "All the free space should be in a single chunk");
1572     size_t num = cms_space->totalCount();
1573     assert((free_size == 0 && num == 0) ||
1574            (free_size > 0  && (num == 1 || num == 2)),
1575          "There should be at most 2 free chunks after compaction");
1576   #endif // ASSERT
1577   _collectorState = Resetting;
1578   assert(_restart_addr == NULL,
1579          "Should have been NULL'd before baton was passed");
1580   reset_stw();
1581   _cmsGen->reset_after_compaction();
1582   _concurrent_cycles_since_last_unload = 0;
1583 
1584   // Clear any data recorded in the PLAB chunk arrays.
1585   if (_survivor_plab_array != NULL) {
1586     reset_survivor_plab_arrays();
1587   }
1588 
1589   // Adjust the per-size allocation stats for the next epoch.
1590   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1591   // Restart the "inter sweep timer" for the next epoch.
1592   _inter_sweep_timer.reset();
1593   _inter_sweep_timer.start();
1594 
1595   gc_timer->register_gc_end();
1596 
1597   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1598 
1599   // For a mark-sweep-compact, compute_new_size() will be called
1600   // in the heap's do_collection() method.
1601 }
1602 
1603 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1604   LogHandle(gc, heap) log;
1605   if (!log.is_trace()) {
1606     return;
1607   }
1608 
1609   ContiguousSpace* eden_space = _young_gen->eden();
1610   ContiguousSpace* from_space = _young_gen->from();
1611   ContiguousSpace* to_space   = _young_gen->to();
1612   // Eden
1613   if (_eden_chunk_array != NULL) {
1614     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1615               p2i(eden_space->bottom()), p2i(eden_space->top()),
1616               p2i(eden_space->end()), eden_space->capacity());
1617     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1618               _eden_chunk_index, _eden_chunk_capacity);
1619     for (size_t i = 0; i < _eden_chunk_index; i++) {
1620       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1621     }
1622   }
1623   // Survivor
1624   if (_survivor_chunk_array != NULL) {
1625     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1626               p2i(from_space->bottom()), p2i(from_space->top()),
1627               p2i(from_space->end()), from_space->capacity());
1628     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1629               _survivor_chunk_index, _survivor_chunk_capacity);
1630     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1631       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1632     }
1633   }
1634 }
1635 
1636 void CMSCollector::getFreelistLocks() const {
1637   // Get locks for all free lists in all generations that this
1638   // collector is responsible for
1639   _cmsGen->freelistLock()->lock_without_safepoint_check();
1640 }
1641 
1642 void CMSCollector::releaseFreelistLocks() const {
1643   // Release locks for all free lists in all generations that this
1644   // collector is responsible for
1645   _cmsGen->freelistLock()->unlock();
1646 }
1647 
1648 bool CMSCollector::haveFreelistLocks() const {
1649   // Check locks for all free lists in all generations that this
1650   // collector is responsible for
1651   assert_lock_strong(_cmsGen->freelistLock());
1652   PRODUCT_ONLY(ShouldNotReachHere());
1653   return true;
1654 }
1655 
1656 // A utility class that is used by the CMS collector to
1657 // temporarily "release" the foreground collector from its
1658 // usual obligation to wait for the background collector to
1659 // complete an ongoing phase before proceeding.
1660 class ReleaseForegroundGC: public StackObj {
1661  private:
1662   CMSCollector* _c;
1663  public:
1664   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1665     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1666     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1667     // allow a potentially blocked foreground collector to proceed
1668     _c->_foregroundGCShouldWait = false;
1669     if (_c->_foregroundGCIsActive) {
1670       CGC_lock->notify();
1671     }
1672     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1673            "Possible deadlock");
1674   }
1675 
1676   ~ReleaseForegroundGC() {
1677     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1678     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1679     _c->_foregroundGCShouldWait = true;
1680   }
1681 };
1682 
1683 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1684   assert(Thread::current()->is_ConcurrentGC_thread(),
1685     "A CMS asynchronous collection is only allowed on a CMS thread.");
1686 
1687   GenCollectedHeap* gch = GenCollectedHeap::heap();
1688   {
1689     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1690     MutexLockerEx hl(Heap_lock, safepoint_check);
1691     FreelistLocker fll(this);
1692     MutexLockerEx x(CGC_lock, safepoint_check);
1693     if (_foregroundGCIsActive) {
1694       // The foreground collector is. Skip this
1695       // background collection.
1696       assert(!_foregroundGCShouldWait, "Should be clear");
1697       return;
1698     } else {
1699       assert(_collectorState == Idling, "Should be idling before start.");
1700       _collectorState = InitialMarking;
1701       register_gc_start(cause);
1702       // Reset the expansion cause, now that we are about to begin
1703       // a new cycle.
1704       clear_expansion_cause();
1705 
1706       // Clear the MetaspaceGC flag since a concurrent collection
1707       // is starting but also clear it after the collection.
1708       MetaspaceGC::set_should_concurrent_collect(false);
1709     }
1710     // Decide if we want to enable class unloading as part of the
1711     // ensuing concurrent GC cycle.
1712     update_should_unload_classes();
1713     _full_gc_requested = false;           // acks all outstanding full gc requests
1714     _full_gc_cause = GCCause::_no_gc;
1715     // Signal that we are about to start a collection
1716     gch->increment_total_full_collections();  // ... starting a collection cycle
1717     _collection_count_start = gch->total_full_collections();
1718   }
1719 
1720   size_t prev_used = _cmsGen->used();
1721 
1722   // The change of the collection state is normally done at this level;
1723   // the exceptions are phases that are executed while the world is
1724   // stopped.  For those phases the change of state is done while the
1725   // world is stopped.  For baton passing purposes this allows the
1726   // background collector to finish the phase and change state atomically.
1727   // The foreground collector cannot wait on a phase that is done
1728   // while the world is stopped because the foreground collector already
1729   // has the world stopped and would deadlock.
1730   while (_collectorState != Idling) {
1731     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1732                          p2i(Thread::current()), _collectorState);
1733     // The foreground collector
1734     //   holds the Heap_lock throughout its collection.
1735     //   holds the CMS token (but not the lock)
1736     //     except while it is waiting for the background collector to yield.
1737     //
1738     // The foreground collector should be blocked (not for long)
1739     //   if the background collector is about to start a phase
1740     //   executed with world stopped.  If the background
1741     //   collector has already started such a phase, the
1742     //   foreground collector is blocked waiting for the
1743     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1744     //   are executed in the VM thread.
1745     //
1746     // The locking order is
1747     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1748     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1749     //   CMS token  (claimed in
1750     //                stop_world_and_do() -->
1751     //                  safepoint_synchronize() -->
1752     //                    CMSThread::synchronize())
1753 
1754     {
1755       // Check if the FG collector wants us to yield.
1756       CMSTokenSync x(true); // is cms thread
1757       if (waitForForegroundGC()) {
1758         // We yielded to a foreground GC, nothing more to be
1759         // done this round.
1760         assert(_foregroundGCShouldWait == false, "We set it to false in "
1761                "waitForForegroundGC()");
1762         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1763                              p2i(Thread::current()), _collectorState);
1764         return;
1765       } else {
1766         // The background collector can run but check to see if the
1767         // foreground collector has done a collection while the
1768         // background collector was waiting to get the CGC_lock
1769         // above.  If yes, break so that _foregroundGCShouldWait
1770         // is cleared before returning.
1771         if (_collectorState == Idling) {
1772           break;
1773         }
1774       }
1775     }
1776 
1777     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1778       "should be waiting");
1779 
1780     switch (_collectorState) {
1781       case InitialMarking:
1782         {
1783           ReleaseForegroundGC x(this);
1784           stats().record_cms_begin();
1785           VM_CMS_Initial_Mark initial_mark_op(this);
1786           VMThread::execute(&initial_mark_op);
1787         }
1788         // The collector state may be any legal state at this point
1789         // since the background collector may have yielded to the
1790         // foreground collector.
1791         break;
1792       case Marking:
1793         // initial marking in checkpointRootsInitialWork has been completed
1794         if (markFromRoots()) { // we were successful
1795           assert(_collectorState == Precleaning, "Collector state should "
1796             "have changed");
1797         } else {
1798           assert(_foregroundGCIsActive, "Internal state inconsistency");
1799         }
1800         break;
1801       case Precleaning:
1802         // marking from roots in markFromRoots has been completed
1803         preclean();
1804         assert(_collectorState == AbortablePreclean ||
1805                _collectorState == FinalMarking,
1806                "Collector state should have changed");
1807         break;
1808       case AbortablePreclean:
1809         abortable_preclean();
1810         assert(_collectorState == FinalMarking, "Collector state should "
1811           "have changed");
1812         break;
1813       case FinalMarking:
1814         {
1815           ReleaseForegroundGC x(this);
1816 
1817           VM_CMS_Final_Remark final_remark_op(this);
1818           VMThread::execute(&final_remark_op);
1819         }
1820         assert(_foregroundGCShouldWait, "block post-condition");
1821         break;
1822       case Sweeping:
1823         // final marking in checkpointRootsFinal has been completed
1824         sweep();
1825         assert(_collectorState == Resizing, "Collector state change "
1826           "to Resizing must be done under the free_list_lock");
1827 
1828       case Resizing: {
1829         // Sweeping has been completed...
1830         // At this point the background collection has completed.
1831         // Don't move the call to compute_new_size() down
1832         // into code that might be executed if the background
1833         // collection was preempted.
1834         {
1835           ReleaseForegroundGC x(this);   // unblock FG collection
1836           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1837           CMSTokenSync        z(true);   // not strictly needed.
1838           if (_collectorState == Resizing) {
1839             compute_new_size();
1840             save_heap_summary();
1841             _collectorState = Resetting;
1842           } else {
1843             assert(_collectorState == Idling, "The state should only change"
1844                    " because the foreground collector has finished the collection");
1845           }
1846         }
1847         break;
1848       }
1849       case Resetting:
1850         // CMS heap resizing has been completed
1851         reset_concurrent();
1852         assert(_collectorState == Idling, "Collector state should "
1853           "have changed");
1854 
1855         MetaspaceGC::set_should_concurrent_collect(false);
1856 
1857         stats().record_cms_end();
1858         // Don't move the concurrent_phases_end() and compute_new_size()
1859         // calls to here because a preempted background collection
1860         // has it's state set to "Resetting".
1861         break;
1862       case Idling:
1863       default:
1864         ShouldNotReachHere();
1865         break;
1866     }
1867     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1868                          p2i(Thread::current()), _collectorState);
1869     assert(_foregroundGCShouldWait, "block post-condition");
1870   }
1871 
1872   // Should this be in gc_epilogue?
1873   collector_policy()->counters()->update_counters();
1874 
1875   {
1876     // Clear _foregroundGCShouldWait and, in the event that the
1877     // foreground collector is waiting, notify it, before
1878     // returning.
1879     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1880     _foregroundGCShouldWait = false;
1881     if (_foregroundGCIsActive) {
1882       CGC_lock->notify();
1883     }
1884     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1885            "Possible deadlock");
1886   }
1887   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1888                        p2i(Thread::current()), _collectorState);
1889   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1890                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1891 }
1892 
1893 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1894   _cms_start_registered = true;
1895   _gc_timer_cm->register_gc_start();
1896   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1897 }
1898 
1899 void CMSCollector::register_gc_end() {
1900   if (_cms_start_registered) {
1901     report_heap_summary(GCWhen::AfterGC);
1902 
1903     _gc_timer_cm->register_gc_end();
1904     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1905     _cms_start_registered = false;
1906   }
1907 }
1908 
1909 void CMSCollector::save_heap_summary() {
1910   GenCollectedHeap* gch = GenCollectedHeap::heap();
1911   _last_heap_summary = gch->create_heap_summary();
1912   _last_metaspace_summary = gch->create_metaspace_summary();
1913 }
1914 
1915 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1916   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1917   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1918 }
1919 
1920 bool CMSCollector::waitForForegroundGC() {
1921   bool res = false;
1922   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1923          "CMS thread should have CMS token");
1924   // Block the foreground collector until the
1925   // background collectors decides whether to
1926   // yield.
1927   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1928   _foregroundGCShouldWait = true;
1929   if (_foregroundGCIsActive) {
1930     // The background collector yields to the
1931     // foreground collector and returns a value
1932     // indicating that it has yielded.  The foreground
1933     // collector can proceed.
1934     res = true;
1935     _foregroundGCShouldWait = false;
1936     ConcurrentMarkSweepThread::clear_CMS_flag(
1937       ConcurrentMarkSweepThread::CMS_cms_has_token);
1938     ConcurrentMarkSweepThread::set_CMS_flag(
1939       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1940     // Get a possibly blocked foreground thread going
1941     CGC_lock->notify();
1942     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1943                          p2i(Thread::current()), _collectorState);
1944     while (_foregroundGCIsActive) {
1945       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1946     }
1947     ConcurrentMarkSweepThread::set_CMS_flag(
1948       ConcurrentMarkSweepThread::CMS_cms_has_token);
1949     ConcurrentMarkSweepThread::clear_CMS_flag(
1950       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1951   }
1952   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1953                        p2i(Thread::current()), _collectorState);
1954   return res;
1955 }
1956 
1957 // Because of the need to lock the free lists and other structures in
1958 // the collector, common to all the generations that the collector is
1959 // collecting, we need the gc_prologues of individual CMS generations
1960 // delegate to their collector. It may have been simpler had the
1961 // current infrastructure allowed one to call a prologue on a
1962 // collector. In the absence of that we have the generation's
1963 // prologue delegate to the collector, which delegates back
1964 // some "local" work to a worker method in the individual generations
1965 // that it's responsible for collecting, while itself doing any
1966 // work common to all generations it's responsible for. A similar
1967 // comment applies to the  gc_epilogue()'s.
1968 // The role of the variable _between_prologue_and_epilogue is to
1969 // enforce the invocation protocol.
1970 void CMSCollector::gc_prologue(bool full) {
1971   // Call gc_prologue_work() for the CMSGen
1972   // we are responsible for.
1973 
1974   // The following locking discipline assumes that we are only called
1975   // when the world is stopped.
1976   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1977 
1978   // The CMSCollector prologue must call the gc_prologues for the
1979   // "generations" that it's responsible
1980   // for.
1981 
1982   assert(   Thread::current()->is_VM_thread()
1983          || (   CMSScavengeBeforeRemark
1984              && Thread::current()->is_ConcurrentGC_thread()),
1985          "Incorrect thread type for prologue execution");
1986 
1987   if (_between_prologue_and_epilogue) {
1988     // We have already been invoked; this is a gc_prologue delegation
1989     // from yet another CMS generation that we are responsible for, just
1990     // ignore it since all relevant work has already been done.
1991     return;
1992   }
1993 
1994   // set a bit saying prologue has been called; cleared in epilogue
1995   _between_prologue_and_epilogue = true;
1996   // Claim locks for common data structures, then call gc_prologue_work()
1997   // for each CMSGen.
1998 
1999   getFreelistLocks();   // gets free list locks on constituent spaces
2000   bitMapLock()->lock_without_safepoint_check();
2001 
2002   // Should call gc_prologue_work() for all cms gens we are responsible for
2003   bool duringMarking =    _collectorState >= Marking
2004                          && _collectorState < Sweeping;
2005 
2006   // The young collections clear the modified oops state, which tells if
2007   // there are any modified oops in the class. The remark phase also needs
2008   // that information. Tell the young collection to save the union of all
2009   // modified klasses.
2010   if (duringMarking) {
2011     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2012   }
2013 
2014   bool registerClosure = duringMarking;
2015 
2016   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2017 
2018   if (!full) {
2019     stats().record_gc0_begin();
2020   }
2021 }
2022 
2023 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2024 
2025   _capacity_at_prologue = capacity();
2026   _used_at_prologue = used();
2027 
2028   // Delegate to CMScollector which knows how to coordinate between
2029   // this and any other CMS generations that it is responsible for
2030   // collecting.
2031   collector()->gc_prologue(full);
2032 }
2033 
2034 // This is a "private" interface for use by this generation's CMSCollector.
2035 // Not to be called directly by any other entity (for instance,
2036 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2037 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2038   bool registerClosure, ModUnionClosure* modUnionClosure) {
2039   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2040   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2041     "Should be NULL");
2042   if (registerClosure) {
2043     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2044   }
2045   cmsSpace()->gc_prologue();
2046   // Clear stat counters
2047   NOT_PRODUCT(
2048     assert(_numObjectsPromoted == 0, "check");
2049     assert(_numWordsPromoted   == 0, "check");
2050     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2051                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2052     _numObjectsAllocated = 0;
2053     _numWordsAllocated   = 0;
2054   )
2055 }
2056 
2057 void CMSCollector::gc_epilogue(bool full) {
2058   // The following locking discipline assumes that we are only called
2059   // when the world is stopped.
2060   assert(SafepointSynchronize::is_at_safepoint(),
2061          "world is stopped assumption");
2062 
2063   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2064   // if linear allocation blocks need to be appropriately marked to allow the
2065   // the blocks to be parsable. We also check here whether we need to nudge the
2066   // CMS collector thread to start a new cycle (if it's not already active).
2067   assert(   Thread::current()->is_VM_thread()
2068          || (   CMSScavengeBeforeRemark
2069              && Thread::current()->is_ConcurrentGC_thread()),
2070          "Incorrect thread type for epilogue execution");
2071 
2072   if (!_between_prologue_and_epilogue) {
2073     // We have already been invoked; this is a gc_epilogue delegation
2074     // from yet another CMS generation that we are responsible for, just
2075     // ignore it since all relevant work has already been done.
2076     return;
2077   }
2078   assert(haveFreelistLocks(), "must have freelist locks");
2079   assert_lock_strong(bitMapLock());
2080 
2081   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2082 
2083   _cmsGen->gc_epilogue_work(full);
2084 
2085   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2086     // in case sampling was not already enabled, enable it
2087     _start_sampling = true;
2088   }
2089   // reset _eden_chunk_array so sampling starts afresh
2090   _eden_chunk_index = 0;
2091 
2092   size_t cms_used   = _cmsGen->cmsSpace()->used();
2093 
2094   // update performance counters - this uses a special version of
2095   // update_counters() that allows the utilization to be passed as a
2096   // parameter, avoiding multiple calls to used().
2097   //
2098   _cmsGen->update_counters(cms_used);
2099 
2100   bitMapLock()->unlock();
2101   releaseFreelistLocks();
2102 
2103   if (!CleanChunkPoolAsync) {
2104     Chunk::clean_chunk_pool();
2105   }
2106 
2107   set_did_compact(false);
2108   _between_prologue_and_epilogue = false;  // ready for next cycle
2109 }
2110 
2111 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2112   collector()->gc_epilogue(full);
2113 
2114   // Also reset promotion tracking in par gc thread states.
2115   for (uint i = 0; i < ParallelGCThreads; i++) {
2116     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2117   }
2118 }
2119 
2120 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2121   assert(!incremental_collection_failed(), "Should have been cleared");
2122   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2123   cmsSpace()->gc_epilogue();
2124     // Print stat counters
2125   NOT_PRODUCT(
2126     assert(_numObjectsAllocated == 0, "check");
2127     assert(_numWordsAllocated == 0, "check");
2128     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2129                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2130     _numObjectsPromoted = 0;
2131     _numWordsPromoted   = 0;
2132   )
2133 
2134   // Call down the chain in contiguous_available needs the freelistLock
2135   // so print this out before releasing the freeListLock.
2136   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2137 }
2138 
2139 #ifndef PRODUCT
2140 bool CMSCollector::have_cms_token() {
2141   Thread* thr = Thread::current();
2142   if (thr->is_VM_thread()) {
2143     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2144   } else if (thr->is_ConcurrentGC_thread()) {
2145     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2146   } else if (thr->is_GC_task_thread()) {
2147     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2148            ParGCRareEvent_lock->owned_by_self();
2149   }
2150   return false;
2151 }
2152 
2153 // Check reachability of the given heap address in CMS generation,
2154 // treating all other generations as roots.
2155 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2156   // We could "guarantee" below, rather than assert, but I'll
2157   // leave these as "asserts" so that an adventurous debugger
2158   // could try this in the product build provided some subset of
2159   // the conditions were met, provided they were interested in the
2160   // results and knew that the computation below wouldn't interfere
2161   // with other concurrent computations mutating the structures
2162   // being read or written.
2163   assert(SafepointSynchronize::is_at_safepoint(),
2164          "Else mutations in object graph will make answer suspect");
2165   assert(have_cms_token(), "Should hold cms token");
2166   assert(haveFreelistLocks(), "must hold free list locks");
2167   assert_lock_strong(bitMapLock());
2168 
2169   // Clear the marking bit map array before starting, but, just
2170   // for kicks, first report if the given address is already marked
2171   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2172                 _markBitMap.isMarked(addr) ? "" : " not");
2173 
2174   if (verify_after_remark()) {
2175     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2176     bool result = verification_mark_bm()->isMarked(addr);
2177     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2178                   result ? "IS" : "is NOT");
2179     return result;
2180   } else {
2181     tty->print_cr("Could not compute result");
2182     return false;
2183   }
2184 }
2185 #endif
2186 
2187 void
2188 CMSCollector::print_on_error(outputStream* st) {
2189   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2190   if (collector != NULL) {
2191     CMSBitMap* bitmap = &collector->_markBitMap;
2192     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2193     bitmap->print_on_error(st, " Bits: ");
2194 
2195     st->cr();
2196 
2197     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2198     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2199     mut_bitmap->print_on_error(st, " Bits: ");
2200   }
2201 }
2202 
2203 ////////////////////////////////////////////////////////
2204 // CMS Verification Support
2205 ////////////////////////////////////////////////////////
2206 // Following the remark phase, the following invariant
2207 // should hold -- each object in the CMS heap which is
2208 // marked in markBitMap() should be marked in the verification_mark_bm().
2209 
2210 class VerifyMarkedClosure: public BitMapClosure {
2211   CMSBitMap* _marks;
2212   bool       _failed;
2213 
2214  public:
2215   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2216 
2217   bool do_bit(size_t offset) {
2218     HeapWord* addr = _marks->offsetToHeapWord(offset);
2219     if (!_marks->isMarked(addr)) {
2220       LogHandle(gc, verify) log;
2221       ResourceMark rm;
2222       oop(addr)->print_on(log.info_stream());
2223       log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2224       _failed = true;
2225     }
2226     return true;
2227   }
2228 
2229   bool failed() { return _failed; }
2230 };
2231 
2232 bool CMSCollector::verify_after_remark() {
2233   GCTraceTime(Info, gc, verify) tm("Verifying CMS Marking.");
2234   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2235   static bool init = false;
2236 
2237   assert(SafepointSynchronize::is_at_safepoint(),
2238          "Else mutations in object graph will make answer suspect");
2239   assert(have_cms_token(),
2240          "Else there may be mutual interference in use of "
2241          " verification data structures");
2242   assert(_collectorState > Marking && _collectorState <= Sweeping,
2243          "Else marking info checked here may be obsolete");
2244   assert(haveFreelistLocks(), "must hold free list locks");
2245   assert_lock_strong(bitMapLock());
2246 
2247 
2248   // Allocate marking bit map if not already allocated
2249   if (!init) { // first time
2250     if (!verification_mark_bm()->allocate(_span)) {
2251       return false;
2252     }
2253     init = true;
2254   }
2255 
2256   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2257 
2258   // Turn off refs discovery -- so we will be tracing through refs.
2259   // This is as intended, because by this time
2260   // GC must already have cleared any refs that need to be cleared,
2261   // and traced those that need to be marked; moreover,
2262   // the marking done here is not going to interfere in any
2263   // way with the marking information used by GC.
2264   NoRefDiscovery no_discovery(ref_processor());
2265 
2266 #if defined(COMPILER2) || INCLUDE_JVMCI
2267   DerivedPointerTableDeactivate dpt_deact;
2268 #endif
2269 
2270   // Clear any marks from a previous round
2271   verification_mark_bm()->clear_all();
2272   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2273   verify_work_stacks_empty();
2274 
2275   GenCollectedHeap* gch = GenCollectedHeap::heap();
2276   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2277   // Update the saved marks which may affect the root scans.
2278   gch->save_marks();
2279 
2280   if (CMSRemarkVerifyVariant == 1) {
2281     // In this first variant of verification, we complete
2282     // all marking, then check if the new marks-vector is
2283     // a subset of the CMS marks-vector.
2284     verify_after_remark_work_1();
2285   } else if (CMSRemarkVerifyVariant == 2) {
2286     // In this second variant of verification, we flag an error
2287     // (i.e. an object reachable in the new marks-vector not reachable
2288     // in the CMS marks-vector) immediately, also indicating the
2289     // identify of an object (A) that references the unmarked object (B) --
2290     // presumably, a mutation to A failed to be picked up by preclean/remark?
2291     verify_after_remark_work_2();
2292   } else {
2293     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2294             CMSRemarkVerifyVariant);
2295   }
2296   return true;
2297 }
2298 
2299 void CMSCollector::verify_after_remark_work_1() {
2300   ResourceMark rm;
2301   HandleMark  hm;
2302   GenCollectedHeap* gch = GenCollectedHeap::heap();
2303 
2304   // Get a clear set of claim bits for the roots processing to work with.
2305   ClassLoaderDataGraph::clear_claimed_marks();
2306 
2307   // Mark from roots one level into CMS
2308   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2309   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2310 
2311   {
2312     StrongRootsScope srs(1);
2313 
2314     gch->gen_process_roots(&srs,
2315                            GenCollectedHeap::OldGen,
2316                            true,   // young gen as roots
2317                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2318                            should_unload_classes(),
2319                            &notOlder,
2320                            NULL,
2321                            NULL);
2322   }
2323 
2324   // Now mark from the roots
2325   MarkFromRootsClosure markFromRootsClosure(this, _span,
2326     verification_mark_bm(), verification_mark_stack(),
2327     false /* don't yield */, true /* verifying */);
2328   assert(_restart_addr == NULL, "Expected pre-condition");
2329   verification_mark_bm()->iterate(&markFromRootsClosure);
2330   while (_restart_addr != NULL) {
2331     // Deal with stack overflow: by restarting at the indicated
2332     // address.
2333     HeapWord* ra = _restart_addr;
2334     markFromRootsClosure.reset(ra);
2335     _restart_addr = NULL;
2336     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2337   }
2338   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2339   verify_work_stacks_empty();
2340 
2341   // Marking completed -- now verify that each bit marked in
2342   // verification_mark_bm() is also marked in markBitMap(); flag all
2343   // errors by printing corresponding objects.
2344   VerifyMarkedClosure vcl(markBitMap());
2345   verification_mark_bm()->iterate(&vcl);
2346   if (vcl.failed()) {
2347     LogHandle(gc, verify) log;
2348     log.info("Verification failed");
2349     ResourceMark rm;
2350     gch->print_on(log.info_stream());
2351     fatal("CMS: failed marking verification after remark");
2352   }
2353 }
2354 
2355 class VerifyKlassOopsKlassClosure : public KlassClosure {
2356   class VerifyKlassOopsClosure : public OopClosure {
2357     CMSBitMap* _bitmap;
2358    public:
2359     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2360     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2361     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2362   } _oop_closure;
2363  public:
2364   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2365   void do_klass(Klass* k) {
2366     k->oops_do(&_oop_closure);
2367   }
2368 };
2369 
2370 void CMSCollector::verify_after_remark_work_2() {
2371   ResourceMark rm;
2372   HandleMark  hm;
2373   GenCollectedHeap* gch = GenCollectedHeap::heap();
2374 
2375   // Get a clear set of claim bits for the roots processing to work with.
2376   ClassLoaderDataGraph::clear_claimed_marks();
2377 
2378   // Mark from roots one level into CMS
2379   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2380                                      markBitMap());
2381   CLDToOopClosure cld_closure(&notOlder, true);
2382 
2383   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2384 
2385   {
2386     StrongRootsScope srs(1);
2387 
2388     gch->gen_process_roots(&srs,
2389                            GenCollectedHeap::OldGen,
2390                            true,   // young gen as roots
2391                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2392                            should_unload_classes(),
2393                            &notOlder,
2394                            NULL,
2395                            &cld_closure);
2396   }
2397 
2398   // Now mark from the roots
2399   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2400     verification_mark_bm(), markBitMap(), verification_mark_stack());
2401   assert(_restart_addr == NULL, "Expected pre-condition");
2402   verification_mark_bm()->iterate(&markFromRootsClosure);
2403   while (_restart_addr != NULL) {
2404     // Deal with stack overflow: by restarting at the indicated
2405     // address.
2406     HeapWord* ra = _restart_addr;
2407     markFromRootsClosure.reset(ra);
2408     _restart_addr = NULL;
2409     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2410   }
2411   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2412   verify_work_stacks_empty();
2413 
2414   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2415   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2416 
2417   // Marking completed -- now verify that each bit marked in
2418   // verification_mark_bm() is also marked in markBitMap(); flag all
2419   // errors by printing corresponding objects.
2420   VerifyMarkedClosure vcl(markBitMap());
2421   verification_mark_bm()->iterate(&vcl);
2422   assert(!vcl.failed(), "Else verification above should not have succeeded");
2423 }
2424 
2425 void ConcurrentMarkSweepGeneration::save_marks() {
2426   // delegate to CMS space
2427   cmsSpace()->save_marks();
2428   for (uint i = 0; i < ParallelGCThreads; i++) {
2429     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2430   }
2431 }
2432 
2433 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2434   return cmsSpace()->no_allocs_since_save_marks();
2435 }
2436 
2437 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2438                                                                 \
2439 void ConcurrentMarkSweepGeneration::                            \
2440 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2441   cl->set_generation(this);                                     \
2442   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2443   cl->reset_generation();                                       \
2444   save_marks();                                                 \
2445 }
2446 
2447 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2448 
2449 void
2450 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2451   if (freelistLock()->owned_by_self()) {
2452     Generation::oop_iterate(cl);
2453   } else {
2454     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2455     Generation::oop_iterate(cl);
2456   }
2457 }
2458 
2459 void
2460 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2461   if (freelistLock()->owned_by_self()) {
2462     Generation::object_iterate(cl);
2463   } else {
2464     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2465     Generation::object_iterate(cl);
2466   }
2467 }
2468 
2469 void
2470 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2471   if (freelistLock()->owned_by_self()) {
2472     Generation::safe_object_iterate(cl);
2473   } else {
2474     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2475     Generation::safe_object_iterate(cl);
2476   }
2477 }
2478 
2479 void
2480 ConcurrentMarkSweepGeneration::post_compact() {
2481 }
2482 
2483 void
2484 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2485   // Fix the linear allocation blocks to look like free blocks.
2486 
2487   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2488   // are not called when the heap is verified during universe initialization and
2489   // at vm shutdown.
2490   if (freelistLock()->owned_by_self()) {
2491     cmsSpace()->prepare_for_verify();
2492   } else {
2493     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2494     cmsSpace()->prepare_for_verify();
2495   }
2496 }
2497 
2498 void
2499 ConcurrentMarkSweepGeneration::verify() {
2500   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2501   // are not called when the heap is verified during universe initialization and
2502   // at vm shutdown.
2503   if (freelistLock()->owned_by_self()) {
2504     cmsSpace()->verify();
2505   } else {
2506     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2507     cmsSpace()->verify();
2508   }
2509 }
2510 
2511 void CMSCollector::verify() {
2512   _cmsGen->verify();
2513 }
2514 
2515 #ifndef PRODUCT
2516 bool CMSCollector::overflow_list_is_empty() const {
2517   assert(_num_par_pushes >= 0, "Inconsistency");
2518   if (_overflow_list == NULL) {
2519     assert(_num_par_pushes == 0, "Inconsistency");
2520   }
2521   return _overflow_list == NULL;
2522 }
2523 
2524 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2525 // merely consolidate assertion checks that appear to occur together frequently.
2526 void CMSCollector::verify_work_stacks_empty() const {
2527   assert(_markStack.isEmpty(), "Marking stack should be empty");
2528   assert(overflow_list_is_empty(), "Overflow list should be empty");
2529 }
2530 
2531 void CMSCollector::verify_overflow_empty() const {
2532   assert(overflow_list_is_empty(), "Overflow list should be empty");
2533   assert(no_preserved_marks(), "No preserved marks");
2534 }
2535 #endif // PRODUCT
2536 
2537 // Decide if we want to enable class unloading as part of the
2538 // ensuing concurrent GC cycle. We will collect and
2539 // unload classes if it's the case that:
2540 // (1) an explicit gc request has been made and the flag
2541 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2542 // (2) (a) class unloading is enabled at the command line, and
2543 //     (b) old gen is getting really full
2544 // NOTE: Provided there is no change in the state of the heap between
2545 // calls to this method, it should have idempotent results. Moreover,
2546 // its results should be monotonically increasing (i.e. going from 0 to 1,
2547 // but not 1 to 0) between successive calls between which the heap was
2548 // not collected. For the implementation below, it must thus rely on
2549 // the property that concurrent_cycles_since_last_unload()
2550 // will not decrease unless a collection cycle happened and that
2551 // _cmsGen->is_too_full() are
2552 // themselves also monotonic in that sense. See check_monotonicity()
2553 // below.
2554 void CMSCollector::update_should_unload_classes() {
2555   _should_unload_classes = false;
2556   // Condition 1 above
2557   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2558     _should_unload_classes = true;
2559   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2560     // Disjuncts 2.b.(i,ii,iii) above
2561     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2562                               CMSClassUnloadingMaxInterval)
2563                            || _cmsGen->is_too_full();
2564   }
2565 }
2566 
2567 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2568   bool res = should_concurrent_collect();
2569   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2570   return res;
2571 }
2572 
2573 void CMSCollector::setup_cms_unloading_and_verification_state() {
2574   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2575                              || VerifyBeforeExit;
2576   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2577 
2578   // We set the proper root for this CMS cycle here.
2579   if (should_unload_classes()) {   // Should unload classes this cycle
2580     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2581     set_verifying(should_verify);    // Set verification state for this cycle
2582     return;                            // Nothing else needs to be done at this time
2583   }
2584 
2585   // Not unloading classes this cycle
2586   assert(!should_unload_classes(), "Inconsistency!");
2587 
2588   // If we are not unloading classes then add SO_AllCodeCache to root
2589   // scanning options.
2590   add_root_scanning_option(rso);
2591 
2592   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2593     set_verifying(true);
2594   } else if (verifying() && !should_verify) {
2595     // We were verifying, but some verification flags got disabled.
2596     set_verifying(false);
2597     // Exclude symbols, strings and code cache elements from root scanning to
2598     // reduce IM and RM pauses.
2599     remove_root_scanning_option(rso);
2600   }
2601 }
2602 
2603 
2604 #ifndef PRODUCT
2605 HeapWord* CMSCollector::block_start(const void* p) const {
2606   const HeapWord* addr = (HeapWord*)p;
2607   if (_span.contains(p)) {
2608     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2609       return _cmsGen->cmsSpace()->block_start(p);
2610     }
2611   }
2612   return NULL;
2613 }
2614 #endif
2615 
2616 HeapWord*
2617 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2618                                                    bool   tlab,
2619                                                    bool   parallel) {
2620   CMSSynchronousYieldRequest yr;
2621   assert(!tlab, "Can't deal with TLAB allocation");
2622   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2623   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2624   if (GCExpandToAllocateDelayMillis > 0) {
2625     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2626   }
2627   return have_lock_and_allocate(word_size, tlab);
2628 }
2629 
2630 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2631     size_t bytes,
2632     size_t expand_bytes,
2633     CMSExpansionCause::Cause cause)
2634 {
2635 
2636   bool success = expand(bytes, expand_bytes);
2637 
2638   // remember why we expanded; this information is used
2639   // by shouldConcurrentCollect() when making decisions on whether to start
2640   // a new CMS cycle.
2641   if (success) {
2642     set_expansion_cause(cause);
2643     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2644   }
2645 }
2646 
2647 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2648   HeapWord* res = NULL;
2649   MutexLocker x(ParGCRareEvent_lock);
2650   while (true) {
2651     // Expansion by some other thread might make alloc OK now:
2652     res = ps->lab.alloc(word_sz);
2653     if (res != NULL) return res;
2654     // If there's not enough expansion space available, give up.
2655     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2656       return NULL;
2657     }
2658     // Otherwise, we try expansion.
2659     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2660     // Now go around the loop and try alloc again;
2661     // A competing par_promote might beat us to the expansion space,
2662     // so we may go around the loop again if promotion fails again.
2663     if (GCExpandToAllocateDelayMillis > 0) {
2664       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2665     }
2666   }
2667 }
2668 
2669 
2670 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2671   PromotionInfo* promo) {
2672   MutexLocker x(ParGCRareEvent_lock);
2673   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2674   while (true) {
2675     // Expansion by some other thread might make alloc OK now:
2676     if (promo->ensure_spooling_space()) {
2677       assert(promo->has_spooling_space(),
2678              "Post-condition of successful ensure_spooling_space()");
2679       return true;
2680     }
2681     // If there's not enough expansion space available, give up.
2682     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2683       return false;
2684     }
2685     // Otherwise, we try expansion.
2686     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2687     // Now go around the loop and try alloc again;
2688     // A competing allocation might beat us to the expansion space,
2689     // so we may go around the loop again if allocation fails again.
2690     if (GCExpandToAllocateDelayMillis > 0) {
2691       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2692     }
2693   }
2694 }
2695 
2696 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2697   // Only shrink if a compaction was done so that all the free space
2698   // in the generation is in a contiguous block at the end.
2699   if (did_compact()) {
2700     CardGeneration::shrink(bytes);
2701   }
2702 }
2703 
2704 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2705   assert_locked_or_safepoint(Heap_lock);
2706 }
2707 
2708 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2709   assert_locked_or_safepoint(Heap_lock);
2710   assert_lock_strong(freelistLock());
2711   log_trace(gc)("Shrinking of CMS not yet implemented");
2712   return;
2713 }
2714 
2715 
2716 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2717 // phases.
2718 class CMSPhaseAccounting: public StackObj {
2719  public:
2720   CMSPhaseAccounting(CMSCollector *collector,
2721                      const char *title);
2722   ~CMSPhaseAccounting();
2723 
2724  private:
2725   CMSCollector *_collector;
2726   const char *_title;
2727   GCTraceConcTime(Info, gc) _trace_time;
2728 
2729  public:
2730   // Not MT-safe; so do not pass around these StackObj's
2731   // where they may be accessed by other threads.
2732   jlong wallclock_millis() {
2733     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2734   }
2735 };
2736 
2737 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2738                                        const char *title) :
2739   _collector(collector), _title(title), _trace_time(title) {
2740 
2741   _collector->resetYields();
2742   _collector->resetTimer();
2743   _collector->startTimer();
2744 }
2745 
2746 CMSPhaseAccounting::~CMSPhaseAccounting() {
2747   _collector->stopTimer();
2748   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2749   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2750 }
2751 
2752 // CMS work
2753 
2754 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2755 class CMSParMarkTask : public AbstractGangTask {
2756  protected:
2757   CMSCollector*     _collector;
2758   uint              _n_workers;
2759   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2760       AbstractGangTask(name),
2761       _collector(collector),
2762       _n_workers(n_workers) {}
2763   // Work method in support of parallel rescan ... of young gen spaces
2764   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2765                              ContiguousSpace* space,
2766                              HeapWord** chunk_array, size_t chunk_top);
2767   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2768 };
2769 
2770 // Parallel initial mark task
2771 class CMSParInitialMarkTask: public CMSParMarkTask {
2772   StrongRootsScope* _strong_roots_scope;
2773  public:
2774   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2775       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2776       _strong_roots_scope(strong_roots_scope) {}
2777   void work(uint worker_id);
2778 };
2779 
2780 // Checkpoint the roots into this generation from outside
2781 // this generation. [Note this initial checkpoint need only
2782 // be approximate -- we'll do a catch up phase subsequently.]
2783 void CMSCollector::checkpointRootsInitial() {
2784   assert(_collectorState == InitialMarking, "Wrong collector state");
2785   check_correct_thread_executing();
2786   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2787 
2788   save_heap_summary();
2789   report_heap_summary(GCWhen::BeforeGC);
2790 
2791   ReferenceProcessor* rp = ref_processor();
2792   assert(_restart_addr == NULL, "Control point invariant");
2793   {
2794     // acquire locks for subsequent manipulations
2795     MutexLockerEx x(bitMapLock(),
2796                     Mutex::_no_safepoint_check_flag);
2797     checkpointRootsInitialWork();
2798     // enable ("weak") refs discovery
2799     rp->enable_discovery();
2800     _collectorState = Marking;
2801   }
2802 }
2803 
2804 void CMSCollector::checkpointRootsInitialWork() {
2805   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2806   assert(_collectorState == InitialMarking, "just checking");
2807 
2808   // Already have locks.
2809   assert_lock_strong(bitMapLock());
2810   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2811 
2812   // Setup the verification and class unloading state for this
2813   // CMS collection cycle.
2814   setup_cms_unloading_and_verification_state();
2815 
2816   GCTraceTime(Trace, gc) ts("checkpointRootsInitialWork", _gc_timer_cm);
2817 
2818   // Reset all the PLAB chunk arrays if necessary.
2819   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2820     reset_survivor_plab_arrays();
2821   }
2822 
2823   ResourceMark rm;
2824   HandleMark  hm;
2825 
2826   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2827   GenCollectedHeap* gch = GenCollectedHeap::heap();
2828 
2829   verify_work_stacks_empty();
2830   verify_overflow_empty();
2831 
2832   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2833   // Update the saved marks which may affect the root scans.
2834   gch->save_marks();
2835 
2836   // weak reference processing has not started yet.
2837   ref_processor()->set_enqueuing_is_done(false);
2838 
2839   // Need to remember all newly created CLDs,
2840   // so that we can guarantee that the remark finds them.
2841   ClassLoaderDataGraph::remember_new_clds(true);
2842 
2843   // Whenever a CLD is found, it will be claimed before proceeding to mark
2844   // the klasses. The claimed marks need to be cleared before marking starts.
2845   ClassLoaderDataGraph::clear_claimed_marks();
2846 
2847   print_eden_and_survivor_chunk_arrays();
2848 
2849   {
2850 #if defined(COMPILER2) || INCLUDE_JVMCI
2851     DerivedPointerTableDeactivate dpt_deact;
2852 #endif
2853     if (CMSParallelInitialMarkEnabled) {
2854       // The parallel version.
2855       WorkGang* workers = gch->workers();
2856       assert(workers != NULL, "Need parallel worker threads.");
2857       uint n_workers = workers->active_workers();
2858 
2859       StrongRootsScope srs(n_workers);
2860 
2861       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2862       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2863       if (n_workers > 1) {
2864         workers->run_task(&tsk);
2865       } else {
2866         tsk.work(0);
2867       }
2868     } else {
2869       // The serial version.
2870       CLDToOopClosure cld_closure(&notOlder, true);
2871       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2872 
2873       StrongRootsScope srs(1);
2874 
2875       gch->gen_process_roots(&srs,
2876                              GenCollectedHeap::OldGen,
2877                              true,   // young gen as roots
2878                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2879                              should_unload_classes(),
2880                              &notOlder,
2881                              NULL,
2882                              &cld_closure);
2883     }
2884   }
2885 
2886   // Clear mod-union table; it will be dirtied in the prologue of
2887   // CMS generation per each young generation collection.
2888 
2889   assert(_modUnionTable.isAllClear(),
2890        "Was cleared in most recent final checkpoint phase"
2891        " or no bits are set in the gc_prologue before the start of the next "
2892        "subsequent marking phase.");
2893 
2894   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2895 
2896   // Save the end of the used_region of the constituent generations
2897   // to be used to limit the extent of sweep in each generation.
2898   save_sweep_limits();
2899   verify_overflow_empty();
2900 }
2901 
2902 bool CMSCollector::markFromRoots() {
2903   // we might be tempted to assert that:
2904   // assert(!SafepointSynchronize::is_at_safepoint(),
2905   //        "inconsistent argument?");
2906   // However that wouldn't be right, because it's possible that
2907   // a safepoint is indeed in progress as a young generation
2908   // stop-the-world GC happens even as we mark in this generation.
2909   assert(_collectorState == Marking, "inconsistent state?");
2910   check_correct_thread_executing();
2911   verify_overflow_empty();
2912 
2913   // Weak ref discovery note: We may be discovering weak
2914   // refs in this generation concurrent (but interleaved) with
2915   // weak ref discovery by the young generation collector.
2916 
2917   CMSTokenSyncWithLocks ts(true, bitMapLock());
2918   GCTraceCPUTime tcpu;
2919   CMSPhaseAccounting pa(this, "Concrurrent Mark");
2920   bool res = markFromRootsWork();
2921   if (res) {
2922     _collectorState = Precleaning;
2923   } else { // We failed and a foreground collection wants to take over
2924     assert(_foregroundGCIsActive, "internal state inconsistency");
2925     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2926     log_debug(gc)("bailing out to foreground collection");
2927   }
2928   verify_overflow_empty();
2929   return res;
2930 }
2931 
2932 bool CMSCollector::markFromRootsWork() {
2933   // iterate over marked bits in bit map, doing a full scan and mark
2934   // from these roots using the following algorithm:
2935   // . if oop is to the right of the current scan pointer,
2936   //   mark corresponding bit (we'll process it later)
2937   // . else (oop is to left of current scan pointer)
2938   //   push oop on marking stack
2939   // . drain the marking stack
2940 
2941   // Note that when we do a marking step we need to hold the
2942   // bit map lock -- recall that direct allocation (by mutators)
2943   // and promotion (by the young generation collector) is also
2944   // marking the bit map. [the so-called allocate live policy.]
2945   // Because the implementation of bit map marking is not
2946   // robust wrt simultaneous marking of bits in the same word,
2947   // we need to make sure that there is no such interference
2948   // between concurrent such updates.
2949 
2950   // already have locks
2951   assert_lock_strong(bitMapLock());
2952 
2953   verify_work_stacks_empty();
2954   verify_overflow_empty();
2955   bool result = false;
2956   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2957     result = do_marking_mt();
2958   } else {
2959     result = do_marking_st();
2960   }
2961   return result;
2962 }
2963 
2964 // Forward decl
2965 class CMSConcMarkingTask;
2966 
2967 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2968   CMSCollector*       _collector;
2969   CMSConcMarkingTask* _task;
2970  public:
2971   virtual void yield();
2972 
2973   // "n_threads" is the number of threads to be terminated.
2974   // "queue_set" is a set of work queues of other threads.
2975   // "collector" is the CMS collector associated with this task terminator.
2976   // "yield" indicates whether we need the gang as a whole to yield.
2977   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2978     ParallelTaskTerminator(n_threads, queue_set),
2979     _collector(collector) { }
2980 
2981   void set_task(CMSConcMarkingTask* task) {
2982     _task = task;
2983   }
2984 };
2985 
2986 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
2987   CMSConcMarkingTask* _task;
2988  public:
2989   bool should_exit_termination();
2990   void set_task(CMSConcMarkingTask* task) {
2991     _task = task;
2992   }
2993 };
2994 
2995 // MT Concurrent Marking Task
2996 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
2997   CMSCollector* _collector;
2998   uint          _n_workers;       // requested/desired # workers
2999   bool          _result;
3000   CompactibleFreeListSpace*  _cms_space;
3001   char          _pad_front[64];   // padding to ...
3002   HeapWord*     _global_finger;   // ... avoid sharing cache line
3003   char          _pad_back[64];
3004   HeapWord*     _restart_addr;
3005 
3006   //  Exposed here for yielding support
3007   Mutex* const _bit_map_lock;
3008 
3009   // The per thread work queues, available here for stealing
3010   OopTaskQueueSet*  _task_queues;
3011 
3012   // Termination (and yielding) support
3013   CMSConcMarkingTerminator _term;
3014   CMSConcMarkingTerminatorTerminator _term_term;
3015 
3016  public:
3017   CMSConcMarkingTask(CMSCollector* collector,
3018                  CompactibleFreeListSpace* cms_space,
3019                  YieldingFlexibleWorkGang* workers,
3020                  OopTaskQueueSet* task_queues):
3021     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3022     _collector(collector),
3023     _cms_space(cms_space),
3024     _n_workers(0), _result(true),
3025     _task_queues(task_queues),
3026     _term(_n_workers, task_queues, _collector),
3027     _bit_map_lock(collector->bitMapLock())
3028   {
3029     _requested_size = _n_workers;
3030     _term.set_task(this);
3031     _term_term.set_task(this);
3032     _restart_addr = _global_finger = _cms_space->bottom();
3033   }
3034 
3035 
3036   OopTaskQueueSet* task_queues()  { return _task_queues; }
3037 
3038   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3039 
3040   HeapWord** global_finger_addr() { return &_global_finger; }
3041 
3042   CMSConcMarkingTerminator* terminator() { return &_term; }
3043 
3044   virtual void set_for_termination(uint active_workers) {
3045     terminator()->reset_for_reuse(active_workers);
3046   }
3047 
3048   void work(uint worker_id);
3049   bool should_yield() {
3050     return    ConcurrentMarkSweepThread::should_yield()
3051            && !_collector->foregroundGCIsActive();
3052   }
3053 
3054   virtual void coordinator_yield();  // stuff done by coordinator
3055   bool result() { return _result; }
3056 
3057   void reset(HeapWord* ra) {
3058     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3059     _restart_addr = _global_finger = ra;
3060     _term.reset_for_reuse();
3061   }
3062 
3063   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3064                                            OopTaskQueue* work_q);
3065 
3066  private:
3067   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3068   void do_work_steal(int i);
3069   void bump_global_finger(HeapWord* f);
3070 };
3071 
3072 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3073   assert(_task != NULL, "Error");
3074   return _task->yielding();
3075   // Note that we do not need the disjunct || _task->should_yield() above
3076   // because we want terminating threads to yield only if the task
3077   // is already in the midst of yielding, which happens only after at least one
3078   // thread has yielded.
3079 }
3080 
3081 void CMSConcMarkingTerminator::yield() {
3082   if (_task->should_yield()) {
3083     _task->yield();
3084   } else {
3085     ParallelTaskTerminator::yield();
3086   }
3087 }
3088 
3089 ////////////////////////////////////////////////////////////////
3090 // Concurrent Marking Algorithm Sketch
3091 ////////////////////////////////////////////////////////////////
3092 // Until all tasks exhausted (both spaces):
3093 // -- claim next available chunk
3094 // -- bump global finger via CAS
3095 // -- find first object that starts in this chunk
3096 //    and start scanning bitmap from that position
3097 // -- scan marked objects for oops
3098 // -- CAS-mark target, and if successful:
3099 //    . if target oop is above global finger (volatile read)
3100 //      nothing to do
3101 //    . if target oop is in chunk and above local finger
3102 //        then nothing to do
3103 //    . else push on work-queue
3104 // -- Deal with possible overflow issues:
3105 //    . local work-queue overflow causes stuff to be pushed on
3106 //      global (common) overflow queue
3107 //    . always first empty local work queue
3108 //    . then get a batch of oops from global work queue if any
3109 //    . then do work stealing
3110 // -- When all tasks claimed (both spaces)
3111 //    and local work queue empty,
3112 //    then in a loop do:
3113 //    . check global overflow stack; steal a batch of oops and trace
3114 //    . try to steal from other threads oif GOS is empty
3115 //    . if neither is available, offer termination
3116 // -- Terminate and return result
3117 //
3118 void CMSConcMarkingTask::work(uint worker_id) {
3119   elapsedTimer _timer;
3120   ResourceMark rm;
3121   HandleMark hm;
3122 
3123   DEBUG_ONLY(_collector->verify_overflow_empty();)
3124 
3125   // Before we begin work, our work queue should be empty
3126   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3127   // Scan the bitmap covering _cms_space, tracing through grey objects.
3128   _timer.start();
3129   do_scan_and_mark(worker_id, _cms_space);
3130   _timer.stop();
3131   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3132 
3133   // ... do work stealing
3134   _timer.reset();
3135   _timer.start();
3136   do_work_steal(worker_id);
3137   _timer.stop();
3138   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3139   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3140   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3141   // Note that under the current task protocol, the
3142   // following assertion is true even of the spaces
3143   // expanded since the completion of the concurrent
3144   // marking. XXX This will likely change under a strict
3145   // ABORT semantics.
3146   // After perm removal the comparison was changed to
3147   // greater than or equal to from strictly greater than.
3148   // Before perm removal the highest address sweep would
3149   // have been at the end of perm gen but now is at the
3150   // end of the tenured gen.
3151   assert(_global_finger >=  _cms_space->end(),
3152          "All tasks have been completed");
3153   DEBUG_ONLY(_collector->verify_overflow_empty();)
3154 }
3155 
3156 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3157   HeapWord* read = _global_finger;
3158   HeapWord* cur  = read;
3159   while (f > read) {
3160     cur = read;
3161     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3162     if (cur == read) {
3163       // our cas succeeded
3164       assert(_global_finger >= f, "protocol consistency");
3165       break;
3166     }
3167   }
3168 }
3169 
3170 // This is really inefficient, and should be redone by
3171 // using (not yet available) block-read and -write interfaces to the
3172 // stack and the work_queue. XXX FIX ME !!!
3173 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3174                                                       OopTaskQueue* work_q) {
3175   // Fast lock-free check
3176   if (ovflw_stk->length() == 0) {
3177     return false;
3178   }
3179   assert(work_q->size() == 0, "Shouldn't steal");
3180   MutexLockerEx ml(ovflw_stk->par_lock(),
3181                    Mutex::_no_safepoint_check_flag);
3182   // Grab up to 1/4 the size of the work queue
3183   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3184                     (size_t)ParGCDesiredObjsFromOverflowList);
3185   num = MIN2(num, ovflw_stk->length());
3186   for (int i = (int) num; i > 0; i--) {
3187     oop cur = ovflw_stk->pop();
3188     assert(cur != NULL, "Counted wrong?");
3189     work_q->push(cur);
3190   }
3191   return num > 0;
3192 }
3193 
3194 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3195   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3196   int n_tasks = pst->n_tasks();
3197   // We allow that there may be no tasks to do here because
3198   // we are restarting after a stack overflow.
3199   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3200   uint nth_task = 0;
3201 
3202   HeapWord* aligned_start = sp->bottom();
3203   if (sp->used_region().contains(_restart_addr)) {
3204     // Align down to a card boundary for the start of 0th task
3205     // for this space.
3206     aligned_start =
3207       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3208                                  CardTableModRefBS::card_size);
3209   }
3210 
3211   size_t chunk_size = sp->marking_task_size();
3212   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3213     // Having claimed the nth task in this space,
3214     // compute the chunk that it corresponds to:
3215     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3216                                aligned_start + (nth_task+1)*chunk_size);
3217     // Try and bump the global finger via a CAS;
3218     // note that we need to do the global finger bump
3219     // _before_ taking the intersection below, because
3220     // the task corresponding to that region will be
3221     // deemed done even if the used_region() expands
3222     // because of allocation -- as it almost certainly will
3223     // during start-up while the threads yield in the
3224     // closure below.
3225     HeapWord* finger = span.end();
3226     bump_global_finger(finger);   // atomically
3227     // There are null tasks here corresponding to chunks
3228     // beyond the "top" address of the space.
3229     span = span.intersection(sp->used_region());
3230     if (!span.is_empty()) {  // Non-null task
3231       HeapWord* prev_obj;
3232       assert(!span.contains(_restart_addr) || nth_task == 0,
3233              "Inconsistency");
3234       if (nth_task == 0) {
3235         // For the 0th task, we'll not need to compute a block_start.
3236         if (span.contains(_restart_addr)) {
3237           // In the case of a restart because of stack overflow,
3238           // we might additionally skip a chunk prefix.
3239           prev_obj = _restart_addr;
3240         } else {
3241           prev_obj = span.start();
3242         }
3243       } else {
3244         // We want to skip the first object because
3245         // the protocol is to scan any object in its entirety
3246         // that _starts_ in this span; a fortiori, any
3247         // object starting in an earlier span is scanned
3248         // as part of an earlier claimed task.
3249         // Below we use the "careful" version of block_start
3250         // so we do not try to navigate uninitialized objects.
3251         prev_obj = sp->block_start_careful(span.start());
3252         // Below we use a variant of block_size that uses the
3253         // Printezis bits to avoid waiting for allocated
3254         // objects to become initialized/parsable.
3255         while (prev_obj < span.start()) {
3256           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3257           if (sz > 0) {
3258             prev_obj += sz;
3259           } else {
3260             // In this case we may end up doing a bit of redundant
3261             // scanning, but that appears unavoidable, short of
3262             // locking the free list locks; see bug 6324141.
3263             break;
3264           }
3265         }
3266       }
3267       if (prev_obj < span.end()) {
3268         MemRegion my_span = MemRegion(prev_obj, span.end());
3269         // Do the marking work within a non-empty span --
3270         // the last argument to the constructor indicates whether the
3271         // iteration should be incremental with periodic yields.
3272         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3273                                     &_collector->_markBitMap,
3274                                     work_queue(i),
3275                                     &_collector->_markStack);
3276         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3277       } // else nothing to do for this task
3278     }   // else nothing to do for this task
3279   }
3280   // We'd be tempted to assert here that since there are no
3281   // more tasks left to claim in this space, the global_finger
3282   // must exceed space->top() and a fortiori space->end(). However,
3283   // that would not quite be correct because the bumping of
3284   // global_finger occurs strictly after the claiming of a task,
3285   // so by the time we reach here the global finger may not yet
3286   // have been bumped up by the thread that claimed the last
3287   // task.
3288   pst->all_tasks_completed();
3289 }
3290 
3291 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3292  private:
3293   CMSCollector* _collector;
3294   CMSConcMarkingTask* _task;
3295   MemRegion     _span;
3296   CMSBitMap*    _bit_map;
3297   CMSMarkStack* _overflow_stack;
3298   OopTaskQueue* _work_queue;
3299  protected:
3300   DO_OOP_WORK_DEFN
3301  public:
3302   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3303                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3304     MetadataAwareOopClosure(collector->ref_processor()),
3305     _collector(collector),
3306     _task(task),
3307     _span(collector->_span),
3308     _work_queue(work_queue),
3309     _bit_map(bit_map),
3310     _overflow_stack(overflow_stack)
3311   { }
3312   virtual void do_oop(oop* p);
3313   virtual void do_oop(narrowOop* p);
3314 
3315   void trim_queue(size_t max);
3316   void handle_stack_overflow(HeapWord* lost);
3317   void do_yield_check() {
3318     if (_task->should_yield()) {
3319       _task->yield();
3320     }
3321   }
3322 };
3323 
3324 // Grey object scanning during work stealing phase --
3325 // the salient assumption here is that any references
3326 // that are in these stolen objects being scanned must
3327 // already have been initialized (else they would not have
3328 // been published), so we do not need to check for
3329 // uninitialized objects before pushing here.
3330 void Par_ConcMarkingClosure::do_oop(oop obj) {
3331   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3332   HeapWord* addr = (HeapWord*)obj;
3333   // Check if oop points into the CMS generation
3334   // and is not marked
3335   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3336     // a white object ...
3337     // If we manage to "claim" the object, by being the
3338     // first thread to mark it, then we push it on our
3339     // marking stack
3340     if (_bit_map->par_mark(addr)) {     // ... now grey
3341       // push on work queue (grey set)
3342       bool simulate_overflow = false;
3343       NOT_PRODUCT(
3344         if (CMSMarkStackOverflowALot &&
3345             _collector->simulate_overflow()) {
3346           // simulate a stack overflow
3347           simulate_overflow = true;
3348         }
3349       )
3350       if (simulate_overflow ||
3351           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3352         // stack overflow
3353         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3354         // We cannot assert that the overflow stack is full because
3355         // it may have been emptied since.
3356         assert(simulate_overflow ||
3357                _work_queue->size() == _work_queue->max_elems(),
3358               "Else push should have succeeded");
3359         handle_stack_overflow(addr);
3360       }
3361     } // Else, some other thread got there first
3362     do_yield_check();
3363   }
3364 }
3365 
3366 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3367 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3368 
3369 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3370   while (_work_queue->size() > max) {
3371     oop new_oop;
3372     if (_work_queue->pop_local(new_oop)) {
3373       assert(new_oop->is_oop(), "Should be an oop");
3374       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3375       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3376       new_oop->oop_iterate(this);  // do_oop() above
3377       do_yield_check();
3378     }
3379   }
3380 }
3381 
3382 // Upon stack overflow, we discard (part of) the stack,
3383 // remembering the least address amongst those discarded
3384 // in CMSCollector's _restart_address.
3385 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3386   // We need to do this under a mutex to prevent other
3387   // workers from interfering with the work done below.
3388   MutexLockerEx ml(_overflow_stack->par_lock(),
3389                    Mutex::_no_safepoint_check_flag);
3390   // Remember the least grey address discarded
3391   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3392   _collector->lower_restart_addr(ra);
3393   _overflow_stack->reset();  // discard stack contents
3394   _overflow_stack->expand(); // expand the stack if possible
3395 }
3396 
3397 
3398 void CMSConcMarkingTask::do_work_steal(int i) {
3399   OopTaskQueue* work_q = work_queue(i);
3400   oop obj_to_scan;
3401   CMSBitMap* bm = &(_collector->_markBitMap);
3402   CMSMarkStack* ovflw = &(_collector->_markStack);
3403   int* seed = _collector->hash_seed(i);
3404   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3405   while (true) {
3406     cl.trim_queue(0);
3407     assert(work_q->size() == 0, "Should have been emptied above");
3408     if (get_work_from_overflow_stack(ovflw, work_q)) {
3409       // Can't assert below because the work obtained from the
3410       // overflow stack may already have been stolen from us.
3411       // assert(work_q->size() > 0, "Work from overflow stack");
3412       continue;
3413     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3414       assert(obj_to_scan->is_oop(), "Should be an oop");
3415       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3416       obj_to_scan->oop_iterate(&cl);
3417     } else if (terminator()->offer_termination(&_term_term)) {
3418       assert(work_q->size() == 0, "Impossible!");
3419       break;
3420     } else if (yielding() || should_yield()) {
3421       yield();
3422     }
3423   }
3424 }
3425 
3426 // This is run by the CMS (coordinator) thread.
3427 void CMSConcMarkingTask::coordinator_yield() {
3428   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3429          "CMS thread should hold CMS token");
3430   // First give up the locks, then yield, then re-lock
3431   // We should probably use a constructor/destructor idiom to
3432   // do this unlock/lock or modify the MutexUnlocker class to
3433   // serve our purpose. XXX
3434   assert_lock_strong(_bit_map_lock);
3435   _bit_map_lock->unlock();
3436   ConcurrentMarkSweepThread::desynchronize(true);
3437   _collector->stopTimer();
3438   _collector->incrementYields();
3439 
3440   // It is possible for whichever thread initiated the yield request
3441   // not to get a chance to wake up and take the bitmap lock between
3442   // this thread releasing it and reacquiring it. So, while the
3443   // should_yield() flag is on, let's sleep for a bit to give the
3444   // other thread a chance to wake up. The limit imposed on the number
3445   // of iterations is defensive, to avoid any unforseen circumstances
3446   // putting us into an infinite loop. Since it's always been this
3447   // (coordinator_yield()) method that was observed to cause the
3448   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3449   // which is by default non-zero. For the other seven methods that
3450   // also perform the yield operation, as are using a different
3451   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3452   // can enable the sleeping for those methods too, if necessary.
3453   // See 6442774.
3454   //
3455   // We really need to reconsider the synchronization between the GC
3456   // thread and the yield-requesting threads in the future and we
3457   // should really use wait/notify, which is the recommended
3458   // way of doing this type of interaction. Additionally, we should
3459   // consolidate the eight methods that do the yield operation and they
3460   // are almost identical into one for better maintainability and
3461   // readability. See 6445193.
3462   //
3463   // Tony 2006.06.29
3464   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3465                    ConcurrentMarkSweepThread::should_yield() &&
3466                    !CMSCollector::foregroundGCIsActive(); ++i) {
3467     os::sleep(Thread::current(), 1, false);
3468   }
3469 
3470   ConcurrentMarkSweepThread::synchronize(true);
3471   _bit_map_lock->lock_without_safepoint_check();
3472   _collector->startTimer();
3473 }
3474 
3475 bool CMSCollector::do_marking_mt() {
3476   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3477   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3478                                                                   conc_workers()->active_workers(),
3479                                                                   Threads::number_of_non_daemon_threads());
3480   conc_workers()->set_active_workers(num_workers);
3481 
3482   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3483 
3484   CMSConcMarkingTask tsk(this,
3485                          cms_space,
3486                          conc_workers(),
3487                          task_queues());
3488 
3489   // Since the actual number of workers we get may be different
3490   // from the number we requested above, do we need to do anything different
3491   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3492   // class?? XXX
3493   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3494 
3495   // Refs discovery is already non-atomic.
3496   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3497   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3498   conc_workers()->start_task(&tsk);
3499   while (tsk.yielded()) {
3500     tsk.coordinator_yield();
3501     conc_workers()->continue_task(&tsk);
3502   }
3503   // If the task was aborted, _restart_addr will be non-NULL
3504   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3505   while (_restart_addr != NULL) {
3506     // XXX For now we do not make use of ABORTED state and have not
3507     // yet implemented the right abort semantics (even in the original
3508     // single-threaded CMS case). That needs some more investigation
3509     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3510     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3511     // If _restart_addr is non-NULL, a marking stack overflow
3512     // occurred; we need to do a fresh marking iteration from the
3513     // indicated restart address.
3514     if (_foregroundGCIsActive) {
3515       // We may be running into repeated stack overflows, having
3516       // reached the limit of the stack size, while making very
3517       // slow forward progress. It may be best to bail out and
3518       // let the foreground collector do its job.
3519       // Clear _restart_addr, so that foreground GC
3520       // works from scratch. This avoids the headache of
3521       // a "rescan" which would otherwise be needed because
3522       // of the dirty mod union table & card table.
3523       _restart_addr = NULL;
3524       return false;
3525     }
3526     // Adjust the task to restart from _restart_addr
3527     tsk.reset(_restart_addr);
3528     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3529                   _restart_addr);
3530     _restart_addr = NULL;
3531     // Get the workers going again
3532     conc_workers()->start_task(&tsk);
3533     while (tsk.yielded()) {
3534       tsk.coordinator_yield();
3535       conc_workers()->continue_task(&tsk);
3536     }
3537   }
3538   assert(tsk.completed(), "Inconsistency");
3539   assert(tsk.result() == true, "Inconsistency");
3540   return true;
3541 }
3542 
3543 bool CMSCollector::do_marking_st() {
3544   ResourceMark rm;
3545   HandleMark   hm;
3546 
3547   // Temporarily make refs discovery single threaded (non-MT)
3548   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3549   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3550     &_markStack, CMSYield);
3551   // the last argument to iterate indicates whether the iteration
3552   // should be incremental with periodic yields.
3553   _markBitMap.iterate(&markFromRootsClosure);
3554   // If _restart_addr is non-NULL, a marking stack overflow
3555   // occurred; we need to do a fresh iteration from the
3556   // indicated restart address.
3557   while (_restart_addr != NULL) {
3558     if (_foregroundGCIsActive) {
3559       // We may be running into repeated stack overflows, having
3560       // reached the limit of the stack size, while making very
3561       // slow forward progress. It may be best to bail out and
3562       // let the foreground collector do its job.
3563       // Clear _restart_addr, so that foreground GC
3564       // works from scratch. This avoids the headache of
3565       // a "rescan" which would otherwise be needed because
3566       // of the dirty mod union table & card table.
3567       _restart_addr = NULL;
3568       return false;  // indicating failure to complete marking
3569     }
3570     // Deal with stack overflow:
3571     // we restart marking from _restart_addr
3572     HeapWord* ra = _restart_addr;
3573     markFromRootsClosure.reset(ra);
3574     _restart_addr = NULL;
3575     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3576   }
3577   return true;
3578 }
3579 
3580 void CMSCollector::preclean() {
3581   check_correct_thread_executing();
3582   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3583   verify_work_stacks_empty();
3584   verify_overflow_empty();
3585   _abort_preclean = false;
3586   if (CMSPrecleaningEnabled) {
3587     if (!CMSEdenChunksRecordAlways) {
3588       _eden_chunk_index = 0;
3589     }
3590     size_t used = get_eden_used();
3591     size_t capacity = get_eden_capacity();
3592     // Don't start sampling unless we will get sufficiently
3593     // many samples.
3594     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3595                 * CMSScheduleRemarkEdenPenetration)) {
3596       _start_sampling = true;
3597     } else {
3598       _start_sampling = false;
3599     }
3600     GCTraceCPUTime tcpu;
3601     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3602     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3603   }
3604   CMSTokenSync x(true); // is cms thread
3605   if (CMSPrecleaningEnabled) {
3606     sample_eden();
3607     _collectorState = AbortablePreclean;
3608   } else {
3609     _collectorState = FinalMarking;
3610   }
3611   verify_work_stacks_empty();
3612   verify_overflow_empty();
3613 }
3614 
3615 // Try and schedule the remark such that young gen
3616 // occupancy is CMSScheduleRemarkEdenPenetration %.
3617 void CMSCollector::abortable_preclean() {
3618   check_correct_thread_executing();
3619   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3620   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3621 
3622   // If Eden's current occupancy is below this threshold,
3623   // immediately schedule the remark; else preclean
3624   // past the next scavenge in an effort to
3625   // schedule the pause as described above. By choosing
3626   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3627   // we will never do an actual abortable preclean cycle.
3628   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3629     GCTraceCPUTime tcpu;
3630     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3631     // We need more smarts in the abortable preclean
3632     // loop below to deal with cases where allocation
3633     // in young gen is very very slow, and our precleaning
3634     // is running a losing race against a horde of
3635     // mutators intent on flooding us with CMS updates
3636     // (dirty cards).
3637     // One, admittedly dumb, strategy is to give up
3638     // after a certain number of abortable precleaning loops
3639     // or after a certain maximum time. We want to make
3640     // this smarter in the next iteration.
3641     // XXX FIX ME!!! YSR
3642     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3643     while (!(should_abort_preclean() ||
3644              ConcurrentMarkSweepThread::should_terminate())) {
3645       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3646       cumworkdone += workdone;
3647       loops++;
3648       // Voluntarily terminate abortable preclean phase if we have
3649       // been at it for too long.
3650       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3651           loops >= CMSMaxAbortablePrecleanLoops) {
3652         log_debug(gc)(" CMS: abort preclean due to loops ");
3653         break;
3654       }
3655       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3656         log_debug(gc)(" CMS: abort preclean due to time ");
3657         break;
3658       }
3659       // If we are doing little work each iteration, we should
3660       // take a short break.
3661       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3662         // Sleep for some time, waiting for work to accumulate
3663         stopTimer();
3664         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3665         startTimer();
3666         waited++;
3667       }
3668     }
3669     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3670                                loops, waited, cumworkdone);
3671   }
3672   CMSTokenSync x(true); // is cms thread
3673   if (_collectorState != Idling) {
3674     assert(_collectorState == AbortablePreclean,
3675            "Spontaneous state transition?");
3676     _collectorState = FinalMarking;
3677   } // Else, a foreground collection completed this CMS cycle.
3678   return;
3679 }
3680 
3681 // Respond to an Eden sampling opportunity
3682 void CMSCollector::sample_eden() {
3683   // Make sure a young gc cannot sneak in between our
3684   // reading and recording of a sample.
3685   assert(Thread::current()->is_ConcurrentGC_thread(),
3686          "Only the cms thread may collect Eden samples");
3687   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3688          "Should collect samples while holding CMS token");
3689   if (!_start_sampling) {
3690     return;
3691   }
3692   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3693   // is populated by the young generation.
3694   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3695     if (_eden_chunk_index < _eden_chunk_capacity) {
3696       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3697       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3698              "Unexpected state of Eden");
3699       // We'd like to check that what we just sampled is an oop-start address;
3700       // however, we cannot do that here since the object may not yet have been
3701       // initialized. So we'll instead do the check when we _use_ this sample
3702       // later.
3703       if (_eden_chunk_index == 0 ||
3704           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3705                          _eden_chunk_array[_eden_chunk_index-1])
3706            >= CMSSamplingGrain)) {
3707         _eden_chunk_index++;  // commit sample
3708       }
3709     }
3710   }
3711   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3712     size_t used = get_eden_used();
3713     size_t capacity = get_eden_capacity();
3714     assert(used <= capacity, "Unexpected state of Eden");
3715     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3716       _abort_preclean = true;
3717     }
3718   }
3719 }
3720 
3721 
3722 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3723   assert(_collectorState == Precleaning ||
3724          _collectorState == AbortablePreclean, "incorrect state");
3725   ResourceMark rm;
3726   HandleMark   hm;
3727 
3728   // Precleaning is currently not MT but the reference processor
3729   // may be set for MT.  Disable it temporarily here.
3730   ReferenceProcessor* rp = ref_processor();
3731   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3732 
3733   // Do one pass of scrubbing the discovered reference lists
3734   // to remove any reference objects with strongly-reachable
3735   // referents.
3736   if (clean_refs) {
3737     CMSPrecleanRefsYieldClosure yield_cl(this);
3738     assert(rp->span().equals(_span), "Spans should be equal");
3739     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3740                                    &_markStack, true /* preclean */);
3741     CMSDrainMarkingStackClosure complete_trace(this,
3742                                    _span, &_markBitMap, &_markStack,
3743                                    &keep_alive, true /* preclean */);
3744 
3745     // We don't want this step to interfere with a young
3746     // collection because we don't want to take CPU
3747     // or memory bandwidth away from the young GC threads
3748     // (which may be as many as there are CPUs).
3749     // Note that we don't need to protect ourselves from
3750     // interference with mutators because they can't
3751     // manipulate the discovered reference lists nor affect
3752     // the computed reachability of the referents, the
3753     // only properties manipulated by the precleaning
3754     // of these reference lists.
3755     stopTimer();
3756     CMSTokenSyncWithLocks x(true /* is cms thread */,
3757                             bitMapLock());
3758     startTimer();
3759     sample_eden();
3760 
3761     // The following will yield to allow foreground
3762     // collection to proceed promptly. XXX YSR:
3763     // The code in this method may need further
3764     // tweaking for better performance and some restructuring
3765     // for cleaner interfaces.
3766     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3767     rp->preclean_discovered_references(
3768           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3769           gc_timer);
3770   }
3771 
3772   if (clean_survivor) {  // preclean the active survivor space(s)
3773     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3774                              &_markBitMap, &_modUnionTable,
3775                              &_markStack, true /* precleaning phase */);
3776     stopTimer();
3777     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3778                              bitMapLock());
3779     startTimer();
3780     unsigned int before_count =
3781       GenCollectedHeap::heap()->total_collections();
3782     SurvivorSpacePrecleanClosure
3783       sss_cl(this, _span, &_markBitMap, &_markStack,
3784              &pam_cl, before_count, CMSYield);
3785     _young_gen->from()->object_iterate_careful(&sss_cl);
3786     _young_gen->to()->object_iterate_careful(&sss_cl);
3787   }
3788   MarkRefsIntoAndScanClosure
3789     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3790              &_markStack, this, CMSYield,
3791              true /* precleaning phase */);
3792   // CAUTION: The following closure has persistent state that may need to
3793   // be reset upon a decrease in the sequence of addresses it
3794   // processes.
3795   ScanMarkedObjectsAgainCarefullyClosure
3796     smoac_cl(this, _span,
3797       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3798 
3799   // Preclean dirty cards in ModUnionTable and CardTable using
3800   // appropriate convergence criterion;
3801   // repeat CMSPrecleanIter times unless we find that
3802   // we are losing.
3803   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3804   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3805          "Bad convergence multiplier");
3806   assert(CMSPrecleanThreshold >= 100,
3807          "Unreasonably low CMSPrecleanThreshold");
3808 
3809   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3810   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3811        numIter < CMSPrecleanIter;
3812        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3813     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3814     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3815     // Either there are very few dirty cards, so re-mark
3816     // pause will be small anyway, or our pre-cleaning isn't
3817     // that much faster than the rate at which cards are being
3818     // dirtied, so we might as well stop and re-mark since
3819     // precleaning won't improve our re-mark time by much.
3820     if (curNumCards <= CMSPrecleanThreshold ||
3821         (numIter > 0 &&
3822          (curNumCards * CMSPrecleanDenominator >
3823          lastNumCards * CMSPrecleanNumerator))) {
3824       numIter++;
3825       cumNumCards += curNumCards;
3826       break;
3827     }
3828   }
3829 
3830   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3831 
3832   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3833   cumNumCards += curNumCards;
3834   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3835                              curNumCards, cumNumCards, numIter);
3836   return cumNumCards;   // as a measure of useful work done
3837 }
3838 
3839 // PRECLEANING NOTES:
3840 // Precleaning involves:
3841 // . reading the bits of the modUnionTable and clearing the set bits.
3842 // . For the cards corresponding to the set bits, we scan the
3843 //   objects on those cards. This means we need the free_list_lock
3844 //   so that we can safely iterate over the CMS space when scanning
3845 //   for oops.
3846 // . When we scan the objects, we'll be both reading and setting
3847 //   marks in the marking bit map, so we'll need the marking bit map.
3848 // . For protecting _collector_state transitions, we take the CGC_lock.
3849 //   Note that any races in the reading of of card table entries by the
3850 //   CMS thread on the one hand and the clearing of those entries by the
3851 //   VM thread or the setting of those entries by the mutator threads on the
3852 //   other are quite benign. However, for efficiency it makes sense to keep
3853 //   the VM thread from racing with the CMS thread while the latter is
3854 //   dirty card info to the modUnionTable. We therefore also use the
3855 //   CGC_lock to protect the reading of the card table and the mod union
3856 //   table by the CM thread.
3857 // . We run concurrently with mutator updates, so scanning
3858 //   needs to be done carefully  -- we should not try to scan
3859 //   potentially uninitialized objects.
3860 //
3861 // Locking strategy: While holding the CGC_lock, we scan over and
3862 // reset a maximal dirty range of the mod union / card tables, then lock
3863 // the free_list_lock and bitmap lock to do a full marking, then
3864 // release these locks; and repeat the cycle. This allows for a
3865 // certain amount of fairness in the sharing of these locks between
3866 // the CMS collector on the one hand, and the VM thread and the
3867 // mutators on the other.
3868 
3869 // NOTE: preclean_mod_union_table() and preclean_card_table()
3870 // further below are largely identical; if you need to modify
3871 // one of these methods, please check the other method too.
3872 
3873 size_t CMSCollector::preclean_mod_union_table(
3874   ConcurrentMarkSweepGeneration* old_gen,
3875   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3876   verify_work_stacks_empty();
3877   verify_overflow_empty();
3878 
3879   // strategy: starting with the first card, accumulate contiguous
3880   // ranges of dirty cards; clear these cards, then scan the region
3881   // covered by these cards.
3882 
3883   // Since all of the MUT is committed ahead, we can just use
3884   // that, in case the generations expand while we are precleaning.
3885   // It might also be fine to just use the committed part of the
3886   // generation, but we might potentially miss cards when the
3887   // generation is rapidly expanding while we are in the midst
3888   // of precleaning.
3889   HeapWord* startAddr = old_gen->reserved().start();
3890   HeapWord* endAddr   = old_gen->reserved().end();
3891 
3892   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3893 
3894   size_t numDirtyCards, cumNumDirtyCards;
3895   HeapWord *nextAddr, *lastAddr;
3896   for (cumNumDirtyCards = numDirtyCards = 0,
3897        nextAddr = lastAddr = startAddr;
3898        nextAddr < endAddr;
3899        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3900 
3901     ResourceMark rm;
3902     HandleMark   hm;
3903 
3904     MemRegion dirtyRegion;
3905     {
3906       stopTimer();
3907       // Potential yield point
3908       CMSTokenSync ts(true);
3909       startTimer();
3910       sample_eden();
3911       // Get dirty region starting at nextOffset (inclusive),
3912       // simultaneously clearing it.
3913       dirtyRegion =
3914         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3915       assert(dirtyRegion.start() >= nextAddr,
3916              "returned region inconsistent?");
3917     }
3918     // Remember where the next search should begin.
3919     // The returned region (if non-empty) is a right open interval,
3920     // so lastOffset is obtained from the right end of that
3921     // interval.
3922     lastAddr = dirtyRegion.end();
3923     // Should do something more transparent and less hacky XXX
3924     numDirtyCards =
3925       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3926 
3927     // We'll scan the cards in the dirty region (with periodic
3928     // yields for foreground GC as needed).
3929     if (!dirtyRegion.is_empty()) {
3930       assert(numDirtyCards > 0, "consistency check");
3931       HeapWord* stop_point = NULL;
3932       stopTimer();
3933       // Potential yield point
3934       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3935                                bitMapLock());
3936       startTimer();
3937       {
3938         verify_work_stacks_empty();
3939         verify_overflow_empty();
3940         sample_eden();
3941         stop_point =
3942           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3943       }
3944       if (stop_point != NULL) {
3945         // The careful iteration stopped early either because it found an
3946         // uninitialized object, or because we were in the midst of an
3947         // "abortable preclean", which should now be aborted. Redirty
3948         // the bits corresponding to the partially-scanned or unscanned
3949         // cards. We'll either restart at the next block boundary or
3950         // abort the preclean.
3951         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3952                "Should only be AbortablePreclean.");
3953         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3954         if (should_abort_preclean()) {
3955           break; // out of preclean loop
3956         } else {
3957           // Compute the next address at which preclean should pick up;
3958           // might need bitMapLock in order to read P-bits.
3959           lastAddr = next_card_start_after_block(stop_point);
3960         }
3961       }
3962     } else {
3963       assert(lastAddr == endAddr, "consistency check");
3964       assert(numDirtyCards == 0, "consistency check");
3965       break;
3966     }
3967   }
3968   verify_work_stacks_empty();
3969   verify_overflow_empty();
3970   return cumNumDirtyCards;
3971 }
3972 
3973 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3974 // below are largely identical; if you need to modify
3975 // one of these methods, please check the other method too.
3976 
3977 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3978   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3979   // strategy: it's similar to precleamModUnionTable above, in that
3980   // we accumulate contiguous ranges of dirty cards, mark these cards
3981   // precleaned, then scan the region covered by these cards.
3982   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
3983   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
3984 
3985   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3986 
3987   size_t numDirtyCards, cumNumDirtyCards;
3988   HeapWord *lastAddr, *nextAddr;
3989 
3990   for (cumNumDirtyCards = numDirtyCards = 0,
3991        nextAddr = lastAddr = startAddr;
3992        nextAddr < endAddr;
3993        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3994 
3995     ResourceMark rm;
3996     HandleMark   hm;
3997 
3998     MemRegion dirtyRegion;
3999     {
4000       // See comments in "Precleaning notes" above on why we
4001       // do this locking. XXX Could the locking overheads be
4002       // too high when dirty cards are sparse? [I don't think so.]
4003       stopTimer();
4004       CMSTokenSync x(true); // is cms thread
4005       startTimer();
4006       sample_eden();
4007       // Get and clear dirty region from card table
4008       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4009                                     MemRegion(nextAddr, endAddr),
4010                                     true,
4011                                     CardTableModRefBS::precleaned_card_val());
4012 
4013       assert(dirtyRegion.start() >= nextAddr,
4014              "returned region inconsistent?");
4015     }
4016     lastAddr = dirtyRegion.end();
4017     numDirtyCards =
4018       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4019 
4020     if (!dirtyRegion.is_empty()) {
4021       stopTimer();
4022       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4023       startTimer();
4024       sample_eden();
4025       verify_work_stacks_empty();
4026       verify_overflow_empty();
4027       HeapWord* stop_point =
4028         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4029       if (stop_point != NULL) {
4030         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4031                "Should only be AbortablePreclean.");
4032         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4033         if (should_abort_preclean()) {
4034           break; // out of preclean loop
4035         } else {
4036           // Compute the next address at which preclean should pick up.
4037           lastAddr = next_card_start_after_block(stop_point);
4038         }
4039       }
4040     } else {
4041       break;
4042     }
4043   }
4044   verify_work_stacks_empty();
4045   verify_overflow_empty();
4046   return cumNumDirtyCards;
4047 }
4048 
4049 class PrecleanKlassClosure : public KlassClosure {
4050   KlassToOopClosure _cm_klass_closure;
4051  public:
4052   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4053   void do_klass(Klass* k) {
4054     if (k->has_accumulated_modified_oops()) {
4055       k->clear_accumulated_modified_oops();
4056 
4057       _cm_klass_closure.do_klass(k);
4058     }
4059   }
4060 };
4061 
4062 // The freelist lock is needed to prevent asserts, is it really needed?
4063 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4064 
4065   cl->set_freelistLock(freelistLock);
4066 
4067   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4068 
4069   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4070   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4071   PrecleanKlassClosure preclean_klass_closure(cl);
4072   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4073 
4074   verify_work_stacks_empty();
4075   verify_overflow_empty();
4076 }
4077 
4078 void CMSCollector::checkpointRootsFinal() {
4079   assert(_collectorState == FinalMarking, "incorrect state transition?");
4080   check_correct_thread_executing();
4081   // world is stopped at this checkpoint
4082   assert(SafepointSynchronize::is_at_safepoint(),
4083          "world should be stopped");
4084   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4085 
4086   verify_work_stacks_empty();
4087   verify_overflow_empty();
4088 
4089   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4090                 _young_gen->used() / K, _young_gen->capacity() / K);
4091   {
4092     if (CMSScavengeBeforeRemark) {
4093       GenCollectedHeap* gch = GenCollectedHeap::heap();
4094       // Temporarily set flag to false, GCH->do_collection will
4095       // expect it to be false and set to true
4096       FlagSetting fl(gch->_is_gc_active, false);
4097 
4098       GCTraceTime(Trace, gc) tm("Pause Scavenge Before Remark", _gc_timer_cm);
4099 
4100       gch->do_collection(true,                      // full (i.e. force, see below)
4101                          false,                     // !clear_all_soft_refs
4102                          0,                         // size
4103                          false,                     // is_tlab
4104                          GenCollectedHeap::YoungGen // type
4105         );
4106     }
4107     FreelistLocker x(this);
4108     MutexLockerEx y(bitMapLock(),
4109                     Mutex::_no_safepoint_check_flag);
4110     checkpointRootsFinalWork();
4111   }
4112   verify_work_stacks_empty();
4113   verify_overflow_empty();
4114 }
4115 
4116 void CMSCollector::checkpointRootsFinalWork() {
4117   GCTraceTime(Trace, gc) tm("checkpointRootsFinalWork", _gc_timer_cm);
4118 
4119   assert(haveFreelistLocks(), "must have free list locks");
4120   assert_lock_strong(bitMapLock());
4121 
4122   ResourceMark rm;
4123   HandleMark   hm;
4124 
4125   GenCollectedHeap* gch = GenCollectedHeap::heap();
4126 
4127   if (should_unload_classes()) {
4128     CodeCache::gc_prologue();
4129   }
4130   assert(haveFreelistLocks(), "must have free list locks");
4131   assert_lock_strong(bitMapLock());
4132 
4133   // We might assume that we need not fill TLAB's when
4134   // CMSScavengeBeforeRemark is set, because we may have just done
4135   // a scavenge which would have filled all TLAB's -- and besides
4136   // Eden would be empty. This however may not always be the case --
4137   // for instance although we asked for a scavenge, it may not have
4138   // happened because of a JNI critical section. We probably need
4139   // a policy for deciding whether we can in that case wait until
4140   // the critical section releases and then do the remark following
4141   // the scavenge, and skip it here. In the absence of that policy,
4142   // or of an indication of whether the scavenge did indeed occur,
4143   // we cannot rely on TLAB's having been filled and must do
4144   // so here just in case a scavenge did not happen.
4145   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4146   // Update the saved marks which may affect the root scans.
4147   gch->save_marks();
4148 
4149   print_eden_and_survivor_chunk_arrays();
4150 
4151   {
4152 #if defined(COMPILER2) || INCLUDE_JVMCI
4153     DerivedPointerTableDeactivate dpt_deact;
4154 #endif
4155 
4156     // Note on the role of the mod union table:
4157     // Since the marker in "markFromRoots" marks concurrently with
4158     // mutators, it is possible for some reachable objects not to have been
4159     // scanned. For instance, an only reference to an object A was
4160     // placed in object B after the marker scanned B. Unless B is rescanned,
4161     // A would be collected. Such updates to references in marked objects
4162     // are detected via the mod union table which is the set of all cards
4163     // dirtied since the first checkpoint in this GC cycle and prior to
4164     // the most recent young generation GC, minus those cleaned up by the
4165     // concurrent precleaning.
4166     if (CMSParallelRemarkEnabled) {
4167       GCTraceTime(Debug, gc) t("Rescan (parallel)", _gc_timer_cm);
4168       do_remark_parallel();
4169     } else {
4170       GCTraceTime(Debug, gc) t("Rescan (non-parallel)", _gc_timer_cm);
4171       do_remark_non_parallel();
4172     }
4173   }
4174   verify_work_stacks_empty();
4175   verify_overflow_empty();
4176 
4177   {
4178     GCTraceTime(Trace, gc) ts("refProcessingWork", _gc_timer_cm);
4179     refProcessingWork();
4180   }
4181   verify_work_stacks_empty();
4182   verify_overflow_empty();
4183 
4184   if (should_unload_classes()) {
4185     CodeCache::gc_epilogue();
4186   }
4187   JvmtiExport::gc_epilogue();
4188 
4189   // If we encountered any (marking stack / work queue) overflow
4190   // events during the current CMS cycle, take appropriate
4191   // remedial measures, where possible, so as to try and avoid
4192   // recurrence of that condition.
4193   assert(_markStack.isEmpty(), "No grey objects");
4194   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4195                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4196   if (ser_ovflw > 0) {
4197     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4198                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4199     _markStack.expand();
4200     _ser_pmc_remark_ovflw = 0;
4201     _ser_pmc_preclean_ovflw = 0;
4202     _ser_kac_preclean_ovflw = 0;
4203     _ser_kac_ovflw = 0;
4204   }
4205   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4206      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4207                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4208      _par_pmc_remark_ovflw = 0;
4209     _par_kac_ovflw = 0;
4210   }
4211    if (_markStack._hit_limit > 0) {
4212      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4213                           _markStack._hit_limit);
4214    }
4215    if (_markStack._failed_double > 0) {
4216      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4217                           _markStack._failed_double, _markStack.capacity());
4218    }
4219   _markStack._hit_limit = 0;
4220   _markStack._failed_double = 0;
4221 
4222   if ((VerifyAfterGC || VerifyDuringGC) &&
4223       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4224     verify_after_remark();
4225   }
4226 
4227   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4228 
4229   // Change under the freelistLocks.
4230   _collectorState = Sweeping;
4231   // Call isAllClear() under bitMapLock
4232   assert(_modUnionTable.isAllClear(),
4233       "Should be clear by end of the final marking");
4234   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4235       "Should be clear by end of the final marking");
4236 }
4237 
4238 void CMSParInitialMarkTask::work(uint worker_id) {
4239   elapsedTimer _timer;
4240   ResourceMark rm;
4241   HandleMark   hm;
4242 
4243   // ---------- scan from roots --------------
4244   _timer.start();
4245   GenCollectedHeap* gch = GenCollectedHeap::heap();
4246   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4247 
4248   // ---------- young gen roots --------------
4249   {
4250     work_on_young_gen_roots(worker_id, &par_mri_cl);
4251     _timer.stop();
4252     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4253   }
4254 
4255   // ---------- remaining roots --------------
4256   _timer.reset();
4257   _timer.start();
4258 
4259   CLDToOopClosure cld_closure(&par_mri_cl, true);
4260 
4261   gch->gen_process_roots(_strong_roots_scope,
4262                          GenCollectedHeap::OldGen,
4263                          false,     // yg was scanned above
4264                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4265                          _collector->should_unload_classes(),
4266                          &par_mri_cl,
4267                          NULL,
4268                          &cld_closure);
4269   assert(_collector->should_unload_classes()
4270          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4271          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4272   _timer.stop();
4273   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4274 }
4275 
4276 // Parallel remark task
4277 class CMSParRemarkTask: public CMSParMarkTask {
4278   CompactibleFreeListSpace* _cms_space;
4279 
4280   // The per-thread work queues, available here for stealing.
4281   OopTaskQueueSet*       _task_queues;
4282   ParallelTaskTerminator _term;
4283   StrongRootsScope*      _strong_roots_scope;
4284 
4285  public:
4286   // A value of 0 passed to n_workers will cause the number of
4287   // workers to be taken from the active workers in the work gang.
4288   CMSParRemarkTask(CMSCollector* collector,
4289                    CompactibleFreeListSpace* cms_space,
4290                    uint n_workers, WorkGang* workers,
4291                    OopTaskQueueSet* task_queues,
4292                    StrongRootsScope* strong_roots_scope):
4293     CMSParMarkTask("Rescan roots and grey objects in parallel",
4294                    collector, n_workers),
4295     _cms_space(cms_space),
4296     _task_queues(task_queues),
4297     _term(n_workers, task_queues),
4298     _strong_roots_scope(strong_roots_scope) { }
4299 
4300   OopTaskQueueSet* task_queues() { return _task_queues; }
4301 
4302   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4303 
4304   ParallelTaskTerminator* terminator() { return &_term; }
4305   uint n_workers() { return _n_workers; }
4306 
4307   void work(uint worker_id);
4308 
4309  private:
4310   // ... of  dirty cards in old space
4311   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4312                                   Par_MarkRefsIntoAndScanClosure* cl);
4313 
4314   // ... work stealing for the above
4315   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4316 };
4317 
4318 class RemarkKlassClosure : public KlassClosure {
4319   KlassToOopClosure _cm_klass_closure;
4320  public:
4321   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4322   void do_klass(Klass* k) {
4323     // Check if we have modified any oops in the Klass during the concurrent marking.
4324     if (k->has_accumulated_modified_oops()) {
4325       k->clear_accumulated_modified_oops();
4326 
4327       // We could have transfered the current modified marks to the accumulated marks,
4328       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4329     } else if (k->has_modified_oops()) {
4330       // Don't clear anything, this info is needed by the next young collection.
4331     } else {
4332       // No modified oops in the Klass.
4333       return;
4334     }
4335 
4336     // The klass has modified fields, need to scan the klass.
4337     _cm_klass_closure.do_klass(k);
4338   }
4339 };
4340 
4341 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4342   ParNewGeneration* young_gen = _collector->_young_gen;
4343   ContiguousSpace* eden_space = young_gen->eden();
4344   ContiguousSpace* from_space = young_gen->from();
4345   ContiguousSpace* to_space   = young_gen->to();
4346 
4347   HeapWord** eca = _collector->_eden_chunk_array;
4348   size_t     ect = _collector->_eden_chunk_index;
4349   HeapWord** sca = _collector->_survivor_chunk_array;
4350   size_t     sct = _collector->_survivor_chunk_index;
4351 
4352   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4353   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4354 
4355   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4356   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4357   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4358 }
4359 
4360 // work_queue(i) is passed to the closure
4361 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4362 // also is passed to do_dirty_card_rescan_tasks() and to
4363 // do_work_steal() to select the i-th task_queue.
4364 
4365 void CMSParRemarkTask::work(uint worker_id) {
4366   elapsedTimer _timer;
4367   ResourceMark rm;
4368   HandleMark   hm;
4369 
4370   // ---------- rescan from roots --------------
4371   _timer.start();
4372   GenCollectedHeap* gch = GenCollectedHeap::heap();
4373   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4374     _collector->_span, _collector->ref_processor(),
4375     &(_collector->_markBitMap),
4376     work_queue(worker_id));
4377 
4378   // Rescan young gen roots first since these are likely
4379   // coarsely partitioned and may, on that account, constitute
4380   // the critical path; thus, it's best to start off that
4381   // work first.
4382   // ---------- young gen roots --------------
4383   {
4384     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4385     _timer.stop();
4386     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4387   }
4388 
4389   // ---------- remaining roots --------------
4390   _timer.reset();
4391   _timer.start();
4392   gch->gen_process_roots(_strong_roots_scope,
4393                          GenCollectedHeap::OldGen,
4394                          false,     // yg was scanned above
4395                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4396                          _collector->should_unload_classes(),
4397                          &par_mrias_cl,
4398                          NULL,
4399                          NULL);     // The dirty klasses will be handled below
4400 
4401   assert(_collector->should_unload_classes()
4402          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4403          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4404   _timer.stop();
4405   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4406 
4407   // ---------- unhandled CLD scanning ----------
4408   if (worker_id == 0) { // Single threaded at the moment.
4409     _timer.reset();
4410     _timer.start();
4411 
4412     // Scan all new class loader data objects and new dependencies that were
4413     // introduced during concurrent marking.
4414     ResourceMark rm;
4415     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4416     for (int i = 0; i < array->length(); i++) {
4417       par_mrias_cl.do_cld_nv(array->at(i));
4418     }
4419 
4420     // We don't need to keep track of new CLDs anymore.
4421     ClassLoaderDataGraph::remember_new_clds(false);
4422 
4423     _timer.stop();
4424     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4425   }
4426 
4427   // ---------- dirty klass scanning ----------
4428   if (worker_id == 0) { // Single threaded at the moment.
4429     _timer.reset();
4430     _timer.start();
4431 
4432     // Scan all classes that was dirtied during the concurrent marking phase.
4433     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4434     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4435 
4436     _timer.stop();
4437     log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4438   }
4439 
4440   // We might have added oops to ClassLoaderData::_handles during the
4441   // concurrent marking phase. These oops point to newly allocated objects
4442   // that are guaranteed to be kept alive. Either by the direct allocation
4443   // code, or when the young collector processes the roots. Hence,
4444   // we don't have to revisit the _handles block during the remark phase.
4445 
4446   // ---------- rescan dirty cards ------------
4447   _timer.reset();
4448   _timer.start();
4449 
4450   // Do the rescan tasks for each of the two spaces
4451   // (cms_space) in turn.
4452   // "worker_id" is passed to select the task_queue for "worker_id"
4453   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4454   _timer.stop();
4455   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4456 
4457   // ---------- steal work from other threads ...
4458   // ---------- ... and drain overflow list.
4459   _timer.reset();
4460   _timer.start();
4461   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4462   _timer.stop();
4463   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4464 }
4465 
4466 // Note that parameter "i" is not used.
4467 void
4468 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4469   OopsInGenClosure* cl, ContiguousSpace* space,
4470   HeapWord** chunk_array, size_t chunk_top) {
4471   // Until all tasks completed:
4472   // . claim an unclaimed task
4473   // . compute region boundaries corresponding to task claimed
4474   //   using chunk_array
4475   // . par_oop_iterate(cl) over that region
4476 
4477   ResourceMark rm;
4478   HandleMark   hm;
4479 
4480   SequentialSubTasksDone* pst = space->par_seq_tasks();
4481 
4482   uint nth_task = 0;
4483   uint n_tasks  = pst->n_tasks();
4484 
4485   if (n_tasks > 0) {
4486     assert(pst->valid(), "Uninitialized use?");
4487     HeapWord *start, *end;
4488     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4489       // We claimed task # nth_task; compute its boundaries.
4490       if (chunk_top == 0) {  // no samples were taken
4491         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4492         start = space->bottom();
4493         end   = space->top();
4494       } else if (nth_task == 0) {
4495         start = space->bottom();
4496         end   = chunk_array[nth_task];
4497       } else if (nth_task < (uint)chunk_top) {
4498         assert(nth_task >= 1, "Control point invariant");
4499         start = chunk_array[nth_task - 1];
4500         end   = chunk_array[nth_task];
4501       } else {
4502         assert(nth_task == (uint)chunk_top, "Control point invariant");
4503         start = chunk_array[chunk_top - 1];
4504         end   = space->top();
4505       }
4506       MemRegion mr(start, end);
4507       // Verify that mr is in space
4508       assert(mr.is_empty() || space->used_region().contains(mr),
4509              "Should be in space");
4510       // Verify that "start" is an object boundary
4511       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4512              "Should be an oop");
4513       space->par_oop_iterate(mr, cl);
4514     }
4515     pst->all_tasks_completed();
4516   }
4517 }
4518 
4519 void
4520 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4521   CompactibleFreeListSpace* sp, int i,
4522   Par_MarkRefsIntoAndScanClosure* cl) {
4523   // Until all tasks completed:
4524   // . claim an unclaimed task
4525   // . compute region boundaries corresponding to task claimed
4526   // . transfer dirty bits ct->mut for that region
4527   // . apply rescanclosure to dirty mut bits for that region
4528 
4529   ResourceMark rm;
4530   HandleMark   hm;
4531 
4532   OopTaskQueue* work_q = work_queue(i);
4533   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4534   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4535   // CAUTION: This closure has state that persists across calls to
4536   // the work method dirty_range_iterate_clear() in that it has
4537   // embedded in it a (subtype of) UpwardsObjectClosure. The
4538   // use of that state in the embedded UpwardsObjectClosure instance
4539   // assumes that the cards are always iterated (even if in parallel
4540   // by several threads) in monotonically increasing order per each
4541   // thread. This is true of the implementation below which picks
4542   // card ranges (chunks) in monotonically increasing order globally
4543   // and, a-fortiori, in monotonically increasing order per thread
4544   // (the latter order being a subsequence of the former).
4545   // If the work code below is ever reorganized into a more chaotic
4546   // work-partitioning form than the current "sequential tasks"
4547   // paradigm, the use of that persistent state will have to be
4548   // revisited and modified appropriately. See also related
4549   // bug 4756801 work on which should examine this code to make
4550   // sure that the changes there do not run counter to the
4551   // assumptions made here and necessary for correctness and
4552   // efficiency. Note also that this code might yield inefficient
4553   // behavior in the case of very large objects that span one or
4554   // more work chunks. Such objects would potentially be scanned
4555   // several times redundantly. Work on 4756801 should try and
4556   // address that performance anomaly if at all possible. XXX
4557   MemRegion  full_span  = _collector->_span;
4558   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4559   MarkFromDirtyCardsClosure
4560     greyRescanClosure(_collector, full_span, // entire span of interest
4561                       sp, bm, work_q, cl);
4562 
4563   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4564   assert(pst->valid(), "Uninitialized use?");
4565   uint nth_task = 0;
4566   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4567   MemRegion span = sp->used_region();
4568   HeapWord* start_addr = span.start();
4569   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4570                                            alignment);
4571   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4572   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4573          start_addr, "Check alignment");
4574   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4575          chunk_size, "Check alignment");
4576 
4577   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4578     // Having claimed the nth_task, compute corresponding mem-region,
4579     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4580     // The alignment restriction ensures that we do not need any
4581     // synchronization with other gang-workers while setting or
4582     // clearing bits in thus chunk of the MUT.
4583     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4584                                     start_addr + (nth_task+1)*chunk_size);
4585     // The last chunk's end might be way beyond end of the
4586     // used region. In that case pull back appropriately.
4587     if (this_span.end() > end_addr) {
4588       this_span.set_end(end_addr);
4589       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4590     }
4591     // Iterate over the dirty cards covering this chunk, marking them
4592     // precleaned, and setting the corresponding bits in the mod union
4593     // table. Since we have been careful to partition at Card and MUT-word
4594     // boundaries no synchronization is needed between parallel threads.
4595     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4596                                                  &modUnionClosure);
4597 
4598     // Having transferred these marks into the modUnionTable,
4599     // rescan the marked objects on the dirty cards in the modUnionTable.
4600     // Even if this is at a synchronous collection, the initial marking
4601     // may have been done during an asynchronous collection so there
4602     // may be dirty bits in the mod-union table.
4603     _collector->_modUnionTable.dirty_range_iterate_clear(
4604                   this_span, &greyRescanClosure);
4605     _collector->_modUnionTable.verifyNoOneBitsInRange(
4606                                  this_span.start(),
4607                                  this_span.end());
4608   }
4609   pst->all_tasks_completed();  // declare that i am done
4610 }
4611 
4612 // . see if we can share work_queues with ParNew? XXX
4613 void
4614 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4615                                 int* seed) {
4616   OopTaskQueue* work_q = work_queue(i);
4617   NOT_PRODUCT(int num_steals = 0;)
4618   oop obj_to_scan;
4619   CMSBitMap* bm = &(_collector->_markBitMap);
4620 
4621   while (true) {
4622     // Completely finish any left over work from (an) earlier round(s)
4623     cl->trim_queue(0);
4624     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4625                                          (size_t)ParGCDesiredObjsFromOverflowList);
4626     // Now check if there's any work in the overflow list
4627     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4628     // only affects the number of attempts made to get work from the
4629     // overflow list and does not affect the number of workers.  Just
4630     // pass ParallelGCThreads so this behavior is unchanged.
4631     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4632                                                 work_q,
4633                                                 ParallelGCThreads)) {
4634       // found something in global overflow list;
4635       // not yet ready to go stealing work from others.
4636       // We'd like to assert(work_q->size() != 0, ...)
4637       // because we just took work from the overflow list,
4638       // but of course we can't since all of that could have
4639       // been already stolen from us.
4640       // "He giveth and He taketh away."
4641       continue;
4642     }
4643     // Verify that we have no work before we resort to stealing
4644     assert(work_q->size() == 0, "Have work, shouldn't steal");
4645     // Try to steal from other queues that have work
4646     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4647       NOT_PRODUCT(num_steals++;)
4648       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4649       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4650       // Do scanning work
4651       obj_to_scan->oop_iterate(cl);
4652       // Loop around, finish this work, and try to steal some more
4653     } else if (terminator()->offer_termination()) {
4654         break;  // nirvana from the infinite cycle
4655     }
4656   }
4657   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4658   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4659          "Else our work is not yet done");
4660 }
4661 
4662 // Record object boundaries in _eden_chunk_array by sampling the eden
4663 // top in the slow-path eden object allocation code path and record
4664 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4665 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4666 // sampling in sample_eden() that activates during the part of the
4667 // preclean phase.
4668 void CMSCollector::sample_eden_chunk() {
4669   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4670     if (_eden_chunk_lock->try_lock()) {
4671       // Record a sample. This is the critical section. The contents
4672       // of the _eden_chunk_array have to be non-decreasing in the
4673       // address order.
4674       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4675       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4676              "Unexpected state of Eden");
4677       if (_eden_chunk_index == 0 ||
4678           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4679            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4680                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4681         _eden_chunk_index++;  // commit sample
4682       }
4683       _eden_chunk_lock->unlock();
4684     }
4685   }
4686 }
4687 
4688 // Return a thread-local PLAB recording array, as appropriate.
4689 void* CMSCollector::get_data_recorder(int thr_num) {
4690   if (_survivor_plab_array != NULL &&
4691       (CMSPLABRecordAlways ||
4692        (_collectorState > Marking && _collectorState < FinalMarking))) {
4693     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4694     ChunkArray* ca = &_survivor_plab_array[thr_num];
4695     ca->reset();   // clear it so that fresh data is recorded
4696     return (void*) ca;
4697   } else {
4698     return NULL;
4699   }
4700 }
4701 
4702 // Reset all the thread-local PLAB recording arrays
4703 void CMSCollector::reset_survivor_plab_arrays() {
4704   for (uint i = 0; i < ParallelGCThreads; i++) {
4705     _survivor_plab_array[i].reset();
4706   }
4707 }
4708 
4709 // Merge the per-thread plab arrays into the global survivor chunk
4710 // array which will provide the partitioning of the survivor space
4711 // for CMS initial scan and rescan.
4712 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4713                                               int no_of_gc_threads) {
4714   assert(_survivor_plab_array  != NULL, "Error");
4715   assert(_survivor_chunk_array != NULL, "Error");
4716   assert(_collectorState == FinalMarking ||
4717          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4718   for (int j = 0; j < no_of_gc_threads; j++) {
4719     _cursor[j] = 0;
4720   }
4721   HeapWord* top = surv->top();
4722   size_t i;
4723   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4724     HeapWord* min_val = top;          // Higher than any PLAB address
4725     uint      min_tid = 0;            // position of min_val this round
4726     for (int j = 0; j < no_of_gc_threads; j++) {
4727       ChunkArray* cur_sca = &_survivor_plab_array[j];
4728       if (_cursor[j] == cur_sca->end()) {
4729         continue;
4730       }
4731       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4732       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4733       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4734       if (cur_val < min_val) {
4735         min_tid = j;
4736         min_val = cur_val;
4737       } else {
4738         assert(cur_val < top, "All recorded addresses should be less");
4739       }
4740     }
4741     // At this point min_val and min_tid are respectively
4742     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4743     // and the thread (j) that witnesses that address.
4744     // We record this address in the _survivor_chunk_array[i]
4745     // and increment _cursor[min_tid] prior to the next round i.
4746     if (min_val == top) {
4747       break;
4748     }
4749     _survivor_chunk_array[i] = min_val;
4750     _cursor[min_tid]++;
4751   }
4752   // We are all done; record the size of the _survivor_chunk_array
4753   _survivor_chunk_index = i; // exclusive: [0, i)
4754   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4755   // Verify that we used up all the recorded entries
4756   #ifdef ASSERT
4757     size_t total = 0;
4758     for (int j = 0; j < no_of_gc_threads; j++) {
4759       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4760       total += _cursor[j];
4761     }
4762     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4763     // Check that the merged array is in sorted order
4764     if (total > 0) {
4765       for (size_t i = 0; i < total - 1; i++) {
4766         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4767                                      i, p2i(_survivor_chunk_array[i]));
4768         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4769                "Not sorted");
4770       }
4771     }
4772   #endif // ASSERT
4773 }
4774 
4775 // Set up the space's par_seq_tasks structure for work claiming
4776 // for parallel initial scan and rescan of young gen.
4777 // See ParRescanTask where this is currently used.
4778 void
4779 CMSCollector::
4780 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4781   assert(n_threads > 0, "Unexpected n_threads argument");
4782 
4783   // Eden space
4784   if (!_young_gen->eden()->is_empty()) {
4785     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4786     assert(!pst->valid(), "Clobbering existing data?");
4787     // Each valid entry in [0, _eden_chunk_index) represents a task.
4788     size_t n_tasks = _eden_chunk_index + 1;
4789     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4790     // Sets the condition for completion of the subtask (how many threads
4791     // need to finish in order to be done).
4792     pst->set_n_threads(n_threads);
4793     pst->set_n_tasks((int)n_tasks);
4794   }
4795 
4796   // Merge the survivor plab arrays into _survivor_chunk_array
4797   if (_survivor_plab_array != NULL) {
4798     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4799   } else {
4800     assert(_survivor_chunk_index == 0, "Error");
4801   }
4802 
4803   // To space
4804   {
4805     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4806     assert(!pst->valid(), "Clobbering existing data?");
4807     // Sets the condition for completion of the subtask (how many threads
4808     // need to finish in order to be done).
4809     pst->set_n_threads(n_threads);
4810     pst->set_n_tasks(1);
4811     assert(pst->valid(), "Error");
4812   }
4813 
4814   // From space
4815   {
4816     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4817     assert(!pst->valid(), "Clobbering existing data?");
4818     size_t n_tasks = _survivor_chunk_index + 1;
4819     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4820     // Sets the condition for completion of the subtask (how many threads
4821     // need to finish in order to be done).
4822     pst->set_n_threads(n_threads);
4823     pst->set_n_tasks((int)n_tasks);
4824     assert(pst->valid(), "Error");
4825   }
4826 }
4827 
4828 // Parallel version of remark
4829 void CMSCollector::do_remark_parallel() {
4830   GenCollectedHeap* gch = GenCollectedHeap::heap();
4831   WorkGang* workers = gch->workers();
4832   assert(workers != NULL, "Need parallel worker threads.");
4833   // Choose to use the number of GC workers most recently set
4834   // into "active_workers".
4835   uint n_workers = workers->active_workers();
4836 
4837   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4838 
4839   StrongRootsScope srs(n_workers);
4840 
4841   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4842 
4843   // We won't be iterating over the cards in the card table updating
4844   // the younger_gen cards, so we shouldn't call the following else
4845   // the verification code as well as subsequent younger_refs_iterate
4846   // code would get confused. XXX
4847   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4848 
4849   // The young gen rescan work will not be done as part of
4850   // process_roots (which currently doesn't know how to
4851   // parallelize such a scan), but rather will be broken up into
4852   // a set of parallel tasks (via the sampling that the [abortable]
4853   // preclean phase did of eden, plus the [two] tasks of
4854   // scanning the [two] survivor spaces. Further fine-grain
4855   // parallelization of the scanning of the survivor spaces
4856   // themselves, and of precleaning of the young gen itself
4857   // is deferred to the future.
4858   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4859 
4860   // The dirty card rescan work is broken up into a "sequence"
4861   // of parallel tasks (per constituent space) that are dynamically
4862   // claimed by the parallel threads.
4863   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4864 
4865   // It turns out that even when we're using 1 thread, doing the work in a
4866   // separate thread causes wide variance in run times.  We can't help this
4867   // in the multi-threaded case, but we special-case n=1 here to get
4868   // repeatable measurements of the 1-thread overhead of the parallel code.
4869   if (n_workers > 1) {
4870     // Make refs discovery MT-safe, if it isn't already: it may not
4871     // necessarily be so, since it's possible that we are doing
4872     // ST marking.
4873     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4874     workers->run_task(&tsk);
4875   } else {
4876     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4877     tsk.work(0);
4878   }
4879 
4880   // restore, single-threaded for now, any preserved marks
4881   // as a result of work_q overflow
4882   restore_preserved_marks_if_any();
4883 }
4884 
4885 // Non-parallel version of remark
4886 void CMSCollector::do_remark_non_parallel() {
4887   ResourceMark rm;
4888   HandleMark   hm;
4889   GenCollectedHeap* gch = GenCollectedHeap::heap();
4890   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4891 
4892   MarkRefsIntoAndScanClosure
4893     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4894              &_markStack, this,
4895              false /* should_yield */, false /* not precleaning */);
4896   MarkFromDirtyCardsClosure
4897     markFromDirtyCardsClosure(this, _span,
4898                               NULL,  // space is set further below
4899                               &_markBitMap, &_markStack, &mrias_cl);
4900   {
4901     GCTraceTime(Trace, gc) t("Grey Object Rescan", _gc_timer_cm);
4902     // Iterate over the dirty cards, setting the corresponding bits in the
4903     // mod union table.
4904     {
4905       ModUnionClosure modUnionClosure(&_modUnionTable);
4906       _ct->ct_bs()->dirty_card_iterate(
4907                       _cmsGen->used_region(),
4908                       &modUnionClosure);
4909     }
4910     // Having transferred these marks into the modUnionTable, we just need
4911     // to rescan the marked objects on the dirty cards in the modUnionTable.
4912     // The initial marking may have been done during an asynchronous
4913     // collection so there may be dirty bits in the mod-union table.
4914     const int alignment =
4915       CardTableModRefBS::card_size * BitsPerWord;
4916     {
4917       // ... First handle dirty cards in CMS gen
4918       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4919       MemRegion ur = _cmsGen->used_region();
4920       HeapWord* lb = ur.start();
4921       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4922       MemRegion cms_span(lb, ub);
4923       _modUnionTable.dirty_range_iterate_clear(cms_span,
4924                                                &markFromDirtyCardsClosure);
4925       verify_work_stacks_empty();
4926       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4927     }
4928   }
4929   if (VerifyDuringGC &&
4930       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4931     HandleMark hm;  // Discard invalid handles created during verification
4932     Universe::verify();
4933   }
4934   {
4935     GCTraceTime(Trace, gc) t("Root Rescan", _gc_timer_cm);
4936 
4937     verify_work_stacks_empty();
4938 
4939     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4940     StrongRootsScope srs(1);
4941 
4942     gch->gen_process_roots(&srs,
4943                            GenCollectedHeap::OldGen,
4944                            true,  // young gen as roots
4945                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4946                            should_unload_classes(),
4947                            &mrias_cl,
4948                            NULL,
4949                            NULL); // The dirty klasses will be handled below
4950 
4951     assert(should_unload_classes()
4952            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4953            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4954   }
4955 
4956   {
4957     GCTraceTime(Trace, gc) t("Visit Unhandled CLDs", _gc_timer_cm);
4958 
4959     verify_work_stacks_empty();
4960 
4961     // Scan all class loader data objects that might have been introduced
4962     // during concurrent marking.
4963     ResourceMark rm;
4964     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4965     for (int i = 0; i < array->length(); i++) {
4966       mrias_cl.do_cld_nv(array->at(i));
4967     }
4968 
4969     // We don't need to keep track of new CLDs anymore.
4970     ClassLoaderDataGraph::remember_new_clds(false);
4971 
4972     verify_work_stacks_empty();
4973   }
4974 
4975   {
4976     GCTraceTime(Trace, gc) t("Dirty Klass Scan", _gc_timer_cm);
4977 
4978     verify_work_stacks_empty();
4979 
4980     RemarkKlassClosure remark_klass_closure(&mrias_cl);
4981     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4982 
4983     verify_work_stacks_empty();
4984   }
4985 
4986   // We might have added oops to ClassLoaderData::_handles during the
4987   // concurrent marking phase. These oops point to newly allocated objects
4988   // that are guaranteed to be kept alive. Either by the direct allocation
4989   // code, or when the young collector processes the roots. Hence,
4990   // we don't have to revisit the _handles block during the remark phase.
4991 
4992   verify_work_stacks_empty();
4993   // Restore evacuated mark words, if any, used for overflow list links
4994   restore_preserved_marks_if_any();
4995 
4996   verify_overflow_empty();
4997 }
4998 
4999 ////////////////////////////////////////////////////////
5000 // Parallel Reference Processing Task Proxy Class
5001 ////////////////////////////////////////////////////////
5002 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5003   OopTaskQueueSet*       _queues;
5004   ParallelTaskTerminator _terminator;
5005  public:
5006   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5007     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5008   ParallelTaskTerminator* terminator() { return &_terminator; }
5009   OopTaskQueueSet* queues() { return _queues; }
5010 };
5011 
5012 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5013   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5014   CMSCollector*          _collector;
5015   CMSBitMap*             _mark_bit_map;
5016   const MemRegion        _span;
5017   ProcessTask&           _task;
5018 
5019 public:
5020   CMSRefProcTaskProxy(ProcessTask&     task,
5021                       CMSCollector*    collector,
5022                       const MemRegion& span,
5023                       CMSBitMap*       mark_bit_map,
5024                       AbstractWorkGang* workers,
5025                       OopTaskQueueSet* task_queues):
5026     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5027       task_queues,
5028       workers->active_workers()),
5029     _task(task),
5030     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5031   {
5032     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5033            "Inconsistency in _span");
5034   }
5035 
5036   OopTaskQueueSet* task_queues() { return queues(); }
5037 
5038   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5039 
5040   void do_work_steal(int i,
5041                      CMSParDrainMarkingStackClosure* drain,
5042                      CMSParKeepAliveClosure* keep_alive,
5043                      int* seed);
5044 
5045   virtual void work(uint worker_id);
5046 };
5047 
5048 void CMSRefProcTaskProxy::work(uint worker_id) {
5049   ResourceMark rm;
5050   HandleMark hm;
5051   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5052   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5053                                         _mark_bit_map,
5054                                         work_queue(worker_id));
5055   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5056                                                  _mark_bit_map,
5057                                                  work_queue(worker_id));
5058   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5059   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5060   if (_task.marks_oops_alive()) {
5061     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5062                   _collector->hash_seed(worker_id));
5063   }
5064   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5065   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5066 }
5067 
5068 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5069   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5070   EnqueueTask& _task;
5071 
5072 public:
5073   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5074     : AbstractGangTask("Enqueue reference objects in parallel"),
5075       _task(task)
5076   { }
5077 
5078   virtual void work(uint worker_id)
5079   {
5080     _task.work(worker_id);
5081   }
5082 };
5083 
5084 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5085   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5086    _span(span),
5087    _bit_map(bit_map),
5088    _work_queue(work_queue),
5089    _mark_and_push(collector, span, bit_map, work_queue),
5090    _low_water_mark(MIN2((work_queue->max_elems()/4),
5091                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5092 { }
5093 
5094 // . see if we can share work_queues with ParNew? XXX
5095 void CMSRefProcTaskProxy::do_work_steal(int i,
5096   CMSParDrainMarkingStackClosure* drain,
5097   CMSParKeepAliveClosure* keep_alive,
5098   int* seed) {
5099   OopTaskQueue* work_q = work_queue(i);
5100   NOT_PRODUCT(int num_steals = 0;)
5101   oop obj_to_scan;
5102 
5103   while (true) {
5104     // Completely finish any left over work from (an) earlier round(s)
5105     drain->trim_queue(0);
5106     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5107                                          (size_t)ParGCDesiredObjsFromOverflowList);
5108     // Now check if there's any work in the overflow list
5109     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5110     // only affects the number of attempts made to get work from the
5111     // overflow list and does not affect the number of workers.  Just
5112     // pass ParallelGCThreads so this behavior is unchanged.
5113     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5114                                                 work_q,
5115                                                 ParallelGCThreads)) {
5116       // Found something in global overflow list;
5117       // not yet ready to go stealing work from others.
5118       // We'd like to assert(work_q->size() != 0, ...)
5119       // because we just took work from the overflow list,
5120       // but of course we can't, since all of that might have
5121       // been already stolen from us.
5122       continue;
5123     }
5124     // Verify that we have no work before we resort to stealing
5125     assert(work_q->size() == 0, "Have work, shouldn't steal");
5126     // Try to steal from other queues that have work
5127     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5128       NOT_PRODUCT(num_steals++;)
5129       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5130       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5131       // Do scanning work
5132       obj_to_scan->oop_iterate(keep_alive);
5133       // Loop around, finish this work, and try to steal some more
5134     } else if (terminator()->offer_termination()) {
5135       break;  // nirvana from the infinite cycle
5136     }
5137   }
5138   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5139 }
5140 
5141 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5142 {
5143   GenCollectedHeap* gch = GenCollectedHeap::heap();
5144   WorkGang* workers = gch->workers();
5145   assert(workers != NULL, "Need parallel worker threads.");
5146   CMSRefProcTaskProxy rp_task(task, &_collector,
5147                               _collector.ref_processor()->span(),
5148                               _collector.markBitMap(),
5149                               workers, _collector.task_queues());
5150   workers->run_task(&rp_task);
5151 }
5152 
5153 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5154 {
5155 
5156   GenCollectedHeap* gch = GenCollectedHeap::heap();
5157   WorkGang* workers = gch->workers();
5158   assert(workers != NULL, "Need parallel worker threads.");
5159   CMSRefEnqueueTaskProxy enq_task(task);
5160   workers->run_task(&enq_task);
5161 }
5162 
5163 void CMSCollector::refProcessingWork() {
5164   ResourceMark rm;
5165   HandleMark   hm;
5166 
5167   ReferenceProcessor* rp = ref_processor();
5168   assert(rp->span().equals(_span), "Spans should be equal");
5169   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5170   // Process weak references.
5171   rp->setup_policy(false);
5172   verify_work_stacks_empty();
5173 
5174   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5175                                           &_markStack, false /* !preclean */);
5176   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5177                                 _span, &_markBitMap, &_markStack,
5178                                 &cmsKeepAliveClosure, false /* !preclean */);
5179   {
5180     GCTraceTime(Debug, gc) t("Weak Refs Processing", _gc_timer_cm);
5181 
5182     ReferenceProcessorStats stats;
5183     if (rp->processing_is_mt()) {
5184       // Set the degree of MT here.  If the discovery is done MT, there
5185       // may have been a different number of threads doing the discovery
5186       // and a different number of discovered lists may have Ref objects.
5187       // That is OK as long as the Reference lists are balanced (see
5188       // balance_all_queues() and balance_queues()).
5189       GenCollectedHeap* gch = GenCollectedHeap::heap();
5190       uint active_workers = ParallelGCThreads;
5191       WorkGang* workers = gch->workers();
5192       if (workers != NULL) {
5193         active_workers = workers->active_workers();
5194         // The expectation is that active_workers will have already
5195         // been set to a reasonable value.  If it has not been set,
5196         // investigate.
5197         assert(active_workers > 0, "Should have been set during scavenge");
5198       }
5199       rp->set_active_mt_degree(active_workers);
5200       CMSRefProcTaskExecutor task_executor(*this);
5201       stats = rp->process_discovered_references(&_is_alive_closure,
5202                                         &cmsKeepAliveClosure,
5203                                         &cmsDrainMarkingStackClosure,
5204                                         &task_executor,
5205                                         _gc_timer_cm);
5206     } else {
5207       stats = rp->process_discovered_references(&_is_alive_closure,
5208                                         &cmsKeepAliveClosure,
5209                                         &cmsDrainMarkingStackClosure,
5210                                         NULL,
5211                                         _gc_timer_cm);
5212     }
5213     _gc_tracer_cm->report_gc_reference_stats(stats);
5214 
5215   }
5216 
5217   // This is the point where the entire marking should have completed.
5218   verify_work_stacks_empty();
5219 
5220   if (should_unload_classes()) {
5221     {
5222       GCTraceTime(Debug, gc) t("Class Unloading", _gc_timer_cm);
5223 
5224       // Unload classes and purge the SystemDictionary.
5225       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5226 
5227       // Unload nmethods.
5228       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5229 
5230       // Prune dead klasses from subklass/sibling/implementor lists.
5231       Klass::clean_weak_klass_links(&_is_alive_closure);
5232     }
5233 
5234     {
5235       GCTraceTime(Debug, gc) t("Scrub Symbol Table", _gc_timer_cm);
5236       // Clean up unreferenced symbols in symbol table.
5237       SymbolTable::unlink();
5238     }
5239 
5240     {
5241       GCTraceTime(Debug, gc) t("Scrub String Table", _gc_timer_cm);
5242       // Delete entries for dead interned strings.
5243       StringTable::unlink(&_is_alive_closure);
5244     }
5245   }
5246 
5247 
5248   // Restore any preserved marks as a result of mark stack or
5249   // work queue overflow
5250   restore_preserved_marks_if_any();  // done single-threaded for now
5251 
5252   rp->set_enqueuing_is_done(true);
5253   if (rp->processing_is_mt()) {
5254     rp->balance_all_queues();
5255     CMSRefProcTaskExecutor task_executor(*this);
5256     rp->enqueue_discovered_references(&task_executor);
5257   } else {
5258     rp->enqueue_discovered_references(NULL);
5259   }
5260   rp->verify_no_references_recorded();
5261   assert(!rp->discovery_enabled(), "should have been disabled");
5262 }
5263 
5264 #ifndef PRODUCT
5265 void CMSCollector::check_correct_thread_executing() {
5266   Thread* t = Thread::current();
5267   // Only the VM thread or the CMS thread should be here.
5268   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5269          "Unexpected thread type");
5270   // If this is the vm thread, the foreground process
5271   // should not be waiting.  Note that _foregroundGCIsActive is
5272   // true while the foreground collector is waiting.
5273   if (_foregroundGCShouldWait) {
5274     // We cannot be the VM thread
5275     assert(t->is_ConcurrentGC_thread(),
5276            "Should be CMS thread");
5277   } else {
5278     // We can be the CMS thread only if we are in a stop-world
5279     // phase of CMS collection.
5280     if (t->is_ConcurrentGC_thread()) {
5281       assert(_collectorState == InitialMarking ||
5282              _collectorState == FinalMarking,
5283              "Should be a stop-world phase");
5284       // The CMS thread should be holding the CMS_token.
5285       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5286              "Potential interference with concurrently "
5287              "executing VM thread");
5288     }
5289   }
5290 }
5291 #endif
5292 
5293 void CMSCollector::sweep() {
5294   assert(_collectorState == Sweeping, "just checking");
5295   check_correct_thread_executing();
5296   verify_work_stacks_empty();
5297   verify_overflow_empty();
5298   increment_sweep_count();
5299   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5300 
5301   _inter_sweep_timer.stop();
5302   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5303 
5304   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5305   _intra_sweep_timer.reset();
5306   _intra_sweep_timer.start();
5307   {
5308     GCTraceCPUTime tcpu;
5309     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5310     // First sweep the old gen
5311     {
5312       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5313                                bitMapLock());
5314       sweepWork(_cmsGen);
5315     }
5316 
5317     // Update Universe::_heap_*_at_gc figures.
5318     // We need all the free list locks to make the abstract state
5319     // transition from Sweeping to Resetting. See detailed note
5320     // further below.
5321     {
5322       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5323       // Update heap occupancy information which is used as
5324       // input to soft ref clearing policy at the next gc.
5325       Universe::update_heap_info_at_gc();
5326       _collectorState = Resizing;
5327     }
5328   }
5329   verify_work_stacks_empty();
5330   verify_overflow_empty();
5331 
5332   if (should_unload_classes()) {
5333     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5334     // requires that the virtual spaces are stable and not deleted.
5335     ClassLoaderDataGraph::set_should_purge(true);
5336   }
5337 
5338   _intra_sweep_timer.stop();
5339   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5340 
5341   _inter_sweep_timer.reset();
5342   _inter_sweep_timer.start();
5343 
5344   // We need to use a monotonically non-decreasing time in ms
5345   // or we will see time-warp warnings and os::javaTimeMillis()
5346   // does not guarantee monotonicity.
5347   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5348   update_time_of_last_gc(now);
5349 
5350   // NOTE on abstract state transitions:
5351   // Mutators allocate-live and/or mark the mod-union table dirty
5352   // based on the state of the collection.  The former is done in
5353   // the interval [Marking, Sweeping] and the latter in the interval
5354   // [Marking, Sweeping).  Thus the transitions into the Marking state
5355   // and out of the Sweeping state must be synchronously visible
5356   // globally to the mutators.
5357   // The transition into the Marking state happens with the world
5358   // stopped so the mutators will globally see it.  Sweeping is
5359   // done asynchronously by the background collector so the transition
5360   // from the Sweeping state to the Resizing state must be done
5361   // under the freelistLock (as is the check for whether to
5362   // allocate-live and whether to dirty the mod-union table).
5363   assert(_collectorState == Resizing, "Change of collector state to"
5364     " Resizing must be done under the freelistLocks (plural)");
5365 
5366   // Now that sweeping has been completed, we clear
5367   // the incremental_collection_failed flag,
5368   // thus inviting a younger gen collection to promote into
5369   // this generation. If such a promotion may still fail,
5370   // the flag will be set again when a young collection is
5371   // attempted.
5372   GenCollectedHeap* gch = GenCollectedHeap::heap();
5373   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5374   gch->update_full_collections_completed(_collection_count_start);
5375 }
5376 
5377 // FIX ME!!! Looks like this belongs in CFLSpace, with
5378 // CMSGen merely delegating to it.
5379 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5380   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5381   HeapWord*  minAddr        = _cmsSpace->bottom();
5382   HeapWord*  largestAddr    =
5383     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5384   if (largestAddr == NULL) {
5385     // The dictionary appears to be empty.  In this case
5386     // try to coalesce at the end of the heap.
5387     largestAddr = _cmsSpace->end();
5388   }
5389   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5390   size_t nearLargestOffset =
5391     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5392   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5393                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5394   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5395 }
5396 
5397 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5398   return addr >= _cmsSpace->nearLargestChunk();
5399 }
5400 
5401 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5402   return _cmsSpace->find_chunk_at_end();
5403 }
5404 
5405 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5406                                                     bool full) {
5407   // If the young generation has been collected, gather any statistics
5408   // that are of interest at this point.
5409   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5410   if (!full && current_is_young) {
5411     // Gather statistics on the young generation collection.
5412     collector()->stats().record_gc0_end(used());
5413   }
5414 }
5415 
5416 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5417   // We iterate over the space(s) underlying this generation,
5418   // checking the mark bit map to see if the bits corresponding
5419   // to specific blocks are marked or not. Blocks that are
5420   // marked are live and are not swept up. All remaining blocks
5421   // are swept up, with coalescing on-the-fly as we sweep up
5422   // contiguous free and/or garbage blocks:
5423   // We need to ensure that the sweeper synchronizes with allocators
5424   // and stop-the-world collectors. In particular, the following
5425   // locks are used:
5426   // . CMS token: if this is held, a stop the world collection cannot occur
5427   // . freelistLock: if this is held no allocation can occur from this
5428   //                 generation by another thread
5429   // . bitMapLock: if this is held, no other thread can access or update
5430   //
5431 
5432   // Note that we need to hold the freelistLock if we use
5433   // block iterate below; else the iterator might go awry if
5434   // a mutator (or promotion) causes block contents to change
5435   // (for instance if the allocator divvies up a block).
5436   // If we hold the free list lock, for all practical purposes
5437   // young generation GC's can't occur (they'll usually need to
5438   // promote), so we might as well prevent all young generation
5439   // GC's while we do a sweeping step. For the same reason, we might
5440   // as well take the bit map lock for the entire duration
5441 
5442   // check that we hold the requisite locks
5443   assert(have_cms_token(), "Should hold cms token");
5444   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5445   assert_lock_strong(old_gen->freelistLock());
5446   assert_lock_strong(bitMapLock());
5447 
5448   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5449   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5450   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5451                                           _inter_sweep_estimate.padded_average(),
5452                                           _intra_sweep_estimate.padded_average());
5453   old_gen->setNearLargestChunk();
5454 
5455   {
5456     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5457     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5458     // We need to free-up/coalesce garbage/blocks from a
5459     // co-terminal free run. This is done in the SweepClosure
5460     // destructor; so, do not remove this scope, else the
5461     // end-of-sweep-census below will be off by a little bit.
5462   }
5463   old_gen->cmsSpace()->sweep_completed();
5464   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5465   if (should_unload_classes()) {                // unloaded classes this cycle,
5466     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5467   } else {                                      // did not unload classes,
5468     _concurrent_cycles_since_last_unload++;     // ... increment count
5469   }
5470 }
5471 
5472 // Reset CMS data structures (for now just the marking bit map)
5473 // preparatory for the next cycle.
5474 void CMSCollector::reset_concurrent() {
5475   CMSTokenSyncWithLocks ts(true, bitMapLock());
5476 
5477   // If the state is not "Resetting", the foreground  thread
5478   // has done a collection and the resetting.
5479   if (_collectorState != Resetting) {
5480     assert(_collectorState == Idling, "The state should only change"
5481       " because the foreground collector has finished the collection");
5482     return;
5483   }
5484 
5485   // Clear the mark bitmap (no grey objects to start with)
5486   // for the next cycle.
5487   GCTraceCPUTime tcpu;
5488   CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5489 
5490   HeapWord* curAddr = _markBitMap.startWord();
5491   while (curAddr < _markBitMap.endWord()) {
5492     size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5493     MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5494     _markBitMap.clear_large_range(chunk);
5495     if (ConcurrentMarkSweepThread::should_yield() &&
5496         !foregroundGCIsActive() &&
5497         CMSYield) {
5498       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5499              "CMS thread should hold CMS token");
5500       assert_lock_strong(bitMapLock());
5501       bitMapLock()->unlock();
5502       ConcurrentMarkSweepThread::desynchronize(true);
5503       stopTimer();
5504       incrementYields();
5505 
5506       // See the comment in coordinator_yield()
5507       for (unsigned i = 0; i < CMSYieldSleepCount &&
5508                        ConcurrentMarkSweepThread::should_yield() &&
5509                        !CMSCollector::foregroundGCIsActive(); ++i) {
5510         os::sleep(Thread::current(), 1, false);
5511       }
5512 
5513       ConcurrentMarkSweepThread::synchronize(true);
5514       bitMapLock()->lock_without_safepoint_check();
5515       startTimer();
5516     }
5517     curAddr = chunk.end();
5518   }
5519   // A successful mostly concurrent collection has been done.
5520   // Because only the full (i.e., concurrent mode failure) collections
5521   // are being measured for gc overhead limits, clean the "near" flag
5522   // and count.
5523   size_policy()->reset_gc_overhead_limit_count();
5524   _collectorState = Idling;
5525 
5526   register_gc_end();
5527 }
5528 
5529 // Same as above but for STW paths
5530 void CMSCollector::reset_stw() {
5531   // already have the lock
5532   assert(_collectorState == Resetting, "just checking");
5533   assert_lock_strong(bitMapLock());
5534   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5535   _markBitMap.clear_all();
5536   _collectorState = Idling;
5537   register_gc_end();
5538 }
5539 
5540 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5541   GCTraceCPUTime tcpu;
5542   TraceCollectorStats tcs(counters());
5543 
5544   switch (op) {
5545     case CMS_op_checkpointRootsInitial: {
5546       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5547       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5548       checkpointRootsInitial();
5549       break;
5550     }
5551     case CMS_op_checkpointRootsFinal: {
5552       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5553       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5554       checkpointRootsFinal();
5555       break;
5556     }
5557     default:
5558       fatal("No such CMS_op");
5559   }
5560 }
5561 
5562 #ifndef PRODUCT
5563 size_t const CMSCollector::skip_header_HeapWords() {
5564   return FreeChunk::header_size();
5565 }
5566 
5567 // Try and collect here conditions that should hold when
5568 // CMS thread is exiting. The idea is that the foreground GC
5569 // thread should not be blocked if it wants to terminate
5570 // the CMS thread and yet continue to run the VM for a while
5571 // after that.
5572 void CMSCollector::verify_ok_to_terminate() const {
5573   assert(Thread::current()->is_ConcurrentGC_thread(),
5574          "should be called by CMS thread");
5575   assert(!_foregroundGCShouldWait, "should be false");
5576   // We could check here that all the various low-level locks
5577   // are not held by the CMS thread, but that is overkill; see
5578   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5579   // is checked.
5580 }
5581 #endif
5582 
5583 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5584    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5585           "missing Printezis mark?");
5586   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5587   size_t size = pointer_delta(nextOneAddr + 1, addr);
5588   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5589          "alignment problem");
5590   assert(size >= 3, "Necessary for Printezis marks to work");
5591   return size;
5592 }
5593 
5594 // A variant of the above (block_size_using_printezis_bits()) except
5595 // that we return 0 if the P-bits are not yet set.
5596 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5597   if (_markBitMap.isMarked(addr + 1)) {
5598     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5599     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5600     size_t size = pointer_delta(nextOneAddr + 1, addr);
5601     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5602            "alignment problem");
5603     assert(size >= 3, "Necessary for Printezis marks to work");
5604     return size;
5605   }
5606   return 0;
5607 }
5608 
5609 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5610   size_t sz = 0;
5611   oop p = (oop)addr;
5612   if (p->klass_or_null() != NULL) {
5613     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5614   } else {
5615     sz = block_size_using_printezis_bits(addr);
5616   }
5617   assert(sz > 0, "size must be nonzero");
5618   HeapWord* next_block = addr + sz;
5619   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5620                                              CardTableModRefBS::card_size);
5621   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5622          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5623          "must be different cards");
5624   return next_card;
5625 }
5626 
5627 
5628 // CMS Bit Map Wrapper /////////////////////////////////////////
5629 
5630 // Construct a CMS bit map infrastructure, but don't create the
5631 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5632 // further below.
5633 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5634   _bm(),
5635   _shifter(shifter),
5636   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5637                                     Monitor::_safepoint_check_sometimes) : NULL)
5638 {
5639   _bmStartWord = 0;
5640   _bmWordSize  = 0;
5641 }
5642 
5643 bool CMSBitMap::allocate(MemRegion mr) {
5644   _bmStartWord = mr.start();
5645   _bmWordSize  = mr.word_size();
5646   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5647                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5648   if (!brs.is_reserved()) {
5649     warning("CMS bit map allocation failure");
5650     return false;
5651   }
5652   // For now we'll just commit all of the bit map up front.
5653   // Later on we'll try to be more parsimonious with swap.
5654   if (!_virtual_space.initialize(brs, brs.size())) {
5655     warning("CMS bit map backing store failure");
5656     return false;
5657   }
5658   assert(_virtual_space.committed_size() == brs.size(),
5659          "didn't reserve backing store for all of CMS bit map?");
5660   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5661   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5662          _bmWordSize, "inconsistency in bit map sizing");
5663   _bm.set_size(_bmWordSize >> _shifter);
5664 
5665   // bm.clear(); // can we rely on getting zero'd memory? verify below
5666   assert(isAllClear(),
5667          "Expected zero'd memory from ReservedSpace constructor");
5668   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5669          "consistency check");
5670   return true;
5671 }
5672 
5673 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5674   HeapWord *next_addr, *end_addr, *last_addr;
5675   assert_locked();
5676   assert(covers(mr), "out-of-range error");
5677   // XXX assert that start and end are appropriately aligned
5678   for (next_addr = mr.start(), end_addr = mr.end();
5679        next_addr < end_addr; next_addr = last_addr) {
5680     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5681     last_addr = dirty_region.end();
5682     if (!dirty_region.is_empty()) {
5683       cl->do_MemRegion(dirty_region);
5684     } else {
5685       assert(last_addr == end_addr, "program logic");
5686       return;
5687     }
5688   }
5689 }
5690 
5691 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5692   _bm.print_on_error(st, prefix);
5693 }
5694 
5695 #ifndef PRODUCT
5696 void CMSBitMap::assert_locked() const {
5697   CMSLockVerifier::assert_locked(lock());
5698 }
5699 
5700 bool CMSBitMap::covers(MemRegion mr) const {
5701   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5702   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5703          "size inconsistency");
5704   return (mr.start() >= _bmStartWord) &&
5705          (mr.end()   <= endWord());
5706 }
5707 
5708 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5709     return (start >= _bmStartWord && (start + size) <= endWord());
5710 }
5711 
5712 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5713   // verify that there are no 1 bits in the interval [left, right)
5714   FalseBitMapClosure falseBitMapClosure;
5715   iterate(&falseBitMapClosure, left, right);
5716 }
5717 
5718 void CMSBitMap::region_invariant(MemRegion mr)
5719 {
5720   assert_locked();
5721   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5722   assert(!mr.is_empty(), "unexpected empty region");
5723   assert(covers(mr), "mr should be covered by bit map");
5724   // convert address range into offset range
5725   size_t start_ofs = heapWordToOffset(mr.start());
5726   // Make sure that end() is appropriately aligned
5727   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5728                         (1 << (_shifter+LogHeapWordSize))),
5729          "Misaligned mr.end()");
5730   size_t end_ofs   = heapWordToOffset(mr.end());
5731   assert(end_ofs > start_ofs, "Should mark at least one bit");
5732 }
5733 
5734 #endif
5735 
5736 bool CMSMarkStack::allocate(size_t size) {
5737   // allocate a stack of the requisite depth
5738   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5739                    size * sizeof(oop)));
5740   if (!rs.is_reserved()) {
5741     warning("CMSMarkStack allocation failure");
5742     return false;
5743   }
5744   if (!_virtual_space.initialize(rs, rs.size())) {
5745     warning("CMSMarkStack backing store failure");
5746     return false;
5747   }
5748   assert(_virtual_space.committed_size() == rs.size(),
5749          "didn't reserve backing store for all of CMS stack?");
5750   _base = (oop*)(_virtual_space.low());
5751   _index = 0;
5752   _capacity = size;
5753   NOT_PRODUCT(_max_depth = 0);
5754   return true;
5755 }
5756 
5757 // XXX FIX ME !!! In the MT case we come in here holding a
5758 // leaf lock. For printing we need to take a further lock
5759 // which has lower rank. We need to recalibrate the two
5760 // lock-ranks involved in order to be able to print the
5761 // messages below. (Or defer the printing to the caller.
5762 // For now we take the expedient path of just disabling the
5763 // messages for the problematic case.)
5764 void CMSMarkStack::expand() {
5765   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5766   if (_capacity == MarkStackSizeMax) {
5767     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5768       // We print a warning message only once per CMS cycle.
5769       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5770     }
5771     return;
5772   }
5773   // Double capacity if possible
5774   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5775   // Do not give up existing stack until we have managed to
5776   // get the double capacity that we desired.
5777   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5778                    new_capacity * sizeof(oop)));
5779   if (rs.is_reserved()) {
5780     // Release the backing store associated with old stack
5781     _virtual_space.release();
5782     // Reinitialize virtual space for new stack
5783     if (!_virtual_space.initialize(rs, rs.size())) {
5784       fatal("Not enough swap for expanded marking stack");
5785     }
5786     _base = (oop*)(_virtual_space.low());
5787     _index = 0;
5788     _capacity = new_capacity;
5789   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5790     // Failed to double capacity, continue;
5791     // we print a detail message only once per CMS cycle.
5792     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5793                         _capacity / K, new_capacity / K);
5794   }
5795 }
5796 
5797 
5798 // Closures
5799 // XXX: there seems to be a lot of code  duplication here;
5800 // should refactor and consolidate common code.
5801 
5802 // This closure is used to mark refs into the CMS generation in
5803 // the CMS bit map. Called at the first checkpoint. This closure
5804 // assumes that we do not need to re-mark dirty cards; if the CMS
5805 // generation on which this is used is not an oldest
5806 // generation then this will lose younger_gen cards!
5807 
5808 MarkRefsIntoClosure::MarkRefsIntoClosure(
5809   MemRegion span, CMSBitMap* bitMap):
5810     _span(span),
5811     _bitMap(bitMap)
5812 {
5813   assert(ref_processor() == NULL, "deliberately left NULL");
5814   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5815 }
5816 
5817 void MarkRefsIntoClosure::do_oop(oop obj) {
5818   // if p points into _span, then mark corresponding bit in _markBitMap
5819   assert(obj->is_oop(), "expected an oop");
5820   HeapWord* addr = (HeapWord*)obj;
5821   if (_span.contains(addr)) {
5822     // this should be made more efficient
5823     _bitMap->mark(addr);
5824   }
5825 }
5826 
5827 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5828 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5829 
5830 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
5831   MemRegion span, CMSBitMap* bitMap):
5832     _span(span),
5833     _bitMap(bitMap)
5834 {
5835   assert(ref_processor() == NULL, "deliberately left NULL");
5836   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5837 }
5838 
5839 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
5840   // if p points into _span, then mark corresponding bit in _markBitMap
5841   assert(obj->is_oop(), "expected an oop");
5842   HeapWord* addr = (HeapWord*)obj;
5843   if (_span.contains(addr)) {
5844     // this should be made more efficient
5845     _bitMap->par_mark(addr);
5846   }
5847 }
5848 
5849 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
5850 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
5851 
5852 // A variant of the above, used for CMS marking verification.
5853 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5854   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5855     _span(span),
5856     _verification_bm(verification_bm),
5857     _cms_bm(cms_bm)
5858 {
5859   assert(ref_processor() == NULL, "deliberately left NULL");
5860   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5861 }
5862 
5863 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5864   // if p points into _span, then mark corresponding bit in _markBitMap
5865   assert(obj->is_oop(), "expected an oop");
5866   HeapWord* addr = (HeapWord*)obj;
5867   if (_span.contains(addr)) {
5868     _verification_bm->mark(addr);
5869     if (!_cms_bm->isMarked(addr)) {
5870       LogHandle(gc, verify) log;
5871       ResourceMark rm;
5872       oop(addr)->print_on(log.info_stream());
5873       log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5874       fatal("... aborting");
5875     }
5876   }
5877 }
5878 
5879 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5880 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5881 
5882 //////////////////////////////////////////////////
5883 // MarkRefsIntoAndScanClosure
5884 //////////////////////////////////////////////////
5885 
5886 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5887                                                        ReferenceProcessor* rp,
5888                                                        CMSBitMap* bit_map,
5889                                                        CMSBitMap* mod_union_table,
5890                                                        CMSMarkStack*  mark_stack,
5891                                                        CMSCollector* collector,
5892                                                        bool should_yield,
5893                                                        bool concurrent_precleaning):
5894   _collector(collector),
5895   _span(span),
5896   _bit_map(bit_map),
5897   _mark_stack(mark_stack),
5898   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5899                       mark_stack, concurrent_precleaning),
5900   _yield(should_yield),
5901   _concurrent_precleaning(concurrent_precleaning),
5902   _freelistLock(NULL)
5903 {
5904   // FIXME: Should initialize in base class constructor.
5905   assert(rp != NULL, "ref_processor shouldn't be NULL");
5906   set_ref_processor_internal(rp);
5907 }
5908 
5909 // This closure is used to mark refs into the CMS generation at the
5910 // second (final) checkpoint, and to scan and transitively follow
5911 // the unmarked oops. It is also used during the concurrent precleaning
5912 // phase while scanning objects on dirty cards in the CMS generation.
5913 // The marks are made in the marking bit map and the marking stack is
5914 // used for keeping the (newly) grey objects during the scan.
5915 // The parallel version (Par_...) appears further below.
5916 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5917   if (obj != NULL) {
5918     assert(obj->is_oop(), "expected an oop");
5919     HeapWord* addr = (HeapWord*)obj;
5920     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5921     assert(_collector->overflow_list_is_empty(),
5922            "overflow list should be empty");
5923     if (_span.contains(addr) &&
5924         !_bit_map->isMarked(addr)) {
5925       // mark bit map (object is now grey)
5926       _bit_map->mark(addr);
5927       // push on marking stack (stack should be empty), and drain the
5928       // stack by applying this closure to the oops in the oops popped
5929       // from the stack (i.e. blacken the grey objects)
5930       bool res = _mark_stack->push(obj);
5931       assert(res, "Should have space to push on empty stack");
5932       do {
5933         oop new_oop = _mark_stack->pop();
5934         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5935         assert(_bit_map->isMarked((HeapWord*)new_oop),
5936                "only grey objects on this stack");
5937         // iterate over the oops in this oop, marking and pushing
5938         // the ones in CMS heap (i.e. in _span).
5939         new_oop->oop_iterate(&_pushAndMarkClosure);
5940         // check if it's time to yield
5941         do_yield_check();
5942       } while (!_mark_stack->isEmpty() ||
5943                (!_concurrent_precleaning && take_from_overflow_list()));
5944         // if marking stack is empty, and we are not doing this
5945         // during precleaning, then check the overflow list
5946     }
5947     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5948     assert(_collector->overflow_list_is_empty(),
5949            "overflow list was drained above");
5950 
5951     assert(_collector->no_preserved_marks(),
5952            "All preserved marks should have been restored above");
5953   }
5954 }
5955 
5956 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5957 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5958 
5959 void MarkRefsIntoAndScanClosure::do_yield_work() {
5960   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5961          "CMS thread should hold CMS token");
5962   assert_lock_strong(_freelistLock);
5963   assert_lock_strong(_bit_map->lock());
5964   // relinquish the free_list_lock and bitMaplock()
5965   _bit_map->lock()->unlock();
5966   _freelistLock->unlock();
5967   ConcurrentMarkSweepThread::desynchronize(true);
5968   _collector->stopTimer();
5969   _collector->incrementYields();
5970 
5971   // See the comment in coordinator_yield()
5972   for (unsigned i = 0;
5973        i < CMSYieldSleepCount &&
5974        ConcurrentMarkSweepThread::should_yield() &&
5975        !CMSCollector::foregroundGCIsActive();
5976        ++i) {
5977     os::sleep(Thread::current(), 1, false);
5978   }
5979 
5980   ConcurrentMarkSweepThread::synchronize(true);
5981   _freelistLock->lock_without_safepoint_check();
5982   _bit_map->lock()->lock_without_safepoint_check();
5983   _collector->startTimer();
5984 }
5985 
5986 ///////////////////////////////////////////////////////////
5987 // Par_MarkRefsIntoAndScanClosure: a parallel version of
5988 //                                 MarkRefsIntoAndScanClosure
5989 ///////////////////////////////////////////////////////////
5990 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
5991   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
5992   CMSBitMap* bit_map, OopTaskQueue* work_queue):
5993   _span(span),
5994   _bit_map(bit_map),
5995   _work_queue(work_queue),
5996   _low_water_mark(MIN2((work_queue->max_elems()/4),
5997                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
5998   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
5999 {
6000   // FIXME: Should initialize in base class constructor.
6001   assert(rp != NULL, "ref_processor shouldn't be NULL");
6002   set_ref_processor_internal(rp);
6003 }
6004 
6005 // This closure is used to mark refs into the CMS generation at the
6006 // second (final) checkpoint, and to scan and transitively follow
6007 // the unmarked oops. The marks are made in the marking bit map and
6008 // the work_queue is used for keeping the (newly) grey objects during
6009 // the scan phase whence they are also available for stealing by parallel
6010 // threads. Since the marking bit map is shared, updates are
6011 // synchronized (via CAS).
6012 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6013   if (obj != NULL) {
6014     // Ignore mark word because this could be an already marked oop
6015     // that may be chained at the end of the overflow list.
6016     assert(obj->is_oop(true), "expected an oop");
6017     HeapWord* addr = (HeapWord*)obj;
6018     if (_span.contains(addr) &&
6019         !_bit_map->isMarked(addr)) {
6020       // mark bit map (object will become grey):
6021       // It is possible for several threads to be
6022       // trying to "claim" this object concurrently;
6023       // the unique thread that succeeds in marking the
6024       // object first will do the subsequent push on
6025       // to the work queue (or overflow list).
6026       if (_bit_map->par_mark(addr)) {
6027         // push on work_queue (which may not be empty), and trim the
6028         // queue to an appropriate length by applying this closure to
6029         // the oops in the oops popped from the stack (i.e. blacken the
6030         // grey objects)
6031         bool res = _work_queue->push(obj);
6032         assert(res, "Low water mark should be less than capacity?");
6033         trim_queue(_low_water_mark);
6034       } // Else, another thread claimed the object
6035     }
6036   }
6037 }
6038 
6039 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6040 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6041 
6042 // This closure is used to rescan the marked objects on the dirty cards
6043 // in the mod union table and the card table proper.
6044 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6045   oop p, MemRegion mr) {
6046 
6047   size_t size = 0;
6048   HeapWord* addr = (HeapWord*)p;
6049   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6050   assert(_span.contains(addr), "we are scanning the CMS generation");
6051   // check if it's time to yield
6052   if (do_yield_check()) {
6053     // We yielded for some foreground stop-world work,
6054     // and we have been asked to abort this ongoing preclean cycle.
6055     return 0;
6056   }
6057   if (_bitMap->isMarked(addr)) {
6058     // it's marked; is it potentially uninitialized?
6059     if (p->klass_or_null() != NULL) {
6060         // an initialized object; ignore mark word in verification below
6061         // since we are running concurrent with mutators
6062         assert(p->is_oop(true), "should be an oop");
6063         if (p->is_objArray()) {
6064           // objArrays are precisely marked; restrict scanning
6065           // to dirty cards only.
6066           size = CompactibleFreeListSpace::adjustObjectSize(
6067                    p->oop_iterate_size(_scanningClosure, mr));
6068         } else {
6069           // A non-array may have been imprecisely marked; we need
6070           // to scan object in its entirety.
6071           size = CompactibleFreeListSpace::adjustObjectSize(
6072                    p->oop_iterate_size(_scanningClosure));
6073         }
6074         #ifdef ASSERT
6075           size_t direct_size =
6076             CompactibleFreeListSpace::adjustObjectSize(p->size());
6077           assert(size == direct_size, "Inconsistency in size");
6078           assert(size >= 3, "Necessary for Printezis marks to work");
6079           if (!_bitMap->isMarked(addr+1)) {
6080             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6081           } else {
6082             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6083             assert(_bitMap->isMarked(addr+size-1),
6084                    "inconsistent Printezis mark");
6085           }
6086         #endif // ASSERT
6087     } else {
6088       // An uninitialized object.
6089       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6090       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6091       size = pointer_delta(nextOneAddr + 1, addr);
6092       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6093              "alignment problem");
6094       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6095       // will dirty the card when the klass pointer is installed in the
6096       // object (signaling the completion of initialization).
6097     }
6098   } else {
6099     // Either a not yet marked object or an uninitialized object
6100     if (p->klass_or_null() == NULL) {
6101       // An uninitialized object, skip to the next card, since
6102       // we may not be able to read its P-bits yet.
6103       assert(size == 0, "Initial value");
6104     } else {
6105       // An object not (yet) reached by marking: we merely need to
6106       // compute its size so as to go look at the next block.
6107       assert(p->is_oop(true), "should be an oop");
6108       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6109     }
6110   }
6111   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6112   return size;
6113 }
6114 
6115 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6116   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6117          "CMS thread should hold CMS token");
6118   assert_lock_strong(_freelistLock);
6119   assert_lock_strong(_bitMap->lock());
6120   // relinquish the free_list_lock and bitMaplock()
6121   _bitMap->lock()->unlock();
6122   _freelistLock->unlock();
6123   ConcurrentMarkSweepThread::desynchronize(true);
6124   _collector->stopTimer();
6125   _collector->incrementYields();
6126 
6127   // See the comment in coordinator_yield()
6128   for (unsigned i = 0; i < CMSYieldSleepCount &&
6129                    ConcurrentMarkSweepThread::should_yield() &&
6130                    !CMSCollector::foregroundGCIsActive(); ++i) {
6131     os::sleep(Thread::current(), 1, false);
6132   }
6133 
6134   ConcurrentMarkSweepThread::synchronize(true);
6135   _freelistLock->lock_without_safepoint_check();
6136   _bitMap->lock()->lock_without_safepoint_check();
6137   _collector->startTimer();
6138 }
6139 
6140 
6141 //////////////////////////////////////////////////////////////////
6142 // SurvivorSpacePrecleanClosure
6143 //////////////////////////////////////////////////////////////////
6144 // This (single-threaded) closure is used to preclean the oops in
6145 // the survivor spaces.
6146 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6147 
6148   HeapWord* addr = (HeapWord*)p;
6149   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6150   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6151   assert(p->klass_or_null() != NULL, "object should be initialized");
6152   // an initialized object; ignore mark word in verification below
6153   // since we are running concurrent with mutators
6154   assert(p->is_oop(true), "should be an oop");
6155   // Note that we do not yield while we iterate over
6156   // the interior oops of p, pushing the relevant ones
6157   // on our marking stack.
6158   size_t size = p->oop_iterate_size(_scanning_closure);
6159   do_yield_check();
6160   // Observe that below, we do not abandon the preclean
6161   // phase as soon as we should; rather we empty the
6162   // marking stack before returning. This is to satisfy
6163   // some existing assertions. In general, it may be a
6164   // good idea to abort immediately and complete the marking
6165   // from the grey objects at a later time.
6166   while (!_mark_stack->isEmpty()) {
6167     oop new_oop = _mark_stack->pop();
6168     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6169     assert(_bit_map->isMarked((HeapWord*)new_oop),
6170            "only grey objects on this stack");
6171     // iterate over the oops in this oop, marking and pushing
6172     // the ones in CMS heap (i.e. in _span).
6173     new_oop->oop_iterate(_scanning_closure);
6174     // check if it's time to yield
6175     do_yield_check();
6176   }
6177   unsigned int after_count =
6178     GenCollectedHeap::heap()->total_collections();
6179   bool abort = (_before_count != after_count) ||
6180                _collector->should_abort_preclean();
6181   return abort ? 0 : size;
6182 }
6183 
6184 void SurvivorSpacePrecleanClosure::do_yield_work() {
6185   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6186          "CMS thread should hold CMS token");
6187   assert_lock_strong(_bit_map->lock());
6188   // Relinquish the bit map lock
6189   _bit_map->lock()->unlock();
6190   ConcurrentMarkSweepThread::desynchronize(true);
6191   _collector->stopTimer();
6192   _collector->incrementYields();
6193 
6194   // See the comment in coordinator_yield()
6195   for (unsigned i = 0; i < CMSYieldSleepCount &&
6196                        ConcurrentMarkSweepThread::should_yield() &&
6197                        !CMSCollector::foregroundGCIsActive(); ++i) {
6198     os::sleep(Thread::current(), 1, false);
6199   }
6200 
6201   ConcurrentMarkSweepThread::synchronize(true);
6202   _bit_map->lock()->lock_without_safepoint_check();
6203   _collector->startTimer();
6204 }
6205 
6206 // This closure is used to rescan the marked objects on the dirty cards
6207 // in the mod union table and the card table proper. In the parallel
6208 // case, although the bitMap is shared, we do a single read so the
6209 // isMarked() query is "safe".
6210 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6211   // Ignore mark word because we are running concurrent with mutators
6212   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6213   HeapWord* addr = (HeapWord*)p;
6214   assert(_span.contains(addr), "we are scanning the CMS generation");
6215   bool is_obj_array = false;
6216   #ifdef ASSERT
6217     if (!_parallel) {
6218       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6219       assert(_collector->overflow_list_is_empty(),
6220              "overflow list should be empty");
6221 
6222     }
6223   #endif // ASSERT
6224   if (_bit_map->isMarked(addr)) {
6225     // Obj arrays are precisely marked, non-arrays are not;
6226     // so we scan objArrays precisely and non-arrays in their
6227     // entirety.
6228     if (p->is_objArray()) {
6229       is_obj_array = true;
6230       if (_parallel) {
6231         p->oop_iterate(_par_scan_closure, mr);
6232       } else {
6233         p->oop_iterate(_scan_closure, mr);
6234       }
6235     } else {
6236       if (_parallel) {
6237         p->oop_iterate(_par_scan_closure);
6238       } else {
6239         p->oop_iterate(_scan_closure);
6240       }
6241     }
6242   }
6243   #ifdef ASSERT
6244     if (!_parallel) {
6245       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6246       assert(_collector->overflow_list_is_empty(),
6247              "overflow list should be empty");
6248 
6249     }
6250   #endif // ASSERT
6251   return is_obj_array;
6252 }
6253 
6254 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6255                         MemRegion span,
6256                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6257                         bool should_yield, bool verifying):
6258   _collector(collector),
6259   _span(span),
6260   _bitMap(bitMap),
6261   _mut(&collector->_modUnionTable),
6262   _markStack(markStack),
6263   _yield(should_yield),
6264   _skipBits(0)
6265 {
6266   assert(_markStack->isEmpty(), "stack should be empty");
6267   _finger = _bitMap->startWord();
6268   _threshold = _finger;
6269   assert(_collector->_restart_addr == NULL, "Sanity check");
6270   assert(_span.contains(_finger), "Out of bounds _finger?");
6271   DEBUG_ONLY(_verifying = verifying;)
6272 }
6273 
6274 void MarkFromRootsClosure::reset(HeapWord* addr) {
6275   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6276   assert(_span.contains(addr), "Out of bounds _finger?");
6277   _finger = addr;
6278   _threshold = (HeapWord*)round_to(
6279                  (intptr_t)_finger, CardTableModRefBS::card_size);
6280 }
6281 
6282 // Should revisit to see if this should be restructured for
6283 // greater efficiency.
6284 bool MarkFromRootsClosure::do_bit(size_t offset) {
6285   if (_skipBits > 0) {
6286     _skipBits--;
6287     return true;
6288   }
6289   // convert offset into a HeapWord*
6290   HeapWord* addr = _bitMap->startWord() + offset;
6291   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6292          "address out of range");
6293   assert(_bitMap->isMarked(addr), "tautology");
6294   if (_bitMap->isMarked(addr+1)) {
6295     // this is an allocated but not yet initialized object
6296     assert(_skipBits == 0, "tautology");
6297     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6298     oop p = oop(addr);
6299     if (p->klass_or_null() == NULL) {
6300       DEBUG_ONLY(if (!_verifying) {)
6301         // We re-dirty the cards on which this object lies and increase
6302         // the _threshold so that we'll come back to scan this object
6303         // during the preclean or remark phase. (CMSCleanOnEnter)
6304         if (CMSCleanOnEnter) {
6305           size_t sz = _collector->block_size_using_printezis_bits(addr);
6306           HeapWord* end_card_addr   = (HeapWord*)round_to(
6307                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6308           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6309           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6310           // Bump _threshold to end_card_addr; note that
6311           // _threshold cannot possibly exceed end_card_addr, anyhow.
6312           // This prevents future clearing of the card as the scan proceeds
6313           // to the right.
6314           assert(_threshold <= end_card_addr,
6315                  "Because we are just scanning into this object");
6316           if (_threshold < end_card_addr) {
6317             _threshold = end_card_addr;
6318           }
6319           if (p->klass_or_null() != NULL) {
6320             // Redirty the range of cards...
6321             _mut->mark_range(redirty_range);
6322           } // ...else the setting of klass will dirty the card anyway.
6323         }
6324       DEBUG_ONLY(})
6325       return true;
6326     }
6327   }
6328   scanOopsInOop(addr);
6329   return true;
6330 }
6331 
6332 // We take a break if we've been at this for a while,
6333 // so as to avoid monopolizing the locks involved.
6334 void MarkFromRootsClosure::do_yield_work() {
6335   // First give up the locks, then yield, then re-lock
6336   // We should probably use a constructor/destructor idiom to
6337   // do this unlock/lock or modify the MutexUnlocker class to
6338   // serve our purpose. XXX
6339   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6340          "CMS thread should hold CMS token");
6341   assert_lock_strong(_bitMap->lock());
6342   _bitMap->lock()->unlock();
6343   ConcurrentMarkSweepThread::desynchronize(true);
6344   _collector->stopTimer();
6345   _collector->incrementYields();
6346 
6347   // See the comment in coordinator_yield()
6348   for (unsigned i = 0; i < CMSYieldSleepCount &&
6349                        ConcurrentMarkSweepThread::should_yield() &&
6350                        !CMSCollector::foregroundGCIsActive(); ++i) {
6351     os::sleep(Thread::current(), 1, false);
6352   }
6353 
6354   ConcurrentMarkSweepThread::synchronize(true);
6355   _bitMap->lock()->lock_without_safepoint_check();
6356   _collector->startTimer();
6357 }
6358 
6359 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6360   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6361   assert(_markStack->isEmpty(),
6362          "should drain stack to limit stack usage");
6363   // convert ptr to an oop preparatory to scanning
6364   oop obj = oop(ptr);
6365   // Ignore mark word in verification below, since we
6366   // may be running concurrent with mutators.
6367   assert(obj->is_oop(true), "should be an oop");
6368   assert(_finger <= ptr, "_finger runneth ahead");
6369   // advance the finger to right end of this object
6370   _finger = ptr + obj->size();
6371   assert(_finger > ptr, "we just incremented it above");
6372   // On large heaps, it may take us some time to get through
6373   // the marking phase. During
6374   // this time it's possible that a lot of mutations have
6375   // accumulated in the card table and the mod union table --
6376   // these mutation records are redundant until we have
6377   // actually traced into the corresponding card.
6378   // Here, we check whether advancing the finger would make
6379   // us cross into a new card, and if so clear corresponding
6380   // cards in the MUT (preclean them in the card-table in the
6381   // future).
6382 
6383   DEBUG_ONLY(if (!_verifying) {)
6384     // The clean-on-enter optimization is disabled by default,
6385     // until we fix 6178663.
6386     if (CMSCleanOnEnter && (_finger > _threshold)) {
6387       // [_threshold, _finger) represents the interval
6388       // of cards to be cleared  in MUT (or precleaned in card table).
6389       // The set of cards to be cleared is all those that overlap
6390       // with the interval [_threshold, _finger); note that
6391       // _threshold is always kept card-aligned but _finger isn't
6392       // always card-aligned.
6393       HeapWord* old_threshold = _threshold;
6394       assert(old_threshold == (HeapWord*)round_to(
6395               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6396              "_threshold should always be card-aligned");
6397       _threshold = (HeapWord*)round_to(
6398                      (intptr_t)_finger, CardTableModRefBS::card_size);
6399       MemRegion mr(old_threshold, _threshold);
6400       assert(!mr.is_empty(), "Control point invariant");
6401       assert(_span.contains(mr), "Should clear within span");
6402       _mut->clear_range(mr);
6403     }
6404   DEBUG_ONLY(})
6405   // Note: the finger doesn't advance while we drain
6406   // the stack below.
6407   PushOrMarkClosure pushOrMarkClosure(_collector,
6408                                       _span, _bitMap, _markStack,
6409                                       _finger, this);
6410   bool res = _markStack->push(obj);
6411   assert(res, "Empty non-zero size stack should have space for single push");
6412   while (!_markStack->isEmpty()) {
6413     oop new_oop = _markStack->pop();
6414     // Skip verifying header mark word below because we are
6415     // running concurrent with mutators.
6416     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6417     // now scan this oop's oops
6418     new_oop->oop_iterate(&pushOrMarkClosure);
6419     do_yield_check();
6420   }
6421   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6422 }
6423 
6424 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6425                        CMSCollector* collector, MemRegion span,
6426                        CMSBitMap* bit_map,
6427                        OopTaskQueue* work_queue,
6428                        CMSMarkStack*  overflow_stack):
6429   _collector(collector),
6430   _whole_span(collector->_span),
6431   _span(span),
6432   _bit_map(bit_map),
6433   _mut(&collector->_modUnionTable),
6434   _work_queue(work_queue),
6435   _overflow_stack(overflow_stack),
6436   _skip_bits(0),
6437   _task(task)
6438 {
6439   assert(_work_queue->size() == 0, "work_queue should be empty");
6440   _finger = span.start();
6441   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6442   assert(_span.contains(_finger), "Out of bounds _finger?");
6443 }
6444 
6445 // Should revisit to see if this should be restructured for
6446 // greater efficiency.
6447 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6448   if (_skip_bits > 0) {
6449     _skip_bits--;
6450     return true;
6451   }
6452   // convert offset into a HeapWord*
6453   HeapWord* addr = _bit_map->startWord() + offset;
6454   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6455          "address out of range");
6456   assert(_bit_map->isMarked(addr), "tautology");
6457   if (_bit_map->isMarked(addr+1)) {
6458     // this is an allocated object that might not yet be initialized
6459     assert(_skip_bits == 0, "tautology");
6460     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6461     oop p = oop(addr);
6462     if (p->klass_or_null() == NULL) {
6463       // in the case of Clean-on-Enter optimization, redirty card
6464       // and avoid clearing card by increasing  the threshold.
6465       return true;
6466     }
6467   }
6468   scan_oops_in_oop(addr);
6469   return true;
6470 }
6471 
6472 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6473   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6474   // Should we assert that our work queue is empty or
6475   // below some drain limit?
6476   assert(_work_queue->size() == 0,
6477          "should drain stack to limit stack usage");
6478   // convert ptr to an oop preparatory to scanning
6479   oop obj = oop(ptr);
6480   // Ignore mark word in verification below, since we
6481   // may be running concurrent with mutators.
6482   assert(obj->is_oop(true), "should be an oop");
6483   assert(_finger <= ptr, "_finger runneth ahead");
6484   // advance the finger to right end of this object
6485   _finger = ptr + obj->size();
6486   assert(_finger > ptr, "we just incremented it above");
6487   // On large heaps, it may take us some time to get through
6488   // the marking phase. During
6489   // this time it's possible that a lot of mutations have
6490   // accumulated in the card table and the mod union table --
6491   // these mutation records are redundant until we have
6492   // actually traced into the corresponding card.
6493   // Here, we check whether advancing the finger would make
6494   // us cross into a new card, and if so clear corresponding
6495   // cards in the MUT (preclean them in the card-table in the
6496   // future).
6497 
6498   // The clean-on-enter optimization is disabled by default,
6499   // until we fix 6178663.
6500   if (CMSCleanOnEnter && (_finger > _threshold)) {
6501     // [_threshold, _finger) represents the interval
6502     // of cards to be cleared  in MUT (or precleaned in card table).
6503     // The set of cards to be cleared is all those that overlap
6504     // with the interval [_threshold, _finger); note that
6505     // _threshold is always kept card-aligned but _finger isn't
6506     // always card-aligned.
6507     HeapWord* old_threshold = _threshold;
6508     assert(old_threshold == (HeapWord*)round_to(
6509             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6510            "_threshold should always be card-aligned");
6511     _threshold = (HeapWord*)round_to(
6512                    (intptr_t)_finger, CardTableModRefBS::card_size);
6513     MemRegion mr(old_threshold, _threshold);
6514     assert(!mr.is_empty(), "Control point invariant");
6515     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6516     _mut->clear_range(mr);
6517   }
6518 
6519   // Note: the local finger doesn't advance while we drain
6520   // the stack below, but the global finger sure can and will.
6521   HeapWord** gfa = _task->global_finger_addr();
6522   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6523                                       _span, _bit_map,
6524                                       _work_queue,
6525                                       _overflow_stack,
6526                                       _finger,
6527                                       gfa, this);
6528   bool res = _work_queue->push(obj);   // overflow could occur here
6529   assert(res, "Will hold once we use workqueues");
6530   while (true) {
6531     oop new_oop;
6532     if (!_work_queue->pop_local(new_oop)) {
6533       // We emptied our work_queue; check if there's stuff that can
6534       // be gotten from the overflow stack.
6535       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6536             _overflow_stack, _work_queue)) {
6537         do_yield_check();
6538         continue;
6539       } else {  // done
6540         break;
6541       }
6542     }
6543     // Skip verifying header mark word below because we are
6544     // running concurrent with mutators.
6545     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6546     // now scan this oop's oops
6547     new_oop->oop_iterate(&pushOrMarkClosure);
6548     do_yield_check();
6549   }
6550   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6551 }
6552 
6553 // Yield in response to a request from VM Thread or
6554 // from mutators.
6555 void Par_MarkFromRootsClosure::do_yield_work() {
6556   assert(_task != NULL, "sanity");
6557   _task->yield();
6558 }
6559 
6560 // A variant of the above used for verifying CMS marking work.
6561 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6562                         MemRegion span,
6563                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6564                         CMSMarkStack*  mark_stack):
6565   _collector(collector),
6566   _span(span),
6567   _verification_bm(verification_bm),
6568   _cms_bm(cms_bm),
6569   _mark_stack(mark_stack),
6570   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6571                       mark_stack)
6572 {
6573   assert(_mark_stack->isEmpty(), "stack should be empty");
6574   _finger = _verification_bm->startWord();
6575   assert(_collector->_restart_addr == NULL, "Sanity check");
6576   assert(_span.contains(_finger), "Out of bounds _finger?");
6577 }
6578 
6579 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6580   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6581   assert(_span.contains(addr), "Out of bounds _finger?");
6582   _finger = addr;
6583 }
6584 
6585 // Should revisit to see if this should be restructured for
6586 // greater efficiency.
6587 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6588   // convert offset into a HeapWord*
6589   HeapWord* addr = _verification_bm->startWord() + offset;
6590   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6591          "address out of range");
6592   assert(_verification_bm->isMarked(addr), "tautology");
6593   assert(_cms_bm->isMarked(addr), "tautology");
6594 
6595   assert(_mark_stack->isEmpty(),
6596          "should drain stack to limit stack usage");
6597   // convert addr to an oop preparatory to scanning
6598   oop obj = oop(addr);
6599   assert(obj->is_oop(), "should be an oop");
6600   assert(_finger <= addr, "_finger runneth ahead");
6601   // advance the finger to right end of this object
6602   _finger = addr + obj->size();
6603   assert(_finger > addr, "we just incremented it above");
6604   // Note: the finger doesn't advance while we drain
6605   // the stack below.
6606   bool res = _mark_stack->push(obj);
6607   assert(res, "Empty non-zero size stack should have space for single push");
6608   while (!_mark_stack->isEmpty()) {
6609     oop new_oop = _mark_stack->pop();
6610     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6611     // now scan this oop's oops
6612     new_oop->oop_iterate(&_pam_verify_closure);
6613   }
6614   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6615   return true;
6616 }
6617 
6618 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6619   CMSCollector* collector, MemRegion span,
6620   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6621   CMSMarkStack*  mark_stack):
6622   MetadataAwareOopClosure(collector->ref_processor()),
6623   _collector(collector),
6624   _span(span),
6625   _verification_bm(verification_bm),
6626   _cms_bm(cms_bm),
6627   _mark_stack(mark_stack)
6628 { }
6629 
6630 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6631 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6632 
6633 // Upon stack overflow, we discard (part of) the stack,
6634 // remembering the least address amongst those discarded
6635 // in CMSCollector's _restart_address.
6636 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6637   // Remember the least grey address discarded
6638   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6639   _collector->lower_restart_addr(ra);
6640   _mark_stack->reset();  // discard stack contents
6641   _mark_stack->expand(); // expand the stack if possible
6642 }
6643 
6644 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6645   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6646   HeapWord* addr = (HeapWord*)obj;
6647   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6648     // Oop lies in _span and isn't yet grey or black
6649     _verification_bm->mark(addr);            // now grey
6650     if (!_cms_bm->isMarked(addr)) {
6651       LogHandle(gc, verify) log;
6652       ResourceMark rm;
6653       oop(addr)->print_on(log.info_stream());
6654       log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6655       fatal("... aborting");
6656     }
6657 
6658     if (!_mark_stack->push(obj)) { // stack overflow
6659       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6660       assert(_mark_stack->isFull(), "Else push should have succeeded");
6661       handle_stack_overflow(addr);
6662     }
6663     // anything including and to the right of _finger
6664     // will be scanned as we iterate over the remainder of the
6665     // bit map
6666   }
6667 }
6668 
6669 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6670                      MemRegion span,
6671                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6672                      HeapWord* finger, MarkFromRootsClosure* parent) :
6673   MetadataAwareOopClosure(collector->ref_processor()),
6674   _collector(collector),
6675   _span(span),
6676   _bitMap(bitMap),
6677   _markStack(markStack),
6678   _finger(finger),
6679   _parent(parent)
6680 { }
6681 
6682 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6683                      MemRegion span,
6684                      CMSBitMap* bit_map,
6685                      OopTaskQueue* work_queue,
6686                      CMSMarkStack*  overflow_stack,
6687                      HeapWord* finger,
6688                      HeapWord** global_finger_addr,
6689                      Par_MarkFromRootsClosure* parent) :
6690   MetadataAwareOopClosure(collector->ref_processor()),
6691   _collector(collector),
6692   _whole_span(collector->_span),
6693   _span(span),
6694   _bit_map(bit_map),
6695   _work_queue(work_queue),
6696   _overflow_stack(overflow_stack),
6697   _finger(finger),
6698   _global_finger_addr(global_finger_addr),
6699   _parent(parent)
6700 { }
6701 
6702 // Assumes thread-safe access by callers, who are
6703 // responsible for mutual exclusion.
6704 void CMSCollector::lower_restart_addr(HeapWord* low) {
6705   assert(_span.contains(low), "Out of bounds addr");
6706   if (_restart_addr == NULL) {
6707     _restart_addr = low;
6708   } else {
6709     _restart_addr = MIN2(_restart_addr, low);
6710   }
6711 }
6712 
6713 // Upon stack overflow, we discard (part of) the stack,
6714 // remembering the least address amongst those discarded
6715 // in CMSCollector's _restart_address.
6716 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6717   // Remember the least grey address discarded
6718   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6719   _collector->lower_restart_addr(ra);
6720   _markStack->reset();  // discard stack contents
6721   _markStack->expand(); // expand the stack if possible
6722 }
6723 
6724 // Upon stack overflow, we discard (part of) the stack,
6725 // remembering the least address amongst those discarded
6726 // in CMSCollector's _restart_address.
6727 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6728   // We need to do this under a mutex to prevent other
6729   // workers from interfering with the work done below.
6730   MutexLockerEx ml(_overflow_stack->par_lock(),
6731                    Mutex::_no_safepoint_check_flag);
6732   // Remember the least grey address discarded
6733   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6734   _collector->lower_restart_addr(ra);
6735   _overflow_stack->reset();  // discard stack contents
6736   _overflow_stack->expand(); // expand the stack if possible
6737 }
6738 
6739 void PushOrMarkClosure::do_oop(oop obj) {
6740   // Ignore mark word because we are running concurrent with mutators.
6741   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6742   HeapWord* addr = (HeapWord*)obj;
6743   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6744     // Oop lies in _span and isn't yet grey or black
6745     _bitMap->mark(addr);            // now grey
6746     if (addr < _finger) {
6747       // the bit map iteration has already either passed, or
6748       // sampled, this bit in the bit map; we'll need to
6749       // use the marking stack to scan this oop's oops.
6750       bool simulate_overflow = false;
6751       NOT_PRODUCT(
6752         if (CMSMarkStackOverflowALot &&
6753             _collector->simulate_overflow()) {
6754           // simulate a stack overflow
6755           simulate_overflow = true;
6756         }
6757       )
6758       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6759         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6760         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6761         handle_stack_overflow(addr);
6762       }
6763     }
6764     // anything including and to the right of _finger
6765     // will be scanned as we iterate over the remainder of the
6766     // bit map
6767     do_yield_check();
6768   }
6769 }
6770 
6771 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6772 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6773 
6774 void Par_PushOrMarkClosure::do_oop(oop obj) {
6775   // Ignore mark word because we are running concurrent with mutators.
6776   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6777   HeapWord* addr = (HeapWord*)obj;
6778   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6779     // Oop lies in _span and isn't yet grey or black
6780     // We read the global_finger (volatile read) strictly after marking oop
6781     bool res = _bit_map->par_mark(addr);    // now grey
6782     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6783     // Should we push this marked oop on our stack?
6784     // -- if someone else marked it, nothing to do
6785     // -- if target oop is above global finger nothing to do
6786     // -- if target oop is in chunk and above local finger
6787     //      then nothing to do
6788     // -- else push on work queue
6789     if (   !res       // someone else marked it, they will deal with it
6790         || (addr >= *gfa)  // will be scanned in a later task
6791         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6792       return;
6793     }
6794     // the bit map iteration has already either passed, or
6795     // sampled, this bit in the bit map; we'll need to
6796     // use the marking stack to scan this oop's oops.
6797     bool simulate_overflow = false;
6798     NOT_PRODUCT(
6799       if (CMSMarkStackOverflowALot &&
6800           _collector->simulate_overflow()) {
6801         // simulate a stack overflow
6802         simulate_overflow = true;
6803       }
6804     )
6805     if (simulate_overflow ||
6806         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6807       // stack overflow
6808       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6809       // We cannot assert that the overflow stack is full because
6810       // it may have been emptied since.
6811       assert(simulate_overflow ||
6812              _work_queue->size() == _work_queue->max_elems(),
6813             "Else push should have succeeded");
6814       handle_stack_overflow(addr);
6815     }
6816     do_yield_check();
6817   }
6818 }
6819 
6820 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
6821 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
6822 
6823 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6824                                        MemRegion span,
6825                                        ReferenceProcessor* rp,
6826                                        CMSBitMap* bit_map,
6827                                        CMSBitMap* mod_union_table,
6828                                        CMSMarkStack*  mark_stack,
6829                                        bool           concurrent_precleaning):
6830   MetadataAwareOopClosure(rp),
6831   _collector(collector),
6832   _span(span),
6833   _bit_map(bit_map),
6834   _mod_union_table(mod_union_table),
6835   _mark_stack(mark_stack),
6836   _concurrent_precleaning(concurrent_precleaning)
6837 {
6838   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6839 }
6840 
6841 // Grey object rescan during pre-cleaning and second checkpoint phases --
6842 // the non-parallel version (the parallel version appears further below.)
6843 void PushAndMarkClosure::do_oop(oop obj) {
6844   // Ignore mark word verification. If during concurrent precleaning,
6845   // the object monitor may be locked. If during the checkpoint
6846   // phases, the object may already have been reached by a  different
6847   // path and may be at the end of the global overflow list (so
6848   // the mark word may be NULL).
6849   assert(obj->is_oop_or_null(true /* ignore mark word */),
6850          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6851   HeapWord* addr = (HeapWord*)obj;
6852   // Check if oop points into the CMS generation
6853   // and is not marked
6854   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6855     // a white object ...
6856     _bit_map->mark(addr);         // ... now grey
6857     // push on the marking stack (grey set)
6858     bool simulate_overflow = false;
6859     NOT_PRODUCT(
6860       if (CMSMarkStackOverflowALot &&
6861           _collector->simulate_overflow()) {
6862         // simulate a stack overflow
6863         simulate_overflow = true;
6864       }
6865     )
6866     if (simulate_overflow || !_mark_stack->push(obj)) {
6867       if (_concurrent_precleaning) {
6868          // During precleaning we can just dirty the appropriate card(s)
6869          // in the mod union table, thus ensuring that the object remains
6870          // in the grey set  and continue. In the case of object arrays
6871          // we need to dirty all of the cards that the object spans,
6872          // since the rescan of object arrays will be limited to the
6873          // dirty cards.
6874          // Note that no one can be interfering with us in this action
6875          // of dirtying the mod union table, so no locking or atomics
6876          // are required.
6877          if (obj->is_objArray()) {
6878            size_t sz = obj->size();
6879            HeapWord* end_card_addr = (HeapWord*)round_to(
6880                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6881            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6882            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6883            _mod_union_table->mark_range(redirty_range);
6884          } else {
6885            _mod_union_table->mark(addr);
6886          }
6887          _collector->_ser_pmc_preclean_ovflw++;
6888       } else {
6889          // During the remark phase, we need to remember this oop
6890          // in the overflow list.
6891          _collector->push_on_overflow_list(obj);
6892          _collector->_ser_pmc_remark_ovflw++;
6893       }
6894     }
6895   }
6896 }
6897 
6898 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
6899                                                MemRegion span,
6900                                                ReferenceProcessor* rp,
6901                                                CMSBitMap* bit_map,
6902                                                OopTaskQueue* work_queue):
6903   MetadataAwareOopClosure(rp),
6904   _collector(collector),
6905   _span(span),
6906   _bit_map(bit_map),
6907   _work_queue(work_queue)
6908 {
6909   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6910 }
6911 
6912 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6913 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6914 
6915 // Grey object rescan during second checkpoint phase --
6916 // the parallel version.
6917 void Par_PushAndMarkClosure::do_oop(oop obj) {
6918   // In the assert below, we ignore the mark word because
6919   // this oop may point to an already visited object that is
6920   // on the overflow stack (in which case the mark word has
6921   // been hijacked for chaining into the overflow stack --
6922   // if this is the last object in the overflow stack then
6923   // its mark word will be NULL). Because this object may
6924   // have been subsequently popped off the global overflow
6925   // stack, and the mark word possibly restored to the prototypical
6926   // value, by the time we get to examined this failing assert in
6927   // the debugger, is_oop_or_null(false) may subsequently start
6928   // to hold.
6929   assert(obj->is_oop_or_null(true),
6930          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6931   HeapWord* addr = (HeapWord*)obj;
6932   // Check if oop points into the CMS generation
6933   // and is not marked
6934   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6935     // a white object ...
6936     // If we manage to "claim" the object, by being the
6937     // first thread to mark it, then we push it on our
6938     // marking stack
6939     if (_bit_map->par_mark(addr)) {     // ... now grey
6940       // push on work queue (grey set)
6941       bool simulate_overflow = false;
6942       NOT_PRODUCT(
6943         if (CMSMarkStackOverflowALot &&
6944             _collector->par_simulate_overflow()) {
6945           // simulate a stack overflow
6946           simulate_overflow = true;
6947         }
6948       )
6949       if (simulate_overflow || !_work_queue->push(obj)) {
6950         _collector->par_push_on_overflow_list(obj);
6951         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6952       }
6953     } // Else, some other thread got there first
6954   }
6955 }
6956 
6957 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
6958 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
6959 
6960 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6961   Mutex* bml = _collector->bitMapLock();
6962   assert_lock_strong(bml);
6963   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6964          "CMS thread should hold CMS token");
6965 
6966   bml->unlock();
6967   ConcurrentMarkSweepThread::desynchronize(true);
6968 
6969   _collector->stopTimer();
6970   _collector->incrementYields();
6971 
6972   // See the comment in coordinator_yield()
6973   for (unsigned i = 0; i < CMSYieldSleepCount &&
6974                        ConcurrentMarkSweepThread::should_yield() &&
6975                        !CMSCollector::foregroundGCIsActive(); ++i) {
6976     os::sleep(Thread::current(), 1, false);
6977   }
6978 
6979   ConcurrentMarkSweepThread::synchronize(true);
6980   bml->lock();
6981 
6982   _collector->startTimer();
6983 }
6984 
6985 bool CMSPrecleanRefsYieldClosure::should_return() {
6986   if (ConcurrentMarkSweepThread::should_yield()) {
6987     do_yield_work();
6988   }
6989   return _collector->foregroundGCIsActive();
6990 }
6991 
6992 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
6993   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
6994          "mr should be aligned to start at a card boundary");
6995   // We'd like to assert:
6996   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
6997   //        "mr should be a range of cards");
6998   // However, that would be too strong in one case -- the last
6999   // partition ends at _unallocated_block which, in general, can be
7000   // an arbitrary boundary, not necessarily card aligned.
7001   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7002   _space->object_iterate_mem(mr, &_scan_cl);
7003 }
7004 
7005 SweepClosure::SweepClosure(CMSCollector* collector,
7006                            ConcurrentMarkSweepGeneration* g,
7007                            CMSBitMap* bitMap, bool should_yield) :
7008   _collector(collector),
7009   _g(g),
7010   _sp(g->cmsSpace()),
7011   _limit(_sp->sweep_limit()),
7012   _freelistLock(_sp->freelistLock()),
7013   _bitMap(bitMap),
7014   _yield(should_yield),
7015   _inFreeRange(false),           // No free range at beginning of sweep
7016   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7017   _lastFreeRangeCoalesced(false),
7018   _freeFinger(g->used_region().start())
7019 {
7020   NOT_PRODUCT(
7021     _numObjectsFreed = 0;
7022     _numWordsFreed   = 0;
7023     _numObjectsLive = 0;
7024     _numWordsLive = 0;
7025     _numObjectsAlreadyFree = 0;
7026     _numWordsAlreadyFree = 0;
7027     _last_fc = NULL;
7028 
7029     _sp->initializeIndexedFreeListArrayReturnedBytes();
7030     _sp->dictionary()->initialize_dict_returned_bytes();
7031   )
7032   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7033          "sweep _limit out of bounds");
7034   log_develop_trace(gc, sweep)("====================");
7035   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7036 }
7037 
7038 void SweepClosure::print_on(outputStream* st) const {
7039   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7040                 p2i(_sp->bottom()), p2i(_sp->end()));
7041   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7042   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7043   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7044   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7045                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7046 }
7047 
7048 #ifndef PRODUCT
7049 // Assertion checking only:  no useful work in product mode --
7050 // however, if any of the flags below become product flags,
7051 // you may need to review this code to see if it needs to be
7052 // enabled in product mode.
7053 SweepClosure::~SweepClosure() {
7054   assert_lock_strong(_freelistLock);
7055   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7056          "sweep _limit out of bounds");
7057   if (inFreeRange()) {
7058     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7059     print();
7060     ShouldNotReachHere();
7061   }
7062 
7063   if (log_is_enabled(Debug, gc, sweep)) {
7064     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7065                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7066     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7067                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7068     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7069     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7070   }
7071 
7072   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7073     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7074     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7075     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7076     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7077                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7078   }
7079   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7080   log_develop_trace(gc, sweep)("================");
7081 }
7082 #endif  // PRODUCT
7083 
7084 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7085     bool freeRangeInFreeLists) {
7086   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7087                                p2i(freeFinger), freeRangeInFreeLists);
7088   assert(!inFreeRange(), "Trampling existing free range");
7089   set_inFreeRange(true);
7090   set_lastFreeRangeCoalesced(false);
7091 
7092   set_freeFinger(freeFinger);
7093   set_freeRangeInFreeLists(freeRangeInFreeLists);
7094   if (CMSTestInFreeList) {
7095     if (freeRangeInFreeLists) {
7096       FreeChunk* fc = (FreeChunk*) freeFinger;
7097       assert(fc->is_free(), "A chunk on the free list should be free.");
7098       assert(fc->size() > 0, "Free range should have a size");
7099       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7100     }
7101   }
7102 }
7103 
7104 // Note that the sweeper runs concurrently with mutators. Thus,
7105 // it is possible for direct allocation in this generation to happen
7106 // in the middle of the sweep. Note that the sweeper also coalesces
7107 // contiguous free blocks. Thus, unless the sweeper and the allocator
7108 // synchronize appropriately freshly allocated blocks may get swept up.
7109 // This is accomplished by the sweeper locking the free lists while
7110 // it is sweeping. Thus blocks that are determined to be free are
7111 // indeed free. There is however one additional complication:
7112 // blocks that have been allocated since the final checkpoint and
7113 // mark, will not have been marked and so would be treated as
7114 // unreachable and swept up. To prevent this, the allocator marks
7115 // the bit map when allocating during the sweep phase. This leads,
7116 // however, to a further complication -- objects may have been allocated
7117 // but not yet initialized -- in the sense that the header isn't yet
7118 // installed. The sweeper can not then determine the size of the block
7119 // in order to skip over it. To deal with this case, we use a technique
7120 // (due to Printezis) to encode such uninitialized block sizes in the
7121 // bit map. Since the bit map uses a bit per every HeapWord, but the
7122 // CMS generation has a minimum object size of 3 HeapWords, it follows
7123 // that "normal marks" won't be adjacent in the bit map (there will
7124 // always be at least two 0 bits between successive 1 bits). We make use
7125 // of these "unused" bits to represent uninitialized blocks -- the bit
7126 // corresponding to the start of the uninitialized object and the next
7127 // bit are both set. Finally, a 1 bit marks the end of the object that
7128 // started with the two consecutive 1 bits to indicate its potentially
7129 // uninitialized state.
7130 
7131 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7132   FreeChunk* fc = (FreeChunk*)addr;
7133   size_t res;
7134 
7135   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7136   // than "addr == _limit" because although _limit was a block boundary when
7137   // we started the sweep, it may no longer be one because heap expansion
7138   // may have caused us to coalesce the block ending at the address _limit
7139   // with a newly expanded chunk (this happens when _limit was set to the
7140   // previous _end of the space), so we may have stepped past _limit:
7141   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7142   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7143     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7144            "sweep _limit out of bounds");
7145     assert(addr < _sp->end(), "addr out of bounds");
7146     // Flush any free range we might be holding as a single
7147     // coalesced chunk to the appropriate free list.
7148     if (inFreeRange()) {
7149       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7150              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7151       flush_cur_free_chunk(freeFinger(),
7152                            pointer_delta(addr, freeFinger()));
7153       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7154                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7155                                    lastFreeRangeCoalesced() ? 1 : 0);
7156     }
7157 
7158     // help the iterator loop finish
7159     return pointer_delta(_sp->end(), addr);
7160   }
7161 
7162   assert(addr < _limit, "sweep invariant");
7163   // check if we should yield
7164   do_yield_check(addr);
7165   if (fc->is_free()) {
7166     // Chunk that is already free
7167     res = fc->size();
7168     do_already_free_chunk(fc);
7169     debug_only(_sp->verifyFreeLists());
7170     // If we flush the chunk at hand in lookahead_and_flush()
7171     // and it's coalesced with a preceding chunk, then the
7172     // process of "mangling" the payload of the coalesced block
7173     // will cause erasure of the size information from the
7174     // (erstwhile) header of all the coalesced blocks but the
7175     // first, so the first disjunct in the assert will not hold
7176     // in that specific case (in which case the second disjunct
7177     // will hold).
7178     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7179            "Otherwise the size info doesn't change at this step");
7180     NOT_PRODUCT(
7181       _numObjectsAlreadyFree++;
7182       _numWordsAlreadyFree += res;
7183     )
7184     NOT_PRODUCT(_last_fc = fc;)
7185   } else if (!_bitMap->isMarked(addr)) {
7186     // Chunk is fresh garbage
7187     res = do_garbage_chunk(fc);
7188     debug_only(_sp->verifyFreeLists());
7189     NOT_PRODUCT(
7190       _numObjectsFreed++;
7191       _numWordsFreed += res;
7192     )
7193   } else {
7194     // Chunk that is alive.
7195     res = do_live_chunk(fc);
7196     debug_only(_sp->verifyFreeLists());
7197     NOT_PRODUCT(
7198         _numObjectsLive++;
7199         _numWordsLive += res;
7200     )
7201   }
7202   return res;
7203 }
7204 
7205 // For the smart allocation, record following
7206 //  split deaths - a free chunk is removed from its free list because
7207 //      it is being split into two or more chunks.
7208 //  split birth - a free chunk is being added to its free list because
7209 //      a larger free chunk has been split and resulted in this free chunk.
7210 //  coal death - a free chunk is being removed from its free list because
7211 //      it is being coalesced into a large free chunk.
7212 //  coal birth - a free chunk is being added to its free list because
7213 //      it was created when two or more free chunks where coalesced into
7214 //      this free chunk.
7215 //
7216 // These statistics are used to determine the desired number of free
7217 // chunks of a given size.  The desired number is chosen to be relative
7218 // to the end of a CMS sweep.  The desired number at the end of a sweep
7219 // is the
7220 //      count-at-end-of-previous-sweep (an amount that was enough)
7221 //              - count-at-beginning-of-current-sweep  (the excess)
7222 //              + split-births  (gains in this size during interval)
7223 //              - split-deaths  (demands on this size during interval)
7224 // where the interval is from the end of one sweep to the end of the
7225 // next.
7226 //
7227 // When sweeping the sweeper maintains an accumulated chunk which is
7228 // the chunk that is made up of chunks that have been coalesced.  That
7229 // will be termed the left-hand chunk.  A new chunk of garbage that
7230 // is being considered for coalescing will be referred to as the
7231 // right-hand chunk.
7232 //
7233 // When making a decision on whether to coalesce a right-hand chunk with
7234 // the current left-hand chunk, the current count vs. the desired count
7235 // of the left-hand chunk is considered.  Also if the right-hand chunk
7236 // is near the large chunk at the end of the heap (see
7237 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7238 // left-hand chunk is coalesced.
7239 //
7240 // When making a decision about whether to split a chunk, the desired count
7241 // vs. the current count of the candidate to be split is also considered.
7242 // If the candidate is underpopulated (currently fewer chunks than desired)
7243 // a chunk of an overpopulated (currently more chunks than desired) size may
7244 // be chosen.  The "hint" associated with a free list, if non-null, points
7245 // to a free list which may be overpopulated.
7246 //
7247 
7248 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7249   const size_t size = fc->size();
7250   // Chunks that cannot be coalesced are not in the
7251   // free lists.
7252   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7253     assert(_sp->verify_chunk_in_free_list(fc),
7254            "free chunk should be in free lists");
7255   }
7256   // a chunk that is already free, should not have been
7257   // marked in the bit map
7258   HeapWord* const addr = (HeapWord*) fc;
7259   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7260   // Verify that the bit map has no bits marked between
7261   // addr and purported end of this block.
7262   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7263 
7264   // Some chunks cannot be coalesced under any circumstances.
7265   // See the definition of cantCoalesce().
7266   if (!fc->cantCoalesce()) {
7267     // This chunk can potentially be coalesced.
7268     // All the work is done in
7269     do_post_free_or_garbage_chunk(fc, size);
7270     // Note that if the chunk is not coalescable (the else arm
7271     // below), we unconditionally flush, without needing to do
7272     // a "lookahead," as we do below.
7273     if (inFreeRange()) lookahead_and_flush(fc, size);
7274   } else {
7275     // Code path common to both original and adaptive free lists.
7276 
7277     // cant coalesce with previous block; this should be treated
7278     // as the end of a free run if any
7279     if (inFreeRange()) {
7280       // we kicked some butt; time to pick up the garbage
7281       assert(freeFinger() < addr, "freeFinger points too high");
7282       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7283     }
7284     // else, nothing to do, just continue
7285   }
7286 }
7287 
7288 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7289   // This is a chunk of garbage.  It is not in any free list.
7290   // Add it to a free list or let it possibly be coalesced into
7291   // a larger chunk.
7292   HeapWord* const addr = (HeapWord*) fc;
7293   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7294 
7295   // Verify that the bit map has no bits marked between
7296   // addr and purported end of just dead object.
7297   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7298   do_post_free_or_garbage_chunk(fc, size);
7299 
7300   assert(_limit >= addr + size,
7301          "A freshly garbage chunk can't possibly straddle over _limit");
7302   if (inFreeRange()) lookahead_and_flush(fc, size);
7303   return size;
7304 }
7305 
7306 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7307   HeapWord* addr = (HeapWord*) fc;
7308   // The sweeper has just found a live object. Return any accumulated
7309   // left hand chunk to the free lists.
7310   if (inFreeRange()) {
7311     assert(freeFinger() < addr, "freeFinger points too high");
7312     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7313   }
7314 
7315   // This object is live: we'd normally expect this to be
7316   // an oop, and like to assert the following:
7317   // assert(oop(addr)->is_oop(), "live block should be an oop");
7318   // However, as we commented above, this may be an object whose
7319   // header hasn't yet been initialized.
7320   size_t size;
7321   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7322   if (_bitMap->isMarked(addr + 1)) {
7323     // Determine the size from the bit map, rather than trying to
7324     // compute it from the object header.
7325     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7326     size = pointer_delta(nextOneAddr + 1, addr);
7327     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7328            "alignment problem");
7329 
7330 #ifdef ASSERT
7331       if (oop(addr)->klass_or_null() != NULL) {
7332         // Ignore mark word because we are running concurrent with mutators
7333         assert(oop(addr)->is_oop(true), "live block should be an oop");
7334         assert(size ==
7335                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7336                "P-mark and computed size do not agree");
7337       }
7338 #endif
7339 
7340   } else {
7341     // This should be an initialized object that's alive.
7342     assert(oop(addr)->klass_or_null() != NULL,
7343            "Should be an initialized object");
7344     // Ignore mark word because we are running concurrent with mutators
7345     assert(oop(addr)->is_oop(true), "live block should be an oop");
7346     // Verify that the bit map has no bits marked between
7347     // addr and purported end of this block.
7348     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7349     assert(size >= 3, "Necessary for Printezis marks to work");
7350     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7351     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7352   }
7353   return size;
7354 }
7355 
7356 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7357                                                  size_t chunkSize) {
7358   // do_post_free_or_garbage_chunk() should only be called in the case
7359   // of the adaptive free list allocator.
7360   const bool fcInFreeLists = fc->is_free();
7361   assert((HeapWord*)fc <= _limit, "sweep invariant");
7362   if (CMSTestInFreeList && fcInFreeLists) {
7363     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7364   }
7365 
7366   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7367 
7368   HeapWord* const fc_addr = (HeapWord*) fc;
7369 
7370   bool coalesce = false;
7371   const size_t left  = pointer_delta(fc_addr, freeFinger());
7372   const size_t right = chunkSize;
7373   switch (FLSCoalescePolicy) {
7374     // numeric value forms a coalition aggressiveness metric
7375     case 0:  { // never coalesce
7376       coalesce = false;
7377       break;
7378     }
7379     case 1: { // coalesce if left & right chunks on overpopulated lists
7380       coalesce = _sp->coalOverPopulated(left) &&
7381                  _sp->coalOverPopulated(right);
7382       break;
7383     }
7384     case 2: { // coalesce if left chunk on overpopulated list (default)
7385       coalesce = _sp->coalOverPopulated(left);
7386       break;
7387     }
7388     case 3: { // coalesce if left OR right chunk on overpopulated list
7389       coalesce = _sp->coalOverPopulated(left) ||
7390                  _sp->coalOverPopulated(right);
7391       break;
7392     }
7393     case 4: { // always coalesce
7394       coalesce = true;
7395       break;
7396     }
7397     default:
7398      ShouldNotReachHere();
7399   }
7400 
7401   // Should the current free range be coalesced?
7402   // If the chunk is in a free range and either we decided to coalesce above
7403   // or the chunk is near the large block at the end of the heap
7404   // (isNearLargestChunk() returns true), then coalesce this chunk.
7405   const bool doCoalesce = inFreeRange()
7406                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7407   if (doCoalesce) {
7408     // Coalesce the current free range on the left with the new
7409     // chunk on the right.  If either is on a free list,
7410     // it must be removed from the list and stashed in the closure.
7411     if (freeRangeInFreeLists()) {
7412       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7413       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7414              "Size of free range is inconsistent with chunk size.");
7415       if (CMSTestInFreeList) {
7416         assert(_sp->verify_chunk_in_free_list(ffc),
7417                "Chunk is not in free lists");
7418       }
7419       _sp->coalDeath(ffc->size());
7420       _sp->removeFreeChunkFromFreeLists(ffc);
7421       set_freeRangeInFreeLists(false);
7422     }
7423     if (fcInFreeLists) {
7424       _sp->coalDeath(chunkSize);
7425       assert(fc->size() == chunkSize,
7426         "The chunk has the wrong size or is not in the free lists");
7427       _sp->removeFreeChunkFromFreeLists(fc);
7428     }
7429     set_lastFreeRangeCoalesced(true);
7430     print_free_block_coalesced(fc);
7431   } else {  // not in a free range and/or should not coalesce
7432     // Return the current free range and start a new one.
7433     if (inFreeRange()) {
7434       // In a free range but cannot coalesce with the right hand chunk.
7435       // Put the current free range into the free lists.
7436       flush_cur_free_chunk(freeFinger(),
7437                            pointer_delta(fc_addr, freeFinger()));
7438     }
7439     // Set up for new free range.  Pass along whether the right hand
7440     // chunk is in the free lists.
7441     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7442   }
7443 }
7444 
7445 // Lookahead flush:
7446 // If we are tracking a free range, and this is the last chunk that
7447 // we'll look at because its end crosses past _limit, we'll preemptively
7448 // flush it along with any free range we may be holding on to. Note that
7449 // this can be the case only for an already free or freshly garbage
7450 // chunk. If this block is an object, it can never straddle
7451 // over _limit. The "straddling" occurs when _limit is set at
7452 // the previous end of the space when this cycle started, and
7453 // a subsequent heap expansion caused the previously co-terminal
7454 // free block to be coalesced with the newly expanded portion,
7455 // thus rendering _limit a non-block-boundary making it dangerous
7456 // for the sweeper to step over and examine.
7457 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7458   assert(inFreeRange(), "Should only be called if currently in a free range.");
7459   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7460   assert(_sp->used_region().contains(eob - 1),
7461          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7462          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7463          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7464          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7465   if (eob >= _limit) {
7466     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7467     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7468                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7469                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7470                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7471     // Return the storage we are tracking back into the free lists.
7472     log_develop_trace(gc, sweep)("Flushing ... ");
7473     assert(freeFinger() < eob, "Error");
7474     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7475   }
7476 }
7477 
7478 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7479   assert(inFreeRange(), "Should only be called if currently in a free range.");
7480   assert(size > 0,
7481     "A zero sized chunk cannot be added to the free lists.");
7482   if (!freeRangeInFreeLists()) {
7483     if (CMSTestInFreeList) {
7484       FreeChunk* fc = (FreeChunk*) chunk;
7485       fc->set_size(size);
7486       assert(!_sp->verify_chunk_in_free_list(fc),
7487              "chunk should not be in free lists yet");
7488     }
7489     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7490     // A new free range is going to be starting.  The current
7491     // free range has not been added to the free lists yet or
7492     // was removed so add it back.
7493     // If the current free range was coalesced, then the death
7494     // of the free range was recorded.  Record a birth now.
7495     if (lastFreeRangeCoalesced()) {
7496       _sp->coalBirth(size);
7497     }
7498     _sp->addChunkAndRepairOffsetTable(chunk, size,
7499             lastFreeRangeCoalesced());
7500   } else {
7501     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7502   }
7503   set_inFreeRange(false);
7504   set_freeRangeInFreeLists(false);
7505 }
7506 
7507 // We take a break if we've been at this for a while,
7508 // so as to avoid monopolizing the locks involved.
7509 void SweepClosure::do_yield_work(HeapWord* addr) {
7510   // Return current free chunk being used for coalescing (if any)
7511   // to the appropriate freelist.  After yielding, the next
7512   // free block encountered will start a coalescing range of
7513   // free blocks.  If the next free block is adjacent to the
7514   // chunk just flushed, they will need to wait for the next
7515   // sweep to be coalesced.
7516   if (inFreeRange()) {
7517     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7518   }
7519 
7520   // First give up the locks, then yield, then re-lock.
7521   // We should probably use a constructor/destructor idiom to
7522   // do this unlock/lock or modify the MutexUnlocker class to
7523   // serve our purpose. XXX
7524   assert_lock_strong(_bitMap->lock());
7525   assert_lock_strong(_freelistLock);
7526   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7527          "CMS thread should hold CMS token");
7528   _bitMap->lock()->unlock();
7529   _freelistLock->unlock();
7530   ConcurrentMarkSweepThread::desynchronize(true);
7531   _collector->stopTimer();
7532   _collector->incrementYields();
7533 
7534   // See the comment in coordinator_yield()
7535   for (unsigned i = 0; i < CMSYieldSleepCount &&
7536                        ConcurrentMarkSweepThread::should_yield() &&
7537                        !CMSCollector::foregroundGCIsActive(); ++i) {
7538     os::sleep(Thread::current(), 1, false);
7539   }
7540 
7541   ConcurrentMarkSweepThread::synchronize(true);
7542   _freelistLock->lock();
7543   _bitMap->lock()->lock_without_safepoint_check();
7544   _collector->startTimer();
7545 }
7546 
7547 #ifndef PRODUCT
7548 // This is actually very useful in a product build if it can
7549 // be called from the debugger.  Compile it into the product
7550 // as needed.
7551 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7552   return debug_cms_space->verify_chunk_in_free_list(fc);
7553 }
7554 #endif
7555 
7556 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7557   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7558                                p2i(fc), fc->size());
7559 }
7560 
7561 // CMSIsAliveClosure
7562 bool CMSIsAliveClosure::do_object_b(oop obj) {
7563   HeapWord* addr = (HeapWord*)obj;
7564   return addr != NULL &&
7565          (!_span.contains(addr) || _bit_map->isMarked(addr));
7566 }
7567 
7568 
7569 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7570                       MemRegion span,
7571                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7572                       bool cpc):
7573   _collector(collector),
7574   _span(span),
7575   _bit_map(bit_map),
7576   _mark_stack(mark_stack),
7577   _concurrent_precleaning(cpc) {
7578   assert(!_span.is_empty(), "Empty span could spell trouble");
7579 }
7580 
7581 
7582 // CMSKeepAliveClosure: the serial version
7583 void CMSKeepAliveClosure::do_oop(oop obj) {
7584   HeapWord* addr = (HeapWord*)obj;
7585   if (_span.contains(addr) &&
7586       !_bit_map->isMarked(addr)) {
7587     _bit_map->mark(addr);
7588     bool simulate_overflow = false;
7589     NOT_PRODUCT(
7590       if (CMSMarkStackOverflowALot &&
7591           _collector->simulate_overflow()) {
7592         // simulate a stack overflow
7593         simulate_overflow = true;
7594       }
7595     )
7596     if (simulate_overflow || !_mark_stack->push(obj)) {
7597       if (_concurrent_precleaning) {
7598         // We dirty the overflown object and let the remark
7599         // phase deal with it.
7600         assert(_collector->overflow_list_is_empty(), "Error");
7601         // In the case of object arrays, we need to dirty all of
7602         // the cards that the object spans. No locking or atomics
7603         // are needed since no one else can be mutating the mod union
7604         // table.
7605         if (obj->is_objArray()) {
7606           size_t sz = obj->size();
7607           HeapWord* end_card_addr =
7608             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7609           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7610           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7611           _collector->_modUnionTable.mark_range(redirty_range);
7612         } else {
7613           _collector->_modUnionTable.mark(addr);
7614         }
7615         _collector->_ser_kac_preclean_ovflw++;
7616       } else {
7617         _collector->push_on_overflow_list(obj);
7618         _collector->_ser_kac_ovflw++;
7619       }
7620     }
7621   }
7622 }
7623 
7624 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7625 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7626 
7627 // CMSParKeepAliveClosure: a parallel version of the above.
7628 // The work queues are private to each closure (thread),
7629 // but (may be) available for stealing by other threads.
7630 void CMSParKeepAliveClosure::do_oop(oop obj) {
7631   HeapWord* addr = (HeapWord*)obj;
7632   if (_span.contains(addr) &&
7633       !_bit_map->isMarked(addr)) {
7634     // In general, during recursive tracing, several threads
7635     // may be concurrently getting here; the first one to
7636     // "tag" it, claims it.
7637     if (_bit_map->par_mark(addr)) {
7638       bool res = _work_queue->push(obj);
7639       assert(res, "Low water mark should be much less than capacity");
7640       // Do a recursive trim in the hope that this will keep
7641       // stack usage lower, but leave some oops for potential stealers
7642       trim_queue(_low_water_mark);
7643     } // Else, another thread got there first
7644   }
7645 }
7646 
7647 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7648 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7649 
7650 void CMSParKeepAliveClosure::trim_queue(uint max) {
7651   while (_work_queue->size() > max) {
7652     oop new_oop;
7653     if (_work_queue->pop_local(new_oop)) {
7654       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7655       assert(_bit_map->isMarked((HeapWord*)new_oop),
7656              "no white objects on this stack!");
7657       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7658       // iterate over the oops in this oop, marking and pushing
7659       // the ones in CMS heap (i.e. in _span).
7660       new_oop->oop_iterate(&_mark_and_push);
7661     }
7662   }
7663 }
7664 
7665 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7666                                 CMSCollector* collector,
7667                                 MemRegion span, CMSBitMap* bit_map,
7668                                 OopTaskQueue* work_queue):
7669   _collector(collector),
7670   _span(span),
7671   _bit_map(bit_map),
7672   _work_queue(work_queue) { }
7673 
7674 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7675   HeapWord* addr = (HeapWord*)obj;
7676   if (_span.contains(addr) &&
7677       !_bit_map->isMarked(addr)) {
7678     if (_bit_map->par_mark(addr)) {
7679       bool simulate_overflow = false;
7680       NOT_PRODUCT(
7681         if (CMSMarkStackOverflowALot &&
7682             _collector->par_simulate_overflow()) {
7683           // simulate a stack overflow
7684           simulate_overflow = true;
7685         }
7686       )
7687       if (simulate_overflow || !_work_queue->push(obj)) {
7688         _collector->par_push_on_overflow_list(obj);
7689         _collector->_par_kac_ovflw++;
7690       }
7691     } // Else another thread got there already
7692   }
7693 }
7694 
7695 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7696 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7697 
7698 //////////////////////////////////////////////////////////////////
7699 //  CMSExpansionCause                /////////////////////////////
7700 //////////////////////////////////////////////////////////////////
7701 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7702   switch (cause) {
7703     case _no_expansion:
7704       return "No expansion";
7705     case _satisfy_free_ratio:
7706       return "Free ratio";
7707     case _satisfy_promotion:
7708       return "Satisfy promotion";
7709     case _satisfy_allocation:
7710       return "allocation";
7711     case _allocate_par_lab:
7712       return "Par LAB";
7713     case _allocate_par_spooling_space:
7714       return "Par Spooling Space";
7715     case _adaptive_size_policy:
7716       return "Ergonomics";
7717     default:
7718       return "unknown";
7719   }
7720 }
7721 
7722 void CMSDrainMarkingStackClosure::do_void() {
7723   // the max number to take from overflow list at a time
7724   const size_t num = _mark_stack->capacity()/4;
7725   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7726          "Overflow list should be NULL during concurrent phases");
7727   while (!_mark_stack->isEmpty() ||
7728          // if stack is empty, check the overflow list
7729          _collector->take_from_overflow_list(num, _mark_stack)) {
7730     oop obj = _mark_stack->pop();
7731     HeapWord* addr = (HeapWord*)obj;
7732     assert(_span.contains(addr), "Should be within span");
7733     assert(_bit_map->isMarked(addr), "Should be marked");
7734     assert(obj->is_oop(), "Should be an oop");
7735     obj->oop_iterate(_keep_alive);
7736   }
7737 }
7738 
7739 void CMSParDrainMarkingStackClosure::do_void() {
7740   // drain queue
7741   trim_queue(0);
7742 }
7743 
7744 // Trim our work_queue so its length is below max at return
7745 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7746   while (_work_queue->size() > max) {
7747     oop new_oop;
7748     if (_work_queue->pop_local(new_oop)) {
7749       assert(new_oop->is_oop(), "Expected an oop");
7750       assert(_bit_map->isMarked((HeapWord*)new_oop),
7751              "no white objects on this stack!");
7752       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7753       // iterate over the oops in this oop, marking and pushing
7754       // the ones in CMS heap (i.e. in _span).
7755       new_oop->oop_iterate(&_mark_and_push);
7756     }
7757   }
7758 }
7759 
7760 ////////////////////////////////////////////////////////////////////
7761 // Support for Marking Stack Overflow list handling and related code
7762 ////////////////////////////////////////////////////////////////////
7763 // Much of the following code is similar in shape and spirit to the
7764 // code used in ParNewGC. We should try and share that code
7765 // as much as possible in the future.
7766 
7767 #ifndef PRODUCT
7768 // Debugging support for CMSStackOverflowALot
7769 
7770 // It's OK to call this multi-threaded;  the worst thing
7771 // that can happen is that we'll get a bunch of closely
7772 // spaced simulated overflows, but that's OK, in fact
7773 // probably good as it would exercise the overflow code
7774 // under contention.
7775 bool CMSCollector::simulate_overflow() {
7776   if (_overflow_counter-- <= 0) { // just being defensive
7777     _overflow_counter = CMSMarkStackOverflowInterval;
7778     return true;
7779   } else {
7780     return false;
7781   }
7782 }
7783 
7784 bool CMSCollector::par_simulate_overflow() {
7785   return simulate_overflow();
7786 }
7787 #endif
7788 
7789 // Single-threaded
7790 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7791   assert(stack->isEmpty(), "Expected precondition");
7792   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7793   size_t i = num;
7794   oop  cur = _overflow_list;
7795   const markOop proto = markOopDesc::prototype();
7796   NOT_PRODUCT(ssize_t n = 0;)
7797   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7798     next = oop(cur->mark());
7799     cur->set_mark(proto);   // until proven otherwise
7800     assert(cur->is_oop(), "Should be an oop");
7801     bool res = stack->push(cur);
7802     assert(res, "Bit off more than can chew?");
7803     NOT_PRODUCT(n++;)
7804   }
7805   _overflow_list = cur;
7806 #ifndef PRODUCT
7807   assert(_num_par_pushes >= n, "Too many pops?");
7808   _num_par_pushes -=n;
7809 #endif
7810   return !stack->isEmpty();
7811 }
7812 
7813 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7814 // (MT-safe) Get a prefix of at most "num" from the list.
7815 // The overflow list is chained through the mark word of
7816 // each object in the list. We fetch the entire list,
7817 // break off a prefix of the right size and return the
7818 // remainder. If other threads try to take objects from
7819 // the overflow list at that time, they will wait for
7820 // some time to see if data becomes available. If (and
7821 // only if) another thread places one or more object(s)
7822 // on the global list before we have returned the suffix
7823 // to the global list, we will walk down our local list
7824 // to find its end and append the global list to
7825 // our suffix before returning it. This suffix walk can
7826 // prove to be expensive (quadratic in the amount of traffic)
7827 // when there are many objects in the overflow list and
7828 // there is much producer-consumer contention on the list.
7829 // *NOTE*: The overflow list manipulation code here and
7830 // in ParNewGeneration:: are very similar in shape,
7831 // except that in the ParNew case we use the old (from/eden)
7832 // copy of the object to thread the list via its klass word.
7833 // Because of the common code, if you make any changes in
7834 // the code below, please check the ParNew version to see if
7835 // similar changes might be needed.
7836 // CR 6797058 has been filed to consolidate the common code.
7837 bool CMSCollector::par_take_from_overflow_list(size_t num,
7838                                                OopTaskQueue* work_q,
7839                                                int no_of_gc_threads) {
7840   assert(work_q->size() == 0, "First empty local work queue");
7841   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7842   if (_overflow_list == NULL) {
7843     return false;
7844   }
7845   // Grab the entire list; we'll put back a suffix
7846   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7847   Thread* tid = Thread::current();
7848   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7849   // set to ParallelGCThreads.
7850   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7851   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7852   // If the list is busy, we spin for a short while,
7853   // sleeping between attempts to get the list.
7854   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7855     os::sleep(tid, sleep_time_millis, false);
7856     if (_overflow_list == NULL) {
7857       // Nothing left to take
7858       return false;
7859     } else if (_overflow_list != BUSY) {
7860       // Try and grab the prefix
7861       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7862     }
7863   }
7864   // If the list was found to be empty, or we spun long
7865   // enough, we give up and return empty-handed. If we leave
7866   // the list in the BUSY state below, it must be the case that
7867   // some other thread holds the overflow list and will set it
7868   // to a non-BUSY state in the future.
7869   if (prefix == NULL || prefix == BUSY) {
7870      // Nothing to take or waited long enough
7871      if (prefix == NULL) {
7872        // Write back the NULL in case we overwrote it with BUSY above
7873        // and it is still the same value.
7874        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7875      }
7876      return false;
7877   }
7878   assert(prefix != NULL && prefix != BUSY, "Error");
7879   size_t i = num;
7880   oop cur = prefix;
7881   // Walk down the first "num" objects, unless we reach the end.
7882   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7883   if (cur->mark() == NULL) {
7884     // We have "num" or fewer elements in the list, so there
7885     // is nothing to return to the global list.
7886     // Write back the NULL in lieu of the BUSY we wrote
7887     // above, if it is still the same value.
7888     if (_overflow_list == BUSY) {
7889       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7890     }
7891   } else {
7892     // Chop off the suffix and return it to the global list.
7893     assert(cur->mark() != BUSY, "Error");
7894     oop suffix_head = cur->mark(); // suffix will be put back on global list
7895     cur->set_mark(NULL);           // break off suffix
7896     // It's possible that the list is still in the empty(busy) state
7897     // we left it in a short while ago; in that case we may be
7898     // able to place back the suffix without incurring the cost
7899     // of a walk down the list.
7900     oop observed_overflow_list = _overflow_list;
7901     oop cur_overflow_list = observed_overflow_list;
7902     bool attached = false;
7903     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7904       observed_overflow_list =
7905         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7906       if (cur_overflow_list == observed_overflow_list) {
7907         attached = true;
7908         break;
7909       } else cur_overflow_list = observed_overflow_list;
7910     }
7911     if (!attached) {
7912       // Too bad, someone else sneaked in (at least) an element; we'll need
7913       // to do a splice. Find tail of suffix so we can prepend suffix to global
7914       // list.
7915       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7916       oop suffix_tail = cur;
7917       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7918              "Tautology");
7919       observed_overflow_list = _overflow_list;
7920       do {
7921         cur_overflow_list = observed_overflow_list;
7922         if (cur_overflow_list != BUSY) {
7923           // Do the splice ...
7924           suffix_tail->set_mark(markOop(cur_overflow_list));
7925         } else { // cur_overflow_list == BUSY
7926           suffix_tail->set_mark(NULL);
7927         }
7928         // ... and try to place spliced list back on overflow_list ...
7929         observed_overflow_list =
7930           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7931       } while (cur_overflow_list != observed_overflow_list);
7932       // ... until we have succeeded in doing so.
7933     }
7934   }
7935 
7936   // Push the prefix elements on work_q
7937   assert(prefix != NULL, "control point invariant");
7938   const markOop proto = markOopDesc::prototype();
7939   oop next;
7940   NOT_PRODUCT(ssize_t n = 0;)
7941   for (cur = prefix; cur != NULL; cur = next) {
7942     next = oop(cur->mark());
7943     cur->set_mark(proto);   // until proven otherwise
7944     assert(cur->is_oop(), "Should be an oop");
7945     bool res = work_q->push(cur);
7946     assert(res, "Bit off more than we can chew?");
7947     NOT_PRODUCT(n++;)
7948   }
7949 #ifndef PRODUCT
7950   assert(_num_par_pushes >= n, "Too many pops?");
7951   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7952 #endif
7953   return true;
7954 }
7955 
7956 // Single-threaded
7957 void CMSCollector::push_on_overflow_list(oop p) {
7958   NOT_PRODUCT(_num_par_pushes++;)
7959   assert(p->is_oop(), "Not an oop");
7960   preserve_mark_if_necessary(p);
7961   p->set_mark((markOop)_overflow_list);
7962   _overflow_list = p;
7963 }
7964 
7965 // Multi-threaded; use CAS to prepend to overflow list
7966 void CMSCollector::par_push_on_overflow_list(oop p) {
7967   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7968   assert(p->is_oop(), "Not an oop");
7969   par_preserve_mark_if_necessary(p);
7970   oop observed_overflow_list = _overflow_list;
7971   oop cur_overflow_list;
7972   do {
7973     cur_overflow_list = observed_overflow_list;
7974     if (cur_overflow_list != BUSY) {
7975       p->set_mark(markOop(cur_overflow_list));
7976     } else {
7977       p->set_mark(NULL);
7978     }
7979     observed_overflow_list =
7980       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
7981   } while (cur_overflow_list != observed_overflow_list);
7982 }
7983 #undef BUSY
7984 
7985 // Single threaded
7986 // General Note on GrowableArray: pushes may silently fail
7987 // because we are (temporarily) out of C-heap for expanding
7988 // the stack. The problem is quite ubiquitous and affects
7989 // a lot of code in the JVM. The prudent thing for GrowableArray
7990 // to do (for now) is to exit with an error. However, that may
7991 // be too draconian in some cases because the caller may be
7992 // able to recover without much harm. For such cases, we
7993 // should probably introduce a "soft_push" method which returns
7994 // an indication of success or failure with the assumption that
7995 // the caller may be able to recover from a failure; code in
7996 // the VM can then be changed, incrementally, to deal with such
7997 // failures where possible, thus, incrementally hardening the VM
7998 // in such low resource situations.
7999 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8000   _preserved_oop_stack.push(p);
8001   _preserved_mark_stack.push(m);
8002   assert(m == p->mark(), "Mark word changed");
8003   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8004          "bijection");
8005 }
8006 
8007 // Single threaded
8008 void CMSCollector::preserve_mark_if_necessary(oop p) {
8009   markOop m = p->mark();
8010   if (m->must_be_preserved(p)) {
8011     preserve_mark_work(p, m);
8012   }
8013 }
8014 
8015 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8016   markOop m = p->mark();
8017   if (m->must_be_preserved(p)) {
8018     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8019     // Even though we read the mark word without holding
8020     // the lock, we are assured that it will not change
8021     // because we "own" this oop, so no other thread can
8022     // be trying to push it on the overflow list; see
8023     // the assertion in preserve_mark_work() that checks
8024     // that m == p->mark().
8025     preserve_mark_work(p, m);
8026   }
8027 }
8028 
8029 // We should be able to do this multi-threaded,
8030 // a chunk of stack being a task (this is
8031 // correct because each oop only ever appears
8032 // once in the overflow list. However, it's
8033 // not very easy to completely overlap this with
8034 // other operations, so will generally not be done
8035 // until all work's been completed. Because we
8036 // expect the preserved oop stack (set) to be small,
8037 // it's probably fine to do this single-threaded.
8038 // We can explore cleverer concurrent/overlapped/parallel
8039 // processing of preserved marks if we feel the
8040 // need for this in the future. Stack overflow should
8041 // be so rare in practice and, when it happens, its
8042 // effect on performance so great that this will
8043 // likely just be in the noise anyway.
8044 void CMSCollector::restore_preserved_marks_if_any() {
8045   assert(SafepointSynchronize::is_at_safepoint(),
8046          "world should be stopped");
8047   assert(Thread::current()->is_ConcurrentGC_thread() ||
8048          Thread::current()->is_VM_thread(),
8049          "should be single-threaded");
8050   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8051          "bijection");
8052 
8053   while (!_preserved_oop_stack.is_empty()) {
8054     oop p = _preserved_oop_stack.pop();
8055     assert(p->is_oop(), "Should be an oop");
8056     assert(_span.contains(p), "oop should be in _span");
8057     assert(p->mark() == markOopDesc::prototype(),
8058            "Set when taken from overflow list");
8059     markOop m = _preserved_mark_stack.pop();
8060     p->set_mark(m);
8061   }
8062   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8063          "stacks were cleared above");
8064 }
8065 
8066 #ifndef PRODUCT
8067 bool CMSCollector::no_preserved_marks() const {
8068   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8069 }
8070 #endif
8071 
8072 // Transfer some number of overflown objects to usual marking
8073 // stack. Return true if some objects were transferred.
8074 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8075   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8076                     (size_t)ParGCDesiredObjsFromOverflowList);
8077 
8078   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8079   assert(_collector->overflow_list_is_empty() || res,
8080          "If list is not empty, we should have taken something");
8081   assert(!res || !_mark_stack->isEmpty(),
8082          "If we took something, it should now be on our stack");
8083   return res;
8084 }
8085 
8086 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8087   size_t res = _sp->block_size_no_stall(addr, _collector);
8088   if (_sp->block_is_obj(addr)) {
8089     if (_live_bit_map->isMarked(addr)) {
8090       // It can't have been dead in a previous cycle
8091       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8092     } else {
8093       _dead_bit_map->mark(addr);      // mark the dead object
8094     }
8095   }
8096   // Could be 0, if the block size could not be computed without stalling.
8097   return res;
8098 }
8099 
8100 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8101 
8102   switch (phase) {
8103     case CMSCollector::InitialMarking:
8104       initialize(true  /* fullGC */ ,
8105                  cause /* cause of the GC */,
8106                  true  /* recordGCBeginTime */,
8107                  true  /* recordPreGCUsage */,
8108                  false /* recordPeakUsage */,
8109                  false /* recordPostGCusage */,
8110                  true  /* recordAccumulatedGCTime */,
8111                  false /* recordGCEndTime */,
8112                  false /* countCollection */  );
8113       break;
8114 
8115     case CMSCollector::FinalMarking:
8116       initialize(true  /* fullGC */ ,
8117                  cause /* cause of the GC */,
8118                  false /* recordGCBeginTime */,
8119                  false /* recordPreGCUsage */,
8120                  false /* recordPeakUsage */,
8121                  false /* recordPostGCusage */,
8122                  true  /* recordAccumulatedGCTime */,
8123                  false /* recordGCEndTime */,
8124                  false /* countCollection */  );
8125       break;
8126 
8127     case CMSCollector::Sweeping:
8128       initialize(true  /* fullGC */ ,
8129                  cause /* cause of the GC */,
8130                  false /* recordGCBeginTime */,
8131                  false /* recordPreGCUsage */,
8132                  true  /* recordPeakUsage */,
8133                  true  /* recordPostGCusage */,
8134                  false /* recordAccumulatedGCTime */,
8135                  true  /* recordGCEndTime */,
8136                  true  /* countCollection */  );
8137       break;
8138 
8139     default:
8140       ShouldNotReachHere();
8141   }
8142 }