1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1EvacStats.inline.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1MarkSweep.hpp"
  41 #include "gc/g1/g1OopClosures.inline.hpp"
  42 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  43 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  44 #include "gc/g1/g1RemSet.inline.hpp"
  45 #include "gc/g1/g1RootClosures.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/suspendibleThreadSet.hpp"
  53 #include "gc/g1/vm_operations_g1.hpp"
  54 #include "gc/shared/gcHeapSummary.hpp"
  55 #include "gc/shared/gcId.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.inline.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "logging/log.hpp"
  65 #include "memory/allocation.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "oops/oop.inline.hpp"
  68 #include "runtime/atomic.inline.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  76 
  77 // INVARIANTS/NOTES
  78 //
  79 // All allocation activity covered by the G1CollectedHeap interface is
  80 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  81 // and allocate_new_tlab, which are the "entry" points to the
  82 // allocation code from the rest of the JVM.  (Note that this does not
  83 // apply to TLAB allocation, which is not part of this interface: it
  84 // is done by clients of this interface.)
  85 
  86 // Local to this file.
  87 
  88 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  89   bool _concurrent;
  90 public:
  91   RefineCardTableEntryClosure() : _concurrent(true) { }
  92 
  93   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  94     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  95     // This path is executed by the concurrent refine or mutator threads,
  96     // concurrently, and so we do not care if card_ptr contains references
  97     // that point into the collection set.
  98     assert(!oops_into_cset, "should be");
  99 
 100     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 101       // Caller will actually yield.
 102       return false;
 103     }
 104     // Otherwise, we finished successfully; return true.
 105     return true;
 106   }
 107 
 108   void set_concurrent(bool b) { _concurrent = b; }
 109 };
 110 
 111 
 112 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 113  private:
 114   size_t _num_dirtied;
 115   G1CollectedHeap* _g1h;
 116   G1SATBCardTableLoggingModRefBS* _g1_bs;
 117 
 118   HeapRegion* region_for_card(jbyte* card_ptr) const {
 119     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 120   }
 121 
 122   bool will_become_free(HeapRegion* hr) const {
 123     // A region will be freed by free_collection_set if the region is in the
 124     // collection set and has not had an evacuation failure.
 125     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 126   }
 127 
 128  public:
 129   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 130     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 131 
 132   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 133     HeapRegion* hr = region_for_card(card_ptr);
 134 
 135     // Should only dirty cards in regions that won't be freed.
 136     if (!will_become_free(hr)) {
 137       *card_ptr = CardTableModRefBS::dirty_card_val();
 138       _num_dirtied++;
 139     }
 140 
 141     return true;
 142   }
 143 
 144   size_t num_dirtied()   const { return _num_dirtied; }
 145 };
 146 
 147 
 148 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 149   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 150 }
 151 
 152 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 153   // The from card cache is not the memory that is actually committed. So we cannot
 154   // take advantage of the zero_filled parameter.
 155   reset_from_card_cache(start_idx, num_regions);
 156 }
 157 
 158 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 159 {
 160   // Claim the right to put the region on the dirty cards region list
 161   // by installing a self pointer.
 162   HeapRegion* next = hr->get_next_dirty_cards_region();
 163   if (next == NULL) {
 164     HeapRegion* res = (HeapRegion*)
 165       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 166                           NULL);
 167     if (res == NULL) {
 168       HeapRegion* head;
 169       do {
 170         // Put the region to the dirty cards region list.
 171         head = _dirty_cards_region_list;
 172         next = (HeapRegion*)
 173           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 174         if (next == head) {
 175           assert(hr->get_next_dirty_cards_region() == hr,
 176                  "hr->get_next_dirty_cards_region() != hr");
 177           if (next == NULL) {
 178             // The last region in the list points to itself.
 179             hr->set_next_dirty_cards_region(hr);
 180           } else {
 181             hr->set_next_dirty_cards_region(next);
 182           }
 183         }
 184       } while (next != head);
 185     }
 186   }
 187 }
 188 
 189 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 190 {
 191   HeapRegion* head;
 192   HeapRegion* hr;
 193   do {
 194     head = _dirty_cards_region_list;
 195     if (head == NULL) {
 196       return NULL;
 197     }
 198     HeapRegion* new_head = head->get_next_dirty_cards_region();
 199     if (head == new_head) {
 200       // The last region.
 201       new_head = NULL;
 202     }
 203     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 204                                           head);
 205   } while (hr != head);
 206   assert(hr != NULL, "invariant");
 207   hr->set_next_dirty_cards_region(NULL);
 208   return hr;
 209 }
 210 
 211 // Returns true if the reference points to an object that
 212 // can move in an incremental collection.
 213 bool G1CollectedHeap::is_scavengable(const void* p) {
 214   HeapRegion* hr = heap_region_containing(p);
 215   return !hr->is_pinned();
 216 }
 217 
 218 // Private methods.
 219 
 220 HeapRegion*
 221 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 222   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 223   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 224     if (!_secondary_free_list.is_empty()) {
 225       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 226                                       "secondary_free_list has %u entries",
 227                                       _secondary_free_list.length());
 228       // It looks as if there are free regions available on the
 229       // secondary_free_list. Let's move them to the free_list and try
 230       // again to allocate from it.
 231       append_secondary_free_list();
 232 
 233       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 234              "empty we should have moved at least one entry to the free_list");
 235       HeapRegion* res = _hrm.allocate_free_region(is_old);
 236       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 237                                       "allocated " HR_FORMAT " from secondary_free_list",
 238                                       HR_FORMAT_PARAMS(res));
 239       return res;
 240     }
 241 
 242     // Wait here until we get notified either when (a) there are no
 243     // more free regions coming or (b) some regions have been moved on
 244     // the secondary_free_list.
 245     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 246   }
 247 
 248   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 249                                   "could not allocate from secondary_free_list");
 250   return NULL;
 251 }
 252 
 253 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 254   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 255          "the only time we use this to allocate a humongous region is "
 256          "when we are allocating a single humongous region");
 257 
 258   HeapRegion* res;
 259   if (G1StressConcRegionFreeing) {
 260     if (!_secondary_free_list.is_empty()) {
 261       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 262                                       "forced to look at the secondary_free_list");
 263       res = new_region_try_secondary_free_list(is_old);
 264       if (res != NULL) {
 265         return res;
 266       }
 267     }
 268   }
 269 
 270   res = _hrm.allocate_free_region(is_old);
 271 
 272   if (res == NULL) {
 273     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 274                                     "res == NULL, trying the secondary_free_list");
 275     res = new_region_try_secondary_free_list(is_old);
 276   }
 277   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 278     // Currently, only attempts to allocate GC alloc regions set
 279     // do_expand to true. So, we should only reach here during a
 280     // safepoint. If this assumption changes we might have to
 281     // reconsider the use of _expand_heap_after_alloc_failure.
 282     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 283 
 284     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 285                               word_size * HeapWordSize);
 286 
 287     if (expand(word_size * HeapWordSize)) {
 288       // Given that expand() succeeded in expanding the heap, and we
 289       // always expand the heap by an amount aligned to the heap
 290       // region size, the free list should in theory not be empty.
 291       // In either case allocate_free_region() will check for NULL.
 292       res = _hrm.allocate_free_region(is_old);
 293     } else {
 294       _expand_heap_after_alloc_failure = false;
 295     }
 296   }
 297   return res;
 298 }
 299 
 300 HeapWord*
 301 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 302                                                            uint num_regions,
 303                                                            size_t word_size,
 304                                                            AllocationContext_t context) {
 305   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 306   assert(is_humongous(word_size), "word_size should be humongous");
 307   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 308 
 309   // Index of last region in the series.
 310   uint last = first + num_regions - 1;
 311 
 312   // We need to initialize the region(s) we just discovered. This is
 313   // a bit tricky given that it can happen concurrently with
 314   // refinement threads refining cards on these regions and
 315   // potentially wanting to refine the BOT as they are scanning
 316   // those cards (this can happen shortly after a cleanup; see CR
 317   // 6991377). So we have to set up the region(s) carefully and in
 318   // a specific order.
 319 
 320   // The word size sum of all the regions we will allocate.
 321   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 322   assert(word_size <= word_size_sum, "sanity");
 323 
 324   // This will be the "starts humongous" region.
 325   HeapRegion* first_hr = region_at(first);
 326   // The header of the new object will be placed at the bottom of
 327   // the first region.
 328   HeapWord* new_obj = first_hr->bottom();
 329   // This will be the new top of the new object.
 330   HeapWord* obj_top = new_obj + word_size;
 331 
 332   // First, we need to zero the header of the space that we will be
 333   // allocating. When we update top further down, some refinement
 334   // threads might try to scan the region. By zeroing the header we
 335   // ensure that any thread that will try to scan the region will
 336   // come across the zero klass word and bail out.
 337   //
 338   // NOTE: It would not have been correct to have used
 339   // CollectedHeap::fill_with_object() and make the space look like
 340   // an int array. The thread that is doing the allocation will
 341   // later update the object header to a potentially different array
 342   // type and, for a very short period of time, the klass and length
 343   // fields will be inconsistent. This could cause a refinement
 344   // thread to calculate the object size incorrectly.
 345   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 346 
 347   // How many words we use for filler objects.
 348   size_t word_fill_size = word_size_sum - word_size;
 349 
 350   // How many words memory we "waste" which cannot hold a filler object.
 351   size_t words_not_fillable = 0;
 352 
 353   if (word_fill_size >= min_fill_size()) {
 354     fill_with_objects(obj_top, word_fill_size);
 355   } else if (word_fill_size > 0) {
 356     // We have space to fill, but we cannot fit an object there.
 357     words_not_fillable = word_fill_size;
 358     word_fill_size = 0;
 359   }
 360 
 361   // We will set up the first region as "starts humongous". This
 362   // will also update the BOT covering all the regions to reflect
 363   // that there is a single object that starts at the bottom of the
 364   // first region.
 365   first_hr->set_starts_humongous(obj_top, word_fill_size);
 366   first_hr->set_allocation_context(context);
 367   // Then, if there are any, we will set up the "continues
 368   // humongous" regions.
 369   HeapRegion* hr = NULL;
 370   for (uint i = first + 1; i <= last; ++i) {
 371     hr = region_at(i);
 372     hr->set_continues_humongous(first_hr);
 373     hr->set_allocation_context(context);
 374   }
 375 
 376   // Up to this point no concurrent thread would have been able to
 377   // do any scanning on any region in this series. All the top
 378   // fields still point to bottom, so the intersection between
 379   // [bottom,top] and [card_start,card_end] will be empty. Before we
 380   // update the top fields, we'll do a storestore to make sure that
 381   // no thread sees the update to top before the zeroing of the
 382   // object header and the BOT initialization.
 383   OrderAccess::storestore();
 384 
 385   // Now, we will update the top fields of the "continues humongous"
 386   // regions except the last one.
 387   for (uint i = first; i < last; ++i) {
 388     hr = region_at(i);
 389     hr->set_top(hr->end());
 390   }
 391 
 392   hr = region_at(last);
 393   // If we cannot fit a filler object, we must set top to the end
 394   // of the humongous object, otherwise we cannot iterate the heap
 395   // and the BOT will not be complete.
 396   hr->set_top(hr->end() - words_not_fillable);
 397 
 398   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 399          "obj_top should be in last region");
 400 
 401   check_bitmaps("Humongous Region Allocation", first_hr);
 402 
 403   assert(words_not_fillable == 0 ||
 404          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 405          "Miscalculation in humongous allocation");
 406 
 407   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 408 
 409   for (uint i = first; i <= last; ++i) {
 410     hr = region_at(i);
 411     _humongous_set.add(hr);
 412     if (i == first) {
 413       _hr_printer.alloc(G1HRPrinter::StartsHumongous, hr, hr->top());
 414     } else {
 415       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->top());
 416     }
 417   }
 418 
 419   return new_obj;
 420 }
 421 
 422 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 423   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 424   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 425 }
 426 
 427 // If could fit into free regions w/o expansion, try.
 428 // Otherwise, if can expand, do so.
 429 // Otherwise, if using ex regions might help, try with ex given back.
 430 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 431   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 432 
 433   verify_region_sets_optional();
 434 
 435   uint first = G1_NO_HRM_INDEX;
 436   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 437 
 438   if (obj_regions == 1) {
 439     // Only one region to allocate, try to use a fast path by directly allocating
 440     // from the free lists. Do not try to expand here, we will potentially do that
 441     // later.
 442     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 443     if (hr != NULL) {
 444       first = hr->hrm_index();
 445     }
 446   } else {
 447     // We can't allocate humongous regions spanning more than one region while
 448     // cleanupComplete() is running, since some of the regions we find to be
 449     // empty might not yet be added to the free list. It is not straightforward
 450     // to know in which list they are on so that we can remove them. We only
 451     // need to do this if we need to allocate more than one region to satisfy the
 452     // current humongous allocation request. If we are only allocating one region
 453     // we use the one-region region allocation code (see above), that already
 454     // potentially waits for regions from the secondary free list.
 455     wait_while_free_regions_coming();
 456     append_secondary_free_list_if_not_empty_with_lock();
 457 
 458     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 459     // are lucky enough to find some.
 460     first = _hrm.find_contiguous_only_empty(obj_regions);
 461     if (first != G1_NO_HRM_INDEX) {
 462       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 463     }
 464   }
 465 
 466   if (first == G1_NO_HRM_INDEX) {
 467     // Policy: We could not find enough regions for the humongous object in the
 468     // free list. Look through the heap to find a mix of free and uncommitted regions.
 469     // If so, try expansion.
 470     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 471     if (first != G1_NO_HRM_INDEX) {
 472       // We found something. Make sure these regions are committed, i.e. expand
 473       // the heap. Alternatively we could do a defragmentation GC.
 474       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 475                                     word_size * HeapWordSize);
 476 
 477 
 478       _hrm.expand_at(first, obj_regions);
 479       g1_policy()->record_new_heap_size(num_regions());
 480 
 481 #ifdef ASSERT
 482       for (uint i = first; i < first + obj_regions; ++i) {
 483         HeapRegion* hr = region_at(i);
 484         assert(hr->is_free(), "sanity");
 485         assert(hr->is_empty(), "sanity");
 486         assert(is_on_master_free_list(hr), "sanity");
 487       }
 488 #endif
 489       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 490     } else {
 491       // Policy: Potentially trigger a defragmentation GC.
 492     }
 493   }
 494 
 495   HeapWord* result = NULL;
 496   if (first != G1_NO_HRM_INDEX) {
 497     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 498                                                        word_size, context);
 499     assert(result != NULL, "it should always return a valid result");
 500 
 501     // A successful humongous object allocation changes the used space
 502     // information of the old generation so we need to recalculate the
 503     // sizes and update the jstat counters here.
 504     g1mm()->update_sizes();
 505   }
 506 
 507   verify_region_sets_optional();
 508 
 509   return result;
 510 }
 511 
 512 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 513   assert_heap_not_locked_and_not_at_safepoint();
 514   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 515 
 516   uint dummy_gc_count_before;
 517   uint dummy_gclocker_retry_count = 0;
 518   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 519 }
 520 
 521 HeapWord*
 522 G1CollectedHeap::mem_allocate(size_t word_size,
 523                               bool*  gc_overhead_limit_was_exceeded) {
 524   assert_heap_not_locked_and_not_at_safepoint();
 525 
 526   // Loop until the allocation is satisfied, or unsatisfied after GC.
 527   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 528     uint gc_count_before;
 529 
 530     HeapWord* result = NULL;
 531     if (!is_humongous(word_size)) {
 532       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 533     } else {
 534       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 535     }
 536     if (result != NULL) {
 537       return result;
 538     }
 539 
 540     // Create the garbage collection operation...
 541     VM_G1CollectForAllocation op(gc_count_before, word_size);
 542     op.set_allocation_context(AllocationContext::current());
 543 
 544     // ...and get the VM thread to execute it.
 545     VMThread::execute(&op);
 546 
 547     if (op.prologue_succeeded() && op.pause_succeeded()) {
 548       // If the operation was successful we'll return the result even
 549       // if it is NULL. If the allocation attempt failed immediately
 550       // after a Full GC, it's unlikely we'll be able to allocate now.
 551       HeapWord* result = op.result();
 552       if (result != NULL && !is_humongous(word_size)) {
 553         // Allocations that take place on VM operations do not do any
 554         // card dirtying and we have to do it here. We only have to do
 555         // this for non-humongous allocations, though.
 556         dirty_young_block(result, word_size);
 557       }
 558       return result;
 559     } else {
 560       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 561         return NULL;
 562       }
 563       assert(op.result() == NULL,
 564              "the result should be NULL if the VM op did not succeed");
 565     }
 566 
 567     // Give a warning if we seem to be looping forever.
 568     if ((QueuedAllocationWarningCount > 0) &&
 569         (try_count % QueuedAllocationWarningCount == 0)) {
 570       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 571     }
 572   }
 573 
 574   ShouldNotReachHere();
 575   return NULL;
 576 }
 577 
 578 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 579                                                    AllocationContext_t context,
 580                                                    uint* gc_count_before_ret,
 581                                                    uint* gclocker_retry_count_ret) {
 582   // Make sure you read the note in attempt_allocation_humongous().
 583 
 584   assert_heap_not_locked_and_not_at_safepoint();
 585   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 586          "be called for humongous allocation requests");
 587 
 588   // We should only get here after the first-level allocation attempt
 589   // (attempt_allocation()) failed to allocate.
 590 
 591   // We will loop until a) we manage to successfully perform the
 592   // allocation or b) we successfully schedule a collection which
 593   // fails to perform the allocation. b) is the only case when we'll
 594   // return NULL.
 595   HeapWord* result = NULL;
 596   for (int try_count = 1; /* we'll return */; try_count += 1) {
 597     bool should_try_gc;
 598     uint gc_count_before;
 599 
 600     {
 601       MutexLockerEx x(Heap_lock);
 602       result = _allocator->attempt_allocation_locked(word_size, context);
 603       if (result != NULL) {
 604         return result;
 605       }
 606 
 607       if (GC_locker::is_active_and_needs_gc()) {
 608         if (g1_policy()->can_expand_young_list()) {
 609           // No need for an ergo verbose message here,
 610           // can_expand_young_list() does this when it returns true.
 611           result = _allocator->attempt_allocation_force(word_size, context);
 612           if (result != NULL) {
 613             return result;
 614           }
 615         }
 616         should_try_gc = false;
 617       } else {
 618         // The GCLocker may not be active but the GCLocker initiated
 619         // GC may not yet have been performed (GCLocker::needs_gc()
 620         // returns true). In this case we do not try this GC and
 621         // wait until the GCLocker initiated GC is performed, and
 622         // then retry the allocation.
 623         if (GC_locker::needs_gc()) {
 624           should_try_gc = false;
 625         } else {
 626           // Read the GC count while still holding the Heap_lock.
 627           gc_count_before = total_collections();
 628           should_try_gc = true;
 629         }
 630       }
 631     }
 632 
 633     if (should_try_gc) {
 634       bool succeeded;
 635       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 636                                    GCCause::_g1_inc_collection_pause);
 637       if (result != NULL) {
 638         assert(succeeded, "only way to get back a non-NULL result");
 639         return result;
 640       }
 641 
 642       if (succeeded) {
 643         // If we get here we successfully scheduled a collection which
 644         // failed to allocate. No point in trying to allocate
 645         // further. We'll just return NULL.
 646         MutexLockerEx x(Heap_lock);
 647         *gc_count_before_ret = total_collections();
 648         return NULL;
 649       }
 650     } else {
 651       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 652         MutexLockerEx x(Heap_lock);
 653         *gc_count_before_ret = total_collections();
 654         return NULL;
 655       }
 656       // The GCLocker is either active or the GCLocker initiated
 657       // GC has not yet been performed. Stall until it is and
 658       // then retry the allocation.
 659       GC_locker::stall_until_clear();
 660       (*gclocker_retry_count_ret) += 1;
 661     }
 662 
 663     // We can reach here if we were unsuccessful in scheduling a
 664     // collection (because another thread beat us to it) or if we were
 665     // stalled due to the GC locker. In either can we should retry the
 666     // allocation attempt in case another thread successfully
 667     // performed a collection and reclaimed enough space. We do the
 668     // first attempt (without holding the Heap_lock) here and the
 669     // follow-on attempt will be at the start of the next loop
 670     // iteration (after taking the Heap_lock).
 671     result = _allocator->attempt_allocation(word_size, context);
 672     if (result != NULL) {
 673       return result;
 674     }
 675 
 676     // Give a warning if we seem to be looping forever.
 677     if ((QueuedAllocationWarningCount > 0) &&
 678         (try_count % QueuedAllocationWarningCount == 0)) {
 679       warning("G1CollectedHeap::attempt_allocation_slow() "
 680               "retries %d times", try_count);
 681     }
 682   }
 683 
 684   ShouldNotReachHere();
 685   return NULL;
 686 }
 687 
 688 void G1CollectedHeap::begin_archive_alloc_range() {
 689   assert_at_safepoint(true /* should_be_vm_thread */);
 690   if (_archive_allocator == NULL) {
 691     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 692   }
 693 }
 694 
 695 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 696   // Allocations in archive regions cannot be of a size that would be considered
 697   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 698   // may be different at archive-restore time.
 699   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 700 }
 701 
 702 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 703   assert_at_safepoint(true /* should_be_vm_thread */);
 704   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 705   if (is_archive_alloc_too_large(word_size)) {
 706     return NULL;
 707   }
 708   return _archive_allocator->archive_mem_allocate(word_size);
 709 }
 710 
 711 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 712                                               size_t end_alignment_in_bytes) {
 713   assert_at_safepoint(true /* should_be_vm_thread */);
 714   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 715 
 716   // Call complete_archive to do the real work, filling in the MemRegion
 717   // array with the archive regions.
 718   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 719   delete _archive_allocator;
 720   _archive_allocator = NULL;
 721 }
 722 
 723 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 724   assert(ranges != NULL, "MemRegion array NULL");
 725   assert(count != 0, "No MemRegions provided");
 726   MemRegion reserved = _hrm.reserved();
 727   for (size_t i = 0; i < count; i++) {
 728     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 729       return false;
 730     }
 731   }
 732   return true;
 733 }
 734 
 735 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 736   assert(!is_init_completed(), "Expect to be called at JVM init time");
 737   assert(ranges != NULL, "MemRegion array NULL");
 738   assert(count != 0, "No MemRegions provided");
 739   MutexLockerEx x(Heap_lock);
 740 
 741   MemRegion reserved = _hrm.reserved();
 742   HeapWord* prev_last_addr = NULL;
 743   HeapRegion* prev_last_region = NULL;
 744 
 745   // Temporarily disable pretouching of heap pages. This interface is used
 746   // when mmap'ing archived heap data in, so pre-touching is wasted.
 747   FlagSetting fs(AlwaysPreTouch, false);
 748 
 749   // Enable archive object checking in G1MarkSweep. We have to let it know
 750   // about each archive range, so that objects in those ranges aren't marked.
 751   G1MarkSweep::enable_archive_object_check();
 752 
 753   // For each specified MemRegion range, allocate the corresponding G1
 754   // regions and mark them as archive regions. We expect the ranges in
 755   // ascending starting address order, without overlap.
 756   for (size_t i = 0; i < count; i++) {
 757     MemRegion curr_range = ranges[i];
 758     HeapWord* start_address = curr_range.start();
 759     size_t word_size = curr_range.word_size();
 760     HeapWord* last_address = curr_range.last();
 761     size_t commits = 0;
 762 
 763     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 764               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 765               p2i(start_address), p2i(last_address));
 766     guarantee(start_address > prev_last_addr,
 767               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 768               p2i(start_address), p2i(prev_last_addr));
 769     prev_last_addr = last_address;
 770 
 771     // Check for ranges that start in the same G1 region in which the previous
 772     // range ended, and adjust the start address so we don't try to allocate
 773     // the same region again. If the current range is entirely within that
 774     // region, skip it, just adjusting the recorded top.
 775     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 776     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 777       start_address = start_region->end();
 778       if (start_address > last_address) {
 779         increase_used(word_size * HeapWordSize);
 780         start_region->set_top(last_address + 1);
 781         continue;
 782       }
 783       start_region->set_top(start_address);
 784       curr_range = MemRegion(start_address, last_address + 1);
 785       start_region = _hrm.addr_to_region(start_address);
 786     }
 787 
 788     // Perform the actual region allocation, exiting if it fails.
 789     // Then note how much new space we have allocated.
 790     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 791       return false;
 792     }
 793     increase_used(word_size * HeapWordSize);
 794     if (commits != 0) {
 795       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 796                                 HeapRegion::GrainWords * HeapWordSize * commits);
 797 
 798     }
 799 
 800     // Mark each G1 region touched by the range as archive, add it to the old set,
 801     // and set the allocation context and top.
 802     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 803     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 804     prev_last_region = last_region;
 805 
 806     while (curr_region != NULL) {
 807       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 808              "Region already in use (index %u)", curr_region->hrm_index());
 809       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 810       curr_region->set_allocation_context(AllocationContext::system());
 811       curr_region->set_archive();
 812       _old_set.add(curr_region);
 813       if (curr_region != last_region) {
 814         curr_region->set_top(curr_region->end());
 815         curr_region = _hrm.next_region_in_heap(curr_region);
 816       } else {
 817         curr_region->set_top(last_address + 1);
 818         curr_region = NULL;
 819       }
 820     }
 821 
 822     // Notify mark-sweep of the archive range.
 823     G1MarkSweep::set_range_archive(curr_range, true);
 824   }
 825   return true;
 826 }
 827 
 828 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 829   assert(!is_init_completed(), "Expect to be called at JVM init time");
 830   assert(ranges != NULL, "MemRegion array NULL");
 831   assert(count != 0, "No MemRegions provided");
 832   MemRegion reserved = _hrm.reserved();
 833   HeapWord *prev_last_addr = NULL;
 834   HeapRegion* prev_last_region = NULL;
 835 
 836   // For each MemRegion, create filler objects, if needed, in the G1 regions
 837   // that contain the address range. The address range actually within the
 838   // MemRegion will not be modified. That is assumed to have been initialized
 839   // elsewhere, probably via an mmap of archived heap data.
 840   MutexLockerEx x(Heap_lock);
 841   for (size_t i = 0; i < count; i++) {
 842     HeapWord* start_address = ranges[i].start();
 843     HeapWord* last_address = ranges[i].last();
 844 
 845     assert(reserved.contains(start_address) && reserved.contains(last_address),
 846            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 847            p2i(start_address), p2i(last_address));
 848     assert(start_address > prev_last_addr,
 849            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 850            p2i(start_address), p2i(prev_last_addr));
 851 
 852     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 853     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 854     HeapWord* bottom_address = start_region->bottom();
 855 
 856     // Check for a range beginning in the same region in which the
 857     // previous one ended.
 858     if (start_region == prev_last_region) {
 859       bottom_address = prev_last_addr + 1;
 860     }
 861 
 862     // Verify that the regions were all marked as archive regions by
 863     // alloc_archive_regions.
 864     HeapRegion* curr_region = start_region;
 865     while (curr_region != NULL) {
 866       guarantee(curr_region->is_archive(),
 867                 "Expected archive region at index %u", curr_region->hrm_index());
 868       if (curr_region != last_region) {
 869         curr_region = _hrm.next_region_in_heap(curr_region);
 870       } else {
 871         curr_region = NULL;
 872       }
 873     }
 874 
 875     prev_last_addr = last_address;
 876     prev_last_region = last_region;
 877 
 878     // Fill the memory below the allocated range with dummy object(s),
 879     // if the region bottom does not match the range start, or if the previous
 880     // range ended within the same G1 region, and there is a gap.
 881     if (start_address != bottom_address) {
 882       size_t fill_size = pointer_delta(start_address, bottom_address);
 883       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 884       increase_used(fill_size * HeapWordSize);
 885     }
 886   }
 887 }
 888 
 889 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 890                                                      uint* gc_count_before_ret,
 891                                                      uint* gclocker_retry_count_ret) {
 892   assert_heap_not_locked_and_not_at_safepoint();
 893   assert(!is_humongous(word_size), "attempt_allocation() should not "
 894          "be called for humongous allocation requests");
 895 
 896   AllocationContext_t context = AllocationContext::current();
 897   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 898 
 899   if (result == NULL) {
 900     result = attempt_allocation_slow(word_size,
 901                                      context,
 902                                      gc_count_before_ret,
 903                                      gclocker_retry_count_ret);
 904   }
 905   assert_heap_not_locked();
 906   if (result != NULL) {
 907     dirty_young_block(result, word_size);
 908   }
 909   return result;
 910 }
 911 
 912 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 913   assert(!is_init_completed(), "Expect to be called at JVM init time");
 914   assert(ranges != NULL, "MemRegion array NULL");
 915   assert(count != 0, "No MemRegions provided");
 916   MemRegion reserved = _hrm.reserved();
 917   HeapWord* prev_last_addr = NULL;
 918   HeapRegion* prev_last_region = NULL;
 919   size_t size_used = 0;
 920   size_t uncommitted_regions = 0;
 921 
 922   // For each Memregion, free the G1 regions that constitute it, and
 923   // notify mark-sweep that the range is no longer to be considered 'archive.'
 924   MutexLockerEx x(Heap_lock);
 925   for (size_t i = 0; i < count; i++) {
 926     HeapWord* start_address = ranges[i].start();
 927     HeapWord* last_address = ranges[i].last();
 928 
 929     assert(reserved.contains(start_address) && reserved.contains(last_address),
 930            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 931            p2i(start_address), p2i(last_address));
 932     assert(start_address > prev_last_addr,
 933            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 934            p2i(start_address), p2i(prev_last_addr));
 935     size_used += ranges[i].byte_size();
 936     prev_last_addr = last_address;
 937 
 938     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 939     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 940 
 941     // Check for ranges that start in the same G1 region in which the previous
 942     // range ended, and adjust the start address so we don't try to free
 943     // the same region again. If the current range is entirely within that
 944     // region, skip it.
 945     if (start_region == prev_last_region) {
 946       start_address = start_region->end();
 947       if (start_address > last_address) {
 948         continue;
 949       }
 950       start_region = _hrm.addr_to_region(start_address);
 951     }
 952     prev_last_region = last_region;
 953 
 954     // After verifying that each region was marked as an archive region by
 955     // alloc_archive_regions, set it free and empty and uncommit it.
 956     HeapRegion* curr_region = start_region;
 957     while (curr_region != NULL) {
 958       guarantee(curr_region->is_archive(),
 959                 "Expected archive region at index %u", curr_region->hrm_index());
 960       uint curr_index = curr_region->hrm_index();
 961       _old_set.remove(curr_region);
 962       curr_region->set_free();
 963       curr_region->set_top(curr_region->bottom());
 964       if (curr_region != last_region) {
 965         curr_region = _hrm.next_region_in_heap(curr_region);
 966       } else {
 967         curr_region = NULL;
 968       }
 969       _hrm.shrink_at(curr_index, 1);
 970       uncommitted_regions++;
 971     }
 972 
 973     // Notify mark-sweep that this is no longer an archive range.
 974     G1MarkSweep::set_range_archive(ranges[i], false);
 975   }
 976 
 977   if (uncommitted_regions != 0) {
 978     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 979                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 980   }
 981   decrease_used(size_used);
 982 }
 983 
 984 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 985                                                         uint* gc_count_before_ret,
 986                                                         uint* gclocker_retry_count_ret) {
 987   // The structure of this method has a lot of similarities to
 988   // attempt_allocation_slow(). The reason these two were not merged
 989   // into a single one is that such a method would require several "if
 990   // allocation is not humongous do this, otherwise do that"
 991   // conditional paths which would obscure its flow. In fact, an early
 992   // version of this code did use a unified method which was harder to
 993   // follow and, as a result, it had subtle bugs that were hard to
 994   // track down. So keeping these two methods separate allows each to
 995   // be more readable. It will be good to keep these two in sync as
 996   // much as possible.
 997 
 998   assert_heap_not_locked_and_not_at_safepoint();
 999   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1000          "should only be called for humongous allocations");
1001 
1002   // Humongous objects can exhaust the heap quickly, so we should check if we
1003   // need to start a marking cycle at each humongous object allocation. We do
1004   // the check before we do the actual allocation. The reason for doing it
1005   // before the allocation is that we avoid having to keep track of the newly
1006   // allocated memory while we do a GC.
1007   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1008                                            word_size)) {
1009     collect(GCCause::_g1_humongous_allocation);
1010   }
1011 
1012   // We will loop until a) we manage to successfully perform the
1013   // allocation or b) we successfully schedule a collection which
1014   // fails to perform the allocation. b) is the only case when we'll
1015   // return NULL.
1016   HeapWord* result = NULL;
1017   for (int try_count = 1; /* we'll return */; try_count += 1) {
1018     bool should_try_gc;
1019     uint gc_count_before;
1020 
1021     {
1022       MutexLockerEx x(Heap_lock);
1023 
1024       // Given that humongous objects are not allocated in young
1025       // regions, we'll first try to do the allocation without doing a
1026       // collection hoping that there's enough space in the heap.
1027       result = humongous_obj_allocate(word_size, AllocationContext::current());
1028       if (result != NULL) {
1029         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
1030         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
1031         return result;
1032       }
1033 
1034       if (GC_locker::is_active_and_needs_gc()) {
1035         should_try_gc = false;
1036       } else {
1037          // The GCLocker may not be active but the GCLocker initiated
1038         // GC may not yet have been performed (GCLocker::needs_gc()
1039         // returns true). In this case we do not try this GC and
1040         // wait until the GCLocker initiated GC is performed, and
1041         // then retry the allocation.
1042         if (GC_locker::needs_gc()) {
1043           should_try_gc = false;
1044         } else {
1045           // Read the GC count while still holding the Heap_lock.
1046           gc_count_before = total_collections();
1047           should_try_gc = true;
1048         }
1049       }
1050     }
1051 
1052     if (should_try_gc) {
1053       // If we failed to allocate the humongous object, we should try to
1054       // do a collection pause (if we're allowed) in case it reclaims
1055       // enough space for the allocation to succeed after the pause.
1056 
1057       bool succeeded;
1058       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1059                                    GCCause::_g1_humongous_allocation);
1060       if (result != NULL) {
1061         assert(succeeded, "only way to get back a non-NULL result");
1062         return result;
1063       }
1064 
1065       if (succeeded) {
1066         // If we get here we successfully scheduled a collection which
1067         // failed to allocate. No point in trying to allocate
1068         // further. We'll just return NULL.
1069         MutexLockerEx x(Heap_lock);
1070         *gc_count_before_ret = total_collections();
1071         return NULL;
1072       }
1073     } else {
1074       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1075         MutexLockerEx x(Heap_lock);
1076         *gc_count_before_ret = total_collections();
1077         return NULL;
1078       }
1079       // The GCLocker is either active or the GCLocker initiated
1080       // GC has not yet been performed. Stall until it is and
1081       // then retry the allocation.
1082       GC_locker::stall_until_clear();
1083       (*gclocker_retry_count_ret) += 1;
1084     }
1085 
1086     // We can reach here if we were unsuccessful in scheduling a
1087     // collection (because another thread beat us to it) or if we were
1088     // stalled due to the GC locker. In either can we should retry the
1089     // allocation attempt in case another thread successfully
1090     // performed a collection and reclaimed enough space.  Give a
1091     // warning if we seem to be looping forever.
1092 
1093     if ((QueuedAllocationWarningCount > 0) &&
1094         (try_count % QueuedAllocationWarningCount == 0)) {
1095       warning("G1CollectedHeap::attempt_allocation_humongous() "
1096               "retries %d times", try_count);
1097     }
1098   }
1099 
1100   ShouldNotReachHere();
1101   return NULL;
1102 }
1103 
1104 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1105                                                            AllocationContext_t context,
1106                                                            bool expect_null_mutator_alloc_region) {
1107   assert_at_safepoint(true /* should_be_vm_thread */);
1108   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1109          "the current alloc region was unexpectedly found to be non-NULL");
1110 
1111   if (!is_humongous(word_size)) {
1112     return _allocator->attempt_allocation_locked(word_size, context);
1113   } else {
1114     HeapWord* result = humongous_obj_allocate(word_size, context);
1115     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1116       collector_state()->set_initiate_conc_mark_if_possible(true);
1117     }
1118     return result;
1119   }
1120 
1121   ShouldNotReachHere();
1122 }
1123 
1124 class PostMCRemSetClearClosure: public HeapRegionClosure {
1125   G1CollectedHeap* _g1h;
1126   ModRefBarrierSet* _mr_bs;
1127 public:
1128   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1129     _g1h(g1h), _mr_bs(mr_bs) {}
1130 
1131   bool doHeapRegion(HeapRegion* r) {
1132     HeapRegionRemSet* hrrs = r->rem_set();
1133 
1134     _g1h->reset_gc_time_stamps(r);
1135 
1136     if (r->is_continues_humongous()) {
1137       // We'll assert that the strong code root list and RSet is empty
1138       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1139       assert(hrrs->occupied() == 0, "RSet should be empty");
1140     } else {
1141       hrrs->clear();
1142     }
1143     // You might think here that we could clear just the cards
1144     // corresponding to the used region.  But no: if we leave a dirty card
1145     // in a region we might allocate into, then it would prevent that card
1146     // from being enqueued, and cause it to be missed.
1147     // Re: the performance cost: we shouldn't be doing full GC anyway!
1148     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1149 
1150     return false;
1151   }
1152 };
1153 
1154 void G1CollectedHeap::clear_rsets_post_compaction() {
1155   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1156   heap_region_iterate(&rs_clear);
1157 }
1158 
1159 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1160   G1CollectedHeap*   _g1h;
1161   UpdateRSOopClosure _cl;
1162 public:
1163   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1164     _cl(g1->g1_rem_set(), worker_i),
1165     _g1h(g1)
1166   { }
1167 
1168   bool doHeapRegion(HeapRegion* r) {
1169     if (!r->is_continues_humongous()) {
1170       _cl.set_from(r);
1171       r->oop_iterate(&_cl);
1172     }
1173     return false;
1174   }
1175 };
1176 
1177 class ParRebuildRSTask: public AbstractGangTask {
1178   G1CollectedHeap* _g1;
1179   HeapRegionClaimer _hrclaimer;
1180 
1181 public:
1182   ParRebuildRSTask(G1CollectedHeap* g1) :
1183       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1184 
1185   void work(uint worker_id) {
1186     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1187     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1188   }
1189 };
1190 
1191 class PostCompactionPrinterClosure: public HeapRegionClosure {
1192 private:
1193   G1HRPrinter* _hr_printer;
1194 public:
1195   bool doHeapRegion(HeapRegion* hr) {
1196     assert(!hr->is_young(), "not expecting to find young regions");
1197     if (hr->is_free()) {
1198       // We only generate output for non-empty regions.
1199     } else if (hr->is_starts_humongous()) {
1200       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1201     } else if (hr->is_continues_humongous()) {
1202       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1203     } else if (hr->is_archive()) {
1204       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1205     } else if (hr->is_old()) {
1206       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1207     } else {
1208       ShouldNotReachHere();
1209     }
1210     return false;
1211   }
1212 
1213   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1214     : _hr_printer(hr_printer) { }
1215 };
1216 
1217 void G1CollectedHeap::print_hrm_post_compaction() {
1218   if (_hr_printer.is_active()) {
1219     PostCompactionPrinterClosure cl(hr_printer());
1220     heap_region_iterate(&cl);
1221   }
1222 
1223 }
1224 
1225 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1226                                          bool clear_all_soft_refs) {
1227   assert_at_safepoint(true /* should_be_vm_thread */);
1228 
1229   if (GC_locker::check_active_before_gc()) {
1230     return false;
1231   }
1232 
1233   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1234   gc_timer->register_gc_start();
1235 
1236   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1237   GCIdMark gc_id_mark;
1238   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1239 
1240   SvcGCMarker sgcm(SvcGCMarker::FULL);
1241   ResourceMark rm;
1242 
1243   print_heap_before_gc();
1244   trace_heap_before_gc(gc_tracer);
1245 
1246   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1247 
1248   verify_region_sets_optional();
1249 
1250   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1251                            collector_policy()->should_clear_all_soft_refs();
1252 
1253   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1254 
1255   {
1256     IsGCActiveMark x;
1257 
1258     // Timing
1259     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1260     GCTraceCPUTime tcpu;
1261 
1262     {
1263       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1264       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1265       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1266 
1267       g1_policy()->record_full_collection_start();
1268 
1269       // Note: When we have a more flexible GC logging framework that
1270       // allows us to add optional attributes to a GC log record we
1271       // could consider timing and reporting how long we wait in the
1272       // following two methods.
1273       wait_while_free_regions_coming();
1274       // If we start the compaction before the CM threads finish
1275       // scanning the root regions we might trip them over as we'll
1276       // be moving objects / updating references. So let's wait until
1277       // they are done. By telling them to abort, they should complete
1278       // early.
1279       _cm->root_regions()->abort();
1280       _cm->root_regions()->wait_until_scan_finished();
1281       append_secondary_free_list_if_not_empty_with_lock();
1282 
1283       gc_prologue(true);
1284       increment_total_collections(true /* full gc */);
1285       increment_old_marking_cycles_started();
1286 
1287       assert(used() == recalculate_used(), "Should be equal");
1288 
1289       verify_before_gc();
1290 
1291       check_bitmaps("Full GC Start");
1292       pre_full_gc_dump(gc_timer);
1293 
1294 #if defined(COMPILER2) || INCLUDE_JVMCI
1295       DerivedPointerTable::clear();
1296 #endif
1297 
1298       // Disable discovery and empty the discovered lists
1299       // for the CM ref processor.
1300       ref_processor_cm()->disable_discovery();
1301       ref_processor_cm()->abandon_partial_discovery();
1302       ref_processor_cm()->verify_no_references_recorded();
1303 
1304       // Abandon current iterations of concurrent marking and concurrent
1305       // refinement, if any are in progress. We have to do this before
1306       // wait_until_scan_finished() below.
1307       concurrent_mark()->abort();
1308 
1309       // Make sure we'll choose a new allocation region afterwards.
1310       _allocator->release_mutator_alloc_region();
1311       _allocator->abandon_gc_alloc_regions();
1312       g1_rem_set()->cleanupHRRS();
1313 
1314       // We may have added regions to the current incremental collection
1315       // set between the last GC or pause and now. We need to clear the
1316       // incremental collection set and then start rebuilding it afresh
1317       // after this full GC.
1318       abandon_collection_set(g1_policy()->inc_cset_head());
1319       g1_policy()->clear_incremental_cset();
1320       g1_policy()->stop_incremental_cset_building();
1321 
1322       tear_down_region_sets(false /* free_list_only */);
1323       collector_state()->set_gcs_are_young(true);
1324 
1325       // See the comments in g1CollectedHeap.hpp and
1326       // G1CollectedHeap::ref_processing_init() about
1327       // how reference processing currently works in G1.
1328 
1329       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1330       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1331 
1332       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1333       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1334 
1335       ref_processor_stw()->enable_discovery();
1336       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1337 
1338       // Do collection work
1339       {
1340         HandleMark hm;  // Discard invalid handles created during gc
1341         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1342       }
1343 
1344       assert(num_free_regions() == 0, "we should not have added any free regions");
1345       rebuild_region_sets(false /* free_list_only */);
1346 
1347       // Enqueue any discovered reference objects that have
1348       // not been removed from the discovered lists.
1349       ref_processor_stw()->enqueue_discovered_references();
1350 
1351 #if defined(COMPILER2) || INCLUDE_JVMCI
1352       DerivedPointerTable::update_pointers();
1353 #endif
1354 
1355       MemoryService::track_memory_usage();
1356 
1357       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1358       ref_processor_stw()->verify_no_references_recorded();
1359 
1360       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1361       ClassLoaderDataGraph::purge();
1362       MetaspaceAux::verify_metrics();
1363 
1364       // Note: since we've just done a full GC, concurrent
1365       // marking is no longer active. Therefore we need not
1366       // re-enable reference discovery for the CM ref processor.
1367       // That will be done at the start of the next marking cycle.
1368       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1369       ref_processor_cm()->verify_no_references_recorded();
1370 
1371       reset_gc_time_stamp();
1372       // Since everything potentially moved, we will clear all remembered
1373       // sets, and clear all cards.  Later we will rebuild remembered
1374       // sets. We will also reset the GC time stamps of the regions.
1375       clear_rsets_post_compaction();
1376       check_gc_time_stamps();
1377 
1378       resize_if_necessary_after_full_collection();
1379 
1380       // We should do this after we potentially resize the heap so
1381       // that all the COMMIT / UNCOMMIT events are generated before
1382       // the compaction events.
1383       print_hrm_post_compaction();
1384 
1385       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1386       if (hot_card_cache->use_cache()) {
1387         hot_card_cache->reset_card_counts();
1388         hot_card_cache->reset_hot_cache();
1389       }
1390 
1391       // Rebuild remembered sets of all regions.
1392       uint n_workers =
1393         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1394                                                 workers()->active_workers(),
1395                                                 Threads::number_of_non_daemon_threads());
1396       workers()->set_active_workers(n_workers);
1397 
1398       ParRebuildRSTask rebuild_rs_task(this);
1399       workers()->run_task(&rebuild_rs_task);
1400 
1401       // Rebuild the strong code root lists for each region
1402       rebuild_strong_code_roots();
1403 
1404       if (true) { // FIXME
1405         MetaspaceGC::compute_new_size();
1406       }
1407 
1408 #ifdef TRACESPINNING
1409       ParallelTaskTerminator::print_termination_counts();
1410 #endif
1411 
1412       // Discard all rset updates
1413       JavaThread::dirty_card_queue_set().abandon_logs();
1414       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1415 
1416       _young_list->reset_sampled_info();
1417       // At this point there should be no regions in the
1418       // entire heap tagged as young.
1419       assert(check_young_list_empty(true /* check_heap */),
1420              "young list should be empty at this point");
1421 
1422       // Update the number of full collections that have been completed.
1423       increment_old_marking_cycles_completed(false /* concurrent */);
1424 
1425       _hrm.verify_optional();
1426       verify_region_sets_optional();
1427 
1428       verify_after_gc();
1429 
1430       // Clear the previous marking bitmap, if needed for bitmap verification.
1431       // Note we cannot do this when we clear the next marking bitmap in
1432       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1433       // objects marked during a full GC against the previous bitmap.
1434       // But we need to clear it before calling check_bitmaps below since
1435       // the full GC has compacted objects and updated TAMS but not updated
1436       // the prev bitmap.
1437       if (G1VerifyBitmaps) {
1438         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1439       }
1440       check_bitmaps("Full GC End");
1441 
1442       // Start a new incremental collection set for the next pause
1443       assert(g1_policy()->collection_set() == NULL, "must be");
1444       g1_policy()->start_incremental_cset_building();
1445 
1446       clear_cset_fast_test();
1447 
1448       _allocator->init_mutator_alloc_region();
1449 
1450       g1_policy()->record_full_collection_end();
1451 
1452       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1453       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1454       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1455       // before any GC notifications are raised.
1456       g1mm()->update_sizes();
1457 
1458       gc_epilogue(true);
1459     }
1460 
1461     g1_policy()->print_detailed_heap_transition();
1462 
1463     print_heap_after_gc();
1464     trace_heap_after_gc(gc_tracer);
1465 
1466     post_full_gc_dump(gc_timer);
1467 
1468     gc_timer->register_gc_end();
1469     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1470   }
1471 
1472   return true;
1473 }
1474 
1475 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1476   // Currently, there is no facility in the do_full_collection(bool) API to notify
1477   // the caller that the collection did not succeed (e.g., because it was locked
1478   // out by the GC locker). So, right now, we'll ignore the return value.
1479   bool dummy = do_full_collection(true,                /* explicit_gc */
1480                                   clear_all_soft_refs);
1481 }
1482 
1483 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1484   // Include bytes that will be pre-allocated to support collections, as "used".
1485   const size_t used_after_gc = used();
1486   const size_t capacity_after_gc = capacity();
1487   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1488 
1489   // This is enforced in arguments.cpp.
1490   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1491          "otherwise the code below doesn't make sense");
1492 
1493   // We don't have floating point command-line arguments
1494   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1495   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1496   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1497   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1498 
1499   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1500   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1501 
1502   // We have to be careful here as these two calculations can overflow
1503   // 32-bit size_t's.
1504   double used_after_gc_d = (double) used_after_gc;
1505   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1506   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1507 
1508   // Let's make sure that they are both under the max heap size, which
1509   // by default will make them fit into a size_t.
1510   double desired_capacity_upper_bound = (double) max_heap_size;
1511   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1512                                     desired_capacity_upper_bound);
1513   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1514                                     desired_capacity_upper_bound);
1515 
1516   // We can now safely turn them into size_t's.
1517   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1518   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1519 
1520   // This assert only makes sense here, before we adjust them
1521   // with respect to the min and max heap size.
1522   assert(minimum_desired_capacity <= maximum_desired_capacity,
1523          "minimum_desired_capacity = " SIZE_FORMAT ", "
1524          "maximum_desired_capacity = " SIZE_FORMAT,
1525          minimum_desired_capacity, maximum_desired_capacity);
1526 
1527   // Should not be greater than the heap max size. No need to adjust
1528   // it with respect to the heap min size as it's a lower bound (i.e.,
1529   // we'll try to make the capacity larger than it, not smaller).
1530   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1531   // Should not be less than the heap min size. No need to adjust it
1532   // with respect to the heap max size as it's an upper bound (i.e.,
1533   // we'll try to make the capacity smaller than it, not greater).
1534   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1535 
1536   if (capacity_after_gc < minimum_desired_capacity) {
1537     // Don't expand unless it's significant
1538     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1539 
1540     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1541                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1542                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1543 
1544     expand(expand_bytes);
1545 
1546     // No expansion, now see if we want to shrink
1547   } else if (capacity_after_gc > maximum_desired_capacity) {
1548     // Capacity too large, compute shrinking size
1549     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1550 
1551     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1552                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1553                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1554 
1555     shrink(shrink_bytes);
1556   }
1557 }
1558 
1559 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1560                                                             AllocationContext_t context,
1561                                                             bool do_gc,
1562                                                             bool clear_all_soft_refs,
1563                                                             bool expect_null_mutator_alloc_region,
1564                                                             bool* gc_succeeded) {
1565   *gc_succeeded = true;
1566   // Let's attempt the allocation first.
1567   HeapWord* result =
1568     attempt_allocation_at_safepoint(word_size,
1569                                     context,
1570                                     expect_null_mutator_alloc_region);
1571   if (result != NULL) {
1572     assert(*gc_succeeded, "sanity");
1573     return result;
1574   }
1575 
1576   // In a G1 heap, we're supposed to keep allocation from failing by
1577   // incremental pauses.  Therefore, at least for now, we'll favor
1578   // expansion over collection.  (This might change in the future if we can
1579   // do something smarter than full collection to satisfy a failed alloc.)
1580   result = expand_and_allocate(word_size, context);
1581   if (result != NULL) {
1582     assert(*gc_succeeded, "sanity");
1583     return result;
1584   }
1585 
1586   if (do_gc) {
1587     // Expansion didn't work, we'll try to do a Full GC.
1588     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1589                                        clear_all_soft_refs);
1590   }
1591 
1592   return NULL;
1593 }
1594 
1595 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1596                                                      AllocationContext_t context,
1597                                                      bool* succeeded) {
1598   assert_at_safepoint(true /* should_be_vm_thread */);
1599 
1600   // Attempts to allocate followed by Full GC.
1601   HeapWord* result =
1602     satisfy_failed_allocation_helper(word_size,
1603                                      context,
1604                                      true,  /* do_gc */
1605                                      false, /* clear_all_soft_refs */
1606                                      false, /* expect_null_mutator_alloc_region */
1607                                      succeeded);
1608 
1609   if (result != NULL || !*succeeded) {
1610     return result;
1611   }
1612 
1613   // Attempts to allocate followed by Full GC that will collect all soft references.
1614   result = satisfy_failed_allocation_helper(word_size,
1615                                             context,
1616                                             true, /* do_gc */
1617                                             true, /* clear_all_soft_refs */
1618                                             true, /* expect_null_mutator_alloc_region */
1619                                             succeeded);
1620 
1621   if (result != NULL || !*succeeded) {
1622     return result;
1623   }
1624 
1625   // Attempts to allocate, no GC
1626   result = satisfy_failed_allocation_helper(word_size,
1627                                             context,
1628                                             false, /* do_gc */
1629                                             false, /* clear_all_soft_refs */
1630                                             true,  /* expect_null_mutator_alloc_region */
1631                                             succeeded);
1632 
1633   if (result != NULL) {
1634     assert(*succeeded, "sanity");
1635     return result;
1636   }
1637 
1638   assert(!collector_policy()->should_clear_all_soft_refs(),
1639          "Flag should have been handled and cleared prior to this point");
1640 
1641   // What else?  We might try synchronous finalization later.  If the total
1642   // space available is large enough for the allocation, then a more
1643   // complete compaction phase than we've tried so far might be
1644   // appropriate.
1645   assert(*succeeded, "sanity");
1646   return NULL;
1647 }
1648 
1649 // Attempting to expand the heap sufficiently
1650 // to support an allocation of the given "word_size".  If
1651 // successful, perform the allocation and return the address of the
1652 // allocated block, or else "NULL".
1653 
1654 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1655   assert_at_safepoint(true /* should_be_vm_thread */);
1656 
1657   verify_region_sets_optional();
1658 
1659   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1660   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1661                             word_size * HeapWordSize);
1662 
1663 
1664   if (expand(expand_bytes)) {
1665     _hrm.verify_optional();
1666     verify_region_sets_optional();
1667     return attempt_allocation_at_safepoint(word_size,
1668                                            context,
1669                                            false /* expect_null_mutator_alloc_region */);
1670   }
1671   return NULL;
1672 }
1673 
1674 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1675   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1676   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1677                                        HeapRegion::GrainBytes);
1678 
1679   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1680                             expand_bytes, aligned_expand_bytes);
1681 
1682   if (is_maximal_no_gc()) {
1683     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1684     return false;
1685   }
1686 
1687   double expand_heap_start_time_sec = os::elapsedTime();
1688   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1689   assert(regions_to_expand > 0, "Must expand by at least one region");
1690 
1691   uint expanded_by = _hrm.expand_by(regions_to_expand);
1692   if (expand_time_ms != NULL) {
1693     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1694   }
1695 
1696   if (expanded_by > 0) {
1697     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1698     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1699     g1_policy()->record_new_heap_size(num_regions());
1700   } else {
1701     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1702 
1703     // The expansion of the virtual storage space was unsuccessful.
1704     // Let's see if it was because we ran out of swap.
1705     if (G1ExitOnExpansionFailure &&
1706         _hrm.available() >= regions_to_expand) {
1707       // We had head room...
1708       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1709     }
1710   }
1711   return regions_to_expand > 0;
1712 }
1713 
1714 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1715   size_t aligned_shrink_bytes =
1716     ReservedSpace::page_align_size_down(shrink_bytes);
1717   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1718                                          HeapRegion::GrainBytes);
1719   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1720 
1721   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1722   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1723 
1724 
1725   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1726                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1727   if (num_regions_removed > 0) {
1728     g1_policy()->record_new_heap_size(num_regions());
1729   } else {
1730     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1731   }
1732 }
1733 
1734 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1735   verify_region_sets_optional();
1736 
1737   // We should only reach here at the end of a Full GC which means we
1738   // should not not be holding to any GC alloc regions. The method
1739   // below will make sure of that and do any remaining clean up.
1740   _allocator->abandon_gc_alloc_regions();
1741 
1742   // Instead of tearing down / rebuilding the free lists here, we
1743   // could instead use the remove_all_pending() method on free_list to
1744   // remove only the ones that we need to remove.
1745   tear_down_region_sets(true /* free_list_only */);
1746   shrink_helper(shrink_bytes);
1747   rebuild_region_sets(true /* free_list_only */);
1748 
1749   _hrm.verify_optional();
1750   verify_region_sets_optional();
1751 }
1752 
1753 // Public methods.
1754 
1755 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1756   CollectedHeap(),
1757   _g1_policy(policy_),
1758   _dirty_card_queue_set(false),
1759   _is_alive_closure_cm(this),
1760   _is_alive_closure_stw(this),
1761   _ref_processor_cm(NULL),
1762   _ref_processor_stw(NULL),
1763   _bot_shared(NULL),
1764   _cg1r(NULL),
1765   _g1mm(NULL),
1766   _refine_cte_cl(NULL),
1767   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1768   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1769   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1770   _humongous_reclaim_candidates(),
1771   _has_humongous_reclaim_candidates(false),
1772   _archive_allocator(NULL),
1773   _free_regions_coming(false),
1774   _young_list(new YoungList(this)),
1775   _gc_time_stamp(0),
1776   _summary_bytes_used(0),
1777   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1778   _old_evac_stats(OldPLABSize, PLABWeight),
1779   _expand_heap_after_alloc_failure(true),
1780   _old_marking_cycles_started(0),
1781   _old_marking_cycles_completed(0),
1782   _heap_summary_sent(false),
1783   _in_cset_fast_test(),
1784   _dirty_cards_region_list(NULL),
1785   _worker_cset_start_region(NULL),
1786   _worker_cset_start_region_time_stamp(NULL),
1787   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1788   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1789   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1790   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1791 
1792   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1793                           /* are_GC_task_threads */true,
1794                           /* are_ConcurrentGC_threads */false);
1795   _workers->initialize_workers();
1796 
1797   _allocator = G1Allocator::create_allocator(this);
1798   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1799 
1800   // Override the default _filler_array_max_size so that no humongous filler
1801   // objects are created.
1802   _filler_array_max_size = _humongous_object_threshold_in_words;
1803 
1804   uint n_queues = ParallelGCThreads;
1805   _task_queues = new RefToScanQueueSet(n_queues);
1806 
1807   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1808   assert(n_rem_sets > 0, "Invariant.");
1809 
1810   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1811   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1812   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1813 
1814   for (uint i = 0; i < n_queues; i++) {
1815     RefToScanQueue* q = new RefToScanQueue();
1816     q->initialize();
1817     _task_queues->register_queue(i, q);
1818     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1819   }
1820   clear_cset_start_regions();
1821 
1822   // Initialize the G1EvacuationFailureALot counters and flags.
1823   NOT_PRODUCT(reset_evacuation_should_fail();)
1824 
1825   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1826 }
1827 
1828 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1829                                                                  size_t size,
1830                                                                  size_t translation_factor) {
1831   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1832   // Allocate a new reserved space, preferring to use large pages.
1833   ReservedSpace rs(size, preferred_page_size);
1834   G1RegionToSpaceMapper* result  =
1835     G1RegionToSpaceMapper::create_mapper(rs,
1836                                          size,
1837                                          rs.alignment(),
1838                                          HeapRegion::GrainBytes,
1839                                          translation_factor,
1840                                          mtGC);
1841   if (TracePageSizes) {
1842     tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1843                   description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1844   }
1845   return result;
1846 }
1847 
1848 jint G1CollectedHeap::initialize() {
1849   CollectedHeap::pre_initialize();
1850   os::enable_vtime();
1851 
1852   // Necessary to satisfy locking discipline assertions.
1853 
1854   MutexLocker x(Heap_lock);
1855 
1856   // While there are no constraints in the GC code that HeapWordSize
1857   // be any particular value, there are multiple other areas in the
1858   // system which believe this to be true (e.g. oop->object_size in some
1859   // cases incorrectly returns the size in wordSize units rather than
1860   // HeapWordSize).
1861   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1862 
1863   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1864   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1865   size_t heap_alignment = collector_policy()->heap_alignment();
1866 
1867   // Ensure that the sizes are properly aligned.
1868   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1869   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1870   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1871 
1872   _refine_cte_cl = new RefineCardTableEntryClosure();
1873 
1874   jint ecode = JNI_OK;
1875   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1876   if (_cg1r == NULL) {
1877     return ecode;
1878   }
1879 
1880   // Reserve the maximum.
1881 
1882   // When compressed oops are enabled, the preferred heap base
1883   // is calculated by subtracting the requested size from the
1884   // 32Gb boundary and using the result as the base address for
1885   // heap reservation. If the requested size is not aligned to
1886   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1887   // into the ReservedHeapSpace constructor) then the actual
1888   // base of the reserved heap may end up differing from the
1889   // address that was requested (i.e. the preferred heap base).
1890   // If this happens then we could end up using a non-optimal
1891   // compressed oops mode.
1892 
1893   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1894                                                  heap_alignment);
1895 
1896   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1897 
1898   // Create the barrier set for the entire reserved region.
1899   G1SATBCardTableLoggingModRefBS* bs
1900     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1901   bs->initialize();
1902   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1903   set_barrier_set(bs);
1904 
1905   // Also create a G1 rem set.
1906   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1907 
1908   // Carve out the G1 part of the heap.
1909 
1910   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1911   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1912   G1RegionToSpaceMapper* heap_storage =
1913     G1RegionToSpaceMapper::create_mapper(g1_rs,
1914                                          g1_rs.size(),
1915                                          page_size,
1916                                          HeapRegion::GrainBytes,
1917                                          1,
1918                                          mtJavaHeap);
1919   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1920                        max_byte_size, page_size,
1921                        heap_rs.base(),
1922                        heap_rs.size());
1923   heap_storage->set_mapping_changed_listener(&_listener);
1924 
1925   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1926   G1RegionToSpaceMapper* bot_storage =
1927     create_aux_memory_mapper("Block offset table",
1928                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1929                              G1BlockOffsetSharedArray::heap_map_factor());
1930 
1931   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1932   G1RegionToSpaceMapper* cardtable_storage =
1933     create_aux_memory_mapper("Card table",
1934                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1935                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1936 
1937   G1RegionToSpaceMapper* card_counts_storage =
1938     create_aux_memory_mapper("Card counts table",
1939                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1940                              G1CardCounts::heap_map_factor());
1941 
1942   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1943   G1RegionToSpaceMapper* prev_bitmap_storage =
1944     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1945   G1RegionToSpaceMapper* next_bitmap_storage =
1946     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1947 
1948   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1949   g1_barrier_set()->initialize(cardtable_storage);
1950    // Do later initialization work for concurrent refinement.
1951   _cg1r->init(card_counts_storage);
1952 
1953   // 6843694 - ensure that the maximum region index can fit
1954   // in the remembered set structures.
1955   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1956   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1957 
1958   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1959   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1960   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1961             "too many cards per region");
1962 
1963   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1964 
1965   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1966 
1967   {
1968     HeapWord* start = _hrm.reserved().start();
1969     HeapWord* end = _hrm.reserved().end();
1970     size_t granularity = HeapRegion::GrainBytes;
1971 
1972     _in_cset_fast_test.initialize(start, end, granularity);
1973     _humongous_reclaim_candidates.initialize(start, end, granularity);
1974   }
1975 
1976   // Create the ConcurrentMark data structure and thread.
1977   // (Must do this late, so that "max_regions" is defined.)
1978   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1979   if (_cm == NULL || !_cm->completed_initialization()) {
1980     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1981     return JNI_ENOMEM;
1982   }
1983   _cmThread = _cm->cmThread();
1984 
1985   // Initialize the from_card cache structure of HeapRegionRemSet.
1986   HeapRegionRemSet::init_heap(max_regions());
1987 
1988   // Now expand into the initial heap size.
1989   if (!expand(init_byte_size)) {
1990     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1991     return JNI_ENOMEM;
1992   }
1993 
1994   // Perform any initialization actions delegated to the policy.
1995   g1_policy()->init();
1996 
1997   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1998                                                SATB_Q_FL_lock,
1999                                                G1SATBProcessCompletedThreshold,
2000                                                Shared_SATB_Q_lock);
2001 
2002   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2003                                                 DirtyCardQ_CBL_mon,
2004                                                 DirtyCardQ_FL_lock,
2005                                                 concurrent_g1_refine()->yellow_zone(),
2006                                                 concurrent_g1_refine()->red_zone(),
2007                                                 Shared_DirtyCardQ_lock);
2008 
2009   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2010                                     DirtyCardQ_CBL_mon,
2011                                     DirtyCardQ_FL_lock,
2012                                     -1, // never trigger processing
2013                                     -1, // no limit on length
2014                                     Shared_DirtyCardQ_lock,
2015                                     &JavaThread::dirty_card_queue_set());
2016 
2017   // Here we allocate the dummy HeapRegion that is required by the
2018   // G1AllocRegion class.
2019   HeapRegion* dummy_region = _hrm.get_dummy_region();
2020 
2021   // We'll re-use the same region whether the alloc region will
2022   // require BOT updates or not and, if it doesn't, then a non-young
2023   // region will complain that it cannot support allocations without
2024   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2025   dummy_region->set_eden();
2026   // Make sure it's full.
2027   dummy_region->set_top(dummy_region->end());
2028   G1AllocRegion::setup(this, dummy_region);
2029 
2030   _allocator->init_mutator_alloc_region();
2031 
2032   // Do create of the monitoring and management support so that
2033   // values in the heap have been properly initialized.
2034   _g1mm = new G1MonitoringSupport(this);
2035 
2036   G1StringDedup::initialize();
2037 
2038   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2039   for (uint i = 0; i < ParallelGCThreads; i++) {
2040     new (&_preserved_objs[i]) OopAndMarkOopStack();
2041   }
2042 
2043   return JNI_OK;
2044 }
2045 
2046 void G1CollectedHeap::stop() {
2047   // Stop all concurrent threads. We do this to make sure these threads
2048   // do not continue to execute and access resources (e.g. logging)
2049   // that are destroyed during shutdown.
2050   _cg1r->stop();
2051   _cmThread->stop();
2052   if (G1StringDedup::is_enabled()) {
2053     G1StringDedup::stop();
2054   }
2055 }
2056 
2057 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2058   return HeapRegion::max_region_size();
2059 }
2060 
2061 void G1CollectedHeap::post_initialize() {
2062   CollectedHeap::post_initialize();
2063   ref_processing_init();
2064 }
2065 
2066 void G1CollectedHeap::ref_processing_init() {
2067   // Reference processing in G1 currently works as follows:
2068   //
2069   // * There are two reference processor instances. One is
2070   //   used to record and process discovered references
2071   //   during concurrent marking; the other is used to
2072   //   record and process references during STW pauses
2073   //   (both full and incremental).
2074   // * Both ref processors need to 'span' the entire heap as
2075   //   the regions in the collection set may be dotted around.
2076   //
2077   // * For the concurrent marking ref processor:
2078   //   * Reference discovery is enabled at initial marking.
2079   //   * Reference discovery is disabled and the discovered
2080   //     references processed etc during remarking.
2081   //   * Reference discovery is MT (see below).
2082   //   * Reference discovery requires a barrier (see below).
2083   //   * Reference processing may or may not be MT
2084   //     (depending on the value of ParallelRefProcEnabled
2085   //     and ParallelGCThreads).
2086   //   * A full GC disables reference discovery by the CM
2087   //     ref processor and abandons any entries on it's
2088   //     discovered lists.
2089   //
2090   // * For the STW processor:
2091   //   * Non MT discovery is enabled at the start of a full GC.
2092   //   * Processing and enqueueing during a full GC is non-MT.
2093   //   * During a full GC, references are processed after marking.
2094   //
2095   //   * Discovery (may or may not be MT) is enabled at the start
2096   //     of an incremental evacuation pause.
2097   //   * References are processed near the end of a STW evacuation pause.
2098   //   * For both types of GC:
2099   //     * Discovery is atomic - i.e. not concurrent.
2100   //     * Reference discovery will not need a barrier.
2101 
2102   MemRegion mr = reserved_region();
2103 
2104   // Concurrent Mark ref processor
2105   _ref_processor_cm =
2106     new ReferenceProcessor(mr,    // span
2107                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2108                                 // mt processing
2109                            ParallelGCThreads,
2110                                 // degree of mt processing
2111                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2112                                 // mt discovery
2113                            MAX2(ParallelGCThreads, ConcGCThreads),
2114                                 // degree of mt discovery
2115                            false,
2116                                 // Reference discovery is not atomic
2117                            &_is_alive_closure_cm);
2118                                 // is alive closure
2119                                 // (for efficiency/performance)
2120 
2121   // STW ref processor
2122   _ref_processor_stw =
2123     new ReferenceProcessor(mr,    // span
2124                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2125                                 // mt processing
2126                            ParallelGCThreads,
2127                                 // degree of mt processing
2128                            (ParallelGCThreads > 1),
2129                                 // mt discovery
2130                            ParallelGCThreads,
2131                                 // degree of mt discovery
2132                            true,
2133                                 // Reference discovery is atomic
2134                            &_is_alive_closure_stw);
2135                                 // is alive closure
2136                                 // (for efficiency/performance)
2137 }
2138 
2139 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2140   return g1_policy();
2141 }
2142 
2143 size_t G1CollectedHeap::capacity() const {
2144   return _hrm.length() * HeapRegion::GrainBytes;
2145 }
2146 
2147 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2148   hr->reset_gc_time_stamp();
2149 }
2150 
2151 #ifndef PRODUCT
2152 
2153 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2154 private:
2155   unsigned _gc_time_stamp;
2156   bool _failures;
2157 
2158 public:
2159   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2160     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2161 
2162   virtual bool doHeapRegion(HeapRegion* hr) {
2163     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2164     if (_gc_time_stamp != region_gc_time_stamp) {
2165       log_info(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2166                            region_gc_time_stamp, _gc_time_stamp);
2167       _failures = true;
2168     }
2169     return false;
2170   }
2171 
2172   bool failures() { return _failures; }
2173 };
2174 
2175 void G1CollectedHeap::check_gc_time_stamps() {
2176   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2177   heap_region_iterate(&cl);
2178   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2179 }
2180 #endif // PRODUCT
2181 
2182 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2183   _cg1r->hot_card_cache()->drain(cl, worker_i);
2184 }
2185 
2186 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2187   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2188   size_t n_completed_buffers = 0;
2189   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2190     n_completed_buffers++;
2191   }
2192   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2193   dcqs.clear_n_completed_buffers();
2194   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2195 }
2196 
2197 // Computes the sum of the storage used by the various regions.
2198 size_t G1CollectedHeap::used() const {
2199   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2200   if (_archive_allocator != NULL) {
2201     result += _archive_allocator->used();
2202   }
2203   return result;
2204 }
2205 
2206 size_t G1CollectedHeap::used_unlocked() const {
2207   return _summary_bytes_used;
2208 }
2209 
2210 class SumUsedClosure: public HeapRegionClosure {
2211   size_t _used;
2212 public:
2213   SumUsedClosure() : _used(0) {}
2214   bool doHeapRegion(HeapRegion* r) {
2215     _used += r->used();
2216     return false;
2217   }
2218   size_t result() { return _used; }
2219 };
2220 
2221 size_t G1CollectedHeap::recalculate_used() const {
2222   double recalculate_used_start = os::elapsedTime();
2223 
2224   SumUsedClosure blk;
2225   heap_region_iterate(&blk);
2226 
2227   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2228   return blk.result();
2229 }
2230 
2231 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2232   switch (cause) {
2233     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2234     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2235     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2236     case GCCause::_g1_humongous_allocation: return true;
2237     case GCCause::_update_allocation_context_stats_inc: return true;
2238     case GCCause::_wb_conc_mark:            return true;
2239     default:                                return false;
2240   }
2241 }
2242 
2243 #ifndef PRODUCT
2244 void G1CollectedHeap::allocate_dummy_regions() {
2245   // Let's fill up most of the region
2246   size_t word_size = HeapRegion::GrainWords - 1024;
2247   // And as a result the region we'll allocate will be humongous.
2248   guarantee(is_humongous(word_size), "sanity");
2249 
2250   // _filler_array_max_size is set to humongous object threshold
2251   // but temporarily change it to use CollectedHeap::fill_with_object().
2252   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2253 
2254   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2255     // Let's use the existing mechanism for the allocation
2256     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2257                                                  AllocationContext::system());
2258     if (dummy_obj != NULL) {
2259       MemRegion mr(dummy_obj, word_size);
2260       CollectedHeap::fill_with_object(mr);
2261     } else {
2262       // If we can't allocate once, we probably cannot allocate
2263       // again. Let's get out of the loop.
2264       break;
2265     }
2266   }
2267 }
2268 #endif // !PRODUCT
2269 
2270 void G1CollectedHeap::increment_old_marking_cycles_started() {
2271   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2272          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2273          "Wrong marking cycle count (started: %d, completed: %d)",
2274          _old_marking_cycles_started, _old_marking_cycles_completed);
2275 
2276   _old_marking_cycles_started++;
2277 }
2278 
2279 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2280   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2281 
2282   // We assume that if concurrent == true, then the caller is a
2283   // concurrent thread that was joined the Suspendible Thread
2284   // Set. If there's ever a cheap way to check this, we should add an
2285   // assert here.
2286 
2287   // Given that this method is called at the end of a Full GC or of a
2288   // concurrent cycle, and those can be nested (i.e., a Full GC can
2289   // interrupt a concurrent cycle), the number of full collections
2290   // completed should be either one (in the case where there was no
2291   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2292   // behind the number of full collections started.
2293 
2294   // This is the case for the inner caller, i.e. a Full GC.
2295   assert(concurrent ||
2296          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2297          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2298          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2299          "is inconsistent with _old_marking_cycles_completed = %u",
2300          _old_marking_cycles_started, _old_marking_cycles_completed);
2301 
2302   // This is the case for the outer caller, i.e. the concurrent cycle.
2303   assert(!concurrent ||
2304          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2305          "for outer caller (concurrent cycle): "
2306          "_old_marking_cycles_started = %u "
2307          "is inconsistent with _old_marking_cycles_completed = %u",
2308          _old_marking_cycles_started, _old_marking_cycles_completed);
2309 
2310   _old_marking_cycles_completed += 1;
2311 
2312   // We need to clear the "in_progress" flag in the CM thread before
2313   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2314   // is set) so that if a waiter requests another System.gc() it doesn't
2315   // incorrectly see that a marking cycle is still in progress.
2316   if (concurrent) {
2317     _cmThread->set_idle();
2318   }
2319 
2320   // This notify_all() will ensure that a thread that called
2321   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2322   // and it's waiting for a full GC to finish will be woken up. It is
2323   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2324   FullGCCount_lock->notify_all();
2325 }
2326 
2327 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2328   GCIdMarkAndRestore conc_gc_id_mark;
2329   collector_state()->set_concurrent_cycle_started(true);
2330   _gc_timer_cm->register_gc_start(start_time);
2331 
2332   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2333   trace_heap_before_gc(_gc_tracer_cm);
2334   _cmThread->set_gc_id(GCId::current());
2335 }
2336 
2337 void G1CollectedHeap::register_concurrent_cycle_end() {
2338   if (collector_state()->concurrent_cycle_started()) {
2339     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2340     if (_cm->has_aborted()) {
2341       _gc_tracer_cm->report_concurrent_mode_failure();
2342     }
2343 
2344     _gc_timer_cm->register_gc_end();
2345     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2346 
2347     // Clear state variables to prepare for the next concurrent cycle.
2348      collector_state()->set_concurrent_cycle_started(false);
2349     _heap_summary_sent = false;
2350   }
2351 }
2352 
2353 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2354   if (collector_state()->concurrent_cycle_started()) {
2355     // This function can be called when:
2356     //  the cleanup pause is run
2357     //  the concurrent cycle is aborted before the cleanup pause.
2358     //  the concurrent cycle is aborted after the cleanup pause,
2359     //   but before the concurrent cycle end has been registered.
2360     // Make sure that we only send the heap information once.
2361     if (!_heap_summary_sent) {
2362       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2363       trace_heap_after_gc(_gc_tracer_cm);
2364       _heap_summary_sent = true;
2365     }
2366   }
2367 }
2368 
2369 void G1CollectedHeap::collect(GCCause::Cause cause) {
2370   assert_heap_not_locked();
2371 
2372   uint gc_count_before;
2373   uint old_marking_count_before;
2374   uint full_gc_count_before;
2375   bool retry_gc;
2376 
2377   do {
2378     retry_gc = false;
2379 
2380     {
2381       MutexLocker ml(Heap_lock);
2382 
2383       // Read the GC count while holding the Heap_lock
2384       gc_count_before = total_collections();
2385       full_gc_count_before = total_full_collections();
2386       old_marking_count_before = _old_marking_cycles_started;
2387     }
2388 
2389     if (should_do_concurrent_full_gc(cause)) {
2390       // Schedule an initial-mark evacuation pause that will start a
2391       // concurrent cycle. We're setting word_size to 0 which means that
2392       // we are not requesting a post-GC allocation.
2393       VM_G1IncCollectionPause op(gc_count_before,
2394                                  0,     /* word_size */
2395                                  true,  /* should_initiate_conc_mark */
2396                                  g1_policy()->max_pause_time_ms(),
2397                                  cause);
2398       op.set_allocation_context(AllocationContext::current());
2399 
2400       VMThread::execute(&op);
2401       if (!op.pause_succeeded()) {
2402         if (old_marking_count_before == _old_marking_cycles_started) {
2403           retry_gc = op.should_retry_gc();
2404         } else {
2405           // A Full GC happened while we were trying to schedule the
2406           // initial-mark GC. No point in starting a new cycle given
2407           // that the whole heap was collected anyway.
2408         }
2409 
2410         if (retry_gc) {
2411           if (GC_locker::is_active_and_needs_gc()) {
2412             GC_locker::stall_until_clear();
2413           }
2414         }
2415       }
2416     } else {
2417       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2418           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2419 
2420         // Schedule a standard evacuation pause. We're setting word_size
2421         // to 0 which means that we are not requesting a post-GC allocation.
2422         VM_G1IncCollectionPause op(gc_count_before,
2423                                    0,     /* word_size */
2424                                    false, /* should_initiate_conc_mark */
2425                                    g1_policy()->max_pause_time_ms(),
2426                                    cause);
2427         VMThread::execute(&op);
2428       } else {
2429         // Schedule a Full GC.
2430         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2431         VMThread::execute(&op);
2432       }
2433     }
2434   } while (retry_gc);
2435 }
2436 
2437 bool G1CollectedHeap::is_in(const void* p) const {
2438   if (_hrm.reserved().contains(p)) {
2439     // Given that we know that p is in the reserved space,
2440     // heap_region_containing() should successfully
2441     // return the containing region.
2442     HeapRegion* hr = heap_region_containing(p);
2443     return hr->is_in(p);
2444   } else {
2445     return false;
2446   }
2447 }
2448 
2449 #ifdef ASSERT
2450 bool G1CollectedHeap::is_in_exact(const void* p) const {
2451   bool contains = reserved_region().contains(p);
2452   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2453   if (contains && available) {
2454     return true;
2455   } else {
2456     return false;
2457   }
2458 }
2459 #endif
2460 
2461 bool G1CollectedHeap::obj_in_cs(oop obj) {
2462   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2463   return r != NULL && r->in_collection_set();
2464 }
2465 
2466 // Iteration functions.
2467 
2468 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2469 
2470 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2471   ExtendedOopClosure* _cl;
2472 public:
2473   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2474   bool doHeapRegion(HeapRegion* r) {
2475     if (!r->is_continues_humongous()) {
2476       r->oop_iterate(_cl);
2477     }
2478     return false;
2479   }
2480 };
2481 
2482 // Iterates an ObjectClosure over all objects within a HeapRegion.
2483 
2484 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2485   ObjectClosure* _cl;
2486 public:
2487   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2488   bool doHeapRegion(HeapRegion* r) {
2489     if (!r->is_continues_humongous()) {
2490       r->object_iterate(_cl);
2491     }
2492     return false;
2493   }
2494 };
2495 
2496 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2497   IterateObjectClosureRegionClosure blk(cl);
2498   heap_region_iterate(&blk);
2499 }
2500 
2501 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2502   _hrm.iterate(cl);
2503 }
2504 
2505 void
2506 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2507                                          uint worker_id,
2508                                          HeapRegionClaimer *hrclaimer,
2509                                          bool concurrent) const {
2510   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2511 }
2512 
2513 // Clear the cached CSet starting regions and (more importantly)
2514 // the time stamps. Called when we reset the GC time stamp.
2515 void G1CollectedHeap::clear_cset_start_regions() {
2516   assert(_worker_cset_start_region != NULL, "sanity");
2517   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2518 
2519   for (uint i = 0; i < ParallelGCThreads; i++) {
2520     _worker_cset_start_region[i] = NULL;
2521     _worker_cset_start_region_time_stamp[i] = 0;
2522   }
2523 }
2524 
2525 // Given the id of a worker, obtain or calculate a suitable
2526 // starting region for iterating over the current collection set.
2527 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2528   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2529 
2530   HeapRegion* result = NULL;
2531   unsigned gc_time_stamp = get_gc_time_stamp();
2532 
2533   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2534     // Cached starting region for current worker was set
2535     // during the current pause - so it's valid.
2536     // Note: the cached starting heap region may be NULL
2537     // (when the collection set is empty).
2538     result = _worker_cset_start_region[worker_i];
2539     assert(result == NULL || result->in_collection_set(), "sanity");
2540     return result;
2541   }
2542 
2543   // The cached entry was not valid so let's calculate
2544   // a suitable starting heap region for this worker.
2545 
2546   // We want the parallel threads to start their collection
2547   // set iteration at different collection set regions to
2548   // avoid contention.
2549   // If we have:
2550   //          n collection set regions
2551   //          p threads
2552   // Then thread t will start at region floor ((t * n) / p)
2553 
2554   result = g1_policy()->collection_set();
2555   uint cs_size = g1_policy()->cset_region_length();
2556   uint active_workers = workers()->active_workers();
2557 
2558   uint end_ind   = (cs_size * worker_i) / active_workers;
2559   uint start_ind = 0;
2560 
2561   if (worker_i > 0 &&
2562       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2563     // Previous workers starting region is valid
2564     // so let's iterate from there
2565     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2566     result = _worker_cset_start_region[worker_i - 1];
2567   }
2568 
2569   for (uint i = start_ind; i < end_ind; i++) {
2570     result = result->next_in_collection_set();
2571   }
2572 
2573   // Note: the calculated starting heap region may be NULL
2574   // (when the collection set is empty).
2575   assert(result == NULL || result->in_collection_set(), "sanity");
2576   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2577          "should be updated only once per pause");
2578   _worker_cset_start_region[worker_i] = result;
2579   OrderAccess::storestore();
2580   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2581   return result;
2582 }
2583 
2584 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2585   HeapRegion* r = g1_policy()->collection_set();
2586   while (r != NULL) {
2587     HeapRegion* next = r->next_in_collection_set();
2588     if (cl->doHeapRegion(r)) {
2589       cl->incomplete();
2590       return;
2591     }
2592     r = next;
2593   }
2594 }
2595 
2596 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2597                                                   HeapRegionClosure *cl) {
2598   if (r == NULL) {
2599     // The CSet is empty so there's nothing to do.
2600     return;
2601   }
2602 
2603   assert(r->in_collection_set(),
2604          "Start region must be a member of the collection set.");
2605   HeapRegion* cur = r;
2606   while (cur != NULL) {
2607     HeapRegion* next = cur->next_in_collection_set();
2608     if (cl->doHeapRegion(cur) && false) {
2609       cl->incomplete();
2610       return;
2611     }
2612     cur = next;
2613   }
2614   cur = g1_policy()->collection_set();
2615   while (cur != r) {
2616     HeapRegion* next = cur->next_in_collection_set();
2617     if (cl->doHeapRegion(cur) && false) {
2618       cl->incomplete();
2619       return;
2620     }
2621     cur = next;
2622   }
2623 }
2624 
2625 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2626   HeapRegion* result = _hrm.next_region_in_heap(from);
2627   while (result != NULL && result->is_pinned()) {
2628     result = _hrm.next_region_in_heap(result);
2629   }
2630   return result;
2631 }
2632 
2633 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2634   HeapRegion* hr = heap_region_containing(addr);
2635   return hr->block_start(addr);
2636 }
2637 
2638 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2639   HeapRegion* hr = heap_region_containing(addr);
2640   return hr->block_size(addr);
2641 }
2642 
2643 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2644   HeapRegion* hr = heap_region_containing(addr);
2645   return hr->block_is_obj(addr);
2646 }
2647 
2648 bool G1CollectedHeap::supports_tlab_allocation() const {
2649   return true;
2650 }
2651 
2652 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2653   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2654 }
2655 
2656 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2657   return young_list()->eden_used_bytes();
2658 }
2659 
2660 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2661 // must be equal to the humongous object limit.
2662 size_t G1CollectedHeap::max_tlab_size() const {
2663   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2664 }
2665 
2666 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2667   AllocationContext_t context = AllocationContext::current();
2668   return _allocator->unsafe_max_tlab_alloc(context);
2669 }
2670 
2671 size_t G1CollectedHeap::max_capacity() const {
2672   return _hrm.reserved().byte_size();
2673 }
2674 
2675 jlong G1CollectedHeap::millis_since_last_gc() {
2676   // assert(false, "NYI");
2677   return 0;
2678 }
2679 
2680 void G1CollectedHeap::prepare_for_verify() {
2681   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2682     ensure_parsability(false);
2683   }
2684   g1_rem_set()->prepare_for_verify();
2685 }
2686 
2687 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2688                                               VerifyOption vo) {
2689   switch (vo) {
2690   case VerifyOption_G1UsePrevMarking:
2691     return hr->obj_allocated_since_prev_marking(obj);
2692   case VerifyOption_G1UseNextMarking:
2693     return hr->obj_allocated_since_next_marking(obj);
2694   case VerifyOption_G1UseMarkWord:
2695     return false;
2696   default:
2697     ShouldNotReachHere();
2698   }
2699   return false; // keep some compilers happy
2700 }
2701 
2702 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2703   switch (vo) {
2704   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2705   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2706   case VerifyOption_G1UseMarkWord:    return NULL;
2707   default:                            ShouldNotReachHere();
2708   }
2709   return NULL; // keep some compilers happy
2710 }
2711 
2712 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2713   switch (vo) {
2714   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2715   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2716   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2717   default:                            ShouldNotReachHere();
2718   }
2719   return false; // keep some compilers happy
2720 }
2721 
2722 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2723   switch (vo) {
2724   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2725   case VerifyOption_G1UseNextMarking: return "NTAMS";
2726   case VerifyOption_G1UseMarkWord:    return "NONE";
2727   default:                            ShouldNotReachHere();
2728   }
2729   return NULL; // keep some compilers happy
2730 }
2731 
2732 class VerifyRootsClosure: public OopClosure {
2733 private:
2734   G1CollectedHeap* _g1h;
2735   VerifyOption     _vo;
2736   bool             _failures;
2737 public:
2738   // _vo == UsePrevMarking -> use "prev" marking information,
2739   // _vo == UseNextMarking -> use "next" marking information,
2740   // _vo == UseMarkWord    -> use mark word from object header.
2741   VerifyRootsClosure(VerifyOption vo) :
2742     _g1h(G1CollectedHeap::heap()),
2743     _vo(vo),
2744     _failures(false) { }
2745 
2746   bool failures() { return _failures; }
2747 
2748   template <class T> void do_oop_nv(T* p) {
2749     T heap_oop = oopDesc::load_heap_oop(p);
2750     if (!oopDesc::is_null(heap_oop)) {
2751       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2752       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2753         LogHandle(gc, verify) log;
2754         log.info("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2755         if (_vo == VerifyOption_G1UseMarkWord) {
2756           log.info("  Mark word: " PTR_FORMAT, p2i(obj->mark()));
2757         }
2758         ResourceMark rm;
2759         obj->print_on(log.info_stream());
2760         _failures = true;
2761       }
2762     }
2763   }
2764 
2765   void do_oop(oop* p)       { do_oop_nv(p); }
2766   void do_oop(narrowOop* p) { do_oop_nv(p); }
2767 };
2768 
2769 class G1VerifyCodeRootOopClosure: public OopClosure {
2770   G1CollectedHeap* _g1h;
2771   OopClosure* _root_cl;
2772   nmethod* _nm;
2773   VerifyOption _vo;
2774   bool _failures;
2775 
2776   template <class T> void do_oop_work(T* p) {
2777     // First verify that this root is live
2778     _root_cl->do_oop(p);
2779 
2780     if (!G1VerifyHeapRegionCodeRoots) {
2781       // We're not verifying the code roots attached to heap region.
2782       return;
2783     }
2784 
2785     // Don't check the code roots during marking verification in a full GC
2786     if (_vo == VerifyOption_G1UseMarkWord) {
2787       return;
2788     }
2789 
2790     // Now verify that the current nmethod (which contains p) is
2791     // in the code root list of the heap region containing the
2792     // object referenced by p.
2793 
2794     T heap_oop = oopDesc::load_heap_oop(p);
2795     if (!oopDesc::is_null(heap_oop)) {
2796       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2797 
2798       // Now fetch the region containing the object
2799       HeapRegion* hr = _g1h->heap_region_containing(obj);
2800       HeapRegionRemSet* hrrs = hr->rem_set();
2801       // Verify that the strong code root list for this region
2802       // contains the nmethod
2803       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2804         log_info(gc, verify)("Code root location " PTR_FORMAT " "
2805                              "from nmethod " PTR_FORMAT " not in strong "
2806                              "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2807                              p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2808         _failures = true;
2809       }
2810     }
2811   }
2812 
2813 public:
2814   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2815     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2816 
2817   void do_oop(oop* p) { do_oop_work(p); }
2818   void do_oop(narrowOop* p) { do_oop_work(p); }
2819 
2820   void set_nmethod(nmethod* nm) { _nm = nm; }
2821   bool failures() { return _failures; }
2822 };
2823 
2824 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2825   G1VerifyCodeRootOopClosure* _oop_cl;
2826 
2827 public:
2828   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2829     _oop_cl(oop_cl) {}
2830 
2831   void do_code_blob(CodeBlob* cb) {
2832     nmethod* nm = cb->as_nmethod_or_null();
2833     if (nm != NULL) {
2834       _oop_cl->set_nmethod(nm);
2835       nm->oops_do(_oop_cl);
2836     }
2837   }
2838 };
2839 
2840 class YoungRefCounterClosure : public OopClosure {
2841   G1CollectedHeap* _g1h;
2842   int              _count;
2843  public:
2844   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2845   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2846   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2847 
2848   int count() { return _count; }
2849   void reset_count() { _count = 0; };
2850 };
2851 
2852 class VerifyKlassClosure: public KlassClosure {
2853   YoungRefCounterClosure _young_ref_counter_closure;
2854   OopClosure *_oop_closure;
2855  public:
2856   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2857   void do_klass(Klass* k) {
2858     k->oops_do(_oop_closure);
2859 
2860     _young_ref_counter_closure.reset_count();
2861     k->oops_do(&_young_ref_counter_closure);
2862     if (_young_ref_counter_closure.count() > 0) {
2863       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2864     }
2865   }
2866 };
2867 
2868 class VerifyLivenessOopClosure: public OopClosure {
2869   G1CollectedHeap* _g1h;
2870   VerifyOption _vo;
2871 public:
2872   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2873     _g1h(g1h), _vo(vo)
2874   { }
2875   void do_oop(narrowOop *p) { do_oop_work(p); }
2876   void do_oop(      oop *p) { do_oop_work(p); }
2877 
2878   template <class T> void do_oop_work(T *p) {
2879     oop obj = oopDesc::load_decode_heap_oop(p);
2880     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2881               "Dead object referenced by a not dead object");
2882   }
2883 };
2884 
2885 class VerifyObjsInRegionClosure: public ObjectClosure {
2886 private:
2887   G1CollectedHeap* _g1h;
2888   size_t _live_bytes;
2889   HeapRegion *_hr;
2890   VerifyOption _vo;
2891 public:
2892   // _vo == UsePrevMarking -> use "prev" marking information,
2893   // _vo == UseNextMarking -> use "next" marking information,
2894   // _vo == UseMarkWord    -> use mark word from object header.
2895   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2896     : _live_bytes(0), _hr(hr), _vo(vo) {
2897     _g1h = G1CollectedHeap::heap();
2898   }
2899   void do_object(oop o) {
2900     VerifyLivenessOopClosure isLive(_g1h, _vo);
2901     assert(o != NULL, "Huh?");
2902     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2903       // If the object is alive according to the mark word,
2904       // then verify that the marking information agrees.
2905       // Note we can't verify the contra-positive of the
2906       // above: if the object is dead (according to the mark
2907       // word), it may not be marked, or may have been marked
2908       // but has since became dead, or may have been allocated
2909       // since the last marking.
2910       if (_vo == VerifyOption_G1UseMarkWord) {
2911         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2912       }
2913 
2914       o->oop_iterate_no_header(&isLive);
2915       if (!_hr->obj_allocated_since_prev_marking(o)) {
2916         size_t obj_size = o->size();    // Make sure we don't overflow
2917         _live_bytes += (obj_size * HeapWordSize);
2918       }
2919     }
2920   }
2921   size_t live_bytes() { return _live_bytes; }
2922 };
2923 
2924 class VerifyArchiveOopClosure: public OopClosure {
2925 public:
2926   VerifyArchiveOopClosure(HeapRegion *hr) { }
2927   void do_oop(narrowOop *p) { do_oop_work(p); }
2928   void do_oop(      oop *p) { do_oop_work(p); }
2929 
2930   template <class T> void do_oop_work(T *p) {
2931     oop obj = oopDesc::load_decode_heap_oop(p);
2932     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2933               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2934               p2i(p), p2i(obj));
2935   }
2936 };
2937 
2938 class VerifyArchiveRegionClosure: public ObjectClosure {
2939 public:
2940   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2941   // Verify that all object pointers are to archive regions.
2942   void do_object(oop o) {
2943     VerifyArchiveOopClosure checkOop(NULL);
2944     assert(o != NULL, "Should not be here for NULL oops");
2945     o->oop_iterate_no_header(&checkOop);
2946   }
2947 };
2948 
2949 class VerifyRegionClosure: public HeapRegionClosure {
2950 private:
2951   bool             _par;
2952   VerifyOption     _vo;
2953   bool             _failures;
2954 public:
2955   // _vo == UsePrevMarking -> use "prev" marking information,
2956   // _vo == UseNextMarking -> use "next" marking information,
2957   // _vo == UseMarkWord    -> use mark word from object header.
2958   VerifyRegionClosure(bool par, VerifyOption vo)
2959     : _par(par),
2960       _vo(vo),
2961       _failures(false) {}
2962 
2963   bool failures() {
2964     return _failures;
2965   }
2966 
2967   bool doHeapRegion(HeapRegion* r) {
2968     // For archive regions, verify there are no heap pointers to
2969     // non-pinned regions. For all others, verify liveness info.
2970     if (r->is_archive()) {
2971       VerifyArchiveRegionClosure verify_oop_pointers(r);
2972       r->object_iterate(&verify_oop_pointers);
2973       return true;
2974     }
2975     if (!r->is_continues_humongous()) {
2976       bool failures = false;
2977       r->verify(_vo, &failures);
2978       if (failures) {
2979         _failures = true;
2980       } else if (!r->is_starts_humongous()) {
2981         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2982         r->object_iterate(&not_dead_yet_cl);
2983         if (_vo != VerifyOption_G1UseNextMarking) {
2984           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2985             log_info(gc, verify)("[" PTR_FORMAT "," PTR_FORMAT "] max_live_bytes " SIZE_FORMAT " < calculated " SIZE_FORMAT,
2986                                  p2i(r->bottom()), p2i(r->end()), r->max_live_bytes(), not_dead_yet_cl.live_bytes());
2987             _failures = true;
2988           }
2989         } else {
2990           // When vo == UseNextMarking we cannot currently do a sanity
2991           // check on the live bytes as the calculation has not been
2992           // finalized yet.
2993         }
2994       }
2995     }
2996     return false; // stop the region iteration if we hit a failure
2997   }
2998 };
2999 
3000 // This is the task used for parallel verification of the heap regions
3001 
3002 class G1ParVerifyTask: public AbstractGangTask {
3003 private:
3004   G1CollectedHeap*  _g1h;
3005   VerifyOption      _vo;
3006   bool              _failures;
3007   HeapRegionClaimer _hrclaimer;
3008 
3009 public:
3010   // _vo == UsePrevMarking -> use "prev" marking information,
3011   // _vo == UseNextMarking -> use "next" marking information,
3012   // _vo == UseMarkWord    -> use mark word from object header.
3013   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3014       AbstractGangTask("Parallel verify task"),
3015       _g1h(g1h),
3016       _vo(vo),
3017       _failures(false),
3018       _hrclaimer(g1h->workers()->active_workers()) {}
3019 
3020   bool failures() {
3021     return _failures;
3022   }
3023 
3024   void work(uint worker_id) {
3025     HandleMark hm;
3026     VerifyRegionClosure blk(true, _vo);
3027     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3028     if (blk.failures()) {
3029       _failures = true;
3030     }
3031   }
3032 };
3033 
3034 void G1CollectedHeap::verify(VerifyOption vo) {
3035   if (!SafepointSynchronize::is_at_safepoint()) {
3036     log_info(gc, verify)("Skipping verification. Not at safepoint.");
3037   }
3038 
3039   assert(Thread::current()->is_VM_thread(),
3040          "Expected to be executed serially by the VM thread at this point");
3041 
3042   log_debug(gc, verify)("Roots");
3043   VerifyRootsClosure rootsCl(vo);
3044   VerifyKlassClosure klassCl(this, &rootsCl);
3045   CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3046 
3047   // We apply the relevant closures to all the oops in the
3048   // system dictionary, class loader data graph, the string table
3049   // and the nmethods in the code cache.
3050   G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3051   G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3052 
3053   {
3054     G1RootProcessor root_processor(this, 1);
3055     root_processor.process_all_roots(&rootsCl,
3056                                      &cldCl,
3057                                      &blobsCl);
3058   }
3059 
3060   bool failures = rootsCl.failures() || codeRootsCl.failures();
3061 
3062   if (vo != VerifyOption_G1UseMarkWord) {
3063     // If we're verifying during a full GC then the region sets
3064     // will have been torn down at the start of the GC. Therefore
3065     // verifying the region sets will fail. So we only verify
3066     // the region sets when not in a full GC.
3067     log_debug(gc, verify)("HeapRegionSets");
3068     verify_region_sets();
3069   }
3070 
3071   log_debug(gc, verify)("HeapRegions");
3072   if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3073 
3074     G1ParVerifyTask task(this, vo);
3075     workers()->run_task(&task);
3076     if (task.failures()) {
3077       failures = true;
3078     }
3079 
3080   } else {
3081     VerifyRegionClosure blk(false, vo);
3082     heap_region_iterate(&blk);
3083     if (blk.failures()) {
3084       failures = true;
3085     }
3086   }
3087 
3088   if (G1StringDedup::is_enabled()) {
3089     log_debug(gc, verify)("StrDedup");
3090     G1StringDedup::verify();
3091   }
3092 
3093   if (failures) {
3094     log_info(gc, verify)("Heap after failed verification:");
3095     // It helps to have the per-region information in the output to
3096     // help us track down what went wrong. This is why we call
3097     // print_extended_on() instead of print_on().
3098     LogHandle(gc, verify) log;
3099     ResourceMark rm;
3100     print_extended_on(log.info_stream());
3101   }
3102   guarantee(!failures, "there should not have been any failures");
3103 }
3104 
3105 double G1CollectedHeap::verify(bool guard, const char* msg) {
3106   double verify_time_ms = 0.0;
3107 
3108   if (guard && total_collections() >= VerifyGCStartAt) {
3109     double verify_start = os::elapsedTime();
3110     HandleMark hm;  // Discard invalid handles created during verification
3111     prepare_for_verify();
3112     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3113     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3114   }
3115 
3116   return verify_time_ms;
3117 }
3118 
3119 void G1CollectedHeap::verify_before_gc() {
3120   double verify_time_ms = verify(VerifyBeforeGC, "Before GC");
3121   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3122 }
3123 
3124 void G1CollectedHeap::verify_after_gc() {
3125   double verify_time_ms = verify(VerifyAfterGC, "After GC");
3126   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3127 }
3128 
3129 class PrintRegionClosure: public HeapRegionClosure {
3130   outputStream* _st;
3131 public:
3132   PrintRegionClosure(outputStream* st) : _st(st) {}
3133   bool doHeapRegion(HeapRegion* r) {
3134     r->print_on(_st);
3135     return false;
3136   }
3137 };
3138 
3139 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3140                                        const HeapRegion* hr,
3141                                        const VerifyOption vo) const {
3142   switch (vo) {
3143   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3144   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3145   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3146   default:                            ShouldNotReachHere();
3147   }
3148   return false; // keep some compilers happy
3149 }
3150 
3151 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3152                                        const VerifyOption vo) const {
3153   switch (vo) {
3154   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3155   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3156   case VerifyOption_G1UseMarkWord: {
3157     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3158     return !obj->is_gc_marked() && !hr->is_archive();
3159   }
3160   default:                            ShouldNotReachHere();
3161   }
3162   return false; // keep some compilers happy
3163 }
3164 
3165 void G1CollectedHeap::print_on(outputStream* st) const {
3166   st->print(" %-20s", "garbage-first heap");
3167   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3168             capacity()/K, used_unlocked()/K);
3169   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3170             p2i(_hrm.reserved().start()),
3171             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3172             p2i(_hrm.reserved().end()));
3173   st->cr();
3174   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3175   uint young_regions = _young_list->length();
3176   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3177             (size_t) young_regions * HeapRegion::GrainBytes / K);
3178   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3179   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3180             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3181   st->cr();
3182   MetaspaceAux::print_on(st);
3183 }
3184 
3185 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3186   print_on(st);
3187 
3188   // Print the per-region information.
3189   st->cr();
3190   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3191                "HS=humongous(starts), HC=humongous(continues), "
3192                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3193                "PTAMS=previous top-at-mark-start, "
3194                "NTAMS=next top-at-mark-start)");
3195   PrintRegionClosure blk(st);
3196   heap_region_iterate(&blk);
3197 }
3198 
3199 void G1CollectedHeap::print_on_error(outputStream* st) const {
3200   this->CollectedHeap::print_on_error(st);
3201 
3202   if (_cm != NULL) {
3203     st->cr();
3204     _cm->print_on_error(st);
3205   }
3206 }
3207 
3208 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3209   workers()->print_worker_threads_on(st);
3210   _cmThread->print_on(st);
3211   st->cr();
3212   _cm->print_worker_threads_on(st);
3213   _cg1r->print_worker_threads_on(st);
3214   if (G1StringDedup::is_enabled()) {
3215     G1StringDedup::print_worker_threads_on(st);
3216   }
3217 }
3218 
3219 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3220   workers()->threads_do(tc);
3221   tc->do_thread(_cmThread);
3222   _cg1r->threads_do(tc);
3223   if (G1StringDedup::is_enabled()) {
3224     G1StringDedup::threads_do(tc);
3225   }
3226 }
3227 
3228 void G1CollectedHeap::print_tracing_info() const {
3229   // We'll overload this to mean "trace GC pause statistics."
3230   if (TraceYoungGenTime || TraceOldGenTime) {
3231     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3232     // to that.
3233     g1_policy()->print_tracing_info();
3234   }
3235   g1_rem_set()->print_summary_info();
3236   concurrent_mark()->print_summary_info();
3237   g1_policy()->print_yg_surv_rate_info();
3238 }
3239 
3240 #ifndef PRODUCT
3241 // Helpful for debugging RSet issues.
3242 
3243 class PrintRSetsClosure : public HeapRegionClosure {
3244 private:
3245   const char* _msg;
3246   size_t _occupied_sum;
3247 
3248 public:
3249   bool doHeapRegion(HeapRegion* r) {
3250     HeapRegionRemSet* hrrs = r->rem_set();
3251     size_t occupied = hrrs->occupied();
3252     _occupied_sum += occupied;
3253 
3254     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
3255     if (occupied == 0) {
3256       tty->print_cr("  RSet is empty");
3257     } else {
3258       hrrs->print();
3259     }
3260     tty->print_cr("----------");
3261     return false;
3262   }
3263 
3264   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3265     tty->cr();
3266     tty->print_cr("========================================");
3267     tty->print_cr("%s", msg);
3268     tty->cr();
3269   }
3270 
3271   ~PrintRSetsClosure() {
3272     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3273     tty->print_cr("========================================");
3274     tty->cr();
3275   }
3276 };
3277 
3278 void G1CollectedHeap::print_cset_rsets() {
3279   PrintRSetsClosure cl("Printing CSet RSets");
3280   collection_set_iterate(&cl);
3281 }
3282 
3283 void G1CollectedHeap::print_all_rsets() {
3284   PrintRSetsClosure cl("Printing All RSets");;
3285   heap_region_iterate(&cl);
3286 }
3287 #endif // PRODUCT
3288 
3289 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3290   YoungList* young_list = heap()->young_list();
3291 
3292   size_t eden_used_bytes = young_list->eden_used_bytes();
3293   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3294 
3295   size_t eden_capacity_bytes =
3296     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3297 
3298   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3299   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3300 }
3301 
3302 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3303   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3304                        stats->unused(), stats->used(), stats->region_end_waste(),
3305                        stats->regions_filled(), stats->direct_allocated(),
3306                        stats->failure_used(), stats->failure_waste());
3307 }
3308 
3309 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3310   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3311   gc_tracer->report_gc_heap_summary(when, heap_summary);
3312 
3313   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3314   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3315 }
3316 
3317 
3318 G1CollectedHeap* G1CollectedHeap::heap() {
3319   CollectedHeap* heap = Universe::heap();
3320   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3321   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3322   return (G1CollectedHeap*)heap;
3323 }
3324 
3325 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3326   // always_do_update_barrier = false;
3327   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3328   // Fill TLAB's and such
3329   accumulate_statistics_all_tlabs();
3330   ensure_parsability(true);
3331 
3332   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
3333 }
3334 
3335 void G1CollectedHeap::gc_epilogue(bool full) {
3336   // we are at the end of the GC. Total collections has already been increased.
3337   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
3338 
3339   // FIXME: what is this about?
3340   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3341   // is set.
3342 #if defined(COMPILER2) || INCLUDE_JVMCI
3343   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3344 #endif
3345   // always_do_update_barrier = true;
3346 
3347   resize_all_tlabs();
3348   allocation_context_stats().update(full);
3349 
3350   // We have just completed a GC. Update the soft reference
3351   // policy with the new heap occupancy
3352   Universe::update_heap_info_at_gc();
3353 }
3354 
3355 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3356                                                uint gc_count_before,
3357                                                bool* succeeded,
3358                                                GCCause::Cause gc_cause) {
3359   assert_heap_not_locked_and_not_at_safepoint();
3360   g1_policy()->record_stop_world_start();
3361   VM_G1IncCollectionPause op(gc_count_before,
3362                              word_size,
3363                              false, /* should_initiate_conc_mark */
3364                              g1_policy()->max_pause_time_ms(),
3365                              gc_cause);
3366 
3367   op.set_allocation_context(AllocationContext::current());
3368   VMThread::execute(&op);
3369 
3370   HeapWord* result = op.result();
3371   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3372   assert(result == NULL || ret_succeeded,
3373          "the result should be NULL if the VM did not succeed");
3374   *succeeded = ret_succeeded;
3375 
3376   assert_heap_not_locked();
3377   return result;
3378 }
3379 
3380 void
3381 G1CollectedHeap::doConcurrentMark() {
3382   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3383   if (!_cmThread->in_progress()) {
3384     _cmThread->set_started();
3385     CGC_lock->notify();
3386   }
3387 }
3388 
3389 size_t G1CollectedHeap::pending_card_num() {
3390   size_t extra_cards = 0;
3391   JavaThread *curr = Threads::first();
3392   while (curr != NULL) {
3393     DirtyCardQueue& dcq = curr->dirty_card_queue();
3394     extra_cards += dcq.size();
3395     curr = curr->next();
3396   }
3397   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3398   size_t buffer_size = dcqs.buffer_size();
3399   size_t buffer_num = dcqs.completed_buffers_num();
3400 
3401   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3402   // in bytes - not the number of 'entries'. We need to convert
3403   // into a number of cards.
3404   return (buffer_size * buffer_num + extra_cards) / oopSize;
3405 }
3406 
3407 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3408  private:
3409   size_t _total_humongous;
3410   size_t _candidate_humongous;
3411 
3412   DirtyCardQueue _dcq;
3413 
3414   // We don't nominate objects with many remembered set entries, on
3415   // the assumption that such objects are likely still live.
3416   bool is_remset_small(HeapRegion* region) const {
3417     HeapRegionRemSet* const rset = region->rem_set();
3418     return G1EagerReclaimHumongousObjectsWithStaleRefs
3419       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3420       : rset->is_empty();
3421   }
3422 
3423   bool is_typeArray_region(HeapRegion* region) const {
3424     return oop(region->bottom())->is_typeArray();
3425   }
3426 
3427   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3428     assert(region->is_starts_humongous(), "Must start a humongous object");
3429 
3430     // Candidate selection must satisfy the following constraints
3431     // while concurrent marking is in progress:
3432     //
3433     // * In order to maintain SATB invariants, an object must not be
3434     // reclaimed if it was allocated before the start of marking and
3435     // has not had its references scanned.  Such an object must have
3436     // its references (including type metadata) scanned to ensure no
3437     // live objects are missed by the marking process.  Objects
3438     // allocated after the start of concurrent marking don't need to
3439     // be scanned.
3440     //
3441     // * An object must not be reclaimed if it is on the concurrent
3442     // mark stack.  Objects allocated after the start of concurrent
3443     // marking are never pushed on the mark stack.
3444     //
3445     // Nominating only objects allocated after the start of concurrent
3446     // marking is sufficient to meet both constraints.  This may miss
3447     // some objects that satisfy the constraints, but the marking data
3448     // structures don't support efficiently performing the needed
3449     // additional tests or scrubbing of the mark stack.
3450     //
3451     // However, we presently only nominate is_typeArray() objects.
3452     // A humongous object containing references induces remembered
3453     // set entries on other regions.  In order to reclaim such an
3454     // object, those remembered sets would need to be cleaned up.
3455     //
3456     // We also treat is_typeArray() objects specially, allowing them
3457     // to be reclaimed even if allocated before the start of
3458     // concurrent mark.  For this we rely on mark stack insertion to
3459     // exclude is_typeArray() objects, preventing reclaiming an object
3460     // that is in the mark stack.  We also rely on the metadata for
3461     // such objects to be built-in and so ensured to be kept live.
3462     // Frequent allocation and drop of large binary blobs is an
3463     // important use case for eager reclaim, and this special handling
3464     // may reduce needed headroom.
3465 
3466     return is_typeArray_region(region) && is_remset_small(region);
3467   }
3468 
3469  public:
3470   RegisterHumongousWithInCSetFastTestClosure()
3471   : _total_humongous(0),
3472     _candidate_humongous(0),
3473     _dcq(&JavaThread::dirty_card_queue_set()) {
3474   }
3475 
3476   virtual bool doHeapRegion(HeapRegion* r) {
3477     if (!r->is_starts_humongous()) {
3478       return false;
3479     }
3480     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3481 
3482     bool is_candidate = humongous_region_is_candidate(g1h, r);
3483     uint rindex = r->hrm_index();
3484     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3485     if (is_candidate) {
3486       _candidate_humongous++;
3487       g1h->register_humongous_region_with_cset(rindex);
3488       // Is_candidate already filters out humongous object with large remembered sets.
3489       // If we have a humongous object with a few remembered sets, we simply flush these
3490       // remembered set entries into the DCQS. That will result in automatic
3491       // re-evaluation of their remembered set entries during the following evacuation
3492       // phase.
3493       if (!r->rem_set()->is_empty()) {
3494         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3495                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3496         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3497         HeapRegionRemSetIterator hrrs(r->rem_set());
3498         size_t card_index;
3499         while (hrrs.has_next(card_index)) {
3500           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3501           // The remembered set might contain references to already freed
3502           // regions. Filter out such entries to avoid failing card table
3503           // verification.
3504           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3505             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3506               *card_ptr = CardTableModRefBS::dirty_card_val();
3507               _dcq.enqueue(card_ptr);
3508             }
3509           }
3510         }
3511         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3512                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3513                hrrs.n_yielded(), r->rem_set()->occupied());
3514         r->rem_set()->clear_locked();
3515       }
3516       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3517     }
3518     _total_humongous++;
3519 
3520     return false;
3521   }
3522 
3523   size_t total_humongous() const { return _total_humongous; }
3524   size_t candidate_humongous() const { return _candidate_humongous; }
3525 
3526   void flush_rem_set_entries() { _dcq.flush(); }
3527 };
3528 
3529 void G1CollectedHeap::register_humongous_regions_with_cset() {
3530   if (!G1EagerReclaimHumongousObjects) {
3531     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3532     return;
3533   }
3534   double time = os::elapsed_counter();
3535 
3536   // Collect reclaim candidate information and register candidates with cset.
3537   RegisterHumongousWithInCSetFastTestClosure cl;
3538   heap_region_iterate(&cl);
3539 
3540   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3541   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3542                                                                   cl.total_humongous(),
3543                                                                   cl.candidate_humongous());
3544   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3545 
3546   // Finally flush all remembered set entries to re-check into the global DCQS.
3547   cl.flush_rem_set_entries();
3548 }
3549 
3550 #ifdef ASSERT
3551 class VerifyCSetClosure: public HeapRegionClosure {
3552 public:
3553   bool doHeapRegion(HeapRegion* hr) {
3554     // Here we check that the CSet region's RSet is ready for parallel
3555     // iteration. The fields that we'll verify are only manipulated
3556     // when the region is part of a CSet and is collected. Afterwards,
3557     // we reset these fields when we clear the region's RSet (when the
3558     // region is freed) so they are ready when the region is
3559     // re-allocated. The only exception to this is if there's an
3560     // evacuation failure and instead of freeing the region we leave
3561     // it in the heap. In that case, we reset these fields during
3562     // evacuation failure handling.
3563     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3564 
3565     // Here's a good place to add any other checks we'd like to
3566     // perform on CSet regions.
3567     return false;
3568   }
3569 };
3570 #endif // ASSERT
3571 
3572 uint G1CollectedHeap::num_task_queues() const {
3573   return _task_queues->size();
3574 }
3575 
3576 #if TASKQUEUE_STATS
3577 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3578   st->print_raw_cr("GC Task Stats");
3579   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3580   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3581 }
3582 
3583 void G1CollectedHeap::print_taskqueue_stats() const {
3584   if (!develop_log_is_enabled(Trace, gc, task, stats)) {
3585     return;
3586   }
3587   LogHandle(gc, task, stats) log;
3588   ResourceMark rm;
3589   outputStream* st = log.trace_stream();
3590 
3591   print_taskqueue_stats_hdr(st);
3592 
3593   TaskQueueStats totals;
3594   const uint n = num_task_queues();
3595   for (uint i = 0; i < n; ++i) {
3596     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3597     totals += task_queue(i)->stats;
3598   }
3599   st->print_raw("tot "); totals.print(st); st->cr();
3600 
3601   DEBUG_ONLY(totals.verify());
3602 }
3603 
3604 void G1CollectedHeap::reset_taskqueue_stats() {
3605   const uint n = num_task_queues();
3606   for (uint i = 0; i < n; ++i) {
3607     task_queue(i)->stats.reset();
3608   }
3609 }
3610 #endif // TASKQUEUE_STATS
3611 
3612 void G1CollectedHeap::log_gc_footer(double pause_time_counter) {
3613   if (evacuation_failed()) {
3614     log_info(gc)("To-space exhausted");
3615   }
3616 
3617   double pause_time_sec = TimeHelper::counter_to_seconds(pause_time_counter);
3618   g1_policy()->print_phases(pause_time_sec);
3619 
3620   g1_policy()->print_detailed_heap_transition();
3621 }
3622 
3623 
3624 void G1CollectedHeap::wait_for_root_region_scanning() {
3625   double scan_wait_start = os::elapsedTime();
3626   // We have to wait until the CM threads finish scanning the
3627   // root regions as it's the only way to ensure that all the
3628   // objects on them have been correctly scanned before we start
3629   // moving them during the GC.
3630   bool waited = _cm->root_regions()->wait_until_scan_finished();
3631   double wait_time_ms = 0.0;
3632   if (waited) {
3633     double scan_wait_end = os::elapsedTime();
3634     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3635   }
3636   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3637 }
3638 
3639 bool
3640 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3641   assert_at_safepoint(true /* should_be_vm_thread */);
3642   guarantee(!is_gc_active(), "collection is not reentrant");
3643 
3644   if (GC_locker::check_active_before_gc()) {
3645     return false;
3646   }
3647 
3648   _gc_timer_stw->register_gc_start();
3649 
3650   GCIdMark gc_id_mark;
3651   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3652 
3653   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3654   ResourceMark rm;
3655 
3656   wait_for_root_region_scanning();
3657 
3658   print_heap_before_gc();
3659   trace_heap_before_gc(_gc_tracer_stw);
3660 
3661   verify_region_sets_optional();
3662   verify_dirty_young_regions();
3663 
3664   // This call will decide whether this pause is an initial-mark
3665   // pause. If it is, during_initial_mark_pause() will return true
3666   // for the duration of this pause.
3667   g1_policy()->decide_on_conc_mark_initiation();
3668 
3669   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3670   assert(!collector_state()->during_initial_mark_pause() ||
3671           collector_state()->gcs_are_young(), "sanity");
3672 
3673   // We also do not allow mixed GCs during marking.
3674   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3675 
3676   // Record whether this pause is an initial mark. When the current
3677   // thread has completed its logging output and it's safe to signal
3678   // the CM thread, the flag's value in the policy has been reset.
3679   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3680 
3681   // Inner scope for scope based logging, timers, and stats collection
3682   {
3683     EvacuationInfo evacuation_info;
3684 
3685     if (collector_state()->during_initial_mark_pause()) {
3686       // We are about to start a marking cycle, so we increment the
3687       // full collection counter.
3688       increment_old_marking_cycles_started();
3689       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3690     }
3691 
3692     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3693 
3694     GCTraceCPUTime tcpu;
3695 
3696     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3697                                                                   workers()->active_workers(),
3698                                                                   Threads::number_of_non_daemon_threads());
3699     workers()->set_active_workers(active_workers);
3700     FormatBuffer<> gc_string("Pause ");
3701     if (collector_state()->during_initial_mark_pause()) {
3702       gc_string.append("Initial Mark");
3703     } else if (collector_state()->gcs_are_young()) {
3704       gc_string.append("Young");
3705     } else {
3706       gc_string.append("Mixed");
3707     }
3708     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3709 
3710     double pause_start_sec = os::elapsedTime();
3711     double pause_start_counter = os::elapsed_counter();
3712     g1_policy()->note_gc_start(active_workers);
3713 
3714     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3715     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3716 
3717     // If the secondary_free_list is not empty, append it to the
3718     // free_list. No need to wait for the cleanup operation to finish;
3719     // the region allocation code will check the secondary_free_list
3720     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3721     // set, skip this step so that the region allocation code has to
3722     // get entries from the secondary_free_list.
3723     if (!G1StressConcRegionFreeing) {
3724       append_secondary_free_list_if_not_empty_with_lock();
3725     }
3726 
3727     assert(check_young_list_well_formed(), "young list should be well formed");
3728 
3729     // Don't dynamically change the number of GC threads this early.  A value of
3730     // 0 is used to indicate serial work.  When parallel work is done,
3731     // it will be set.
3732 
3733     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3734       IsGCActiveMark x;
3735 
3736       gc_prologue(false);
3737       increment_total_collections(false /* full gc */);
3738       increment_gc_time_stamp();
3739 
3740       verify_before_gc();
3741 
3742       check_bitmaps("GC Start");
3743 
3744 #if defined(COMPILER2) || INCLUDE_JVMCI
3745       DerivedPointerTable::clear();
3746 #endif
3747 
3748       // Please see comment in g1CollectedHeap.hpp and
3749       // G1CollectedHeap::ref_processing_init() to see how
3750       // reference processing currently works in G1.
3751 
3752       // Enable discovery in the STW reference processor
3753       if (g1_policy()->should_process_references()) {
3754         ref_processor_stw()->enable_discovery();
3755       } else {
3756         ref_processor_stw()->disable_discovery();
3757       }
3758 
3759       {
3760         // We want to temporarily turn off discovery by the
3761         // CM ref processor, if necessary, and turn it back on
3762         // on again later if we do. Using a scoped
3763         // NoRefDiscovery object will do this.
3764         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3765 
3766         // Forget the current alloc region (we might even choose it to be part
3767         // of the collection set!).
3768         _allocator->release_mutator_alloc_region();
3769 
3770         // This timing is only used by the ergonomics to handle our pause target.
3771         // It is unclear why this should not include the full pause. We will
3772         // investigate this in CR 7178365.
3773         //
3774         // Preserving the old comment here if that helps the investigation:
3775         //
3776         // The elapsed time induced by the start time below deliberately elides
3777         // the possible verification above.
3778         double sample_start_time_sec = os::elapsedTime();
3779 
3780         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3781 
3782         if (collector_state()->during_initial_mark_pause()) {
3783           concurrent_mark()->checkpointRootsInitialPre();
3784         }
3785 
3786         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3787         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3788 
3789         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3790 
3791         // Make sure the remembered sets are up to date. This needs to be
3792         // done before register_humongous_regions_with_cset(), because the
3793         // remembered sets are used there to choose eager reclaim candidates.
3794         // If the remembered sets are not up to date we might miss some
3795         // entries that need to be handled.
3796         g1_rem_set()->cleanupHRRS();
3797 
3798         register_humongous_regions_with_cset();
3799 
3800         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3801 
3802         _cm->note_start_of_gc();
3803         // We call this after finalize_cset() to
3804         // ensure that the CSet has been finalized.
3805         _cm->verify_no_cset_oops();
3806 
3807         if (_hr_printer.is_active()) {
3808           HeapRegion* hr = g1_policy()->collection_set();
3809           while (hr != NULL) {
3810             _hr_printer.cset(hr);
3811             hr = hr->next_in_collection_set();
3812           }
3813         }
3814 
3815 #ifdef ASSERT
3816         VerifyCSetClosure cl;
3817         collection_set_iterate(&cl);
3818 #endif // ASSERT
3819 
3820         // Initialize the GC alloc regions.
3821         _allocator->init_gc_alloc_regions(evacuation_info);
3822 
3823         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3824         pre_evacuate_collection_set();
3825 
3826         // Actually do the work...
3827         evacuate_collection_set(evacuation_info, &per_thread_states);
3828 
3829         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3830 
3831         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3832         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3833 
3834         eagerly_reclaim_humongous_regions();
3835 
3836         g1_policy()->clear_collection_set();
3837 
3838         // Start a new incremental collection set for the next pause.
3839         g1_policy()->start_incremental_cset_building();
3840 
3841         clear_cset_fast_test();
3842 
3843         _young_list->reset_sampled_info();
3844 
3845         // Don't check the whole heap at this point as the
3846         // GC alloc regions from this pause have been tagged
3847         // as survivors and moved on to the survivor list.
3848         // Survivor regions will fail the !is_young() check.
3849         assert(check_young_list_empty(false /* check_heap */),
3850           "young list should be empty");
3851 
3852         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3853                                              _young_list->first_survivor_region(),
3854                                              _young_list->last_survivor_region());
3855 
3856         _young_list->reset_auxilary_lists();
3857 
3858         if (evacuation_failed()) {
3859           set_used(recalculate_used());
3860           if (_archive_allocator != NULL) {
3861             _archive_allocator->clear_used();
3862           }
3863           for (uint i = 0; i < ParallelGCThreads; i++) {
3864             if (_evacuation_failed_info_array[i].has_failed()) {
3865               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3866             }
3867           }
3868         } else {
3869           // The "used" of the the collection set have already been subtracted
3870           // when they were freed.  Add in the bytes evacuated.
3871           increase_used(g1_policy()->bytes_copied_during_gc());
3872         }
3873 
3874         if (collector_state()->during_initial_mark_pause()) {
3875           // We have to do this before we notify the CM threads that
3876           // they can start working to make sure that all the
3877           // appropriate initialization is done on the CM object.
3878           concurrent_mark()->checkpointRootsInitialPost();
3879           collector_state()->set_mark_in_progress(true);
3880           // Note that we don't actually trigger the CM thread at
3881           // this point. We do that later when we're sure that
3882           // the current thread has completed its logging output.
3883         }
3884 
3885         allocate_dummy_regions();
3886 
3887         _allocator->init_mutator_alloc_region();
3888 
3889         {
3890           size_t expand_bytes = g1_policy()->expansion_amount();
3891           if (expand_bytes > 0) {
3892             size_t bytes_before = capacity();
3893             // No need for an ergo logging here,
3894             // expansion_amount() does this when it returns a value > 0.
3895             double expand_ms;
3896             if (!expand(expand_bytes, &expand_ms)) {
3897               // We failed to expand the heap. Cannot do anything about it.
3898             }
3899             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3900           }
3901         }
3902 
3903         // We redo the verification but now wrt to the new CSet which
3904         // has just got initialized after the previous CSet was freed.
3905         _cm->verify_no_cset_oops();
3906         _cm->note_end_of_gc();
3907 
3908         // This timing is only used by the ergonomics to handle our pause target.
3909         // It is unclear why this should not include the full pause. We will
3910         // investigate this in CR 7178365.
3911         double sample_end_time_sec = os::elapsedTime();
3912         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3913         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3914         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3915 
3916         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3917         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3918 
3919         MemoryService::track_memory_usage();
3920 
3921         // In prepare_for_verify() below we'll need to scan the deferred
3922         // update buffers to bring the RSets up-to-date if
3923         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3924         // the update buffers we'll probably need to scan cards on the
3925         // regions we just allocated to (i.e., the GC alloc
3926         // regions). However, during the last GC we called
3927         // set_saved_mark() on all the GC alloc regions, so card
3928         // scanning might skip the [saved_mark_word()...top()] area of
3929         // those regions (i.e., the area we allocated objects into
3930         // during the last GC). But it shouldn't. Given that
3931         // saved_mark_word() is conditional on whether the GC time stamp
3932         // on the region is current or not, by incrementing the GC time
3933         // stamp here we invalidate all the GC time stamps on all the
3934         // regions and saved_mark_word() will simply return top() for
3935         // all the regions. This is a nicer way of ensuring this rather
3936         // than iterating over the regions and fixing them. In fact, the
3937         // GC time stamp increment here also ensures that
3938         // saved_mark_word() will return top() between pauses, i.e.,
3939         // during concurrent refinement. So we don't need the
3940         // is_gc_active() check to decided which top to use when
3941         // scanning cards (see CR 7039627).
3942         increment_gc_time_stamp();
3943 
3944         verify_after_gc();
3945         check_bitmaps("GC End");
3946 
3947         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3948         ref_processor_stw()->verify_no_references_recorded();
3949 
3950         // CM reference discovery will be re-enabled if necessary.
3951       }
3952 
3953 #ifdef TRACESPINNING
3954       ParallelTaskTerminator::print_termination_counts();
3955 #endif
3956 
3957       gc_epilogue(false);
3958     }
3959 
3960     // Print the remainder of the GC log output.
3961     log_gc_footer(os::elapsed_counter() - pause_start_counter);
3962 
3963     // It is not yet to safe to tell the concurrent mark to
3964     // start as we have some optional output below. We don't want the
3965     // output from the concurrent mark thread interfering with this
3966     // logging output either.
3967 
3968     _hrm.verify_optional();
3969     verify_region_sets_optional();
3970 
3971     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3972     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3973 
3974     print_heap_after_gc();
3975     trace_heap_after_gc(_gc_tracer_stw);
3976 
3977     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3978     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3979     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3980     // before any GC notifications are raised.
3981     g1mm()->update_sizes();
3982 
3983     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3984     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3985     _gc_timer_stw->register_gc_end();
3986     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3987   }
3988   // It should now be safe to tell the concurrent mark thread to start
3989   // without its logging output interfering with the logging output
3990   // that came from the pause.
3991 
3992   if (should_start_conc_mark) {
3993     // CAUTION: after the doConcurrentMark() call below,
3994     // the concurrent marking thread(s) could be running
3995     // concurrently with us. Make sure that anything after
3996     // this point does not assume that we are the only GC thread
3997     // running. Note: of course, the actual marking work will
3998     // not start until the safepoint itself is released in
3999     // SuspendibleThreadSet::desynchronize().
4000     doConcurrentMark();
4001   }
4002 
4003   return true;
4004 }
4005 
4006 void G1CollectedHeap::restore_preserved_marks() {
4007   G1RestorePreservedMarksTask rpm_task(_preserved_objs);
4008   workers()->run_task(&rpm_task);
4009 }
4010 
4011 void G1CollectedHeap::remove_self_forwarding_pointers() {
4012   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4013   workers()->run_task(&rsfp_task);
4014 }
4015 
4016 void G1CollectedHeap::restore_after_evac_failure() {
4017   double remove_self_forwards_start = os::elapsedTime();
4018 
4019   remove_self_forwarding_pointers();
4020   restore_preserved_marks();
4021 
4022   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4023 }
4024 
4025 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4026   if (!_evacuation_failed) {
4027     _evacuation_failed = true;
4028   }
4029 
4030   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4031 
4032   // We want to call the "for_promotion_failure" version only in the
4033   // case of a promotion failure.
4034   if (m->must_be_preserved_for_promotion_failure(obj)) {
4035     OopAndMarkOop elem(obj, m);
4036     _preserved_objs[worker_id].push(elem);
4037   }
4038 }
4039 
4040 bool G1ParEvacuateFollowersClosure::offer_termination() {
4041   G1ParScanThreadState* const pss = par_scan_state();
4042   start_term_time();
4043   const bool res = terminator()->offer_termination();
4044   end_term_time();
4045   return res;
4046 }
4047 
4048 void G1ParEvacuateFollowersClosure::do_void() {
4049   G1ParScanThreadState* const pss = par_scan_state();
4050   pss->trim_queue();
4051   do {
4052     pss->steal_and_trim_queue(queues());
4053   } while (!offer_termination());
4054 }
4055 
4056 class G1ParTask : public AbstractGangTask {
4057 protected:
4058   G1CollectedHeap*         _g1h;
4059   G1ParScanThreadStateSet* _pss;
4060   RefToScanQueueSet*       _queues;
4061   G1RootProcessor*         _root_processor;
4062   ParallelTaskTerminator   _terminator;
4063   uint                     _n_workers;
4064 
4065 public:
4066   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4067     : AbstractGangTask("G1 collection"),
4068       _g1h(g1h),
4069       _pss(per_thread_states),
4070       _queues(task_queues),
4071       _root_processor(root_processor),
4072       _terminator(n_workers, _queues),
4073       _n_workers(n_workers)
4074   {}
4075 
4076   void work(uint worker_id) {
4077     if (worker_id >= _n_workers) return;  // no work needed this round
4078 
4079     double start_sec = os::elapsedTime();
4080     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4081 
4082     {
4083       ResourceMark rm;
4084       HandleMark   hm;
4085 
4086       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4087 
4088       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4089       pss->set_ref_processor(rp);
4090 
4091       double start_strong_roots_sec = os::elapsedTime();
4092 
4093       _root_processor->evacuate_roots(pss->closures(), worker_id);
4094 
4095       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4096 
4097       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4098       // treating the nmethods visited to act as roots for concurrent marking.
4099       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4100       // objects copied by the current evacuation.
4101       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4102                                                                              pss->closures()->weak_codeblobs(),
4103                                                                              worker_id);
4104 
4105       _pss->add_cards_scanned(worker_id, cards_scanned);
4106 
4107       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4108 
4109       double term_sec = 0.0;
4110       size_t evac_term_attempts = 0;
4111       {
4112         double start = os::elapsedTime();
4113         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4114         evac.do_void();
4115 
4116         evac_term_attempts = evac.term_attempts();
4117         term_sec = evac.term_time();
4118         double elapsed_sec = os::elapsedTime() - start;
4119         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4120         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4121         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4122       }
4123 
4124       assert(pss->queue_is_empty(), "should be empty");
4125 
4126       if (log_is_enabled(Debug, gc, task, stats)) {
4127         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4128         size_t lab_waste;
4129         size_t lab_undo_waste;
4130         pss->waste(lab_waste, lab_undo_waste);
4131         _g1h->print_termination_stats(worker_id,
4132                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4133                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4134                                       term_sec * 1000.0,                          /* evac term time */
4135                                       evac_term_attempts,                         /* evac term attempts */
4136                                       lab_waste,                                  /* alloc buffer waste */
4137                                       lab_undo_waste                              /* undo waste */
4138                                       );
4139       }
4140 
4141       // Close the inner scope so that the ResourceMark and HandleMark
4142       // destructors are executed here and are included as part of the
4143       // "GC Worker Time".
4144     }
4145     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4146   }
4147 };
4148 
4149 void G1CollectedHeap::print_termination_stats_hdr() {
4150   log_debug(gc, task, stats)("GC Termination Stats");
4151   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4152   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
4153   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4154 }
4155 
4156 void G1CollectedHeap::print_termination_stats(uint worker_id,
4157                                               double elapsed_ms,
4158                                               double strong_roots_ms,
4159                                               double term_ms,
4160                                               size_t term_attempts,
4161                                               size_t alloc_buffer_waste,
4162                                               size_t undo_waste) const {
4163   log_debug(gc, task, stats)
4164               ("%3d %9.2f %9.2f %6.2f "
4165                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4166                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4167                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4168                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4169                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4170                alloc_buffer_waste * HeapWordSize / K,
4171                undo_waste * HeapWordSize / K);
4172 }
4173 
4174 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4175 private:
4176   BoolObjectClosure* _is_alive;
4177   int _initial_string_table_size;
4178   int _initial_symbol_table_size;
4179 
4180   bool  _process_strings;
4181   int _strings_processed;
4182   int _strings_removed;
4183 
4184   bool  _process_symbols;
4185   int _symbols_processed;
4186   int _symbols_removed;
4187 
4188 public:
4189   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4190     AbstractGangTask("String/Symbol Unlinking"),
4191     _is_alive(is_alive),
4192     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4193     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4194 
4195     _initial_string_table_size = StringTable::the_table()->table_size();
4196     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4197     if (process_strings) {
4198       StringTable::clear_parallel_claimed_index();
4199     }
4200     if (process_symbols) {
4201       SymbolTable::clear_parallel_claimed_index();
4202     }
4203   }
4204 
4205   ~G1StringSymbolTableUnlinkTask() {
4206     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4207               "claim value %d after unlink less than initial string table size %d",
4208               StringTable::parallel_claimed_index(), _initial_string_table_size);
4209     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4210               "claim value %d after unlink less than initial symbol table size %d",
4211               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4212 
4213     log_debug(gc, stringdedup)("Cleaned string and symbol table, "
4214                                "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4215                                "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4216                                strings_processed(), strings_removed(),
4217                                symbols_processed(), symbols_removed());
4218   }
4219 
4220   void work(uint worker_id) {
4221     int strings_processed = 0;
4222     int strings_removed = 0;
4223     int symbols_processed = 0;
4224     int symbols_removed = 0;
4225     if (_process_strings) {
4226       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4227       Atomic::add(strings_processed, &_strings_processed);
4228       Atomic::add(strings_removed, &_strings_removed);
4229     }
4230     if (_process_symbols) {
4231       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4232       Atomic::add(symbols_processed, &_symbols_processed);
4233       Atomic::add(symbols_removed, &_symbols_removed);
4234     }
4235   }
4236 
4237   size_t strings_processed() const { return (size_t)_strings_processed; }
4238   size_t strings_removed()   const { return (size_t)_strings_removed; }
4239 
4240   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4241   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4242 };
4243 
4244 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4245 private:
4246   static Monitor* _lock;
4247 
4248   BoolObjectClosure* const _is_alive;
4249   const bool               _unloading_occurred;
4250   const uint               _num_workers;
4251 
4252   // Variables used to claim nmethods.
4253   nmethod* _first_nmethod;
4254   volatile nmethod* _claimed_nmethod;
4255 
4256   // The list of nmethods that need to be processed by the second pass.
4257   volatile nmethod* _postponed_list;
4258   volatile uint     _num_entered_barrier;
4259 
4260  public:
4261   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4262       _is_alive(is_alive),
4263       _unloading_occurred(unloading_occurred),
4264       _num_workers(num_workers),
4265       _first_nmethod(NULL),
4266       _claimed_nmethod(NULL),
4267       _postponed_list(NULL),
4268       _num_entered_barrier(0)
4269   {
4270     nmethod::increase_unloading_clock();
4271     // Get first alive nmethod
4272     NMethodIterator iter = NMethodIterator();
4273     if(iter.next_alive()) {
4274       _first_nmethod = iter.method();
4275     }
4276     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4277   }
4278 
4279   ~G1CodeCacheUnloadingTask() {
4280     CodeCache::verify_clean_inline_caches();
4281 
4282     CodeCache::set_needs_cache_clean(false);
4283     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4284 
4285     CodeCache::verify_icholder_relocations();
4286   }
4287 
4288  private:
4289   void add_to_postponed_list(nmethod* nm) {
4290       nmethod* old;
4291       do {
4292         old = (nmethod*)_postponed_list;
4293         nm->set_unloading_next(old);
4294       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4295   }
4296 
4297   void clean_nmethod(nmethod* nm) {
4298     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4299 
4300     if (postponed) {
4301       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4302       add_to_postponed_list(nm);
4303     }
4304 
4305     // Mark that this thread has been cleaned/unloaded.
4306     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4307     nm->set_unloading_clock(nmethod::global_unloading_clock());
4308   }
4309 
4310   void clean_nmethod_postponed(nmethod* nm) {
4311     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4312   }
4313 
4314   static const int MaxClaimNmethods = 16;
4315 
4316   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4317     nmethod* first;
4318     NMethodIterator last;
4319 
4320     do {
4321       *num_claimed_nmethods = 0;
4322 
4323       first = (nmethod*)_claimed_nmethod;
4324       last = NMethodIterator(first);
4325 
4326       if (first != NULL) {
4327 
4328         for (int i = 0; i < MaxClaimNmethods; i++) {
4329           if (!last.next_alive()) {
4330             break;
4331           }
4332           claimed_nmethods[i] = last.method();
4333           (*num_claimed_nmethods)++;
4334         }
4335       }
4336 
4337     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4338   }
4339 
4340   nmethod* claim_postponed_nmethod() {
4341     nmethod* claim;
4342     nmethod* next;
4343 
4344     do {
4345       claim = (nmethod*)_postponed_list;
4346       if (claim == NULL) {
4347         return NULL;
4348       }
4349 
4350       next = claim->unloading_next();
4351 
4352     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4353 
4354     return claim;
4355   }
4356 
4357  public:
4358   // Mark that we're done with the first pass of nmethod cleaning.
4359   void barrier_mark(uint worker_id) {
4360     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4361     _num_entered_barrier++;
4362     if (_num_entered_barrier == _num_workers) {
4363       ml.notify_all();
4364     }
4365   }
4366 
4367   // See if we have to wait for the other workers to
4368   // finish their first-pass nmethod cleaning work.
4369   void barrier_wait(uint worker_id) {
4370     if (_num_entered_barrier < _num_workers) {
4371       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4372       while (_num_entered_barrier < _num_workers) {
4373           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4374       }
4375     }
4376   }
4377 
4378   // Cleaning and unloading of nmethods. Some work has to be postponed
4379   // to the second pass, when we know which nmethods survive.
4380   void work_first_pass(uint worker_id) {
4381     // The first nmethods is claimed by the first worker.
4382     if (worker_id == 0 && _first_nmethod != NULL) {
4383       clean_nmethod(_first_nmethod);
4384       _first_nmethod = NULL;
4385     }
4386 
4387     int num_claimed_nmethods;
4388     nmethod* claimed_nmethods[MaxClaimNmethods];
4389 
4390     while (true) {
4391       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4392 
4393       if (num_claimed_nmethods == 0) {
4394         break;
4395       }
4396 
4397       for (int i = 0; i < num_claimed_nmethods; i++) {
4398         clean_nmethod(claimed_nmethods[i]);
4399       }
4400     }
4401   }
4402 
4403   void work_second_pass(uint worker_id) {
4404     nmethod* nm;
4405     // Take care of postponed nmethods.
4406     while ((nm = claim_postponed_nmethod()) != NULL) {
4407       clean_nmethod_postponed(nm);
4408     }
4409   }
4410 };
4411 
4412 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4413 
4414 class G1KlassCleaningTask : public StackObj {
4415   BoolObjectClosure*                      _is_alive;
4416   volatile jint                           _clean_klass_tree_claimed;
4417   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4418 
4419  public:
4420   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4421       _is_alive(is_alive),
4422       _clean_klass_tree_claimed(0),
4423       _klass_iterator() {
4424   }
4425 
4426  private:
4427   bool claim_clean_klass_tree_task() {
4428     if (_clean_klass_tree_claimed) {
4429       return false;
4430     }
4431 
4432     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4433   }
4434 
4435   InstanceKlass* claim_next_klass() {
4436     Klass* klass;
4437     do {
4438       klass =_klass_iterator.next_klass();
4439     } while (klass != NULL && !klass->is_instance_klass());
4440 
4441     // this can be null so don't call InstanceKlass::cast
4442     return static_cast<InstanceKlass*>(klass);
4443   }
4444 
4445 public:
4446 
4447   void clean_klass(InstanceKlass* ik) {
4448     ik->clean_weak_instanceklass_links(_is_alive);
4449   }
4450 
4451   void work() {
4452     ResourceMark rm;
4453 
4454     // One worker will clean the subklass/sibling klass tree.
4455     if (claim_clean_klass_tree_task()) {
4456       Klass::clean_subklass_tree(_is_alive);
4457     }
4458 
4459     // All workers will help cleaning the classes,
4460     InstanceKlass* klass;
4461     while ((klass = claim_next_klass()) != NULL) {
4462       clean_klass(klass);
4463     }
4464   }
4465 };
4466 
4467 // To minimize the remark pause times, the tasks below are done in parallel.
4468 class G1ParallelCleaningTask : public AbstractGangTask {
4469 private:
4470   G1StringSymbolTableUnlinkTask _string_symbol_task;
4471   G1CodeCacheUnloadingTask      _code_cache_task;
4472   G1KlassCleaningTask           _klass_cleaning_task;
4473 
4474 public:
4475   // The constructor is run in the VMThread.
4476   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4477       AbstractGangTask("Parallel Cleaning"),
4478       _string_symbol_task(is_alive, process_strings, process_symbols),
4479       _code_cache_task(num_workers, is_alive, unloading_occurred),
4480       _klass_cleaning_task(is_alive) {
4481   }
4482 
4483   // The parallel work done by all worker threads.
4484   void work(uint worker_id) {
4485     // Do first pass of code cache cleaning.
4486     _code_cache_task.work_first_pass(worker_id);
4487 
4488     // Let the threads mark that the first pass is done.
4489     _code_cache_task.barrier_mark(worker_id);
4490 
4491     // Clean the Strings and Symbols.
4492     _string_symbol_task.work(worker_id);
4493 
4494     // Wait for all workers to finish the first code cache cleaning pass.
4495     _code_cache_task.barrier_wait(worker_id);
4496 
4497     // Do the second code cache cleaning work, which realize on
4498     // the liveness information gathered during the first pass.
4499     _code_cache_task.work_second_pass(worker_id);
4500 
4501     // Clean all klasses that were not unloaded.
4502     _klass_cleaning_task.work();
4503   }
4504 };
4505 
4506 
4507 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4508                                         bool process_strings,
4509                                         bool process_symbols,
4510                                         bool class_unloading_occurred) {
4511   uint n_workers = workers()->active_workers();
4512 
4513   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4514                                         n_workers, class_unloading_occurred);
4515   workers()->run_task(&g1_unlink_task);
4516 }
4517 
4518 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4519                                                      bool process_strings, bool process_symbols) {
4520   {
4521     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4522     workers()->run_task(&g1_unlink_task);
4523   }
4524 
4525   if (G1StringDedup::is_enabled()) {
4526     G1StringDedup::unlink(is_alive);
4527   }
4528 }
4529 
4530 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4531  private:
4532   DirtyCardQueueSet* _queue;
4533   G1CollectedHeap* _g1h;
4534  public:
4535   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
4536     _queue(queue), _g1h(g1h) { }
4537 
4538   virtual void work(uint worker_id) {
4539     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
4540     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4541 
4542     RedirtyLoggedCardTableEntryClosure cl(_g1h);
4543     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4544 
4545     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
4546   }
4547 };
4548 
4549 void G1CollectedHeap::redirty_logged_cards() {
4550   double redirty_logged_cards_start = os::elapsedTime();
4551 
4552   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
4553   dirty_card_queue_set().reset_for_par_iteration();
4554   workers()->run_task(&redirty_task);
4555 
4556   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4557   dcq.merge_bufferlists(&dirty_card_queue_set());
4558   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4559 
4560   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4561 }
4562 
4563 // Weak Reference Processing support
4564 
4565 // An always "is_alive" closure that is used to preserve referents.
4566 // If the object is non-null then it's alive.  Used in the preservation
4567 // of referent objects that are pointed to by reference objects
4568 // discovered by the CM ref processor.
4569 class G1AlwaysAliveClosure: public BoolObjectClosure {
4570   G1CollectedHeap* _g1;
4571 public:
4572   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4573   bool do_object_b(oop p) {
4574     if (p != NULL) {
4575       return true;
4576     }
4577     return false;
4578   }
4579 };
4580 
4581 bool G1STWIsAliveClosure::do_object_b(oop p) {
4582   // An object is reachable if it is outside the collection set,
4583   // or is inside and copied.
4584   return !_g1->is_in_cset(p) || p->is_forwarded();
4585 }
4586 
4587 // Non Copying Keep Alive closure
4588 class G1KeepAliveClosure: public OopClosure {
4589   G1CollectedHeap* _g1;
4590 public:
4591   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4592   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4593   void do_oop(oop* p) {
4594     oop obj = *p;
4595     assert(obj != NULL, "the caller should have filtered out NULL values");
4596 
4597     const InCSetState cset_state = _g1->in_cset_state(obj);
4598     if (!cset_state.is_in_cset_or_humongous()) {
4599       return;
4600     }
4601     if (cset_state.is_in_cset()) {
4602       assert( obj->is_forwarded(), "invariant" );
4603       *p = obj->forwardee();
4604     } else {
4605       assert(!obj->is_forwarded(), "invariant" );
4606       assert(cset_state.is_humongous(),
4607              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4608       _g1->set_humongous_is_live(obj);
4609     }
4610   }
4611 };
4612 
4613 // Copying Keep Alive closure - can be called from both
4614 // serial and parallel code as long as different worker
4615 // threads utilize different G1ParScanThreadState instances
4616 // and different queues.
4617 
4618 class G1CopyingKeepAliveClosure: public OopClosure {
4619   G1CollectedHeap*         _g1h;
4620   OopClosure*              _copy_non_heap_obj_cl;
4621   G1ParScanThreadState*    _par_scan_state;
4622 
4623 public:
4624   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4625                             OopClosure* non_heap_obj_cl,
4626                             G1ParScanThreadState* pss):
4627     _g1h(g1h),
4628     _copy_non_heap_obj_cl(non_heap_obj_cl),
4629     _par_scan_state(pss)
4630   {}
4631 
4632   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4633   virtual void do_oop(      oop* p) { do_oop_work(p); }
4634 
4635   template <class T> void do_oop_work(T* p) {
4636     oop obj = oopDesc::load_decode_heap_oop(p);
4637 
4638     if (_g1h->is_in_cset_or_humongous(obj)) {
4639       // If the referent object has been forwarded (either copied
4640       // to a new location or to itself in the event of an
4641       // evacuation failure) then we need to update the reference
4642       // field and, if both reference and referent are in the G1
4643       // heap, update the RSet for the referent.
4644       //
4645       // If the referent has not been forwarded then we have to keep
4646       // it alive by policy. Therefore we have copy the referent.
4647       //
4648       // If the reference field is in the G1 heap then we can push
4649       // on the PSS queue. When the queue is drained (after each
4650       // phase of reference processing) the object and it's followers
4651       // will be copied, the reference field set to point to the
4652       // new location, and the RSet updated. Otherwise we need to
4653       // use the the non-heap or metadata closures directly to copy
4654       // the referent object and update the pointer, while avoiding
4655       // updating the RSet.
4656 
4657       if (_g1h->is_in_g1_reserved(p)) {
4658         _par_scan_state->push_on_queue(p);
4659       } else {
4660         assert(!Metaspace::contains((const void*)p),
4661                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4662         _copy_non_heap_obj_cl->do_oop(p);
4663       }
4664     }
4665   }
4666 };
4667 
4668 // Serial drain queue closure. Called as the 'complete_gc'
4669 // closure for each discovered list in some of the
4670 // reference processing phases.
4671 
4672 class G1STWDrainQueueClosure: public VoidClosure {
4673 protected:
4674   G1CollectedHeap* _g1h;
4675   G1ParScanThreadState* _par_scan_state;
4676 
4677   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4678 
4679 public:
4680   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4681     _g1h(g1h),
4682     _par_scan_state(pss)
4683   { }
4684 
4685   void do_void() {
4686     G1ParScanThreadState* const pss = par_scan_state();
4687     pss->trim_queue();
4688   }
4689 };
4690 
4691 // Parallel Reference Processing closures
4692 
4693 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4694 // processing during G1 evacuation pauses.
4695 
4696 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4697 private:
4698   G1CollectedHeap*          _g1h;
4699   G1ParScanThreadStateSet*  _pss;
4700   RefToScanQueueSet*        _queues;
4701   WorkGang*                 _workers;
4702   uint                      _active_workers;
4703 
4704 public:
4705   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4706                            G1ParScanThreadStateSet* per_thread_states,
4707                            WorkGang* workers,
4708                            RefToScanQueueSet *task_queues,
4709                            uint n_workers) :
4710     _g1h(g1h),
4711     _pss(per_thread_states),
4712     _queues(task_queues),
4713     _workers(workers),
4714     _active_workers(n_workers)
4715   {
4716     assert(n_workers > 0, "shouldn't call this otherwise");
4717   }
4718 
4719   // Executes the given task using concurrent marking worker threads.
4720   virtual void execute(ProcessTask& task);
4721   virtual void execute(EnqueueTask& task);
4722 };
4723 
4724 // Gang task for possibly parallel reference processing
4725 
4726 class G1STWRefProcTaskProxy: public AbstractGangTask {
4727   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4728   ProcessTask&     _proc_task;
4729   G1CollectedHeap* _g1h;
4730   G1ParScanThreadStateSet* _pss;
4731   RefToScanQueueSet* _task_queues;
4732   ParallelTaskTerminator* _terminator;
4733 
4734 public:
4735   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4736                         G1CollectedHeap* g1h,
4737                         G1ParScanThreadStateSet* per_thread_states,
4738                         RefToScanQueueSet *task_queues,
4739                         ParallelTaskTerminator* terminator) :
4740     AbstractGangTask("Process reference objects in parallel"),
4741     _proc_task(proc_task),
4742     _g1h(g1h),
4743     _pss(per_thread_states),
4744     _task_queues(task_queues),
4745     _terminator(terminator)
4746   {}
4747 
4748   virtual void work(uint worker_id) {
4749     // The reference processing task executed by a single worker.
4750     ResourceMark rm;
4751     HandleMark   hm;
4752 
4753     G1STWIsAliveClosure is_alive(_g1h);
4754 
4755     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4756     pss->set_ref_processor(NULL);
4757 
4758     // Keep alive closure.
4759     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4760 
4761     // Complete GC closure
4762     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4763 
4764     // Call the reference processing task's work routine.
4765     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4766 
4767     // Note we cannot assert that the refs array is empty here as not all
4768     // of the processing tasks (specifically phase2 - pp2_work) execute
4769     // the complete_gc closure (which ordinarily would drain the queue) so
4770     // the queue may not be empty.
4771   }
4772 };
4773 
4774 // Driver routine for parallel reference processing.
4775 // Creates an instance of the ref processing gang
4776 // task and has the worker threads execute it.
4777 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4778   assert(_workers != NULL, "Need parallel worker threads.");
4779 
4780   ParallelTaskTerminator terminator(_active_workers, _queues);
4781   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4782 
4783   _workers->run_task(&proc_task_proxy);
4784 }
4785 
4786 // Gang task for parallel reference enqueueing.
4787 
4788 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4789   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4790   EnqueueTask& _enq_task;
4791 
4792 public:
4793   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4794     AbstractGangTask("Enqueue reference objects in parallel"),
4795     _enq_task(enq_task)
4796   { }
4797 
4798   virtual void work(uint worker_id) {
4799     _enq_task.work(worker_id);
4800   }
4801 };
4802 
4803 // Driver routine for parallel reference enqueueing.
4804 // Creates an instance of the ref enqueueing gang
4805 // task and has the worker threads execute it.
4806 
4807 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4808   assert(_workers != NULL, "Need parallel worker threads.");
4809 
4810   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4811 
4812   _workers->run_task(&enq_task_proxy);
4813 }
4814 
4815 // End of weak reference support closures
4816 
4817 // Abstract task used to preserve (i.e. copy) any referent objects
4818 // that are in the collection set and are pointed to by reference
4819 // objects discovered by the CM ref processor.
4820 
4821 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4822 protected:
4823   G1CollectedHeap*         _g1h;
4824   G1ParScanThreadStateSet* _pss;
4825   RefToScanQueueSet*       _queues;
4826   ParallelTaskTerminator   _terminator;
4827   uint                     _n_workers;
4828 
4829 public:
4830   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4831     AbstractGangTask("ParPreserveCMReferents"),
4832     _g1h(g1h),
4833     _pss(per_thread_states),
4834     _queues(task_queues),
4835     _terminator(workers, _queues),
4836     _n_workers(workers)
4837   { }
4838 
4839   void work(uint worker_id) {
4840     ResourceMark rm;
4841     HandleMark   hm;
4842 
4843     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4844     pss->set_ref_processor(NULL);
4845     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4846 
4847     // Is alive closure
4848     G1AlwaysAliveClosure always_alive(_g1h);
4849 
4850     // Copying keep alive closure. Applied to referent objects that need
4851     // to be copied.
4852     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4853 
4854     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4855 
4856     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4857     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4858 
4859     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4860     // So this must be true - but assert just in case someone decides to
4861     // change the worker ids.
4862     assert(worker_id < limit, "sanity");
4863     assert(!rp->discovery_is_atomic(), "check this code");
4864 
4865     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4866     for (uint idx = worker_id; idx < limit; idx += stride) {
4867       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4868 
4869       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4870       while (iter.has_next()) {
4871         // Since discovery is not atomic for the CM ref processor, we
4872         // can see some null referent objects.
4873         iter.load_ptrs(DEBUG_ONLY(true));
4874         oop ref = iter.obj();
4875 
4876         // This will filter nulls.
4877         if (iter.is_referent_alive()) {
4878           iter.make_referent_alive();
4879         }
4880         iter.move_to_next();
4881       }
4882     }
4883 
4884     // Drain the queue - which may cause stealing
4885     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4886     drain_queue.do_void();
4887     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4888     assert(pss->queue_is_empty(), "should be");
4889   }
4890 };
4891 
4892 void G1CollectedHeap::process_weak_jni_handles() {
4893   double ref_proc_start = os::elapsedTime();
4894 
4895   G1STWIsAliveClosure is_alive(this);
4896   G1KeepAliveClosure keep_alive(this);
4897   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4898 
4899   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4900   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4901 }
4902 
4903 // Weak Reference processing during an evacuation pause (part 1).
4904 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4905   double ref_proc_start = os::elapsedTime();
4906 
4907   ReferenceProcessor* rp = _ref_processor_stw;
4908   assert(rp->discovery_enabled(), "should have been enabled");
4909 
4910   // Any reference objects, in the collection set, that were 'discovered'
4911   // by the CM ref processor should have already been copied (either by
4912   // applying the external root copy closure to the discovered lists, or
4913   // by following an RSet entry).
4914   //
4915   // But some of the referents, that are in the collection set, that these
4916   // reference objects point to may not have been copied: the STW ref
4917   // processor would have seen that the reference object had already
4918   // been 'discovered' and would have skipped discovering the reference,
4919   // but would not have treated the reference object as a regular oop.
4920   // As a result the copy closure would not have been applied to the
4921   // referent object.
4922   //
4923   // We need to explicitly copy these referent objects - the references
4924   // will be processed at the end of remarking.
4925   //
4926   // We also need to do this copying before we process the reference
4927   // objects discovered by the STW ref processor in case one of these
4928   // referents points to another object which is also referenced by an
4929   // object discovered by the STW ref processor.
4930 
4931   uint no_of_gc_workers = workers()->active_workers();
4932 
4933   G1ParPreserveCMReferentsTask keep_cm_referents(this,
4934                                                  per_thread_states,
4935                                                  no_of_gc_workers,
4936                                                  _task_queues);
4937 
4938   workers()->run_task(&keep_cm_referents);
4939 
4940   // Closure to test whether a referent is alive.
4941   G1STWIsAliveClosure is_alive(this);
4942 
4943   // Even when parallel reference processing is enabled, the processing
4944   // of JNI refs is serial and performed serially by the current thread
4945   // rather than by a worker. The following PSS will be used for processing
4946   // JNI refs.
4947 
4948   // Use only a single queue for this PSS.
4949   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4950   pss->set_ref_processor(NULL);
4951   assert(pss->queue_is_empty(), "pre-condition");
4952 
4953   // Keep alive closure.
4954   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4955 
4956   // Serial Complete GC closure
4957   G1STWDrainQueueClosure drain_queue(this, pss);
4958 
4959   // Setup the soft refs policy...
4960   rp->setup_policy(false);
4961 
4962   ReferenceProcessorStats stats;
4963   if (!rp->processing_is_mt()) {
4964     // Serial reference processing...
4965     stats = rp->process_discovered_references(&is_alive,
4966                                               &keep_alive,
4967                                               &drain_queue,
4968                                               NULL,
4969                                               _gc_timer_stw);
4970   } else {
4971     // Parallel reference processing
4972     assert(rp->num_q() == no_of_gc_workers, "sanity");
4973     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
4974 
4975     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4976     stats = rp->process_discovered_references(&is_alive,
4977                                               &keep_alive,
4978                                               &drain_queue,
4979                                               &par_task_executor,
4980                                               _gc_timer_stw);
4981   }
4982 
4983   _gc_tracer_stw->report_gc_reference_stats(stats);
4984 
4985   // We have completed copying any necessary live referent objects.
4986   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4987 
4988   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4989   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4990 }
4991 
4992 // Weak Reference processing during an evacuation pause (part 2).
4993 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4994   double ref_enq_start = os::elapsedTime();
4995 
4996   ReferenceProcessor* rp = _ref_processor_stw;
4997   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4998 
4999   // Now enqueue any remaining on the discovered lists on to
5000   // the pending list.
5001   if (!rp->processing_is_mt()) {
5002     // Serial reference processing...
5003     rp->enqueue_discovered_references();
5004   } else {
5005     // Parallel reference enqueueing
5006 
5007     uint n_workers = workers()->active_workers();
5008 
5009     assert(rp->num_q() == n_workers, "sanity");
5010     assert(n_workers <= rp->max_num_q(), "sanity");
5011 
5012     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5013     rp->enqueue_discovered_references(&par_task_executor);
5014   }
5015 
5016   rp->verify_no_references_recorded();
5017   assert(!rp->discovery_enabled(), "should have been disabled");
5018 
5019   // FIXME
5020   // CM's reference processing also cleans up the string and symbol tables.
5021   // Should we do that here also? We could, but it is a serial operation
5022   // and could significantly increase the pause time.
5023 
5024   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5025   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5026 }
5027 
5028 void G1CollectedHeap::pre_evacuate_collection_set() {
5029   _expand_heap_after_alloc_failure = true;
5030   _evacuation_failed = false;
5031 
5032   // Disable the hot card cache.
5033   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5034   hot_card_cache->reset_hot_cache_claimed_index();
5035   hot_card_cache->set_use_cache(false);
5036 
5037   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5038 }
5039 
5040 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5041   // Should G1EvacuationFailureALot be in effect for this GC?
5042   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5043 
5044   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5045   double start_par_time_sec = os::elapsedTime();
5046   double end_par_time_sec;
5047 
5048   {
5049     const uint n_workers = workers()->active_workers();
5050     G1RootProcessor root_processor(this, n_workers);
5051     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5052     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5053     if (collector_state()->during_initial_mark_pause()) {
5054       ClassLoaderDataGraph::clear_claimed_marks();
5055     }
5056 
5057     print_termination_stats_hdr();
5058 
5059     workers()->run_task(&g1_par_task);
5060     end_par_time_sec = os::elapsedTime();
5061 
5062     // Closing the inner scope will execute the destructor
5063     // for the G1RootProcessor object. We record the current
5064     // elapsed time before closing the scope so that time
5065     // taken for the destructor is NOT included in the
5066     // reported parallel time.
5067   }
5068 
5069   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5070 
5071   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5072   phase_times->record_par_time(par_time_ms);
5073 
5074   double code_root_fixup_time_ms =
5075         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5076   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5077 }
5078 
5079 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5080   // Process any discovered reference objects - we have
5081   // to do this _before_ we retire the GC alloc regions
5082   // as we may have to copy some 'reachable' referent
5083   // objects (and their reachable sub-graphs) that were
5084   // not copied during the pause.
5085   if (g1_policy()->should_process_references()) {
5086     process_discovered_references(per_thread_states);
5087   } else {
5088     ref_processor_stw()->verify_no_references_recorded();
5089     process_weak_jni_handles();
5090   }
5091 
5092   if (G1StringDedup::is_enabled()) {
5093     double fixup_start = os::elapsedTime();
5094 
5095     G1STWIsAliveClosure is_alive(this);
5096     G1KeepAliveClosure keep_alive(this);
5097     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
5098 
5099     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5100     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
5101   }
5102 
5103   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5104 
5105   if (evacuation_failed()) {
5106     restore_after_evac_failure();
5107 
5108     // Reset the G1EvacuationFailureALot counters and flags
5109     // Note: the values are reset only when an actual
5110     // evacuation failure occurs.
5111     NOT_PRODUCT(reset_evacuation_should_fail();)
5112   }
5113 
5114   // Enqueue any remaining references remaining on the STW
5115   // reference processor's discovered lists. We need to do
5116   // this after the card table is cleaned (and verified) as
5117   // the act of enqueueing entries on to the pending list
5118   // will log these updates (and dirty their associated
5119   // cards). We need these updates logged to update any
5120   // RSets.
5121   if (g1_policy()->should_process_references()) {
5122     enqueue_discovered_references(per_thread_states);
5123   } else {
5124     g1_policy()->phase_times()->record_ref_enq_time(0);
5125   }
5126 
5127   _allocator->release_gc_alloc_regions(evacuation_info);
5128 
5129   per_thread_states->flush();
5130 
5131   record_obj_copy_mem_stats();
5132 
5133   _survivor_evac_stats.adjust_desired_plab_sz();
5134   _old_evac_stats.adjust_desired_plab_sz();
5135 
5136   // Reset and re-enable the hot card cache.
5137   // Note the counts for the cards in the regions in the
5138   // collection set are reset when the collection set is freed.
5139   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5140   hot_card_cache->reset_hot_cache();
5141   hot_card_cache->set_use_cache(true);
5142 
5143   purge_code_root_memory();
5144 
5145   redirty_logged_cards();
5146 #if defined(COMPILER2) || INCLUDE_JVMCI
5147   DerivedPointerTable::update_pointers();
5148 #endif
5149 }
5150 
5151 void G1CollectedHeap::record_obj_copy_mem_stats() {
5152   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
5153 
5154   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5155                                                create_g1_evac_summary(&_old_evac_stats));
5156 }
5157 
5158 void G1CollectedHeap::free_region(HeapRegion* hr,
5159                                   FreeRegionList* free_list,
5160                                   bool par,
5161                                   bool locked) {
5162   assert(!hr->is_free(), "the region should not be free");
5163   assert(!hr->is_empty(), "the region should not be empty");
5164   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5165   assert(free_list != NULL, "pre-condition");
5166 
5167   if (G1VerifyBitmaps) {
5168     MemRegion mr(hr->bottom(), hr->end());
5169     concurrent_mark()->clearRangePrevBitmap(mr);
5170   }
5171 
5172   // Clear the card counts for this region.
5173   // Note: we only need to do this if the region is not young
5174   // (since we don't refine cards in young regions).
5175   if (!hr->is_young()) {
5176     _cg1r->hot_card_cache()->reset_card_counts(hr);
5177   }
5178   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5179   free_list->add_ordered(hr);
5180 }
5181 
5182 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5183                                             FreeRegionList* free_list,
5184                                             bool par) {
5185   assert(hr->is_humongous(), "this is only for humongous regions");
5186   assert(free_list != NULL, "pre-condition");
5187   hr->clear_humongous();
5188   free_region(hr, free_list, par);
5189 }
5190 
5191 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5192                                            const HeapRegionSetCount& humongous_regions_removed) {
5193   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5194     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5195     _old_set.bulk_remove(old_regions_removed);
5196     _humongous_set.bulk_remove(humongous_regions_removed);
5197   }
5198 
5199 }
5200 
5201 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5202   assert(list != NULL, "list can't be null");
5203   if (!list->is_empty()) {
5204     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5205     _hrm.insert_list_into_free_list(list);
5206   }
5207 }
5208 
5209 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5210   decrease_used(bytes);
5211 }
5212 
5213 class G1ParCleanupCTTask : public AbstractGangTask {
5214   G1SATBCardTableModRefBS* _ct_bs;
5215   G1CollectedHeap* _g1h;
5216   HeapRegion* volatile _su_head;
5217 public:
5218   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5219                      G1CollectedHeap* g1h) :
5220     AbstractGangTask("G1 Par Cleanup CT Task"),
5221     _ct_bs(ct_bs), _g1h(g1h) { }
5222 
5223   void work(uint worker_id) {
5224     HeapRegion* r;
5225     while (r = _g1h->pop_dirty_cards_region()) {
5226       clear_cards(r);
5227     }
5228   }
5229 
5230   void clear_cards(HeapRegion* r) {
5231     // Cards of the survivors should have already been dirtied.
5232     if (!r->is_survivor()) {
5233       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5234     }
5235   }
5236 };
5237 
5238 #ifndef PRODUCT
5239 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5240   G1CollectedHeap* _g1h;
5241   G1SATBCardTableModRefBS* _ct_bs;
5242 public:
5243   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5244     : _g1h(g1h), _ct_bs(ct_bs) { }
5245   virtual bool doHeapRegion(HeapRegion* r) {
5246     if (r->is_survivor()) {
5247       _g1h->verify_dirty_region(r);
5248     } else {
5249       _g1h->verify_not_dirty_region(r);
5250     }
5251     return false;
5252   }
5253 };
5254 
5255 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5256   // All of the region should be clean.
5257   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5258   MemRegion mr(hr->bottom(), hr->end());
5259   ct_bs->verify_not_dirty_region(mr);
5260 }
5261 
5262 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5263   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5264   // dirty allocated blocks as they allocate them. The thread that
5265   // retires each region and replaces it with a new one will do a
5266   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5267   // not dirty that area (one less thing to have to do while holding
5268   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5269   // is dirty.
5270   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5271   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5272   if (hr->is_young()) {
5273     ct_bs->verify_g1_young_region(mr);
5274   } else {
5275     ct_bs->verify_dirty_region(mr);
5276   }
5277 }
5278 
5279 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5280   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5281   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5282     verify_dirty_region(hr);
5283   }
5284 }
5285 
5286 void G1CollectedHeap::verify_dirty_young_regions() {
5287   verify_dirty_young_list(_young_list->first_region());
5288 }
5289 
5290 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5291                                                HeapWord* tams, HeapWord* end) {
5292   guarantee(tams <= end,
5293             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5294   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5295   if (result < end) {
5296     log_info(gc, verify)("## wrong marked address on %s bitmap: " PTR_FORMAT, bitmap_name, p2i(result));
5297     log_info(gc, verify)("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, bitmap_name, p2i(tams), p2i(end));
5298     return false;
5299   }
5300   return true;
5301 }
5302 
5303 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5304   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5305   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5306 
5307   HeapWord* bottom = hr->bottom();
5308   HeapWord* ptams  = hr->prev_top_at_mark_start();
5309   HeapWord* ntams  = hr->next_top_at_mark_start();
5310   HeapWord* end    = hr->end();
5311 
5312   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5313 
5314   bool res_n = true;
5315   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5316   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5317   // if we happen to be in that state.
5318   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5319     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5320   }
5321   if (!res_p || !res_n) {
5322     log_info(gc, verify)("#### Bitmap verification failed for " HR_FORMAT, HR_FORMAT_PARAMS(hr));
5323     log_info(gc, verify)("#### Caller: %s", caller);
5324     return false;
5325   }
5326   return true;
5327 }
5328 
5329 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5330   if (!G1VerifyBitmaps) return;
5331 
5332   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5333 }
5334 
5335 class G1VerifyBitmapClosure : public HeapRegionClosure {
5336 private:
5337   const char* _caller;
5338   G1CollectedHeap* _g1h;
5339   bool _failures;
5340 
5341 public:
5342   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5343     _caller(caller), _g1h(g1h), _failures(false) { }
5344 
5345   bool failures() { return _failures; }
5346 
5347   virtual bool doHeapRegion(HeapRegion* hr) {
5348     bool result = _g1h->verify_bitmaps(_caller, hr);
5349     if (!result) {
5350       _failures = true;
5351     }
5352     return false;
5353   }
5354 };
5355 
5356 void G1CollectedHeap::check_bitmaps(const char* caller) {
5357   if (!G1VerifyBitmaps) return;
5358 
5359   G1VerifyBitmapClosure cl(caller, this);
5360   heap_region_iterate(&cl);
5361   guarantee(!cl.failures(), "bitmap verification");
5362 }
5363 
5364 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5365  private:
5366   bool _failures;
5367  public:
5368   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5369 
5370   virtual bool doHeapRegion(HeapRegion* hr) {
5371     uint i = hr->hrm_index();
5372     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5373     if (hr->is_humongous()) {
5374       if (hr->in_collection_set()) {
5375         log_info(gc, verify)("\n## humongous region %u in CSet", i);
5376         _failures = true;
5377         return true;
5378       }
5379       if (cset_state.is_in_cset()) {
5380         log_info(gc, verify)("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5381         _failures = true;
5382         return true;
5383       }
5384       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5385         log_info(gc, verify)("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5386         _failures = true;
5387         return true;
5388       }
5389     } else {
5390       if (cset_state.is_humongous()) {
5391         log_info(gc, verify)("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5392         _failures = true;
5393         return true;
5394       }
5395       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5396         log_info(gc, verify)("\n## in CSet %d / cset state %d inconsistency for region %u",
5397                              hr->in_collection_set(), cset_state.value(), i);
5398         _failures = true;
5399         return true;
5400       }
5401       if (cset_state.is_in_cset()) {
5402         if (hr->is_young() != (cset_state.is_young())) {
5403           log_info(gc, verify)("\n## is_young %d / cset state %d inconsistency for region %u",
5404                                hr->is_young(), cset_state.value(), i);
5405           _failures = true;
5406           return true;
5407         }
5408         if (hr->is_old() != (cset_state.is_old())) {
5409           log_info(gc, verify)("\n## is_old %d / cset state %d inconsistency for region %u",
5410                                hr->is_old(), cset_state.value(), i);
5411           _failures = true;
5412           return true;
5413         }
5414       }
5415     }
5416     return false;
5417   }
5418 
5419   bool failures() const { return _failures; }
5420 };
5421 
5422 bool G1CollectedHeap::check_cset_fast_test() {
5423   G1CheckCSetFastTableClosure cl;
5424   _hrm.iterate(&cl);
5425   return !cl.failures();
5426 }
5427 #endif // PRODUCT
5428 
5429 void G1CollectedHeap::cleanUpCardTable() {
5430   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5431   double start = os::elapsedTime();
5432 
5433   {
5434     // Iterate over the dirty cards region list.
5435     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5436 
5437     workers()->run_task(&cleanup_task);
5438 #ifndef PRODUCT
5439     if (G1VerifyCTCleanup || VerifyAfterGC) {
5440       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5441       heap_region_iterate(&cleanup_verifier);
5442     }
5443 #endif
5444   }
5445 
5446   double elapsed = os::elapsedTime() - start;
5447   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5448 }
5449 
5450 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5451   size_t pre_used = 0;
5452   FreeRegionList local_free_list("Local List for CSet Freeing");
5453 
5454   double young_time_ms     = 0.0;
5455   double non_young_time_ms = 0.0;
5456 
5457   // Since the collection set is a superset of the the young list,
5458   // all we need to do to clear the young list is clear its
5459   // head and length, and unlink any young regions in the code below
5460   _young_list->clear();
5461 
5462   G1CollectorPolicy* policy = g1_policy();
5463 
5464   double start_sec = os::elapsedTime();
5465   bool non_young = true;
5466 
5467   HeapRegion* cur = cs_head;
5468   int age_bound = -1;
5469   size_t rs_lengths = 0;
5470 
5471   while (cur != NULL) {
5472     assert(!is_on_master_free_list(cur), "sanity");
5473     if (non_young) {
5474       if (cur->is_young()) {
5475         double end_sec = os::elapsedTime();
5476         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5477         non_young_time_ms += elapsed_ms;
5478 
5479         start_sec = os::elapsedTime();
5480         non_young = false;
5481       }
5482     } else {
5483       if (!cur->is_young()) {
5484         double end_sec = os::elapsedTime();
5485         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5486         young_time_ms += elapsed_ms;
5487 
5488         start_sec = os::elapsedTime();
5489         non_young = true;
5490       }
5491     }
5492 
5493     rs_lengths += cur->rem_set()->occupied_locked();
5494 
5495     HeapRegion* next = cur->next_in_collection_set();
5496     assert(cur->in_collection_set(), "bad CS");
5497     cur->set_next_in_collection_set(NULL);
5498     clear_in_cset(cur);
5499 
5500     if (cur->is_young()) {
5501       int index = cur->young_index_in_cset();
5502       assert(index != -1, "invariant");
5503       assert((uint) index < policy->young_cset_region_length(), "invariant");
5504       size_t words_survived = surviving_young_words[index];
5505       cur->record_surv_words_in_group(words_survived);
5506 
5507       // At this point the we have 'popped' cur from the collection set
5508       // (linked via next_in_collection_set()) but it is still in the
5509       // young list (linked via next_young_region()). Clear the
5510       // _next_young_region field.
5511       cur->set_next_young_region(NULL);
5512     } else {
5513       int index = cur->young_index_in_cset();
5514       assert(index == -1, "invariant");
5515     }
5516 
5517     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5518             (!cur->is_young() && cur->young_index_in_cset() == -1),
5519             "invariant" );
5520 
5521     if (!cur->evacuation_failed()) {
5522       MemRegion used_mr = cur->used_region();
5523 
5524       // And the region is empty.
5525       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5526       pre_used += cur->used();
5527       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5528     } else {
5529       cur->uninstall_surv_rate_group();
5530       if (cur->is_young()) {
5531         cur->set_young_index_in_cset(-1);
5532       }
5533       cur->set_evacuation_failed(false);
5534       // When moving a young gen region to old gen, we "allocate" that whole region
5535       // there. This is in addition to any already evacuated objects. Notify the
5536       // policy about that.
5537       // Old gen regions do not cause an additional allocation: both the objects
5538       // still in the region and the ones already moved are accounted for elsewhere.
5539       if (cur->is_young()) {
5540         policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes);
5541       }
5542       // The region is now considered to be old.
5543       cur->set_old();
5544       // Do some allocation statistics accounting. Regions that failed evacuation
5545       // are always made old, so there is no need to update anything in the young
5546       // gen statistics, but we need to update old gen statistics.
5547       size_t used_words = cur->marked_bytes() / HeapWordSize;
5548       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5549       _old_set.add(cur);
5550       evacuation_info.increment_collectionset_used_after(cur->used());
5551     }
5552     cur = next;
5553   }
5554 
5555   evacuation_info.set_regions_freed(local_free_list.length());
5556   policy->record_max_rs_lengths(rs_lengths);
5557   policy->cset_regions_freed();
5558 
5559   double end_sec = os::elapsedTime();
5560   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5561 
5562   if (non_young) {
5563     non_young_time_ms += elapsed_ms;
5564   } else {
5565     young_time_ms += elapsed_ms;
5566   }
5567 
5568   prepend_to_freelist(&local_free_list);
5569   decrement_summary_bytes(pre_used);
5570   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5571   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5572 }
5573 
5574 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5575  private:
5576   FreeRegionList* _free_region_list;
5577   HeapRegionSet* _proxy_set;
5578   HeapRegionSetCount _humongous_regions_removed;
5579   size_t _freed_bytes;
5580  public:
5581 
5582   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5583     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5584   }
5585 
5586   virtual bool doHeapRegion(HeapRegion* r) {
5587     if (!r->is_starts_humongous()) {
5588       return false;
5589     }
5590 
5591     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5592 
5593     oop obj = (oop)r->bottom();
5594     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5595 
5596     // The following checks whether the humongous object is live are sufficient.
5597     // The main additional check (in addition to having a reference from the roots
5598     // or the young gen) is whether the humongous object has a remembered set entry.
5599     //
5600     // A humongous object cannot be live if there is no remembered set for it
5601     // because:
5602     // - there can be no references from within humongous starts regions referencing
5603     // the object because we never allocate other objects into them.
5604     // (I.e. there are no intra-region references that may be missed by the
5605     // remembered set)
5606     // - as soon there is a remembered set entry to the humongous starts region
5607     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5608     // until the end of a concurrent mark.
5609     //
5610     // It is not required to check whether the object has been found dead by marking
5611     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5612     // all objects allocated during that time are considered live.
5613     // SATB marking is even more conservative than the remembered set.
5614     // So if at this point in the collection there is no remembered set entry,
5615     // nobody has a reference to it.
5616     // At the start of collection we flush all refinement logs, and remembered sets
5617     // are completely up-to-date wrt to references to the humongous object.
5618     //
5619     // Other implementation considerations:
5620     // - never consider object arrays at this time because they would pose
5621     // considerable effort for cleaning up the the remembered sets. This is
5622     // required because stale remembered sets might reference locations that
5623     // are currently allocated into.
5624     uint region_idx = r->hrm_index();
5625     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5626         !r->rem_set()->is_empty()) {
5627       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5628                                region_idx,
5629                                (size_t)obj->size() * HeapWordSize,
5630                                p2i(r->bottom()),
5631                                r->rem_set()->occupied(),
5632                                r->rem_set()->strong_code_roots_list_length(),
5633                                next_bitmap->isMarked(r->bottom()),
5634                                g1h->is_humongous_reclaim_candidate(region_idx),
5635                                obj->is_typeArray()
5636                               );
5637       return false;
5638     }
5639 
5640     guarantee(obj->is_typeArray(),
5641               "Only eagerly reclaiming type arrays is supported, but the object "
5642               PTR_FORMAT " is not.", p2i(r->bottom()));
5643 
5644     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5645                              region_idx,
5646                              (size_t)obj->size() * HeapWordSize,
5647                              p2i(r->bottom()),
5648                              r->rem_set()->occupied(),
5649                              r->rem_set()->strong_code_roots_list_length(),
5650                              next_bitmap->isMarked(r->bottom()),
5651                              g1h->is_humongous_reclaim_candidate(region_idx),
5652                              obj->is_typeArray()
5653                             );
5654 
5655     // Need to clear mark bit of the humongous object if already set.
5656     if (next_bitmap->isMarked(r->bottom())) {
5657       next_bitmap->clear(r->bottom());
5658     }
5659     do {
5660       HeapRegion* next = g1h->next_region_in_humongous(r);
5661       _freed_bytes += r->used();
5662       r->set_containing_set(NULL);
5663       _humongous_regions_removed.increment(1u, r->capacity());
5664       g1h->free_humongous_region(r, _free_region_list, false);
5665       r = next;
5666     } while (r != NULL);
5667 
5668     return false;
5669   }
5670 
5671   HeapRegionSetCount& humongous_free_count() {
5672     return _humongous_regions_removed;
5673   }
5674 
5675   size_t bytes_freed() const {
5676     return _freed_bytes;
5677   }
5678 
5679   size_t humongous_reclaimed() const {
5680     return _humongous_regions_removed.length();
5681   }
5682 };
5683 
5684 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5685   assert_at_safepoint(true);
5686 
5687   if (!G1EagerReclaimHumongousObjects ||
5688       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5689     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5690     return;
5691   }
5692 
5693   double start_time = os::elapsedTime();
5694 
5695   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5696 
5697   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5698   heap_region_iterate(&cl);
5699 
5700   HeapRegionSetCount empty_set;
5701   remove_from_old_sets(empty_set, cl.humongous_free_count());
5702 
5703   G1HRPrinter* hrp = hr_printer();
5704   if (hrp->is_active()) {
5705     FreeRegionListIterator iter(&local_cleanup_list);
5706     while (iter.more_available()) {
5707       HeapRegion* hr = iter.get_next();
5708       hrp->cleanup(hr);
5709     }
5710   }
5711 
5712   prepend_to_freelist(&local_cleanup_list);
5713   decrement_summary_bytes(cl.bytes_freed());
5714 
5715   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5716                                                                     cl.humongous_reclaimed());
5717 }
5718 
5719 // This routine is similar to the above but does not record
5720 // any policy statistics or update free lists; we are abandoning
5721 // the current incremental collection set in preparation of a
5722 // full collection. After the full GC we will start to build up
5723 // the incremental collection set again.
5724 // This is only called when we're doing a full collection
5725 // and is immediately followed by the tearing down of the young list.
5726 
5727 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5728   HeapRegion* cur = cs_head;
5729 
5730   while (cur != NULL) {
5731     HeapRegion* next = cur->next_in_collection_set();
5732     assert(cur->in_collection_set(), "bad CS");
5733     cur->set_next_in_collection_set(NULL);
5734     clear_in_cset(cur);
5735     cur->set_young_index_in_cset(-1);
5736     cur = next;
5737   }
5738 }
5739 
5740 void G1CollectedHeap::set_free_regions_coming() {
5741   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5742 
5743   assert(!free_regions_coming(), "pre-condition");
5744   _free_regions_coming = true;
5745 }
5746 
5747 void G1CollectedHeap::reset_free_regions_coming() {
5748   assert(free_regions_coming(), "pre-condition");
5749 
5750   {
5751     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5752     _free_regions_coming = false;
5753     SecondaryFreeList_lock->notify_all();
5754   }
5755 
5756   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5757 }
5758 
5759 void G1CollectedHeap::wait_while_free_regions_coming() {
5760   // Most of the time we won't have to wait, so let's do a quick test
5761   // first before we take the lock.
5762   if (!free_regions_coming()) {
5763     return;
5764   }
5765 
5766   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5767 
5768   {
5769     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5770     while (free_regions_coming()) {
5771       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5772     }
5773   }
5774 
5775   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5776 }
5777 
5778 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5779   return _allocator->is_retained_old_region(hr);
5780 }
5781 
5782 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5783   _young_list->push_region(hr);
5784 }
5785 
5786 class NoYoungRegionsClosure: public HeapRegionClosure {
5787 private:
5788   bool _success;
5789 public:
5790   NoYoungRegionsClosure() : _success(true) { }
5791   bool doHeapRegion(HeapRegion* r) {
5792     if (r->is_young()) {
5793       log_info(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5794                            p2i(r->bottom()), p2i(r->end()));
5795       _success = false;
5796     }
5797     return false;
5798   }
5799   bool success() { return _success; }
5800 };
5801 
5802 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5803   bool ret = _young_list->check_list_empty(check_sample);
5804 
5805   if (check_heap) {
5806     NoYoungRegionsClosure closure;
5807     heap_region_iterate(&closure);
5808     ret = ret && closure.success();
5809   }
5810 
5811   return ret;
5812 }
5813 
5814 class TearDownRegionSetsClosure : public HeapRegionClosure {
5815 private:
5816   HeapRegionSet *_old_set;
5817 
5818 public:
5819   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5820 
5821   bool doHeapRegion(HeapRegion* r) {
5822     if (r->is_old()) {
5823       _old_set->remove(r);
5824     } else {
5825       // We ignore free regions, we'll empty the free list afterwards.
5826       // We ignore young regions, we'll empty the young list afterwards.
5827       // We ignore humongous regions, we're not tearing down the
5828       // humongous regions set.
5829       assert(r->is_free() || r->is_young() || r->is_humongous(),
5830              "it cannot be another type");
5831     }
5832     return false;
5833   }
5834 
5835   ~TearDownRegionSetsClosure() {
5836     assert(_old_set->is_empty(), "post-condition");
5837   }
5838 };
5839 
5840 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5841   assert_at_safepoint(true /* should_be_vm_thread */);
5842 
5843   if (!free_list_only) {
5844     TearDownRegionSetsClosure cl(&_old_set);
5845     heap_region_iterate(&cl);
5846 
5847     // Note that emptying the _young_list is postponed and instead done as
5848     // the first step when rebuilding the regions sets again. The reason for
5849     // this is that during a full GC string deduplication needs to know if
5850     // a collected region was young or old when the full GC was initiated.
5851   }
5852   _hrm.remove_all_free_regions();
5853 }
5854 
5855 void G1CollectedHeap::increase_used(size_t bytes) {
5856   _summary_bytes_used += bytes;
5857 }
5858 
5859 void G1CollectedHeap::decrease_used(size_t bytes) {
5860   assert(_summary_bytes_used >= bytes,
5861          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5862          _summary_bytes_used, bytes);
5863   _summary_bytes_used -= bytes;
5864 }
5865 
5866 void G1CollectedHeap::set_used(size_t bytes) {
5867   _summary_bytes_used = bytes;
5868 }
5869 
5870 class RebuildRegionSetsClosure : public HeapRegionClosure {
5871 private:
5872   bool            _free_list_only;
5873   HeapRegionSet*   _old_set;
5874   HeapRegionManager*   _hrm;
5875   size_t          _total_used;
5876 
5877 public:
5878   RebuildRegionSetsClosure(bool free_list_only,
5879                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5880     _free_list_only(free_list_only),
5881     _old_set(old_set), _hrm(hrm), _total_used(0) {
5882     assert(_hrm->num_free_regions() == 0, "pre-condition");
5883     if (!free_list_only) {
5884       assert(_old_set->is_empty(), "pre-condition");
5885     }
5886   }
5887 
5888   bool doHeapRegion(HeapRegion* r) {
5889     if (r->is_empty()) {
5890       // Add free regions to the free list
5891       r->set_free();
5892       r->set_allocation_context(AllocationContext::system());
5893       _hrm->insert_into_free_list(r);
5894     } else if (!_free_list_only) {
5895       assert(!r->is_young(), "we should not come across young regions");
5896 
5897       if (r->is_humongous()) {
5898         // We ignore humongous regions. We left the humongous set unchanged.
5899       } else {
5900         // Objects that were compacted would have ended up on regions
5901         // that were previously old or free.  Archive regions (which are
5902         // old) will not have been touched.
5903         assert(r->is_free() || r->is_old(), "invariant");
5904         // We now consider them old, so register as such. Leave
5905         // archive regions set that way, however, while still adding
5906         // them to the old set.
5907         if (!r->is_archive()) {
5908           r->set_old();
5909         }
5910         _old_set->add(r);
5911       }
5912       _total_used += r->used();
5913     }
5914 
5915     return false;
5916   }
5917 
5918   size_t total_used() {
5919     return _total_used;
5920   }
5921 };
5922 
5923 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5924   assert_at_safepoint(true /* should_be_vm_thread */);
5925 
5926   if (!free_list_only) {
5927     _young_list->empty_list();
5928   }
5929 
5930   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5931   heap_region_iterate(&cl);
5932 
5933   if (!free_list_only) {
5934     set_used(cl.total_used());
5935     if (_archive_allocator != NULL) {
5936       _archive_allocator->clear_used();
5937     }
5938   }
5939   assert(used_unlocked() == recalculate_used(),
5940          "inconsistent used_unlocked(), "
5941          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5942          used_unlocked(), recalculate_used());
5943 }
5944 
5945 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5946   _refine_cte_cl->set_concurrent(concurrent);
5947 }
5948 
5949 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5950   HeapRegion* hr = heap_region_containing(p);
5951   return hr->is_in(p);
5952 }
5953 
5954 // Methods for the mutator alloc region
5955 
5956 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5957                                                       bool force) {
5958   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5959   assert(!force || g1_policy()->can_expand_young_list(),
5960          "if force is true we should be able to expand the young list");
5961   bool young_list_full = g1_policy()->is_young_list_full();
5962   if (force || !young_list_full) {
5963     HeapRegion* new_alloc_region = new_region(word_size,
5964                                               false /* is_old */,
5965                                               false /* do_expand */);
5966     if (new_alloc_region != NULL) {
5967       set_region_short_lived_locked(new_alloc_region);
5968       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
5969       check_bitmaps("Mutator Region Allocation", new_alloc_region);
5970       return new_alloc_region;
5971     }
5972   }
5973   return NULL;
5974 }
5975 
5976 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5977                                                   size_t allocated_bytes) {
5978   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5979   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5980 
5981   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
5982   increase_used(allocated_bytes);
5983   _hr_printer.retire(alloc_region);
5984   // We update the eden sizes here, when the region is retired,
5985   // instead of when it's allocated, since this is the point that its
5986   // used space has been recored in _summary_bytes_used.
5987   g1mm()->update_eden_size();
5988 }
5989 
5990 // Methods for the GC alloc regions
5991 
5992 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
5993                                                  uint count,
5994                                                  InCSetState dest) {
5995   assert(FreeList_lock->owned_by_self(), "pre-condition");
5996 
5997   if (count < g1_policy()->max_regions(dest)) {
5998     const bool is_survivor = (dest.is_young());
5999     HeapRegion* new_alloc_region = new_region(word_size,
6000                                               !is_survivor,
6001                                               true /* do_expand */);
6002     if (new_alloc_region != NULL) {
6003       // We really only need to do this for old regions given that we
6004       // should never scan survivors. But it doesn't hurt to do it
6005       // for survivors too.
6006       new_alloc_region->record_timestamp();
6007       if (is_survivor) {
6008         new_alloc_region->set_survivor();
6009         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6010         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6011       } else {
6012         new_alloc_region->set_old();
6013         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6014         check_bitmaps("Old Region Allocation", new_alloc_region);
6015       }
6016       bool during_im = collector_state()->during_initial_mark_pause();
6017       new_alloc_region->note_start_of_copying(during_im);
6018       return new_alloc_region;
6019     }
6020   }
6021   return NULL;
6022 }
6023 
6024 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6025                                              size_t allocated_bytes,
6026                                              InCSetState dest) {
6027   bool during_im = collector_state()->during_initial_mark_pause();
6028   alloc_region->note_end_of_copying(during_im);
6029   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6030   if (dest.is_young()) {
6031     young_list()->add_survivor_region(alloc_region);
6032   } else {
6033     _old_set.add(alloc_region);
6034   }
6035   _hr_printer.retire(alloc_region);
6036 }
6037 
6038 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6039   bool expanded = false;
6040   uint index = _hrm.find_highest_free(&expanded);
6041 
6042   if (index != G1_NO_HRM_INDEX) {
6043     if (expanded) {
6044       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
6045                                 HeapRegion::GrainWords * HeapWordSize);
6046     }
6047     _hrm.allocate_free_regions_starting_at(index, 1);
6048     return region_at(index);
6049   }
6050   return NULL;
6051 }
6052 
6053 // Heap region set verification
6054 
6055 class VerifyRegionListsClosure : public HeapRegionClosure {
6056 private:
6057   HeapRegionSet*   _old_set;
6058   HeapRegionSet*   _humongous_set;
6059   HeapRegionManager*   _hrm;
6060 
6061 public:
6062   HeapRegionSetCount _old_count;
6063   HeapRegionSetCount _humongous_count;
6064   HeapRegionSetCount _free_count;
6065 
6066   VerifyRegionListsClosure(HeapRegionSet* old_set,
6067                            HeapRegionSet* humongous_set,
6068                            HeapRegionManager* hrm) :
6069     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6070     _old_count(), _humongous_count(), _free_count(){ }
6071 
6072   bool doHeapRegion(HeapRegion* hr) {
6073     if (hr->is_young()) {
6074       // TODO
6075     } else if (hr->is_humongous()) {
6076       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6077       _humongous_count.increment(1u, hr->capacity());
6078     } else if (hr->is_empty()) {
6079       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6080       _free_count.increment(1u, hr->capacity());
6081     } else if (hr->is_old()) {
6082       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6083       _old_count.increment(1u, hr->capacity());
6084     } else {
6085       // There are no other valid region types. Check for one invalid
6086       // one we can identify: pinned without old or humongous set.
6087       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6088       ShouldNotReachHere();
6089     }
6090     return false;
6091   }
6092 
6093   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6094     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6095     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6096               old_set->total_capacity_bytes(), _old_count.capacity());
6097 
6098     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6099     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6100               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6101 
6102     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6103     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6104               free_list->total_capacity_bytes(), _free_count.capacity());
6105   }
6106 };
6107 
6108 void G1CollectedHeap::verify_region_sets() {
6109   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6110 
6111   // First, check the explicit lists.
6112   _hrm.verify();
6113   {
6114     // Given that a concurrent operation might be adding regions to
6115     // the secondary free list we have to take the lock before
6116     // verifying it.
6117     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6118     _secondary_free_list.verify_list();
6119   }
6120 
6121   // If a concurrent region freeing operation is in progress it will
6122   // be difficult to correctly attributed any free regions we come
6123   // across to the correct free list given that they might belong to
6124   // one of several (free_list, secondary_free_list, any local lists,
6125   // etc.). So, if that's the case we will skip the rest of the
6126   // verification operation. Alternatively, waiting for the concurrent
6127   // operation to complete will have a non-trivial effect on the GC's
6128   // operation (no concurrent operation will last longer than the
6129   // interval between two calls to verification) and it might hide
6130   // any issues that we would like to catch during testing.
6131   if (free_regions_coming()) {
6132     return;
6133   }
6134 
6135   // Make sure we append the secondary_free_list on the free_list so
6136   // that all free regions we will come across can be safely
6137   // attributed to the free_list.
6138   append_secondary_free_list_if_not_empty_with_lock();
6139 
6140   // Finally, make sure that the region accounting in the lists is
6141   // consistent with what we see in the heap.
6142 
6143   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6144   heap_region_iterate(&cl);
6145   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6146 }
6147 
6148 // Optimized nmethod scanning
6149 
6150 class RegisterNMethodOopClosure: public OopClosure {
6151   G1CollectedHeap* _g1h;
6152   nmethod* _nm;
6153 
6154   template <class T> void do_oop_work(T* p) {
6155     T heap_oop = oopDesc::load_heap_oop(p);
6156     if (!oopDesc::is_null(heap_oop)) {
6157       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6158       HeapRegion* hr = _g1h->heap_region_containing(obj);
6159       assert(!hr->is_continues_humongous(),
6160              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6161              " starting at " HR_FORMAT,
6162              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6163 
6164       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6165       hr->add_strong_code_root_locked(_nm);
6166     }
6167   }
6168 
6169 public:
6170   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6171     _g1h(g1h), _nm(nm) {}
6172 
6173   void do_oop(oop* p)       { do_oop_work(p); }
6174   void do_oop(narrowOop* p) { do_oop_work(p); }
6175 };
6176 
6177 class UnregisterNMethodOopClosure: public OopClosure {
6178   G1CollectedHeap* _g1h;
6179   nmethod* _nm;
6180 
6181   template <class T> void do_oop_work(T* p) {
6182     T heap_oop = oopDesc::load_heap_oop(p);
6183     if (!oopDesc::is_null(heap_oop)) {
6184       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6185       HeapRegion* hr = _g1h->heap_region_containing(obj);
6186       assert(!hr->is_continues_humongous(),
6187              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6188              " starting at " HR_FORMAT,
6189              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6190 
6191       hr->remove_strong_code_root(_nm);
6192     }
6193   }
6194 
6195 public:
6196   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6197     _g1h(g1h), _nm(nm) {}
6198 
6199   void do_oop(oop* p)       { do_oop_work(p); }
6200   void do_oop(narrowOop* p) { do_oop_work(p); }
6201 };
6202 
6203 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6204   CollectedHeap::register_nmethod(nm);
6205 
6206   guarantee(nm != NULL, "sanity");
6207   RegisterNMethodOopClosure reg_cl(this, nm);
6208   nm->oops_do(&reg_cl);
6209 }
6210 
6211 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6212   CollectedHeap::unregister_nmethod(nm);
6213 
6214   guarantee(nm != NULL, "sanity");
6215   UnregisterNMethodOopClosure reg_cl(this, nm);
6216   nm->oops_do(&reg_cl, true);
6217 }
6218 
6219 void G1CollectedHeap::purge_code_root_memory() {
6220   double purge_start = os::elapsedTime();
6221   G1CodeRootSet::purge();
6222   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6223   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6224 }
6225 
6226 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6227   G1CollectedHeap* _g1h;
6228 
6229 public:
6230   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6231     _g1h(g1h) {}
6232 
6233   void do_code_blob(CodeBlob* cb) {
6234     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6235     if (nm == NULL) {
6236       return;
6237     }
6238 
6239     if (ScavengeRootsInCode) {
6240       _g1h->register_nmethod(nm);
6241     }
6242   }
6243 };
6244 
6245 void G1CollectedHeap::rebuild_strong_code_roots() {
6246   RebuildStrongCodeRootClosure blob_cl(this);
6247   CodeCache::blobs_do(&blob_cl);
6248 }