1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "gc/shared/collectedHeap.hpp"
  34 #include "gc/shared/gcLocker.inline.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "logging/log.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "oops/symbol.hpp"
  41 #include "runtime/atomic.inline.hpp"
  42 #include "runtime/compilationPolicy.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/orderAccess.inline.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/safepoint.hpp"
  50 #include "runtime/signature.hpp"
  51 #include "runtime/stubCodeGenerator.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/sweeper.hpp"
  54 #include "runtime/synchronizer.hpp"
  55 #include "runtime/thread.inline.hpp"
  56 #include "services/runtimeService.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/macros.hpp"
  59 #if INCLUDE_ALL_GCS
  60 #include "gc/cms/concurrentMarkSweepThread.hpp"
  61 #include "gc/g1/suspendibleThreadSet.hpp"
  62 #endif // INCLUDE_ALL_GCS
  63 #ifdef COMPILER1
  64 #include "c1/c1_globals.hpp"
  65 #endif
  66 
  67 // --------------------------------------------------------------------------------------------------
  68 // Implementation of Safepoint begin/end
  69 
  70 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  71 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  72 volatile int SafepointSynchronize::_safepoint_counter = 0;
  73 int SafepointSynchronize::_current_jni_active_count = 0;
  74 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  75 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  76 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  77 static bool timeout_error_printed = false;
  78 
  79 // Roll all threads forward to a safepoint and suspend them all
  80 void SafepointSynchronize::begin() {
  81 
  82   Thread* myThread = Thread::current();
  83   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  84 
  85   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  86     _safepoint_begin_time = os::javaTimeNanos();
  87     _ts_of_current_safepoint = tty->time_stamp().seconds();
  88   }
  89 
  90 #if INCLUDE_ALL_GCS
  91   if (UseConcMarkSweepGC) {
  92     // In the future we should investigate whether CMS can use the
  93     // more-general mechanism below.  DLD (01/05).
  94     ConcurrentMarkSweepThread::synchronize(false);
  95   } else if (UseG1GC) {
  96     SuspendibleThreadSet::synchronize();
  97   }
  98 #endif // INCLUDE_ALL_GCS
  99 
 100   // By getting the Threads_lock, we assure that no threads are about to start or
 101   // exit. It is released again in SafepointSynchronize::end().
 102   Threads_lock->lock();
 103 
 104   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 105 
 106   int nof_threads = Threads::number_of_threads();
 107 
 108   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 109 
 110   RuntimeService::record_safepoint_begin();
 111 
 112   MutexLocker mu(Safepoint_lock);
 113 
 114   // Reset the count of active JNI critical threads
 115   _current_jni_active_count = 0;
 116 
 117   // Set number of threads to wait for, before we initiate the callbacks
 118   _waiting_to_block = nof_threads;
 119   TryingToBlock     = 0 ;
 120   int still_running = nof_threads;
 121 
 122   // Save the starting time, so that it can be compared to see if this has taken
 123   // too long to complete.
 124   jlong safepoint_limit_time = 0;
 125   timeout_error_printed = false;
 126 
 127   // PrintSafepointStatisticsTimeout can be specified separately. When
 128   // specified, PrintSafepointStatistics will be set to true in
 129   // deferred_initialize_stat method. The initialization has to be done
 130   // early enough to avoid any races. See bug 6880029 for details.
 131   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 132     deferred_initialize_stat();
 133   }
 134 
 135   // Begin the process of bringing the system to a safepoint.
 136   // Java threads can be in several different states and are
 137   // stopped by different mechanisms:
 138   //
 139   //  1. Running interpreted
 140   //     The interpreter dispatch table is changed to force it to
 141   //     check for a safepoint condition between bytecodes.
 142   //  2. Running in native code
 143   //     When returning from the native code, a Java thread must check
 144   //     the safepoint _state to see if we must block.  If the
 145   //     VM thread sees a Java thread in native, it does
 146   //     not wait for this thread to block.  The order of the memory
 147   //     writes and reads of both the safepoint state and the Java
 148   //     threads state is critical.  In order to guarantee that the
 149   //     memory writes are serialized with respect to each other,
 150   //     the VM thread issues a memory barrier instruction
 151   //     (on MP systems).  In order to avoid the overhead of issuing
 152   //     a memory barrier for each Java thread making native calls, each Java
 153   //     thread performs a write to a single memory page after changing
 154   //     the thread state.  The VM thread performs a sequence of
 155   //     mprotect OS calls which forces all previous writes from all
 156   //     Java threads to be serialized.  This is done in the
 157   //     os::serialize_thread_states() call.  This has proven to be
 158   //     much more efficient than executing a membar instruction
 159   //     on every call to native code.
 160   //  3. Running compiled Code
 161   //     Compiled code reads a global (Safepoint Polling) page that
 162   //     is set to fault if we are trying to get to a safepoint.
 163   //  4. Blocked
 164   //     A thread which is blocked will not be allowed to return from the
 165   //     block condition until the safepoint operation is complete.
 166   //  5. In VM or Transitioning between states
 167   //     If a Java thread is currently running in the VM or transitioning
 168   //     between states, the safepointing code will wait for the thread to
 169   //     block itself when it attempts transitions to a new state.
 170   //
 171   _state            = _synchronizing;
 172   OrderAccess::fence();
 173 
 174   // Flush all thread states to memory
 175   if (!UseMembar) {
 176     os::serialize_thread_states();
 177   }
 178 
 179   // Make interpreter safepoint aware
 180   Interpreter::notice_safepoints();
 181 
 182   if (DeferPollingPageLoopCount < 0) {
 183     // Make polling safepoint aware
 184     guarantee (PageArmed == 0, "invariant") ;
 185     PageArmed = 1 ;
 186     os::make_polling_page_unreadable();
 187   }
 188 
 189   // Consider using active_processor_count() ... but that call is expensive.
 190   int ncpus = os::processor_count() ;
 191 
 192 #ifdef ASSERT
 193   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 194     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 195     // Clear the visited flag to ensure that the critical counts are collected properly.
 196     cur->set_visited_for_critical_count(false);
 197   }
 198 #endif // ASSERT
 199 
 200   if (SafepointTimeout)
 201     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 202 
 203   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 204   unsigned int iterations = 0;
 205   int steps = 0 ;
 206   while(still_running > 0) {
 207     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 208       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 209       ThreadSafepointState *cur_state = cur->safepoint_state();
 210       if (cur_state->is_running()) {
 211         cur_state->examine_state_of_thread();
 212         if (!cur_state->is_running()) {
 213            still_running--;
 214            // consider adjusting steps downward:
 215            //   steps = 0
 216            //   steps -= NNN
 217            //   steps >>= 1
 218            //   steps = MIN(steps, 2000-100)
 219            //   if (iterations != 0) steps -= NNN
 220         }
 221         if (log_is_enabled(Trace, safepoint)) {
 222           ResourceMark rm;
 223           cur_state->print_on(LogHandle(safepoint)::debug_stream());
 224         }
 225       }
 226     }
 227 
 228     if (PrintSafepointStatistics && iterations == 0) {
 229       begin_statistics(nof_threads, still_running);
 230     }
 231 
 232     if (still_running > 0) {
 233       // Check for if it takes to long
 234       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 235         print_safepoint_timeout(_spinning_timeout);
 236       }
 237 
 238       // Spin to avoid context switching.
 239       // There's a tension between allowing the mutators to run (and rendezvous)
 240       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 241       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 242       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 243       // Blocking or yielding incur their own penalties in the form of context switching
 244       // and the resultant loss of $ residency.
 245       //
 246       // Further complicating matters is that yield() does not work as naively expected
 247       // on many platforms -- yield() does not guarantee that any other ready threads
 248       // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 249       // nakes_short_sleep() is implemented as a short unconditional sleep.
 250       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 251       // can actually increase the time it takes the VM thread to detect that a system-wide
 252       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 253       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 254       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 255       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 256       // will eventually wake up and detect that all mutators are safe, at which point
 257       // we'll again make progress.
 258       //
 259       // Beware too that that the VMThread typically runs at elevated priority.
 260       // Its default priority is higher than the default mutator priority.
 261       // Obviously, this complicates spinning.
 262       //
 263       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 264       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 265       //
 266       // See the comments in synchronizer.cpp for additional remarks on spinning.
 267       //
 268       // In the future we might:
 269       // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 270       //    This is tricky as the path used by a thread exiting the JVM (say on
 271       //    on JNI call-out) simply stores into its state field.  The burden
 272       //    is placed on the VM thread, which must poll (spin).
 273       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 274       //    we might aggressively scan the stacks of threads that are already safe.
 275       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 276       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 277       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 278       // 5. Check system saturation.  If the system is not fully saturated then
 279       //    simply spin and avoid sleep/yield.
 280       // 6. As still-running mutators rendezvous they could unpark the sleeping
 281       //    VMthread.  This works well for still-running mutators that become
 282       //    safe.  The VMthread must still poll for mutators that call-out.
 283       // 7. Drive the policy on time-since-begin instead of iterations.
 284       // 8. Consider making the spin duration a function of the # of CPUs:
 285       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 286       //    Alternately, instead of counting iterations of the outer loop
 287       //    we could count the # of threads visited in the inner loop, above.
 288       // 9. On windows consider using the return value from SwitchThreadTo()
 289       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 290 
 291       if (int(iterations) == DeferPollingPageLoopCount) {
 292          guarantee (PageArmed == 0, "invariant") ;
 293          PageArmed = 1 ;
 294          os::make_polling_page_unreadable();
 295       }
 296 
 297       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 298       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 299       ++steps ;
 300       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 301         SpinPause() ;     // MP-Polite spin
 302       } else
 303       if (steps < DeferThrSuspendLoopCount) {
 304         os::naked_yield() ;
 305       } else {
 306         os::naked_short_sleep(1);
 307       }
 308 
 309       iterations ++ ;
 310     }
 311     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 312   }
 313   assert(still_running == 0, "sanity check");
 314 
 315   if (PrintSafepointStatistics) {
 316     update_statistics_on_spin_end();
 317   }
 318 
 319   // wait until all threads are stopped
 320   while (_waiting_to_block > 0) {
 321     log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 322     if (!SafepointTimeout || timeout_error_printed) {
 323       Safepoint_lock->wait(true);  // true, means with no safepoint checks
 324     } else {
 325       // Compute remaining time
 326       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 327 
 328       // If there is no remaining time, then there is an error
 329       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 330         print_safepoint_timeout(_blocking_timeout);
 331       }
 332     }
 333   }
 334   assert(_waiting_to_block == 0, "sanity check");
 335 
 336 #ifndef PRODUCT
 337   if (SafepointTimeout) {
 338     jlong current_time = os::javaTimeNanos();
 339     if (safepoint_limit_time < current_time) {
 340       tty->print_cr("# SafepointSynchronize: Finished after "
 341                     INT64_FORMAT_W(6) " ms",
 342                     ((current_time - safepoint_limit_time) / MICROUNITS +
 343                      (jlong)SafepointTimeoutDelay));
 344     }
 345   }
 346 #endif
 347 
 348   assert((_safepoint_counter & 0x1) == 0, "must be even");
 349   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 350   _safepoint_counter ++;
 351 
 352   // Record state
 353   _state = _synchronized;
 354 
 355   OrderAccess::fence();
 356 
 357 #ifdef ASSERT
 358   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 359     // make sure all the threads were visited
 360     assert(cur->was_visited_for_critical_count(), "missed a thread");
 361   }
 362 #endif // ASSERT
 363 
 364   // Update the count of active JNI critical regions
 365   GC_locker::set_jni_lock_count(_current_jni_active_count);
 366 
 367   if (log_is_enabled(Debug, safepoint)) {
 368     VM_Operation *op = VMThread::vm_operation();
 369     log_debug(safepoint)("Entering safepoint region: %s",
 370                          (op != NULL) ? op->name() : "no vm operation");
 371   }
 372 
 373   RuntimeService::record_safepoint_synchronized();
 374   if (PrintSafepointStatistics) {
 375     update_statistics_on_sync_end(os::javaTimeNanos());
 376   }
 377 
 378   // Call stuff that needs to be run when a safepoint is just about to be completed
 379   do_cleanup_tasks();
 380 
 381   if (PrintSafepointStatistics) {
 382     // Record how much time spend on the above cleanup tasks
 383     update_statistics_on_cleanup_end(os::javaTimeNanos());
 384   }
 385 }
 386 
 387 // Wake up all threads, so they are ready to resume execution after the safepoint
 388 // operation has been carried out
 389 void SafepointSynchronize::end() {
 390 
 391   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 392   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 393   _safepoint_counter ++;
 394   // memory fence isn't required here since an odd _safepoint_counter
 395   // value can do no harm and a fence is issued below anyway.
 396 
 397   DEBUG_ONLY(Thread* myThread = Thread::current();)
 398   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 399 
 400   if (PrintSafepointStatistics) {
 401     end_statistics(os::javaTimeNanos());
 402   }
 403 
 404 #ifdef ASSERT
 405   // A pending_exception cannot be installed during a safepoint.  The threads
 406   // may install an async exception after they come back from a safepoint into
 407   // pending_exception after they unblock.  But that should happen later.
 408   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 409     assert (!(cur->has_pending_exception() &&
 410               cur->safepoint_state()->is_at_poll_safepoint()),
 411             "safepoint installed a pending exception");
 412   }
 413 #endif // ASSERT
 414 
 415   if (PageArmed) {
 416     // Make polling safepoint aware
 417     os::make_polling_page_readable();
 418     PageArmed = 0 ;
 419   }
 420 
 421   // Remove safepoint check from interpreter
 422   Interpreter::ignore_safepoints();
 423 
 424   {
 425     MutexLocker mu(Safepoint_lock);
 426 
 427     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 428 
 429     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 430     // when they get restarted.
 431     _state = _not_synchronized;
 432     OrderAccess::fence();
 433 
 434     log_debug(safepoint)("Leaving safepoint region");
 435 
 436     // Start suspended threads
 437     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 438       // A problem occurring on Solaris is when attempting to restart threads
 439       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 440       // to the next one (since it has been running the longest).  We then have
 441       // to wait for a cpu to become available before we can continue restarting
 442       // threads.
 443       // FIXME: This causes the performance of the VM to degrade when active and with
 444       // large numbers of threads.  Apparently this is due to the synchronous nature
 445       // of suspending threads.
 446       //
 447       // TODO-FIXME: the comments above are vestigial and no longer apply.
 448       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 449       if (VMThreadHintNoPreempt) {
 450         os::hint_no_preempt();
 451       }
 452       ThreadSafepointState* cur_state = current->safepoint_state();
 453       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 454       cur_state->restart();
 455       assert(cur_state->is_running(), "safepoint state has not been reset");
 456     }
 457 
 458     RuntimeService::record_safepoint_end();
 459 
 460     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 461     // blocked in signal_thread_blocked
 462     Threads_lock->unlock();
 463 
 464   }
 465 #if INCLUDE_ALL_GCS
 466   // If there are any concurrent GC threads resume them.
 467   if (UseConcMarkSweepGC) {
 468     ConcurrentMarkSweepThread::desynchronize(false);
 469   } else if (UseG1GC) {
 470     SuspendibleThreadSet::desynchronize();
 471   }
 472 #endif // INCLUDE_ALL_GCS
 473   // record this time so VMThread can keep track how much time has elapsed
 474   // since last safepoint.
 475   _end_of_last_safepoint = os::javaTimeMillis();
 476 }
 477 
 478 bool SafepointSynchronize::is_cleanup_needed() {
 479   // Need a safepoint if some inline cache buffers is non-empty
 480   if (!InlineCacheBuffer::is_empty()) return true;
 481   return false;
 482 }
 483 
 484 
 485 
 486 // Various cleaning tasks that should be done periodically at safepoints
 487 void SafepointSynchronize::do_cleanup_tasks() {
 488   {
 489     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
 490     ObjectSynchronizer::deflate_idle_monitors();
 491   }
 492 
 493   {
 494     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
 495     InlineCacheBuffer::update_inline_caches();
 496   }
 497   {
 498     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
 499     CompilationPolicy::policy()->do_safepoint_work();
 500   }
 501 
 502   {
 503     TraceTime t4("mark nmethods", TraceSafepointCleanupTime);
 504     NMethodSweeper::mark_active_nmethods();
 505   }
 506 
 507   if (SymbolTable::needs_rehashing()) {
 508     TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
 509     SymbolTable::rehash_table();
 510   }
 511 
 512   if (StringTable::needs_rehashing()) {
 513     TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
 514     StringTable::rehash_table();
 515   }
 516 
 517   {
 518     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 519     // make sure concurrent sweep is done
 520     TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
 521     ClassLoaderDataGraph::purge_if_needed();
 522   }
 523 }
 524 
 525 
 526 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 527   switch(state) {
 528   case _thread_in_native:
 529     // native threads are safe if they have no java stack or have walkable stack
 530     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 531 
 532    // blocked threads should have already have walkable stack
 533   case _thread_blocked:
 534     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 535     return true;
 536 
 537   default:
 538     return false;
 539   }
 540 }
 541 
 542 
 543 // See if the thread is running inside a lazy critical native and
 544 // update the thread critical count if so.  Also set a suspend flag to
 545 // cause the native wrapper to return into the JVM to do the unlock
 546 // once the native finishes.
 547 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 548   if (state == _thread_in_native &&
 549       thread->has_last_Java_frame() &&
 550       thread->frame_anchor()->walkable()) {
 551     // This thread might be in a critical native nmethod so look at
 552     // the top of the stack and increment the critical count if it
 553     // is.
 554     frame wrapper_frame = thread->last_frame();
 555     CodeBlob* stub_cb = wrapper_frame.cb();
 556     if (stub_cb != NULL &&
 557         stub_cb->is_nmethod() &&
 558         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 559       // A thread could potentially be in a critical native across
 560       // more than one safepoint, so only update the critical state on
 561       // the first one.  When it returns it will perform the unlock.
 562       if (!thread->do_critical_native_unlock()) {
 563 #ifdef ASSERT
 564         if (!thread->in_critical()) {
 565           GC_locker::increment_debug_jni_lock_count();
 566         }
 567 #endif
 568         thread->enter_critical();
 569         // Make sure the native wrapper calls back on return to
 570         // perform the needed critical unlock.
 571         thread->set_critical_native_unlock();
 572       }
 573     }
 574   }
 575 }
 576 
 577 
 578 
 579 // -------------------------------------------------------------------------------------------------------
 580 // Implementation of Safepoint callback point
 581 
 582 void SafepointSynchronize::block(JavaThread *thread) {
 583   assert(thread != NULL, "thread must be set");
 584   assert(thread->is_Java_thread(), "not a Java thread");
 585 
 586   // Threads shouldn't block if they are in the middle of printing, but...
 587   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 588 
 589   // Only bail from the block() call if the thread is gone from the
 590   // thread list; starting to exit should still block.
 591   if (thread->is_terminated()) {
 592      // block current thread if we come here from native code when VM is gone
 593      thread->block_if_vm_exited();
 594 
 595      // otherwise do nothing
 596      return;
 597   }
 598 
 599   JavaThreadState state = thread->thread_state();
 600   thread->frame_anchor()->make_walkable(thread);
 601 
 602   // Check that we have a valid thread_state at this point
 603   switch(state) {
 604     case _thread_in_vm_trans:
 605     case _thread_in_Java:        // From compiled code
 606 
 607       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 608       // we pretend we are still in the VM.
 609       thread->set_thread_state(_thread_in_vm);
 610 
 611       if (is_synchronizing()) {
 612          Atomic::inc (&TryingToBlock) ;
 613       }
 614 
 615       // We will always be holding the Safepoint_lock when we are examine the state
 616       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 617       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 618       Safepoint_lock->lock_without_safepoint_check();
 619       if (is_synchronizing()) {
 620         // Decrement the number of threads to wait for and signal vm thread
 621         assert(_waiting_to_block > 0, "sanity check");
 622         _waiting_to_block--;
 623         thread->safepoint_state()->set_has_called_back(true);
 624 
 625         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 626         if (thread->in_critical()) {
 627           // Notice that this thread is in a critical section
 628           increment_jni_active_count();
 629         }
 630 
 631         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 632         if (_waiting_to_block == 0) {
 633           Safepoint_lock->notify_all();
 634         }
 635       }
 636 
 637       // We transition the thread to state _thread_blocked here, but
 638       // we can't do our usual check for external suspension and then
 639       // self-suspend after the lock_without_safepoint_check() call
 640       // below because we are often called during transitions while
 641       // we hold different locks. That would leave us suspended while
 642       // holding a resource which results in deadlocks.
 643       thread->set_thread_state(_thread_blocked);
 644       Safepoint_lock->unlock();
 645 
 646       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 647       // the entire safepoint, the threads will all line up here during the safepoint.
 648       Threads_lock->lock_without_safepoint_check();
 649       // restore original state. This is important if the thread comes from compiled code, so it
 650       // will continue to execute with the _thread_in_Java state.
 651       thread->set_thread_state(state);
 652       Threads_lock->unlock();
 653       break;
 654 
 655     case _thread_in_native_trans:
 656     case _thread_blocked_trans:
 657     case _thread_new_trans:
 658       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 659         thread->print_thread_state();
 660         fatal("Deadlock in safepoint code.  "
 661               "Should have called back to the VM before blocking.");
 662       }
 663 
 664       // We transition the thread to state _thread_blocked here, but
 665       // we can't do our usual check for external suspension and then
 666       // self-suspend after the lock_without_safepoint_check() call
 667       // below because we are often called during transitions while
 668       // we hold different locks. That would leave us suspended while
 669       // holding a resource which results in deadlocks.
 670       thread->set_thread_state(_thread_blocked);
 671 
 672       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 673       // the safepoint code might still be waiting for it to block. We need to change the state here,
 674       // so it can see that it is at a safepoint.
 675 
 676       // Block until the safepoint operation is completed.
 677       Threads_lock->lock_without_safepoint_check();
 678 
 679       // Restore state
 680       thread->set_thread_state(state);
 681 
 682       Threads_lock->unlock();
 683       break;
 684 
 685     default:
 686      fatal("Illegal threadstate encountered: %d", state);
 687   }
 688 
 689   // Check for pending. async. exceptions or suspends - except if the
 690   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 691   // is called last since it grabs a lock and we only want to do that when
 692   // we must.
 693   //
 694   // Note: we never deliver an async exception at a polling point as the
 695   // compiler may not have an exception handler for it. The polling
 696   // code will notice the async and deoptimize and the exception will
 697   // be delivered. (Polling at a return point is ok though). Sure is
 698   // a lot of bother for a deprecated feature...
 699   //
 700   // We don't deliver an async exception if the thread state is
 701   // _thread_in_native_trans so JNI functions won't be called with
 702   // a surprising pending exception. If the thread state is going back to java,
 703   // async exception is checked in check_special_condition_for_native_trans().
 704 
 705   if (state != _thread_blocked_trans &&
 706       state != _thread_in_vm_trans &&
 707       thread->has_special_runtime_exit_condition()) {
 708     thread->handle_special_runtime_exit_condition(
 709       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 710   }
 711 }
 712 
 713 // ------------------------------------------------------------------------------------------------------
 714 // Exception handlers
 715 
 716 
 717 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 718   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 719   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 720   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 721 
 722   if (ShowSafepointMsgs) {
 723     tty->print("handle_polling_page_exception: ");
 724   }
 725 
 726   if (PrintSafepointStatistics) {
 727     inc_page_trap_count();
 728   }
 729 
 730   ThreadSafepointState* state = thread->safepoint_state();
 731 
 732   state->handle_polling_page_exception();
 733 }
 734 
 735 
 736 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 737   if (!timeout_error_printed) {
 738     timeout_error_printed = true;
 739     // Print out the thread info which didn't reach the safepoint for debugging
 740     // purposes (useful when there are lots of threads in the debugger).
 741     tty->cr();
 742     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 743     if (reason ==  _spinning_timeout) {
 744       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 745     } else if (reason == _blocking_timeout) {
 746       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 747     }
 748 
 749     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 750     ThreadSafepointState *cur_state;
 751     ResourceMark rm;
 752     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 753         cur_thread = cur_thread->next()) {
 754       cur_state = cur_thread->safepoint_state();
 755 
 756       if (cur_thread->thread_state() != _thread_blocked &&
 757           ((reason == _spinning_timeout && cur_state->is_running()) ||
 758            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 759         tty->print("# ");
 760         cur_thread->print();
 761         tty->cr();
 762       }
 763     }
 764     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 765   }
 766 
 767   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 768   // ShowMessageBoxOnError.
 769   if (DieOnSafepointTimeout) {
 770     VM_Operation *op = VMThread::vm_operation();
 771     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 772           SafepointTimeoutDelay,
 773           op != NULL ? op->name() : "no vm operation");
 774   }
 775 }
 776 
 777 
 778 // -------------------------------------------------------------------------------------------------------
 779 // Implementation of ThreadSafepointState
 780 
 781 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 782   _thread = thread;
 783   _type   = _running;
 784   _has_called_back = false;
 785   _at_poll_safepoint = false;
 786 }
 787 
 788 void ThreadSafepointState::create(JavaThread *thread) {
 789   ThreadSafepointState *state = new ThreadSafepointState(thread);
 790   thread->set_safepoint_state(state);
 791 }
 792 
 793 void ThreadSafepointState::destroy(JavaThread *thread) {
 794   if (thread->safepoint_state()) {
 795     delete(thread->safepoint_state());
 796     thread->set_safepoint_state(NULL);
 797   }
 798 }
 799 
 800 void ThreadSafepointState::examine_state_of_thread() {
 801   assert(is_running(), "better be running or just have hit safepoint poll");
 802 
 803   JavaThreadState state = _thread->thread_state();
 804 
 805   // Save the state at the start of safepoint processing.
 806   _orig_thread_state = state;
 807 
 808   // Check for a thread that is suspended. Note that thread resume tries
 809   // to grab the Threads_lock which we own here, so a thread cannot be
 810   // resumed during safepoint synchronization.
 811 
 812   // We check to see if this thread is suspended without locking to
 813   // avoid deadlocking with a third thread that is waiting for this
 814   // thread to be suspended. The third thread can notice the safepoint
 815   // that we're trying to start at the beginning of its SR_lock->wait()
 816   // call. If that happens, then the third thread will block on the
 817   // safepoint while still holding the underlying SR_lock. We won't be
 818   // able to get the SR_lock and we'll deadlock.
 819   //
 820   // We don't need to grab the SR_lock here for two reasons:
 821   // 1) The suspend flags are both volatile and are set with an
 822   //    Atomic::cmpxchg() call so we should see the suspended
 823   //    state right away.
 824   // 2) We're being called from the safepoint polling loop; if
 825   //    we don't see the suspended state on this iteration, then
 826   //    we'll come around again.
 827   //
 828   bool is_suspended = _thread->is_ext_suspended();
 829   if (is_suspended) {
 830     roll_forward(_at_safepoint);
 831     return;
 832   }
 833 
 834   // Some JavaThread states have an initial safepoint state of
 835   // running, but are actually at a safepoint. We will happily
 836   // agree and update the safepoint state here.
 837   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 838     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 839     roll_forward(_at_safepoint);
 840     return;
 841   }
 842 
 843   if (state == _thread_in_vm) {
 844     roll_forward(_call_back);
 845     return;
 846   }
 847 
 848   // All other thread states will continue to run until they
 849   // transition and self-block in state _blocked
 850   // Safepoint polling in compiled code causes the Java threads to do the same.
 851   // Note: new threads may require a malloc so they must be allowed to finish
 852 
 853   assert(is_running(), "examine_state_of_thread on non-running thread");
 854   return;
 855 }
 856 
 857 // Returns true is thread could not be rolled forward at present position.
 858 void ThreadSafepointState::roll_forward(suspend_type type) {
 859   _type = type;
 860 
 861   switch(_type) {
 862     case _at_safepoint:
 863       SafepointSynchronize::signal_thread_at_safepoint();
 864       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
 865       if (_thread->in_critical()) {
 866         // Notice that this thread is in a critical section
 867         SafepointSynchronize::increment_jni_active_count();
 868       }
 869       break;
 870 
 871     case _call_back:
 872       set_has_called_back(false);
 873       break;
 874 
 875     case _running:
 876     default:
 877       ShouldNotReachHere();
 878   }
 879 }
 880 
 881 void ThreadSafepointState::restart() {
 882   switch(type()) {
 883     case _at_safepoint:
 884     case _call_back:
 885       break;
 886 
 887     case _running:
 888     default:
 889        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
 890                      p2i(_thread), _type);
 891        _thread->print();
 892       ShouldNotReachHere();
 893   }
 894   _type = _running;
 895   set_has_called_back(false);
 896 }
 897 
 898 
 899 void ThreadSafepointState::print_on(outputStream *st) const {
 900   const char *s = NULL;
 901 
 902   switch(_type) {
 903     case _running                : s = "_running";              break;
 904     case _at_safepoint           : s = "_at_safepoint";         break;
 905     case _call_back              : s = "_call_back";            break;
 906     default:
 907       ShouldNotReachHere();
 908   }
 909 
 910   st->print_cr("Thread: " INTPTR_FORMAT
 911               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
 912                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
 913                _at_poll_safepoint);
 914 
 915   _thread->print_thread_state_on(st);
 916 }
 917 
 918 // ---------------------------------------------------------------------------------------------------------------------
 919 
 920 // Block the thread at the safepoint poll or poll return.
 921 void ThreadSafepointState::handle_polling_page_exception() {
 922 
 923   // Check state.  block() will set thread state to thread_in_vm which will
 924   // cause the safepoint state _type to become _call_back.
 925   assert(type() == ThreadSafepointState::_running,
 926          "polling page exception on thread not running state");
 927 
 928   // Step 1: Find the nmethod from the return address
 929   if (ShowSafepointMsgs && Verbose) {
 930     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
 931   }
 932   address real_return_addr = thread()->saved_exception_pc();
 933 
 934   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
 935   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
 936   nmethod* nm = (nmethod*)cb;
 937 
 938   // Find frame of caller
 939   frame stub_fr = thread()->last_frame();
 940   CodeBlob* stub_cb = stub_fr.cb();
 941   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
 942   RegisterMap map(thread(), true);
 943   frame caller_fr = stub_fr.sender(&map);
 944 
 945   // Should only be poll_return or poll
 946   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
 947 
 948   // This is a poll immediately before a return. The exception handling code
 949   // has already had the effect of causing the return to occur, so the execution
 950   // will continue immediately after the call. In addition, the oopmap at the
 951   // return point does not mark the return value as an oop (if it is), so
 952   // it needs a handle here to be updated.
 953   if( nm->is_at_poll_return(real_return_addr) ) {
 954     // See if return type is an oop.
 955     bool return_oop = nm->method()->is_returning_oop();
 956     Handle return_value;
 957     if (return_oop) {
 958       // The oop result has been saved on the stack together with all
 959       // the other registers. In order to preserve it over GCs we need
 960       // to keep it in a handle.
 961       oop result = caller_fr.saved_oop_result(&map);
 962       assert(result == NULL || result->is_oop(), "must be oop");
 963       return_value = Handle(thread(), result);
 964       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 965     }
 966 
 967     // Block the thread
 968     SafepointSynchronize::block(thread());
 969 
 970     // restore oop result, if any
 971     if (return_oop) {
 972       caller_fr.set_saved_oop_result(&map, return_value());
 973     }
 974   }
 975 
 976   // This is a safepoint poll. Verify the return address and block.
 977   else {
 978     set_at_poll_safepoint(true);
 979 
 980     // verify the blob built the "return address" correctly
 981     assert(real_return_addr == caller_fr.pc(), "must match");
 982 
 983     // Block the thread
 984     SafepointSynchronize::block(thread());
 985     set_at_poll_safepoint(false);
 986 
 987     // If we have a pending async exception deoptimize the frame
 988     // as otherwise we may never deliver it.
 989     if (thread()->has_async_condition()) {
 990       ThreadInVMfromJavaNoAsyncException __tiv(thread());
 991       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
 992     }
 993 
 994     // If an exception has been installed we must check for a pending deoptimization
 995     // Deoptimize frame if exception has been thrown.
 996 
 997     if (thread()->has_pending_exception() ) {
 998       RegisterMap map(thread(), true);
 999       frame caller_fr = stub_fr.sender(&map);
1000       if (caller_fr.is_deoptimized_frame()) {
1001         // The exception patch will destroy registers that are still
1002         // live and will be needed during deoptimization. Defer the
1003         // Async exception should have deferred the exception until the
1004         // next safepoint which will be detected when we get into
1005         // the interpreter so if we have an exception now things
1006         // are messed up.
1007 
1008         fatal("Exception installed and deoptimization is pending");
1009       }
1010     }
1011   }
1012 }
1013 
1014 
1015 //
1016 //                     Statistics & Instrumentations
1017 //
1018 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1019 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1020 int    SafepointSynchronize::_cur_stat_index = 0;
1021 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1022 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1023 jlong  SafepointSynchronize::_max_sync_time = 0;
1024 jlong  SafepointSynchronize::_max_vmop_time = 0;
1025 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1026 
1027 static jlong  cleanup_end_time = 0;
1028 static bool   need_to_track_page_armed_status = false;
1029 static bool   init_done = false;
1030 
1031 // Helper method to print the header.
1032 static void print_header() {
1033   tty->print("         vmop                    "
1034              "[threads: total initially_running wait_to_block]    ");
1035   tty->print("[time: spin block sync cleanup vmop] ");
1036 
1037   // no page armed status printed out if it is always armed.
1038   if (need_to_track_page_armed_status) {
1039     tty->print("page_armed ");
1040   }
1041 
1042   tty->print_cr("page_trap_count");
1043 }
1044 
1045 void SafepointSynchronize::deferred_initialize_stat() {
1046   if (init_done) return;
1047 
1048   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1049   // be printed right away, in which case, _safepoint_stats will regress to
1050   // a single element array. Otherwise, it is a circular ring buffer with default
1051   // size of PrintSafepointStatisticsCount.
1052   int stats_array_size;
1053   if (PrintSafepointStatisticsTimeout > 0) {
1054     stats_array_size = 1;
1055     PrintSafepointStatistics = true;
1056   } else {
1057     stats_array_size = PrintSafepointStatisticsCount;
1058   }
1059   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1060                                                  * sizeof(SafepointStats), mtInternal);
1061   guarantee(_safepoint_stats != NULL,
1062             "not enough memory for safepoint instrumentation data");
1063 
1064   if (DeferPollingPageLoopCount >= 0) {
1065     need_to_track_page_armed_status = true;
1066   }
1067   init_done = true;
1068 }
1069 
1070 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1071   assert(init_done, "safepoint statistics array hasn't been initialized");
1072   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1073 
1074   spstat->_time_stamp = _ts_of_current_safepoint;
1075 
1076   VM_Operation *op = VMThread::vm_operation();
1077   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1078   if (op != NULL) {
1079     _safepoint_reasons[spstat->_vmop_type]++;
1080   }
1081 
1082   spstat->_nof_total_threads = nof_threads;
1083   spstat->_nof_initial_running_threads = nof_running;
1084   spstat->_nof_threads_hit_page_trap = 0;
1085 
1086   // Records the start time of spinning. The real time spent on spinning
1087   // will be adjusted when spin is done. Same trick is applied for time
1088   // spent on waiting for threads to block.
1089   if (nof_running != 0) {
1090     spstat->_time_to_spin = os::javaTimeNanos();
1091   }  else {
1092     spstat->_time_to_spin = 0;
1093   }
1094 }
1095 
1096 void SafepointSynchronize::update_statistics_on_spin_end() {
1097   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1098 
1099   jlong cur_time = os::javaTimeNanos();
1100 
1101   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1102   if (spstat->_nof_initial_running_threads != 0) {
1103     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1104   }
1105 
1106   if (need_to_track_page_armed_status) {
1107     spstat->_page_armed = (PageArmed == 1);
1108   }
1109 
1110   // Records the start time of waiting for to block. Updated when block is done.
1111   if (_waiting_to_block != 0) {
1112     spstat->_time_to_wait_to_block = cur_time;
1113   } else {
1114     spstat->_time_to_wait_to_block = 0;
1115   }
1116 }
1117 
1118 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1119   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1120 
1121   if (spstat->_nof_threads_wait_to_block != 0) {
1122     spstat->_time_to_wait_to_block = end_time -
1123       spstat->_time_to_wait_to_block;
1124   }
1125 
1126   // Records the end time of sync which will be used to calculate the total
1127   // vm operation time. Again, the real time spending in syncing will be deducted
1128   // from the start of the sync time later when end_statistics is called.
1129   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1130   if (spstat->_time_to_sync > _max_sync_time) {
1131     _max_sync_time = spstat->_time_to_sync;
1132   }
1133 
1134   spstat->_time_to_do_cleanups = end_time;
1135 }
1136 
1137 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1138   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1139 
1140   // Record how long spent in cleanup tasks.
1141   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1142 
1143   cleanup_end_time = end_time;
1144 }
1145 
1146 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1147   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1148 
1149   // Update the vm operation time.
1150   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1151   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1152     _max_vmop_time = spstat->_time_to_exec_vmop;
1153   }
1154   // Only the sync time longer than the specified
1155   // PrintSafepointStatisticsTimeout will be printed out right away.
1156   // By default, it is -1 meaning all samples will be put into the list.
1157   if ( PrintSafepointStatisticsTimeout > 0) {
1158     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1159       print_statistics();
1160     }
1161   } else {
1162     // The safepoint statistics will be printed out when the _safepoin_stats
1163     // array fills up.
1164     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1165       print_statistics();
1166       _cur_stat_index = 0;
1167     } else {
1168       _cur_stat_index++;
1169     }
1170   }
1171 }
1172 
1173 void SafepointSynchronize::print_statistics() {
1174   SafepointStats* sstats = _safepoint_stats;
1175 
1176   for (int index = 0; index <= _cur_stat_index; index++) {
1177     if (index % 30 == 0) {
1178       print_header();
1179     }
1180     sstats = &_safepoint_stats[index];
1181     tty->print("%.3f: ", sstats->_time_stamp);
1182     tty->print("%-26s       ["
1183                INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15)
1184                "    ]    ",
1185                sstats->_vmop_type == -1 ? "no vm operation" :
1186                VM_Operation::name(sstats->_vmop_type),
1187                sstats->_nof_total_threads,
1188                sstats->_nof_initial_running_threads,
1189                sstats->_nof_threads_wait_to_block);
1190     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1191     tty->print("  ["
1192                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1193                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1194                INT64_FORMAT_W(6) "    ]  ",
1195                sstats->_time_to_spin / MICROUNITS,
1196                sstats->_time_to_wait_to_block / MICROUNITS,
1197                sstats->_time_to_sync / MICROUNITS,
1198                sstats->_time_to_do_cleanups / MICROUNITS,
1199                sstats->_time_to_exec_vmop / MICROUNITS);
1200 
1201     if (need_to_track_page_armed_status) {
1202       tty->print(INT32_FORMAT "         ", sstats->_page_armed);
1203     }
1204     tty->print_cr(INT32_FORMAT "   ", sstats->_nof_threads_hit_page_trap);
1205   }
1206 }
1207 
1208 // This method will be called when VM exits. It will first call
1209 // print_statistics to print out the rest of the sampling.  Then
1210 // it tries to summarize the sampling.
1211 void SafepointSynchronize::print_stat_on_exit() {
1212   if (_safepoint_stats == NULL) return;
1213 
1214   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1215 
1216   // During VM exit, end_statistics may not get called and in that
1217   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1218   // don't print it out.
1219   // Approximate the vm op time.
1220   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1221     os::javaTimeNanos() - cleanup_end_time;
1222 
1223   if ( PrintSafepointStatisticsTimeout < 0 ||
1224        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1225     print_statistics();
1226   }
1227   tty->cr();
1228 
1229   // Print out polling page sampling status.
1230   if (!need_to_track_page_armed_status) {
1231     tty->print_cr("Polling page always armed");
1232   } else {
1233     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1234                   DeferPollingPageLoopCount);
1235   }
1236 
1237   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1238     if (_safepoint_reasons[index] != 0) {
1239       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1240                     _safepoint_reasons[index]);
1241     }
1242   }
1243 
1244   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1245                 _coalesced_vmop_count);
1246   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1247                 _max_sync_time / MICROUNITS);
1248   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1249                 INT64_FORMAT_W(5) " ms",
1250                 _max_vmop_time / MICROUNITS);
1251 }
1252 
1253 // ------------------------------------------------------------------------------------------------
1254 // Non-product code
1255 
1256 #ifndef PRODUCT
1257 
1258 void SafepointSynchronize::print_state() {
1259   if (_state == _not_synchronized) {
1260     tty->print_cr("not synchronized");
1261   } else if (_state == _synchronizing || _state == _synchronized) {
1262     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1263                   "synchronized");
1264 
1265     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1266        cur->safepoint_state()->print();
1267     }
1268   }
1269 }
1270 
1271 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1272   if (ShowSafepointMsgs) {
1273     va_list ap;
1274     va_start(ap, format);
1275     tty->vprint_cr(format, ap);
1276     va_end(ap);
1277   }
1278 }
1279 
1280 #endif // !PRODUCT