1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableBarrierSet.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifdef PRODUCT
  41 #define BLOCK_COMMENT(str) /* nothing */
  42 #define STOP(error) stop(error)
  43 #else
  44 #define BLOCK_COMMENT(str) block_comment(str)
  45 #define STOP(error) block_comment(error); stop(error)
  46 #endif
  47 
  48 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  49 // Implementation of AddressLiteral
  50 
  51 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  52 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  53   // -----------------Table 4.5 -------------------- //
  54   16, 32, 64,  // EVEX_FV(0)
  55   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  56   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  57   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  58   8,  16, 32,  // EVEX_HV(0)
  59   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  60   // -----------------Table 4.6 -------------------- //
  61   16, 32, 64,  // EVEX_FVM(0)
  62   1,  1,  1,   // EVEX_T1S(0)
  63   2,  2,  2,   // EVEX_T1S(1)
  64   4,  4,  4,   // EVEX_T1S(2)
  65   8,  8,  8,   // EVEX_T1S(3)
  66   4,  4,  4,   // EVEX_T1F(0)
  67   8,  8,  8,   // EVEX_T1F(1)
  68   8,  8,  8,   // EVEX_T2(0)
  69   0,  16, 16,  // EVEX_T2(1)
  70   0,  16, 16,  // EVEX_T4(0)
  71   0,  0,  32,  // EVEX_T4(1)
  72   0,  0,  32,  // EVEX_T8(0)
  73   8,  16, 32,  // EVEX_HVM(0)
  74   4,  8,  16,  // EVEX_QVM(0)
  75   2,  4,  8,   // EVEX_OVM(0)
  76   16, 16, 16,  // EVEX_M128(0)
  77   8,  32, 64,  // EVEX_DUP(0)
  78   0,  0,  0    // EVEX_NTUP
  79 };
  80 
  81 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  82   _is_lval = false;
  83   _target = target;
  84   switch (rtype) {
  85   case relocInfo::oop_type:
  86   case relocInfo::metadata_type:
  87     // Oops are a special case. Normally they would be their own section
  88     // but in cases like icBuffer they are literals in the code stream that
  89     // we don't have a section for. We use none so that we get a literal address
  90     // which is always patchable.
  91     break;
  92   case relocInfo::external_word_type:
  93     _rspec = external_word_Relocation::spec(target);
  94     break;
  95   case relocInfo::internal_word_type:
  96     _rspec = internal_word_Relocation::spec(target);
  97     break;
  98   case relocInfo::opt_virtual_call_type:
  99     _rspec = opt_virtual_call_Relocation::spec();
 100     break;
 101   case relocInfo::static_call_type:
 102     _rspec = static_call_Relocation::spec();
 103     break;
 104   case relocInfo::runtime_call_type:
 105     _rspec = runtime_call_Relocation::spec();
 106     break;
 107   case relocInfo::poll_type:
 108   case relocInfo::poll_return_type:
 109     _rspec = Relocation::spec_simple(rtype);
 110     break;
 111   case relocInfo::none:
 112     break;
 113   default:
 114     ShouldNotReachHere();
 115     break;
 116   }
 117 }
 118 
 119 // Implementation of Address
 120 
 121 #ifdef _LP64
 122 
 123 Address Address::make_array(ArrayAddress adr) {
 124   // Not implementable on 64bit machines
 125   // Should have been handled higher up the call chain.
 126   ShouldNotReachHere();
 127   return Address();
 128 }
 129 
 130 // exceedingly dangerous constructor
 131 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 132   _base  = noreg;
 133   _index = noreg;
 134   _scale = no_scale;
 135   _disp  = disp;
 136   _xmmindex = xnoreg;
 137   _isxmmindex = false;
 138   switch (rtype) {
 139     case relocInfo::external_word_type:
 140       _rspec = external_word_Relocation::spec(loc);
 141       break;
 142     case relocInfo::internal_word_type:
 143       _rspec = internal_word_Relocation::spec(loc);
 144       break;
 145     case relocInfo::runtime_call_type:
 146       // HMM
 147       _rspec = runtime_call_Relocation::spec();
 148       break;
 149     case relocInfo::poll_type:
 150     case relocInfo::poll_return_type:
 151       _rspec = Relocation::spec_simple(rtype);
 152       break;
 153     case relocInfo::none:
 154       break;
 155     default:
 156       ShouldNotReachHere();
 157   }
 158 }
 159 #else // LP64
 160 
 161 Address Address::make_array(ArrayAddress adr) {
 162   AddressLiteral base = adr.base();
 163   Address index = adr.index();
 164   assert(index._disp == 0, "must not have disp"); // maybe it can?
 165   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 166   array._rspec = base._rspec;
 167   return array;
 168 }
 169 
 170 // exceedingly dangerous constructor
 171 Address::Address(address loc, RelocationHolder spec) {
 172   _base  = noreg;
 173   _index = noreg;
 174   _scale = no_scale;
 175   _disp  = (intptr_t) loc;
 176   _rspec = spec;
 177   _xmmindex = xnoreg;
 178   _isxmmindex = false;
 179 }
 180 
 181 #endif // _LP64
 182 
 183 
 184 
 185 // Convert the raw encoding form into the form expected by the constructor for
 186 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 187 // that to noreg for the Address constructor.
 188 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 189   RelocationHolder rspec;
 190   if (disp_reloc != relocInfo::none) {
 191     rspec = Relocation::spec_simple(disp_reloc);
 192   }
 193   bool valid_index = index != rsp->encoding();
 194   if (valid_index) {
 195     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 196     madr._rspec = rspec;
 197     return madr;
 198   } else {
 199     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 200     madr._rspec = rspec;
 201     return madr;
 202   }
 203 }
 204 
 205 // Implementation of Assembler
 206 
 207 int AbstractAssembler::code_fill_byte() {
 208   return (u_char)'\xF4'; // hlt
 209 }
 210 
 211 // make this go away someday
 212 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 213   if (rtype == relocInfo::none)
 214     emit_int32(data);
 215   else
 216     emit_data(data, Relocation::spec_simple(rtype), format);
 217 }
 218 
 219 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 220   assert(imm_operand == 0, "default format must be immediate in this file");
 221   assert(inst_mark() != NULL, "must be inside InstructionMark");
 222   if (rspec.type() !=  relocInfo::none) {
 223     #ifdef ASSERT
 224       check_relocation(rspec, format);
 225     #endif
 226     // Do not use AbstractAssembler::relocate, which is not intended for
 227     // embedded words.  Instead, relocate to the enclosing instruction.
 228 
 229     // hack. call32 is too wide for mask so use disp32
 230     if (format == call32_operand)
 231       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 232     else
 233       code_section()->relocate(inst_mark(), rspec, format);
 234   }
 235   emit_int32(data);
 236 }
 237 
 238 static int encode(Register r) {
 239   int enc = r->encoding();
 240   if (enc >= 8) {
 241     enc -= 8;
 242   }
 243   return enc;
 244 }
 245 
 246 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 247   assert(dst->has_byte_register(), "must have byte register");
 248   assert(isByte(op1) && isByte(op2), "wrong opcode");
 249   assert(isByte(imm8), "not a byte");
 250   assert((op1 & 0x01) == 0, "should be 8bit operation");
 251   emit_int8(op1);
 252   emit_int8(op2 | encode(dst));
 253   emit_int8(imm8);
 254 }
 255 
 256 
 257 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 258   assert(isByte(op1) && isByte(op2), "wrong opcode");
 259   assert((op1 & 0x01) == 1, "should be 32bit operation");
 260   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 261   if (is8bit(imm32)) {
 262     emit_int8(op1 | 0x02); // set sign bit
 263     emit_int8(op2 | encode(dst));
 264     emit_int8(imm32 & 0xFF);
 265   } else {
 266     emit_int8(op1);
 267     emit_int8(op2 | encode(dst));
 268     emit_int32(imm32);
 269   }
 270 }
 271 
 272 // Force generation of a 4 byte immediate value even if it fits into 8bit
 273 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 274   assert(isByte(op1) && isByte(op2), "wrong opcode");
 275   assert((op1 & 0x01) == 1, "should be 32bit operation");
 276   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 277   emit_int8(op1);
 278   emit_int8(op2 | encode(dst));
 279   emit_int32(imm32);
 280 }
 281 
 282 // immediate-to-memory forms
 283 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 284   assert((op1 & 0x01) == 1, "should be 32bit operation");
 285   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 286   if (is8bit(imm32)) {
 287     emit_int8(op1 | 0x02); // set sign bit
 288     emit_operand(rm, adr, 1);
 289     emit_int8(imm32 & 0xFF);
 290   } else {
 291     emit_int8(op1);
 292     emit_operand(rm, adr, 4);
 293     emit_int32(imm32);
 294   }
 295 }
 296 
 297 
 298 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 299   assert(isByte(op1) && isByte(op2), "wrong opcode");
 300   emit_int8(op1);
 301   emit_int8(op2 | encode(dst) << 3 | encode(src));
 302 }
 303 
 304 
 305 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 306                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 307   int mod_idx = 0;
 308   // We will test if the displacement fits the compressed format and if so
 309   // apply the compression to the displacment iff the result is8bit.
 310   if (VM_Version::supports_evex() && is_evex_inst) {
 311     switch (cur_tuple_type) {
 312     case EVEX_FV:
 313       if ((cur_encoding & VEX_W) == VEX_W) {
 314         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 315       } else {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       }
 318       break;
 319 
 320     case EVEX_HV:
 321       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 322       break;
 323 
 324     case EVEX_FVM:
 325       break;
 326 
 327     case EVEX_T1S:
 328       switch (in_size_in_bits) {
 329       case EVEX_8bit:
 330         break;
 331 
 332       case EVEX_16bit:
 333         mod_idx = 1;
 334         break;
 335 
 336       case EVEX_32bit:
 337         mod_idx = 2;
 338         break;
 339 
 340       case EVEX_64bit:
 341         mod_idx = 3;
 342         break;
 343       }
 344       break;
 345 
 346     case EVEX_T1F:
 347     case EVEX_T2:
 348     case EVEX_T4:
 349       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 350       break;
 351 
 352     case EVEX_T8:
 353       break;
 354 
 355     case EVEX_HVM:
 356       break;
 357 
 358     case EVEX_QVM:
 359       break;
 360 
 361     case EVEX_OVM:
 362       break;
 363 
 364     case EVEX_M128:
 365       break;
 366 
 367     case EVEX_DUP:
 368       break;
 369 
 370     default:
 371       assert(0, "no valid evex tuple_table entry");
 372       break;
 373     }
 374 
 375     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 376       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 377       if ((disp % disp_factor) == 0) {
 378         int new_disp = disp / disp_factor;
 379         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 380           disp = new_disp;
 381         }
 382       } else {
 383         return false;
 384       }
 385     }
 386   }
 387   return (-0x80 <= disp && disp < 0x80);
 388 }
 389 
 390 
 391 bool Assembler::emit_compressed_disp_byte(int &disp) {
 392   int mod_idx = 0;
 393   // We will test if the displacement fits the compressed format and if so
 394   // apply the compression to the displacment iff the result is8bit.
 395   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 396     int evex_encoding = _attributes->get_evex_encoding();
 397     int tuple_type = _attributes->get_tuple_type();
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (_attributes->get_input_size()) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     int vector_len = _attributes->get_vector_len();
 463     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 464       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 465       if ((disp % disp_factor) == 0) {
 466         int new_disp = disp / disp_factor;
 467         if (is8bit(new_disp)) {
 468           disp = new_disp;
 469         }
 470       } else {
 471         return false;
 472       }
 473     }
 474   }
 475   return is8bit(disp);
 476 }
 477 
 478 
 479 void Assembler::emit_operand(Register reg, Register base, Register index,
 480                              Address::ScaleFactor scale, int disp,
 481                              RelocationHolder const& rspec,
 482                              int rip_relative_correction) {
 483   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 484 
 485   // Encode the registers as needed in the fields they are used in
 486 
 487   int regenc = encode(reg) << 3;
 488   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 489   int baseenc = base->is_valid() ? encode(base) : 0;
 490 
 491   if (base->is_valid()) {
 492     if (index->is_valid()) {
 493       assert(scale != Address::no_scale, "inconsistent address");
 494       // [base + index*scale + disp]
 495       if (disp == 0 && rtype == relocInfo::none  &&
 496           base != rbp LP64_ONLY(&& base != r13)) {
 497         // [base + index*scale]
 498         // [00 reg 100][ss index base]
 499         assert(index != rsp, "illegal addressing mode");
 500         emit_int8(0x04 | regenc);
 501         emit_int8(scale << 6 | indexenc | baseenc);
 502       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 503         // [base + index*scale + imm8]
 504         // [01 reg 100][ss index base] imm8
 505         assert(index != rsp, "illegal addressing mode");
 506         emit_int8(0x44 | regenc);
 507         emit_int8(scale << 6 | indexenc | baseenc);
 508         emit_int8(disp & 0xFF);
 509       } else {
 510         // [base + index*scale + disp32]
 511         // [10 reg 100][ss index base] disp32
 512         assert(index != rsp, "illegal addressing mode");
 513         emit_int8(0x84 | regenc);
 514         emit_int8(scale << 6 | indexenc | baseenc);
 515         emit_data(disp, rspec, disp32_operand);
 516       }
 517     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 518       // [rsp + disp]
 519       if (disp == 0 && rtype == relocInfo::none) {
 520         // [rsp]
 521         // [00 reg 100][00 100 100]
 522         emit_int8(0x04 | regenc);
 523         emit_int8(0x24);
 524       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 525         // [rsp + imm8]
 526         // [01 reg 100][00 100 100] disp8
 527         emit_int8(0x44 | regenc);
 528         emit_int8(0x24);
 529         emit_int8(disp & 0xFF);
 530       } else {
 531         // [rsp + imm32]
 532         // [10 reg 100][00 100 100] disp32
 533         emit_int8(0x84 | regenc);
 534         emit_int8(0x24);
 535         emit_data(disp, rspec, disp32_operand);
 536       }
 537     } else {
 538       // [base + disp]
 539       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 540       if (disp == 0 && rtype == relocInfo::none &&
 541           base != rbp LP64_ONLY(&& base != r13)) {
 542         // [base]
 543         // [00 reg base]
 544         emit_int8(0x00 | regenc | baseenc);
 545       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 546         // [base + disp8]
 547         // [01 reg base] disp8
 548         emit_int8(0x40 | regenc | baseenc);
 549         emit_int8(disp & 0xFF);
 550       } else {
 551         // [base + disp32]
 552         // [10 reg base] disp32
 553         emit_int8(0x80 | regenc | baseenc);
 554         emit_data(disp, rspec, disp32_operand);
 555       }
 556     }
 557   } else {
 558     if (index->is_valid()) {
 559       assert(scale != Address::no_scale, "inconsistent address");
 560       // [index*scale + disp]
 561       // [00 reg 100][ss index 101] disp32
 562       assert(index != rsp, "illegal addressing mode");
 563       emit_int8(0x04 | regenc);
 564       emit_int8(scale << 6 | indexenc | 0x05);
 565       emit_data(disp, rspec, disp32_operand);
 566     } else if (rtype != relocInfo::none ) {
 567       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 568       // [00 000 101] disp32
 569 
 570       emit_int8(0x05 | regenc);
 571       // Note that the RIP-rel. correction applies to the generated
 572       // disp field, but _not_ to the target address in the rspec.
 573 
 574       // disp was created by converting the target address minus the pc
 575       // at the start of the instruction. That needs more correction here.
 576       // intptr_t disp = target - next_ip;
 577       assert(inst_mark() != NULL, "must be inside InstructionMark");
 578       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 579       int64_t adjusted = disp;
 580       // Do rip-rel adjustment for 64bit
 581       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 582       assert(is_simm32(adjusted),
 583              "must be 32bit offset (RIP relative address)");
 584       emit_data((int32_t) adjusted, rspec, disp32_operand);
 585 
 586     } else {
 587       // 32bit never did this, did everything as the rip-rel/disp code above
 588       // [disp] ABSOLUTE
 589       // [00 reg 100][00 100 101] disp32
 590       emit_int8(0x04 | regenc);
 591       emit_int8(0x25);
 592       emit_data(disp, rspec, disp32_operand);
 593     }
 594   }
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 void Assembler::emit_operand(XMMRegister reg, Register base, XMMRegister index,
 612                              Address::ScaleFactor scale, int disp,
 613                              RelocationHolder const& rspec) {
 614   if (UseAVX > 2) {
 615     int xreg_enc = reg->encoding();
 616     int xmmindex_enc = index->encoding();
 617     XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 618     XMMRegister new_index = as_XMMRegister(xmmindex_enc & 0xf);
 619     emit_operand((Register)new_reg, base, (Register)new_index, scale, disp, rspec);
 620   } else {
 621     emit_operand((Register)reg, base, (Register)index, scale, disp, rspec);
 622   }
 623 }
 624 
 625 
 626 // Secret local extension to Assembler::WhichOperand:
 627 #define end_pc_operand (_WhichOperand_limit)
 628 
 629 address Assembler::locate_operand(address inst, WhichOperand which) {
 630   // Decode the given instruction, and return the address of
 631   // an embedded 32-bit operand word.
 632 
 633   // If "which" is disp32_operand, selects the displacement portion
 634   // of an effective address specifier.
 635   // If "which" is imm64_operand, selects the trailing immediate constant.
 636   // If "which" is call32_operand, selects the displacement of a call or jump.
 637   // Caller is responsible for ensuring that there is such an operand,
 638   // and that it is 32/64 bits wide.
 639 
 640   // If "which" is end_pc_operand, find the end of the instruction.
 641 
 642   address ip = inst;
 643   bool is_64bit = false;
 644 
 645   debug_only(bool has_disp32 = false);
 646   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 647 
 648   again_after_prefix:
 649   switch (0xFF & *ip++) {
 650 
 651   // These convenience macros generate groups of "case" labels for the switch.
 652 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 653 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 654              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 655 #define REP16(x) REP8((x)+0): \
 656               case REP8((x)+8)
 657 
 658   case CS_segment:
 659   case SS_segment:
 660   case DS_segment:
 661   case ES_segment:
 662   case FS_segment:
 663   case GS_segment:
 664     // Seems dubious
 665     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 666     assert(ip == inst+1, "only one prefix allowed");
 667     goto again_after_prefix;
 668 
 669   case 0x67:
 670   case REX:
 671   case REX_B:
 672   case REX_X:
 673   case REX_XB:
 674   case REX_R:
 675   case REX_RB:
 676   case REX_RX:
 677   case REX_RXB:
 678     NOT_LP64(assert(false, "64bit prefixes"));
 679     goto again_after_prefix;
 680 
 681   case REX_W:
 682   case REX_WB:
 683   case REX_WX:
 684   case REX_WXB:
 685   case REX_WR:
 686   case REX_WRB:
 687   case REX_WRX:
 688   case REX_WRXB:
 689     NOT_LP64(assert(false, "64bit prefixes"));
 690     is_64bit = true;
 691     goto again_after_prefix;
 692 
 693   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 694   case 0x88: // movb a, r
 695   case 0x89: // movl a, r
 696   case 0x8A: // movb r, a
 697   case 0x8B: // movl r, a
 698   case 0x8F: // popl a
 699     debug_only(has_disp32 = true);
 700     break;
 701 
 702   case 0x68: // pushq #32
 703     if (which == end_pc_operand) {
 704       return ip + 4;
 705     }
 706     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 707     return ip;                  // not produced by emit_operand
 708 
 709   case 0x66: // movw ... (size prefix)
 710     again_after_size_prefix2:
 711     switch (0xFF & *ip++) {
 712     case REX:
 713     case REX_B:
 714     case REX_X:
 715     case REX_XB:
 716     case REX_R:
 717     case REX_RB:
 718     case REX_RX:
 719     case REX_RXB:
 720     case REX_W:
 721     case REX_WB:
 722     case REX_WX:
 723     case REX_WXB:
 724     case REX_WR:
 725     case REX_WRB:
 726     case REX_WRX:
 727     case REX_WRXB:
 728       NOT_LP64(assert(false, "64bit prefix found"));
 729       goto again_after_size_prefix2;
 730     case 0x8B: // movw r, a
 731     case 0x89: // movw a, r
 732       debug_only(has_disp32 = true);
 733       break;
 734     case 0xC7: // movw a, #16
 735       debug_only(has_disp32 = true);
 736       tail_size = 2;  // the imm16
 737       break;
 738     case 0x0F: // several SSE/SSE2 variants
 739       ip--;    // reparse the 0x0F
 740       goto again_after_prefix;
 741     default:
 742       ShouldNotReachHere();
 743     }
 744     break;
 745 
 746   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 747     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 748     // these asserts are somewhat nonsensical
 749 #ifndef _LP64
 750     assert(which == imm_operand || which == disp32_operand,
 751            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 752 #else
 753     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 754            which == narrow_oop_operand && !is_64bit,
 755            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 756 #endif // _LP64
 757     return ip;
 758 
 759   case 0x69: // imul r, a, #32
 760   case 0xC7: // movl a, #32(oop?)
 761     tail_size = 4;
 762     debug_only(has_disp32 = true); // has both kinds of operands!
 763     break;
 764 
 765   case 0x0F: // movx..., etc.
 766     switch (0xFF & *ip++) {
 767     case 0x3A: // pcmpestri
 768       tail_size = 1;
 769     case 0x38: // ptest, pmovzxbw
 770       ip++; // skip opcode
 771       debug_only(has_disp32 = true); // has both kinds of operands!
 772       break;
 773 
 774     case 0x70: // pshufd r, r/a, #8
 775       debug_only(has_disp32 = true); // has both kinds of operands!
 776     case 0x73: // psrldq r, #8
 777       tail_size = 1;
 778       break;
 779 
 780     case 0x12: // movlps
 781     case 0x28: // movaps
 782     case 0x2E: // ucomiss
 783     case 0x2F: // comiss
 784     case 0x54: // andps
 785     case 0x55: // andnps
 786     case 0x56: // orps
 787     case 0x57: // xorps
 788     case 0x58: // addpd
 789     case 0x59: // mulpd
 790     case 0x6E: // movd
 791     case 0x7E: // movd
 792     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 793     case 0xFE: // paddd
 794       debug_only(has_disp32 = true);
 795       break;
 796 
 797     case 0xAD: // shrd r, a, %cl
 798     case 0xAF: // imul r, a
 799     case 0xBE: // movsbl r, a (movsxb)
 800     case 0xBF: // movswl r, a (movsxw)
 801     case 0xB6: // movzbl r, a (movzxb)
 802     case 0xB7: // movzwl r, a (movzxw)
 803     case REP16(0x40): // cmovl cc, r, a
 804     case 0xB0: // cmpxchgb
 805     case 0xB1: // cmpxchg
 806     case 0xC1: // xaddl
 807     case 0xC7: // cmpxchg8
 808     case REP16(0x90): // setcc a
 809       debug_only(has_disp32 = true);
 810       // fall out of the switch to decode the address
 811       break;
 812 
 813     case 0xC4: // pinsrw r, a, #8
 814       debug_only(has_disp32 = true);
 815     case 0xC5: // pextrw r, r, #8
 816       tail_size = 1;  // the imm8
 817       break;
 818 
 819     case 0xAC: // shrd r, a, #8
 820       debug_only(has_disp32 = true);
 821       tail_size = 1;  // the imm8
 822       break;
 823 
 824     case REP16(0x80): // jcc rdisp32
 825       if (which == end_pc_operand)  return ip + 4;
 826       assert(which == call32_operand, "jcc has no disp32 or imm");
 827       return ip;
 828     default:
 829       ShouldNotReachHere();
 830     }
 831     break;
 832 
 833   case 0x81: // addl a, #32; addl r, #32
 834     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 835     // on 32bit in the case of cmpl, the imm might be an oop
 836     tail_size = 4;
 837     debug_only(has_disp32 = true); // has both kinds of operands!
 838     break;
 839 
 840   case 0x83: // addl a, #8; addl r, #8
 841     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 842     debug_only(has_disp32 = true); // has both kinds of operands!
 843     tail_size = 1;
 844     break;
 845 
 846   case 0x9B:
 847     switch (0xFF & *ip++) {
 848     case 0xD9: // fnstcw a
 849       debug_only(has_disp32 = true);
 850       break;
 851     default:
 852       ShouldNotReachHere();
 853     }
 854     break;
 855 
 856   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 857   case REP4(0x10): // adc...
 858   case REP4(0x20): // and...
 859   case REP4(0x30): // xor...
 860   case REP4(0x08): // or...
 861   case REP4(0x18): // sbb...
 862   case REP4(0x28): // sub...
 863   case 0xF7: // mull a
 864   case 0x8D: // lea r, a
 865   case 0x87: // xchg r, a
 866   case REP4(0x38): // cmp...
 867   case 0x85: // test r, a
 868     debug_only(has_disp32 = true); // has both kinds of operands!
 869     break;
 870 
 871   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 872   case 0xC6: // movb a, #8
 873   case 0x80: // cmpb a, #8
 874   case 0x6B: // imul r, a, #8
 875     debug_only(has_disp32 = true); // has both kinds of operands!
 876     tail_size = 1; // the imm8
 877     break;
 878 
 879   case 0xC4: // VEX_3bytes
 880   case 0xC5: // VEX_2bytes
 881     assert((UseAVX > 0), "shouldn't have VEX prefix");
 882     assert(ip == inst+1, "no prefixes allowed");
 883     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 884     // but they have prefix 0x0F and processed when 0x0F processed above.
 885     //
 886     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 887     // instructions (these instructions are not supported in 64-bit mode).
 888     // To distinguish them bits [7:6] are set in the VEX second byte since
 889     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 890     // those VEX bits REX and vvvv bits are inverted.
 891     //
 892     // Fortunately C2 doesn't generate these instructions so we don't need
 893     // to check for them in product version.
 894 
 895     // Check second byte
 896     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 897 
 898     int vex_opcode;
 899     // First byte
 900     if ((0xFF & *inst) == VEX_3bytes) {
 901       vex_opcode = VEX_OPCODE_MASK & *ip;
 902       ip++; // third byte
 903       is_64bit = ((VEX_W & *ip) == VEX_W);
 904     } else {
 905       vex_opcode = VEX_OPCODE_0F;
 906     }
 907     ip++; // opcode
 908     // To find the end of instruction (which == end_pc_operand).
 909     switch (vex_opcode) {
 910       case VEX_OPCODE_0F:
 911         switch (0xFF & *ip) {
 912         case 0x70: // pshufd r, r/a, #8
 913         case 0x71: // ps[rl|ra|ll]w r, #8
 914         case 0x72: // ps[rl|ra|ll]d r, #8
 915         case 0x73: // ps[rl|ra|ll]q r, #8
 916         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 917         case 0xC4: // pinsrw r, r, r/a, #8
 918         case 0xC5: // pextrw r/a, r, #8
 919         case 0xC6: // shufp[s|d] r, r, r/a, #8
 920           tail_size = 1;  // the imm8
 921           break;
 922         }
 923         break;
 924       case VEX_OPCODE_0F_3A:
 925         tail_size = 1;
 926         break;
 927     }
 928     ip++; // skip opcode
 929     debug_only(has_disp32 = true); // has both kinds of operands!
 930     break;
 931 
 932   case 0x62: // EVEX_4bytes
 933     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 934     assert(ip == inst+1, "no prefixes allowed");
 935     // no EVEX collisions, all instructions that have 0x62 opcodes
 936     // have EVEX versions and are subopcodes of 0x66
 937     ip++; // skip P0 and exmaine W in P1
 938     is_64bit = ((VEX_W & *ip) == VEX_W);
 939     ip++; // move to P2
 940     ip++; // skip P2, move to opcode
 941     // To find the end of instruction (which == end_pc_operand).
 942     switch (0xFF & *ip) {
 943     case 0x22: // pinsrd r, r/a, #8
 944     case 0x61: // pcmpestri r, r/a, #8
 945     case 0x70: // pshufd r, r/a, #8
 946     case 0x73: // psrldq r, #8
 947       tail_size = 1;  // the imm8
 948       break;
 949     default:
 950       break;
 951     }
 952     ip++; // skip opcode
 953     debug_only(has_disp32 = true); // has both kinds of operands!
 954     break;
 955 
 956   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 957   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 958   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 959   case 0xDD: // fld_d a; fst_d a; fstp_d a
 960   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 961   case 0xDF: // fild_d a; fistp_d a
 962   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 963   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 964   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 965     debug_only(has_disp32 = true);
 966     break;
 967 
 968   case 0xE8: // call rdisp32
 969   case 0xE9: // jmp  rdisp32
 970     if (which == end_pc_operand)  return ip + 4;
 971     assert(which == call32_operand, "call has no disp32 or imm");
 972     return ip;
 973 
 974   case 0xF0:                    // Lock
 975     assert(os::is_MP(), "only on MP");
 976     goto again_after_prefix;
 977 
 978   case 0xF3:                    // For SSE
 979   case 0xF2:                    // For SSE2
 980     switch (0xFF & *ip++) {
 981     case REX:
 982     case REX_B:
 983     case REX_X:
 984     case REX_XB:
 985     case REX_R:
 986     case REX_RB:
 987     case REX_RX:
 988     case REX_RXB:
 989     case REX_W:
 990     case REX_WB:
 991     case REX_WX:
 992     case REX_WXB:
 993     case REX_WR:
 994     case REX_WRB:
 995     case REX_WRX:
 996     case REX_WRXB:
 997       NOT_LP64(assert(false, "found 64bit prefix"));
 998       ip++;
 999     default:
1000       ip++;
1001     }
1002     debug_only(has_disp32 = true); // has both kinds of operands!
1003     break;
1004 
1005   default:
1006     ShouldNotReachHere();
1007 
1008 #undef REP8
1009 #undef REP16
1010   }
1011 
1012   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1013 #ifdef _LP64
1014   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1015 #else
1016   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1017   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1018 #endif // LP64
1019   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1020 
1021   // parse the output of emit_operand
1022   int op2 = 0xFF & *ip++;
1023   int base = op2 & 0x07;
1024   int op3 = -1;
1025   const int b100 = 4;
1026   const int b101 = 5;
1027   if (base == b100 && (op2 >> 6) != 3) {
1028     op3 = 0xFF & *ip++;
1029     base = op3 & 0x07;   // refetch the base
1030   }
1031   // now ip points at the disp (if any)
1032 
1033   switch (op2 >> 6) {
1034   case 0:
1035     // [00 reg  100][ss index base]
1036     // [00 reg  100][00   100  esp]
1037     // [00 reg base]
1038     // [00 reg  100][ss index  101][disp32]
1039     // [00 reg  101]               [disp32]
1040 
1041     if (base == b101) {
1042       if (which == disp32_operand)
1043         return ip;              // caller wants the disp32
1044       ip += 4;                  // skip the disp32
1045     }
1046     break;
1047 
1048   case 1:
1049     // [01 reg  100][ss index base][disp8]
1050     // [01 reg  100][00   100  esp][disp8]
1051     // [01 reg base]               [disp8]
1052     ip += 1;                    // skip the disp8
1053     break;
1054 
1055   case 2:
1056     // [10 reg  100][ss index base][disp32]
1057     // [10 reg  100][00   100  esp][disp32]
1058     // [10 reg base]               [disp32]
1059     if (which == disp32_operand)
1060       return ip;                // caller wants the disp32
1061     ip += 4;                    // skip the disp32
1062     break;
1063 
1064   case 3:
1065     // [11 reg base]  (not a memory addressing mode)
1066     break;
1067   }
1068 
1069   if (which == end_pc_operand) {
1070     return ip + tail_size;
1071   }
1072 
1073 #ifdef _LP64
1074   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1075 #else
1076   assert(which == imm_operand, "instruction has only an imm field");
1077 #endif // LP64
1078   return ip;
1079 }
1080 
1081 address Assembler::locate_next_instruction(address inst) {
1082   // Secretly share code with locate_operand:
1083   return locate_operand(inst, end_pc_operand);
1084 }
1085 
1086 
1087 #ifdef ASSERT
1088 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1089   address inst = inst_mark();
1090   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1091   address opnd;
1092 
1093   Relocation* r = rspec.reloc();
1094   if (r->type() == relocInfo::none) {
1095     return;
1096   } else if (r->is_call() || format == call32_operand) {
1097     // assert(format == imm32_operand, "cannot specify a nonzero format");
1098     opnd = locate_operand(inst, call32_operand);
1099   } else if (r->is_data()) {
1100     assert(format == imm_operand || format == disp32_operand
1101            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1102     opnd = locate_operand(inst, (WhichOperand)format);
1103   } else {
1104     assert(format == imm_operand, "cannot specify a format");
1105     return;
1106   }
1107   assert(opnd == pc(), "must put operand where relocs can find it");
1108 }
1109 #endif // ASSERT
1110 
1111 void Assembler::emit_operand32(Register reg, Address adr) {
1112   assert(reg->encoding() < 8, "no extended registers");
1113   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1114   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1115                adr._rspec);
1116 }
1117 
1118 void Assembler::emit_operand(Register reg, Address adr,
1119                              int rip_relative_correction) {
1120   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1121                adr._rspec,
1122                rip_relative_correction);
1123 }
1124 
1125 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1126     if (adr.isxmmindex()) {
1127        emit_operand(reg, adr._base, adr._xmmindex, adr._scale, adr._disp, adr._rspec);
1128     } else {
1129        emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1130        adr._rspec);
1131     }
1132 }
1133 
1134 // MMX operations
1135 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1136   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1137   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1138 }
1139 
1140 // work around gcc (3.2.1-7a) bug
1141 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1142   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1143   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1144 }
1145 
1146 
1147 void Assembler::emit_farith(int b1, int b2, int i) {
1148   assert(isByte(b1) && isByte(b2), "wrong opcode");
1149   assert(0 <= i &&  i < 8, "illegal stack offset");
1150   emit_int8(b1);
1151   emit_int8(b2 + i);
1152 }
1153 
1154 
1155 // Now the Assembler instructions (identical for 32/64 bits)
1156 
1157 void Assembler::adcl(Address dst, int32_t imm32) {
1158   InstructionMark im(this);
1159   prefix(dst);
1160   emit_arith_operand(0x81, rdx, dst, imm32);
1161 }
1162 
1163 void Assembler::adcl(Address dst, Register src) {
1164   InstructionMark im(this);
1165   prefix(dst, src);
1166   emit_int8(0x11);
1167   emit_operand(src, dst);
1168 }
1169 
1170 void Assembler::adcl(Register dst, int32_t imm32) {
1171   prefix(dst);
1172   emit_arith(0x81, 0xD0, dst, imm32);
1173 }
1174 
1175 void Assembler::adcl(Register dst, Address src) {
1176   InstructionMark im(this);
1177   prefix(src, dst);
1178   emit_int8(0x13);
1179   emit_operand(dst, src);
1180 }
1181 
1182 void Assembler::adcl(Register dst, Register src) {
1183   (void) prefix_and_encode(dst->encoding(), src->encoding());
1184   emit_arith(0x13, 0xC0, dst, src);
1185 }
1186 
1187 void Assembler::addl(Address dst, int32_t imm32) {
1188   InstructionMark im(this);
1189   prefix(dst);
1190   emit_arith_operand(0x81, rax, dst, imm32);
1191 }
1192 
1193 void Assembler::addb(Address dst, int imm8) {
1194   InstructionMark im(this);
1195   prefix(dst);
1196   emit_int8((unsigned char)0x80);
1197   emit_operand(rax, dst, 1);
1198   emit_int8(imm8);
1199 }
1200 
1201 void Assembler::addw(Address dst, int imm16) {
1202   InstructionMark im(this);
1203   emit_int8(0x66);
1204   prefix(dst);
1205   emit_int8((unsigned char)0x81);
1206   emit_operand(rax, dst, 2);
1207   emit_int16(imm16);
1208 }
1209 
1210 void Assembler::addl(Address dst, Register src) {
1211   InstructionMark im(this);
1212   prefix(dst, src);
1213   emit_int8(0x01);
1214   emit_operand(src, dst);
1215 }
1216 
1217 void Assembler::addl(Register dst, int32_t imm32) {
1218   prefix(dst);
1219   emit_arith(0x81, 0xC0, dst, imm32);
1220 }
1221 
1222 void Assembler::addl(Register dst, Address src) {
1223   InstructionMark im(this);
1224   prefix(src, dst);
1225   emit_int8(0x03);
1226   emit_operand(dst, src);
1227 }
1228 
1229 void Assembler::addl(Register dst, Register src) {
1230   (void) prefix_and_encode(dst->encoding(), src->encoding());
1231   emit_arith(0x03, 0xC0, dst, src);
1232 }
1233 
1234 void Assembler::addr_nop_4() {
1235   assert(UseAddressNop, "no CPU support");
1236   // 4 bytes: NOP DWORD PTR [EAX+0]
1237   emit_int8(0x0F);
1238   emit_int8(0x1F);
1239   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1240   emit_int8(0);    // 8-bits offset (1 byte)
1241 }
1242 
1243 void Assembler::addr_nop_5() {
1244   assert(UseAddressNop, "no CPU support");
1245   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1246   emit_int8(0x0F);
1247   emit_int8(0x1F);
1248   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1249   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1250   emit_int8(0);    // 8-bits offset (1 byte)
1251 }
1252 
1253 void Assembler::addr_nop_7() {
1254   assert(UseAddressNop, "no CPU support");
1255   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1256   emit_int8(0x0F);
1257   emit_int8(0x1F);
1258   emit_int8((unsigned char)0x80);
1259                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1260   emit_int32(0);   // 32-bits offset (4 bytes)
1261 }
1262 
1263 void Assembler::addr_nop_8() {
1264   assert(UseAddressNop, "no CPU support");
1265   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1266   emit_int8(0x0F);
1267   emit_int8(0x1F);
1268   emit_int8((unsigned char)0x84);
1269                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1270   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1271   emit_int32(0);   // 32-bits offset (4 bytes)
1272 }
1273 
1274 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1275   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1276   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1277   attributes.set_rex_vex_w_reverted();
1278   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1279   emit_int8(0x58);
1280   emit_int8((unsigned char)(0xC0 | encode));
1281 }
1282 
1283 void Assembler::addsd(XMMRegister dst, Address src) {
1284   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1285   InstructionMark im(this);
1286   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1287   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1288   attributes.set_rex_vex_w_reverted();
1289   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1290   emit_int8(0x58);
1291   emit_operand(dst, src);
1292 }
1293 
1294 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1295   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1296   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1297   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1298   emit_int8(0x58);
1299   emit_int8((unsigned char)(0xC0 | encode));
1300 }
1301 
1302 void Assembler::addss(XMMRegister dst, Address src) {
1303   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1304   InstructionMark im(this);
1305   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1306   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1307   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1308   emit_int8(0x58);
1309   emit_operand(dst, src);
1310 }
1311 
1312 void Assembler::aesdec(XMMRegister dst, Address src) {
1313   assert(VM_Version::supports_aes(), "");
1314   InstructionMark im(this);
1315   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1316   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1317   emit_int8((unsigned char)0xDE);
1318   emit_operand(dst, src);
1319 }
1320 
1321 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1322   assert(VM_Version::supports_aes(), "");
1323   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1324   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1325   emit_int8((unsigned char)0xDE);
1326   emit_int8(0xC0 | encode);
1327 }
1328 
1329 void Assembler::vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1330   assert(VM_Version::supports_vaes(), "");
1331   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1332   attributes.set_is_evex_instruction();
1333   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1334   emit_int8((unsigned char)0xDE);
1335   emit_int8((unsigned char)(0xC0 | encode));
1336 }
1337 
1338 
1339 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1340   assert(VM_Version::supports_aes(), "");
1341   InstructionMark im(this);
1342   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1343   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1344   emit_int8((unsigned char)0xDF);
1345   emit_operand(dst, src);
1346 }
1347 
1348 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1349   assert(VM_Version::supports_aes(), "");
1350   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1351   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1352   emit_int8((unsigned char)0xDF);
1353   emit_int8((unsigned char)(0xC0 | encode));
1354 }
1355 
1356 void Assembler::vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1357   assert(VM_Version::supports_vaes(), "");
1358   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1359   attributes.set_is_evex_instruction();
1360   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1361   emit_int8((unsigned char)0xDF);
1362   emit_int8((unsigned char)(0xC0 | encode));
1363 }
1364 
1365 void Assembler::aesenc(XMMRegister dst, Address src) {
1366   assert(VM_Version::supports_aes(), "");
1367   InstructionMark im(this);
1368   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1369   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1370   emit_int8((unsigned char)0xDC);
1371   emit_operand(dst, src);
1372 }
1373 
1374 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1375   assert(VM_Version::supports_aes(), "");
1376   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1377   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1378   emit_int8((unsigned char)0xDC);
1379   emit_int8(0xC0 | encode);
1380 }
1381 
1382 void Assembler::aesenclast(XMMRegister dst, Address src) {
1383   assert(VM_Version::supports_aes(), "");
1384   InstructionMark im(this);
1385   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1386   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1387   emit_int8((unsigned char)0xDD);
1388   emit_operand(dst, src);
1389 }
1390 
1391 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1392   assert(VM_Version::supports_aes(), "");
1393   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1394   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1395   emit_int8((unsigned char)0xDD);
1396   emit_int8((unsigned char)(0xC0 | encode));
1397 }
1398 
1399 void Assembler::andl(Address dst, int32_t imm32) {
1400   InstructionMark im(this);
1401   prefix(dst);
1402   emit_int8((unsigned char)0x81);
1403   emit_operand(rsp, dst, 4);
1404   emit_int32(imm32);
1405 }
1406 
1407 void Assembler::andl(Register dst, int32_t imm32) {
1408   prefix(dst);
1409   emit_arith(0x81, 0xE0, dst, imm32);
1410 }
1411 
1412 void Assembler::andl(Register dst, Address src) {
1413   InstructionMark im(this);
1414   prefix(src, dst);
1415   emit_int8(0x23);
1416   emit_operand(dst, src);
1417 }
1418 
1419 void Assembler::andl(Register dst, Register src) {
1420   (void) prefix_and_encode(dst->encoding(), src->encoding());
1421   emit_arith(0x23, 0xC0, dst, src);
1422 }
1423 
1424 void Assembler::andnl(Register dst, Register src1, Register src2) {
1425   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1426   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1427   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1428   emit_int8((unsigned char)0xF2);
1429   emit_int8((unsigned char)(0xC0 | encode));
1430 }
1431 
1432 void Assembler::andnl(Register dst, Register src1, Address src2) {
1433   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1434   InstructionMark im(this);
1435   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1436   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1437   emit_int8((unsigned char)0xF2);
1438   emit_operand(dst, src2);
1439 }
1440 
1441 void Assembler::bsfl(Register dst, Register src) {
1442   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1443   emit_int8(0x0F);
1444   emit_int8((unsigned char)0xBC);
1445   emit_int8((unsigned char)(0xC0 | encode));
1446 }
1447 
1448 void Assembler::bsrl(Register dst, Register src) {
1449   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1450   emit_int8(0x0F);
1451   emit_int8((unsigned char)0xBD);
1452   emit_int8((unsigned char)(0xC0 | encode));
1453 }
1454 
1455 void Assembler::bswapl(Register reg) { // bswap
1456   int encode = prefix_and_encode(reg->encoding());
1457   emit_int8(0x0F);
1458   emit_int8((unsigned char)(0xC8 | encode));
1459 }
1460 
1461 void Assembler::blsil(Register dst, Register src) {
1462   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1463   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1464   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1465   emit_int8((unsigned char)0xF3);
1466   emit_int8((unsigned char)(0xC0 | encode));
1467 }
1468 
1469 void Assembler::blsil(Register dst, Address src) {
1470   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1471   InstructionMark im(this);
1472   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1473   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1474   emit_int8((unsigned char)0xF3);
1475   emit_operand(rbx, src);
1476 }
1477 
1478 void Assembler::blsmskl(Register dst, Register src) {
1479   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1480   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1481   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1482   emit_int8((unsigned char)0xF3);
1483   emit_int8((unsigned char)(0xC0 | encode));
1484 }
1485 
1486 void Assembler::blsmskl(Register dst, Address src) {
1487   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1488   InstructionMark im(this);
1489   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1490   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1491   emit_int8((unsigned char)0xF3);
1492   emit_operand(rdx, src);
1493 }
1494 
1495 void Assembler::blsrl(Register dst, Register src) {
1496   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1497   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1498   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1499   emit_int8((unsigned char)0xF3);
1500   emit_int8((unsigned char)(0xC0 | encode));
1501 }
1502 
1503 void Assembler::blsrl(Register dst, Address src) {
1504   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1505   InstructionMark im(this);
1506   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1507   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1508   emit_int8((unsigned char)0xF3);
1509   emit_operand(rcx, src);
1510 }
1511 
1512 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1513   // suspect disp32 is always good
1514   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1515 
1516   if (L.is_bound()) {
1517     const int long_size = 5;
1518     int offs = (int)( target(L) - pc() );
1519     assert(offs <= 0, "assembler error");
1520     InstructionMark im(this);
1521     // 1110 1000 #32-bit disp
1522     emit_int8((unsigned char)0xE8);
1523     emit_data(offs - long_size, rtype, operand);
1524   } else {
1525     InstructionMark im(this);
1526     // 1110 1000 #32-bit disp
1527     L.add_patch_at(code(), locator());
1528 
1529     emit_int8((unsigned char)0xE8);
1530     emit_data(int(0), rtype, operand);
1531   }
1532 }
1533 
1534 void Assembler::call(Register dst) {
1535   int encode = prefix_and_encode(dst->encoding());
1536   emit_int8((unsigned char)0xFF);
1537   emit_int8((unsigned char)(0xD0 | encode));
1538 }
1539 
1540 
1541 void Assembler::call(Address adr) {
1542   InstructionMark im(this);
1543   prefix(adr);
1544   emit_int8((unsigned char)0xFF);
1545   emit_operand(rdx, adr);
1546 }
1547 
1548 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1549   InstructionMark im(this);
1550   emit_int8((unsigned char)0xE8);
1551   intptr_t disp = entry - (pc() + sizeof(int32_t));
1552   // Entry is NULL in case of a scratch emit.
1553   assert(entry == NULL || is_simm32(disp), "disp=" INTPTR_FORMAT " must be 32bit offset (call2)", disp);
1554   // Technically, should use call32_operand, but this format is
1555   // implied by the fact that we're emitting a call instruction.
1556 
1557   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1558   emit_data((int) disp, rspec, operand);
1559 }
1560 
1561 void Assembler::cdql() {
1562   emit_int8((unsigned char)0x99);
1563 }
1564 
1565 void Assembler::cld() {
1566   emit_int8((unsigned char)0xFC);
1567 }
1568 
1569 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1570   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1571   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1572   emit_int8(0x0F);
1573   emit_int8(0x40 | cc);
1574   emit_int8((unsigned char)(0xC0 | encode));
1575 }
1576 
1577 
1578 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1579   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1580   prefix(src, dst);
1581   emit_int8(0x0F);
1582   emit_int8(0x40 | cc);
1583   emit_operand(dst, src);
1584 }
1585 
1586 void Assembler::cmpb(Address dst, int imm8) {
1587   InstructionMark im(this);
1588   prefix(dst);
1589   emit_int8((unsigned char)0x80);
1590   emit_operand(rdi, dst, 1);
1591   emit_int8(imm8);
1592 }
1593 
1594 void Assembler::cmpl(Address dst, int32_t imm32) {
1595   InstructionMark im(this);
1596   prefix(dst);
1597   emit_int8((unsigned char)0x81);
1598   emit_operand(rdi, dst, 4);
1599   emit_int32(imm32);
1600 }
1601 
1602 void Assembler::cmpl(Register dst, int32_t imm32) {
1603   prefix(dst);
1604   emit_arith(0x81, 0xF8, dst, imm32);
1605 }
1606 
1607 void Assembler::cmpl(Register dst, Register src) {
1608   (void) prefix_and_encode(dst->encoding(), src->encoding());
1609   emit_arith(0x3B, 0xC0, dst, src);
1610 }
1611 
1612 void Assembler::cmpl(Register dst, Address  src) {
1613   InstructionMark im(this);
1614   prefix(src, dst);
1615   emit_int8((unsigned char)0x3B);
1616   emit_operand(dst, src);
1617 }
1618 
1619 void Assembler::cmpw(Address dst, int imm16) {
1620   InstructionMark im(this);
1621   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1622   emit_int8(0x66);
1623   emit_int8((unsigned char)0x81);
1624   emit_operand(rdi, dst, 2);
1625   emit_int16(imm16);
1626 }
1627 
1628 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1629 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1630 // The ZF is set if the compared values were equal, and cleared otherwise.
1631 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1632   InstructionMark im(this);
1633   prefix(adr, reg);
1634   emit_int8(0x0F);
1635   emit_int8((unsigned char)0xB1);
1636   emit_operand(reg, adr);
1637 }
1638 
1639 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1640 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1641 // The ZF is set if the compared values were equal, and cleared otherwise.
1642 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1643   InstructionMark im(this);
1644   prefix(adr, reg, true);
1645   emit_int8(0x0F);
1646   emit_int8((unsigned char)0xB0);
1647   emit_operand(reg, adr);
1648 }
1649 
1650 void Assembler::comisd(XMMRegister dst, Address src) {
1651   // NOTE: dbx seems to decode this as comiss even though the
1652   // 0x66 is there. Strangly ucomisd comes out correct
1653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1654   InstructionMark im(this);
1655   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1656   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1657   attributes.set_rex_vex_w_reverted();
1658   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1659   emit_int8(0x2F);
1660   emit_operand(dst, src);
1661 }
1662 
1663 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1664   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1665   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1666   attributes.set_rex_vex_w_reverted();
1667   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1668   emit_int8(0x2F);
1669   emit_int8((unsigned char)(0xC0 | encode));
1670 }
1671 
1672 void Assembler::comiss(XMMRegister dst, Address src) {
1673   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1674   InstructionMark im(this);
1675   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1676   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1677   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1678   emit_int8(0x2F);
1679   emit_operand(dst, src);
1680 }
1681 
1682 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1683   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1684   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1685   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1686   emit_int8(0x2F);
1687   emit_int8((unsigned char)(0xC0 | encode));
1688 }
1689 
1690 void Assembler::cpuid() {
1691   emit_int8(0x0F);
1692   emit_int8((unsigned char)0xA2);
1693 }
1694 
1695 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1696 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1697 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1698 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1699 //
1700 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1701 //
1702 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1703 //
1704 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1705 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1706   assert(VM_Version::supports_sse4_2(), "");
1707   int8_t w = 0x01;
1708   Prefix p = Prefix_EMPTY;
1709 
1710   emit_int8((int8_t)0xF2);
1711   switch (sizeInBytes) {
1712   case 1:
1713     w = 0;
1714     break;
1715   case 2:
1716   case 4:
1717     break;
1718   LP64_ONLY(case 8:)
1719     // This instruction is not valid in 32 bits
1720     // Note:
1721     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1722     //
1723     // Page B - 72   Vol. 2C says
1724     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1725     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1726     //                                                                            F0!!!
1727     // while 3 - 208 Vol. 2A
1728     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1729     //
1730     // the 0 on a last bit is reserved for a different flavor of this instruction :
1731     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1732     p = REX_W;
1733     break;
1734   default:
1735     assert(0, "Unsupported value for a sizeInBytes argument");
1736     break;
1737   }
1738   LP64_ONLY(prefix(crc, v, p);)
1739   emit_int8((int8_t)0x0F);
1740   emit_int8(0x38);
1741   emit_int8((int8_t)(0xF0 | w));
1742   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1743 }
1744 
1745 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1746   assert(VM_Version::supports_sse4_2(), "");
1747   InstructionMark im(this);
1748   int8_t w = 0x01;
1749   Prefix p = Prefix_EMPTY;
1750 
1751   emit_int8((int8_t)0xF2);
1752   switch (sizeInBytes) {
1753   case 1:
1754     w = 0;
1755     break;
1756   case 2:
1757   case 4:
1758     break;
1759   LP64_ONLY(case 8:)
1760     // This instruction is not valid in 32 bits
1761     p = REX_W;
1762     break;
1763   default:
1764     assert(0, "Unsupported value for a sizeInBytes argument");
1765     break;
1766   }
1767   LP64_ONLY(prefix(crc, adr, p);)
1768   emit_int8((int8_t)0x0F);
1769   emit_int8(0x38);
1770   emit_int8((int8_t)(0xF0 | w));
1771   emit_operand(crc, adr);
1772 }
1773 
1774 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1775   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1776   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1777   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1778   emit_int8((unsigned char)0xE6);
1779   emit_int8((unsigned char)(0xC0 | encode));
1780 }
1781 
1782 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1784   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1785   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1786   emit_int8(0x5B);
1787   emit_int8((unsigned char)(0xC0 | encode));
1788 }
1789 
1790 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1791   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1792   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1793   attributes.set_rex_vex_w_reverted();
1794   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1795   emit_int8(0x5A);
1796   emit_int8((unsigned char)(0xC0 | encode));
1797 }
1798 
1799 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1800   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1801   InstructionMark im(this);
1802   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1803   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1804   attributes.set_rex_vex_w_reverted();
1805   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1806   emit_int8(0x5A);
1807   emit_operand(dst, src);
1808 }
1809 
1810 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1811   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1812   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1813   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1814   emit_int8(0x2A);
1815   emit_int8((unsigned char)(0xC0 | encode));
1816 }
1817 
1818 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1819   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1820   InstructionMark im(this);
1821   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1822   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1823   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1824   emit_int8(0x2A);
1825   emit_operand(dst, src);
1826 }
1827 
1828 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1829   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1830   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1831   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1832   emit_int8(0x2A);
1833   emit_int8((unsigned char)(0xC0 | encode));
1834 }
1835 
1836 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1837   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1838   InstructionMark im(this);
1839   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1840   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1841   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1842   emit_int8(0x2A);
1843   emit_operand(dst, src);
1844 }
1845 
1846 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1847   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1848   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1849   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1850   emit_int8(0x2A);
1851   emit_int8((unsigned char)(0xC0 | encode));
1852 }
1853 
1854 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1855   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1856   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1857   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1858   emit_int8(0x5A);
1859   emit_int8((unsigned char)(0xC0 | encode));
1860 }
1861 
1862 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1863   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1864   InstructionMark im(this);
1865   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1866   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1867   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1868   emit_int8(0x5A);
1869   emit_operand(dst, src);
1870 }
1871 
1872 
1873 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1874   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1875   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1876   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1877   emit_int8(0x2C);
1878   emit_int8((unsigned char)(0xC0 | encode));
1879 }
1880 
1881 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1882   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1883   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1884   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1885   emit_int8(0x2C);
1886   emit_int8((unsigned char)(0xC0 | encode));
1887 }
1888 
1889 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1890   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1891   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1892   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1893   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1894   emit_int8((unsigned char)0xE6);
1895   emit_int8((unsigned char)(0xC0 | encode));
1896 }
1897 
1898 void Assembler::decl(Address dst) {
1899   // Don't use it directly. Use MacroAssembler::decrement() instead.
1900   InstructionMark im(this);
1901   prefix(dst);
1902   emit_int8((unsigned char)0xFF);
1903   emit_operand(rcx, dst);
1904 }
1905 
1906 void Assembler::divsd(XMMRegister dst, Address src) {
1907   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1908   InstructionMark im(this);
1909   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1910   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1911   attributes.set_rex_vex_w_reverted();
1912   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1913   emit_int8(0x5E);
1914   emit_operand(dst, src);
1915 }
1916 
1917 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1918   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1919   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1920   attributes.set_rex_vex_w_reverted();
1921   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1922   emit_int8(0x5E);
1923   emit_int8((unsigned char)(0xC0 | encode));
1924 }
1925 
1926 void Assembler::divss(XMMRegister dst, Address src) {
1927   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1928   InstructionMark im(this);
1929   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1930   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1931   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1932   emit_int8(0x5E);
1933   emit_operand(dst, src);
1934 }
1935 
1936 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1937   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1938   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1939   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1940   emit_int8(0x5E);
1941   emit_int8((unsigned char)(0xC0 | encode));
1942 }
1943 
1944 void Assembler::emms() {
1945   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1946   emit_int8(0x0F);
1947   emit_int8(0x77);
1948 }
1949 
1950 void Assembler::hlt() {
1951   emit_int8((unsigned char)0xF4);
1952 }
1953 
1954 void Assembler::idivl(Register src) {
1955   int encode = prefix_and_encode(src->encoding());
1956   emit_int8((unsigned char)0xF7);
1957   emit_int8((unsigned char)(0xF8 | encode));
1958 }
1959 
1960 void Assembler::divl(Register src) { // Unsigned
1961   int encode = prefix_and_encode(src->encoding());
1962   emit_int8((unsigned char)0xF7);
1963   emit_int8((unsigned char)(0xF0 | encode));
1964 }
1965 
1966 void Assembler::imull(Register src) {
1967   int encode = prefix_and_encode(src->encoding());
1968   emit_int8((unsigned char)0xF7);
1969   emit_int8((unsigned char)(0xE8 | encode));
1970 }
1971 
1972 void Assembler::imull(Register dst, Register src) {
1973   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1974   emit_int8(0x0F);
1975   emit_int8((unsigned char)0xAF);
1976   emit_int8((unsigned char)(0xC0 | encode));
1977 }
1978 
1979 
1980 void Assembler::imull(Register dst, Register src, int value) {
1981   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1982   if (is8bit(value)) {
1983     emit_int8(0x6B);
1984     emit_int8((unsigned char)(0xC0 | encode));
1985     emit_int8(value & 0xFF);
1986   } else {
1987     emit_int8(0x69);
1988     emit_int8((unsigned char)(0xC0 | encode));
1989     emit_int32(value);
1990   }
1991 }
1992 
1993 void Assembler::imull(Register dst, Address src) {
1994   InstructionMark im(this);
1995   prefix(src, dst);
1996   emit_int8(0x0F);
1997   emit_int8((unsigned char) 0xAF);
1998   emit_operand(dst, src);
1999 }
2000 
2001 
2002 void Assembler::incl(Address dst) {
2003   // Don't use it directly. Use MacroAssembler::increment() instead.
2004   InstructionMark im(this);
2005   prefix(dst);
2006   emit_int8((unsigned char)0xFF);
2007   emit_operand(rax, dst);
2008 }
2009 
2010 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
2011   InstructionMark im(this);
2012   assert((0 <= cc) && (cc < 16), "illegal cc");
2013   if (L.is_bound()) {
2014     address dst = target(L);
2015     assert(dst != NULL, "jcc most probably wrong");
2016 
2017     const int short_size = 2;
2018     const int long_size = 6;
2019     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
2020     if (maybe_short && is8bit(offs - short_size)) {
2021       // 0111 tttn #8-bit disp
2022       emit_int8(0x70 | cc);
2023       emit_int8((offs - short_size) & 0xFF);
2024     } else {
2025       // 0000 1111 1000 tttn #32-bit disp
2026       assert(is_simm32(offs - long_size),
2027              "must be 32bit offset (call4)");
2028       emit_int8(0x0F);
2029       emit_int8((unsigned char)(0x80 | cc));
2030       emit_int32(offs - long_size);
2031     }
2032   } else {
2033     // Note: could eliminate cond. jumps to this jump if condition
2034     //       is the same however, seems to be rather unlikely case.
2035     // Note: use jccb() if label to be bound is very close to get
2036     //       an 8-bit displacement
2037     L.add_patch_at(code(), locator());
2038     emit_int8(0x0F);
2039     emit_int8((unsigned char)(0x80 | cc));
2040     emit_int32(0);
2041   }
2042 }
2043 
2044 void Assembler::jccb_0(Condition cc, Label& L, const char* file, int line) {
2045   if (L.is_bound()) {
2046     const int short_size = 2;
2047     address entry = target(L);
2048 #ifdef ASSERT
2049     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2050     intptr_t delta = short_branch_delta();
2051     if (delta != 0) {
2052       dist += (dist < 0 ? (-delta) :delta);
2053     }
2054     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2055 #endif
2056     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2057     // 0111 tttn #8-bit disp
2058     emit_int8(0x70 | cc);
2059     emit_int8((offs - short_size) & 0xFF);
2060   } else {
2061     InstructionMark im(this);
2062     L.add_patch_at(code(), locator(), file, line);
2063     emit_int8(0x70 | cc);
2064     emit_int8(0);
2065   }
2066 }
2067 
2068 void Assembler::jmp(Address adr) {
2069   InstructionMark im(this);
2070   prefix(adr);
2071   emit_int8((unsigned char)0xFF);
2072   emit_operand(rsp, adr);
2073 }
2074 
2075 void Assembler::jmp(Label& L, bool maybe_short) {
2076   if (L.is_bound()) {
2077     address entry = target(L);
2078     assert(entry != NULL, "jmp most probably wrong");
2079     InstructionMark im(this);
2080     const int short_size = 2;
2081     const int long_size = 5;
2082     intptr_t offs = entry - pc();
2083     if (maybe_short && is8bit(offs - short_size)) {
2084       emit_int8((unsigned char)0xEB);
2085       emit_int8((offs - short_size) & 0xFF);
2086     } else {
2087       emit_int8((unsigned char)0xE9);
2088       emit_int32(offs - long_size);
2089     }
2090   } else {
2091     // By default, forward jumps are always 32-bit displacements, since
2092     // we can't yet know where the label will be bound.  If you're sure that
2093     // the forward jump will not run beyond 256 bytes, use jmpb to
2094     // force an 8-bit displacement.
2095     InstructionMark im(this);
2096     L.add_patch_at(code(), locator());
2097     emit_int8((unsigned char)0xE9);
2098     emit_int32(0);
2099   }
2100 }
2101 
2102 void Assembler::jmp(Register entry) {
2103   int encode = prefix_and_encode(entry->encoding());
2104   emit_int8((unsigned char)0xFF);
2105   emit_int8((unsigned char)(0xE0 | encode));
2106 }
2107 
2108 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2109   InstructionMark im(this);
2110   emit_int8((unsigned char)0xE9);
2111   assert(dest != NULL, "must have a target");
2112   intptr_t disp = dest - (pc() + sizeof(int32_t));
2113   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2114   emit_data(disp, rspec.reloc(), call32_operand);
2115 }
2116 
2117 void Assembler::jmpb_0(Label& L, const char* file, int line) {
2118   if (L.is_bound()) {
2119     const int short_size = 2;
2120     address entry = target(L);
2121     assert(entry != NULL, "jmp most probably wrong");
2122 #ifdef ASSERT
2123     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2124     intptr_t delta = short_branch_delta();
2125     if (delta != 0) {
2126       dist += (dist < 0 ? (-delta) :delta);
2127     }
2128     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2129 #endif
2130     intptr_t offs = entry - pc();
2131     emit_int8((unsigned char)0xEB);
2132     emit_int8((offs - short_size) & 0xFF);
2133   } else {
2134     InstructionMark im(this);
2135     L.add_patch_at(code(), locator(), file, line);
2136     emit_int8((unsigned char)0xEB);
2137     emit_int8(0);
2138   }
2139 }
2140 
2141 void Assembler::ldmxcsr( Address src) {
2142   if (UseAVX > 0 ) {
2143     InstructionMark im(this);
2144     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2145     vex_prefix(src, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2146     emit_int8((unsigned char)0xAE);
2147     emit_operand(as_Register(2), src);
2148   } else {
2149     NOT_LP64(assert(VM_Version::supports_sse(), ""));
2150     InstructionMark im(this);
2151     prefix(src);
2152     emit_int8(0x0F);
2153     emit_int8((unsigned char)0xAE);
2154     emit_operand(as_Register(2), src);
2155   }
2156 }
2157 
2158 void Assembler::leal(Register dst, Address src) {
2159   InstructionMark im(this);
2160 #ifdef _LP64
2161   emit_int8(0x67); // addr32
2162   prefix(src, dst);
2163 #endif // LP64
2164   emit_int8((unsigned char)0x8D);
2165   emit_operand(dst, src);
2166 }
2167 
2168 void Assembler::lfence() {
2169   emit_int8(0x0F);
2170   emit_int8((unsigned char)0xAE);
2171   emit_int8((unsigned char)0xE8);
2172 }
2173 
2174 void Assembler::lock() {
2175   emit_int8((unsigned char)0xF0);
2176 }
2177 
2178 void Assembler::lzcntl(Register dst, Register src) {
2179   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2180   emit_int8((unsigned char)0xF3);
2181   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2182   emit_int8(0x0F);
2183   emit_int8((unsigned char)0xBD);
2184   emit_int8((unsigned char)(0xC0 | encode));
2185 }
2186 
2187 // Emit mfence instruction
2188 void Assembler::mfence() {
2189   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2190   emit_int8(0x0F);
2191   emit_int8((unsigned char)0xAE);
2192   emit_int8((unsigned char)0xF0);
2193 }
2194 
2195 void Assembler::mov(Register dst, Register src) {
2196   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2197 }
2198 
2199 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2200   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2201   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2202   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2203   attributes.set_rex_vex_w_reverted();
2204   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2205   emit_int8(0x28);
2206   emit_int8((unsigned char)(0xC0 | encode));
2207 }
2208 
2209 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2210   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2211   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2212   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2213   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2214   emit_int8(0x28);
2215   emit_int8((unsigned char)(0xC0 | encode));
2216 }
2217 
2218 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2219   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2220   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2221   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2222   emit_int8(0x16);
2223   emit_int8((unsigned char)(0xC0 | encode));
2224 }
2225 
2226 void Assembler::movb(Register dst, Address src) {
2227   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2228   InstructionMark im(this);
2229   prefix(src, dst, true);
2230   emit_int8((unsigned char)0x8A);
2231   emit_operand(dst, src);
2232 }
2233 
2234 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2235   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2236   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2237   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2238   attributes.set_rex_vex_w_reverted();
2239   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2240   emit_int8(0x12);
2241   emit_int8(0xC0 | encode);
2242 }
2243 
2244 void Assembler::kmovbl(KRegister dst, Register src) {
2245   assert(VM_Version::supports_avx512dq(), "");
2246   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2247   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2248   emit_int8((unsigned char)0x92);
2249   emit_int8((unsigned char)(0xC0 | encode));
2250 }
2251 
2252 void Assembler::kmovbl(Register dst, KRegister src) {
2253   assert(VM_Version::supports_avx512dq(), "");
2254   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2255   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2256   emit_int8((unsigned char)0x93);
2257   emit_int8((unsigned char)(0xC0 | encode));
2258 }
2259 
2260 void Assembler::kmovwl(KRegister dst, Register src) {
2261   assert(VM_Version::supports_evex(), "");
2262   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2263   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2264   emit_int8((unsigned char)0x92);
2265   emit_int8((unsigned char)(0xC0 | encode));
2266 }
2267 
2268 void Assembler::kmovwl(Register dst, KRegister src) {
2269   assert(VM_Version::supports_evex(), "");
2270   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2271   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2272   emit_int8((unsigned char)0x93);
2273   emit_int8((unsigned char)(0xC0 | encode));
2274 }
2275 
2276 void Assembler::kmovwl(KRegister dst, Address src) {
2277   assert(VM_Version::supports_evex(), "");
2278   InstructionMark im(this);
2279   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2280   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2281   emit_int8((unsigned char)0x90);
2282   emit_operand((Register)dst, src);
2283 }
2284 
2285 void Assembler::kmovdl(KRegister dst, Register src) {
2286   assert(VM_Version::supports_avx512bw(), "");
2287   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2288   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2289   emit_int8((unsigned char)0x92);
2290   emit_int8((unsigned char)(0xC0 | encode));
2291 }
2292 
2293 void Assembler::kmovdl(Register dst, KRegister src) {
2294   assert(VM_Version::supports_avx512bw(), "");
2295   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2296   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2297   emit_int8((unsigned char)0x93);
2298   emit_int8((unsigned char)(0xC0 | encode));
2299 }
2300 
2301 void Assembler::kmovql(KRegister dst, KRegister src) {
2302   assert(VM_Version::supports_avx512bw(), "");
2303   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2304   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2305   emit_int8((unsigned char)0x90);
2306   emit_int8((unsigned char)(0xC0 | encode));
2307 }
2308 
2309 void Assembler::kmovql(KRegister dst, Address src) {
2310   assert(VM_Version::supports_avx512bw(), "");
2311   InstructionMark im(this);
2312   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2313   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2314   emit_int8((unsigned char)0x90);
2315   emit_operand((Register)dst, src);
2316 }
2317 
2318 void Assembler::kmovql(Address dst, KRegister src) {
2319   assert(VM_Version::supports_avx512bw(), "");
2320   InstructionMark im(this);
2321   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2322   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2323   emit_int8((unsigned char)0x90);
2324   emit_operand((Register)src, dst);
2325 }
2326 
2327 void Assembler::kmovql(KRegister dst, Register src) {
2328   assert(VM_Version::supports_avx512bw(), "");
2329   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2330   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2331   emit_int8((unsigned char)0x92);
2332   emit_int8((unsigned char)(0xC0 | encode));
2333 }
2334 
2335 void Assembler::kmovql(Register dst, KRegister src) {
2336   assert(VM_Version::supports_avx512bw(), "");
2337   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2338   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2339   emit_int8((unsigned char)0x93);
2340   emit_int8((unsigned char)(0xC0 | encode));
2341 }
2342 
2343 void Assembler::knotwl(KRegister dst, KRegister src) {
2344   assert(VM_Version::supports_evex(), "");
2345   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2346   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2347   emit_int8((unsigned char)0x44);
2348   emit_int8((unsigned char)(0xC0 | encode));
2349 }
2350 
2351 // This instruction produces ZF or CF flags
2352 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2353   assert(VM_Version::supports_avx512dq(), "");
2354   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2355   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2356   emit_int8((unsigned char)0x98);
2357   emit_int8((unsigned char)(0xC0 | encode));
2358 }
2359 
2360 // This instruction produces ZF or CF flags
2361 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2362   assert(VM_Version::supports_evex(), "");
2363   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2364   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2365   emit_int8((unsigned char)0x98);
2366   emit_int8((unsigned char)(0xC0 | encode));
2367 }
2368 
2369 // This instruction produces ZF or CF flags
2370 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2371   assert(VM_Version::supports_avx512bw(), "");
2372   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2373   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2374   emit_int8((unsigned char)0x98);
2375   emit_int8((unsigned char)(0xC0 | encode));
2376 }
2377 
2378 // This instruction produces ZF or CF flags
2379 void Assembler::kortestql(KRegister src1, KRegister src2) {
2380   assert(VM_Version::supports_avx512bw(), "");
2381   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2382   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2383   emit_int8((unsigned char)0x98);
2384   emit_int8((unsigned char)(0xC0 | encode));
2385 }
2386 
2387 // This instruction produces ZF or CF flags
2388 void Assembler::ktestql(KRegister src1, KRegister src2) {
2389   assert(VM_Version::supports_avx512bw(), "");
2390   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2391   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2392   emit_int8((unsigned char)0x99);
2393   emit_int8((unsigned char)(0xC0 | encode));
2394 }
2395 
2396 void Assembler::ktestq(KRegister src1, KRegister src2) {
2397   assert(VM_Version::supports_avx512bw(), "");
2398   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2399   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2400   emit_int8((unsigned char)0x99);
2401   emit_int8((unsigned char)(0xC0 | encode));
2402 }
2403 
2404 void Assembler::ktestd(KRegister src1, KRegister src2) {
2405   assert(VM_Version::supports_avx512bw(), "");
2406   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2407   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2408   emit_int8((unsigned char)0x99);
2409   emit_int8((unsigned char)(0xC0 | encode));
2410 }
2411 
2412 void Assembler::movb(Address dst, int imm8) {
2413   InstructionMark im(this);
2414    prefix(dst);
2415   emit_int8((unsigned char)0xC6);
2416   emit_operand(rax, dst, 1);
2417   emit_int8(imm8);
2418 }
2419 
2420 
2421 void Assembler::movb(Address dst, Register src) {
2422   assert(src->has_byte_register(), "must have byte register");
2423   InstructionMark im(this);
2424   prefix(dst, src, true);
2425   emit_int8((unsigned char)0x88);
2426   emit_operand(src, dst);
2427 }
2428 
2429 void Assembler::movdl(XMMRegister dst, Register src) {
2430   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2431   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2432   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2433   emit_int8(0x6E);
2434   emit_int8((unsigned char)(0xC0 | encode));
2435 }
2436 
2437 void Assembler::movdl(Register dst, XMMRegister src) {
2438   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2439   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2440   // swap src/dst to get correct prefix
2441   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2442   emit_int8(0x7E);
2443   emit_int8((unsigned char)(0xC0 | encode));
2444 }
2445 
2446 void Assembler::movdl(XMMRegister dst, Address src) {
2447   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2448   InstructionMark im(this);
2449   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2450   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2451   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2452   emit_int8(0x6E);
2453   emit_operand(dst, src);
2454 }
2455 
2456 void Assembler::movdl(Address dst, XMMRegister src) {
2457   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2458   InstructionMark im(this);
2459   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2460   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2461   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2462   emit_int8(0x7E);
2463   emit_operand(src, dst);
2464 }
2465 
2466 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2467   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2468   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2469   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2470   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2471   emit_int8(0x6F);
2472   emit_int8((unsigned char)(0xC0 | encode));
2473 }
2474 
2475 void Assembler::movdqa(XMMRegister dst, Address src) {
2476   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2477   InstructionMark im(this);
2478   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2479   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2480   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2481   emit_int8(0x6F);
2482   emit_operand(dst, src);
2483 }
2484 
2485 void Assembler::movdqu(XMMRegister dst, Address src) {
2486   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2487   InstructionMark im(this);
2488   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2489   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2490   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2491   emit_int8(0x6F);
2492   emit_operand(dst, src);
2493 }
2494 
2495 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2496   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2497   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2498   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2499   emit_int8(0x6F);
2500   emit_int8((unsigned char)(0xC0 | encode));
2501 }
2502 
2503 void Assembler::movdqu(Address dst, XMMRegister src) {
2504   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2505   InstructionMark im(this);
2506   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2507   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2508   attributes.reset_is_clear_context();
2509   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2510   emit_int8(0x7F);
2511   emit_operand(src, dst);
2512 }
2513 
2514 // Move Unaligned 256bit Vector
2515 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2516   assert(UseAVX > 0, "");
2517   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2518   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2519   emit_int8(0x6F);
2520   emit_int8((unsigned char)(0xC0 | encode));
2521 }
2522 
2523 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2524   assert(UseAVX > 0, "");
2525   InstructionMark im(this);
2526   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2527   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2528   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2529   emit_int8(0x6F);
2530   emit_operand(dst, src);
2531 }
2532 
2533 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2534   assert(UseAVX > 0, "");
2535   InstructionMark im(this);
2536   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2537   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2538   attributes.reset_is_clear_context();
2539   // swap src<->dst for encoding
2540   assert(src != xnoreg, "sanity");
2541   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2542   emit_int8(0x7F);
2543   emit_operand(src, dst);
2544 }
2545 
2546 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2547 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2548   assert(VM_Version::supports_evex(), "");
2549   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2550   attributes.set_is_evex_instruction();
2551   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2552   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2553   emit_int8(0x6F);
2554   emit_int8((unsigned char)(0xC0 | encode));
2555 }
2556 
2557 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2558   assert(VM_Version::supports_evex(), "");
2559   InstructionMark im(this);
2560   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2561   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2562   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2563   attributes.set_is_evex_instruction();
2564   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2565   emit_int8(0x6F);
2566   emit_operand(dst, src);
2567 }
2568 
2569 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2570   assert(VM_Version::supports_evex(), "");
2571   assert(src != xnoreg, "sanity");
2572   InstructionMark im(this);
2573   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2574   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2575   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2576   attributes.set_is_evex_instruction();
2577   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2578   emit_int8(0x7F);
2579   emit_operand(src, dst);
2580 }
2581 
2582 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2583   assert(VM_Version::supports_avx512vlbw(), "");
2584   assert(is_vector_masking(), "");    // For stub code use only
2585   InstructionMark im(this);
2586   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2587   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2588   attributes.set_embedded_opmask_register_specifier(mask);
2589   attributes.set_is_evex_instruction();
2590   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2591   emit_int8(0x6F);
2592   emit_operand(dst, src);
2593 }
2594 
2595 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2596   assert(VM_Version::supports_evex(), "");
2597   InstructionMark im(this);
2598   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2599   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2600   attributes.set_is_evex_instruction();
2601   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2602   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2603   emit_int8(0x6F);
2604   emit_operand(dst, src);
2605 }
2606 
2607 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2608   assert(is_vector_masking(), "");
2609   assert(VM_Version::supports_avx512vlbw(), "");
2610   InstructionMark im(this);
2611   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2612   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2613   attributes.set_embedded_opmask_register_specifier(mask);
2614   attributes.set_is_evex_instruction();
2615   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2616   emit_int8(0x6F);
2617   emit_operand(dst, src);
2618 }
2619 
2620 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2621   assert(VM_Version::supports_evex(), "");
2622   assert(src != xnoreg, "sanity");
2623   InstructionMark im(this);
2624   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2625   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2626   attributes.set_is_evex_instruction();
2627   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2628   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2629   emit_int8(0x7F);
2630   emit_operand(src, dst);
2631 }
2632 
2633 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2634   assert(VM_Version::supports_avx512vlbw(), "");
2635   assert(src != xnoreg, "sanity");
2636   InstructionMark im(this);
2637   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2638   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2639   attributes.reset_is_clear_context();
2640   attributes.set_embedded_opmask_register_specifier(mask);
2641   attributes.set_is_evex_instruction();
2642   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2643   emit_int8(0x7F);
2644   emit_operand(src, dst);
2645 }
2646 
2647 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2648   assert(VM_Version::supports_evex(), "");
2649   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2650   attributes.set_is_evex_instruction();
2651   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2652   emit_int8(0x6F);
2653   emit_int8((unsigned char)(0xC0 | encode));
2654 }
2655 
2656 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2657   assert(VM_Version::supports_evex(), "");
2658   InstructionMark im(this);
2659   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2660   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2661   attributes.set_is_evex_instruction();
2662   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2663   emit_int8(0x6F);
2664   emit_operand(dst, src);
2665 }
2666 
2667 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2668   assert(VM_Version::supports_evex(), "");
2669   assert(src != xnoreg, "sanity");
2670   InstructionMark im(this);
2671   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2672   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2673   attributes.reset_is_clear_context();
2674   attributes.set_is_evex_instruction();
2675   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2676   emit_int8(0x7F);
2677   emit_operand(src, dst);
2678 }
2679 
2680 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2681   assert(VM_Version::supports_evex(), "");
2682   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2683   attributes.set_is_evex_instruction();
2684   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2685   emit_int8(0x6F);
2686   emit_int8((unsigned char)(0xC0 | encode));
2687 }
2688 
2689 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2690   assert(VM_Version::supports_evex(), "");
2691   InstructionMark im(this);
2692   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2693   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2694   attributes.set_is_evex_instruction();
2695   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2696   emit_int8(0x6F);
2697   emit_operand(dst, src);
2698 }
2699 
2700 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2701   assert(VM_Version::supports_evex(), "");
2702   assert(src != xnoreg, "sanity");
2703   InstructionMark im(this);
2704   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2705   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2706   attributes.reset_is_clear_context();
2707   attributes.set_is_evex_instruction();
2708   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2709   emit_int8(0x7F);
2710   emit_operand(src, dst);
2711 }
2712 
2713 // Uses zero extension on 64bit
2714 
2715 void Assembler::movl(Register dst, int32_t imm32) {
2716   int encode = prefix_and_encode(dst->encoding());
2717   emit_int8((unsigned char)(0xB8 | encode));
2718   emit_int32(imm32);
2719 }
2720 
2721 void Assembler::movl(Register dst, Register src) {
2722   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2723   emit_int8((unsigned char)0x8B);
2724   emit_int8((unsigned char)(0xC0 | encode));
2725 }
2726 
2727 void Assembler::movl(Register dst, Address src) {
2728   InstructionMark im(this);
2729   prefix(src, dst);
2730   emit_int8((unsigned char)0x8B);
2731   emit_operand(dst, src);
2732 }
2733 
2734 void Assembler::movl(Address dst, int32_t imm32) {
2735   InstructionMark im(this);
2736   prefix(dst);
2737   emit_int8((unsigned char)0xC7);
2738   emit_operand(rax, dst, 4);
2739   emit_int32(imm32);
2740 }
2741 
2742 void Assembler::movl(Address dst, Register src) {
2743   InstructionMark im(this);
2744   prefix(dst, src);
2745   emit_int8((unsigned char)0x89);
2746   emit_operand(src, dst);
2747 }
2748 
2749 // New cpus require to use movsd and movss to avoid partial register stall
2750 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2751 // The selection is done in MacroAssembler::movdbl() and movflt().
2752 void Assembler::movlpd(XMMRegister dst, Address src) {
2753   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2754   InstructionMark im(this);
2755   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2756   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2757   attributes.set_rex_vex_w_reverted();
2758   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2759   emit_int8(0x12);
2760   emit_operand(dst, src);
2761 }
2762 
2763 void Assembler::movq( MMXRegister dst, Address src ) {
2764   assert( VM_Version::supports_mmx(), "" );
2765   emit_int8(0x0F);
2766   emit_int8(0x6F);
2767   emit_operand(dst, src);
2768 }
2769 
2770 void Assembler::movq( Address dst, MMXRegister src ) {
2771   assert( VM_Version::supports_mmx(), "" );
2772   emit_int8(0x0F);
2773   emit_int8(0x7F);
2774   // workaround gcc (3.2.1-7a) bug
2775   // In that version of gcc with only an emit_operand(MMX, Address)
2776   // gcc will tail jump and try and reverse the parameters completely
2777   // obliterating dst in the process. By having a version available
2778   // that doesn't need to swap the args at the tail jump the bug is
2779   // avoided.
2780   emit_operand(dst, src);
2781 }
2782 
2783 void Assembler::movq(XMMRegister dst, Address src) {
2784   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2785   InstructionMark im(this);
2786   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2787   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2788   attributes.set_rex_vex_w_reverted();
2789   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2790   emit_int8(0x7E);
2791   emit_operand(dst, src);
2792 }
2793 
2794 void Assembler::movq(Address dst, XMMRegister src) {
2795   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2796   InstructionMark im(this);
2797   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2798   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2799   attributes.set_rex_vex_w_reverted();
2800   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2801   emit_int8((unsigned char)0xD6);
2802   emit_operand(src, dst);
2803 }
2804 
2805 void Assembler::movsbl(Register dst, Address src) { // movsxb
2806   InstructionMark im(this);
2807   prefix(src, dst);
2808   emit_int8(0x0F);
2809   emit_int8((unsigned char)0xBE);
2810   emit_operand(dst, src);
2811 }
2812 
2813 void Assembler::movsbl(Register dst, Register src) { // movsxb
2814   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2815   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2816   emit_int8(0x0F);
2817   emit_int8((unsigned char)0xBE);
2818   emit_int8((unsigned char)(0xC0 | encode));
2819 }
2820 
2821 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2822   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2823   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2824   attributes.set_rex_vex_w_reverted();
2825   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2826   emit_int8(0x10);
2827   emit_int8((unsigned char)(0xC0 | encode));
2828 }
2829 
2830 void Assembler::movsd(XMMRegister dst, Address src) {
2831   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2832   InstructionMark im(this);
2833   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2834   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2835   attributes.set_rex_vex_w_reverted();
2836   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2837   emit_int8(0x10);
2838   emit_operand(dst, src);
2839 }
2840 
2841 void Assembler::movsd(Address dst, XMMRegister src) {
2842   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2843   InstructionMark im(this);
2844   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2845   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2846   attributes.reset_is_clear_context();
2847   attributes.set_rex_vex_w_reverted();
2848   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2849   emit_int8(0x11);
2850   emit_operand(src, dst);
2851 }
2852 
2853 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2854   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2855   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2856   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2857   emit_int8(0x10);
2858   emit_int8((unsigned char)(0xC0 | encode));
2859 }
2860 
2861 void Assembler::movss(XMMRegister dst, Address src) {
2862   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2863   InstructionMark im(this);
2864   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2865   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2866   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2867   emit_int8(0x10);
2868   emit_operand(dst, src);
2869 }
2870 
2871 void Assembler::movss(Address dst, XMMRegister src) {
2872   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2873   InstructionMark im(this);
2874   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2875   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2876   attributes.reset_is_clear_context();
2877   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2878   emit_int8(0x11);
2879   emit_operand(src, dst);
2880 }
2881 
2882 void Assembler::movswl(Register dst, Address src) { // movsxw
2883   InstructionMark im(this);
2884   prefix(src, dst);
2885   emit_int8(0x0F);
2886   emit_int8((unsigned char)0xBF);
2887   emit_operand(dst, src);
2888 }
2889 
2890 void Assembler::movswl(Register dst, Register src) { // movsxw
2891   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2892   emit_int8(0x0F);
2893   emit_int8((unsigned char)0xBF);
2894   emit_int8((unsigned char)(0xC0 | encode));
2895 }
2896 
2897 void Assembler::movw(Address dst, int imm16) {
2898   InstructionMark im(this);
2899 
2900   emit_int8(0x66); // switch to 16-bit mode
2901   prefix(dst);
2902   emit_int8((unsigned char)0xC7);
2903   emit_operand(rax, dst, 2);
2904   emit_int16(imm16);
2905 }
2906 
2907 void Assembler::movw(Register dst, Address src) {
2908   InstructionMark im(this);
2909   emit_int8(0x66);
2910   prefix(src, dst);
2911   emit_int8((unsigned char)0x8B);
2912   emit_operand(dst, src);
2913 }
2914 
2915 void Assembler::movw(Address dst, Register src) {
2916   InstructionMark im(this);
2917   emit_int8(0x66);
2918   prefix(dst, src);
2919   emit_int8((unsigned char)0x89);
2920   emit_operand(src, dst);
2921 }
2922 
2923 void Assembler::movzbl(Register dst, Address src) { // movzxb
2924   InstructionMark im(this);
2925   prefix(src, dst);
2926   emit_int8(0x0F);
2927   emit_int8((unsigned char)0xB6);
2928   emit_operand(dst, src);
2929 }
2930 
2931 void Assembler::movzbl(Register dst, Register src) { // movzxb
2932   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2933   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2934   emit_int8(0x0F);
2935   emit_int8((unsigned char)0xB6);
2936   emit_int8(0xC0 | encode);
2937 }
2938 
2939 void Assembler::movzwl(Register dst, Address src) { // movzxw
2940   InstructionMark im(this);
2941   prefix(src, dst);
2942   emit_int8(0x0F);
2943   emit_int8((unsigned char)0xB7);
2944   emit_operand(dst, src);
2945 }
2946 
2947 void Assembler::movzwl(Register dst, Register src) { // movzxw
2948   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2949   emit_int8(0x0F);
2950   emit_int8((unsigned char)0xB7);
2951   emit_int8(0xC0 | encode);
2952 }
2953 
2954 void Assembler::mull(Address src) {
2955   InstructionMark im(this);
2956   prefix(src);
2957   emit_int8((unsigned char)0xF7);
2958   emit_operand(rsp, src);
2959 }
2960 
2961 void Assembler::mull(Register src) {
2962   int encode = prefix_and_encode(src->encoding());
2963   emit_int8((unsigned char)0xF7);
2964   emit_int8((unsigned char)(0xE0 | encode));
2965 }
2966 
2967 void Assembler::mulsd(XMMRegister dst, Address src) {
2968   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2969   InstructionMark im(this);
2970   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2971   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2972   attributes.set_rex_vex_w_reverted();
2973   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2974   emit_int8(0x59);
2975   emit_operand(dst, src);
2976 }
2977 
2978 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2979   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2980   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2981   attributes.set_rex_vex_w_reverted();
2982   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2983   emit_int8(0x59);
2984   emit_int8((unsigned char)(0xC0 | encode));
2985 }
2986 
2987 void Assembler::mulss(XMMRegister dst, Address src) {
2988   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2989   InstructionMark im(this);
2990   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2991   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2992   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2993   emit_int8(0x59);
2994   emit_operand(dst, src);
2995 }
2996 
2997 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2998   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2999   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3000   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3001   emit_int8(0x59);
3002   emit_int8((unsigned char)(0xC0 | encode));
3003 }
3004 
3005 void Assembler::negl(Register dst) {
3006   int encode = prefix_and_encode(dst->encoding());
3007   emit_int8((unsigned char)0xF7);
3008   emit_int8((unsigned char)(0xD8 | encode));
3009 }
3010 
3011 void Assembler::nop(int i) {
3012 #ifdef ASSERT
3013   assert(i > 0, " ");
3014   // The fancy nops aren't currently recognized by debuggers making it a
3015   // pain to disassemble code while debugging. If asserts are on clearly
3016   // speed is not an issue so simply use the single byte traditional nop
3017   // to do alignment.
3018 
3019   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
3020   return;
3021 
3022 #endif // ASSERT
3023 
3024   if (UseAddressNop && VM_Version::is_intel()) {
3025     //
3026     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
3027     //  1: 0x90
3028     //  2: 0x66 0x90
3029     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3030     //  4: 0x0F 0x1F 0x40 0x00
3031     //  5: 0x0F 0x1F 0x44 0x00 0x00
3032     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3033     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3034     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3035     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3036     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3037     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3038 
3039     // The rest coding is Intel specific - don't use consecutive address nops
3040 
3041     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3042     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3043     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3044     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3045 
3046     while(i >= 15) {
3047       // For Intel don't generate consecutive addess nops (mix with regular nops)
3048       i -= 15;
3049       emit_int8(0x66);   // size prefix
3050       emit_int8(0x66);   // size prefix
3051       emit_int8(0x66);   // size prefix
3052       addr_nop_8();
3053       emit_int8(0x66);   // size prefix
3054       emit_int8(0x66);   // size prefix
3055       emit_int8(0x66);   // size prefix
3056       emit_int8((unsigned char)0x90);
3057                          // nop
3058     }
3059     switch (i) {
3060       case 14:
3061         emit_int8(0x66); // size prefix
3062       case 13:
3063         emit_int8(0x66); // size prefix
3064       case 12:
3065         addr_nop_8();
3066         emit_int8(0x66); // size prefix
3067         emit_int8(0x66); // size prefix
3068         emit_int8(0x66); // size prefix
3069         emit_int8((unsigned char)0x90);
3070                          // nop
3071         break;
3072       case 11:
3073         emit_int8(0x66); // size prefix
3074       case 10:
3075         emit_int8(0x66); // size prefix
3076       case 9:
3077         emit_int8(0x66); // size prefix
3078       case 8:
3079         addr_nop_8();
3080         break;
3081       case 7:
3082         addr_nop_7();
3083         break;
3084       case 6:
3085         emit_int8(0x66); // size prefix
3086       case 5:
3087         addr_nop_5();
3088         break;
3089       case 4:
3090         addr_nop_4();
3091         break;
3092       case 3:
3093         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3094         emit_int8(0x66); // size prefix
3095       case 2:
3096         emit_int8(0x66); // size prefix
3097       case 1:
3098         emit_int8((unsigned char)0x90);
3099                          // nop
3100         break;
3101       default:
3102         assert(i == 0, " ");
3103     }
3104     return;
3105   }
3106   if (UseAddressNop && VM_Version::is_amd()) {
3107     //
3108     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3109     //  1: 0x90
3110     //  2: 0x66 0x90
3111     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3112     //  4: 0x0F 0x1F 0x40 0x00
3113     //  5: 0x0F 0x1F 0x44 0x00 0x00
3114     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3115     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3116     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3117     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3118     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3119     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3120 
3121     // The rest coding is AMD specific - use consecutive address nops
3122 
3123     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3124     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3125     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3126     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3127     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3128     //     Size prefixes (0x66) are added for larger sizes
3129 
3130     while(i >= 22) {
3131       i -= 11;
3132       emit_int8(0x66); // size prefix
3133       emit_int8(0x66); // size prefix
3134       emit_int8(0x66); // size prefix
3135       addr_nop_8();
3136     }
3137     // Generate first nop for size between 21-12
3138     switch (i) {
3139       case 21:
3140         i -= 1;
3141         emit_int8(0x66); // size prefix
3142       case 20:
3143       case 19:
3144         i -= 1;
3145         emit_int8(0x66); // size prefix
3146       case 18:
3147       case 17:
3148         i -= 1;
3149         emit_int8(0x66); // size prefix
3150       case 16:
3151       case 15:
3152         i -= 8;
3153         addr_nop_8();
3154         break;
3155       case 14:
3156       case 13:
3157         i -= 7;
3158         addr_nop_7();
3159         break;
3160       case 12:
3161         i -= 6;
3162         emit_int8(0x66); // size prefix
3163         addr_nop_5();
3164         break;
3165       default:
3166         assert(i < 12, " ");
3167     }
3168 
3169     // Generate second nop for size between 11-1
3170     switch (i) {
3171       case 11:
3172         emit_int8(0x66); // size prefix
3173       case 10:
3174         emit_int8(0x66); // size prefix
3175       case 9:
3176         emit_int8(0x66); // size prefix
3177       case 8:
3178         addr_nop_8();
3179         break;
3180       case 7:
3181         addr_nop_7();
3182         break;
3183       case 6:
3184         emit_int8(0x66); // size prefix
3185       case 5:
3186         addr_nop_5();
3187         break;
3188       case 4:
3189         addr_nop_4();
3190         break;
3191       case 3:
3192         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3193         emit_int8(0x66); // size prefix
3194       case 2:
3195         emit_int8(0x66); // size prefix
3196       case 1:
3197         emit_int8((unsigned char)0x90);
3198                          // nop
3199         break;
3200       default:
3201         assert(i == 0, " ");
3202     }
3203     return;
3204   }
3205 
3206   if (UseAddressNop && VM_Version::is_zx()) {
3207     //
3208     // Using multi-bytes nops "0x0F 0x1F [address]" for ZX
3209     //  1: 0x90
3210     //  2: 0x66 0x90
3211     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3212     //  4: 0x0F 0x1F 0x40 0x00
3213     //  5: 0x0F 0x1F 0x44 0x00 0x00
3214     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3215     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3216     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3217     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3218     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3219     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3220 
3221     // The rest coding is ZX specific - don't use consecutive address nops
3222 
3223     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3224     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3225     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3226     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3227 
3228     while (i >= 15) {
3229       // For ZX don't generate consecutive addess nops (mix with regular nops)
3230       i -= 15;
3231       emit_int8(0x66);   // size prefix
3232       emit_int8(0x66);   // size prefix
3233       emit_int8(0x66);   // size prefix
3234       addr_nop_8();
3235       emit_int8(0x66);   // size prefix
3236       emit_int8(0x66);   // size prefix
3237       emit_int8(0x66);   // size prefix
3238       emit_int8((unsigned char)0x90);
3239                          // nop
3240     }
3241     switch (i) {
3242       case 14:
3243         emit_int8(0x66); // size prefix
3244       case 13:
3245         emit_int8(0x66); // size prefix
3246       case 12:
3247         addr_nop_8();
3248         emit_int8(0x66); // size prefix
3249         emit_int8(0x66); // size prefix
3250         emit_int8(0x66); // size prefix
3251         emit_int8((unsigned char)0x90);
3252                          // nop
3253         break;
3254       case 11:
3255         emit_int8(0x66); // size prefix
3256       case 10:
3257         emit_int8(0x66); // size prefix
3258       case 9:
3259         emit_int8(0x66); // size prefix
3260       case 8:
3261         addr_nop_8();
3262         break;
3263       case 7:
3264         addr_nop_7();
3265         break;
3266       case 6:
3267         emit_int8(0x66); // size prefix
3268       case 5:
3269         addr_nop_5();
3270         break;
3271       case 4:
3272         addr_nop_4();
3273         break;
3274       case 3:
3275         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3276         emit_int8(0x66); // size prefix
3277       case 2:
3278         emit_int8(0x66); // size prefix
3279       case 1:
3280         emit_int8((unsigned char)0x90);
3281                          // nop
3282         break;
3283       default:
3284         assert(i == 0, " ");
3285     }
3286     return;
3287   }
3288 
3289   // Using nops with size prefixes "0x66 0x90".
3290   // From AMD Optimization Guide:
3291   //  1: 0x90
3292   //  2: 0x66 0x90
3293   //  3: 0x66 0x66 0x90
3294   //  4: 0x66 0x66 0x66 0x90
3295   //  5: 0x66 0x66 0x90 0x66 0x90
3296   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3297   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3298   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3299   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3300   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3301   //
3302   while(i > 12) {
3303     i -= 4;
3304     emit_int8(0x66); // size prefix
3305     emit_int8(0x66);
3306     emit_int8(0x66);
3307     emit_int8((unsigned char)0x90);
3308                      // nop
3309   }
3310   // 1 - 12 nops
3311   if(i > 8) {
3312     if(i > 9) {
3313       i -= 1;
3314       emit_int8(0x66);
3315     }
3316     i -= 3;
3317     emit_int8(0x66);
3318     emit_int8(0x66);
3319     emit_int8((unsigned char)0x90);
3320   }
3321   // 1 - 8 nops
3322   if(i > 4) {
3323     if(i > 6) {
3324       i -= 1;
3325       emit_int8(0x66);
3326     }
3327     i -= 3;
3328     emit_int8(0x66);
3329     emit_int8(0x66);
3330     emit_int8((unsigned char)0x90);
3331   }
3332   switch (i) {
3333     case 4:
3334       emit_int8(0x66);
3335     case 3:
3336       emit_int8(0x66);
3337     case 2:
3338       emit_int8(0x66);
3339     case 1:
3340       emit_int8((unsigned char)0x90);
3341       break;
3342     default:
3343       assert(i == 0, " ");
3344   }
3345 }
3346 
3347 void Assembler::notl(Register dst) {
3348   int encode = prefix_and_encode(dst->encoding());
3349   emit_int8((unsigned char)0xF7);
3350   emit_int8((unsigned char)(0xD0 | encode));
3351 }
3352 
3353 void Assembler::btsl(Address dst, Register idx) {
3354   InstructionMark im(this);
3355 
3356   prefix(dst, idx);
3357   emit_int8(0x0F);
3358   emit_int8(0xAB);
3359   emit_operand(idx, dst);
3360 }
3361 
3362 void Assembler::btrl(Address dst, Register idx) {
3363   InstructionMark im(this);
3364 
3365   prefix(dst, idx);
3366   emit_int8(0x0F);
3367   emit_int8(0xB3);
3368   emit_operand(idx, dst);
3369 }
3370 
3371 void Assembler::orl(Address dst, int32_t imm32) {
3372   InstructionMark im(this);
3373   prefix(dst);
3374   emit_arith_operand(0x81, rcx, dst, imm32);
3375 }
3376 
3377 void Assembler::orl(Register dst, int32_t imm32) {
3378   prefix(dst);
3379   emit_arith(0x81, 0xC8, dst, imm32);
3380 }
3381 
3382 void Assembler::orl(Register dst, Address src) {
3383   InstructionMark im(this);
3384   prefix(src, dst);
3385   emit_int8(0x0B);
3386   emit_operand(dst, src);
3387 }
3388 
3389 void Assembler::orl(Register dst, Register src) {
3390   (void) prefix_and_encode(dst->encoding(), src->encoding());
3391   emit_arith(0x0B, 0xC0, dst, src);
3392 }
3393 
3394 void Assembler::orl(Address dst, Register src) {
3395   InstructionMark im(this);
3396   prefix(dst, src);
3397   emit_int8(0x09);
3398   emit_operand(src, dst);
3399 }
3400 
3401 void Assembler::orb(Address dst, int imm8) {
3402   InstructionMark im(this);
3403   prefix(dst);
3404   emit_int8((unsigned char)0x80);
3405   emit_operand(rcx, dst, 1);
3406   emit_int8(imm8);
3407 }
3408 
3409 void Assembler::packuswb(XMMRegister dst, Address src) {
3410   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3411   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3412   InstructionMark im(this);
3413   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3414   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3415   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3416   emit_int8(0x67);
3417   emit_operand(dst, src);
3418 }
3419 
3420 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3421   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3422   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3423   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3424   emit_int8(0x67);
3425   emit_int8((unsigned char)(0xC0 | encode));
3426 }
3427 
3428 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3429   assert(UseAVX > 0, "some form of AVX must be enabled");
3430   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3431   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3432   emit_int8(0x67);
3433   emit_int8((unsigned char)(0xC0 | encode));
3434 }
3435 
3436 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3437   assert(VM_Version::supports_avx2(), "");
3438   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3439   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3440   emit_int8(0x00);
3441   emit_int8(0xC0 | encode);
3442   emit_int8(imm8);
3443 }
3444 
3445 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3446   assert(VM_Version::supports_avx2(), "");
3447   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3448   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3449   emit_int8(0x46);
3450   emit_int8(0xC0 | encode);
3451   emit_int8(imm8);
3452 }
3453 
3454 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3455   assert(VM_Version::supports_avx(), "");
3456   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3457   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3458   emit_int8(0x06);
3459   emit_int8(0xC0 | encode);
3460   emit_int8(imm8);
3461 }
3462 
3463 void Assembler::evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3464   assert(VM_Version::supports_evex(), "");
3465   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3466   attributes.set_is_evex_instruction();
3467   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3468   emit_int8(0x76);
3469   emit_int8((unsigned char)(0xC0 | encode));
3470 }
3471 
3472 
3473 void Assembler::pause() {
3474   emit_int8((unsigned char)0xF3);
3475   emit_int8((unsigned char)0x90);
3476 }
3477 
3478 void Assembler::ud2() {
3479   emit_int8(0x0F);
3480   emit_int8(0x0B);
3481 }
3482 
3483 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3484   assert(VM_Version::supports_sse4_2(), "");
3485   InstructionMark im(this);
3486   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3487   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3488   emit_int8(0x61);
3489   emit_operand(dst, src);
3490   emit_int8(imm8);
3491 }
3492 
3493 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3494   assert(VM_Version::supports_sse4_2(), "");
3495   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3496   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3497   emit_int8(0x61);
3498   emit_int8((unsigned char)(0xC0 | encode));
3499   emit_int8(imm8);
3500 }
3501 
3502 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3503 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3504   assert(VM_Version::supports_sse2(), "");
3505   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3506   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3507   emit_int8(0x74);
3508   emit_int8((unsigned char)(0xC0 | encode));
3509 }
3510 
3511 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3512 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3513   assert(VM_Version::supports_avx(), "");
3514   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3515   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3516   emit_int8(0x74);
3517   emit_int8((unsigned char)(0xC0 | encode));
3518 }
3519 
3520 // In this context, kdst is written the mask used to process the equal components
3521 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3522   assert(VM_Version::supports_avx512bw(), "");
3523   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3524   attributes.set_is_evex_instruction();
3525   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3526   emit_int8(0x74);
3527   emit_int8((unsigned char)(0xC0 | encode));
3528 }
3529 
3530 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3531   assert(VM_Version::supports_avx512vlbw(), "");
3532   InstructionMark im(this);
3533   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3534   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3535   attributes.set_is_evex_instruction();
3536   int dst_enc = kdst->encoding();
3537   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3538   emit_int8(0x64);
3539   emit_operand(as_Register(dst_enc), src);
3540 }
3541 
3542 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3543   assert(is_vector_masking(), "");
3544   assert(VM_Version::supports_avx512vlbw(), "");
3545   InstructionMark im(this);
3546   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3547   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3548   attributes.reset_is_clear_context();
3549   attributes.set_embedded_opmask_register_specifier(mask);
3550   attributes.set_is_evex_instruction();
3551   int dst_enc = kdst->encoding();
3552   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3553   emit_int8(0x64);
3554   emit_operand(as_Register(dst_enc), src);
3555 }
3556 
3557 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3558   assert(VM_Version::supports_avx512vlbw(), "");
3559   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3560   attributes.set_is_evex_instruction();
3561   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3562   emit_int8(0x3E);
3563   emit_int8((unsigned char)(0xC0 | encode));
3564   emit_int8(vcc);
3565 }
3566 
3567 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3568   assert(is_vector_masking(), "");
3569   assert(VM_Version::supports_avx512vlbw(), "");
3570   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3571   attributes.reset_is_clear_context();
3572   attributes.set_embedded_opmask_register_specifier(mask);
3573   attributes.set_is_evex_instruction();
3574   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3575   emit_int8(0x3E);
3576   emit_int8((unsigned char)(0xC0 | encode));
3577   emit_int8(vcc);
3578 }
3579 
3580 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3581   assert(VM_Version::supports_avx512vlbw(), "");
3582   InstructionMark im(this);
3583   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3584   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3585   attributes.set_is_evex_instruction();
3586   int dst_enc = kdst->encoding();
3587   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3588   emit_int8(0x3E);
3589   emit_operand(as_Register(dst_enc), src);
3590   emit_int8(vcc);
3591 }
3592 
3593 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3594   assert(VM_Version::supports_avx512bw(), "");
3595   InstructionMark im(this);
3596   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3597   attributes.set_is_evex_instruction();
3598   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3599   int dst_enc = kdst->encoding();
3600   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3601   emit_int8(0x74);
3602   emit_operand(as_Register(dst_enc), src);
3603 }
3604 
3605 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3606   assert(VM_Version::supports_avx512vlbw(), "");
3607   assert(is_vector_masking(), "");    // For stub code use only
3608   InstructionMark im(this);
3609   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ false);
3610   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3611   attributes.reset_is_clear_context();
3612   attributes.set_embedded_opmask_register_specifier(mask);
3613   attributes.set_is_evex_instruction();
3614   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3615   emit_int8(0x74);
3616   emit_operand(as_Register(kdst->encoding()), src);
3617 }
3618 
3619 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3620 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3621   assert(VM_Version::supports_sse2(), "");
3622   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3623   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3624   emit_int8(0x75);
3625   emit_int8((unsigned char)(0xC0 | encode));
3626 }
3627 
3628 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3629 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3630   assert(VM_Version::supports_avx(), "");
3631   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3632   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3633   emit_int8(0x75);
3634   emit_int8((unsigned char)(0xC0 | encode));
3635 }
3636 
3637 // In this context, kdst is written the mask used to process the equal components
3638 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3639   assert(VM_Version::supports_avx512bw(), "");
3640   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3641   attributes.set_is_evex_instruction();
3642   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3643   emit_int8(0x75);
3644   emit_int8((unsigned char)(0xC0 | encode));
3645 }
3646 
3647 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3648   assert(VM_Version::supports_avx512bw(), "");
3649   InstructionMark im(this);
3650   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3651   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3652   attributes.set_is_evex_instruction();
3653   int dst_enc = kdst->encoding();
3654   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3655   emit_int8(0x75);
3656   emit_operand(as_Register(dst_enc), src);
3657 }
3658 
3659 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3660 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3661   assert(VM_Version::supports_sse2(), "");
3662   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3663   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3664   emit_int8(0x76);
3665   emit_int8((unsigned char)(0xC0 | encode));
3666 }
3667 
3668 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3669 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3670   assert(VM_Version::supports_avx(), "");
3671   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3672   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3673   emit_int8(0x76);
3674   emit_int8((unsigned char)(0xC0 | encode));
3675 }
3676 
3677 // In this context, kdst is written the mask used to process the equal components
3678 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3679   assert(VM_Version::supports_evex(), "");
3680   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3681   attributes.set_is_evex_instruction();
3682   attributes.reset_is_clear_context();
3683   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3684   emit_int8(0x76);
3685   emit_int8((unsigned char)(0xC0 | encode));
3686 }
3687 
3688 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3689   assert(VM_Version::supports_evex(), "");
3690   InstructionMark im(this);
3691   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3692   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3693   attributes.reset_is_clear_context();
3694   attributes.set_is_evex_instruction();
3695   int dst_enc = kdst->encoding();
3696   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3697   emit_int8(0x76);
3698   emit_operand(as_Register(dst_enc), src);
3699 }
3700 
3701 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3702 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3703   assert(VM_Version::supports_sse4_1(), "");
3704   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3705   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3706   emit_int8(0x29);
3707   emit_int8((unsigned char)(0xC0 | encode));
3708 }
3709 
3710 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3711 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3712   assert(VM_Version::supports_avx(), "");
3713   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3714   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3715   emit_int8(0x29);
3716   emit_int8((unsigned char)(0xC0 | encode));
3717 }
3718 
3719 // In this context, kdst is written the mask used to process the equal components
3720 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3721   assert(VM_Version::supports_evex(), "");
3722   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3723   attributes.reset_is_clear_context();
3724   attributes.set_is_evex_instruction();
3725   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3726   emit_int8(0x29);
3727   emit_int8((unsigned char)(0xC0 | encode));
3728 }
3729 
3730 // In this context, kdst is written the mask used to process the equal components
3731 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3732   assert(VM_Version::supports_evex(), "");
3733   InstructionMark im(this);
3734   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3735   attributes.reset_is_clear_context();
3736   attributes.set_is_evex_instruction();
3737   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3738   int dst_enc = kdst->encoding();
3739   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3740   emit_int8(0x29);
3741   emit_operand(as_Register(dst_enc), src);
3742 }
3743 
3744 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3745   assert(VM_Version::supports_sse2(), "");
3746   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3747   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3748   emit_int8((unsigned char)0xD7);
3749   emit_int8((unsigned char)(0xC0 | encode));
3750 }
3751 
3752 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3753   assert(VM_Version::supports_avx2(), "");
3754   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3755   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3756   emit_int8((unsigned char)0xD7);
3757   emit_int8((unsigned char)(0xC0 | encode));
3758 }
3759 
3760 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3761   assert(VM_Version::supports_sse4_1(), "");
3762   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3763   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3764   emit_int8(0x16);
3765   emit_int8((unsigned char)(0xC0 | encode));
3766   emit_int8(imm8);
3767 }
3768 
3769 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3770   assert(VM_Version::supports_sse4_1(), "");
3771   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3772   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3773   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3774   emit_int8(0x16);
3775   emit_operand(src, dst);
3776   emit_int8(imm8);
3777 }
3778 
3779 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3780   assert(VM_Version::supports_sse4_1(), "");
3781   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3782   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3783   emit_int8(0x16);
3784   emit_int8((unsigned char)(0xC0 | encode));
3785   emit_int8(imm8);
3786 }
3787 
3788 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3789   assert(VM_Version::supports_sse4_1(), "");
3790   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3791   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3792   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3793   emit_int8(0x16);
3794   emit_operand(src, dst);
3795   emit_int8(imm8);
3796 }
3797 
3798 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3799   assert(VM_Version::supports_sse2(), "");
3800   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3801   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3802   emit_int8((unsigned char)0xC5);
3803   emit_int8((unsigned char)(0xC0 | encode));
3804   emit_int8(imm8);
3805 }
3806 
3807 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3808   assert(VM_Version::supports_sse4_1(), "");
3809   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3810   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3811   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3812   emit_int8((unsigned char)0x15);
3813   emit_operand(src, dst);
3814   emit_int8(imm8);
3815 }
3816 
3817 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3818   assert(VM_Version::supports_sse4_1(), "");
3819   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3820   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3821   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3822   emit_int8(0x14);
3823   emit_operand(src, dst);
3824   emit_int8(imm8);
3825 }
3826 
3827 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3828   assert(VM_Version::supports_sse4_1(), "");
3829   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3830   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3831   emit_int8(0x22);
3832   emit_int8((unsigned char)(0xC0 | encode));
3833   emit_int8(imm8);
3834 }
3835 
3836 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3837   assert(VM_Version::supports_sse4_1(), "");
3838   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3839   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3840   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3841   emit_int8(0x22);
3842   emit_operand(dst,src);
3843   emit_int8(imm8);
3844 }
3845 
3846 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3847   assert(VM_Version::supports_sse4_1(), "");
3848   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3849   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3850   emit_int8(0x22);
3851   emit_int8((unsigned char)(0xC0 | encode));
3852   emit_int8(imm8);
3853 }
3854 
3855 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3856   assert(VM_Version::supports_sse4_1(), "");
3857   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3858   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3859   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3860   emit_int8(0x22);
3861   emit_operand(dst, src);
3862   emit_int8(imm8);
3863 }
3864 
3865 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3866   assert(VM_Version::supports_sse2(), "");
3867   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3868   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3869   emit_int8((unsigned char)0xC4);
3870   emit_int8((unsigned char)(0xC0 | encode));
3871   emit_int8(imm8);
3872 }
3873 
3874 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3875   assert(VM_Version::supports_sse2(), "");
3876   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3877   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3878   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3879   emit_int8((unsigned char)0xC4);
3880   emit_operand(dst, src);
3881   emit_int8(imm8);
3882 }
3883 
3884 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3885   assert(VM_Version::supports_sse4_1(), "");
3886   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3887   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3888   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3889   emit_int8(0x20);
3890   emit_operand(dst, src);
3891   emit_int8(imm8);
3892 }
3893 
3894 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3895   assert(VM_Version::supports_sse4_1(), "");
3896   InstructionMark im(this);
3897   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3898   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3899   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3900   emit_int8(0x30);
3901   emit_operand(dst, src);
3902 }
3903 
3904 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3905   assert(VM_Version::supports_sse4_1(), "");
3906   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3907   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3908   emit_int8(0x30);
3909   emit_int8((unsigned char)(0xC0 | encode));
3910 }
3911 
3912 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3913   assert(VM_Version::supports_avx(), "");
3914   InstructionMark im(this);
3915   assert(dst != xnoreg, "sanity");
3916   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3917   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3918   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3919   emit_int8(0x30);
3920   emit_operand(dst, src);
3921 }
3922 
3923 void Assembler::vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) {
3924   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3925   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3926   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
3927   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3928   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3929   emit_int8(0x30);
3930   emit_int8((unsigned char) (0xC0 | encode));
3931 }
3932 
3933 
3934 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3935   assert(is_vector_masking(), "");
3936   assert(VM_Version::supports_avx512vlbw(), "");
3937   assert(dst != xnoreg, "sanity");
3938   InstructionMark im(this);
3939   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3940   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3941   attributes.set_embedded_opmask_register_specifier(mask);
3942   attributes.set_is_evex_instruction();
3943   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3944   emit_int8(0x30);
3945   emit_operand(dst, src);
3946 }
3947 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3948   assert(VM_Version::supports_avx512vlbw(), "");
3949   assert(src != xnoreg, "sanity");
3950   InstructionMark im(this);
3951   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3952   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3953   attributes.set_is_evex_instruction();
3954   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3955   emit_int8(0x30);
3956   emit_operand(src, dst);
3957 }
3958 
3959 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3960   assert(is_vector_masking(), "");
3961   assert(VM_Version::supports_avx512vlbw(), "");
3962   assert(src != xnoreg, "sanity");
3963   InstructionMark im(this);
3964   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3965   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3966   attributes.reset_is_clear_context();
3967   attributes.set_embedded_opmask_register_specifier(mask);
3968   attributes.set_is_evex_instruction();
3969   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3970   emit_int8(0x30);
3971   emit_operand(src, dst);
3972 }
3973 
3974 void Assembler::evpmovdb(Address dst, XMMRegister src, int vector_len) {
3975   assert(VM_Version::supports_evex(), "");
3976   assert(src != xnoreg, "sanity");
3977   InstructionMark im(this);
3978   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3979   attributes.set_address_attributes(/* tuple_type */ EVEX_QVM, /* input_size_in_bits */ EVEX_NObit);
3980   attributes.set_is_evex_instruction();
3981   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3982   emit_int8(0x31);
3983   emit_operand(src, dst);
3984 }
3985 
3986 void Assembler::vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len) {
3987   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3988   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3989   vector_len == AVX_512bit? VM_Version::supports_evex() : 0, " ");
3990   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3991   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3992   emit_int8(0x33);
3993   emit_int8((unsigned char)(0xC0 | encode));
3994 }
3995 
3996 // generic
3997 void Assembler::pop(Register dst) {
3998   int encode = prefix_and_encode(dst->encoding());
3999   emit_int8(0x58 | encode);
4000 }
4001 
4002 void Assembler::popcntl(Register dst, Address src) {
4003   assert(VM_Version::supports_popcnt(), "must support");
4004   InstructionMark im(this);
4005   emit_int8((unsigned char)0xF3);
4006   prefix(src, dst);
4007   emit_int8(0x0F);
4008   emit_int8((unsigned char)0xB8);
4009   emit_operand(dst, src);
4010 }
4011 
4012 void Assembler::popcntl(Register dst, Register src) {
4013   assert(VM_Version::supports_popcnt(), "must support");
4014   emit_int8((unsigned char)0xF3);
4015   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4016   emit_int8(0x0F);
4017   emit_int8((unsigned char)0xB8);
4018   emit_int8((unsigned char)(0xC0 | encode));
4019 }
4020 
4021 void Assembler::vpopcntd(XMMRegister dst, XMMRegister src, int vector_len) {
4022   assert(VM_Version::supports_vpopcntdq(), "must support vpopcntdq feature");
4023   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4024   attributes.set_is_evex_instruction();
4025   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4026   emit_int8(0x55);
4027   emit_int8((unsigned char)(0xC0 | encode));
4028 }
4029 
4030 void Assembler::popf() {
4031   emit_int8((unsigned char)0x9D);
4032 }
4033 
4034 #ifndef _LP64 // no 32bit push/pop on amd64
4035 void Assembler::popl(Address dst) {
4036   // NOTE: this will adjust stack by 8byte on 64bits
4037   InstructionMark im(this);
4038   prefix(dst);
4039   emit_int8((unsigned char)0x8F);
4040   emit_operand(rax, dst);
4041 }
4042 #endif
4043 
4044 void Assembler::prefetch_prefix(Address src) {
4045   prefix(src);
4046   emit_int8(0x0F);
4047 }
4048 
4049 void Assembler::prefetchnta(Address src) {
4050   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4051   InstructionMark im(this);
4052   prefetch_prefix(src);
4053   emit_int8(0x18);
4054   emit_operand(rax, src); // 0, src
4055 }
4056 
4057 void Assembler::prefetchr(Address src) {
4058   assert(VM_Version::supports_3dnow_prefetch(), "must support");
4059   InstructionMark im(this);
4060   prefetch_prefix(src);
4061   emit_int8(0x0D);
4062   emit_operand(rax, src); // 0, src
4063 }
4064 
4065 void Assembler::prefetcht0(Address src) {
4066   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4067   InstructionMark im(this);
4068   prefetch_prefix(src);
4069   emit_int8(0x18);
4070   emit_operand(rcx, src); // 1, src
4071 }
4072 
4073 void Assembler::prefetcht1(Address src) {
4074   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4075   InstructionMark im(this);
4076   prefetch_prefix(src);
4077   emit_int8(0x18);
4078   emit_operand(rdx, src); // 2, src
4079 }
4080 
4081 void Assembler::prefetcht2(Address src) {
4082   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4083   InstructionMark im(this);
4084   prefetch_prefix(src);
4085   emit_int8(0x18);
4086   emit_operand(rbx, src); // 3, src
4087 }
4088 
4089 void Assembler::prefetchw(Address src) {
4090   assert(VM_Version::supports_3dnow_prefetch(), "must support");
4091   InstructionMark im(this);
4092   prefetch_prefix(src);
4093   emit_int8(0x0D);
4094   emit_operand(rcx, src); // 1, src
4095 }
4096 
4097 void Assembler::prefix(Prefix p) {
4098   emit_int8(p);
4099 }
4100 
4101 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
4102   assert(VM_Version::supports_ssse3(), "");
4103   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4104   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4105   emit_int8(0x00);
4106   emit_int8((unsigned char)(0xC0 | encode));
4107 }
4108 
4109 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4110   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4111          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4112          0, "");
4113   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4114   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4115   emit_int8(0x00);
4116   emit_int8((unsigned char)(0xC0 | encode));
4117 }
4118 
4119 void Assembler::pshufb(XMMRegister dst, Address src) {
4120   assert(VM_Version::supports_ssse3(), "");
4121   InstructionMark im(this);
4122   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4123   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4124   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4125   emit_int8(0x00);
4126   emit_operand(dst, src);
4127 }
4128 
4129 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
4130   assert(isByte(mode), "invalid value");
4131   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4132   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
4133   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4134   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4135   emit_int8(0x70);
4136   emit_int8((unsigned char)(0xC0 | encode));
4137   emit_int8(mode & 0xFF);
4138 }
4139 
4140 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
4141   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4142          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4143          0, "");
4144   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4145   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4146   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4147   emit_int8(0x70);
4148   emit_int8((unsigned char)(0xC0 | encode));
4149   emit_int8(mode & 0xFF);
4150 }
4151 
4152 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
4153   assert(isByte(mode), "invalid value");
4154   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4155   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4156   InstructionMark im(this);
4157   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4158   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4159   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4160   emit_int8(0x70);
4161   emit_operand(dst, src);
4162   emit_int8(mode & 0xFF);
4163 }
4164 
4165 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4166   assert(isByte(mode), "invalid value");
4167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4168   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4169   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4170   emit_int8(0x70);
4171   emit_int8((unsigned char)(0xC0 | encode));
4172   emit_int8(mode & 0xFF);
4173 }
4174 
4175 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
4176   assert(isByte(mode), "invalid value");
4177   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4178   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4179   InstructionMark im(this);
4180   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4181   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4182   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4183   emit_int8(0x70);
4184   emit_operand(dst, src);
4185   emit_int8(mode & 0xFF);
4186 }
4187 void Assembler::evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4188   assert(VM_Version::supports_evex(), "requires EVEX support");
4189   assert(vector_len == Assembler::AVX_256bit || vector_len == Assembler::AVX_512bit, "");
4190   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4191   attributes.set_is_evex_instruction();
4192   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4193   emit_int8(0x43);
4194   emit_int8((unsigned char)(0xC0 | encode));
4195   emit_int8(imm8 & 0xFF);
4196 }
4197 
4198 void Assembler::psrldq(XMMRegister dst, int shift) {
4199   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4200   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4201   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4202   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4203   emit_int8(0x73);
4204   emit_int8((unsigned char)(0xC0 | encode));
4205   emit_int8(shift);
4206 }
4207 
4208 void Assembler::pslldq(XMMRegister dst, int shift) {
4209   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4210   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4211   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4212   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
4213   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4214   emit_int8(0x73);
4215   emit_int8((unsigned char)(0xC0 | encode));
4216   emit_int8(shift);
4217 }
4218 
4219 void Assembler::ptest(XMMRegister dst, Address src) {
4220   assert(VM_Version::supports_sse4_1(), "");
4221   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4222   InstructionMark im(this);
4223   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4224   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4225   emit_int8(0x17);
4226   emit_operand(dst, src);
4227 }
4228 
4229 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4230   assert(VM_Version::supports_sse4_1(), "");
4231   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4232   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4233   emit_int8(0x17);
4234   emit_int8((unsigned char)(0xC0 | encode));
4235 }
4236 
4237 void Assembler::vptest(XMMRegister dst, Address src) {
4238   assert(VM_Version::supports_avx(), "");
4239   InstructionMark im(this);
4240   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4241   assert(dst != xnoreg, "sanity");
4242   // swap src<->dst for encoding
4243   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4244   emit_int8(0x17);
4245   emit_operand(dst, src);
4246 }
4247 
4248 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4249   assert(VM_Version::supports_avx(), "");
4250   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4251   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4252   emit_int8(0x17);
4253   emit_int8((unsigned char)(0xC0 | encode));
4254 }
4255 
4256 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4257   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4258   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4259   InstructionMark im(this);
4260   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4261   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4262   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4263   emit_int8(0x60);
4264   emit_operand(dst, src);
4265 }
4266 
4267 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4268   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4270   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4271   emit_int8(0x60);
4272   emit_int8((unsigned char)(0xC0 | encode));
4273 }
4274 
4275 void Assembler::punpckldq(XMMRegister dst, Address src) {
4276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4277   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4278   InstructionMark im(this);
4279   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4280   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4281   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4282   emit_int8(0x62);
4283   emit_operand(dst, src);
4284 }
4285 
4286 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4287   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4288   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4289   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4290   emit_int8(0x62);
4291   emit_int8((unsigned char)(0xC0 | encode));
4292 }
4293 
4294 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4295   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4296   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4297   attributes.set_rex_vex_w_reverted();
4298   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4299   emit_int8(0x6C);
4300   emit_int8((unsigned char)(0xC0 | encode));
4301 }
4302 
4303 void Assembler::push(int32_t imm32) {
4304   // in 64bits we push 64bits onto the stack but only
4305   // take a 32bit immediate
4306   emit_int8(0x68);
4307   emit_int32(imm32);
4308 }
4309 
4310 void Assembler::push(Register src) {
4311   int encode = prefix_and_encode(src->encoding());
4312 
4313   emit_int8(0x50 | encode);
4314 }
4315 
4316 void Assembler::pushf() {
4317   emit_int8((unsigned char)0x9C);
4318 }
4319 
4320 #ifndef _LP64 // no 32bit push/pop on amd64
4321 void Assembler::pushl(Address src) {
4322   // Note this will push 64bit on 64bit
4323   InstructionMark im(this);
4324   prefix(src);
4325   emit_int8((unsigned char)0xFF);
4326   emit_operand(rsi, src);
4327 }
4328 #endif
4329 
4330 void Assembler::rcll(Register dst, int imm8) {
4331   assert(isShiftCount(imm8), "illegal shift count");
4332   int encode = prefix_and_encode(dst->encoding());
4333   if (imm8 == 1) {
4334     emit_int8((unsigned char)0xD1);
4335     emit_int8((unsigned char)(0xD0 | encode));
4336   } else {
4337     emit_int8((unsigned char)0xC1);
4338     emit_int8((unsigned char)0xD0 | encode);
4339     emit_int8(imm8);
4340   }
4341 }
4342 
4343 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4344   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4345   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4346   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4347   emit_int8(0x53);
4348   emit_int8((unsigned char)(0xC0 | encode));
4349 }
4350 
4351 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4352   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4353   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4354   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4355   emit_int8(0x53);
4356   emit_int8((unsigned char)(0xC0 | encode));
4357 }
4358 
4359 void Assembler::rdtsc() {
4360   emit_int8((unsigned char)0x0F);
4361   emit_int8((unsigned char)0x31);
4362 }
4363 
4364 // copies data from [esi] to [edi] using rcx pointer sized words
4365 // generic
4366 void Assembler::rep_mov() {
4367   emit_int8((unsigned char)0xF3);
4368   // MOVSQ
4369   LP64_ONLY(prefix(REX_W));
4370   emit_int8((unsigned char)0xA5);
4371 }
4372 
4373 // sets rcx bytes with rax, value at [edi]
4374 void Assembler::rep_stosb() {
4375   emit_int8((unsigned char)0xF3); // REP
4376   LP64_ONLY(prefix(REX_W));
4377   emit_int8((unsigned char)0xAA); // STOSB
4378 }
4379 
4380 // sets rcx pointer sized words with rax, value at [edi]
4381 // generic
4382 void Assembler::rep_stos() {
4383   emit_int8((unsigned char)0xF3); // REP
4384   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
4385   emit_int8((unsigned char)0xAB);
4386 }
4387 
4388 // scans rcx pointer sized words at [edi] for occurance of rax,
4389 // generic
4390 void Assembler::repne_scan() { // repne_scan
4391   emit_int8((unsigned char)0xF2);
4392   // SCASQ
4393   LP64_ONLY(prefix(REX_W));
4394   emit_int8((unsigned char)0xAF);
4395 }
4396 
4397 #ifdef _LP64
4398 // scans rcx 4 byte words at [edi] for occurance of rax,
4399 // generic
4400 void Assembler::repne_scanl() { // repne_scan
4401   emit_int8((unsigned char)0xF2);
4402   // SCASL
4403   emit_int8((unsigned char)0xAF);
4404 }
4405 #endif
4406 
4407 void Assembler::ret(int imm16) {
4408   if (imm16 == 0) {
4409     emit_int8((unsigned char)0xC3);
4410   } else {
4411     emit_int8((unsigned char)0xC2);
4412     emit_int16(imm16);
4413   }
4414 }
4415 
4416 void Assembler::sahf() {
4417 #ifdef _LP64
4418   // Not supported in 64bit mode
4419   ShouldNotReachHere();
4420 #endif
4421   emit_int8((unsigned char)0x9E);
4422 }
4423 
4424 void Assembler::sarl(Register dst, int imm8) {
4425   int encode = prefix_and_encode(dst->encoding());
4426   assert(isShiftCount(imm8), "illegal shift count");
4427   if (imm8 == 1) {
4428     emit_int8((unsigned char)0xD1);
4429     emit_int8((unsigned char)(0xF8 | encode));
4430   } else {
4431     emit_int8((unsigned char)0xC1);
4432     emit_int8((unsigned char)(0xF8 | encode));
4433     emit_int8(imm8);
4434   }
4435 }
4436 
4437 void Assembler::sarl(Register dst) {
4438   int encode = prefix_and_encode(dst->encoding());
4439   emit_int8((unsigned char)0xD3);
4440   emit_int8((unsigned char)(0xF8 | encode));
4441 }
4442 
4443 void Assembler::sbbl(Address dst, int32_t imm32) {
4444   InstructionMark im(this);
4445   prefix(dst);
4446   emit_arith_operand(0x81, rbx, dst, imm32);
4447 }
4448 
4449 void Assembler::sbbl(Register dst, int32_t imm32) {
4450   prefix(dst);
4451   emit_arith(0x81, 0xD8, dst, imm32);
4452 }
4453 
4454 
4455 void Assembler::sbbl(Register dst, Address src) {
4456   InstructionMark im(this);
4457   prefix(src, dst);
4458   emit_int8(0x1B);
4459   emit_operand(dst, src);
4460 }
4461 
4462 void Assembler::sbbl(Register dst, Register src) {
4463   (void) prefix_and_encode(dst->encoding(), src->encoding());
4464   emit_arith(0x1B, 0xC0, dst, src);
4465 }
4466 
4467 void Assembler::setb(Condition cc, Register dst) {
4468   assert(0 <= cc && cc < 16, "illegal cc");
4469   int encode = prefix_and_encode(dst->encoding(), true);
4470   emit_int8(0x0F);
4471   emit_int8((unsigned char)0x90 | cc);
4472   emit_int8((unsigned char)(0xC0 | encode));
4473 }
4474 
4475 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4476   assert(VM_Version::supports_ssse3(), "");
4477   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
4478   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4479   emit_int8((unsigned char)0x0F);
4480   emit_int8((unsigned char)(0xC0 | encode));
4481   emit_int8(imm8);
4482 }
4483 
4484 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4485   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4486          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4487          0, "");
4488   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4489   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4490   emit_int8((unsigned char)0x0F);
4491   emit_int8((unsigned char)(0xC0 | encode));
4492   emit_int8(imm8);
4493 }
4494 
4495 void Assembler::evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
4496   assert(VM_Version::supports_evex(), "");
4497   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4498   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4499   emit_int8(0x3);
4500   emit_int8((unsigned char)(0xC0 | encode));
4501   emit_int8(imm8);
4502 }
4503 
4504 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4505   assert(VM_Version::supports_sse4_1(), "");
4506   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4507   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4508   emit_int8((unsigned char)0x0E);
4509   emit_int8((unsigned char)(0xC0 | encode));
4510   emit_int8(imm8);
4511 }
4512 
4513 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4514   assert(VM_Version::supports_sha(), "");
4515   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
4516   emit_int8((unsigned char)0xCC);
4517   emit_int8((unsigned char)(0xC0 | encode));
4518   emit_int8((unsigned char)imm8);
4519 }
4520 
4521 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4522   assert(VM_Version::supports_sha(), "");
4523   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4524   emit_int8((unsigned char)0xC8);
4525   emit_int8((unsigned char)(0xC0 | encode));
4526 }
4527 
4528 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4529   assert(VM_Version::supports_sha(), "");
4530   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4531   emit_int8((unsigned char)0xC9);
4532   emit_int8((unsigned char)(0xC0 | encode));
4533 }
4534 
4535 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4536   assert(VM_Version::supports_sha(), "");
4537   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4538   emit_int8((unsigned char)0xCA);
4539   emit_int8((unsigned char)(0xC0 | encode));
4540 }
4541 
4542 // xmm0 is implicit additional source to this instruction.
4543 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4544   assert(VM_Version::supports_sha(), "");
4545   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4546   emit_int8((unsigned char)0xCB);
4547   emit_int8((unsigned char)(0xC0 | encode));
4548 }
4549 
4550 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4551   assert(VM_Version::supports_sha(), "");
4552   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4553   emit_int8((unsigned char)0xCC);
4554   emit_int8((unsigned char)(0xC0 | encode));
4555 }
4556 
4557 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4558   assert(VM_Version::supports_sha(), "");
4559   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4560   emit_int8((unsigned char)0xCD);
4561   emit_int8((unsigned char)(0xC0 | encode));
4562 }
4563 
4564 
4565 void Assembler::shll(Register dst, int imm8) {
4566   assert(isShiftCount(imm8), "illegal shift count");
4567   int encode = prefix_and_encode(dst->encoding());
4568   if (imm8 == 1 ) {
4569     emit_int8((unsigned char)0xD1);
4570     emit_int8((unsigned char)(0xE0 | encode));
4571   } else {
4572     emit_int8((unsigned char)0xC1);
4573     emit_int8((unsigned char)(0xE0 | encode));
4574     emit_int8(imm8);
4575   }
4576 }
4577 
4578 void Assembler::shll(Register dst) {
4579   int encode = prefix_and_encode(dst->encoding());
4580   emit_int8((unsigned char)0xD3);
4581   emit_int8((unsigned char)(0xE0 | encode));
4582 }
4583 
4584 void Assembler::shrl(Register dst, int imm8) {
4585   assert(isShiftCount(imm8), "illegal shift count");
4586   int encode = prefix_and_encode(dst->encoding());
4587   emit_int8((unsigned char)0xC1);
4588   emit_int8((unsigned char)(0xE8 | encode));
4589   emit_int8(imm8);
4590 }
4591 
4592 void Assembler::shrl(Register dst) {
4593   int encode = prefix_and_encode(dst->encoding());
4594   emit_int8((unsigned char)0xD3);
4595   emit_int8((unsigned char)(0xE8 | encode));
4596 }
4597 
4598 // copies a single word from [esi] to [edi]
4599 void Assembler::smovl() {
4600   emit_int8((unsigned char)0xA5);
4601 }
4602 
4603 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4604   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4605   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4606   attributes.set_rex_vex_w_reverted();
4607   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4608   emit_int8(0x51);
4609   emit_int8((unsigned char)(0xC0 | encode));
4610 }
4611 
4612 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4613   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4614   InstructionMark im(this);
4615   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4616   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4617   attributes.set_rex_vex_w_reverted();
4618   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4619   emit_int8(0x51);
4620   emit_operand(dst, src);
4621 }
4622 
4623 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4624   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4625   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4626   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4627   emit_int8(0x51);
4628   emit_int8((unsigned char)(0xC0 | encode));
4629 }
4630 
4631 void Assembler::std() {
4632   emit_int8((unsigned char)0xFD);
4633 }
4634 
4635 void Assembler::sqrtss(XMMRegister dst, Address src) {
4636   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4637   InstructionMark im(this);
4638   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4639   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4640   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4641   emit_int8(0x51);
4642   emit_operand(dst, src);
4643 }
4644 
4645 void Assembler::stmxcsr( Address dst) {
4646   if (UseAVX > 0 ) {
4647     assert(VM_Version::supports_avx(), "");
4648     InstructionMark im(this);
4649     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4650     vex_prefix(dst, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4651     emit_int8((unsigned char)0xAE);
4652     emit_operand(as_Register(3), dst);
4653   } else {
4654     NOT_LP64(assert(VM_Version::supports_sse(), ""));
4655     InstructionMark im(this);
4656     prefix(dst);
4657     emit_int8(0x0F);
4658     emit_int8((unsigned char)0xAE);
4659     emit_operand(as_Register(3), dst);
4660   }
4661 }
4662 
4663 void Assembler::subl(Address dst, int32_t imm32) {
4664   InstructionMark im(this);
4665   prefix(dst);
4666   emit_arith_operand(0x81, rbp, dst, imm32);
4667 }
4668 
4669 void Assembler::subl(Address dst, Register src) {
4670   InstructionMark im(this);
4671   prefix(dst, src);
4672   emit_int8(0x29);
4673   emit_operand(src, dst);
4674 }
4675 
4676 void Assembler::subl(Register dst, int32_t imm32) {
4677   prefix(dst);
4678   emit_arith(0x81, 0xE8, dst, imm32);
4679 }
4680 
4681 // Force generation of a 4 byte immediate value even if it fits into 8bit
4682 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4683   prefix(dst);
4684   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4685 }
4686 
4687 void Assembler::subl(Register dst, Address src) {
4688   InstructionMark im(this);
4689   prefix(src, dst);
4690   emit_int8(0x2B);
4691   emit_operand(dst, src);
4692 }
4693 
4694 void Assembler::subl(Register dst, Register src) {
4695   (void) prefix_and_encode(dst->encoding(), src->encoding());
4696   emit_arith(0x2B, 0xC0, dst, src);
4697 }
4698 
4699 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4700   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4701   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4702   attributes.set_rex_vex_w_reverted();
4703   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4704   emit_int8(0x5C);
4705   emit_int8((unsigned char)(0xC0 | encode));
4706 }
4707 
4708 void Assembler::subsd(XMMRegister dst, Address src) {
4709   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4710   InstructionMark im(this);
4711   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4712   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4713   attributes.set_rex_vex_w_reverted();
4714   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4715   emit_int8(0x5C);
4716   emit_operand(dst, src);
4717 }
4718 
4719 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4720   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4721   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ false);
4722   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4723   emit_int8(0x5C);
4724   emit_int8((unsigned char)(0xC0 | encode));
4725 }
4726 
4727 void Assembler::subss(XMMRegister dst, Address src) {
4728   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4729   InstructionMark im(this);
4730   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4731   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4732   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4733   emit_int8(0x5C);
4734   emit_operand(dst, src);
4735 }
4736 
4737 void Assembler::testb(Register dst, int imm8) {
4738   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4739   (void) prefix_and_encode(dst->encoding(), true);
4740   emit_arith_b(0xF6, 0xC0, dst, imm8);
4741 }
4742 
4743 void Assembler::testb(Address dst, int imm8) {
4744   InstructionMark im(this);
4745   prefix(dst);
4746   emit_int8((unsigned char)0xF6);
4747   emit_operand(rax, dst, 1);
4748   emit_int8(imm8);
4749 }
4750 
4751 void Assembler::testl(Register dst, int32_t imm32) {
4752   // not using emit_arith because test
4753   // doesn't support sign-extension of
4754   // 8bit operands
4755   int encode = dst->encoding();
4756   if (encode == 0) {
4757     emit_int8((unsigned char)0xA9);
4758   } else {
4759     encode = prefix_and_encode(encode);
4760     emit_int8((unsigned char)0xF7);
4761     emit_int8((unsigned char)(0xC0 | encode));
4762   }
4763   emit_int32(imm32);
4764 }
4765 
4766 void Assembler::testl(Register dst, Register src) {
4767   (void) prefix_and_encode(dst->encoding(), src->encoding());
4768   emit_arith(0x85, 0xC0, dst, src);
4769 }
4770 
4771 void Assembler::testl(Register dst, Address src) {
4772   InstructionMark im(this);
4773   prefix(src, dst);
4774   emit_int8((unsigned char)0x85);
4775   emit_operand(dst, src);
4776 }
4777 
4778 void Assembler::tzcntl(Register dst, Register src) {
4779   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4780   emit_int8((unsigned char)0xF3);
4781   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4782   emit_int8(0x0F);
4783   emit_int8((unsigned char)0xBC);
4784   emit_int8((unsigned char)0xC0 | encode);
4785 }
4786 
4787 void Assembler::tzcntq(Register dst, Register src) {
4788   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4789   emit_int8((unsigned char)0xF3);
4790   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4791   emit_int8(0x0F);
4792   emit_int8((unsigned char)0xBC);
4793   emit_int8((unsigned char)(0xC0 | encode));
4794 }
4795 
4796 void Assembler::ucomisd(XMMRegister dst, Address src) {
4797   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4798   InstructionMark im(this);
4799   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4800   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4801   attributes.set_rex_vex_w_reverted();
4802   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4803   emit_int8(0x2E);
4804   emit_operand(dst, src);
4805 }
4806 
4807 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4808   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4809   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4810   attributes.set_rex_vex_w_reverted();
4811   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4812   emit_int8(0x2E);
4813   emit_int8((unsigned char)(0xC0 | encode));
4814 }
4815 
4816 void Assembler::ucomiss(XMMRegister dst, Address src) {
4817   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4818   InstructionMark im(this);
4819   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4820   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4821   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4822   emit_int8(0x2E);
4823   emit_operand(dst, src);
4824 }
4825 
4826 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4827   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4828   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4829   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4830   emit_int8(0x2E);
4831   emit_int8((unsigned char)(0xC0 | encode));
4832 }
4833 
4834 void Assembler::xabort(int8_t imm8) {
4835   emit_int8((unsigned char)0xC6);
4836   emit_int8((unsigned char)0xF8);
4837   emit_int8((unsigned char)(imm8 & 0xFF));
4838 }
4839 
4840 void Assembler::xaddb(Address dst, Register src) {
4841   InstructionMark im(this);
4842   prefix(dst, src, true);
4843   emit_int8(0x0F);
4844   emit_int8((unsigned char)0xC0);
4845   emit_operand(src, dst);
4846 }
4847 
4848 void Assembler::xaddw(Address dst, Register src) {
4849   InstructionMark im(this);
4850   emit_int8(0x66);
4851   prefix(dst, src);
4852   emit_int8(0x0F);
4853   emit_int8((unsigned char)0xC1);
4854   emit_operand(src, dst);
4855 }
4856 
4857 void Assembler::xaddl(Address dst, Register src) {
4858   InstructionMark im(this);
4859   prefix(dst, src);
4860   emit_int8(0x0F);
4861   emit_int8((unsigned char)0xC1);
4862   emit_operand(src, dst);
4863 }
4864 
4865 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4866   InstructionMark im(this);
4867   relocate(rtype);
4868   if (abort.is_bound()) {
4869     address entry = target(abort);
4870     assert(entry != NULL, "abort entry NULL");
4871     intptr_t offset = entry - pc();
4872     emit_int8((unsigned char)0xC7);
4873     emit_int8((unsigned char)0xF8);
4874     emit_int32(offset - 6); // 2 opcode + 4 address
4875   } else {
4876     abort.add_patch_at(code(), locator());
4877     emit_int8((unsigned char)0xC7);
4878     emit_int8((unsigned char)0xF8);
4879     emit_int32(0);
4880   }
4881 }
4882 
4883 void Assembler::xchgb(Register dst, Address src) { // xchg
4884   InstructionMark im(this);
4885   prefix(src, dst, true);
4886   emit_int8((unsigned char)0x86);
4887   emit_operand(dst, src);
4888 }
4889 
4890 void Assembler::xchgw(Register dst, Address src) { // xchg
4891   InstructionMark im(this);
4892   emit_int8(0x66);
4893   prefix(src, dst);
4894   emit_int8((unsigned char)0x87);
4895   emit_operand(dst, src);
4896 }
4897 
4898 void Assembler::xchgl(Register dst, Address src) { // xchg
4899   InstructionMark im(this);
4900   prefix(src, dst);
4901   emit_int8((unsigned char)0x87);
4902   emit_operand(dst, src);
4903 }
4904 
4905 void Assembler::xchgl(Register dst, Register src) {
4906   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4907   emit_int8((unsigned char)0x87);
4908   emit_int8((unsigned char)(0xC0 | encode));
4909 }
4910 
4911 void Assembler::xend() {
4912   emit_int8((unsigned char)0x0F);
4913   emit_int8((unsigned char)0x01);
4914   emit_int8((unsigned char)0xD5);
4915 }
4916 
4917 void Assembler::xgetbv() {
4918   emit_int8(0x0F);
4919   emit_int8(0x01);
4920   emit_int8((unsigned char)0xD0);
4921 }
4922 
4923 void Assembler::xorl(Register dst, int32_t imm32) {
4924   prefix(dst);
4925   emit_arith(0x81, 0xF0, dst, imm32);
4926 }
4927 
4928 void Assembler::xorl(Register dst, Address src) {
4929   InstructionMark im(this);
4930   prefix(src, dst);
4931   emit_int8(0x33);
4932   emit_operand(dst, src);
4933 }
4934 
4935 void Assembler::xorl(Register dst, Register src) {
4936   (void) prefix_and_encode(dst->encoding(), src->encoding());
4937   emit_arith(0x33, 0xC0, dst, src);
4938 }
4939 
4940 void Assembler::xorb(Register dst, Address src) {
4941   InstructionMark im(this);
4942   prefix(src, dst);
4943   emit_int8(0x32);
4944   emit_operand(dst, src);
4945 }
4946 
4947 // AVX 3-operands scalar float-point arithmetic instructions
4948 
4949 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4950   assert(VM_Version::supports_avx(), "");
4951   InstructionMark im(this);
4952   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4953   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4954   attributes.set_rex_vex_w_reverted();
4955   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4956   emit_int8(0x58);
4957   emit_operand(dst, src);
4958 }
4959 
4960 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4961   assert(VM_Version::supports_avx(), "");
4962   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4963   attributes.set_rex_vex_w_reverted();
4964   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4965   emit_int8(0x58);
4966   emit_int8((unsigned char)(0xC0 | encode));
4967 }
4968 
4969 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4970   assert(VM_Version::supports_avx(), "");
4971   InstructionMark im(this);
4972   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4973   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4974   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4975   emit_int8(0x58);
4976   emit_operand(dst, src);
4977 }
4978 
4979 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4980   assert(VM_Version::supports_avx(), "");
4981   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4982   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4983   emit_int8(0x58);
4984   emit_int8((unsigned char)(0xC0 | encode));
4985 }
4986 
4987 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4988   assert(VM_Version::supports_avx(), "");
4989   InstructionMark im(this);
4990   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4991   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4992   attributes.set_rex_vex_w_reverted();
4993   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4994   emit_int8(0x5E);
4995   emit_operand(dst, src);
4996 }
4997 
4998 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4999   assert(VM_Version::supports_avx(), "");
5000   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5001   attributes.set_rex_vex_w_reverted();
5002   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5003   emit_int8(0x5E);
5004   emit_int8((unsigned char)(0xC0 | encode));
5005 }
5006 
5007 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
5008   assert(VM_Version::supports_avx(), "");
5009   InstructionMark im(this);
5010   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5011   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5012   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5013   emit_int8(0x5E);
5014   emit_operand(dst, src);
5015 }
5016 
5017 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5018   assert(VM_Version::supports_avx(), "");
5019   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5020   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5021   emit_int8(0x5E);
5022   emit_int8((unsigned char)(0xC0 | encode));
5023 }
5024 
5025 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
5026   assert(VM_Version::supports_fma(), "");
5027   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5028   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5029   emit_int8((unsigned char)0xB9);
5030   emit_int8((unsigned char)(0xC0 | encode));
5031 }
5032 
5033 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
5034   assert(VM_Version::supports_fma(), "");
5035   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5036   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5037   emit_int8((unsigned char)0xB9);
5038   emit_int8((unsigned char)(0xC0 | encode));
5039 }
5040 
5041 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
5042   assert(VM_Version::supports_avx(), "");
5043   InstructionMark im(this);
5044   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5045   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5046   attributes.set_rex_vex_w_reverted();
5047   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5048   emit_int8(0x59);
5049   emit_operand(dst, src);
5050 }
5051 
5052 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5053   assert(VM_Version::supports_avx(), "");
5054   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5055   attributes.set_rex_vex_w_reverted();
5056   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5057   emit_int8(0x59);
5058   emit_int8((unsigned char)(0xC0 | encode));
5059 }
5060 
5061 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
5062   assert(VM_Version::supports_avx(), "");
5063   InstructionMark im(this);
5064   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5065   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5066   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5067   emit_int8(0x59);
5068   emit_operand(dst, src);
5069 }
5070 
5071 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5072   assert(VM_Version::supports_avx(), "");
5073   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5074   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5075   emit_int8(0x59);
5076   emit_int8((unsigned char)(0xC0 | encode));
5077 }
5078 
5079 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
5080   assert(VM_Version::supports_avx(), "");
5081   InstructionMark im(this);
5082   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5083   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5084   attributes.set_rex_vex_w_reverted();
5085   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5086   emit_int8(0x5C);
5087   emit_operand(dst, src);
5088 }
5089 
5090 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5091   assert(VM_Version::supports_avx(), "");
5092   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5093   attributes.set_rex_vex_w_reverted();
5094   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5095   emit_int8(0x5C);
5096   emit_int8((unsigned char)(0xC0 | encode));
5097 }
5098 
5099 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
5100   assert(VM_Version::supports_avx(), "");
5101   InstructionMark im(this);
5102   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5103   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5104   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5105   emit_int8(0x5C);
5106   emit_operand(dst, src);
5107 }
5108 
5109 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5110   assert(VM_Version::supports_avx(), "");
5111   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5112   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5113   emit_int8(0x5C);
5114   emit_int8((unsigned char)(0xC0 | encode));
5115 }
5116 
5117 //====================VECTOR ARITHMETIC=====================================
5118 
5119 // Float-point vector arithmetic
5120 
5121 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
5122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5123   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5124   attributes.set_rex_vex_w_reverted();
5125   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5126   emit_int8(0x58);
5127   emit_int8((unsigned char)(0xC0 | encode));
5128 }
5129 
5130 void Assembler::addpd(XMMRegister dst, Address src) {
5131   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5132   InstructionMark im(this);
5133   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5134   attributes.set_rex_vex_w_reverted();
5135   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5136   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5137   emit_int8(0x58);
5138   emit_operand(dst, src);
5139 }
5140 
5141 
5142 void Assembler::addps(XMMRegister dst, XMMRegister src) {
5143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5144   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5145   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5146   emit_int8(0x58);
5147   emit_int8((unsigned char)(0xC0 | encode));
5148 }
5149 
5150 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5151   assert(VM_Version::supports_avx(), "");
5152   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5153   attributes.set_rex_vex_w_reverted();
5154   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5155   emit_int8(0x58);
5156   emit_int8((unsigned char)(0xC0 | encode));
5157 }
5158 
5159 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5160   assert(VM_Version::supports_avx(), "");
5161   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5162   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5163   emit_int8(0x58);
5164   emit_int8((unsigned char)(0xC0 | encode));
5165 }
5166 
5167 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5168   assert(VM_Version::supports_avx(), "");
5169   InstructionMark im(this);
5170   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5171   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5172   attributes.set_rex_vex_w_reverted();
5173   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5174   emit_int8(0x58);
5175   emit_operand(dst, src);
5176 }
5177 
5178 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5179   assert(VM_Version::supports_avx(), "");
5180   InstructionMark im(this);
5181   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5182   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5183   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5184   emit_int8(0x58);
5185   emit_operand(dst, src);
5186 }
5187 
5188 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
5189   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5190   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5191   attributes.set_rex_vex_w_reverted();
5192   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5193   emit_int8(0x5C);
5194   emit_int8((unsigned char)(0xC0 | encode));
5195 }
5196 
5197 void Assembler::subps(XMMRegister dst, XMMRegister src) {
5198   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5199   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5200   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5201   emit_int8(0x5C);
5202   emit_int8((unsigned char)(0xC0 | encode));
5203 }
5204 
5205 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5206   assert(VM_Version::supports_avx(), "");
5207   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5208   attributes.set_rex_vex_w_reverted();
5209   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5210   emit_int8(0x5C);
5211   emit_int8((unsigned char)(0xC0 | encode));
5212 }
5213 
5214 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5215   assert(VM_Version::supports_avx(), "");
5216   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5217   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5218   emit_int8(0x5C);
5219   emit_int8((unsigned char)(0xC0 | encode));
5220 }
5221 
5222 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5223   assert(VM_Version::supports_avx(), "");
5224   InstructionMark im(this);
5225   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5226   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5227   attributes.set_rex_vex_w_reverted();
5228   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5229   emit_int8(0x5C);
5230   emit_operand(dst, src);
5231 }
5232 
5233 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5234   assert(VM_Version::supports_avx(), "");
5235   InstructionMark im(this);
5236   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5237   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5238   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5239   emit_int8(0x5C);
5240   emit_operand(dst, src);
5241 }
5242 
5243 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5244   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5245   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5246   attributes.set_rex_vex_w_reverted();
5247   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5248   emit_int8(0x59);
5249   emit_int8((unsigned char)(0xC0 | encode));
5250 }
5251 
5252 void Assembler::mulpd(XMMRegister dst, Address src) {
5253   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5254   InstructionMark im(this);
5255   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5256   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5257   attributes.set_rex_vex_w_reverted();
5258   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5259   emit_int8(0x59);
5260   emit_operand(dst, src);
5261 }
5262 
5263 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5265   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5266   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5267   emit_int8(0x59);
5268   emit_int8((unsigned char)(0xC0 | encode));
5269 }
5270 
5271 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5272   assert(VM_Version::supports_avx(), "");
5273   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5274   attributes.set_rex_vex_w_reverted();
5275   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5276   emit_int8(0x59);
5277   emit_int8((unsigned char)(0xC0 | encode));
5278 }
5279 
5280 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5281   assert(VM_Version::supports_avx(), "");
5282   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5283   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5284   emit_int8(0x59);
5285   emit_int8((unsigned char)(0xC0 | encode));
5286 }
5287 
5288 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5289   assert(VM_Version::supports_avx(), "");
5290   InstructionMark im(this);
5291   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5292   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5293   attributes.set_rex_vex_w_reverted();
5294   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5295   emit_int8(0x59);
5296   emit_operand(dst, src);
5297 }
5298 
5299 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5300   assert(VM_Version::supports_avx(), "");
5301   InstructionMark im(this);
5302   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5303   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5304   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5305   emit_int8(0x59);
5306   emit_operand(dst, src);
5307 }
5308 
5309 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5310   assert(VM_Version::supports_fma(), "");
5311   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5312   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5313   emit_int8((unsigned char)0xB8);
5314   emit_int8((unsigned char)(0xC0 | encode));
5315 }
5316 
5317 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5318   assert(VM_Version::supports_fma(), "");
5319   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5320   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5321   emit_int8((unsigned char)0xB8);
5322   emit_int8((unsigned char)(0xC0 | encode));
5323 }
5324 
5325 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5326   assert(VM_Version::supports_fma(), "");
5327   InstructionMark im(this);
5328   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5329   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5330   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5331   emit_int8((unsigned char)0xB8);
5332   emit_operand(dst, src2);
5333 }
5334 
5335 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5336   assert(VM_Version::supports_fma(), "");
5337   InstructionMark im(this);
5338   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5339   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5340   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5341   emit_int8((unsigned char)0xB8);
5342   emit_operand(dst, src2);
5343 }
5344 
5345 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5346   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5347   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5348   attributes.set_rex_vex_w_reverted();
5349   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5350   emit_int8(0x5E);
5351   emit_int8((unsigned char)(0xC0 | encode));
5352 }
5353 
5354 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5355   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5356   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5357   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5358   emit_int8(0x5E);
5359   emit_int8((unsigned char)(0xC0 | encode));
5360 }
5361 
5362 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5363   assert(VM_Version::supports_avx(), "");
5364   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5365   attributes.set_rex_vex_w_reverted();
5366   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5367   emit_int8(0x5E);
5368   emit_int8((unsigned char)(0xC0 | encode));
5369 }
5370 
5371 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5372   assert(VM_Version::supports_avx(), "");
5373   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5374   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5375   emit_int8(0x5E);
5376   emit_int8((unsigned char)(0xC0 | encode));
5377 }
5378 
5379 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5380   assert(VM_Version::supports_avx(), "");
5381   InstructionMark im(this);
5382   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5383   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5384   attributes.set_rex_vex_w_reverted();
5385   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5386   emit_int8(0x5E);
5387   emit_operand(dst, src);
5388 }
5389 
5390 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5391   assert(VM_Version::supports_avx(), "");
5392   InstructionMark im(this);
5393   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5394   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5395   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5396   emit_int8(0x5E);
5397   emit_operand(dst, src);
5398 }
5399 
5400 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5401   assert(VM_Version::supports_avx(), "");
5402   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5403   attributes.set_rex_vex_w_reverted();
5404   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5405   emit_int8(0x51);
5406   emit_int8((unsigned char)(0xC0 | encode));
5407 }
5408 
5409 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5410   assert(VM_Version::supports_avx(), "");
5411   InstructionMark im(this);
5412   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5413   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5414   attributes.set_rex_vex_w_reverted();
5415   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5416   emit_int8(0x51);
5417   emit_operand(dst, src);
5418 }
5419 
5420 void Assembler::vsqrtps(XMMRegister dst, XMMRegister src, int vector_len) {
5421   assert(VM_Version::supports_avx(), "");
5422   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5423   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5424   emit_int8(0x51);
5425   emit_int8((unsigned char)(0xC0 | encode));
5426 }
5427 
5428 void Assembler::vsqrtps(XMMRegister dst, Address src, int vector_len) {
5429   assert(VM_Version::supports_avx(), "");
5430   InstructionMark im(this);
5431   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5432   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5433   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5434   emit_int8(0x51);
5435   emit_operand(dst, src);
5436 }
5437 
5438 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5439   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5440   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5441   attributes.set_rex_vex_w_reverted();
5442   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5443   emit_int8(0x54);
5444   emit_int8((unsigned char)(0xC0 | encode));
5445 }
5446 
5447 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5448   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5449   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5450   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5451   emit_int8(0x54);
5452   emit_int8((unsigned char)(0xC0 | encode));
5453 }
5454 
5455 void Assembler::andps(XMMRegister dst, Address src) {
5456   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5457   InstructionMark im(this);
5458   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5459   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5460   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5461   emit_int8(0x54);
5462   emit_operand(dst, src);
5463 }
5464 
5465 void Assembler::andpd(XMMRegister dst, Address src) {
5466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5467   InstructionMark im(this);
5468   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5469   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5470   attributes.set_rex_vex_w_reverted();
5471   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5472   emit_int8(0x54);
5473   emit_operand(dst, src);
5474 }
5475 
5476 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5477   assert(VM_Version::supports_avx(), "");
5478   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5479   attributes.set_rex_vex_w_reverted();
5480   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5481   emit_int8(0x54);
5482   emit_int8((unsigned char)(0xC0 | encode));
5483 }
5484 
5485 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5486   assert(VM_Version::supports_avx(), "");
5487   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5488   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5489   emit_int8(0x54);
5490   emit_int8((unsigned char)(0xC0 | encode));
5491 }
5492 
5493 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5494   assert(VM_Version::supports_avx(), "");
5495   InstructionMark im(this);
5496   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5497   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5498   attributes.set_rex_vex_w_reverted();
5499   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5500   emit_int8(0x54);
5501   emit_operand(dst, src);
5502 }
5503 
5504 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5505   assert(VM_Version::supports_avx(), "");
5506   InstructionMark im(this);
5507   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5508   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5509   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5510   emit_int8(0x54);
5511   emit_operand(dst, src);
5512 }
5513 
5514 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5515   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5516   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5517   attributes.set_rex_vex_w_reverted();
5518   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5519   emit_int8(0x15);
5520   emit_int8((unsigned char)(0xC0 | encode));
5521 }
5522 
5523 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5524   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5525   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5526   attributes.set_rex_vex_w_reverted();
5527   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5528   emit_int8(0x14);
5529   emit_int8((unsigned char)(0xC0 | encode));
5530 }
5531 
5532 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5533   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5534   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5535   attributes.set_rex_vex_w_reverted();
5536   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5537   emit_int8(0x57);
5538   emit_int8((unsigned char)(0xC0 | encode));
5539 }
5540 
5541 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5542   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5543   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5544   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5545   emit_int8(0x57);
5546   emit_int8((unsigned char)(0xC0 | encode));
5547 }
5548 
5549 void Assembler::xorpd(XMMRegister dst, Address src) {
5550   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5551   InstructionMark im(this);
5552   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5553   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5554   attributes.set_rex_vex_w_reverted();
5555   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5556   emit_int8(0x57);
5557   emit_operand(dst, src);
5558 }
5559 
5560 void Assembler::xorps(XMMRegister dst, Address src) {
5561   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5562   InstructionMark im(this);
5563   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5564   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5565   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5566   emit_int8(0x57);
5567   emit_operand(dst, src);
5568 }
5569 
5570 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5571   assert(VM_Version::supports_avx(), "");
5572   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5573   attributes.set_rex_vex_w_reverted();
5574   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5575   emit_int8(0x57);
5576   emit_int8((unsigned char)(0xC0 | encode));
5577 }
5578 
5579 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5580   assert(VM_Version::supports_avx(), "");
5581   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5582   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5583   emit_int8(0x57);
5584   emit_int8((unsigned char)(0xC0 | encode));
5585 }
5586 
5587 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5588   assert(VM_Version::supports_avx(), "");
5589   InstructionMark im(this);
5590   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5591   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5592   attributes.set_rex_vex_w_reverted();
5593   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5594   emit_int8(0x57);
5595   emit_operand(dst, src);
5596 }
5597 
5598 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5599   assert(VM_Version::supports_avx(), "");
5600   InstructionMark im(this);
5601   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5602   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5603   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5604   emit_int8(0x57);
5605   emit_operand(dst, src);
5606 }
5607 
5608 // Integer vector arithmetic
5609 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5610   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5611          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5612   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5613   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5614   emit_int8(0x01);
5615   emit_int8((unsigned char)(0xC0 | encode));
5616 }
5617 
5618 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5619   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5620          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5621   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5622   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5623   emit_int8(0x02);
5624   emit_int8((unsigned char)(0xC0 | encode));
5625 }
5626 
5627 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5629   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5630   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5631   emit_int8((unsigned char)0xFC);
5632   emit_int8((unsigned char)(0xC0 | encode));
5633 }
5634 
5635 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5636   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5637   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5638   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5639   emit_int8((unsigned char)0xFD);
5640   emit_int8((unsigned char)(0xC0 | encode));
5641 }
5642 
5643 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5644   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5645   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5646   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5647   emit_int8((unsigned char)0xFE);
5648   emit_int8((unsigned char)(0xC0 | encode));
5649 }
5650 
5651 void Assembler::paddd(XMMRegister dst, Address src) {
5652   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5653   InstructionMark im(this);
5654   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5655   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5656   emit_int8((unsigned char)0xFE);
5657   emit_operand(dst, src);
5658 }
5659 
5660 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5661   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5662   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5663   attributes.set_rex_vex_w_reverted();
5664   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5665   emit_int8((unsigned char)0xD4);
5666   emit_int8((unsigned char)(0xC0 | encode));
5667 }
5668 
5669 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5670   assert(VM_Version::supports_sse3(), "");
5671   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5672   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5673   emit_int8(0x01);
5674   emit_int8((unsigned char)(0xC0 | encode));
5675 }
5676 
5677 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5678   assert(VM_Version::supports_sse3(), "");
5679   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5680   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5681   emit_int8(0x02);
5682   emit_int8((unsigned char)(0xC0 | encode));
5683 }
5684 
5685 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5686   assert(UseAVX > 0, "requires some form of AVX");
5687   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5688   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5689   emit_int8((unsigned char)0xFC);
5690   emit_int8((unsigned char)(0xC0 | encode));
5691 }
5692 
5693 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5694   assert(UseAVX > 0, "requires some form of AVX");
5695   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5696   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5697   emit_int8((unsigned char)0xFD);
5698   emit_int8((unsigned char)(0xC0 | encode));
5699 }
5700 
5701 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5702   assert(UseAVX > 0, "requires some form of AVX");
5703   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5704   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5705   emit_int8((unsigned char)0xFE);
5706   emit_int8((unsigned char)(0xC0 | encode));
5707 }
5708 
5709 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5710   assert(UseAVX > 0, "requires some form of AVX");
5711   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5712   attributes.set_rex_vex_w_reverted();
5713   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5714   emit_int8((unsigned char)0xD4);
5715   emit_int8((unsigned char)(0xC0 | encode));
5716 }
5717 
5718 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5719   assert(UseAVX > 0, "requires some form of AVX");
5720   InstructionMark im(this);
5721   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5722   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5723   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5724   emit_int8((unsigned char)0xFC);
5725   emit_operand(dst, src);
5726 }
5727 
5728 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5729   assert(UseAVX > 0, "requires some form of AVX");
5730   InstructionMark im(this);
5731   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5732   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5733   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5734   emit_int8((unsigned char)0xFD);
5735   emit_operand(dst, src);
5736 }
5737 
5738 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5739   assert(UseAVX > 0, "requires some form of AVX");
5740   InstructionMark im(this);
5741   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5742   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5743   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5744   emit_int8((unsigned char)0xFE);
5745   emit_operand(dst, src);
5746 }
5747 
5748 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5749   assert(UseAVX > 0, "requires some form of AVX");
5750   InstructionMark im(this);
5751   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5752   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5753   attributes.set_rex_vex_w_reverted();
5754   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5755   emit_int8((unsigned char)0xD4);
5756   emit_operand(dst, src);
5757 }
5758 
5759 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5761   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5762   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5763   emit_int8((unsigned char)0xF8);
5764   emit_int8((unsigned char)(0xC0 | encode));
5765 }
5766 
5767 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5769   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5770   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5771   emit_int8((unsigned char)0xF9);
5772   emit_int8((unsigned char)(0xC0 | encode));
5773 }
5774 
5775 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5776   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5777   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5778   emit_int8((unsigned char)0xFA);
5779   emit_int8((unsigned char)(0xC0 | encode));
5780 }
5781 
5782 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5784   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5785   attributes.set_rex_vex_w_reverted();
5786   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5787   emit_int8((unsigned char)0xFB);
5788   emit_int8((unsigned char)(0xC0 | encode));
5789 }
5790 
5791 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5792   assert(UseAVX > 0, "requires some form of AVX");
5793   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5794   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5795   emit_int8((unsigned char)0xF8);
5796   emit_int8((unsigned char)(0xC0 | encode));
5797 }
5798 
5799 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5800   assert(UseAVX > 0, "requires some form of AVX");
5801   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5802   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5803   emit_int8((unsigned char)0xF9);
5804   emit_int8((unsigned char)(0xC0 | encode));
5805 }
5806 
5807 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5808   assert(UseAVX > 0, "requires some form of AVX");
5809   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5810   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5811   emit_int8((unsigned char)0xFA);
5812   emit_int8((unsigned char)(0xC0 | encode));
5813 }
5814 
5815 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5816   assert(UseAVX > 0, "requires some form of AVX");
5817   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5818   attributes.set_rex_vex_w_reverted();
5819   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5820   emit_int8((unsigned char)0xFB);
5821   emit_int8((unsigned char)(0xC0 | encode));
5822 }
5823 
5824 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5825   assert(UseAVX > 0, "requires some form of AVX");
5826   InstructionMark im(this);
5827   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5828   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5829   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5830   emit_int8((unsigned char)0xF8);
5831   emit_operand(dst, src);
5832 }
5833 
5834 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5835   assert(UseAVX > 0, "requires some form of AVX");
5836   InstructionMark im(this);
5837   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5838   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5839   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5840   emit_int8((unsigned char)0xF9);
5841   emit_operand(dst, src);
5842 }
5843 
5844 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5845   assert(UseAVX > 0, "requires some form of AVX");
5846   InstructionMark im(this);
5847   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5848   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5849   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5850   emit_int8((unsigned char)0xFA);
5851   emit_operand(dst, src);
5852 }
5853 
5854 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5855   assert(UseAVX > 0, "requires some form of AVX");
5856   InstructionMark im(this);
5857   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5858   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5859   attributes.set_rex_vex_w_reverted();
5860   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5861   emit_int8((unsigned char)0xFB);
5862   emit_operand(dst, src);
5863 }
5864 
5865 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5866   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5867   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5868   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5869   emit_int8((unsigned char)0xD5);
5870   emit_int8((unsigned char)(0xC0 | encode));
5871 }
5872 
5873 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5874   assert(VM_Version::supports_sse4_1(), "");
5875   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5876   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5877   emit_int8(0x40);
5878   emit_int8((unsigned char)(0xC0 | encode));
5879 }
5880 
5881 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5882   assert(UseAVX > 0, "requires some form of AVX");
5883   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5884   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5885   emit_int8((unsigned char)0xD5);
5886   emit_int8((unsigned char)(0xC0 | encode));
5887 }
5888 
5889 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5890   assert(UseAVX > 0, "requires some form of AVX");
5891   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5892   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5893   emit_int8(0x40);
5894   emit_int8((unsigned char)(0xC0 | encode));
5895 }
5896 
5897 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5898   assert(UseAVX > 2, "requires some form of EVEX");
5899   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5900   attributes.set_is_evex_instruction();
5901   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5902   emit_int8(0x40);
5903   emit_int8((unsigned char)(0xC0 | encode));
5904 }
5905 
5906 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5907   assert(UseAVX > 0, "requires some form of AVX");
5908   InstructionMark im(this);
5909   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5910   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5911   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5912   emit_int8((unsigned char)0xD5);
5913   emit_operand(dst, src);
5914 }
5915 
5916 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5917   assert(UseAVX > 0, "requires some form of AVX");
5918   InstructionMark im(this);
5919   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5920   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5921   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5922   emit_int8(0x40);
5923   emit_operand(dst, src);
5924 }
5925 
5926 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5927   assert(UseAVX > 2, "requires some form of EVEX");
5928   InstructionMark im(this);
5929   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5930   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5931   attributes.set_is_evex_instruction();
5932   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5933   emit_int8(0x40);
5934   emit_operand(dst, src);
5935 }
5936 
5937 // Shift packed integers left by specified number of bits.
5938 void Assembler::psllw(XMMRegister dst, int shift) {
5939   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5940   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5941   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5942   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5943   emit_int8(0x71);
5944   emit_int8((unsigned char)(0xC0 | encode));
5945   emit_int8(shift & 0xFF);
5946 }
5947 
5948 void Assembler::pslld(XMMRegister dst, int shift) {
5949   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5950   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5951   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5952   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5953   emit_int8(0x72);
5954   emit_int8((unsigned char)(0xC0 | encode));
5955   emit_int8(shift & 0xFF);
5956 }
5957 
5958 void Assembler::psllq(XMMRegister dst, int shift) {
5959   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5960   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5961   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5962   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5963   emit_int8(0x73);
5964   emit_int8((unsigned char)(0xC0 | encode));
5965   emit_int8(shift & 0xFF);
5966 }
5967 
5968 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5970   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5971   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5972   emit_int8((unsigned char)0xF1);
5973   emit_int8((unsigned char)(0xC0 | encode));
5974 }
5975 
5976 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5977   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5978   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5979   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5980   emit_int8((unsigned char)0xF2);
5981   emit_int8((unsigned char)(0xC0 | encode));
5982 }
5983 
5984 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5985   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5986   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5987   attributes.set_rex_vex_w_reverted();
5988   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5989   emit_int8((unsigned char)0xF3);
5990   emit_int8((unsigned char)(0xC0 | encode));
5991 }
5992 
5993 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5994   assert(UseAVX > 0, "requires some form of AVX");
5995   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5996   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5997   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5998   emit_int8(0x71);
5999   emit_int8((unsigned char)(0xC0 | encode));
6000   emit_int8(shift & 0xFF);
6001 }
6002 
6003 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6004   assert(UseAVX > 0, "requires some form of AVX");
6005   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6006   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6007   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
6008   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6009   emit_int8(0x72);
6010   emit_int8((unsigned char)(0xC0 | encode));
6011   emit_int8(shift & 0xFF);
6012 }
6013 
6014 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6015   assert(UseAVX > 0, "requires some form of AVX");
6016   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6017   attributes.set_rex_vex_w_reverted();
6018   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
6019   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6020   emit_int8(0x73);
6021   emit_int8((unsigned char)(0xC0 | encode));
6022   emit_int8(shift & 0xFF);
6023 }
6024 
6025 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6026   assert(UseAVX > 0, "requires some form of AVX");
6027   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6028   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6029   emit_int8((unsigned char)0xF1);
6030   emit_int8((unsigned char)(0xC0 | encode));
6031 }
6032 
6033 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6034   assert(UseAVX > 0, "requires some form of AVX");
6035   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6036   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6037   emit_int8((unsigned char)0xF2);
6038   emit_int8((unsigned char)(0xC0 | encode));
6039 }
6040 
6041 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6042   assert(UseAVX > 0, "requires some form of AVX");
6043   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6044   attributes.set_rex_vex_w_reverted();
6045   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6046   emit_int8((unsigned char)0xF3);
6047   emit_int8((unsigned char)(0xC0 | encode));
6048 }
6049 
6050 // Shift packed integers logically right by specified number of bits.
6051 void Assembler::psrlw(XMMRegister dst, int shift) {
6052   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6053   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6054   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
6055   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6056   emit_int8(0x71);
6057   emit_int8((unsigned char)(0xC0 | encode));
6058   emit_int8(shift & 0xFF);
6059 }
6060 
6061 void Assembler::psrld(XMMRegister dst, int shift) {
6062   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6063   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6064   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
6065   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6066   emit_int8(0x72);
6067   emit_int8((unsigned char)(0xC0 | encode));
6068   emit_int8(shift & 0xFF);
6069 }
6070 
6071 void Assembler::psrlq(XMMRegister dst, int shift) {
6072   // Do not confuse it with psrldq SSE2 instruction which
6073   // shifts 128 bit value in xmm register by number of bytes.
6074   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6075   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6076   attributes.set_rex_vex_w_reverted();
6077   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
6078   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6079   emit_int8(0x73);
6080   emit_int8((unsigned char)(0xC0 | encode));
6081   emit_int8(shift & 0xFF);
6082 }
6083 
6084 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
6085   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6086   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6087   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6088   emit_int8((unsigned char)0xD1);
6089   emit_int8((unsigned char)(0xC0 | encode));
6090 }
6091 
6092 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
6093   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6094   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6095   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6096   emit_int8((unsigned char)0xD2);
6097   emit_int8((unsigned char)(0xC0 | encode));
6098 }
6099 
6100 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
6101   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6102   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6103   attributes.set_rex_vex_w_reverted();
6104   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6105   emit_int8((unsigned char)0xD3);
6106   emit_int8((unsigned char)(0xC0 | encode));
6107 }
6108 
6109 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6110   assert(UseAVX > 0, "requires some form of AVX");
6111   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6112   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
6113   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6114   emit_int8(0x71);
6115   emit_int8((unsigned char)(0xC0 | encode));
6116   emit_int8(shift & 0xFF);
6117 }
6118 
6119 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6120   assert(UseAVX > 0, "requires some form of AVX");
6121   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6122   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
6123   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6124   emit_int8(0x72);
6125   emit_int8((unsigned char)(0xC0 | encode));
6126   emit_int8(shift & 0xFF);
6127 }
6128 
6129 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6130   assert(UseAVX > 0, "requires some form of AVX");
6131   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6132   attributes.set_rex_vex_w_reverted();
6133   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
6134   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6135   emit_int8(0x73);
6136   emit_int8((unsigned char)(0xC0 | encode));
6137   emit_int8(shift & 0xFF);
6138 }
6139 
6140 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6141   assert(UseAVX > 0, "requires some form of AVX");
6142   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6143   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6144   emit_int8((unsigned char)0xD1);
6145   emit_int8((unsigned char)(0xC0 | encode));
6146 }
6147 
6148 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6149   assert(UseAVX > 0, "requires some form of AVX");
6150   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6151   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6152   emit_int8((unsigned char)0xD2);
6153   emit_int8((unsigned char)(0xC0 | encode));
6154 }
6155 
6156 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6157   assert(UseAVX > 0, "requires some form of AVX");
6158   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6159   attributes.set_rex_vex_w_reverted();
6160   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6161   emit_int8((unsigned char)0xD3);
6162   emit_int8((unsigned char)(0xC0 | encode));
6163 }
6164 
6165 void Assembler::evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6166   assert(VM_Version::supports_avx512bw(), "");
6167   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6168   attributes.set_is_evex_instruction();
6169   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6170   emit_int8(0x10);
6171   emit_int8((unsigned char)(0xC0 | encode));
6172 }
6173 
6174 void Assembler::evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6175   assert(VM_Version::supports_avx512bw(), "");
6176   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6177   attributes.set_is_evex_instruction();
6178   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6179   emit_int8(0x12);
6180   emit_int8((unsigned char)(0xC0 | encode));
6181 }
6182 
6183 // Shift packed integers arithmetically right by specified number of bits.
6184 void Assembler::psraw(XMMRegister dst, int shift) {
6185   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6186   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6187   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6188   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6189   emit_int8(0x71);
6190   emit_int8((unsigned char)(0xC0 | encode));
6191   emit_int8(shift & 0xFF);
6192 }
6193 
6194 void Assembler::psrad(XMMRegister dst, int shift) {
6195   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6196   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6197   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
6198   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6199   emit_int8(0x72);
6200   emit_int8((unsigned char)(0xC0 | encode));
6201   emit_int8(shift & 0xFF);
6202 }
6203 
6204 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
6205   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6206   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6207   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6208   emit_int8((unsigned char)0xE1);
6209   emit_int8((unsigned char)(0xC0 | encode));
6210 }
6211 
6212 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
6213   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6214   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6215   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6216   emit_int8((unsigned char)0xE2);
6217   emit_int8((unsigned char)(0xC0 | encode));
6218 }
6219 
6220 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6221   assert(UseAVX > 0, "requires some form of AVX");
6222   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6223   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6224   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6225   emit_int8(0x71);
6226   emit_int8((unsigned char)(0xC0 | encode));
6227   emit_int8(shift & 0xFF);
6228 }
6229 
6230 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6231   assert(UseAVX > 0, "requires some form of AVX");
6232   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6233   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6234   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6235   emit_int8(0x72);
6236   emit_int8((unsigned char)(0xC0 | encode));
6237   emit_int8(shift & 0xFF);
6238 }
6239 
6240 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6241   assert(UseAVX > 0, "requires some form of AVX");
6242   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6243   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6244   emit_int8((unsigned char)0xE1);
6245   emit_int8((unsigned char)(0xC0 | encode));
6246 }
6247 
6248 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6249   assert(UseAVX > 0, "requires some form of AVX");
6250   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6251   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6252   emit_int8((unsigned char)0xE2);
6253   emit_int8((unsigned char)(0xC0 | encode));
6254 }
6255 
6256 
6257 // logical operations packed integers
6258 void Assembler::pand(XMMRegister dst, XMMRegister src) {
6259   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6260   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6261   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6262   emit_int8((unsigned char)0xDB);
6263   emit_int8((unsigned char)(0xC0 | encode));
6264 }
6265 
6266 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6267   assert(UseAVX > 0, "requires some form of AVX");
6268   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6269   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6270   emit_int8((unsigned char)0xDB);
6271   emit_int8((unsigned char)(0xC0 | encode));
6272 }
6273 
6274 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6275   assert(UseAVX > 0, "requires some form of AVX");
6276   InstructionMark im(this);
6277   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6278   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6279   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6280   emit_int8((unsigned char)0xDB);
6281   emit_operand(dst, src);
6282 }
6283 
6284 void Assembler::vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6285   assert(VM_Version::supports_evex(), "");
6286   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6287   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6288   emit_int8((unsigned char)0xDB);
6289   emit_int8((unsigned char)(0xC0 | encode));
6290 }
6291 
6292 
6293 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
6294   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6295   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6296   attributes.set_rex_vex_w_reverted();
6297   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6298   emit_int8((unsigned char)0xDF);
6299   emit_int8((unsigned char)(0xC0 | encode));
6300 }
6301 
6302 void Assembler::por(XMMRegister dst, XMMRegister src) {
6303   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6304   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6305   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6306   emit_int8((unsigned char)0xEB);
6307   emit_int8((unsigned char)(0xC0 | encode));
6308 }
6309 
6310 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6311   assert(UseAVX > 0, "requires some form of AVX");
6312   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6313   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6314   emit_int8((unsigned char)0xEB);
6315   emit_int8((unsigned char)(0xC0 | encode));
6316 }
6317 
6318 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6319   assert(UseAVX > 0, "requires some form of AVX");
6320   InstructionMark im(this);
6321   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6322   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6323   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6324   emit_int8((unsigned char)0xEB);
6325   emit_operand(dst, src);
6326 }
6327 
6328 void Assembler::vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6329   assert(VM_Version::supports_evex(), "");
6330   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6331   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6332   emit_int8((unsigned char)0xEB);
6333   emit_int8((unsigned char)(0xC0 | encode));
6334 }
6335 
6336 
6337 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
6338   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6339   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6340   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6341   emit_int8((unsigned char)0xEF);
6342   emit_int8((unsigned char)(0xC0 | encode));
6343 }
6344 
6345 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6346   assert(UseAVX > 0, "requires some form of AVX");
6347   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6348   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6349   emit_int8((unsigned char)0xEF);
6350   emit_int8((unsigned char)(0xC0 | encode));
6351 }
6352 
6353 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6354   assert(UseAVX > 0, "requires some form of AVX");
6355   InstructionMark im(this);
6356   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6357   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6358   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6359   emit_int8((unsigned char)0xEF);
6360   emit_operand(dst, src);
6361 }
6362 
6363 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6364   assert(VM_Version::supports_evex(), "requires EVEX support");
6365   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6366   attributes.set_is_evex_instruction();
6367   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6368   emit_int8((unsigned char)0xEF);
6369   emit_int8((unsigned char)(0xC0 | encode));
6370 }
6371 
6372 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6373   assert(VM_Version::supports_evex(), "requires EVEX support");
6374   assert(dst != xnoreg, "sanity");
6375   InstructionMark im(this);
6376   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6377   attributes.set_is_evex_instruction();
6378   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6379   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6380   emit_int8((unsigned char)0xEF);
6381   emit_operand(dst, src);
6382 }
6383 
6384 
6385 // vinserti forms
6386 
6387 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6388   assert(VM_Version::supports_avx2(), "");
6389   assert(imm8 <= 0x01, "imm8: %u", imm8);
6390   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6391   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6392   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6393   emit_int8(0x38);
6394   emit_int8((unsigned char)(0xC0 | encode));
6395   // 0x00 - insert into lower 128 bits
6396   // 0x01 - insert into upper 128 bits
6397   emit_int8(imm8 & 0x01);
6398 }
6399 
6400 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6401   assert(VM_Version::supports_avx2(), "");
6402   assert(dst != xnoreg, "sanity");
6403   assert(imm8 <= 0x01, "imm8: %u", imm8);
6404   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6405   InstructionMark im(this);
6406   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6407   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6408   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6409   emit_int8(0x38);
6410   emit_operand(dst, src);
6411   // 0x00 - insert into lower 128 bits
6412   // 0x01 - insert into upper 128 bits
6413   emit_int8(imm8 & 0x01);
6414 }
6415 
6416 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6417   assert(VM_Version::supports_evex(), "");
6418   assert(imm8 <= 0x03, "imm8: %u", imm8);
6419   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6420   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6421   emit_int8(0x38);
6422   emit_int8((unsigned char)(0xC0 | encode));
6423   // 0x00 - insert into q0 128 bits (0..127)
6424   // 0x01 - insert into q1 128 bits (128..255)
6425   // 0x02 - insert into q2 128 bits (256..383)
6426   // 0x03 - insert into q3 128 bits (384..511)
6427   emit_int8(imm8 & 0x03);
6428 }
6429 
6430 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6431   assert(VM_Version::supports_avx(), "");
6432   assert(dst != xnoreg, "sanity");
6433   assert(imm8 <= 0x03, "imm8: %u", imm8);
6434   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6435   InstructionMark im(this);
6436   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6437   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6438   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6439   emit_int8(0x18);
6440   emit_operand(dst, src);
6441   // 0x00 - insert into q0 128 bits (0..127)
6442   // 0x01 - insert into q1 128 bits (128..255)
6443   // 0x02 - insert into q2 128 bits (256..383)
6444   // 0x03 - insert into q3 128 bits (384..511)
6445   emit_int8(imm8 & 0x03);
6446 }
6447 
6448 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6449   assert(VM_Version::supports_evex(), "");
6450   assert(imm8 <= 0x01, "imm8: %u", imm8);
6451   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6452   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6453   emit_int8(0x38);
6454   emit_int8((unsigned char)(0xC0 | encode));
6455   // 0x00 - insert into lower 256 bits
6456   // 0x01 - insert into upper 256 bits
6457   emit_int8(imm8 & 0x01);
6458 }
6459 
6460 
6461 // vinsertf forms
6462 
6463 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6464   assert(VM_Version::supports_avx(), "");
6465   assert(imm8 <= 0x01, "imm8: %u", imm8);
6466   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6467   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6468   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6469   emit_int8(0x18);
6470   emit_int8((unsigned char)(0xC0 | encode));
6471   // 0x00 - insert into lower 128 bits
6472   // 0x01 - insert into upper 128 bits
6473   emit_int8(imm8 & 0x01);
6474 }
6475 
6476 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6477   assert(VM_Version::supports_avx(), "");
6478   assert(dst != xnoreg, "sanity");
6479   assert(imm8 <= 0x01, "imm8: %u", imm8);
6480   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6481   InstructionMark im(this);
6482   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6483   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6484   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6485   emit_int8(0x18);
6486   emit_operand(dst, src);
6487   // 0x00 - insert into lower 128 bits
6488   // 0x01 - insert into upper 128 bits
6489   emit_int8(imm8 & 0x01);
6490 }
6491 
6492 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6493   assert(VM_Version::supports_evex(), "");
6494   assert(imm8 <= 0x03, "imm8: %u", imm8);
6495   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6496   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6497   emit_int8(0x18);
6498   emit_int8((unsigned char)(0xC0 | encode));
6499   // 0x00 - insert into q0 128 bits (0..127)
6500   // 0x01 - insert into q1 128 bits (128..255)
6501   // 0x02 - insert into q2 128 bits (256..383)
6502   // 0x03 - insert into q3 128 bits (384..511)
6503   emit_int8(imm8 & 0x03);
6504 }
6505 
6506 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6507   assert(VM_Version::supports_avx(), "");
6508   assert(dst != xnoreg, "sanity");
6509   assert(imm8 <= 0x03, "imm8: %u", imm8);
6510   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6511   InstructionMark im(this);
6512   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6513   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6514   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6515   emit_int8(0x18);
6516   emit_operand(dst, src);
6517   // 0x00 - insert into q0 128 bits (0..127)
6518   // 0x01 - insert into q1 128 bits (128..255)
6519   // 0x02 - insert into q2 128 bits (256..383)
6520   // 0x03 - insert into q3 128 bits (384..511)
6521   emit_int8(imm8 & 0x03);
6522 }
6523 
6524 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6525   assert(VM_Version::supports_evex(), "");
6526   assert(imm8 <= 0x01, "imm8: %u", imm8);
6527   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6528   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6529   emit_int8(0x1A);
6530   emit_int8((unsigned char)(0xC0 | encode));
6531   // 0x00 - insert into lower 256 bits
6532   // 0x01 - insert into upper 256 bits
6533   emit_int8(imm8 & 0x01);
6534 }
6535 
6536 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6537   assert(VM_Version::supports_evex(), "");
6538   assert(dst != xnoreg, "sanity");
6539   assert(imm8 <= 0x01, "imm8: %u", imm8);
6540   InstructionMark im(this);
6541   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6542   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6543   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6544   emit_int8(0x1A);
6545   emit_operand(dst, src);
6546   // 0x00 - insert into lower 256 bits
6547   // 0x01 - insert into upper 256 bits
6548   emit_int8(imm8 & 0x01);
6549 }
6550 
6551 
6552 // vextracti forms
6553 
6554 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6555   assert(VM_Version::supports_avx(), "");
6556   assert(imm8 <= 0x01, "imm8: %u", imm8);
6557   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6558   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6559   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6560   emit_int8(0x39);
6561   emit_int8((unsigned char)(0xC0 | encode));
6562   // 0x00 - extract from lower 128 bits
6563   // 0x01 - extract from upper 128 bits
6564   emit_int8(imm8 & 0x01);
6565 }
6566 
6567 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6568   assert(VM_Version::supports_avx2(), "");
6569   assert(src != xnoreg, "sanity");
6570   assert(imm8 <= 0x01, "imm8: %u", imm8);
6571   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6572   InstructionMark im(this);
6573   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6574   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6575   attributes.reset_is_clear_context();
6576   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6577   emit_int8(0x39);
6578   emit_operand(src, dst);
6579   // 0x00 - extract from lower 128 bits
6580   // 0x01 - extract from upper 128 bits
6581   emit_int8(imm8 & 0x01);
6582 }
6583 
6584 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6585   assert(VM_Version::supports_avx(), "");
6586   assert(imm8 <= 0x03, "imm8: %u", imm8);
6587   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6588   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6589   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6590   emit_int8(0x39);
6591   emit_int8((unsigned char)(0xC0 | encode));
6592   // 0x00 - extract from bits 127:0
6593   // 0x01 - extract from bits 255:128
6594   // 0x02 - extract from bits 383:256
6595   // 0x03 - extract from bits 511:384
6596   emit_int8(imm8 & 0x03);
6597 }
6598 
6599 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6600   assert(VM_Version::supports_evex(), "");
6601   assert(src != xnoreg, "sanity");
6602   assert(imm8 <= 0x03, "imm8: %u", imm8);
6603   InstructionMark im(this);
6604   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6605   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6606   attributes.reset_is_clear_context();
6607   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6608   emit_int8(0x39);
6609   emit_operand(src, dst);
6610   // 0x00 - extract from bits 127:0
6611   // 0x01 - extract from bits 255:128
6612   // 0x02 - extract from bits 383:256
6613   // 0x03 - extract from bits 511:384
6614   emit_int8(imm8 & 0x03);
6615 }
6616 
6617 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6618   assert(VM_Version::supports_avx512dq(), "");
6619   assert(imm8 <= 0x03, "imm8: %u", imm8);
6620   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6621   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6622   emit_int8(0x39);
6623   emit_int8((unsigned char)(0xC0 | encode));
6624   // 0x00 - extract from bits 127:0
6625   // 0x01 - extract from bits 255:128
6626   // 0x02 - extract from bits 383:256
6627   // 0x03 - extract from bits 511:384
6628   emit_int8(imm8 & 0x03);
6629 }
6630 
6631 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6632   assert(VM_Version::supports_evex(), "");
6633   assert(imm8 <= 0x01, "imm8: %u", imm8);
6634   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6635   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6636   emit_int8(0x3B);
6637   emit_int8((unsigned char)(0xC0 | encode));
6638   // 0x00 - extract from lower 256 bits
6639   // 0x01 - extract from upper 256 bits
6640   emit_int8(imm8 & 0x01);
6641 }
6642 
6643 
6644 // vextractf forms
6645 
6646 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6647   assert(VM_Version::supports_avx(), "");
6648   assert(imm8 <= 0x01, "imm8: %u", imm8);
6649   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6650   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6651   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6652   emit_int8(0x19);
6653   emit_int8((unsigned char)(0xC0 | encode));
6654   // 0x00 - extract from lower 128 bits
6655   // 0x01 - extract from upper 128 bits
6656   emit_int8(imm8 & 0x01);
6657 }
6658 
6659 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6660   assert(VM_Version::supports_avx(), "");
6661   assert(src != xnoreg, "sanity");
6662   assert(imm8 <= 0x01, "imm8: %u", imm8);
6663   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6664   InstructionMark im(this);
6665   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6666   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6667   attributes.reset_is_clear_context();
6668   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6669   emit_int8(0x19);
6670   emit_operand(src, dst);
6671   // 0x00 - extract from lower 128 bits
6672   // 0x01 - extract from upper 128 bits
6673   emit_int8(imm8 & 0x01);
6674 }
6675 
6676 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6677   assert(VM_Version::supports_avx(), "");
6678   assert(imm8 <= 0x03, "imm8: %u", imm8);
6679   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6680   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6681   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6682   emit_int8(0x19);
6683   emit_int8((unsigned char)(0xC0 | encode));
6684   // 0x00 - extract from bits 127:0
6685   // 0x01 - extract from bits 255:128
6686   // 0x02 - extract from bits 383:256
6687   // 0x03 - extract from bits 511:384
6688   emit_int8(imm8 & 0x03);
6689 }
6690 
6691 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6692   assert(VM_Version::supports_evex(), "");
6693   assert(src != xnoreg, "sanity");
6694   assert(imm8 <= 0x03, "imm8: %u", imm8);
6695   InstructionMark im(this);
6696   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6697   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6698   attributes.reset_is_clear_context();
6699   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6700   emit_int8(0x19);
6701   emit_operand(src, dst);
6702   // 0x00 - extract from bits 127:0
6703   // 0x01 - extract from bits 255:128
6704   // 0x02 - extract from bits 383:256
6705   // 0x03 - extract from bits 511:384
6706   emit_int8(imm8 & 0x03);
6707 }
6708 
6709 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6710   assert(VM_Version::supports_avx512dq(), "");
6711   assert(imm8 <= 0x03, "imm8: %u", imm8);
6712   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6713   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6714   emit_int8(0x19);
6715   emit_int8((unsigned char)(0xC0 | encode));
6716   // 0x00 - extract from bits 127:0
6717   // 0x01 - extract from bits 255:128
6718   // 0x02 - extract from bits 383:256
6719   // 0x03 - extract from bits 511:384
6720   emit_int8(imm8 & 0x03);
6721 }
6722 
6723 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6724   assert(VM_Version::supports_evex(), "");
6725   assert(imm8 <= 0x01, "imm8: %u", imm8);
6726   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6727   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6728   emit_int8(0x1B);
6729   emit_int8((unsigned char)(0xC0 | encode));
6730   // 0x00 - extract from lower 256 bits
6731   // 0x01 - extract from upper 256 bits
6732   emit_int8(imm8 & 0x01);
6733 }
6734 
6735 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6736   assert(VM_Version::supports_evex(), "");
6737   assert(src != xnoreg, "sanity");
6738   assert(imm8 <= 0x01, "imm8: %u", imm8);
6739   InstructionMark im(this);
6740   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6741   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6742   attributes.reset_is_clear_context();
6743   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6744   emit_int8(0x1B);
6745   emit_operand(src, dst);
6746   // 0x00 - extract from lower 256 bits
6747   // 0x01 - extract from upper 256 bits
6748   emit_int8(imm8 & 0x01);
6749 }
6750 
6751 
6752 // legacy word/dword replicate
6753 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6754   assert(VM_Version::supports_avx2(), "");
6755   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6756   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6757   emit_int8(0x79);
6758   emit_int8((unsigned char)(0xC0 | encode));
6759 }
6760 
6761 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6762   assert(VM_Version::supports_avx2(), "");
6763   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6764   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6765   emit_int8(0x58);
6766   emit_int8((unsigned char)(0xC0 | encode));
6767 }
6768 
6769 
6770 // xmm/mem sourced byte/word/dword/qword replicate
6771 
6772 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6773 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6774   assert(VM_Version::supports_evex(), "");
6775   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6776   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6777   emit_int8(0x78);
6778   emit_int8((unsigned char)(0xC0 | encode));
6779 }
6780 
6781 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6782   assert(VM_Version::supports_evex(), "");
6783   assert(dst != xnoreg, "sanity");
6784   InstructionMark im(this);
6785   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6786   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6787   // swap src<->dst for encoding
6788   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6789   emit_int8(0x78);
6790   emit_operand(dst, src);
6791 }
6792 
6793 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6794 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6795   assert(VM_Version::supports_evex(), "");
6796   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6797   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6798   emit_int8(0x79);
6799   emit_int8((unsigned char)(0xC0 | encode));
6800 }
6801 
6802 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6803   assert(VM_Version::supports_evex(), "");
6804   assert(dst != xnoreg, "sanity");
6805   InstructionMark im(this);
6806   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6807   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6808   // swap src<->dst for encoding
6809   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6810   emit_int8(0x79);
6811   emit_operand(dst, src);
6812 }
6813 
6814 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6815 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6816   assert(VM_Version::supports_evex(), "");
6817   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6818   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6819   emit_int8(0x58);
6820   emit_int8((unsigned char)(0xC0 | encode));
6821 }
6822 
6823 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6824   assert(VM_Version::supports_evex(), "");
6825   assert(dst != xnoreg, "sanity");
6826   InstructionMark im(this);
6827   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6828   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6829   // swap src<->dst for encoding
6830   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6831   emit_int8(0x58);
6832   emit_operand(dst, src);
6833 }
6834 
6835 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6836 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6837   assert(VM_Version::supports_evex(), "");
6838   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6839   attributes.set_rex_vex_w_reverted();
6840   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6841   emit_int8(0x59);
6842   emit_int8((unsigned char)(0xC0 | encode));
6843 }
6844 
6845 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6846   assert(VM_Version::supports_evex(), "");
6847   assert(dst != xnoreg, "sanity");
6848   InstructionMark im(this);
6849   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6850   attributes.set_rex_vex_w_reverted();
6851   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6852   // swap src<->dst for encoding
6853   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6854   emit_int8(0x59);
6855   emit_operand(dst, src);
6856 }
6857 void Assembler::evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len) {
6858   assert(vector_len != Assembler::AVX_128bit, "");
6859   assert(VM_Version::supports_avx512dq(), "");
6860   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6861   attributes.set_rex_vex_w_reverted();
6862   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6863   emit_int8(0x5A);
6864   emit_int8((unsigned char)(0xC0 | encode));
6865 }
6866 
6867 void Assembler::evbroadcasti64x2(XMMRegister dst, Address src, int vector_len) {
6868   assert(vector_len != Assembler::AVX_128bit, "");
6869   assert(VM_Version::supports_avx512dq(), "");
6870   assert(dst != xnoreg, "sanity");
6871   InstructionMark im(this);
6872   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6873   attributes.set_rex_vex_w_reverted();
6874   attributes.set_address_attributes(/* tuple_type */ EVEX_T2, /* input_size_in_bits */ EVEX_64bit);
6875   // swap src<->dst for encoding
6876   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6877   emit_int8(0x5A);
6878   emit_operand(dst, src);
6879 }
6880 
6881 // scalar single/double precision replicate
6882 
6883 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6884 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6885   assert(VM_Version::supports_evex(), "");
6886   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6887   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6888   emit_int8(0x18);
6889   emit_int8((unsigned char)(0xC0 | encode));
6890 }
6891 
6892 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6893   assert(VM_Version::supports_evex(), "");
6894   assert(dst != xnoreg, "sanity");
6895   InstructionMark im(this);
6896   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6897   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6898   // swap src<->dst for encoding
6899   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6900   emit_int8(0x18);
6901   emit_operand(dst, src);
6902 }
6903 
6904 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6905 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6906   assert(VM_Version::supports_evex(), "");
6907   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6908   attributes.set_rex_vex_w_reverted();
6909   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6910   emit_int8(0x19);
6911   emit_int8((unsigned char)(0xC0 | encode));
6912 }
6913 
6914 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6915   assert(VM_Version::supports_evex(), "");
6916   assert(dst != xnoreg, "sanity");
6917   InstructionMark im(this);
6918   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6919   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6920   attributes.set_rex_vex_w_reverted();
6921   // swap src<->dst for encoding
6922   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6923   emit_int8(0x19);
6924   emit_operand(dst, src);
6925 }
6926 
6927 
6928 // gpr source broadcast forms
6929 
6930 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6931 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6932   assert(VM_Version::supports_evex(), "");
6933   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6934   attributes.set_is_evex_instruction();
6935   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6936   emit_int8(0x7A);
6937   emit_int8((unsigned char)(0xC0 | encode));
6938 }
6939 
6940 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6941 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6942   assert(VM_Version::supports_evex(), "");
6943   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6944   attributes.set_is_evex_instruction();
6945   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6946   emit_int8(0x7B);
6947   emit_int8((unsigned char)(0xC0 | encode));
6948 }
6949 
6950 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6951 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6952   assert(VM_Version::supports_evex(), "");
6953   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6954   attributes.set_is_evex_instruction();
6955   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6956   emit_int8(0x7C);
6957   emit_int8((unsigned char)(0xC0 | encode));
6958 }
6959 
6960 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6961 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6962   assert(VM_Version::supports_evex(), "");
6963   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6964   attributes.set_is_evex_instruction();
6965   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6966   emit_int8(0x7C);
6967   emit_int8((unsigned char)(0xC0 | encode));
6968 }
6969 
6970 void Assembler::evpgatherdd(XMMRegister dst, KRegister mask, Address src, int vector_len) {
6971   assert(VM_Version::supports_evex(), "");
6972   assert(dst != xnoreg, "sanity");
6973   InstructionMark im(this);
6974   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6975   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6976   attributes.reset_is_clear_context();
6977   attributes.set_embedded_opmask_register_specifier(mask);
6978   attributes.set_is_evex_instruction();
6979   // swap src<->dst for encoding
6980   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6981   emit_int8((unsigned char)0x90);
6982   emit_operand(dst, src);
6983 }
6984 
6985 // Carry-Less Multiplication Quadword
6986 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6987   assert(VM_Version::supports_clmul(), "");
6988   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6989   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6990   emit_int8(0x44);
6991   emit_int8((unsigned char)(0xC0 | encode));
6992   emit_int8((unsigned char)mask);
6993 }
6994 
6995 // Carry-Less Multiplication Quadword
6996 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6997   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6998   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6999   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7000   emit_int8(0x44);
7001   emit_int8((unsigned char)(0xC0 | encode));
7002   emit_int8((unsigned char)mask);
7003 }
7004 
7005 void Assembler::evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len) {
7006   assert(VM_Version::supports_vpclmulqdq(), "Requires vector carryless multiplication support");
7007   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
7008   attributes.set_is_evex_instruction();
7009   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7010   emit_int8(0x44);
7011   emit_int8((unsigned char)(0xC0 | encode));
7012   emit_int8((unsigned char)mask);
7013 }
7014 
7015 void Assembler::vzeroupper() {
7016   if (VM_Version::supports_vzeroupper()) {
7017     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
7018     (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7019     emit_int8(0x77);
7020   }
7021 }
7022 
7023 #ifndef _LP64
7024 // 32bit only pieces of the assembler
7025 
7026 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7027   // NO PREFIX AS NEVER 64BIT
7028   InstructionMark im(this);
7029   emit_int8((unsigned char)0x81);
7030   emit_int8((unsigned char)(0xF8 | src1->encoding()));
7031   emit_data(imm32, rspec, 0);
7032 }
7033 
7034 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7035   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
7036   InstructionMark im(this);
7037   emit_int8((unsigned char)0x81);
7038   emit_operand(rdi, src1);
7039   emit_data(imm32, rspec, 0);
7040 }
7041 
7042 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
7043 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
7044 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
7045 void Assembler::cmpxchg8(Address adr) {
7046   InstructionMark im(this);
7047   emit_int8(0x0F);
7048   emit_int8((unsigned char)0xC7);
7049   emit_operand(rcx, adr);
7050 }
7051 
7052 void Assembler::decl(Register dst) {
7053   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7054  emit_int8(0x48 | dst->encoding());
7055 }
7056 
7057 #endif // _LP64
7058 
7059 // 64bit typically doesn't use the x87 but needs to for the trig funcs
7060 
7061 void Assembler::fabs() {
7062   emit_int8((unsigned char)0xD9);
7063   emit_int8((unsigned char)0xE1);
7064 }
7065 
7066 void Assembler::fadd(int i) {
7067   emit_farith(0xD8, 0xC0, i);
7068 }
7069 
7070 void Assembler::fadd_d(Address src) {
7071   InstructionMark im(this);
7072   emit_int8((unsigned char)0xDC);
7073   emit_operand32(rax, src);
7074 }
7075 
7076 void Assembler::fadd_s(Address src) {
7077   InstructionMark im(this);
7078   emit_int8((unsigned char)0xD8);
7079   emit_operand32(rax, src);
7080 }
7081 
7082 void Assembler::fadda(int i) {
7083   emit_farith(0xDC, 0xC0, i);
7084 }
7085 
7086 void Assembler::faddp(int i) {
7087   emit_farith(0xDE, 0xC0, i);
7088 }
7089 
7090 void Assembler::fchs() {
7091   emit_int8((unsigned char)0xD9);
7092   emit_int8((unsigned char)0xE0);
7093 }
7094 
7095 void Assembler::fcom(int i) {
7096   emit_farith(0xD8, 0xD0, i);
7097 }
7098 
7099 void Assembler::fcomp(int i) {
7100   emit_farith(0xD8, 0xD8, i);
7101 }
7102 
7103 void Assembler::fcomp_d(Address src) {
7104   InstructionMark im(this);
7105   emit_int8((unsigned char)0xDC);
7106   emit_operand32(rbx, src);
7107 }
7108 
7109 void Assembler::fcomp_s(Address src) {
7110   InstructionMark im(this);
7111   emit_int8((unsigned char)0xD8);
7112   emit_operand32(rbx, src);
7113 }
7114 
7115 void Assembler::fcompp() {
7116   emit_int8((unsigned char)0xDE);
7117   emit_int8((unsigned char)0xD9);
7118 }
7119 
7120 void Assembler::fcos() {
7121   emit_int8((unsigned char)0xD9);
7122   emit_int8((unsigned char)0xFF);
7123 }
7124 
7125 void Assembler::fdecstp() {
7126   emit_int8((unsigned char)0xD9);
7127   emit_int8((unsigned char)0xF6);
7128 }
7129 
7130 void Assembler::fdiv(int i) {
7131   emit_farith(0xD8, 0xF0, i);
7132 }
7133 
7134 void Assembler::fdiv_d(Address src) {
7135   InstructionMark im(this);
7136   emit_int8((unsigned char)0xDC);
7137   emit_operand32(rsi, src);
7138 }
7139 
7140 void Assembler::fdiv_s(Address src) {
7141   InstructionMark im(this);
7142   emit_int8((unsigned char)0xD8);
7143   emit_operand32(rsi, src);
7144 }
7145 
7146 void Assembler::fdiva(int i) {
7147   emit_farith(0xDC, 0xF8, i);
7148 }
7149 
7150 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
7151 //       is erroneous for some of the floating-point instructions below.
7152 
7153 void Assembler::fdivp(int i) {
7154   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
7155 }
7156 
7157 void Assembler::fdivr(int i) {
7158   emit_farith(0xD8, 0xF8, i);
7159 }
7160 
7161 void Assembler::fdivr_d(Address src) {
7162   InstructionMark im(this);
7163   emit_int8((unsigned char)0xDC);
7164   emit_operand32(rdi, src);
7165 }
7166 
7167 void Assembler::fdivr_s(Address src) {
7168   InstructionMark im(this);
7169   emit_int8((unsigned char)0xD8);
7170   emit_operand32(rdi, src);
7171 }
7172 
7173 void Assembler::fdivra(int i) {
7174   emit_farith(0xDC, 0xF0, i);
7175 }
7176 
7177 void Assembler::fdivrp(int i) {
7178   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
7179 }
7180 
7181 void Assembler::ffree(int i) {
7182   emit_farith(0xDD, 0xC0, i);
7183 }
7184 
7185 void Assembler::fild_d(Address adr) {
7186   InstructionMark im(this);
7187   emit_int8((unsigned char)0xDF);
7188   emit_operand32(rbp, adr);
7189 }
7190 
7191 void Assembler::fild_s(Address adr) {
7192   InstructionMark im(this);
7193   emit_int8((unsigned char)0xDB);
7194   emit_operand32(rax, adr);
7195 }
7196 
7197 void Assembler::fincstp() {
7198   emit_int8((unsigned char)0xD9);
7199   emit_int8((unsigned char)0xF7);
7200 }
7201 
7202 void Assembler::finit() {
7203   emit_int8((unsigned char)0x9B);
7204   emit_int8((unsigned char)0xDB);
7205   emit_int8((unsigned char)0xE3);
7206 }
7207 
7208 void Assembler::fist_s(Address adr) {
7209   InstructionMark im(this);
7210   emit_int8((unsigned char)0xDB);
7211   emit_operand32(rdx, adr);
7212 }
7213 
7214 void Assembler::fistp_d(Address adr) {
7215   InstructionMark im(this);
7216   emit_int8((unsigned char)0xDF);
7217   emit_operand32(rdi, adr);
7218 }
7219 
7220 void Assembler::fistp_s(Address adr) {
7221   InstructionMark im(this);
7222   emit_int8((unsigned char)0xDB);
7223   emit_operand32(rbx, adr);
7224 }
7225 
7226 void Assembler::fld1() {
7227   emit_int8((unsigned char)0xD9);
7228   emit_int8((unsigned char)0xE8);
7229 }
7230 
7231 void Assembler::fld_d(Address adr) {
7232   InstructionMark im(this);
7233   emit_int8((unsigned char)0xDD);
7234   emit_operand32(rax, adr);
7235 }
7236 
7237 void Assembler::fld_s(Address adr) {
7238   InstructionMark im(this);
7239   emit_int8((unsigned char)0xD9);
7240   emit_operand32(rax, adr);
7241 }
7242 
7243 
7244 void Assembler::fld_s(int index) {
7245   emit_farith(0xD9, 0xC0, index);
7246 }
7247 
7248 void Assembler::fld_x(Address adr) {
7249   InstructionMark im(this);
7250   emit_int8((unsigned char)0xDB);
7251   emit_operand32(rbp, adr);
7252 }
7253 
7254 void Assembler::fldcw(Address src) {
7255   InstructionMark im(this);
7256   emit_int8((unsigned char)0xD9);
7257   emit_operand32(rbp, src);
7258 }
7259 
7260 void Assembler::fldenv(Address src) {
7261   InstructionMark im(this);
7262   emit_int8((unsigned char)0xD9);
7263   emit_operand32(rsp, src);
7264 }
7265 
7266 void Assembler::fldlg2() {
7267   emit_int8((unsigned char)0xD9);
7268   emit_int8((unsigned char)0xEC);
7269 }
7270 
7271 void Assembler::fldln2() {
7272   emit_int8((unsigned char)0xD9);
7273   emit_int8((unsigned char)0xED);
7274 }
7275 
7276 void Assembler::fldz() {
7277   emit_int8((unsigned char)0xD9);
7278   emit_int8((unsigned char)0xEE);
7279 }
7280 
7281 void Assembler::flog() {
7282   fldln2();
7283   fxch();
7284   fyl2x();
7285 }
7286 
7287 void Assembler::flog10() {
7288   fldlg2();
7289   fxch();
7290   fyl2x();
7291 }
7292 
7293 void Assembler::fmul(int i) {
7294   emit_farith(0xD8, 0xC8, i);
7295 }
7296 
7297 void Assembler::fmul_d(Address src) {
7298   InstructionMark im(this);
7299   emit_int8((unsigned char)0xDC);
7300   emit_operand32(rcx, src);
7301 }
7302 
7303 void Assembler::fmul_s(Address src) {
7304   InstructionMark im(this);
7305   emit_int8((unsigned char)0xD8);
7306   emit_operand32(rcx, src);
7307 }
7308 
7309 void Assembler::fmula(int i) {
7310   emit_farith(0xDC, 0xC8, i);
7311 }
7312 
7313 void Assembler::fmulp(int i) {
7314   emit_farith(0xDE, 0xC8, i);
7315 }
7316 
7317 void Assembler::fnsave(Address dst) {
7318   InstructionMark im(this);
7319   emit_int8((unsigned char)0xDD);
7320   emit_operand32(rsi, dst);
7321 }
7322 
7323 void Assembler::fnstcw(Address src) {
7324   InstructionMark im(this);
7325   emit_int8((unsigned char)0x9B);
7326   emit_int8((unsigned char)0xD9);
7327   emit_operand32(rdi, src);
7328 }
7329 
7330 void Assembler::fnstsw_ax() {
7331   emit_int8((unsigned char)0xDF);
7332   emit_int8((unsigned char)0xE0);
7333 }
7334 
7335 void Assembler::fprem() {
7336   emit_int8((unsigned char)0xD9);
7337   emit_int8((unsigned char)0xF8);
7338 }
7339 
7340 void Assembler::fprem1() {
7341   emit_int8((unsigned char)0xD9);
7342   emit_int8((unsigned char)0xF5);
7343 }
7344 
7345 void Assembler::frstor(Address src) {
7346   InstructionMark im(this);
7347   emit_int8((unsigned char)0xDD);
7348   emit_operand32(rsp, src);
7349 }
7350 
7351 void Assembler::fsin() {
7352   emit_int8((unsigned char)0xD9);
7353   emit_int8((unsigned char)0xFE);
7354 }
7355 
7356 void Assembler::fsqrt() {
7357   emit_int8((unsigned char)0xD9);
7358   emit_int8((unsigned char)0xFA);
7359 }
7360 
7361 void Assembler::fst_d(Address adr) {
7362   InstructionMark im(this);
7363   emit_int8((unsigned char)0xDD);
7364   emit_operand32(rdx, adr);
7365 }
7366 
7367 void Assembler::fst_s(Address adr) {
7368   InstructionMark im(this);
7369   emit_int8((unsigned char)0xD9);
7370   emit_operand32(rdx, adr);
7371 }
7372 
7373 void Assembler::fstp_d(Address adr) {
7374   InstructionMark im(this);
7375   emit_int8((unsigned char)0xDD);
7376   emit_operand32(rbx, adr);
7377 }
7378 
7379 void Assembler::fstp_d(int index) {
7380   emit_farith(0xDD, 0xD8, index);
7381 }
7382 
7383 void Assembler::fstp_s(Address adr) {
7384   InstructionMark im(this);
7385   emit_int8((unsigned char)0xD9);
7386   emit_operand32(rbx, adr);
7387 }
7388 
7389 void Assembler::fstp_x(Address adr) {
7390   InstructionMark im(this);
7391   emit_int8((unsigned char)0xDB);
7392   emit_operand32(rdi, adr);
7393 }
7394 
7395 void Assembler::fsub(int i) {
7396   emit_farith(0xD8, 0xE0, i);
7397 }
7398 
7399 void Assembler::fsub_d(Address src) {
7400   InstructionMark im(this);
7401   emit_int8((unsigned char)0xDC);
7402   emit_operand32(rsp, src);
7403 }
7404 
7405 void Assembler::fsub_s(Address src) {
7406   InstructionMark im(this);
7407   emit_int8((unsigned char)0xD8);
7408   emit_operand32(rsp, src);
7409 }
7410 
7411 void Assembler::fsuba(int i) {
7412   emit_farith(0xDC, 0xE8, i);
7413 }
7414 
7415 void Assembler::fsubp(int i) {
7416   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
7417 }
7418 
7419 void Assembler::fsubr(int i) {
7420   emit_farith(0xD8, 0xE8, i);
7421 }
7422 
7423 void Assembler::fsubr_d(Address src) {
7424   InstructionMark im(this);
7425   emit_int8((unsigned char)0xDC);
7426   emit_operand32(rbp, src);
7427 }
7428 
7429 void Assembler::fsubr_s(Address src) {
7430   InstructionMark im(this);
7431   emit_int8((unsigned char)0xD8);
7432   emit_operand32(rbp, src);
7433 }
7434 
7435 void Assembler::fsubra(int i) {
7436   emit_farith(0xDC, 0xE0, i);
7437 }
7438 
7439 void Assembler::fsubrp(int i) {
7440   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
7441 }
7442 
7443 void Assembler::ftan() {
7444   emit_int8((unsigned char)0xD9);
7445   emit_int8((unsigned char)0xF2);
7446   emit_int8((unsigned char)0xDD);
7447   emit_int8((unsigned char)0xD8);
7448 }
7449 
7450 void Assembler::ftst() {
7451   emit_int8((unsigned char)0xD9);
7452   emit_int8((unsigned char)0xE4);
7453 }
7454 
7455 void Assembler::fucomi(int i) {
7456   // make sure the instruction is supported (introduced for P6, together with cmov)
7457   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7458   emit_farith(0xDB, 0xE8, i);
7459 }
7460 
7461 void Assembler::fucomip(int i) {
7462   // make sure the instruction is supported (introduced for P6, together with cmov)
7463   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7464   emit_farith(0xDF, 0xE8, i);
7465 }
7466 
7467 void Assembler::fwait() {
7468   emit_int8((unsigned char)0x9B);
7469 }
7470 
7471 void Assembler::fxch(int i) {
7472   emit_farith(0xD9, 0xC8, i);
7473 }
7474 
7475 void Assembler::fyl2x() {
7476   emit_int8((unsigned char)0xD9);
7477   emit_int8((unsigned char)0xF1);
7478 }
7479 
7480 void Assembler::frndint() {
7481   emit_int8((unsigned char)0xD9);
7482   emit_int8((unsigned char)0xFC);
7483 }
7484 
7485 void Assembler::f2xm1() {
7486   emit_int8((unsigned char)0xD9);
7487   emit_int8((unsigned char)0xF0);
7488 }
7489 
7490 void Assembler::fldl2e() {
7491   emit_int8((unsigned char)0xD9);
7492   emit_int8((unsigned char)0xEA);
7493 }
7494 
7495 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7496 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7497 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7498 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7499 
7500 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7501 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7502   if (pre > 0) {
7503     emit_int8(simd_pre[pre]);
7504   }
7505   if (rex_w) {
7506     prefixq(adr, xreg);
7507   } else {
7508     prefix(adr, xreg);
7509   }
7510   if (opc > 0) {
7511     emit_int8(0x0F);
7512     int opc2 = simd_opc[opc];
7513     if (opc2 > 0) {
7514       emit_int8(opc2);
7515     }
7516   }
7517 }
7518 
7519 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7520   if (pre > 0) {
7521     emit_int8(simd_pre[pre]);
7522   }
7523   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7524   if (opc > 0) {
7525     emit_int8(0x0F);
7526     int opc2 = simd_opc[opc];
7527     if (opc2 > 0) {
7528       emit_int8(opc2);
7529     }
7530   }
7531   return encode;
7532 }
7533 
7534 
7535 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7536   int vector_len = _attributes->get_vector_len();
7537   bool vex_w = _attributes->is_rex_vex_w();
7538   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7539     prefix(VEX_3bytes);
7540 
7541     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7542     byte1 = (~byte1) & 0xE0;
7543     byte1 |= opc;
7544     emit_int8(byte1);
7545 
7546     int byte2 = ((~nds_enc) & 0xf) << 3;
7547     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7548     emit_int8(byte2);
7549   } else {
7550     prefix(VEX_2bytes);
7551 
7552     int byte1 = vex_r ? VEX_R : 0;
7553     byte1 = (~byte1) & 0x80;
7554     byte1 |= ((~nds_enc) & 0xf) << 3;
7555     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7556     emit_int8(byte1);
7557   }
7558 }
7559 
7560 // This is a 4 byte encoding
7561 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7562   // EVEX 0x62 prefix
7563   prefix(EVEX_4bytes);
7564   bool vex_w = _attributes->is_rex_vex_w();
7565   int evex_encoding = (vex_w ? VEX_W : 0);
7566   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7567   _attributes->set_evex_encoding(evex_encoding);
7568 
7569   // P0: byte 2, initialized to RXBR`00mm
7570   // instead of not'd
7571   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7572   byte2 = (~byte2) & 0xF0;
7573   // confine opc opcode extensions in mm bits to lower two bits
7574   // of form {0F, 0F_38, 0F_3A}
7575   byte2 |= opc;
7576   emit_int8(byte2);
7577 
7578   // P1: byte 3 as Wvvvv1pp
7579   int byte3 = ((~nds_enc) & 0xf) << 3;
7580   // p[10] is always 1
7581   byte3 |= EVEX_F;
7582   byte3 |= (vex_w & 1) << 7;
7583   // confine pre opcode extensions in pp bits to lower two bits
7584   // of form {66, F3, F2}
7585   byte3 |= pre;
7586   emit_int8(byte3);
7587 
7588   // P2: byte 4 as zL'Lbv'aaa
7589   // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
7590   int byte4 = (_attributes->is_no_reg_mask()) ?
7591               0 :
7592               _attributes->get_embedded_opmask_register_specifier();
7593   // EVEX.v` for extending EVEX.vvvv or VIDX
7594   byte4 |= (evex_v ? 0: EVEX_V);
7595   // third EXEC.b for broadcast actions
7596   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7597   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7598   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7599   // last is EVEX.z for zero/merge actions
7600   if (_attributes->is_no_reg_mask() == false) {
7601     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7602   }
7603   emit_int8(byte4);
7604 }
7605 
7606 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7607   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
7608   bool vex_b = adr.base_needs_rex();
7609   bool vex_x;
7610   if (adr.isxmmindex()) {
7611     vex_x = adr.xmmindex_needs_rex();
7612   } else {
7613     vex_x = adr.index_needs_rex();
7614   }
7615   set_attributes(attributes);
7616   attributes->set_current_assembler(this);
7617 
7618   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7619   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7620     switch (attributes->get_vector_len()) {
7621     case AVX_128bit:
7622     case AVX_256bit:
7623       attributes->set_is_legacy_mode();
7624       break;
7625     }
7626   }
7627 
7628   // For pure EVEX check and see if this instruction
7629   // is allowed in legacy mode and has resources which will
7630   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7631   // else that field is set when we encode to EVEX
7632   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7633       !_is_managed && !attributes->is_evex_instruction()) {
7634     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7635       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7636       if (check_register_bank) {
7637         // check nds_enc and xreg_enc for upper bank usage
7638         if (nds_enc < 16 && xreg_enc < 16) {
7639           attributes->set_is_legacy_mode();
7640         }
7641       } else {
7642         attributes->set_is_legacy_mode();
7643       }
7644     }
7645   }
7646 
7647   _is_managed = false;
7648   if (UseAVX > 2 && !attributes->is_legacy_mode())
7649   {
7650     bool evex_r = (xreg_enc >= 16);
7651     bool evex_v;
7652     // EVEX.V' is set to true when VSIB is used as we may need to use higher order XMM registers (16-31)
7653     if (adr.isxmmindex())  {
7654       evex_v = ((adr._xmmindex->encoding() > 15) ? true : false);
7655     } else {
7656       evex_v = (nds_enc >= 16);
7657     }
7658     attributes->set_is_evex_instruction();
7659     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7660   } else {
7661     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7662       attributes->set_rex_vex_w(false);
7663     }
7664     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7665   }
7666 }
7667 
7668 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7669   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
7670   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
7671   bool vex_x = false;
7672   set_attributes(attributes);
7673   attributes->set_current_assembler(this);
7674   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7675 
7676   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7677   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7678     switch (attributes->get_vector_len()) {
7679     case AVX_128bit:
7680     case AVX_256bit:
7681       if (check_register_bank) {
7682         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
7683           // up propagate arithmetic instructions to meet RA requirements
7684           attributes->set_vector_len(AVX_512bit);
7685         } else {
7686           attributes->set_is_legacy_mode();
7687         }
7688       } else {
7689         attributes->set_is_legacy_mode();
7690       }
7691       break;
7692     }
7693   }
7694 
7695   // For pure EVEX check and see if this instruction
7696   // is allowed in legacy mode and has resources which will
7697   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7698   // else that field is set when we encode to EVEX
7699   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7700       !_is_managed && !attributes->is_evex_instruction()) {
7701     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7702       if (check_register_bank) {
7703         // check dst_enc, nds_enc and src_enc for upper bank usage
7704         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
7705           attributes->set_is_legacy_mode();
7706         }
7707       } else {
7708         attributes->set_is_legacy_mode();
7709       }
7710     }
7711   }
7712 
7713   _is_managed = false;
7714   if (UseAVX > 2 && !attributes->is_legacy_mode())
7715   {
7716     bool evex_r = (dst_enc >= 16);
7717     bool evex_v = (nds_enc >= 16);
7718     // can use vex_x as bank extender on rm encoding
7719     vex_x = (src_enc >= 16);
7720     attributes->set_is_evex_instruction();
7721     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7722   } else {
7723     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7724       attributes->set_rex_vex_w(false);
7725     }
7726     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7727   }
7728 
7729   // return modrm byte components for operands
7730   return (((dst_enc & 7) << 3) | (src_enc & 7));
7731 }
7732 
7733 
7734 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7735                             VexOpcode opc, InstructionAttr *attributes) {
7736   if (UseAVX > 0) {
7737     int xreg_enc = xreg->encoding();
7738     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7739     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7740   } else {
7741     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7742     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7743   }
7744 }
7745 
7746 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7747                                       VexOpcode opc, InstructionAttr *attributes) {
7748   int dst_enc = dst->encoding();
7749   int src_enc = src->encoding();
7750   if (UseAVX > 0) {
7751     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7752     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7753   } else {
7754     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7755     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7756   }
7757 }
7758 
7759 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7760   assert(VM_Version::supports_avx(), "");
7761   assert(!VM_Version::supports_evex(), "");
7762   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7763   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7764   emit_int8((unsigned char)0xC2);
7765   emit_int8((unsigned char)(0xC0 | encode));
7766   emit_int8((unsigned char)(0xF & cop));
7767 }
7768 
7769 void Assembler::blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7770   assert(VM_Version::supports_avx(), "");
7771   assert(!VM_Version::supports_evex(), "");
7772   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7773   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7774   emit_int8((unsigned char)0x4B);
7775   emit_int8((unsigned char)(0xC0 | encode));
7776   int src2_enc = src2->encoding();
7777   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7778 }
7779 
7780 void Assembler::cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7781   assert(VM_Version::supports_avx(), "");
7782   assert(!VM_Version::supports_evex(), "");
7783   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7784   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7785   emit_int8((unsigned char)0xC2);
7786   emit_int8((unsigned char)(0xC0 | encode));
7787   emit_int8((unsigned char)(0xF & cop));
7788 }
7789 
7790 void Assembler::blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7791   assert(VM_Version::supports_avx(), "");
7792   assert(!VM_Version::supports_evex(), "");
7793   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7794   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7795   emit_int8((unsigned char)0x4A);
7796   emit_int8((unsigned char)(0xC0 | encode));
7797   int src2_enc = src2->encoding();
7798   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7799 }
7800 
7801 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
7802   assert(VM_Version::supports_avx2(), "");
7803   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7804   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7805   emit_int8((unsigned char)0x02);
7806   emit_int8((unsigned char)(0xC0 | encode));
7807   emit_int8((unsigned char)imm8);
7808 }
7809 
7810 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7811   assert(VM_Version::supports_bmi2(), "");
7812   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
7813   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7814   emit_int8((unsigned char)0xF7);
7815   emit_int8((unsigned char)(0xC0 | encode));
7816 }
7817 
7818 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7819   assert(VM_Version::supports_bmi2(), "");
7820   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
7821   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7822   emit_int8((unsigned char)0xF7);
7823   emit_int8((unsigned char)(0xC0 | encode));
7824 }
7825 
7826 #ifndef _LP64
7827 
7828 void Assembler::incl(Register dst) {
7829   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7830   emit_int8(0x40 | dst->encoding());
7831 }
7832 
7833 void Assembler::lea(Register dst, Address src) {
7834   leal(dst, src);
7835 }
7836 
7837 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7838   InstructionMark im(this);
7839   emit_int8((unsigned char)0xC7);
7840   emit_operand(rax, dst);
7841   emit_data((int)imm32, rspec, 0);
7842 }
7843 
7844 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7845   InstructionMark im(this);
7846   int encode = prefix_and_encode(dst->encoding());
7847   emit_int8((unsigned char)(0xB8 | encode));
7848   emit_data((int)imm32, rspec, 0);
7849 }
7850 
7851 void Assembler::popa() { // 32bit
7852   emit_int8(0x61);
7853 }
7854 
7855 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7856   InstructionMark im(this);
7857   emit_int8(0x68);
7858   emit_data(imm32, rspec, 0);
7859 }
7860 
7861 void Assembler::pusha() { // 32bit
7862   emit_int8(0x60);
7863 }
7864 
7865 void Assembler::set_byte_if_not_zero(Register dst) {
7866   emit_int8(0x0F);
7867   emit_int8((unsigned char)0x95);
7868   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7869 }
7870 
7871 void Assembler::shldl(Register dst, Register src) {
7872   emit_int8(0x0F);
7873   emit_int8((unsigned char)0xA5);
7874   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7875 }
7876 
7877 // 0F A4 / r ib
7878 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7879   emit_int8(0x0F);
7880   emit_int8((unsigned char)0xA4);
7881   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7882   emit_int8(imm8);
7883 }
7884 
7885 void Assembler::shrdl(Register dst, Register src) {
7886   emit_int8(0x0F);
7887   emit_int8((unsigned char)0xAD);
7888   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7889 }
7890 
7891 #else // LP64
7892 
7893 void Assembler::set_byte_if_not_zero(Register dst) {
7894   int enc = prefix_and_encode(dst->encoding(), true);
7895   emit_int8(0x0F);
7896   emit_int8((unsigned char)0x95);
7897   emit_int8((unsigned char)(0xE0 | enc));
7898 }
7899 
7900 // 64bit only pieces of the assembler
7901 // This should only be used by 64bit instructions that can use rip-relative
7902 // it cannot be used by instructions that want an immediate value.
7903 
7904 bool Assembler::reachable(AddressLiteral adr) {
7905   int64_t disp;
7906   // None will force a 64bit literal to the code stream. Likely a placeholder
7907   // for something that will be patched later and we need to certain it will
7908   // always be reachable.
7909   if (adr.reloc() == relocInfo::none) {
7910     return false;
7911   }
7912   if (adr.reloc() == relocInfo::internal_word_type) {
7913     // This should be rip relative and easily reachable.
7914     return true;
7915   }
7916   if (adr.reloc() == relocInfo::virtual_call_type ||
7917       adr.reloc() == relocInfo::opt_virtual_call_type ||
7918       adr.reloc() == relocInfo::static_call_type ||
7919       adr.reloc() == relocInfo::static_stub_type ) {
7920     // This should be rip relative within the code cache and easily
7921     // reachable until we get huge code caches. (At which point
7922     // ic code is going to have issues).
7923     return true;
7924   }
7925   if (adr.reloc() != relocInfo::external_word_type &&
7926       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7927       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7928       adr.reloc() != relocInfo::runtime_call_type ) {
7929     return false;
7930   }
7931 
7932   // Stress the correction code
7933   if (ForceUnreachable) {
7934     // Must be runtimecall reloc, see if it is in the codecache
7935     // Flipping stuff in the codecache to be unreachable causes issues
7936     // with things like inline caches where the additional instructions
7937     // are not handled.
7938     if (CodeCache::find_blob(adr._target) == NULL) {
7939       return false;
7940     }
7941   }
7942   // For external_word_type/runtime_call_type if it is reachable from where we
7943   // are now (possibly a temp buffer) and where we might end up
7944   // anywhere in the codeCache then we are always reachable.
7945   // This would have to change if we ever save/restore shared code
7946   // to be more pessimistic.
7947   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7948   if (!is_simm32(disp)) return false;
7949   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7950   if (!is_simm32(disp)) return false;
7951 
7952   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7953 
7954   // Because rip relative is a disp + address_of_next_instruction and we
7955   // don't know the value of address_of_next_instruction we apply a fudge factor
7956   // to make sure we will be ok no matter the size of the instruction we get placed into.
7957   // We don't have to fudge the checks above here because they are already worst case.
7958 
7959   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7960   // + 4 because better safe than sorry.
7961   const int fudge = 12 + 4;
7962   if (disp < 0) {
7963     disp -= fudge;
7964   } else {
7965     disp += fudge;
7966   }
7967   return is_simm32(disp);
7968 }
7969 
7970 // Check if the polling page is not reachable from the code cache using rip-relative
7971 // addressing.
7972 bool Assembler::is_polling_page_far() {
7973   intptr_t addr = (intptr_t)os::get_polling_page();
7974   return ForceUnreachable ||
7975          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7976          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7977 }
7978 
7979 void Assembler::emit_data64(jlong data,
7980                             relocInfo::relocType rtype,
7981                             int format) {
7982   if (rtype == relocInfo::none) {
7983     emit_int64(data);
7984   } else {
7985     emit_data64(data, Relocation::spec_simple(rtype), format);
7986   }
7987 }
7988 
7989 void Assembler::emit_data64(jlong data,
7990                             RelocationHolder const& rspec,
7991                             int format) {
7992   assert(imm_operand == 0, "default format must be immediate in this file");
7993   assert(imm_operand == format, "must be immediate");
7994   assert(inst_mark() != NULL, "must be inside InstructionMark");
7995   // Do not use AbstractAssembler::relocate, which is not intended for
7996   // embedded words.  Instead, relocate to the enclosing instruction.
7997   code_section()->relocate(inst_mark(), rspec, format);
7998 #ifdef ASSERT
7999   check_relocation(rspec, format);
8000 #endif
8001   emit_int64(data);
8002 }
8003 
8004 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
8005   if (reg_enc >= 8) {
8006     prefix(REX_B);
8007     reg_enc -= 8;
8008   } else if (byteinst && reg_enc >= 4) {
8009     prefix(REX);
8010   }
8011   return reg_enc;
8012 }
8013 
8014 int Assembler::prefixq_and_encode(int reg_enc) {
8015   if (reg_enc < 8) {
8016     prefix(REX_W);
8017   } else {
8018     prefix(REX_WB);
8019     reg_enc -= 8;
8020   }
8021   return reg_enc;
8022 }
8023 
8024 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
8025   if (dst_enc < 8) {
8026     if (src_enc >= 8) {
8027       prefix(REX_B);
8028       src_enc -= 8;
8029     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
8030       prefix(REX);
8031     }
8032   } else {
8033     if (src_enc < 8) {
8034       prefix(REX_R);
8035     } else {
8036       prefix(REX_RB);
8037       src_enc -= 8;
8038     }
8039     dst_enc -= 8;
8040   }
8041   return dst_enc << 3 | src_enc;
8042 }
8043 
8044 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
8045   if (dst_enc < 8) {
8046     if (src_enc < 8) {
8047       prefix(REX_W);
8048     } else {
8049       prefix(REX_WB);
8050       src_enc -= 8;
8051     }
8052   } else {
8053     if (src_enc < 8) {
8054       prefix(REX_WR);
8055     } else {
8056       prefix(REX_WRB);
8057       src_enc -= 8;
8058     }
8059     dst_enc -= 8;
8060   }
8061   return dst_enc << 3 | src_enc;
8062 }
8063 
8064 void Assembler::prefix(Register reg) {
8065   if (reg->encoding() >= 8) {
8066     prefix(REX_B);
8067   }
8068 }
8069 
8070 void Assembler::prefix(Register dst, Register src, Prefix p) {
8071   if (src->encoding() >= 8) {
8072     p = (Prefix)(p | REX_B);
8073   }
8074   if (dst->encoding() >= 8) {
8075     p = (Prefix)( p | REX_R);
8076   }
8077   if (p != Prefix_EMPTY) {
8078     // do not generate an empty prefix
8079     prefix(p);
8080   }
8081 }
8082 
8083 void Assembler::prefix(Register dst, Address adr, Prefix p) {
8084   if (adr.base_needs_rex()) {
8085     if (adr.index_needs_rex()) {
8086       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
8087     } else {
8088       prefix(REX_B);
8089     }
8090   } else {
8091     if (adr.index_needs_rex()) {
8092       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
8093     }
8094   }
8095   if (dst->encoding() >= 8) {
8096     p = (Prefix)(p | REX_R);
8097   }
8098   if (p != Prefix_EMPTY) {
8099     // do not generate an empty prefix
8100     prefix(p);
8101   }
8102 }
8103 
8104 void Assembler::prefix(Address adr) {
8105   if (adr.base_needs_rex()) {
8106     if (adr.index_needs_rex()) {
8107       prefix(REX_XB);
8108     } else {
8109       prefix(REX_B);
8110     }
8111   } else {
8112     if (adr.index_needs_rex()) {
8113       prefix(REX_X);
8114     }
8115   }
8116 }
8117 
8118 void Assembler::prefixq(Address adr) {
8119   if (adr.base_needs_rex()) {
8120     if (adr.index_needs_rex()) {
8121       prefix(REX_WXB);
8122     } else {
8123       prefix(REX_WB);
8124     }
8125   } else {
8126     if (adr.index_needs_rex()) {
8127       prefix(REX_WX);
8128     } else {
8129       prefix(REX_W);
8130     }
8131   }
8132 }
8133 
8134 
8135 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
8136   if (reg->encoding() < 8) {
8137     if (adr.base_needs_rex()) {
8138       if (adr.index_needs_rex()) {
8139         prefix(REX_XB);
8140       } else {
8141         prefix(REX_B);
8142       }
8143     } else {
8144       if (adr.index_needs_rex()) {
8145         prefix(REX_X);
8146       } else if (byteinst && reg->encoding() >= 4 ) {
8147         prefix(REX);
8148       }
8149     }
8150   } else {
8151     if (adr.base_needs_rex()) {
8152       if (adr.index_needs_rex()) {
8153         prefix(REX_RXB);
8154       } else {
8155         prefix(REX_RB);
8156       }
8157     } else {
8158       if (adr.index_needs_rex()) {
8159         prefix(REX_RX);
8160       } else {
8161         prefix(REX_R);
8162       }
8163     }
8164   }
8165 }
8166 
8167 void Assembler::prefixq(Address adr, Register src) {
8168   if (src->encoding() < 8) {
8169     if (adr.base_needs_rex()) {
8170       if (adr.index_needs_rex()) {
8171         prefix(REX_WXB);
8172       } else {
8173         prefix(REX_WB);
8174       }
8175     } else {
8176       if (adr.index_needs_rex()) {
8177         prefix(REX_WX);
8178       } else {
8179         prefix(REX_W);
8180       }
8181     }
8182   } else {
8183     if (adr.base_needs_rex()) {
8184       if (adr.index_needs_rex()) {
8185         prefix(REX_WRXB);
8186       } else {
8187         prefix(REX_WRB);
8188       }
8189     } else {
8190       if (adr.index_needs_rex()) {
8191         prefix(REX_WRX);
8192       } else {
8193         prefix(REX_WR);
8194       }
8195     }
8196   }
8197 }
8198 
8199 void Assembler::prefix(Address adr, XMMRegister reg) {
8200   if (reg->encoding() < 8) {
8201     if (adr.base_needs_rex()) {
8202       if (adr.index_needs_rex()) {
8203         prefix(REX_XB);
8204       } else {
8205         prefix(REX_B);
8206       }
8207     } else {
8208       if (adr.index_needs_rex()) {
8209         prefix(REX_X);
8210       }
8211     }
8212   } else {
8213     if (adr.base_needs_rex()) {
8214       if (adr.index_needs_rex()) {
8215         prefix(REX_RXB);
8216       } else {
8217         prefix(REX_RB);
8218       }
8219     } else {
8220       if (adr.index_needs_rex()) {
8221         prefix(REX_RX);
8222       } else {
8223         prefix(REX_R);
8224       }
8225     }
8226   }
8227 }
8228 
8229 void Assembler::prefixq(Address adr, XMMRegister src) {
8230   if (src->encoding() < 8) {
8231     if (adr.base_needs_rex()) {
8232       if (adr.index_needs_rex()) {
8233         prefix(REX_WXB);
8234       } else {
8235         prefix(REX_WB);
8236       }
8237     } else {
8238       if (adr.index_needs_rex()) {
8239         prefix(REX_WX);
8240       } else {
8241         prefix(REX_W);
8242       }
8243     }
8244   } else {
8245     if (adr.base_needs_rex()) {
8246       if (adr.index_needs_rex()) {
8247         prefix(REX_WRXB);
8248       } else {
8249         prefix(REX_WRB);
8250       }
8251     } else {
8252       if (adr.index_needs_rex()) {
8253         prefix(REX_WRX);
8254       } else {
8255         prefix(REX_WR);
8256       }
8257     }
8258   }
8259 }
8260 
8261 void Assembler::adcq(Register dst, int32_t imm32) {
8262   (void) prefixq_and_encode(dst->encoding());
8263   emit_arith(0x81, 0xD0, dst, imm32);
8264 }
8265 
8266 void Assembler::adcq(Register dst, Address src) {
8267   InstructionMark im(this);
8268   prefixq(src, dst);
8269   emit_int8(0x13);
8270   emit_operand(dst, src);
8271 }
8272 
8273 void Assembler::adcq(Register dst, Register src) {
8274   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8275   emit_arith(0x13, 0xC0, dst, src);
8276 }
8277 
8278 void Assembler::addq(Address dst, int32_t imm32) {
8279   InstructionMark im(this);
8280   prefixq(dst);
8281   emit_arith_operand(0x81, rax, dst,imm32);
8282 }
8283 
8284 void Assembler::addq(Address dst, Register src) {
8285   InstructionMark im(this);
8286   prefixq(dst, src);
8287   emit_int8(0x01);
8288   emit_operand(src, dst);
8289 }
8290 
8291 void Assembler::addq(Register dst, int32_t imm32) {
8292   (void) prefixq_and_encode(dst->encoding());
8293   emit_arith(0x81, 0xC0, dst, imm32);
8294 }
8295 
8296 void Assembler::addq(Register dst, Address src) {
8297   InstructionMark im(this);
8298   prefixq(src, dst);
8299   emit_int8(0x03);
8300   emit_operand(dst, src);
8301 }
8302 
8303 void Assembler::addq(Register dst, Register src) {
8304   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8305   emit_arith(0x03, 0xC0, dst, src);
8306 }
8307 
8308 void Assembler::adcxq(Register dst, Register src) {
8309   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8310   emit_int8((unsigned char)0x66);
8311   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8312   emit_int8(0x0F);
8313   emit_int8(0x38);
8314   emit_int8((unsigned char)0xF6);
8315   emit_int8((unsigned char)(0xC0 | encode));
8316 }
8317 
8318 void Assembler::adoxq(Register dst, Register src) {
8319   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8320   emit_int8((unsigned char)0xF3);
8321   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8322   emit_int8(0x0F);
8323   emit_int8(0x38);
8324   emit_int8((unsigned char)0xF6);
8325   emit_int8((unsigned char)(0xC0 | encode));
8326 }
8327 
8328 void Assembler::andq(Address dst, int32_t imm32) {
8329   InstructionMark im(this);
8330   prefixq(dst);
8331   emit_int8((unsigned char)0x81);
8332   emit_operand(rsp, dst, 4);
8333   emit_int32(imm32);
8334 }
8335 
8336 void Assembler::andq(Register dst, int32_t imm32) {
8337   (void) prefixq_and_encode(dst->encoding());
8338   emit_arith(0x81, 0xE0, dst, imm32);
8339 }
8340 
8341 void Assembler::andq(Register dst, Address src) {
8342   InstructionMark im(this);
8343   prefixq(src, dst);
8344   emit_int8(0x23);
8345   emit_operand(dst, src);
8346 }
8347 
8348 void Assembler::andq(Register dst, Register src) {
8349   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8350   emit_arith(0x23, 0xC0, dst, src);
8351 }
8352 
8353 void Assembler::andnq(Register dst, Register src1, Register src2) {
8354   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8355   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8356   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8357   emit_int8((unsigned char)0xF2);
8358   emit_int8((unsigned char)(0xC0 | encode));
8359 }
8360 
8361 void Assembler::andnq(Register dst, Register src1, Address src2) {
8362   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8363   InstructionMark im(this);
8364   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8365   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8366   emit_int8((unsigned char)0xF2);
8367   emit_operand(dst, src2);
8368 }
8369 
8370 void Assembler::bsfq(Register dst, Register src) {
8371   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8372   emit_int8(0x0F);
8373   emit_int8((unsigned char)0xBC);
8374   emit_int8((unsigned char)(0xC0 | encode));
8375 }
8376 
8377 void Assembler::bsrq(Register dst, Register src) {
8378   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8379   emit_int8(0x0F);
8380   emit_int8((unsigned char)0xBD);
8381   emit_int8((unsigned char)(0xC0 | encode));
8382 }
8383 
8384 void Assembler::bswapq(Register reg) {
8385   int encode = prefixq_and_encode(reg->encoding());
8386   emit_int8(0x0F);
8387   emit_int8((unsigned char)(0xC8 | encode));
8388 }
8389 
8390 void Assembler::blsiq(Register dst, Register src) {
8391   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8392   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8393   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8394   emit_int8((unsigned char)0xF3);
8395   emit_int8((unsigned char)(0xC0 | encode));
8396 }
8397 
8398 void Assembler::blsiq(Register dst, Address src) {
8399   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8400   InstructionMark im(this);
8401   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8402   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8403   emit_int8((unsigned char)0xF3);
8404   emit_operand(rbx, src);
8405 }
8406 
8407 void Assembler::blsmskq(Register dst, Register src) {
8408   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8409   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8410   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8411   emit_int8((unsigned char)0xF3);
8412   emit_int8((unsigned char)(0xC0 | encode));
8413 }
8414 
8415 void Assembler::blsmskq(Register dst, Address src) {
8416   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8417   InstructionMark im(this);
8418   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8419   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8420   emit_int8((unsigned char)0xF3);
8421   emit_operand(rdx, src);
8422 }
8423 
8424 void Assembler::blsrq(Register dst, Register src) {
8425   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8426   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8427   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8428   emit_int8((unsigned char)0xF3);
8429   emit_int8((unsigned char)(0xC0 | encode));
8430 }
8431 
8432 void Assembler::blsrq(Register dst, Address src) {
8433   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8434   InstructionMark im(this);
8435   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8436   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8437   emit_int8((unsigned char)0xF3);
8438   emit_operand(rcx, src);
8439 }
8440 
8441 void Assembler::cdqq() {
8442   prefix(REX_W);
8443   emit_int8((unsigned char)0x99);
8444 }
8445 
8446 void Assembler::clflush(Address adr) {
8447   prefix(adr);
8448   emit_int8(0x0F);
8449   emit_int8((unsigned char)0xAE);
8450   emit_operand(rdi, adr);
8451 }
8452 
8453 void Assembler::cmovq(Condition cc, Register dst, Register src) {
8454   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8455   emit_int8(0x0F);
8456   emit_int8(0x40 | cc);
8457   emit_int8((unsigned char)(0xC0 | encode));
8458 }
8459 
8460 void Assembler::cmovq(Condition cc, Register dst, Address src) {
8461   InstructionMark im(this);
8462   prefixq(src, dst);
8463   emit_int8(0x0F);
8464   emit_int8(0x40 | cc);
8465   emit_operand(dst, src);
8466 }
8467 
8468 void Assembler::cmpq(Address dst, int32_t imm32) {
8469   InstructionMark im(this);
8470   prefixq(dst);
8471   emit_int8((unsigned char)0x81);
8472   emit_operand(rdi, dst, 4);
8473   emit_int32(imm32);
8474 }
8475 
8476 void Assembler::cmpq(Register dst, int32_t imm32) {
8477   (void) prefixq_and_encode(dst->encoding());
8478   emit_arith(0x81, 0xF8, dst, imm32);
8479 }
8480 
8481 void Assembler::cmpq(Address dst, Register src) {
8482   InstructionMark im(this);
8483   prefixq(dst, src);
8484   emit_int8(0x3B);
8485   emit_operand(src, dst);
8486 }
8487 
8488 void Assembler::cmpq(Register dst, Register src) {
8489   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8490   emit_arith(0x3B, 0xC0, dst, src);
8491 }
8492 
8493 void Assembler::cmpq(Register dst, Address  src) {
8494   InstructionMark im(this);
8495   prefixq(src, dst);
8496   emit_int8(0x3B);
8497   emit_operand(dst, src);
8498 }
8499 
8500 void Assembler::cmpxchgq(Register reg, Address adr) {
8501   InstructionMark im(this);
8502   prefixq(adr, reg);
8503   emit_int8(0x0F);
8504   emit_int8((unsigned char)0xB1);
8505   emit_operand(reg, adr);
8506 }
8507 
8508 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
8509   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8510   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8511   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8512   emit_int8(0x2A);
8513   emit_int8((unsigned char)(0xC0 | encode));
8514 }
8515 
8516 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
8517   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8518   InstructionMark im(this);
8519   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8520   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8521   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8522   emit_int8(0x2A);
8523   emit_operand(dst, src);
8524 }
8525 
8526 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8527   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8528   InstructionMark im(this);
8529   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8530   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8531   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8532   emit_int8(0x2A);
8533   emit_operand(dst, src);
8534 }
8535 
8536 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8537   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8538   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8539   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8540   emit_int8(0x2C);
8541   emit_int8((unsigned char)(0xC0 | encode));
8542 }
8543 
8544 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8545   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8546   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8547   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8548   emit_int8(0x2C);
8549   emit_int8((unsigned char)(0xC0 | encode));
8550 }
8551 
8552 void Assembler::decl(Register dst) {
8553   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8554   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8555   int encode = prefix_and_encode(dst->encoding());
8556   emit_int8((unsigned char)0xFF);
8557   emit_int8((unsigned char)(0xC8 | encode));
8558 }
8559 
8560 void Assembler::decq(Register dst) {
8561   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8562   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8563   int encode = prefixq_and_encode(dst->encoding());
8564   emit_int8((unsigned char)0xFF);
8565   emit_int8(0xC8 | encode);
8566 }
8567 
8568 void Assembler::decq(Address dst) {
8569   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8570   InstructionMark im(this);
8571   prefixq(dst);
8572   emit_int8((unsigned char)0xFF);
8573   emit_operand(rcx, dst);
8574 }
8575 
8576 void Assembler::fxrstor(Address src) {
8577   prefixq(src);
8578   emit_int8(0x0F);
8579   emit_int8((unsigned char)0xAE);
8580   emit_operand(as_Register(1), src);
8581 }
8582 
8583 void Assembler::xrstor(Address src) {
8584   prefixq(src);
8585   emit_int8(0x0F);
8586   emit_int8((unsigned char)0xAE);
8587   emit_operand(as_Register(5), src);
8588 }
8589 
8590 void Assembler::fxsave(Address dst) {
8591   prefixq(dst);
8592   emit_int8(0x0F);
8593   emit_int8((unsigned char)0xAE);
8594   emit_operand(as_Register(0), dst);
8595 }
8596 
8597 void Assembler::xsave(Address dst) {
8598   prefixq(dst);
8599   emit_int8(0x0F);
8600   emit_int8((unsigned char)0xAE);
8601   emit_operand(as_Register(4), dst);
8602 }
8603 
8604 void Assembler::idivq(Register src) {
8605   int encode = prefixq_and_encode(src->encoding());
8606   emit_int8((unsigned char)0xF7);
8607   emit_int8((unsigned char)(0xF8 | encode));
8608 }
8609 
8610 void Assembler::imulq(Register dst, Register src) {
8611   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8612   emit_int8(0x0F);
8613   emit_int8((unsigned char)0xAF);
8614   emit_int8((unsigned char)(0xC0 | encode));
8615 }
8616 
8617 void Assembler::imulq(Register dst, Register src, int value) {
8618   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8619   if (is8bit(value)) {
8620     emit_int8(0x6B);
8621     emit_int8((unsigned char)(0xC0 | encode));
8622     emit_int8(value & 0xFF);
8623   } else {
8624     emit_int8(0x69);
8625     emit_int8((unsigned char)(0xC0 | encode));
8626     emit_int32(value);
8627   }
8628 }
8629 
8630 void Assembler::imulq(Register dst, Address src) {
8631   InstructionMark im(this);
8632   prefixq(src, dst);
8633   emit_int8(0x0F);
8634   emit_int8((unsigned char) 0xAF);
8635   emit_operand(dst, src);
8636 }
8637 
8638 void Assembler::incl(Register dst) {
8639   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8640   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8641   int encode = prefix_and_encode(dst->encoding());
8642   emit_int8((unsigned char)0xFF);
8643   emit_int8((unsigned char)(0xC0 | encode));
8644 }
8645 
8646 void Assembler::incq(Register dst) {
8647   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8648   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8649   int encode = prefixq_and_encode(dst->encoding());
8650   emit_int8((unsigned char)0xFF);
8651   emit_int8((unsigned char)(0xC0 | encode));
8652 }
8653 
8654 void Assembler::incq(Address dst) {
8655   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8656   InstructionMark im(this);
8657   prefixq(dst);
8658   emit_int8((unsigned char)0xFF);
8659   emit_operand(rax, dst);
8660 }
8661 
8662 void Assembler::lea(Register dst, Address src) {
8663   leaq(dst, src);
8664 }
8665 
8666 void Assembler::leaq(Register dst, Address src) {
8667   InstructionMark im(this);
8668   prefixq(src, dst);
8669   emit_int8((unsigned char)0x8D);
8670   emit_operand(dst, src);
8671 }
8672 
8673 void Assembler::mov64(Register dst, int64_t imm64) {
8674   InstructionMark im(this);
8675   int encode = prefixq_and_encode(dst->encoding());
8676   emit_int8((unsigned char)(0xB8 | encode));
8677   emit_int64(imm64);
8678 }
8679 
8680 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8681   InstructionMark im(this);
8682   int encode = prefixq_and_encode(dst->encoding());
8683   emit_int8(0xB8 | encode);
8684   emit_data64(imm64, rspec);
8685 }
8686 
8687 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8688   InstructionMark im(this);
8689   int encode = prefix_and_encode(dst->encoding());
8690   emit_int8((unsigned char)(0xB8 | encode));
8691   emit_data((int)imm32, rspec, narrow_oop_operand);
8692 }
8693 
8694 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8695   InstructionMark im(this);
8696   prefix(dst);
8697   emit_int8((unsigned char)0xC7);
8698   emit_operand(rax, dst, 4);
8699   emit_data((int)imm32, rspec, narrow_oop_operand);
8700 }
8701 
8702 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8703   InstructionMark im(this);
8704   int encode = prefix_and_encode(src1->encoding());
8705   emit_int8((unsigned char)0x81);
8706   emit_int8((unsigned char)(0xF8 | encode));
8707   emit_data((int)imm32, rspec, narrow_oop_operand);
8708 }
8709 
8710 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8711   InstructionMark im(this);
8712   prefix(src1);
8713   emit_int8((unsigned char)0x81);
8714   emit_operand(rax, src1, 4);
8715   emit_data((int)imm32, rspec, narrow_oop_operand);
8716 }
8717 
8718 void Assembler::lzcntq(Register dst, Register src) {
8719   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8720   emit_int8((unsigned char)0xF3);
8721   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8722   emit_int8(0x0F);
8723   emit_int8((unsigned char)0xBD);
8724   emit_int8((unsigned char)(0xC0 | encode));
8725 }
8726 
8727 void Assembler::movdq(XMMRegister dst, Register src) {
8728   // table D-1 says MMX/SSE2
8729   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8730   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8731   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8732   emit_int8(0x6E);
8733   emit_int8((unsigned char)(0xC0 | encode));
8734 }
8735 
8736 void Assembler::movdq(Register dst, XMMRegister src) {
8737   // table D-1 says MMX/SSE2
8738   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8739   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8740   // swap src/dst to get correct prefix
8741   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8742   emit_int8(0x7E);
8743   emit_int8((unsigned char)(0xC0 | encode));
8744 }
8745 
8746 void Assembler::movq(Register dst, Register src) {
8747   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8748   emit_int8((unsigned char)0x8B);
8749   emit_int8((unsigned char)(0xC0 | encode));
8750 }
8751 
8752 void Assembler::movq(Register dst, Address src) {
8753   InstructionMark im(this);
8754   prefixq(src, dst);
8755   emit_int8((unsigned char)0x8B);
8756   emit_operand(dst, src);
8757 }
8758 
8759 void Assembler::movq(Address dst, Register src) {
8760   InstructionMark im(this);
8761   prefixq(dst, src);
8762   emit_int8((unsigned char)0x89);
8763   emit_operand(src, dst);
8764 }
8765 
8766 void Assembler::movsbq(Register dst, Address src) {
8767   InstructionMark im(this);
8768   prefixq(src, dst);
8769   emit_int8(0x0F);
8770   emit_int8((unsigned char)0xBE);
8771   emit_operand(dst, src);
8772 }
8773 
8774 void Assembler::movsbq(Register dst, Register src) {
8775   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8776   emit_int8(0x0F);
8777   emit_int8((unsigned char)0xBE);
8778   emit_int8((unsigned char)(0xC0 | encode));
8779 }
8780 
8781 void Assembler::movslq(Register dst, int32_t imm32) {
8782   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8783   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8784   // as a result we shouldn't use until tested at runtime...
8785   ShouldNotReachHere();
8786   InstructionMark im(this);
8787   int encode = prefixq_and_encode(dst->encoding());
8788   emit_int8((unsigned char)(0xC7 | encode));
8789   emit_int32(imm32);
8790 }
8791 
8792 void Assembler::movslq(Address dst, int32_t imm32) {
8793   assert(is_simm32(imm32), "lost bits");
8794   InstructionMark im(this);
8795   prefixq(dst);
8796   emit_int8((unsigned char)0xC7);
8797   emit_operand(rax, dst, 4);
8798   emit_int32(imm32);
8799 }
8800 
8801 void Assembler::movslq(Register dst, Address src) {
8802   InstructionMark im(this);
8803   prefixq(src, dst);
8804   emit_int8(0x63);
8805   emit_operand(dst, src);
8806 }
8807 
8808 void Assembler::movslq(Register dst, Register src) {
8809   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8810   emit_int8(0x63);
8811   emit_int8((unsigned char)(0xC0 | encode));
8812 }
8813 
8814 void Assembler::movswq(Register dst, Address src) {
8815   InstructionMark im(this);
8816   prefixq(src, dst);
8817   emit_int8(0x0F);
8818   emit_int8((unsigned char)0xBF);
8819   emit_operand(dst, src);
8820 }
8821 
8822 void Assembler::movswq(Register dst, Register src) {
8823   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8824   emit_int8((unsigned char)0x0F);
8825   emit_int8((unsigned char)0xBF);
8826   emit_int8((unsigned char)(0xC0 | encode));
8827 }
8828 
8829 void Assembler::movzbq(Register dst, Address src) {
8830   InstructionMark im(this);
8831   prefixq(src, dst);
8832   emit_int8((unsigned char)0x0F);
8833   emit_int8((unsigned char)0xB6);
8834   emit_operand(dst, src);
8835 }
8836 
8837 void Assembler::movzbq(Register dst, Register src) {
8838   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8839   emit_int8(0x0F);
8840   emit_int8((unsigned char)0xB6);
8841   emit_int8(0xC0 | encode);
8842 }
8843 
8844 void Assembler::movzwq(Register dst, Address src) {
8845   InstructionMark im(this);
8846   prefixq(src, dst);
8847   emit_int8((unsigned char)0x0F);
8848   emit_int8((unsigned char)0xB7);
8849   emit_operand(dst, src);
8850 }
8851 
8852 void Assembler::movzwq(Register dst, Register src) {
8853   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8854   emit_int8((unsigned char)0x0F);
8855   emit_int8((unsigned char)0xB7);
8856   emit_int8((unsigned char)(0xC0 | encode));
8857 }
8858 
8859 void Assembler::mulq(Address src) {
8860   InstructionMark im(this);
8861   prefixq(src);
8862   emit_int8((unsigned char)0xF7);
8863   emit_operand(rsp, src);
8864 }
8865 
8866 void Assembler::mulq(Register src) {
8867   int encode = prefixq_and_encode(src->encoding());
8868   emit_int8((unsigned char)0xF7);
8869   emit_int8((unsigned char)(0xE0 | encode));
8870 }
8871 
8872 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8873   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8874   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8875   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8876   emit_int8((unsigned char)0xF6);
8877   emit_int8((unsigned char)(0xC0 | encode));
8878 }
8879 
8880 void Assembler::negq(Register dst) {
8881   int encode = prefixq_and_encode(dst->encoding());
8882   emit_int8((unsigned char)0xF7);
8883   emit_int8((unsigned char)(0xD8 | encode));
8884 }
8885 
8886 void Assembler::notq(Register dst) {
8887   int encode = prefixq_and_encode(dst->encoding());
8888   emit_int8((unsigned char)0xF7);
8889   emit_int8((unsigned char)(0xD0 | encode));
8890 }
8891 
8892 void Assembler::orq(Address dst, int32_t imm32) {
8893   InstructionMark im(this);
8894   prefixq(dst);
8895   emit_int8((unsigned char)0x81);
8896   emit_operand(rcx, dst, 4);
8897   emit_int32(imm32);
8898 }
8899 
8900 void Assembler::orq(Register dst, int32_t imm32) {
8901   (void) prefixq_and_encode(dst->encoding());
8902   emit_arith(0x81, 0xC8, dst, imm32);
8903 }
8904 
8905 void Assembler::orq(Register dst, Address src) {
8906   InstructionMark im(this);
8907   prefixq(src, dst);
8908   emit_int8(0x0B);
8909   emit_operand(dst, src);
8910 }
8911 
8912 void Assembler::orq(Register dst, Register src) {
8913   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8914   emit_arith(0x0B, 0xC0, dst, src);
8915 }
8916 
8917 void Assembler::popa() { // 64bit
8918   movq(r15, Address(rsp, 0));
8919   movq(r14, Address(rsp, wordSize));
8920   movq(r13, Address(rsp, 2 * wordSize));
8921   movq(r12, Address(rsp, 3 * wordSize));
8922   movq(r11, Address(rsp, 4 * wordSize));
8923   movq(r10, Address(rsp, 5 * wordSize));
8924   movq(r9,  Address(rsp, 6 * wordSize));
8925   movq(r8,  Address(rsp, 7 * wordSize));
8926   movq(rdi, Address(rsp, 8 * wordSize));
8927   movq(rsi, Address(rsp, 9 * wordSize));
8928   movq(rbp, Address(rsp, 10 * wordSize));
8929   // skip rsp
8930   movq(rbx, Address(rsp, 12 * wordSize));
8931   movq(rdx, Address(rsp, 13 * wordSize));
8932   movq(rcx, Address(rsp, 14 * wordSize));
8933   movq(rax, Address(rsp, 15 * wordSize));
8934 
8935   addq(rsp, 16 * wordSize);
8936 }
8937 
8938 void Assembler::popcntq(Register dst, Address src) {
8939   assert(VM_Version::supports_popcnt(), "must support");
8940   InstructionMark im(this);
8941   emit_int8((unsigned char)0xF3);
8942   prefixq(src, dst);
8943   emit_int8((unsigned char)0x0F);
8944   emit_int8((unsigned char)0xB8);
8945   emit_operand(dst, src);
8946 }
8947 
8948 void Assembler::popcntq(Register dst, Register src) {
8949   assert(VM_Version::supports_popcnt(), "must support");
8950   emit_int8((unsigned char)0xF3);
8951   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8952   emit_int8((unsigned char)0x0F);
8953   emit_int8((unsigned char)0xB8);
8954   emit_int8((unsigned char)(0xC0 | encode));
8955 }
8956 
8957 void Assembler::popq(Address dst) {
8958   InstructionMark im(this);
8959   prefixq(dst);
8960   emit_int8((unsigned char)0x8F);
8961   emit_operand(rax, dst);
8962 }
8963 
8964 void Assembler::pusha() { // 64bit
8965   // we have to store original rsp.  ABI says that 128 bytes
8966   // below rsp are local scratch.
8967   movq(Address(rsp, -5 * wordSize), rsp);
8968 
8969   subq(rsp, 16 * wordSize);
8970 
8971   movq(Address(rsp, 15 * wordSize), rax);
8972   movq(Address(rsp, 14 * wordSize), rcx);
8973   movq(Address(rsp, 13 * wordSize), rdx);
8974   movq(Address(rsp, 12 * wordSize), rbx);
8975   // skip rsp
8976   movq(Address(rsp, 10 * wordSize), rbp);
8977   movq(Address(rsp, 9 * wordSize), rsi);
8978   movq(Address(rsp, 8 * wordSize), rdi);
8979   movq(Address(rsp, 7 * wordSize), r8);
8980   movq(Address(rsp, 6 * wordSize), r9);
8981   movq(Address(rsp, 5 * wordSize), r10);
8982   movq(Address(rsp, 4 * wordSize), r11);
8983   movq(Address(rsp, 3 * wordSize), r12);
8984   movq(Address(rsp, 2 * wordSize), r13);
8985   movq(Address(rsp, wordSize), r14);
8986   movq(Address(rsp, 0), r15);
8987 }
8988 
8989 void Assembler::pushq(Address src) {
8990   InstructionMark im(this);
8991   prefixq(src);
8992   emit_int8((unsigned char)0xFF);
8993   emit_operand(rsi, src);
8994 }
8995 
8996 void Assembler::rclq(Register dst, int imm8) {
8997   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8998   int encode = prefixq_and_encode(dst->encoding());
8999   if (imm8 == 1) {
9000     emit_int8((unsigned char)0xD1);
9001     emit_int8((unsigned char)(0xD0 | encode));
9002   } else {
9003     emit_int8((unsigned char)0xC1);
9004     emit_int8((unsigned char)(0xD0 | encode));
9005     emit_int8(imm8);
9006   }
9007 }
9008 
9009 void Assembler::rcrq(Register dst, int imm8) {
9010   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9011   int encode = prefixq_and_encode(dst->encoding());
9012   if (imm8 == 1) {
9013     emit_int8((unsigned char)0xD1);
9014     emit_int8((unsigned char)(0xD8 | encode));
9015   } else {
9016     emit_int8((unsigned char)0xC1);
9017     emit_int8((unsigned char)(0xD8 | encode));
9018     emit_int8(imm8);
9019   }
9020 }
9021 
9022 void Assembler::rorq(Register dst, int imm8) {
9023   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9024   int encode = prefixq_and_encode(dst->encoding());
9025   if (imm8 == 1) {
9026     emit_int8((unsigned char)0xD1);
9027     emit_int8((unsigned char)(0xC8 | encode));
9028   } else {
9029     emit_int8((unsigned char)0xC1);
9030     emit_int8((unsigned char)(0xc8 | encode));
9031     emit_int8(imm8);
9032   }
9033 }
9034 
9035 void Assembler::rorxq(Register dst, Register src, int imm8) {
9036   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
9037   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9038   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
9039   emit_int8((unsigned char)0xF0);
9040   emit_int8((unsigned char)(0xC0 | encode));
9041   emit_int8(imm8);
9042 }
9043 
9044 void Assembler::rorxd(Register dst, Register src, int imm8) {
9045   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
9046   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9047   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
9048   emit_int8((unsigned char)0xF0);
9049   emit_int8((unsigned char)(0xC0 | encode));
9050   emit_int8(imm8);
9051 }
9052 
9053 void Assembler::sarq(Register dst, int imm8) {
9054   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9055   int encode = prefixq_and_encode(dst->encoding());
9056   if (imm8 == 1) {
9057     emit_int8((unsigned char)0xD1);
9058     emit_int8((unsigned char)(0xF8 | encode));
9059   } else {
9060     emit_int8((unsigned char)0xC1);
9061     emit_int8((unsigned char)(0xF8 | encode));
9062     emit_int8(imm8);
9063   }
9064 }
9065 
9066 void Assembler::sarq(Register dst) {
9067   int encode = prefixq_and_encode(dst->encoding());
9068   emit_int8((unsigned char)0xD3);
9069   emit_int8((unsigned char)(0xF8 | encode));
9070 }
9071 
9072 void Assembler::sbbq(Address dst, int32_t imm32) {
9073   InstructionMark im(this);
9074   prefixq(dst);
9075   emit_arith_operand(0x81, rbx, dst, imm32);
9076 }
9077 
9078 void Assembler::sbbq(Register dst, int32_t imm32) {
9079   (void) prefixq_and_encode(dst->encoding());
9080   emit_arith(0x81, 0xD8, dst, imm32);
9081 }
9082 
9083 void Assembler::sbbq(Register dst, Address src) {
9084   InstructionMark im(this);
9085   prefixq(src, dst);
9086   emit_int8(0x1B);
9087   emit_operand(dst, src);
9088 }
9089 
9090 void Assembler::sbbq(Register dst, Register src) {
9091   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9092   emit_arith(0x1B, 0xC0, dst, src);
9093 }
9094 
9095 void Assembler::shlq(Register dst, int imm8) {
9096   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9097   int encode = prefixq_and_encode(dst->encoding());
9098   if (imm8 == 1) {
9099     emit_int8((unsigned char)0xD1);
9100     emit_int8((unsigned char)(0xE0 | encode));
9101   } else {
9102     emit_int8((unsigned char)0xC1);
9103     emit_int8((unsigned char)(0xE0 | encode));
9104     emit_int8(imm8);
9105   }
9106 }
9107 
9108 void Assembler::shlq(Register dst) {
9109   int encode = prefixq_and_encode(dst->encoding());
9110   emit_int8((unsigned char)0xD3);
9111   emit_int8((unsigned char)(0xE0 | encode));
9112 }
9113 
9114 void Assembler::shrq(Register dst, int imm8) {
9115   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9116   int encode = prefixq_and_encode(dst->encoding());
9117   emit_int8((unsigned char)0xC1);
9118   emit_int8((unsigned char)(0xE8 | encode));
9119   emit_int8(imm8);
9120 }
9121 
9122 void Assembler::shrq(Register dst) {
9123   int encode = prefixq_and_encode(dst->encoding());
9124   emit_int8((unsigned char)0xD3);
9125   emit_int8(0xE8 | encode);
9126 }
9127 
9128 void Assembler::subq(Address dst, int32_t imm32) {
9129   InstructionMark im(this);
9130   prefixq(dst);
9131   emit_arith_operand(0x81, rbp, dst, imm32);
9132 }
9133 
9134 void Assembler::subq(Address dst, Register src) {
9135   InstructionMark im(this);
9136   prefixq(dst, src);
9137   emit_int8(0x29);
9138   emit_operand(src, dst);
9139 }
9140 
9141 void Assembler::subq(Register dst, int32_t imm32) {
9142   (void) prefixq_and_encode(dst->encoding());
9143   emit_arith(0x81, 0xE8, dst, imm32);
9144 }
9145 
9146 // Force generation of a 4 byte immediate value even if it fits into 8bit
9147 void Assembler::subq_imm32(Register dst, int32_t imm32) {
9148   (void) prefixq_and_encode(dst->encoding());
9149   emit_arith_imm32(0x81, 0xE8, dst, imm32);
9150 }
9151 
9152 void Assembler::subq(Register dst, Address src) {
9153   InstructionMark im(this);
9154   prefixq(src, dst);
9155   emit_int8(0x2B);
9156   emit_operand(dst, src);
9157 }
9158 
9159 void Assembler::subq(Register dst, Register src) {
9160   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9161   emit_arith(0x2B, 0xC0, dst, src);
9162 }
9163 
9164 void Assembler::testq(Register dst, int32_t imm32) {
9165   // not using emit_arith because test
9166   // doesn't support sign-extension of
9167   // 8bit operands
9168   int encode = dst->encoding();
9169   if (encode == 0) {
9170     prefix(REX_W);
9171     emit_int8((unsigned char)0xA9);
9172   } else {
9173     encode = prefixq_and_encode(encode);
9174     emit_int8((unsigned char)0xF7);
9175     emit_int8((unsigned char)(0xC0 | encode));
9176   }
9177   emit_int32(imm32);
9178 }
9179 
9180 void Assembler::testq(Register dst, Register src) {
9181   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9182   emit_arith(0x85, 0xC0, dst, src);
9183 }
9184 
9185 void Assembler::testq(Register dst, Address src) {
9186   InstructionMark im(this);
9187   prefixq(src, dst);
9188   emit_int8((unsigned char)0x85);
9189   emit_operand(dst, src);
9190 }
9191 
9192 void Assembler::xaddq(Address dst, Register src) {
9193   InstructionMark im(this);
9194   prefixq(dst, src);
9195   emit_int8(0x0F);
9196   emit_int8((unsigned char)0xC1);
9197   emit_operand(src, dst);
9198 }
9199 
9200 void Assembler::xchgq(Register dst, Address src) {
9201   InstructionMark im(this);
9202   prefixq(src, dst);
9203   emit_int8((unsigned char)0x87);
9204   emit_operand(dst, src);
9205 }
9206 
9207 void Assembler::xchgq(Register dst, Register src) {
9208   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9209   emit_int8((unsigned char)0x87);
9210   emit_int8((unsigned char)(0xc0 | encode));
9211 }
9212 
9213 void Assembler::xorq(Register dst, Register src) {
9214   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9215   emit_arith(0x33, 0xC0, dst, src);
9216 }
9217 
9218 void Assembler::xorq(Register dst, Address src) {
9219   InstructionMark im(this);
9220   prefixq(src, dst);
9221   emit_int8(0x33);
9222   emit_operand(dst, src);
9223 }
9224 
9225 #endif // !LP64