1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/castnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/convertnode.hpp"
  43 #include "opto/countbitsnode.hpp"
  44 #include "opto/intrinsicnode.hpp"
  45 #include "opto/idealKit.hpp"
  46 #include "opto/mathexactnode.hpp"
  47 #include "opto/movenode.hpp"
  48 #include "opto/mulnode.hpp"
  49 #include "opto/narrowptrnode.hpp"
  50 #include "opto/opaquenode.hpp"
  51 #include "opto/parse.hpp"
  52 #include "opto/runtime.hpp"
  53 #include "opto/rootnode.hpp"
  54 #include "opto/subnode.hpp"
  55 #include "prims/nativeLookup.hpp"
  56 #include "prims/unsafe.hpp"
  57 #include "runtime/objectMonitor.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "utilities/macros.hpp"
  60 
  61 
  62 class LibraryIntrinsic : public InlineCallGenerator {
  63   // Extend the set of intrinsics known to the runtime:
  64  public:
  65  private:
  66   bool             _is_virtual;
  67   bool             _does_virtual_dispatch;
  68   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  69   int8_t           _last_predicate; // Last generated predicate
  70   vmIntrinsics::ID _intrinsic_id;
  71 
  72  public:
  73   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  74     : InlineCallGenerator(m),
  75       _is_virtual(is_virtual),
  76       _does_virtual_dispatch(does_virtual_dispatch),
  77       _predicates_count((int8_t)predicates_count),
  78       _last_predicate((int8_t)-1),
  79       _intrinsic_id(id)
  80   {
  81   }
  82   virtual bool is_intrinsic() const { return true; }
  83   virtual bool is_virtual()   const { return _is_virtual; }
  84   virtual bool is_predicated() const { return _predicates_count > 0; }
  85   virtual int  predicates_count() const { return _predicates_count; }
  86   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  87   virtual JVMState* generate(JVMState* jvms);
  88   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  89   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  90 };
  91 
  92 
  93 // Local helper class for LibraryIntrinsic:
  94 class LibraryCallKit : public GraphKit {
  95  private:
  96   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  97   Node*             _result;        // the result node, if any
  98   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  99 
 100   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
 101 
 102  public:
 103   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 104     : GraphKit(jvms),
 105       _intrinsic(intrinsic),
 106       _result(NULL)
 107   {
 108     // Check if this is a root compile.  In that case we don't have a caller.
 109     if (!jvms->has_method()) {
 110       _reexecute_sp = sp();
 111     } else {
 112       // Find out how many arguments the interpreter needs when deoptimizing
 113       // and save the stack pointer value so it can used by uncommon_trap.
 114       // We find the argument count by looking at the declared signature.
 115       bool ignored_will_link;
 116       ciSignature* declared_signature = NULL;
 117       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 118       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 119       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 120     }
 121   }
 122 
 123   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 124 
 125   ciMethod*         caller()    const    { return jvms()->method(); }
 126   int               bci()       const    { return jvms()->bci(); }
 127   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 128   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 129   ciMethod*         callee()    const    { return _intrinsic->method(); }
 130 
 131   bool  try_to_inline(int predicate);
 132   Node* try_to_predicate(int predicate);
 133 
 134   void push_result() {
 135     // Push the result onto the stack.
 136     if (!stopped() && result() != NULL) {
 137       BasicType bt = result()->bottom_type()->basic_type();
 138       push_node(bt, result());
 139     }
 140   }
 141 
 142  private:
 143   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 144     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 145   }
 146 
 147   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 148   void  set_result(RegionNode* region, PhiNode* value);
 149   Node*     result() { return _result; }
 150 
 151   virtual int reexecute_sp() { return _reexecute_sp; }
 152 
 153   // Helper functions to inline natives
 154   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 155   Node* generate_slow_guard(Node* test, RegionNode* region);
 156   Node* generate_fair_guard(Node* test, RegionNode* region);
 157   Node* generate_negative_guard(Node* index, RegionNode* region,
 158                                 // resulting CastII of index:
 159                                 Node* *pos_index = NULL);
 160   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 161                              Node* array_length,
 162                              RegionNode* region);
 163   void  generate_string_range_check(Node* array, Node* offset,
 164                                     Node* length, bool char_count);
 165   Node* generate_current_thread(Node* &tls_output);
 166   Node* load_mirror_from_klass(Node* klass);
 167   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 168                                       RegionNode* region, int null_path,
 169                                       int offset);
 170   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 171                                RegionNode* region, int null_path) {
 172     int offset = java_lang_Class::klass_offset_in_bytes();
 173     return load_klass_from_mirror_common(mirror, never_see_null,
 174                                          region, null_path,
 175                                          offset);
 176   }
 177   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 178                                      RegionNode* region, int null_path) {
 179     int offset = java_lang_Class::array_klass_offset_in_bytes();
 180     return load_klass_from_mirror_common(mirror, never_see_null,
 181                                          region, null_path,
 182                                          offset);
 183   }
 184   Node* generate_access_flags_guard(Node* kls,
 185                                     int modifier_mask, int modifier_bits,
 186                                     RegionNode* region);
 187   Node* generate_interface_guard(Node* kls, RegionNode* region);
 188   Node* generate_array_guard(Node* kls, RegionNode* region) {
 189     return generate_array_guard_common(kls, region, false, false);
 190   }
 191   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 192     return generate_array_guard_common(kls, region, false, true);
 193   }
 194   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 195     return generate_array_guard_common(kls, region, true, false);
 196   }
 197   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 198     return generate_array_guard_common(kls, region, true, true);
 199   }
 200   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 201                                     bool obj_array, bool not_array);
 202   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 203   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 204                                      bool is_virtual = false, bool is_static = false);
 205   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 206     return generate_method_call(method_id, false, true);
 207   }
 208   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 209     return generate_method_call(method_id, true, false);
 210   }
 211   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 212   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 213 
 214   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 215   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 216   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 218   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 219                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 220   bool inline_string_indexOfChar();
 221   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 222   bool inline_string_toBytesU();
 223   bool inline_string_getCharsU();
 224   bool inline_string_copy(bool compress);
 225   bool inline_string_char_access(bool is_store);
 226   Node* round_double_node(Node* n);
 227   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 228   bool inline_math_native(vmIntrinsics::ID id);
 229   bool inline_math(vmIntrinsics::ID id);
 230   template <typename OverflowOp>
 231   bool inline_math_overflow(Node* arg1, Node* arg2);
 232   void inline_math_mathExact(Node* math, Node* test);
 233   bool inline_math_addExactI(bool is_increment);
 234   bool inline_math_addExactL(bool is_increment);
 235   bool inline_math_multiplyExactI();
 236   bool inline_math_multiplyExactL();
 237   bool inline_math_multiplyHigh();
 238   bool inline_math_negateExactI();
 239   bool inline_math_negateExactL();
 240   bool inline_math_subtractExactI(bool is_decrement);
 241   bool inline_math_subtractExactL(bool is_decrement);
 242   bool inline_min_max(vmIntrinsics::ID id);
 243   bool inline_notify(vmIntrinsics::ID id);
 244   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 245   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 246   int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
 247   Node* make_unsafe_address(Node*& base, Node* offset, BasicType type = T_ILLEGAL, bool can_cast = false);
 248 
 249   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 250   DecoratorSet mo_decorator_for_access_kind(AccessKind kind);
 251   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 252   static bool klass_needs_init_guard(Node* kls);
 253   bool inline_unsafe_allocate();
 254   bool inline_unsafe_newArray(bool uninitialized);
 255   bool inline_unsafe_copyMemory();
 256   bool inline_native_currentThread();
 257 
 258   bool inline_native_time_funcs(address method, const char* funcName);
 259 #ifdef JFR_HAVE_INTRINSICS
 260   bool inline_native_classID();
 261   bool inline_native_getEventWriter();
 262 #endif
 263   bool inline_native_isInterrupted();
 264   bool inline_native_Class_query(vmIntrinsics::ID id);
 265   bool inline_native_subtype_check();
 266   bool inline_native_getLength();
 267   bool inline_array_copyOf(bool is_copyOfRange);
 268   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 269   bool inline_preconditions_checkIndex();
 270   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array);
 271   bool inline_native_clone(bool is_virtual);
 272   bool inline_native_Reflection_getCallerClass();
 273   // Helper function for inlining native object hash method
 274   bool inline_native_hashcode(bool is_virtual, bool is_static);
 275   bool inline_native_getClass();
 276 
 277   // Helper functions for inlining arraycopy
 278   bool inline_arraycopy();
 279   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 280                                                 RegionNode* slow_region);
 281   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 282   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 283                                       uint new_idx);
 284 
 285   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 286   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 287   bool inline_unsafe_fence(vmIntrinsics::ID id);
 288   bool inline_onspinwait();
 289   bool inline_fp_conversions(vmIntrinsics::ID id);
 290   bool inline_number_methods(vmIntrinsics::ID id);
 291   bool inline_reference_get();
 292   bool inline_Class_cast();
 293   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 294   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 295   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 296   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 297   Node* inline_counterMode_AESCrypt_predicate();
 298   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 299   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 300   bool inline_ghash_processBlocks();
 301   bool inline_base64_encodeBlock();
 302   bool inline_sha_implCompress(vmIntrinsics::ID id);
 303   bool inline_digestBase_implCompressMB(int predicate);
 304   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 305                                  bool long_state, address stubAddr, const char *stubName,
 306                                  Node* src_start, Node* ofs, Node* limit);
 307   Node* get_state_from_sha_object(Node *sha_object);
 308   Node* get_state_from_sha5_object(Node *sha_object);
 309   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 310   bool inline_encodeISOArray();
 311   bool inline_setBit();
 312   bool inline_clrBit();
 313   bool inline_updateCRC32();
 314   bool inline_updateBytesCRC32();
 315   bool inline_updateByteBufferCRC32();
 316   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 317   bool inline_updateBytesCRC32C();
 318   bool inline_updateDirectByteBufferCRC32C();
 319   bool inline_updateBytesAdler32();
 320   bool inline_updateByteBufferAdler32();
 321   bool inline_multiplyToLen();
 322   bool inline_hasNegatives();
 323   bool inline_squareToLen();
 324   bool inline_mulAdd();
 325   bool inline_montgomeryMultiply();
 326   bool inline_montgomerySquare();
 327   bool inline_vectorizedMismatch();
 328   bool inline_fma(vmIntrinsics::ID id);
 329 
 330   bool inline_profileBoolean();
 331   bool inline_isCompileConstant();
 332   void clear_upper_avx() {
 333 #ifdef X86
 334     if (UseAVX >= 2) {
 335       C->set_clear_upper_avx(true);
 336     }
 337 #endif
 338   }
 339 };
 340 
 341 //---------------------------make_vm_intrinsic----------------------------
 342 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 343   vmIntrinsics::ID id = m->intrinsic_id();
 344   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 345 
 346   if (!m->is_loaded()) {
 347     // Do not attempt to inline unloaded methods.
 348     return NULL;
 349   }
 350 
 351   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 352   bool is_available = false;
 353 
 354   {
 355     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 356     // the compiler must transition to '_thread_in_vm' state because both
 357     // methods access VM-internal data.
 358     VM_ENTRY_MARK;
 359     methodHandle mh(THREAD, m->get_Method());
 360     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
 361                    !C->directive()->is_intrinsic_disabled(mh) &&
 362                    !vmIntrinsics::is_disabled_by_flags(mh);
 363 
 364   }
 365 
 366   if (is_available) {
 367     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 368     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 369     return new LibraryIntrinsic(m, is_virtual,
 370                                 vmIntrinsics::predicates_needed(id),
 371                                 vmIntrinsics::does_virtual_dispatch(id),
 372                                 (vmIntrinsics::ID) id);
 373   } else {
 374     return NULL;
 375   }
 376 }
 377 
 378 //----------------------register_library_intrinsics-----------------------
 379 // Initialize this file's data structures, for each Compile instance.
 380 void Compile::register_library_intrinsics() {
 381   // Nothing to do here.
 382 }
 383 
 384 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 385   LibraryCallKit kit(jvms, this);
 386   Compile* C = kit.C;
 387   int nodes = C->unique();
 388 #ifndef PRODUCT
 389   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 390     char buf[1000];
 391     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 392     tty->print_cr("Intrinsic %s", str);
 393   }
 394 #endif
 395   ciMethod* callee = kit.callee();
 396   const int bci    = kit.bci();
 397 
 398   // Try to inline the intrinsic.
 399   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 400       kit.try_to_inline(_last_predicate)) {
 401     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 402                                           : "(intrinsic)";
 403     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 404     if (C->print_intrinsics() || C->print_inlining()) {
 405       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 406     }
 407     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 408     if (C->log()) {
 409       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 410                      vmIntrinsics::name_at(intrinsic_id()),
 411                      (is_virtual() ? " virtual='1'" : ""),
 412                      C->unique() - nodes);
 413     }
 414     // Push the result from the inlined method onto the stack.
 415     kit.push_result();
 416     C->print_inlining_update(this);
 417     return kit.transfer_exceptions_into_jvms();
 418   }
 419 
 420   // The intrinsic bailed out
 421   if (jvms->has_method()) {
 422     // Not a root compile.
 423     const char* msg;
 424     if (callee->intrinsic_candidate()) {
 425       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 426     } else {
 427       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 428                          : "failed to inline (intrinsic), method not annotated";
 429     }
 430     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 431     if (C->print_intrinsics() || C->print_inlining()) {
 432       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 433     }
 434   } else {
 435     // Root compile
 436     ResourceMark rm;
 437     stringStream msg_stream;
 438     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 439                      vmIntrinsics::name_at(intrinsic_id()),
 440                      is_virtual() ? " (virtual)" : "", bci);
 441     const char *msg = msg_stream.as_string();
 442     log_debug(jit, inlining)("%s", msg);
 443     if (C->print_intrinsics() || C->print_inlining()) {
 444       tty->print("%s", msg);
 445     }
 446   }
 447   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 448   C->print_inlining_update(this);
 449   return NULL;
 450 }
 451 
 452 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 453   LibraryCallKit kit(jvms, this);
 454   Compile* C = kit.C;
 455   int nodes = C->unique();
 456   _last_predicate = predicate;
 457 #ifndef PRODUCT
 458   assert(is_predicated() && predicate < predicates_count(), "sanity");
 459   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 460     char buf[1000];
 461     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 462     tty->print_cr("Predicate for intrinsic %s", str);
 463   }
 464 #endif
 465   ciMethod* callee = kit.callee();
 466   const int bci    = kit.bci();
 467 
 468   Node* slow_ctl = kit.try_to_predicate(predicate);
 469   if (!kit.failing()) {
 470     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 471                                           : "(intrinsic, predicate)";
 472     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 473     if (C->print_intrinsics() || C->print_inlining()) {
 474       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 475     }
 476     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 477     if (C->log()) {
 478       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 479                      vmIntrinsics::name_at(intrinsic_id()),
 480                      (is_virtual() ? " virtual='1'" : ""),
 481                      C->unique() - nodes);
 482     }
 483     return slow_ctl; // Could be NULL if the check folds.
 484   }
 485 
 486   // The intrinsic bailed out
 487   if (jvms->has_method()) {
 488     // Not a root compile.
 489     const char* msg = "failed to generate predicate for intrinsic";
 490     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 491     if (C->print_intrinsics() || C->print_inlining()) {
 492       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 493     }
 494   } else {
 495     // Root compile
 496     ResourceMark rm;
 497     stringStream msg_stream;
 498     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 499                      vmIntrinsics::name_at(intrinsic_id()),
 500                      is_virtual() ? " (virtual)" : "", bci);
 501     const char *msg = msg_stream.as_string();
 502     log_debug(jit, inlining)("%s", msg);
 503     if (C->print_intrinsics() || C->print_inlining()) {
 504       C->print_inlining_stream()->print("%s", msg);
 505     }
 506   }
 507   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 508   return NULL;
 509 }
 510 
 511 bool LibraryCallKit::try_to_inline(int predicate) {
 512   // Handle symbolic names for otherwise undistinguished boolean switches:
 513   const bool is_store       = true;
 514   const bool is_compress    = true;
 515   const bool is_static      = true;
 516   const bool is_volatile    = true;
 517 
 518   if (!jvms()->has_method()) {
 519     // Root JVMState has a null method.
 520     assert(map()->memory()->Opcode() == Op_Parm, "");
 521     // Insert the memory aliasing node
 522     set_all_memory(reset_memory());
 523   }
 524   assert(merged_memory(), "");
 525 
 526 
 527   switch (intrinsic_id()) {
 528   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 529   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 530   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 531 
 532   case vmIntrinsics::_dsin:
 533   case vmIntrinsics::_dcos:
 534   case vmIntrinsics::_dtan:
 535   case vmIntrinsics::_dabs:
 536   case vmIntrinsics::_datan2:
 537   case vmIntrinsics::_dsqrt:
 538   case vmIntrinsics::_dexp:
 539   case vmIntrinsics::_dlog:
 540   case vmIntrinsics::_dlog10:
 541   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 542 
 543   case vmIntrinsics::_min:
 544   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 545 
 546   case vmIntrinsics::_notify:
 547   case vmIntrinsics::_notifyAll:
 548     if (ObjectMonitor::Knob_InlineNotify) {
 549       return inline_notify(intrinsic_id());
 550     }
 551     return false;
 552 
 553   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 554   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 555   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 556   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 557   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 558   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 559   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 560   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 561   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 562   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 563   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 564   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 565   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 566 
 567   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 568 
 569   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 570   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 571   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 572   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 573 
 574   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 575   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 576   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 577   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 578   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 579   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 580   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 581 
 582   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 583   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 584 
 585   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 586   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 587   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 588   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 589 
 590   case vmIntrinsics::_compressStringC:
 591   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 592   case vmIntrinsics::_inflateStringC:
 593   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 594 
 595   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 596   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 597   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 598   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 599   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 600   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 601   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 602   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 603   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 604 
 605   case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 606   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 607   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 608   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 609   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 610   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 611   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 612   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 613   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 614 
 615   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 616   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 617   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 618   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 619   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 620   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 621   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 622   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 623   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 624 
 625   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 626   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 627   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 628   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 629   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 630   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 631   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 632   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 633   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 634 
 635   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 636   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 637   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 638   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 639 
 640   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 641   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 642   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 643   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 644 
 645   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 646   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 647   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 648   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 649   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 650   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 651   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 652   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 653   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 654 
 655   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 656   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 657   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 658   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 659   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 660   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 661   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 662   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 663   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 664 
 665   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 666   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 667   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 668   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 669   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 670   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 671   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 672   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 673   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 674 
 675   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 676   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 677   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 678   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 679   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 680   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 681   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 682   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 683   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 684 
 685   case vmIntrinsics::_compareAndSetObject:              return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 686   case vmIntrinsics::_compareAndSetByte:                return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 687   case vmIntrinsics::_compareAndSetShort:               return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 688   case vmIntrinsics::_compareAndSetInt:                 return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 689   case vmIntrinsics::_compareAndSetLong:                return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 690 
 691   case vmIntrinsics::_weakCompareAndSetObjectPlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 692   case vmIntrinsics::_weakCompareAndSetObjectAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 693   case vmIntrinsics::_weakCompareAndSetObjectRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 694   case vmIntrinsics::_weakCompareAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 695   case vmIntrinsics::_weakCompareAndSetBytePlain:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 696   case vmIntrinsics::_weakCompareAndSetByteAcquire:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 697   case vmIntrinsics::_weakCompareAndSetByteRelease:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 698   case vmIntrinsics::_weakCompareAndSetByte:            return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 699   case vmIntrinsics::_weakCompareAndSetShortPlain:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 700   case vmIntrinsics::_weakCompareAndSetShortAcquire:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 701   case vmIntrinsics::_weakCompareAndSetShortRelease:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 702   case vmIntrinsics::_weakCompareAndSetShort:           return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 703   case vmIntrinsics::_weakCompareAndSetIntPlain:        return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 704   case vmIntrinsics::_weakCompareAndSetIntAcquire:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 705   case vmIntrinsics::_weakCompareAndSetIntRelease:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 706   case vmIntrinsics::_weakCompareAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 707   case vmIntrinsics::_weakCompareAndSetLongPlain:       return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 708   case vmIntrinsics::_weakCompareAndSetLongAcquire:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 709   case vmIntrinsics::_weakCompareAndSetLongRelease:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 710   case vmIntrinsics::_weakCompareAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 711 
 712   case vmIntrinsics::_compareAndExchangeObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 713   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 714   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 715   case vmIntrinsics::_compareAndExchangeByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 716   case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 717   case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 718   case vmIntrinsics::_compareAndExchangeShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 719   case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 720   case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 721   case vmIntrinsics::_compareAndExchangeInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 722   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 723   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 724   case vmIntrinsics::_compareAndExchangeLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 725   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 726   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 727 
 728   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 729   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 730   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 731   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 732 
 733   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 734   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 735   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 736   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 737   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 738 
 739   case vmIntrinsics::_loadFence:
 740   case vmIntrinsics::_storeFence:
 741   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 742 
 743   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 744 
 745   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 746   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 747 
 748 #ifdef JFR_HAVE_INTRINSICS
 749   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime");
 750   case vmIntrinsics::_getClassId:               return inline_native_classID();
 751   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 752 #endif
 753   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 754   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 755   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 756   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 757   case vmIntrinsics::_getLength:                return inline_native_getLength();
 758   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 759   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 760   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 761   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 762   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 763   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 764 
 765   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 766   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 767 
 768   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 769 
 770   case vmIntrinsics::_isInstance:
 771   case vmIntrinsics::_getModifiers:
 772   case vmIntrinsics::_isInterface:
 773   case vmIntrinsics::_isArray:
 774   case vmIntrinsics::_isPrimitive:
 775   case vmIntrinsics::_getSuperclass:
 776   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 777 
 778   case vmIntrinsics::_floatToRawIntBits:
 779   case vmIntrinsics::_floatToIntBits:
 780   case vmIntrinsics::_intBitsToFloat:
 781   case vmIntrinsics::_doubleToRawLongBits:
 782   case vmIntrinsics::_doubleToLongBits:
 783   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 784 
 785   case vmIntrinsics::_numberOfLeadingZeros_i:
 786   case vmIntrinsics::_numberOfLeadingZeros_l:
 787   case vmIntrinsics::_numberOfTrailingZeros_i:
 788   case vmIntrinsics::_numberOfTrailingZeros_l:
 789   case vmIntrinsics::_bitCount_i:
 790   case vmIntrinsics::_bitCount_l:
 791   case vmIntrinsics::_reverseBytes_i:
 792   case vmIntrinsics::_reverseBytes_l:
 793   case vmIntrinsics::_reverseBytes_s:
 794   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 795 
 796   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 797 
 798   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 799 
 800   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 801 
 802   case vmIntrinsics::_aescrypt_encryptBlock:
 803   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 804 
 805   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 806   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 807     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 808 
 809   case vmIntrinsics::_counterMode_AESCrypt:
 810     return inline_counterMode_AESCrypt(intrinsic_id());
 811 
 812   case vmIntrinsics::_sha_implCompress:
 813   case vmIntrinsics::_sha2_implCompress:
 814   case vmIntrinsics::_sha5_implCompress:
 815     return inline_sha_implCompress(intrinsic_id());
 816 
 817   case vmIntrinsics::_digestBase_implCompressMB:
 818     return inline_digestBase_implCompressMB(predicate);
 819 
 820   case vmIntrinsics::_multiplyToLen:
 821     return inline_multiplyToLen();
 822 
 823   case vmIntrinsics::_squareToLen:
 824     return inline_squareToLen();
 825 
 826   case vmIntrinsics::_mulAdd:
 827     return inline_mulAdd();
 828 
 829   case vmIntrinsics::_montgomeryMultiply:
 830     return inline_montgomeryMultiply();
 831   case vmIntrinsics::_montgomerySquare:
 832     return inline_montgomerySquare();
 833 
 834   case vmIntrinsics::_vectorizedMismatch:
 835     return inline_vectorizedMismatch();
 836 
 837   case vmIntrinsics::_ghash_processBlocks:
 838     return inline_ghash_processBlocks();
 839   case vmIntrinsics::_base64_encodeBlock:
 840     return inline_base64_encodeBlock();
 841 
 842   case vmIntrinsics::_encodeISOArray:
 843   case vmIntrinsics::_encodeByteISOArray:
 844     return inline_encodeISOArray();
 845 
 846   case vmIntrinsics::_setBit:
 847     return inline_setBit();
 848   case vmIntrinsics::_clrBit:
 849     return inline_clrBit();
 850 
 851   case vmIntrinsics::_updateCRC32:
 852     return inline_updateCRC32();
 853   case vmIntrinsics::_updateBytesCRC32:
 854     return inline_updateBytesCRC32();
 855   case vmIntrinsics::_updateByteBufferCRC32:
 856     return inline_updateByteBufferCRC32();
 857 
 858   case vmIntrinsics::_updateBytesCRC32C:
 859     return inline_updateBytesCRC32C();
 860   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 861     return inline_updateDirectByteBufferCRC32C();
 862 
 863   case vmIntrinsics::_updateBytesAdler32:
 864     return inline_updateBytesAdler32();
 865   case vmIntrinsics::_updateByteBufferAdler32:
 866     return inline_updateByteBufferAdler32();
 867 
 868   case vmIntrinsics::_profileBoolean:
 869     return inline_profileBoolean();
 870   case vmIntrinsics::_isCompileConstant:
 871     return inline_isCompileConstant();
 872 
 873   case vmIntrinsics::_hasNegatives:
 874     return inline_hasNegatives();
 875 
 876   case vmIntrinsics::_fmaD:
 877   case vmIntrinsics::_fmaF:
 878     return inline_fma(intrinsic_id());
 879 
 880   default:
 881     // If you get here, it may be that someone has added a new intrinsic
 882     // to the list in vmSymbols.hpp without implementing it here.
 883 #ifndef PRODUCT
 884     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 885       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 886                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 887     }
 888 #endif
 889     return false;
 890   }
 891 }
 892 
 893 Node* LibraryCallKit::try_to_predicate(int predicate) {
 894   if (!jvms()->has_method()) {
 895     // Root JVMState has a null method.
 896     assert(map()->memory()->Opcode() == Op_Parm, "");
 897     // Insert the memory aliasing node
 898     set_all_memory(reset_memory());
 899   }
 900   assert(merged_memory(), "");
 901 
 902   switch (intrinsic_id()) {
 903   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 904     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 905   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 906     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 907   case vmIntrinsics::_counterMode_AESCrypt:
 908     return inline_counterMode_AESCrypt_predicate();
 909   case vmIntrinsics::_digestBase_implCompressMB:
 910     return inline_digestBase_implCompressMB_predicate(predicate);
 911 
 912   default:
 913     // If you get here, it may be that someone has added a new intrinsic
 914     // to the list in vmSymbols.hpp without implementing it here.
 915 #ifndef PRODUCT
 916     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 917       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 918                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 919     }
 920 #endif
 921     Node* slow_ctl = control();
 922     set_control(top()); // No fast path instrinsic
 923     return slow_ctl;
 924   }
 925 }
 926 
 927 //------------------------------set_result-------------------------------
 928 // Helper function for finishing intrinsics.
 929 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 930   record_for_igvn(region);
 931   set_control(_gvn.transform(region));
 932   set_result( _gvn.transform(value));
 933   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 934 }
 935 
 936 //------------------------------generate_guard---------------------------
 937 // Helper function for generating guarded fast-slow graph structures.
 938 // The given 'test', if true, guards a slow path.  If the test fails
 939 // then a fast path can be taken.  (We generally hope it fails.)
 940 // In all cases, GraphKit::control() is updated to the fast path.
 941 // The returned value represents the control for the slow path.
 942 // The return value is never 'top'; it is either a valid control
 943 // or NULL if it is obvious that the slow path can never be taken.
 944 // Also, if region and the slow control are not NULL, the slow edge
 945 // is appended to the region.
 946 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 947   if (stopped()) {
 948     // Already short circuited.
 949     return NULL;
 950   }
 951 
 952   // Build an if node and its projections.
 953   // If test is true we take the slow path, which we assume is uncommon.
 954   if (_gvn.type(test) == TypeInt::ZERO) {
 955     // The slow branch is never taken.  No need to build this guard.
 956     return NULL;
 957   }
 958 
 959   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 960 
 961   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 962   if (if_slow == top()) {
 963     // The slow branch is never taken.  No need to build this guard.
 964     return NULL;
 965   }
 966 
 967   if (region != NULL)
 968     region->add_req(if_slow);
 969 
 970   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 971   set_control(if_fast);
 972 
 973   return if_slow;
 974 }
 975 
 976 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 977   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 978 }
 979 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 980   return generate_guard(test, region, PROB_FAIR);
 981 }
 982 
 983 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 984                                                      Node* *pos_index) {
 985   if (stopped())
 986     return NULL;                // already stopped
 987   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 988     return NULL;                // index is already adequately typed
 989   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 990   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 991   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 992   if (is_neg != NULL && pos_index != NULL) {
 993     // Emulate effect of Parse::adjust_map_after_if.
 994     Node* ccast = new CastIINode(index, TypeInt::POS);
 995     ccast->set_req(0, control());
 996     (*pos_index) = _gvn.transform(ccast);
 997   }
 998   return is_neg;
 999 }
1000 
1001 // Make sure that 'position' is a valid limit index, in [0..length].
1002 // There are two equivalent plans for checking this:
1003 //   A. (offset + copyLength)  unsigned<=  arrayLength
1004 //   B. offset  <=  (arrayLength - copyLength)
1005 // We require that all of the values above, except for the sum and
1006 // difference, are already known to be non-negative.
1007 // Plan A is robust in the face of overflow, if offset and copyLength
1008 // are both hugely positive.
1009 //
1010 // Plan B is less direct and intuitive, but it does not overflow at
1011 // all, since the difference of two non-negatives is always
1012 // representable.  Whenever Java methods must perform the equivalent
1013 // check they generally use Plan B instead of Plan A.
1014 // For the moment we use Plan A.
1015 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1016                                                   Node* subseq_length,
1017                                                   Node* array_length,
1018                                                   RegionNode* region) {
1019   if (stopped())
1020     return NULL;                // already stopped
1021   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1022   if (zero_offset && subseq_length->eqv_uncast(array_length))
1023     return NULL;                // common case of whole-array copy
1024   Node* last = subseq_length;
1025   if (!zero_offset)             // last += offset
1026     last = _gvn.transform(new AddINode(last, offset));
1027   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1028   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1029   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1030   return is_over;
1031 }
1032 
1033 // Emit range checks for the given String.value byte array
1034 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1035   if (stopped()) {
1036     return; // already stopped
1037   }
1038   RegionNode* bailout = new RegionNode(1);
1039   record_for_igvn(bailout);
1040   if (char_count) {
1041     // Convert char count to byte count
1042     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1043   }
1044 
1045   // Offset and count must not be negative
1046   generate_negative_guard(offset, bailout);
1047   generate_negative_guard(count, bailout);
1048   // Offset + count must not exceed length of array
1049   generate_limit_guard(offset, count, load_array_length(array), bailout);
1050 
1051   if (bailout->req() > 1) {
1052     PreserveJVMState pjvms(this);
1053     set_control(_gvn.transform(bailout));
1054     uncommon_trap(Deoptimization::Reason_intrinsic,
1055                   Deoptimization::Action_maybe_recompile);
1056   }
1057 }
1058 
1059 //--------------------------generate_current_thread--------------------
1060 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1061   ciKlass*    thread_klass = env()->Thread_klass();
1062   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1063   Node* thread = _gvn.transform(new ThreadLocalNode());
1064   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1065   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1066   tls_output = thread;
1067   return threadObj;
1068 }
1069 
1070 
1071 //------------------------------make_string_method_node------------------------
1072 // Helper method for String intrinsic functions. This version is called with
1073 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1074 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1075 // containing the lengths of str1 and str2.
1076 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1077   Node* result = NULL;
1078   switch (opcode) {
1079   case Op_StrIndexOf:
1080     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1081                                 str1_start, cnt1, str2_start, cnt2, ae);
1082     break;
1083   case Op_StrComp:
1084     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1085                              str1_start, cnt1, str2_start, cnt2, ae);
1086     break;
1087   case Op_StrEquals:
1088     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1089     // Use the constant length if there is one because optimized match rule may exist.
1090     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1091                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1092     break;
1093   default:
1094     ShouldNotReachHere();
1095     return NULL;
1096   }
1097 
1098   // All these intrinsics have checks.
1099   C->set_has_split_ifs(true); // Has chance for split-if optimization
1100   clear_upper_avx();
1101 
1102   return _gvn.transform(result);
1103 }
1104 
1105 //------------------------------inline_string_compareTo------------------------
1106 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1107   Node* arg1 = argument(0);
1108   Node* arg2 = argument(1);
1109 
1110   arg1 = must_be_not_null(arg1, true);
1111   arg2 = must_be_not_null(arg2, true);
1112 
1113   arg1 = access_resolve(arg1, ACCESS_READ);
1114   arg2 = access_resolve(arg2, ACCESS_READ);
1115 
1116   // Get start addr and length of first argument
1117   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1118   Node* arg1_cnt    = load_array_length(arg1);
1119 
1120   // Get start addr and length of second argument
1121   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1122   Node* arg2_cnt    = load_array_length(arg2);
1123 
1124   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1125   set_result(result);
1126   return true;
1127 }
1128 
1129 //------------------------------inline_string_equals------------------------
1130 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1131   Node* arg1 = argument(0);
1132   Node* arg2 = argument(1);
1133 
1134   // paths (plus control) merge
1135   RegionNode* region = new RegionNode(3);
1136   Node* phi = new PhiNode(region, TypeInt::BOOL);
1137 
1138   if (!stopped()) {
1139 
1140     arg1 = must_be_not_null(arg1, true);
1141     arg2 = must_be_not_null(arg2, true);
1142 
1143     arg1 = access_resolve(arg1, ACCESS_READ);
1144     arg2 = access_resolve(arg2, ACCESS_READ);
1145 
1146     // Get start addr and length of first argument
1147     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1148     Node* arg1_cnt    = load_array_length(arg1);
1149 
1150     // Get start addr and length of second argument
1151     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1152     Node* arg2_cnt    = load_array_length(arg2);
1153 
1154     // Check for arg1_cnt != arg2_cnt
1155     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1156     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1157     Node* if_ne = generate_slow_guard(bol, NULL);
1158     if (if_ne != NULL) {
1159       phi->init_req(2, intcon(0));
1160       region->init_req(2, if_ne);
1161     }
1162 
1163     // Check for count == 0 is done by assembler code for StrEquals.
1164 
1165     if (!stopped()) {
1166       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1167       phi->init_req(1, equals);
1168       region->init_req(1, control());
1169     }
1170   }
1171 
1172   // post merge
1173   set_control(_gvn.transform(region));
1174   record_for_igvn(region);
1175 
1176   set_result(_gvn.transform(phi));
1177   return true;
1178 }
1179 
1180 //------------------------------inline_array_equals----------------------------
1181 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1182   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1183   Node* arg1 = argument(0);
1184   Node* arg2 = argument(1);
1185 
1186   arg1 = access_resolve(arg1, ACCESS_READ);
1187   arg2 = access_resolve(arg2, ACCESS_READ);
1188 
1189   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1190   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1191   clear_upper_avx();
1192 
1193   return true;
1194 }
1195 
1196 //------------------------------inline_hasNegatives------------------------------
1197 bool LibraryCallKit::inline_hasNegatives() {
1198   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1199     return false;
1200   }
1201 
1202   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1203   // no receiver since it is static method
1204   Node* ba         = argument(0);
1205   Node* offset     = argument(1);
1206   Node* len        = argument(2);
1207 
1208   ba = must_be_not_null(ba, true);
1209 
1210   // Range checks
1211   generate_string_range_check(ba, offset, len, false);
1212   if (stopped()) {
1213     return true;
1214   }
1215   ba = access_resolve(ba, ACCESS_READ);
1216   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1217   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1218   set_result(_gvn.transform(result));
1219   return true;
1220 }
1221 
1222 bool LibraryCallKit::inline_preconditions_checkIndex() {
1223   Node* index = argument(0);
1224   Node* length = argument(1);
1225   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1226     return false;
1227   }
1228 
1229   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1230   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1231 
1232   {
1233     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1234     uncommon_trap(Deoptimization::Reason_intrinsic,
1235                   Deoptimization::Action_make_not_entrant);
1236   }
1237 
1238   if (stopped()) {
1239     return false;
1240   }
1241 
1242   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1243   BoolTest::mask btest = BoolTest::lt;
1244   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1245   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1246   _gvn.set_type(rc, rc->Value(&_gvn));
1247   if (!rc_bool->is_Con()) {
1248     record_for_igvn(rc);
1249   }
1250   set_control(_gvn.transform(new IfTrueNode(rc)));
1251   {
1252     PreserveJVMState pjvms(this);
1253     set_control(_gvn.transform(new IfFalseNode(rc)));
1254     uncommon_trap(Deoptimization::Reason_range_check,
1255                   Deoptimization::Action_make_not_entrant);
1256   }
1257 
1258   if (stopped()) {
1259     return false;
1260   }
1261 
1262   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1263   result->set_req(0, control());
1264   result = _gvn.transform(result);
1265   set_result(result);
1266   replace_in_map(index, result);
1267   clear_upper_avx();
1268   return true;
1269 }
1270 
1271 //------------------------------inline_string_indexOf------------------------
1272 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1273   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1274     return false;
1275   }
1276   Node* src = argument(0);
1277   Node* tgt = argument(1);
1278 
1279   // Make the merge point
1280   RegionNode* result_rgn = new RegionNode(4);
1281   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1282 
1283   src = must_be_not_null(src, true);
1284   tgt = must_be_not_null(tgt, true);
1285 
1286   src = access_resolve(src, ACCESS_READ);
1287   tgt = access_resolve(tgt, ACCESS_READ);
1288 
1289   // Get start addr and length of source string
1290   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1291   Node* src_count = load_array_length(src);
1292 
1293   // Get start addr and length of substring
1294   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1295   Node* tgt_count = load_array_length(tgt);
1296 
1297   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1298     // Divide src size by 2 if String is UTF16 encoded
1299     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1300   }
1301   if (ae == StrIntrinsicNode::UU) {
1302     // Divide substring size by 2 if String is UTF16 encoded
1303     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1304   }
1305 
1306   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1307   if (result != NULL) {
1308     result_phi->init_req(3, result);
1309     result_rgn->init_req(3, control());
1310   }
1311   set_control(_gvn.transform(result_rgn));
1312   record_for_igvn(result_rgn);
1313   set_result(_gvn.transform(result_phi));
1314 
1315   return true;
1316 }
1317 
1318 //-----------------------------inline_string_indexOf-----------------------
1319 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1320   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1321     return false;
1322   }
1323   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1324     return false;
1325   }
1326   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1327   Node* src         = argument(0); // byte[]
1328   Node* src_count   = argument(1); // char count
1329   Node* tgt         = argument(2); // byte[]
1330   Node* tgt_count   = argument(3); // char count
1331   Node* from_index  = argument(4); // char index
1332 
1333   src = must_be_not_null(src, true);
1334   tgt = must_be_not_null(tgt, true);
1335 
1336   src = access_resolve(src, ACCESS_READ);
1337   tgt = access_resolve(tgt, ACCESS_READ);
1338 
1339   // Multiply byte array index by 2 if String is UTF16 encoded
1340   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1341   src_count = _gvn.transform(new SubINode(src_count, from_index));
1342   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1343   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1344 
1345   // Range checks
1346   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1347   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1348   if (stopped()) {
1349     return true;
1350   }
1351 
1352   RegionNode* region = new RegionNode(5);
1353   Node* phi = new PhiNode(region, TypeInt::INT);
1354 
1355   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1356   if (result != NULL) {
1357     // The result is index relative to from_index if substring was found, -1 otherwise.
1358     // Generate code which will fold into cmove.
1359     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1360     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1361 
1362     Node* if_lt = generate_slow_guard(bol, NULL);
1363     if (if_lt != NULL) {
1364       // result == -1
1365       phi->init_req(3, result);
1366       region->init_req(3, if_lt);
1367     }
1368     if (!stopped()) {
1369       result = _gvn.transform(new AddINode(result, from_index));
1370       phi->init_req(4, result);
1371       region->init_req(4, control());
1372     }
1373   }
1374 
1375   set_control(_gvn.transform(region));
1376   record_for_igvn(region);
1377   set_result(_gvn.transform(phi));
1378   clear_upper_avx();
1379 
1380   return true;
1381 }
1382 
1383 // Create StrIndexOfNode with fast path checks
1384 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1385                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1386   // Check for substr count > string count
1387   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1388   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1389   Node* if_gt = generate_slow_guard(bol, NULL);
1390   if (if_gt != NULL) {
1391     phi->init_req(1, intcon(-1));
1392     region->init_req(1, if_gt);
1393   }
1394   if (!stopped()) {
1395     // Check for substr count == 0
1396     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1397     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1398     Node* if_zero = generate_slow_guard(bol, NULL);
1399     if (if_zero != NULL) {
1400       phi->init_req(2, intcon(0));
1401       region->init_req(2, if_zero);
1402     }
1403   }
1404   if (!stopped()) {
1405     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1406   }
1407   return NULL;
1408 }
1409 
1410 //-----------------------------inline_string_indexOfChar-----------------------
1411 bool LibraryCallKit::inline_string_indexOfChar() {
1412   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1413     return false;
1414   }
1415   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1416     return false;
1417   }
1418   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1419   Node* src         = argument(0); // byte[]
1420   Node* tgt         = argument(1); // tgt is int ch
1421   Node* from_index  = argument(2);
1422   Node* max         = argument(3);
1423 
1424   src = must_be_not_null(src, true);
1425   src = access_resolve(src, ACCESS_READ);
1426 
1427   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1428   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1429   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1430 
1431   // Range checks
1432   generate_string_range_check(src, src_offset, src_count, true);
1433   if (stopped()) {
1434     return true;
1435   }
1436 
1437   RegionNode* region = new RegionNode(3);
1438   Node* phi = new PhiNode(region, TypeInt::INT);
1439 
1440   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1441   C->set_has_split_ifs(true); // Has chance for split-if optimization
1442   _gvn.transform(result);
1443 
1444   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1445   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1446 
1447   Node* if_lt = generate_slow_guard(bol, NULL);
1448   if (if_lt != NULL) {
1449     // result == -1
1450     phi->init_req(2, result);
1451     region->init_req(2, if_lt);
1452   }
1453   if (!stopped()) {
1454     result = _gvn.transform(new AddINode(result, from_index));
1455     phi->init_req(1, result);
1456     region->init_req(1, control());
1457   }
1458   set_control(_gvn.transform(region));
1459   record_for_igvn(region);
1460   set_result(_gvn.transform(phi));
1461 
1462   return true;
1463 }
1464 //---------------------------inline_string_copy---------------------
1465 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1466 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1467 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1468 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1469 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1470 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1471 bool LibraryCallKit::inline_string_copy(bool compress) {
1472   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1473     return false;
1474   }
1475   int nargs = 5;  // 2 oops, 3 ints
1476   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1477 
1478   Node* src         = argument(0);
1479   Node* src_offset  = argument(1);
1480   Node* dst         = argument(2);
1481   Node* dst_offset  = argument(3);
1482   Node* length      = argument(4);
1483 
1484   // Check for allocation before we add nodes that would confuse
1485   // tightly_coupled_allocation()
1486   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1487 
1488   // Figure out the size and type of the elements we will be copying.
1489   const Type* src_type = src->Value(&_gvn);
1490   const Type* dst_type = dst->Value(&_gvn);
1491   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1492   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1493   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1494          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1495          "Unsupported array types for inline_string_copy");
1496 
1497   src = must_be_not_null(src, true);
1498   dst = must_be_not_null(dst, true);
1499 
1500   // Convert char[] offsets to byte[] offsets
1501   bool convert_src = (compress && src_elem == T_BYTE);
1502   bool convert_dst = (!compress && dst_elem == T_BYTE);
1503   if (convert_src) {
1504     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1505   } else if (convert_dst) {
1506     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1507   }
1508 
1509   // Range checks
1510   generate_string_range_check(src, src_offset, length, convert_src);
1511   generate_string_range_check(dst, dst_offset, length, convert_dst);
1512   if (stopped()) {
1513     return true;
1514   }
1515 
1516   src = access_resolve(src, ACCESS_READ);
1517   dst = access_resolve(dst, ACCESS_WRITE);
1518 
1519   Node* src_start = array_element_address(src, src_offset, src_elem);
1520   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1521   // 'src_start' points to src array + scaled offset
1522   // 'dst_start' points to dst array + scaled offset
1523   Node* count = NULL;
1524   if (compress) {
1525     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1526   } else {
1527     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1528   }
1529 
1530   if (alloc != NULL) {
1531     if (alloc->maybe_set_complete(&_gvn)) {
1532       // "You break it, you buy it."
1533       InitializeNode* init = alloc->initialization();
1534       assert(init->is_complete(), "we just did this");
1535       init->set_complete_with_arraycopy();
1536       assert(dst->is_CheckCastPP(), "sanity");
1537       assert(dst->in(0)->in(0) == init, "dest pinned");
1538     }
1539     // Do not let stores that initialize this object be reordered with
1540     // a subsequent store that would make this object accessible by
1541     // other threads.
1542     // Record what AllocateNode this StoreStore protects so that
1543     // escape analysis can go from the MemBarStoreStoreNode to the
1544     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1545     // based on the escape status of the AllocateNode.
1546     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1547   }
1548   if (compress) {
1549     set_result(_gvn.transform(count));
1550   }
1551   clear_upper_avx();
1552 
1553   return true;
1554 }
1555 
1556 #ifdef _LP64
1557 #define XTOP ,top() /*additional argument*/
1558 #else  //_LP64
1559 #define XTOP        /*no additional argument*/
1560 #endif //_LP64
1561 
1562 //------------------------inline_string_toBytesU--------------------------
1563 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1564 bool LibraryCallKit::inline_string_toBytesU() {
1565   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1566     return false;
1567   }
1568   // Get the arguments.
1569   Node* value     = argument(0);
1570   Node* offset    = argument(1);
1571   Node* length    = argument(2);
1572 
1573   Node* newcopy = NULL;
1574 
1575   // Set the original stack and the reexecute bit for the interpreter to reexecute
1576   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1577   { PreserveReexecuteState preexecs(this);
1578     jvms()->set_should_reexecute(true);
1579 
1580     // Check if a null path was taken unconditionally.
1581     value = null_check(value);
1582 
1583     RegionNode* bailout = new RegionNode(1);
1584     record_for_igvn(bailout);
1585 
1586     // Range checks
1587     generate_negative_guard(offset, bailout);
1588     generate_negative_guard(length, bailout);
1589     generate_limit_guard(offset, length, load_array_length(value), bailout);
1590     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1591     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1592 
1593     if (bailout->req() > 1) {
1594       PreserveJVMState pjvms(this);
1595       set_control(_gvn.transform(bailout));
1596       uncommon_trap(Deoptimization::Reason_intrinsic,
1597                     Deoptimization::Action_maybe_recompile);
1598     }
1599     if (stopped()) {
1600       return true;
1601     }
1602 
1603     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1604     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1605     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1606     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1607 
1608     // Calculate starting addresses.
1609     value = access_resolve(value, ACCESS_READ);
1610     Node* src_start = array_element_address(value, offset, T_CHAR);
1611     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1612 
1613     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1614     const TypeInt* toffset = gvn().type(offset)->is_int();
1615     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1616 
1617     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1618     const char* copyfunc_name = "arraycopy";
1619     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1620     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1621                       OptoRuntime::fast_arraycopy_Type(),
1622                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1623                       src_start, dst_start, ConvI2X(length) XTOP);
1624     // Do not let reads from the cloned object float above the arraycopy.
1625     if (alloc != NULL) {
1626       if (alloc->maybe_set_complete(&_gvn)) {
1627         // "You break it, you buy it."
1628         InitializeNode* init = alloc->initialization();
1629         assert(init->is_complete(), "we just did this");
1630         init->set_complete_with_arraycopy();
1631         assert(newcopy->is_CheckCastPP(), "sanity");
1632         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1633       }
1634       // Do not let stores that initialize this object be reordered with
1635       // a subsequent store that would make this object accessible by
1636       // other threads.
1637       // Record what AllocateNode this StoreStore protects so that
1638       // escape analysis can go from the MemBarStoreStoreNode to the
1639       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1640       // based on the escape status of the AllocateNode.
1641       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1642     } else {
1643       insert_mem_bar(Op_MemBarCPUOrder);
1644     }
1645   } // original reexecute is set back here
1646 
1647   C->set_has_split_ifs(true); // Has chance for split-if optimization
1648   if (!stopped()) {
1649     set_result(newcopy);
1650   }
1651   clear_upper_avx();
1652 
1653   return true;
1654 }
1655 
1656 //------------------------inline_string_getCharsU--------------------------
1657 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1658 bool LibraryCallKit::inline_string_getCharsU() {
1659   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1660     return false;
1661   }
1662 
1663   // Get the arguments.
1664   Node* src       = argument(0);
1665   Node* src_begin = argument(1);
1666   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1667   Node* dst       = argument(3);
1668   Node* dst_begin = argument(4);
1669 
1670   // Check for allocation before we add nodes that would confuse
1671   // tightly_coupled_allocation()
1672   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1673 
1674   // Check if a null path was taken unconditionally.
1675   src = null_check(src);
1676   dst = null_check(dst);
1677   if (stopped()) {
1678     return true;
1679   }
1680 
1681   // Get length and convert char[] offset to byte[] offset
1682   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1683   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1684 
1685   // Range checks
1686   generate_string_range_check(src, src_begin, length, true);
1687   generate_string_range_check(dst, dst_begin, length, false);
1688   if (stopped()) {
1689     return true;
1690   }
1691 
1692   if (!stopped()) {
1693     src = access_resolve(src, ACCESS_READ);
1694     dst = access_resolve(dst, ACCESS_READ);
1695 
1696     // Calculate starting addresses.
1697     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1698     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1699 
1700     // Check if array addresses are aligned to HeapWordSize
1701     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1702     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1703     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1704                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1705 
1706     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1707     const char* copyfunc_name = "arraycopy";
1708     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1709     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1710                       OptoRuntime::fast_arraycopy_Type(),
1711                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1712                       src_start, dst_start, ConvI2X(length) XTOP);
1713     // Do not let reads from the cloned object float above the arraycopy.
1714     if (alloc != NULL) {
1715       if (alloc->maybe_set_complete(&_gvn)) {
1716         // "You break it, you buy it."
1717         InitializeNode* init = alloc->initialization();
1718         assert(init->is_complete(), "we just did this");
1719         init->set_complete_with_arraycopy();
1720         assert(dst->is_CheckCastPP(), "sanity");
1721         assert(dst->in(0)->in(0) == init, "dest pinned");
1722       }
1723       // Do not let stores that initialize this object be reordered with
1724       // a subsequent store that would make this object accessible by
1725       // other threads.
1726       // Record what AllocateNode this StoreStore protects so that
1727       // escape analysis can go from the MemBarStoreStoreNode to the
1728       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1729       // based on the escape status of the AllocateNode.
1730       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1731     } else {
1732       insert_mem_bar(Op_MemBarCPUOrder);
1733     }
1734   }
1735 
1736   C->set_has_split_ifs(true); // Has chance for split-if optimization
1737   return true;
1738 }
1739 
1740 //----------------------inline_string_char_access----------------------------
1741 // Store/Load char to/from byte[] array.
1742 // static void StringUTF16.putChar(byte[] val, int index, int c)
1743 // static char StringUTF16.getChar(byte[] val, int index)
1744 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1745   Node* value  = argument(0);
1746   Node* index  = argument(1);
1747   Node* ch = is_store ? argument(2) : NULL;
1748 
1749   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1750   // correctly requires matched array shapes.
1751   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1752           "sanity: byte[] and char[] bases agree");
1753   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1754           "sanity: byte[] and char[] scales agree");
1755 
1756   // Bail when getChar over constants is requested: constant folding would
1757   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1758   // Java method would constant fold nicely instead.
1759   if (!is_store && value->is_Con() && index->is_Con()) {
1760     return false;
1761   }
1762 
1763   value = must_be_not_null(value, true);
1764   value = access_resolve(value, is_store ? ACCESS_WRITE : ACCESS_READ);
1765 
1766   Node* adr = array_element_address(value, index, T_CHAR);
1767   if (adr->is_top()) {
1768     return false;
1769   }
1770   if (is_store) {
1771     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1772                            false, false, true /* mismatched */);
1773   } else {
1774     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1775                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1776     set_result(ch);
1777   }
1778   return true;
1779 }
1780 
1781 //--------------------------round_double_node--------------------------------
1782 // Round a double node if necessary.
1783 Node* LibraryCallKit::round_double_node(Node* n) {
1784   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1785     n = _gvn.transform(new RoundDoubleNode(0, n));
1786   return n;
1787 }
1788 
1789 //------------------------------inline_math-----------------------------------
1790 // public static double Math.abs(double)
1791 // public static double Math.sqrt(double)
1792 // public static double Math.log(double)
1793 // public static double Math.log10(double)
1794 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1795   Node* arg = round_double_node(argument(0));
1796   Node* n = NULL;
1797   switch (id) {
1798   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1799   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1800   default:  fatal_unexpected_iid(id);  break;
1801   }
1802   set_result(_gvn.transform(n));
1803   return true;
1804 }
1805 
1806 //------------------------------runtime_math-----------------------------
1807 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1808   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1809          "must be (DD)D or (D)D type");
1810 
1811   // Inputs
1812   Node* a = round_double_node(argument(0));
1813   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1814 
1815   const TypePtr* no_memory_effects = NULL;
1816   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1817                                  no_memory_effects,
1818                                  a, top(), b, b ? top() : NULL);
1819   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1820 #ifdef ASSERT
1821   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1822   assert(value_top == top(), "second value must be top");
1823 #endif
1824 
1825   set_result(value);
1826   return true;
1827 }
1828 
1829 //------------------------------inline_math_native-----------------------------
1830 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1831 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1832   switch (id) {
1833     // These intrinsics are not properly supported on all hardware
1834   case vmIntrinsics::_dsin:
1835     return StubRoutines::dsin() != NULL ?
1836       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1837       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1838   case vmIntrinsics::_dcos:
1839     return StubRoutines::dcos() != NULL ?
1840       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1841       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1842   case vmIntrinsics::_dtan:
1843     return StubRoutines::dtan() != NULL ?
1844       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1845       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1846   case vmIntrinsics::_dlog:
1847     return StubRoutines::dlog() != NULL ?
1848       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1849       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1850   case vmIntrinsics::_dlog10:
1851     return StubRoutines::dlog10() != NULL ?
1852       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1853       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1854 
1855     // These intrinsics are supported on all hardware
1856   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1857   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1858 
1859   case vmIntrinsics::_dexp:
1860     return StubRoutines::dexp() != NULL ?
1861       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1862       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1863   case vmIntrinsics::_dpow: {
1864     Node* exp = round_double_node(argument(2));
1865     const TypeD* d = _gvn.type(exp)->isa_double_constant();
1866     if (d != NULL && d->getd() == 2.0) {
1867       // Special case: pow(x, 2.0) => x * x
1868       Node* base = round_double_node(argument(0));
1869       set_result(_gvn.transform(new MulDNode(base, base)));
1870       return true;
1871     }
1872     return StubRoutines::dpow() != NULL ?
1873       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1874       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1875   }
1876 #undef FN_PTR
1877 
1878    // These intrinsics are not yet correctly implemented
1879   case vmIntrinsics::_datan2:
1880     return false;
1881 
1882   default:
1883     fatal_unexpected_iid(id);
1884     return false;
1885   }
1886 }
1887 
1888 static bool is_simple_name(Node* n) {
1889   return (n->req() == 1         // constant
1890           || (n->is_Type() && n->as_Type()->type()->singleton())
1891           || n->is_Proj()       // parameter or return value
1892           || n->is_Phi()        // local of some sort
1893           );
1894 }
1895 
1896 //----------------------------inline_notify-----------------------------------*
1897 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1898   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1899   address func;
1900   if (id == vmIntrinsics::_notify) {
1901     func = OptoRuntime::monitor_notify_Java();
1902   } else {
1903     func = OptoRuntime::monitor_notifyAll_Java();
1904   }
1905   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1906   make_slow_call_ex(call, env()->Throwable_klass(), false);
1907   return true;
1908 }
1909 
1910 
1911 //----------------------------inline_min_max-----------------------------------
1912 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1913   set_result(generate_min_max(id, argument(0), argument(1)));
1914   return true;
1915 }
1916 
1917 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1918   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1919   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1920   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1921   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1922 
1923   {
1924     PreserveJVMState pjvms(this);
1925     PreserveReexecuteState preexecs(this);
1926     jvms()->set_should_reexecute(true);
1927 
1928     set_control(slow_path);
1929     set_i_o(i_o());
1930 
1931     uncommon_trap(Deoptimization::Reason_intrinsic,
1932                   Deoptimization::Action_none);
1933   }
1934 
1935   set_control(fast_path);
1936   set_result(math);
1937 }
1938 
1939 template <typename OverflowOp>
1940 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1941   typedef typename OverflowOp::MathOp MathOp;
1942 
1943   MathOp* mathOp = new MathOp(arg1, arg2);
1944   Node* operation = _gvn.transform( mathOp );
1945   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1946   inline_math_mathExact(operation, ofcheck);
1947   return true;
1948 }
1949 
1950 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1951   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1952 }
1953 
1954 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1955   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1956 }
1957 
1958 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1959   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1960 }
1961 
1962 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1963   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1964 }
1965 
1966 bool LibraryCallKit::inline_math_negateExactI() {
1967   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1968 }
1969 
1970 bool LibraryCallKit::inline_math_negateExactL() {
1971   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1972 }
1973 
1974 bool LibraryCallKit::inline_math_multiplyExactI() {
1975   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1976 }
1977 
1978 bool LibraryCallKit::inline_math_multiplyExactL() {
1979   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1980 }
1981 
1982 bool LibraryCallKit::inline_math_multiplyHigh() {
1983   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
1984   return true;
1985 }
1986 
1987 Node*
1988 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1989   // These are the candidate return value:
1990   Node* xvalue = x0;
1991   Node* yvalue = y0;
1992 
1993   if (xvalue == yvalue) {
1994     return xvalue;
1995   }
1996 
1997   bool want_max = (id == vmIntrinsics::_max);
1998 
1999   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2000   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2001   if (txvalue == NULL || tyvalue == NULL)  return top();
2002   // This is not really necessary, but it is consistent with a
2003   // hypothetical MaxINode::Value method:
2004   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2005 
2006   // %%% This folding logic should (ideally) be in a different place.
2007   // Some should be inside IfNode, and there to be a more reliable
2008   // transformation of ?: style patterns into cmoves.  We also want
2009   // more powerful optimizations around cmove and min/max.
2010 
2011   // Try to find a dominating comparison of these guys.
2012   // It can simplify the index computation for Arrays.copyOf
2013   // and similar uses of System.arraycopy.
2014   // First, compute the normalized version of CmpI(x, y).
2015   int   cmp_op = Op_CmpI;
2016   Node* xkey = xvalue;
2017   Node* ykey = yvalue;
2018   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2019   if (ideal_cmpxy->is_Cmp()) {
2020     // E.g., if we have CmpI(length - offset, count),
2021     // it might idealize to CmpI(length, count + offset)
2022     cmp_op = ideal_cmpxy->Opcode();
2023     xkey = ideal_cmpxy->in(1);
2024     ykey = ideal_cmpxy->in(2);
2025   }
2026 
2027   // Start by locating any relevant comparisons.
2028   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2029   Node* cmpxy = NULL;
2030   Node* cmpyx = NULL;
2031   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2032     Node* cmp = start_from->fast_out(k);
2033     if (cmp->outcnt() > 0 &&            // must have prior uses
2034         cmp->in(0) == NULL &&           // must be context-independent
2035         cmp->Opcode() == cmp_op) {      // right kind of compare
2036       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2037       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2038     }
2039   }
2040 
2041   const int NCMPS = 2;
2042   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2043   int cmpn;
2044   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2045     if (cmps[cmpn] != NULL)  break;     // find a result
2046   }
2047   if (cmpn < NCMPS) {
2048     // Look for a dominating test that tells us the min and max.
2049     int depth = 0;                // Limit search depth for speed
2050     Node* dom = control();
2051     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2052       if (++depth >= 100)  break;
2053       Node* ifproj = dom;
2054       if (!ifproj->is_Proj())  continue;
2055       Node* iff = ifproj->in(0);
2056       if (!iff->is_If())  continue;
2057       Node* bol = iff->in(1);
2058       if (!bol->is_Bool())  continue;
2059       Node* cmp = bol->in(1);
2060       if (cmp == NULL)  continue;
2061       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2062         if (cmps[cmpn] == cmp)  break;
2063       if (cmpn == NCMPS)  continue;
2064       BoolTest::mask btest = bol->as_Bool()->_test._test;
2065       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2066       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2067       // At this point, we know that 'x btest y' is true.
2068       switch (btest) {
2069       case BoolTest::eq:
2070         // They are proven equal, so we can collapse the min/max.
2071         // Either value is the answer.  Choose the simpler.
2072         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2073           return yvalue;
2074         return xvalue;
2075       case BoolTest::lt:          // x < y
2076       case BoolTest::le:          // x <= y
2077         return (want_max ? yvalue : xvalue);
2078       case BoolTest::gt:          // x > y
2079       case BoolTest::ge:          // x >= y
2080         return (want_max ? xvalue : yvalue);
2081       default:
2082         break;
2083       }
2084     }
2085   }
2086 
2087   // We failed to find a dominating test.
2088   // Let's pick a test that might GVN with prior tests.
2089   Node*          best_bol   = NULL;
2090   BoolTest::mask best_btest = BoolTest::illegal;
2091   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2092     Node* cmp = cmps[cmpn];
2093     if (cmp == NULL)  continue;
2094     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2095       Node* bol = cmp->fast_out(j);
2096       if (!bol->is_Bool())  continue;
2097       BoolTest::mask btest = bol->as_Bool()->_test._test;
2098       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2099       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2100       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2101         best_bol   = bol->as_Bool();
2102         best_btest = btest;
2103       }
2104     }
2105   }
2106 
2107   Node* answer_if_true  = NULL;
2108   Node* answer_if_false = NULL;
2109   switch (best_btest) {
2110   default:
2111     if (cmpxy == NULL)
2112       cmpxy = ideal_cmpxy;
2113     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2114     // and fall through:
2115   case BoolTest::lt:          // x < y
2116   case BoolTest::le:          // x <= y
2117     answer_if_true  = (want_max ? yvalue : xvalue);
2118     answer_if_false = (want_max ? xvalue : yvalue);
2119     break;
2120   case BoolTest::gt:          // x > y
2121   case BoolTest::ge:          // x >= y
2122     answer_if_true  = (want_max ? xvalue : yvalue);
2123     answer_if_false = (want_max ? yvalue : xvalue);
2124     break;
2125   }
2126 
2127   jint hi, lo;
2128   if (want_max) {
2129     // We can sharpen the minimum.
2130     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2131     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2132   } else {
2133     // We can sharpen the maximum.
2134     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2135     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2136   }
2137 
2138   // Use a flow-free graph structure, to avoid creating excess control edges
2139   // which could hinder other optimizations.
2140   // Since Math.min/max is often used with arraycopy, we want
2141   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2142   Node* cmov = CMoveNode::make(NULL, best_bol,
2143                                answer_if_false, answer_if_true,
2144                                TypeInt::make(lo, hi, widen));
2145 
2146   return _gvn.transform(cmov);
2147 
2148   /*
2149   // This is not as desirable as it may seem, since Min and Max
2150   // nodes do not have a full set of optimizations.
2151   // And they would interfere, anyway, with 'if' optimizations
2152   // and with CMoveI canonical forms.
2153   switch (id) {
2154   case vmIntrinsics::_min:
2155     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2156   case vmIntrinsics::_max:
2157     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2158   default:
2159     ShouldNotReachHere();
2160   }
2161   */
2162 }
2163 
2164 inline int
2165 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2166   const TypePtr* base_type = TypePtr::NULL_PTR;
2167   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2168   if (base_type == NULL) {
2169     // Unknown type.
2170     return Type::AnyPtr;
2171   } else if (base_type == TypePtr::NULL_PTR) {
2172     // Since this is a NULL+long form, we have to switch to a rawptr.
2173     base   = _gvn.transform(new CastX2PNode(offset));
2174     offset = MakeConX(0);
2175     return Type::RawPtr;
2176   } else if (base_type->base() == Type::RawPtr) {
2177     return Type::RawPtr;
2178   } else if (base_type->isa_oopptr()) {
2179     // Base is never null => always a heap address.
2180     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2181       return Type::OopPtr;
2182     }
2183     // Offset is small => always a heap address.
2184     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2185     if (offset_type != NULL &&
2186         base_type->offset() == 0 &&     // (should always be?)
2187         offset_type->_lo >= 0 &&
2188         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2189       return Type::OopPtr;
2190     } else if (type == T_OBJECT) {
2191       // off heap access to an oop doesn't make any sense. Has to be on
2192       // heap.
2193       return Type::OopPtr;
2194     }
2195     // Otherwise, it might either be oop+off or NULL+addr.
2196     return Type::AnyPtr;
2197   } else {
2198     // No information:
2199     return Type::AnyPtr;
2200   }
2201 }
2202 
2203 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2204   Node* uncasted_base = base;
2205   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2206   if (kind == Type::RawPtr) {
2207     return basic_plus_adr(top(), uncasted_base, offset);
2208   } else if (kind == Type::AnyPtr) {
2209     assert(base == uncasted_base, "unexpected base change");
2210     if (can_cast) {
2211       if (!_gvn.type(base)->speculative_maybe_null() &&
2212           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2213         // According to profiling, this access is always on
2214         // heap. Casting the base to not null and thus avoiding membars
2215         // around the access should allow better optimizations
2216         Node* null_ctl = top();
2217         base = null_check_oop(base, &null_ctl, true, true, true);
2218         assert(null_ctl->is_top(), "no null control here");
2219         return basic_plus_adr(base, offset);
2220       } else if (_gvn.type(base)->speculative_always_null() &&
2221                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2222         // According to profiling, this access is always off
2223         // heap.
2224         base = null_assert(base);
2225         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2226         offset = MakeConX(0);
2227         return basic_plus_adr(top(), raw_base, offset);
2228       }
2229     }
2230     // We don't know if it's an on heap or off heap access. Fall back
2231     // to raw memory access.
2232     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2233     return basic_plus_adr(top(), raw, offset);
2234   } else {
2235     assert(base == uncasted_base, "unexpected base change");
2236     // We know it's an on heap access so base can't be null
2237     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2238       base = must_be_not_null(base, true);
2239     }
2240     return basic_plus_adr(base, offset);
2241   }
2242 }
2243 
2244 //--------------------------inline_number_methods-----------------------------
2245 // inline int     Integer.numberOfLeadingZeros(int)
2246 // inline int        Long.numberOfLeadingZeros(long)
2247 //
2248 // inline int     Integer.numberOfTrailingZeros(int)
2249 // inline int        Long.numberOfTrailingZeros(long)
2250 //
2251 // inline int     Integer.bitCount(int)
2252 // inline int        Long.bitCount(long)
2253 //
2254 // inline char  Character.reverseBytes(char)
2255 // inline short     Short.reverseBytes(short)
2256 // inline int     Integer.reverseBytes(int)
2257 // inline long       Long.reverseBytes(long)
2258 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2259   Node* arg = argument(0);
2260   Node* n = NULL;
2261   switch (id) {
2262   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2263   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2264   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2265   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2266   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2267   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2268   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2269   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2270   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2271   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2272   default:  fatal_unexpected_iid(id);  break;
2273   }
2274   set_result(_gvn.transform(n));
2275   return true;
2276 }
2277 
2278 //----------------------------inline_unsafe_access----------------------------
2279 
2280 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2281   // Attempt to infer a sharper value type from the offset and base type.
2282   ciKlass* sharpened_klass = NULL;
2283 
2284   // See if it is an instance field, with an object type.
2285   if (alias_type->field() != NULL) {
2286     if (alias_type->field()->type()->is_klass()) {
2287       sharpened_klass = alias_type->field()->type()->as_klass();
2288     }
2289   }
2290 
2291   // See if it is a narrow oop array.
2292   if (adr_type->isa_aryptr()) {
2293     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2294       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2295       if (elem_type != NULL) {
2296         sharpened_klass = elem_type->klass();
2297       }
2298     }
2299   }
2300 
2301   // The sharpened class might be unloaded if there is no class loader
2302   // contraint in place.
2303   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2304     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2305 
2306 #ifndef PRODUCT
2307     if (C->print_intrinsics() || C->print_inlining()) {
2308       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2309       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2310     }
2311 #endif
2312     // Sharpen the value type.
2313     return tjp;
2314   }
2315   return NULL;
2316 }
2317 
2318 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2319   switch (kind) {
2320       case Relaxed:
2321         return MO_UNORDERED;
2322       case Opaque:
2323         return MO_RELAXED;
2324       case Acquire:
2325         return MO_ACQUIRE;
2326       case Release:
2327         return MO_RELEASE;
2328       case Volatile:
2329         return MO_SEQ_CST;
2330       default:
2331         ShouldNotReachHere();
2332         return 0;
2333   }
2334 }
2335 
2336 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2337   if (callee()->is_static())  return false;  // caller must have the capability!
2338   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2339   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2340   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2341   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2342 
2343   if (type == T_OBJECT || type == T_ARRAY) {
2344     decorators |= ON_UNKNOWN_OOP_REF;
2345   }
2346 
2347   if (unaligned) {
2348     decorators |= C2_UNALIGNED;
2349   }
2350 
2351 #ifndef PRODUCT
2352   {
2353     ResourceMark rm;
2354     // Check the signatures.
2355     ciSignature* sig = callee()->signature();
2356 #ifdef ASSERT
2357     if (!is_store) {
2358       // Object getObject(Object base, int/long offset), etc.
2359       BasicType rtype = sig->return_type()->basic_type();
2360       assert(rtype == type, "getter must return the expected value");
2361       assert(sig->count() == 2, "oop getter has 2 arguments");
2362       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2363       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2364     } else {
2365       // void putObject(Object base, int/long offset, Object x), etc.
2366       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2367       assert(sig->count() == 3, "oop putter has 3 arguments");
2368       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2369       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2370       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2371       assert(vtype == type, "putter must accept the expected value");
2372     }
2373 #endif // ASSERT
2374  }
2375 #endif //PRODUCT
2376 
2377   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2378 
2379   Node* receiver = argument(0);  // type: oop
2380 
2381   // Build address expression.
2382   Node* adr;
2383   Node* heap_base_oop = top();
2384   Node* offset = top();
2385   Node* val;
2386 
2387   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2388   Node* base = argument(1);  // type: oop
2389   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2390   offset = argument(2);  // type: long
2391   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2392   // to be plain byte offsets, which are also the same as those accepted
2393   // by oopDesc::field_addr.
2394   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2395          "fieldOffset must be byte-scaled");
2396   // 32-bit machines ignore the high half!
2397   offset = ConvL2X(offset);
2398   adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2399 
2400   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2401     heap_base_oop = base;
2402   } else if (type == T_OBJECT) {
2403     return false; // off-heap oop accesses are not supported
2404   }
2405 
2406   // Can base be NULL? Otherwise, always on-heap access.
2407   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2408 
2409   if (!can_access_non_heap) {
2410     decorators |= IN_HEAP;
2411   }
2412 
2413   val = is_store ? argument(4) : NULL;
2414 
2415   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2416 
2417   // Try to categorize the address.
2418   Compile::AliasType* alias_type = C->alias_type(adr_type);
2419   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2420 
2421   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2422       alias_type->adr_type() == TypeAryPtr::RANGE) {
2423     return false; // not supported
2424   }
2425 
2426   bool mismatched = false;
2427   BasicType bt = alias_type->basic_type();
2428   if (bt != T_ILLEGAL) {
2429     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2430     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2431       // Alias type doesn't differentiate between byte[] and boolean[]).
2432       // Use address type to get the element type.
2433       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2434     }
2435     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2436       // accessing an array field with getObject is not a mismatch
2437       bt = T_OBJECT;
2438     }
2439     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2440       // Don't intrinsify mismatched object accesses
2441       return false;
2442     }
2443     mismatched = (bt != type);
2444   } else if (alias_type->adr_type()->isa_oopptr()) {
2445     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2446   }
2447 
2448   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2449 
2450   if (mismatched) {
2451     decorators |= C2_MISMATCHED;
2452   }
2453 
2454   // First guess at the value type.
2455   const Type *value_type = Type::get_const_basic_type(type);
2456 
2457   // Figure out the memory ordering.
2458   decorators |= mo_decorator_for_access_kind(kind);
2459 
2460   if (!is_store && type == T_OBJECT) {
2461     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2462     if (tjp != NULL) {
2463       value_type = tjp;
2464     }
2465   }
2466 
2467   receiver = null_check(receiver);
2468   if (stopped()) {
2469     return true;
2470   }
2471   // Heap pointers get a null-check from the interpreter,
2472   // as a courtesy.  However, this is not guaranteed by Unsafe,
2473   // and it is not possible to fully distinguish unintended nulls
2474   // from intended ones in this API.
2475 
2476   if (!is_store) {
2477     Node* p = NULL;
2478     // Try to constant fold a load from a constant field
2479     ciField* field = alias_type->field();
2480     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2481       // final or stable field
2482       p = make_constant_from_field(field, heap_base_oop);
2483     }
2484 
2485     if (p == NULL) { // Could not constant fold the load
2486       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2487       // Normalize the value returned by getBoolean in the following cases
2488       if (type == T_BOOLEAN &&
2489           (mismatched ||
2490            heap_base_oop == top() ||                  // - heap_base_oop is NULL or
2491            (can_access_non_heap && field == NULL))    // - heap_base_oop is potentially NULL
2492                                                       //   and the unsafe access is made to large offset
2493                                                       //   (i.e., larger than the maximum offset necessary for any
2494                                                       //   field access)
2495             ) {
2496           IdealKit ideal = IdealKit(this);
2497 #define __ ideal.
2498           IdealVariable normalized_result(ideal);
2499           __ declarations_done();
2500           __ set(normalized_result, p);
2501           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2502           __ set(normalized_result, ideal.ConI(1));
2503           ideal.end_if();
2504           final_sync(ideal);
2505           p = __ value(normalized_result);
2506 #undef __
2507       }
2508     }
2509     if (type == T_ADDRESS) {
2510       p = gvn().transform(new CastP2XNode(NULL, p));
2511       p = ConvX2UL(p);
2512     }
2513     // The load node has the control of the preceding MemBarCPUOrder.  All
2514     // following nodes will have the control of the MemBarCPUOrder inserted at
2515     // the end of this method.  So, pushing the load onto the stack at a later
2516     // point is fine.
2517     set_result(p);
2518   } else {
2519     if (bt == T_ADDRESS) {
2520       // Repackage the long as a pointer.
2521       val = ConvL2X(val);
2522       val = gvn().transform(new CastX2PNode(val));
2523     }
2524     access_store_at(control(), heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2525   }
2526 
2527   return true;
2528 }
2529 
2530 //----------------------------inline_unsafe_load_store----------------------------
2531 // This method serves a couple of different customers (depending on LoadStoreKind):
2532 //
2533 // LS_cmp_swap:
2534 //
2535 //   boolean compareAndSetObject(Object o, long offset, Object expected, Object x);
2536 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2537 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2538 //
2539 // LS_cmp_swap_weak:
2540 //
2541 //   boolean weakCompareAndSetObject(       Object o, long offset, Object expected, Object x);
2542 //   boolean weakCompareAndSetObjectPlain(  Object o, long offset, Object expected, Object x);
2543 //   boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x);
2544 //   boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x);
2545 //
2546 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2547 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2548 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2549 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2550 //
2551 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2552 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2553 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2554 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2555 //
2556 // LS_cmp_exchange:
2557 //
2558 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2559 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2560 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2561 //
2562 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2563 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2564 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2565 //
2566 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2567 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2568 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2569 //
2570 // LS_get_add:
2571 //
2572 //   int  getAndAddInt( Object o, long offset, int  delta)
2573 //   long getAndAddLong(Object o, long offset, long delta)
2574 //
2575 // LS_get_set:
2576 //
2577 //   int    getAndSet(Object o, long offset, int    newValue)
2578 //   long   getAndSet(Object o, long offset, long   newValue)
2579 //   Object getAndSet(Object o, long offset, Object newValue)
2580 //
2581 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2582   // This basic scheme here is the same as inline_unsafe_access, but
2583   // differs in enough details that combining them would make the code
2584   // overly confusing.  (This is a true fact! I originally combined
2585   // them, but even I was confused by it!) As much code/comments as
2586   // possible are retained from inline_unsafe_access though to make
2587   // the correspondences clearer. - dl
2588 
2589   if (callee()->is_static())  return false;  // caller must have the capability!
2590 
2591   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2592   decorators |= mo_decorator_for_access_kind(access_kind);
2593 
2594 #ifndef PRODUCT
2595   BasicType rtype;
2596   {
2597     ResourceMark rm;
2598     // Check the signatures.
2599     ciSignature* sig = callee()->signature();
2600     rtype = sig->return_type()->basic_type();
2601     switch(kind) {
2602       case LS_get_add:
2603       case LS_get_set: {
2604       // Check the signatures.
2605 #ifdef ASSERT
2606       assert(rtype == type, "get and set must return the expected type");
2607       assert(sig->count() == 3, "get and set has 3 arguments");
2608       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2609       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2610       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2611       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2612 #endif // ASSERT
2613         break;
2614       }
2615       case LS_cmp_swap:
2616       case LS_cmp_swap_weak: {
2617       // Check the signatures.
2618 #ifdef ASSERT
2619       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2620       assert(sig->count() == 4, "CAS has 4 arguments");
2621       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2622       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2623 #endif // ASSERT
2624         break;
2625       }
2626       case LS_cmp_exchange: {
2627       // Check the signatures.
2628 #ifdef ASSERT
2629       assert(rtype == type, "CAS must return the expected type");
2630       assert(sig->count() == 4, "CAS has 4 arguments");
2631       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2632       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2633 #endif // ASSERT
2634         break;
2635       }
2636       default:
2637         ShouldNotReachHere();
2638     }
2639   }
2640 #endif //PRODUCT
2641 
2642   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2643 
2644   // Get arguments:
2645   Node* receiver = NULL;
2646   Node* base     = NULL;
2647   Node* offset   = NULL;
2648   Node* oldval   = NULL;
2649   Node* newval   = NULL;
2650   switch(kind) {
2651     case LS_cmp_swap:
2652     case LS_cmp_swap_weak:
2653     case LS_cmp_exchange: {
2654       const bool two_slot_type = type2size[type] == 2;
2655       receiver = argument(0);  // type: oop
2656       base     = argument(1);  // type: oop
2657       offset   = argument(2);  // type: long
2658       oldval   = argument(4);  // type: oop, int, or long
2659       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2660       break;
2661     }
2662     case LS_get_add:
2663     case LS_get_set: {
2664       receiver = argument(0);  // type: oop
2665       base     = argument(1);  // type: oop
2666       offset   = argument(2);  // type: long
2667       oldval   = NULL;
2668       newval   = argument(4);  // type: oop, int, or long
2669       break;
2670     }
2671     default:
2672       ShouldNotReachHere();
2673   }
2674 
2675   // Build field offset expression.
2676   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2677   // to be plain byte offsets, which are also the same as those accepted
2678   // by oopDesc::field_addr.
2679   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2680   // 32-bit machines ignore the high half of long offsets
2681   offset = ConvL2X(offset);
2682   Node* adr = make_unsafe_address(base, offset, type, false);
2683   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2684 
2685   Compile::AliasType* alias_type = C->alias_type(adr_type);
2686   BasicType bt = alias_type->basic_type();
2687   if (bt != T_ILLEGAL &&
2688       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2689     // Don't intrinsify mismatched object accesses.
2690     return false;
2691   }
2692 
2693   // For CAS, unlike inline_unsafe_access, there seems no point in
2694   // trying to refine types. Just use the coarse types here.
2695   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2696   const Type *value_type = Type::get_const_basic_type(type);
2697 
2698   switch (kind) {
2699     case LS_get_set:
2700     case LS_cmp_exchange: {
2701       if (type == T_OBJECT) {
2702         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2703         if (tjp != NULL) {
2704           value_type = tjp;
2705         }
2706       }
2707       break;
2708     }
2709     case LS_cmp_swap:
2710     case LS_cmp_swap_weak:
2711     case LS_get_add:
2712       break;
2713     default:
2714       ShouldNotReachHere();
2715   }
2716 
2717   // Null check receiver.
2718   receiver = null_check(receiver);
2719   if (stopped()) {
2720     return true;
2721   }
2722 
2723   int alias_idx = C->get_alias_index(adr_type);
2724 
2725   if (type == T_OBJECT || type == T_ARRAY) {
2726     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2727 
2728     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2729     // could be delayed during Parse (for example, in adjust_map_after_if()).
2730     // Execute transformation here to avoid barrier generation in such case.
2731     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2732       newval = _gvn.makecon(TypePtr::NULL_PTR);
2733 
2734     if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2735       // Refine the value to a null constant, when it is known to be null
2736       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2737     }
2738   }
2739 
2740   Node* result = NULL;
2741   switch (kind) {
2742     case LS_cmp_exchange: {
2743       result = access_atomic_cmpxchg_val_at(control(), base, adr, adr_type, alias_idx,
2744                                             oldval, newval, value_type, type, decorators);
2745       break;
2746     }
2747     case LS_cmp_swap_weak:
2748       decorators |= C2_WEAK_CMPXCHG;
2749     case LS_cmp_swap: {
2750       result = access_atomic_cmpxchg_bool_at(control(), base, adr, adr_type, alias_idx,
2751                                              oldval, newval, value_type, type, decorators);
2752       break;
2753     }
2754     case LS_get_set: {
2755       result = access_atomic_xchg_at(control(), base, adr, adr_type, alias_idx,
2756                                      newval, value_type, type, decorators);
2757       break;
2758     }
2759     case LS_get_add: {
2760       result = access_atomic_add_at(control(), base, adr, adr_type, alias_idx,
2761                                     newval, value_type, type, decorators);
2762       break;
2763     }
2764     default:
2765       ShouldNotReachHere();
2766   }
2767 
2768   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2769   set_result(result);
2770   return true;
2771 }
2772 
2773 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2774   // Regardless of form, don't allow previous ld/st to move down,
2775   // then issue acquire, release, or volatile mem_bar.
2776   insert_mem_bar(Op_MemBarCPUOrder);
2777   switch(id) {
2778     case vmIntrinsics::_loadFence:
2779       insert_mem_bar(Op_LoadFence);
2780       return true;
2781     case vmIntrinsics::_storeFence:
2782       insert_mem_bar(Op_StoreFence);
2783       return true;
2784     case vmIntrinsics::_fullFence:
2785       insert_mem_bar(Op_MemBarVolatile);
2786       return true;
2787     default:
2788       fatal_unexpected_iid(id);
2789       return false;
2790   }
2791 }
2792 
2793 bool LibraryCallKit::inline_onspinwait() {
2794   insert_mem_bar(Op_OnSpinWait);
2795   return true;
2796 }
2797 
2798 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2799   if (!kls->is_Con()) {
2800     return true;
2801   }
2802   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2803   if (klsptr == NULL) {
2804     return true;
2805   }
2806   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2807   // don't need a guard for a klass that is already initialized
2808   return !ik->is_initialized();
2809 }
2810 
2811 //----------------------------inline_unsafe_allocate---------------------------
2812 // public native Object Unsafe.allocateInstance(Class<?> cls);
2813 bool LibraryCallKit::inline_unsafe_allocate() {
2814   if (callee()->is_static())  return false;  // caller must have the capability!
2815 
2816   null_check_receiver();  // null-check, then ignore
2817   Node* cls = null_check(argument(1));
2818   if (stopped())  return true;
2819 
2820   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2821   kls = null_check(kls);
2822   if (stopped())  return true;  // argument was like int.class
2823 
2824   Node* test = NULL;
2825   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2826     // Note:  The argument might still be an illegal value like
2827     // Serializable.class or Object[].class.   The runtime will handle it.
2828     // But we must make an explicit check for initialization.
2829     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2830     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2831     // can generate code to load it as unsigned byte.
2832     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2833     Node* bits = intcon(InstanceKlass::fully_initialized);
2834     test = _gvn.transform(new SubINode(inst, bits));
2835     // The 'test' is non-zero if we need to take a slow path.
2836   }
2837 
2838   Node* obj = new_instance(kls, test);
2839   set_result(obj);
2840   return true;
2841 }
2842 
2843 //------------------------inline_native_time_funcs--------------
2844 // inline code for System.currentTimeMillis() and System.nanoTime()
2845 // these have the same type and signature
2846 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2847   const TypeFunc* tf = OptoRuntime::void_long_Type();
2848   const TypePtr* no_memory_effects = NULL;
2849   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2850   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2851 #ifdef ASSERT
2852   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2853   assert(value_top == top(), "second value must be top");
2854 #endif
2855   set_result(value);
2856   return true;
2857 }
2858 
2859 #ifdef JFR_HAVE_INTRINSICS
2860 
2861 /*
2862 * oop -> myklass
2863 * myklass->trace_id |= USED
2864 * return myklass->trace_id & ~0x3
2865 */
2866 bool LibraryCallKit::inline_native_classID() {
2867   Node* cls = null_check(argument(0), T_OBJECT);
2868   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2869   kls = null_check(kls, T_OBJECT);
2870 
2871   ByteSize offset = KLASS_TRACE_ID_OFFSET;
2872   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2873   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
2874 
2875   Node* clsused = longcon(0x01l); // set the class bit
2876   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
2877   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2878   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
2879 
2880 #ifdef TRACE_ID_META_BITS
2881   Node* mbits = longcon(~TRACE_ID_META_BITS);
2882   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
2883 #endif
2884 #ifdef TRACE_ID_SHIFT
2885   Node* cbits = intcon(TRACE_ID_SHIFT);
2886   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
2887 #endif
2888 
2889   set_result(tvalue);
2890   return true;
2891 
2892 }
2893 
2894 bool LibraryCallKit::inline_native_getEventWriter() {
2895   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
2896 
2897   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
2898                                   in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
2899 
2900   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
2901 
2902   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
2903   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
2904 
2905   IfNode* iff_jobj_null =
2906     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
2907 
2908   enum { _normal_path = 1,
2909          _null_path = 2,
2910          PATH_LIMIT };
2911 
2912   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
2913   PhiNode*    result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
2914 
2915   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
2916   result_rgn->init_req(_null_path, jobj_is_null);
2917   result_val->init_req(_null_path, null());
2918 
2919   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
2920   set_control(jobj_is_not_null);
2921   Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT,
2922                           IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
2923   result_rgn->init_req(_normal_path, control());
2924   result_val->init_req(_normal_path, res);
2925 
2926   set_result(result_rgn, result_val);
2927 
2928   return true;
2929 }
2930 
2931 #endif // JFR_HAVE_INTRINSICS
2932 
2933 //------------------------inline_native_currentThread------------------
2934 bool LibraryCallKit::inline_native_currentThread() {
2935   Node* junk = NULL;
2936   set_result(generate_current_thread(junk));
2937   return true;
2938 }
2939 
2940 //------------------------inline_native_isInterrupted------------------
2941 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
2942 bool LibraryCallKit::inline_native_isInterrupted() {
2943   // Add a fast path to t.isInterrupted(clear_int):
2944   //   (t == Thread.current() &&
2945   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
2946   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2947   // So, in the common case that the interrupt bit is false,
2948   // we avoid making a call into the VM.  Even if the interrupt bit
2949   // is true, if the clear_int argument is false, we avoid the VM call.
2950   // However, if the receiver is not currentThread, we must call the VM,
2951   // because there must be some locking done around the operation.
2952 
2953   // We only go to the fast case code if we pass two guards.
2954   // Paths which do not pass are accumulated in the slow_region.
2955 
2956   enum {
2957     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
2958     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
2959     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
2960     PATH_LIMIT
2961   };
2962 
2963   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
2964   // out of the function.
2965   insert_mem_bar(Op_MemBarCPUOrder);
2966 
2967   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
2968   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
2969 
2970   RegionNode* slow_region = new RegionNode(1);
2971   record_for_igvn(slow_region);
2972 
2973   // (a) Receiving thread must be the current thread.
2974   Node* rec_thr = argument(0);
2975   Node* tls_ptr = NULL;
2976   Node* cur_thr = generate_current_thread(tls_ptr);
2977   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
2978   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
2979 
2980   generate_slow_guard(bol_thr, slow_region);
2981 
2982   // (b) Interrupt bit on TLS must be false.
2983   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2984   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
2985   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2986 
2987   // Set the control input on the field _interrupted read to prevent it floating up.
2988   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
2989   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
2990   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
2991 
2992   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2993 
2994   // First fast path:  if (!TLS._interrupted) return false;
2995   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
2996   result_rgn->init_req(no_int_result_path, false_bit);
2997   result_val->init_req(no_int_result_path, intcon(0));
2998 
2999   // drop through to next case
3000   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3001 
3002 #ifndef _WINDOWS
3003   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3004   Node* clr_arg = argument(1);
3005   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3006   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3007   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3008 
3009   // Second fast path:  ... else if (!clear_int) return true;
3010   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3011   result_rgn->init_req(no_clear_result_path, false_arg);
3012   result_val->init_req(no_clear_result_path, intcon(1));
3013 
3014   // drop through to next case
3015   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3016 #else
3017   // To return true on Windows you must read the _interrupted field
3018   // and check the event state i.e. take the slow path.
3019 #endif // _WINDOWS
3020 
3021   // (d) Otherwise, go to the slow path.
3022   slow_region->add_req(control());
3023   set_control( _gvn.transform(slow_region));
3024 
3025   if (stopped()) {
3026     // There is no slow path.
3027     result_rgn->init_req(slow_result_path, top());
3028     result_val->init_req(slow_result_path, top());
3029   } else {
3030     // non-virtual because it is a private non-static
3031     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3032 
3033     Node* slow_val = set_results_for_java_call(slow_call);
3034     // this->control() comes from set_results_for_java_call
3035 
3036     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3037     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3038 
3039     // These two phis are pre-filled with copies of of the fast IO and Memory
3040     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3041     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3042 
3043     result_rgn->init_req(slow_result_path, control());
3044     result_io ->init_req(slow_result_path, i_o());
3045     result_mem->init_req(slow_result_path, reset_memory());
3046     result_val->init_req(slow_result_path, slow_val);
3047 
3048     set_all_memory(_gvn.transform(result_mem));
3049     set_i_o(       _gvn.transform(result_io));
3050   }
3051 
3052   C->set_has_split_ifs(true); // Has chance for split-if optimization
3053   set_result(result_rgn, result_val);
3054   return true;
3055 }
3056 
3057 //---------------------------load_mirror_from_klass----------------------------
3058 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3059 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3060   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3061   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3062   // mirror = ((OopHandle)mirror)->resolve();
3063   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3064 }
3065 
3066 //-----------------------load_klass_from_mirror_common-------------------------
3067 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3068 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3069 // and branch to the given path on the region.
3070 // If never_see_null, take an uncommon trap on null, so we can optimistically
3071 // compile for the non-null case.
3072 // If the region is NULL, force never_see_null = true.
3073 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3074                                                     bool never_see_null,
3075                                                     RegionNode* region,
3076                                                     int null_path,
3077                                                     int offset) {
3078   if (region == NULL)  never_see_null = true;
3079   Node* p = basic_plus_adr(mirror, offset);
3080   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3081   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3082   Node* null_ctl = top();
3083   kls = null_check_oop(kls, &null_ctl, never_see_null);
3084   if (region != NULL) {
3085     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3086     region->init_req(null_path, null_ctl);
3087   } else {
3088     assert(null_ctl == top(), "no loose ends");
3089   }
3090   return kls;
3091 }
3092 
3093 //--------------------(inline_native_Class_query helpers)---------------------
3094 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3095 // Fall through if (mods & mask) == bits, take the guard otherwise.
3096 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3097   // Branch around if the given klass has the given modifier bit set.
3098   // Like generate_guard, adds a new path onto the region.
3099   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3100   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3101   Node* mask = intcon(modifier_mask);
3102   Node* bits = intcon(modifier_bits);
3103   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3104   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3105   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3106   return generate_fair_guard(bol, region);
3107 }
3108 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3109   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3110 }
3111 
3112 //-------------------------inline_native_Class_query-------------------
3113 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3114   const Type* return_type = TypeInt::BOOL;
3115   Node* prim_return_value = top();  // what happens if it's a primitive class?
3116   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3117   bool expect_prim = false;     // most of these guys expect to work on refs
3118 
3119   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3120 
3121   Node* mirror = argument(0);
3122   Node* obj    = top();
3123 
3124   switch (id) {
3125   case vmIntrinsics::_isInstance:
3126     // nothing is an instance of a primitive type
3127     prim_return_value = intcon(0);
3128     obj = argument(1);
3129     break;
3130   case vmIntrinsics::_getModifiers:
3131     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3132     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3133     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3134     break;
3135   case vmIntrinsics::_isInterface:
3136     prim_return_value = intcon(0);
3137     break;
3138   case vmIntrinsics::_isArray:
3139     prim_return_value = intcon(0);
3140     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3141     break;
3142   case vmIntrinsics::_isPrimitive:
3143     prim_return_value = intcon(1);
3144     expect_prim = true;  // obviously
3145     break;
3146   case vmIntrinsics::_getSuperclass:
3147     prim_return_value = null();
3148     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3149     break;
3150   case vmIntrinsics::_getClassAccessFlags:
3151     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3152     return_type = TypeInt::INT;  // not bool!  6297094
3153     break;
3154   default:
3155     fatal_unexpected_iid(id);
3156     break;
3157   }
3158 
3159   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3160   if (mirror_con == NULL)  return false;  // cannot happen?
3161 
3162 #ifndef PRODUCT
3163   if (C->print_intrinsics() || C->print_inlining()) {
3164     ciType* k = mirror_con->java_mirror_type();
3165     if (k) {
3166       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3167       k->print_name();
3168       tty->cr();
3169     }
3170   }
3171 #endif
3172 
3173   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3174   RegionNode* region = new RegionNode(PATH_LIMIT);
3175   record_for_igvn(region);
3176   PhiNode* phi = new PhiNode(region, return_type);
3177 
3178   // The mirror will never be null of Reflection.getClassAccessFlags, however
3179   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3180   // if it is. See bug 4774291.
3181 
3182   // For Reflection.getClassAccessFlags(), the null check occurs in
3183   // the wrong place; see inline_unsafe_access(), above, for a similar
3184   // situation.
3185   mirror = null_check(mirror);
3186   // If mirror or obj is dead, only null-path is taken.
3187   if (stopped())  return true;
3188 
3189   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3190 
3191   // Now load the mirror's klass metaobject, and null-check it.
3192   // Side-effects region with the control path if the klass is null.
3193   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3194   // If kls is null, we have a primitive mirror.
3195   phi->init_req(_prim_path, prim_return_value);
3196   if (stopped()) { set_result(region, phi); return true; }
3197   bool safe_for_replace = (region->in(_prim_path) == top());
3198 
3199   Node* p;  // handy temp
3200   Node* null_ctl;
3201 
3202   // Now that we have the non-null klass, we can perform the real query.
3203   // For constant classes, the query will constant-fold in LoadNode::Value.
3204   Node* query_value = top();
3205   switch (id) {
3206   case vmIntrinsics::_isInstance:
3207     // nothing is an instance of a primitive type
3208     query_value = gen_instanceof(obj, kls, safe_for_replace);
3209     break;
3210 
3211   case vmIntrinsics::_getModifiers:
3212     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3213     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3214     break;
3215 
3216   case vmIntrinsics::_isInterface:
3217     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3218     if (generate_interface_guard(kls, region) != NULL)
3219       // A guard was added.  If the guard is taken, it was an interface.
3220       phi->add_req(intcon(1));
3221     // If we fall through, it's a plain class.
3222     query_value = intcon(0);
3223     break;
3224 
3225   case vmIntrinsics::_isArray:
3226     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3227     if (generate_array_guard(kls, region) != NULL)
3228       // A guard was added.  If the guard is taken, it was an array.
3229       phi->add_req(intcon(1));
3230     // If we fall through, it's a plain class.
3231     query_value = intcon(0);
3232     break;
3233 
3234   case vmIntrinsics::_isPrimitive:
3235     query_value = intcon(0); // "normal" path produces false
3236     break;
3237 
3238   case vmIntrinsics::_getSuperclass:
3239     // The rules here are somewhat unfortunate, but we can still do better
3240     // with random logic than with a JNI call.
3241     // Interfaces store null or Object as _super, but must report null.
3242     // Arrays store an intermediate super as _super, but must report Object.
3243     // Other types can report the actual _super.
3244     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3245     if (generate_interface_guard(kls, region) != NULL)
3246       // A guard was added.  If the guard is taken, it was an interface.
3247       phi->add_req(null());
3248     if (generate_array_guard(kls, region) != NULL)
3249       // A guard was added.  If the guard is taken, it was an array.
3250       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3251     // If we fall through, it's a plain class.  Get its _super.
3252     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3253     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3254     null_ctl = top();
3255     kls = null_check_oop(kls, &null_ctl);
3256     if (null_ctl != top()) {
3257       // If the guard is taken, Object.superClass is null (both klass and mirror).
3258       region->add_req(null_ctl);
3259       phi   ->add_req(null());
3260     }
3261     if (!stopped()) {
3262       query_value = load_mirror_from_klass(kls);
3263     }
3264     break;
3265 
3266   case vmIntrinsics::_getClassAccessFlags:
3267     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3268     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3269     break;
3270 
3271   default:
3272     fatal_unexpected_iid(id);
3273     break;
3274   }
3275 
3276   // Fall-through is the normal case of a query to a real class.
3277   phi->init_req(1, query_value);
3278   region->init_req(1, control());
3279 
3280   C->set_has_split_ifs(true); // Has chance for split-if optimization
3281   set_result(region, phi);
3282   return true;
3283 }
3284 
3285 //-------------------------inline_Class_cast-------------------
3286 bool LibraryCallKit::inline_Class_cast() {
3287   Node* mirror = argument(0); // Class
3288   Node* obj    = argument(1);
3289   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3290   if (mirror_con == NULL) {
3291     return false;  // dead path (mirror->is_top()).
3292   }
3293   if (obj == NULL || obj->is_top()) {
3294     return false;  // dead path
3295   }
3296   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3297 
3298   // First, see if Class.cast() can be folded statically.
3299   // java_mirror_type() returns non-null for compile-time Class constants.
3300   ciType* tm = mirror_con->java_mirror_type();
3301   if (tm != NULL && tm->is_klass() &&
3302       tp != NULL && tp->klass() != NULL) {
3303     if (!tp->klass()->is_loaded()) {
3304       // Don't use intrinsic when class is not loaded.
3305       return false;
3306     } else {
3307       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3308       if (static_res == Compile::SSC_always_true) {
3309         // isInstance() is true - fold the code.
3310         set_result(obj);
3311         return true;
3312       } else if (static_res == Compile::SSC_always_false) {
3313         // Don't use intrinsic, have to throw ClassCastException.
3314         // If the reference is null, the non-intrinsic bytecode will
3315         // be optimized appropriately.
3316         return false;
3317       }
3318     }
3319   }
3320 
3321   // Bailout intrinsic and do normal inlining if exception path is frequent.
3322   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3323     return false;
3324   }
3325 
3326   // Generate dynamic checks.
3327   // Class.cast() is java implementation of _checkcast bytecode.
3328   // Do checkcast (Parse::do_checkcast()) optimizations here.
3329 
3330   mirror = null_check(mirror);
3331   // If mirror is dead, only null-path is taken.
3332   if (stopped()) {
3333     return true;
3334   }
3335 
3336   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3337   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3338   RegionNode* region = new RegionNode(PATH_LIMIT);
3339   record_for_igvn(region);
3340 
3341   // Now load the mirror's klass metaobject, and null-check it.
3342   // If kls is null, we have a primitive mirror and
3343   // nothing is an instance of a primitive type.
3344   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3345 
3346   Node* res = top();
3347   if (!stopped()) {
3348     Node* bad_type_ctrl = top();
3349     // Do checkcast optimizations.
3350     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3351     region->init_req(_bad_type_path, bad_type_ctrl);
3352   }
3353   if (region->in(_prim_path) != top() ||
3354       region->in(_bad_type_path) != top()) {
3355     // Let Interpreter throw ClassCastException.
3356     PreserveJVMState pjvms(this);
3357     set_control(_gvn.transform(region));
3358     uncommon_trap(Deoptimization::Reason_intrinsic,
3359                   Deoptimization::Action_maybe_recompile);
3360   }
3361   if (!stopped()) {
3362     set_result(res);
3363   }
3364   return true;
3365 }
3366 
3367 
3368 //--------------------------inline_native_subtype_check------------------------
3369 // This intrinsic takes the JNI calls out of the heart of
3370 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3371 bool LibraryCallKit::inline_native_subtype_check() {
3372   // Pull both arguments off the stack.
3373   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3374   args[0] = argument(0);
3375   args[1] = argument(1);
3376   Node* klasses[2];             // corresponding Klasses: superk, subk
3377   klasses[0] = klasses[1] = top();
3378 
3379   enum {
3380     // A full decision tree on {superc is prim, subc is prim}:
3381     _prim_0_path = 1,           // {P,N} => false
3382                                 // {P,P} & superc!=subc => false
3383     _prim_same_path,            // {P,P} & superc==subc => true
3384     _prim_1_path,               // {N,P} => false
3385     _ref_subtype_path,          // {N,N} & subtype check wins => true
3386     _both_ref_path,             // {N,N} & subtype check loses => false
3387     PATH_LIMIT
3388   };
3389 
3390   RegionNode* region = new RegionNode(PATH_LIMIT);
3391   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3392   record_for_igvn(region);
3393 
3394   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3395   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3396   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3397 
3398   // First null-check both mirrors and load each mirror's klass metaobject.
3399   int which_arg;
3400   for (which_arg = 0; which_arg <= 1; which_arg++) {
3401     Node* arg = args[which_arg];
3402     arg = null_check(arg);
3403     if (stopped())  break;
3404     args[which_arg] = arg;
3405 
3406     Node* p = basic_plus_adr(arg, class_klass_offset);
3407     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3408     klasses[which_arg] = _gvn.transform(kls);
3409   }
3410 
3411   // Having loaded both klasses, test each for null.
3412   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3413   for (which_arg = 0; which_arg <= 1; which_arg++) {
3414     Node* kls = klasses[which_arg];
3415     Node* null_ctl = top();
3416     kls = null_check_oop(kls, &null_ctl, never_see_null);
3417     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3418     region->init_req(prim_path, null_ctl);
3419     if (stopped())  break;
3420     klasses[which_arg] = kls;
3421   }
3422 
3423   if (!stopped()) {
3424     // now we have two reference types, in klasses[0..1]
3425     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3426     Node* superk = klasses[0];  // the receiver
3427     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3428     // now we have a successful reference subtype check
3429     region->set_req(_ref_subtype_path, control());
3430   }
3431 
3432   // If both operands are primitive (both klasses null), then
3433   // we must return true when they are identical primitives.
3434   // It is convenient to test this after the first null klass check.
3435   set_control(region->in(_prim_0_path)); // go back to first null check
3436   if (!stopped()) {
3437     // Since superc is primitive, make a guard for the superc==subc case.
3438     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3439     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3440     generate_guard(bol_eq, region, PROB_FAIR);
3441     if (region->req() == PATH_LIMIT+1) {
3442       // A guard was added.  If the added guard is taken, superc==subc.
3443       region->swap_edges(PATH_LIMIT, _prim_same_path);
3444       region->del_req(PATH_LIMIT);
3445     }
3446     region->set_req(_prim_0_path, control()); // Not equal after all.
3447   }
3448 
3449   // these are the only paths that produce 'true':
3450   phi->set_req(_prim_same_path,   intcon(1));
3451   phi->set_req(_ref_subtype_path, intcon(1));
3452 
3453   // pull together the cases:
3454   assert(region->req() == PATH_LIMIT, "sane region");
3455   for (uint i = 1; i < region->req(); i++) {
3456     Node* ctl = region->in(i);
3457     if (ctl == NULL || ctl == top()) {
3458       region->set_req(i, top());
3459       phi   ->set_req(i, top());
3460     } else if (phi->in(i) == NULL) {
3461       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3462     }
3463   }
3464 
3465   set_control(_gvn.transform(region));
3466   set_result(_gvn.transform(phi));
3467   return true;
3468 }
3469 
3470 //---------------------generate_array_guard_common------------------------
3471 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3472                                                   bool obj_array, bool not_array) {
3473 
3474   if (stopped()) {
3475     return NULL;
3476   }
3477 
3478   // If obj_array/non_array==false/false:
3479   // Branch around if the given klass is in fact an array (either obj or prim).
3480   // If obj_array/non_array==false/true:
3481   // Branch around if the given klass is not an array klass of any kind.
3482   // If obj_array/non_array==true/true:
3483   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3484   // If obj_array/non_array==true/false:
3485   // Branch around if the kls is an oop array (Object[] or subtype)
3486   //
3487   // Like generate_guard, adds a new path onto the region.
3488   jint  layout_con = 0;
3489   Node* layout_val = get_layout_helper(kls, layout_con);
3490   if (layout_val == NULL) {
3491     bool query = (obj_array
3492                   ? Klass::layout_helper_is_objArray(layout_con)
3493                   : Klass::layout_helper_is_array(layout_con));
3494     if (query == not_array) {
3495       return NULL;                       // never a branch
3496     } else {                             // always a branch
3497       Node* always_branch = control();
3498       if (region != NULL)
3499         region->add_req(always_branch);
3500       set_control(top());
3501       return always_branch;
3502     }
3503   }
3504   // Now test the correct condition.
3505   jint  nval = (obj_array
3506                 ? (jint)(Klass::_lh_array_tag_type_value
3507                    <<    Klass::_lh_array_tag_shift)
3508                 : Klass::_lh_neutral_value);
3509   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3510   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3511   // invert the test if we are looking for a non-array
3512   if (not_array)  btest = BoolTest(btest).negate();
3513   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3514   return generate_fair_guard(bol, region);
3515 }
3516 
3517 
3518 //-----------------------inline_native_newArray--------------------------
3519 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3520 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3521 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3522   Node* mirror;
3523   Node* count_val;
3524   if (uninitialized) {
3525     mirror    = argument(1);
3526     count_val = argument(2);
3527   } else {
3528     mirror    = argument(0);
3529     count_val = argument(1);
3530   }
3531 
3532   mirror = null_check(mirror);
3533   // If mirror or obj is dead, only null-path is taken.
3534   if (stopped())  return true;
3535 
3536   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3537   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3538   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3539   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3540   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3541 
3542   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3543   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3544                                                   result_reg, _slow_path);
3545   Node* normal_ctl   = control();
3546   Node* no_array_ctl = result_reg->in(_slow_path);
3547 
3548   // Generate code for the slow case.  We make a call to newArray().
3549   set_control(no_array_ctl);
3550   if (!stopped()) {
3551     // Either the input type is void.class, or else the
3552     // array klass has not yet been cached.  Either the
3553     // ensuing call will throw an exception, or else it
3554     // will cache the array klass for next time.
3555     PreserveJVMState pjvms(this);
3556     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3557     Node* slow_result = set_results_for_java_call(slow_call);
3558     // this->control() comes from set_results_for_java_call
3559     result_reg->set_req(_slow_path, control());
3560     result_val->set_req(_slow_path, slow_result);
3561     result_io ->set_req(_slow_path, i_o());
3562     result_mem->set_req(_slow_path, reset_memory());
3563   }
3564 
3565   set_control(normal_ctl);
3566   if (!stopped()) {
3567     // Normal case:  The array type has been cached in the java.lang.Class.
3568     // The following call works fine even if the array type is polymorphic.
3569     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3570     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3571     result_reg->init_req(_normal_path, control());
3572     result_val->init_req(_normal_path, obj);
3573     result_io ->init_req(_normal_path, i_o());
3574     result_mem->init_req(_normal_path, reset_memory());
3575 
3576     if (uninitialized) {
3577       // Mark the allocation so that zeroing is skipped
3578       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3579       alloc->maybe_set_complete(&_gvn);
3580     }
3581   }
3582 
3583   // Return the combined state.
3584   set_i_o(        _gvn.transform(result_io)  );
3585   set_all_memory( _gvn.transform(result_mem));
3586 
3587   C->set_has_split_ifs(true); // Has chance for split-if optimization
3588   set_result(result_reg, result_val);
3589   return true;
3590 }
3591 
3592 //----------------------inline_native_getLength--------------------------
3593 // public static native int java.lang.reflect.Array.getLength(Object array);
3594 bool LibraryCallKit::inline_native_getLength() {
3595   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3596 
3597   Node* array = null_check(argument(0));
3598   // If array is dead, only null-path is taken.
3599   if (stopped())  return true;
3600 
3601   // Deoptimize if it is a non-array.
3602   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3603 
3604   if (non_array != NULL) {
3605     PreserveJVMState pjvms(this);
3606     set_control(non_array);
3607     uncommon_trap(Deoptimization::Reason_intrinsic,
3608                   Deoptimization::Action_maybe_recompile);
3609   }
3610 
3611   // If control is dead, only non-array-path is taken.
3612   if (stopped())  return true;
3613 
3614   // The works fine even if the array type is polymorphic.
3615   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3616   Node* result = load_array_length(array);
3617 
3618   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3619   set_result(result);
3620   return true;
3621 }
3622 
3623 //------------------------inline_array_copyOf----------------------------
3624 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3625 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3626 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3627   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3628 
3629   // Get the arguments.
3630   Node* original          = argument(0);
3631   Node* start             = is_copyOfRange? argument(1): intcon(0);
3632   Node* end               = is_copyOfRange? argument(2): argument(1);
3633   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3634 
3635   Node* newcopy = NULL;
3636 
3637   // Set the original stack and the reexecute bit for the interpreter to reexecute
3638   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3639   { PreserveReexecuteState preexecs(this);
3640     jvms()->set_should_reexecute(true);
3641 
3642     array_type_mirror = null_check(array_type_mirror);
3643     original          = null_check(original);
3644 
3645     // Check if a null path was taken unconditionally.
3646     if (stopped())  return true;
3647 
3648     Node* orig_length = load_array_length(original);
3649 
3650     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3651     klass_node = null_check(klass_node);
3652 
3653     RegionNode* bailout = new RegionNode(1);
3654     record_for_igvn(bailout);
3655 
3656     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3657     // Bail out if that is so.
3658     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3659     if (not_objArray != NULL) {
3660       // Improve the klass node's type from the new optimistic assumption:
3661       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3662       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3663       Node* cast = new CastPPNode(klass_node, akls);
3664       cast->init_req(0, control());
3665       klass_node = _gvn.transform(cast);
3666     }
3667 
3668     // Bail out if either start or end is negative.
3669     generate_negative_guard(start, bailout, &start);
3670     generate_negative_guard(end,   bailout, &end);
3671 
3672     Node* length = end;
3673     if (_gvn.type(start) != TypeInt::ZERO) {
3674       length = _gvn.transform(new SubINode(end, start));
3675     }
3676 
3677     // Bail out if length is negative.
3678     // Without this the new_array would throw
3679     // NegativeArraySizeException but IllegalArgumentException is what
3680     // should be thrown
3681     generate_negative_guard(length, bailout, &length);
3682 
3683     if (bailout->req() > 1) {
3684       PreserveJVMState pjvms(this);
3685       set_control(_gvn.transform(bailout));
3686       uncommon_trap(Deoptimization::Reason_intrinsic,
3687                     Deoptimization::Action_maybe_recompile);
3688     }
3689 
3690     if (!stopped()) {
3691       // How many elements will we copy from the original?
3692       // The answer is MinI(orig_length - start, length).
3693       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3694       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3695 
3696       original = access_resolve(original, ACCESS_READ);
3697 
3698       // Generate a direct call to the right arraycopy function(s).
3699       // We know the copy is disjoint but we might not know if the
3700       // oop stores need checking.
3701       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3702       // This will fail a store-check if x contains any non-nulls.
3703 
3704       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3705       // loads/stores but it is legal only if we're sure the
3706       // Arrays.copyOf would succeed. So we need all input arguments
3707       // to the copyOf to be validated, including that the copy to the
3708       // new array won't trigger an ArrayStoreException. That subtype
3709       // check can be optimized if we know something on the type of
3710       // the input array from type speculation.
3711       if (_gvn.type(klass_node)->singleton()) {
3712         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3713         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3714 
3715         int test = C->static_subtype_check(superk, subk);
3716         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3717           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3718           if (t_original->speculative_type() != NULL) {
3719             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3720           }
3721         }
3722       }
3723 
3724       bool validated = false;
3725       // Reason_class_check rather than Reason_intrinsic because we
3726       // want to intrinsify even if this traps.
3727       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3728         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3729                                                    klass_node);
3730 
3731         if (not_subtype_ctrl != top()) {
3732           PreserveJVMState pjvms(this);
3733           set_control(not_subtype_ctrl);
3734           uncommon_trap(Deoptimization::Reason_class_check,
3735                         Deoptimization::Action_make_not_entrant);
3736           assert(stopped(), "Should be stopped");
3737         }
3738         validated = true;
3739       }
3740 
3741       if (!stopped()) {
3742         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3743 
3744         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
3745                                                 load_object_klass(original), klass_node);
3746         if (!is_copyOfRange) {
3747           ac->set_copyof(validated);
3748         } else {
3749           ac->set_copyofrange(validated);
3750         }
3751         Node* n = _gvn.transform(ac);
3752         if (n == ac) {
3753           ac->connect_outputs(this);
3754         } else {
3755           assert(validated, "shouldn't transform if all arguments not validated");
3756           set_all_memory(n);
3757         }
3758       }
3759     }
3760   } // original reexecute is set back here
3761 
3762   C->set_has_split_ifs(true); // Has chance for split-if optimization
3763   if (!stopped()) {
3764     set_result(newcopy);
3765   }
3766   return true;
3767 }
3768 
3769 
3770 //----------------------generate_virtual_guard---------------------------
3771 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3772 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3773                                              RegionNode* slow_region) {
3774   ciMethod* method = callee();
3775   int vtable_index = method->vtable_index();
3776   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3777          "bad index %d", vtable_index);
3778   // Get the Method* out of the appropriate vtable entry.
3779   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
3780                      vtable_index*vtableEntry::size_in_bytes() +
3781                      vtableEntry::method_offset_in_bytes();
3782   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3783   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3784 
3785   // Compare the target method with the expected method (e.g., Object.hashCode).
3786   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3787 
3788   Node* native_call = makecon(native_call_addr);
3789   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3790   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3791 
3792   return generate_slow_guard(test_native, slow_region);
3793 }
3794 
3795 //-----------------------generate_method_call----------------------------
3796 // Use generate_method_call to make a slow-call to the real
3797 // method if the fast path fails.  An alternative would be to
3798 // use a stub like OptoRuntime::slow_arraycopy_Java.
3799 // This only works for expanding the current library call,
3800 // not another intrinsic.  (E.g., don't use this for making an
3801 // arraycopy call inside of the copyOf intrinsic.)
3802 CallJavaNode*
3803 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3804   // When compiling the intrinsic method itself, do not use this technique.
3805   guarantee(callee() != C->method(), "cannot make slow-call to self");
3806 
3807   ciMethod* method = callee();
3808   // ensure the JVMS we have will be correct for this call
3809   guarantee(method_id == method->intrinsic_id(), "must match");
3810 
3811   const TypeFunc* tf = TypeFunc::make(method);
3812   CallJavaNode* slow_call;
3813   if (is_static) {
3814     assert(!is_virtual, "");
3815     slow_call = new CallStaticJavaNode(C, tf,
3816                            SharedRuntime::get_resolve_static_call_stub(),
3817                            method, bci());
3818   } else if (is_virtual) {
3819     null_check_receiver();
3820     int vtable_index = Method::invalid_vtable_index;
3821     if (UseInlineCaches) {
3822       // Suppress the vtable call
3823     } else {
3824       // hashCode and clone are not a miranda methods,
3825       // so the vtable index is fixed.
3826       // No need to use the linkResolver to get it.
3827        vtable_index = method->vtable_index();
3828        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3829               "bad index %d", vtable_index);
3830     }
3831     slow_call = new CallDynamicJavaNode(tf,
3832                           SharedRuntime::get_resolve_virtual_call_stub(),
3833                           method, vtable_index, bci());
3834   } else {  // neither virtual nor static:  opt_virtual
3835     null_check_receiver();
3836     slow_call = new CallStaticJavaNode(C, tf,
3837                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3838                                 method, bci());
3839     slow_call->set_optimized_virtual(true);
3840   }
3841   set_arguments_for_java_call(slow_call);
3842   set_edges_for_java_call(slow_call);
3843   return slow_call;
3844 }
3845 
3846 
3847 /**
3848  * Build special case code for calls to hashCode on an object. This call may
3849  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3850  * slightly different code.
3851  */
3852 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3853   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3854   assert(!(is_virtual && is_static), "either virtual, special, or static");
3855 
3856   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3857 
3858   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3859   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3860   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3861   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3862   Node* obj = NULL;
3863   if (!is_static) {
3864     // Check for hashing null object
3865     obj = null_check_receiver();
3866     if (stopped())  return true;        // unconditionally null
3867     result_reg->init_req(_null_path, top());
3868     result_val->init_req(_null_path, top());
3869   } else {
3870     // Do a null check, and return zero if null.
3871     // System.identityHashCode(null) == 0
3872     obj = argument(0);
3873     Node* null_ctl = top();
3874     obj = null_check_oop(obj, &null_ctl);
3875     result_reg->init_req(_null_path, null_ctl);
3876     result_val->init_req(_null_path, _gvn.intcon(0));
3877   }
3878 
3879   // Unconditionally null?  Then return right away.
3880   if (stopped()) {
3881     set_control( result_reg->in(_null_path));
3882     if (!stopped())
3883       set_result(result_val->in(_null_path));
3884     return true;
3885   }
3886 
3887   // We only go to the fast case code if we pass a number of guards.  The
3888   // paths which do not pass are accumulated in the slow_region.
3889   RegionNode* slow_region = new RegionNode(1);
3890   record_for_igvn(slow_region);
3891 
3892   // If this is a virtual call, we generate a funny guard.  We pull out
3893   // the vtable entry corresponding to hashCode() from the target object.
3894   // If the target method which we are calling happens to be the native
3895   // Object hashCode() method, we pass the guard.  We do not need this
3896   // guard for non-virtual calls -- the caller is known to be the native
3897   // Object hashCode().
3898   if (is_virtual) {
3899     // After null check, get the object's klass.
3900     Node* obj_klass = load_object_klass(obj);
3901     generate_virtual_guard(obj_klass, slow_region);
3902   }
3903 
3904   // Get the header out of the object, use LoadMarkNode when available
3905   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3906   // The control of the load must be NULL. Otherwise, the load can move before
3907   // the null check after castPP removal.
3908   Node* no_ctrl = NULL;
3909   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3910 
3911   // Test the header to see if it is unlocked.
3912   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3913   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
3914   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3915   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
3916   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
3917 
3918   generate_slow_guard(test_unlocked, slow_region);
3919 
3920   // Get the hash value and check to see that it has been properly assigned.
3921   // We depend on hash_mask being at most 32 bits and avoid the use of
3922   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3923   // vm: see markOop.hpp.
3924   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3925   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3926   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
3927   // This hack lets the hash bits live anywhere in the mark object now, as long
3928   // as the shift drops the relevant bits into the low 32 bits.  Note that
3929   // Java spec says that HashCode is an int so there's no point in capturing
3930   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3931   hshifted_header      = ConvX2I(hshifted_header);
3932   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
3933 
3934   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3935   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
3936   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
3937 
3938   generate_slow_guard(test_assigned, slow_region);
3939 
3940   Node* init_mem = reset_memory();
3941   // fill in the rest of the null path:
3942   result_io ->init_req(_null_path, i_o());
3943   result_mem->init_req(_null_path, init_mem);
3944 
3945   result_val->init_req(_fast_path, hash_val);
3946   result_reg->init_req(_fast_path, control());
3947   result_io ->init_req(_fast_path, i_o());
3948   result_mem->init_req(_fast_path, init_mem);
3949 
3950   // Generate code for the slow case.  We make a call to hashCode().
3951   set_control(_gvn.transform(slow_region));
3952   if (!stopped()) {
3953     // No need for PreserveJVMState, because we're using up the present state.
3954     set_all_memory(init_mem);
3955     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3956     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3957     Node* slow_result = set_results_for_java_call(slow_call);
3958     // this->control() comes from set_results_for_java_call
3959     result_reg->init_req(_slow_path, control());
3960     result_val->init_req(_slow_path, slow_result);
3961     result_io  ->set_req(_slow_path, i_o());
3962     result_mem ->set_req(_slow_path, reset_memory());
3963   }
3964 
3965   // Return the combined state.
3966   set_i_o(        _gvn.transform(result_io)  );
3967   set_all_memory( _gvn.transform(result_mem));
3968 
3969   set_result(result_reg, result_val);
3970   return true;
3971 }
3972 
3973 //---------------------------inline_native_getClass----------------------------
3974 // public final native Class<?> java.lang.Object.getClass();
3975 //
3976 // Build special case code for calls to getClass on an object.
3977 bool LibraryCallKit::inline_native_getClass() {
3978   Node* obj = null_check_receiver();
3979   if (stopped())  return true;
3980   set_result(load_mirror_from_klass(load_object_klass(obj)));
3981   return true;
3982 }
3983 
3984 //-----------------inline_native_Reflection_getCallerClass---------------------
3985 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
3986 //
3987 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3988 //
3989 // NOTE: This code must perform the same logic as JVM_GetCallerClass
3990 // in that it must skip particular security frames and checks for
3991 // caller sensitive methods.
3992 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3993 #ifndef PRODUCT
3994   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3995     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3996   }
3997 #endif
3998 
3999   if (!jvms()->has_method()) {
4000 #ifndef PRODUCT
4001     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4002       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4003     }
4004 #endif
4005     return false;
4006   }
4007 
4008   // Walk back up the JVM state to find the caller at the required
4009   // depth.
4010   JVMState* caller_jvms = jvms();
4011 
4012   // Cf. JVM_GetCallerClass
4013   // NOTE: Start the loop at depth 1 because the current JVM state does
4014   // not include the Reflection.getCallerClass() frame.
4015   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4016     ciMethod* m = caller_jvms->method();
4017     switch (n) {
4018     case 0:
4019       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4020       break;
4021     case 1:
4022       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4023       if (!m->caller_sensitive()) {
4024 #ifndef PRODUCT
4025         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4026           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4027         }
4028 #endif
4029         return false;  // bail-out; let JVM_GetCallerClass do the work
4030       }
4031       break;
4032     default:
4033       if (!m->is_ignored_by_security_stack_walk()) {
4034         // We have reached the desired frame; return the holder class.
4035         // Acquire method holder as java.lang.Class and push as constant.
4036         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4037         ciInstance* caller_mirror = caller_klass->java_mirror();
4038         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4039 
4040 #ifndef PRODUCT
4041         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4042           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4043           tty->print_cr("  JVM state at this point:");
4044           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4045             ciMethod* m = jvms()->of_depth(i)->method();
4046             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4047           }
4048         }
4049 #endif
4050         return true;
4051       }
4052       break;
4053     }
4054   }
4055 
4056 #ifndef PRODUCT
4057   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4058     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4059     tty->print_cr("  JVM state at this point:");
4060     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4061       ciMethod* m = jvms()->of_depth(i)->method();
4062       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4063     }
4064   }
4065 #endif
4066 
4067   return false;  // bail-out; let JVM_GetCallerClass do the work
4068 }
4069 
4070 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4071   Node* arg = argument(0);
4072   Node* result = NULL;
4073 
4074   switch (id) {
4075   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4076   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4077   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4078   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4079 
4080   case vmIntrinsics::_doubleToLongBits: {
4081     // two paths (plus control) merge in a wood
4082     RegionNode *r = new RegionNode(3);
4083     Node *phi = new PhiNode(r, TypeLong::LONG);
4084 
4085     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4086     // Build the boolean node
4087     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4088 
4089     // Branch either way.
4090     // NaN case is less traveled, which makes all the difference.
4091     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4092     Node *opt_isnan = _gvn.transform(ifisnan);
4093     assert( opt_isnan->is_If(), "Expect an IfNode");
4094     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4095     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4096 
4097     set_control(iftrue);
4098 
4099     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4100     Node *slow_result = longcon(nan_bits); // return NaN
4101     phi->init_req(1, _gvn.transform( slow_result ));
4102     r->init_req(1, iftrue);
4103 
4104     // Else fall through
4105     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4106     set_control(iffalse);
4107 
4108     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4109     r->init_req(2, iffalse);
4110 
4111     // Post merge
4112     set_control(_gvn.transform(r));
4113     record_for_igvn(r);
4114 
4115     C->set_has_split_ifs(true); // Has chance for split-if optimization
4116     result = phi;
4117     assert(result->bottom_type()->isa_long(), "must be");
4118     break;
4119   }
4120 
4121   case vmIntrinsics::_floatToIntBits: {
4122     // two paths (plus control) merge in a wood
4123     RegionNode *r = new RegionNode(3);
4124     Node *phi = new PhiNode(r, TypeInt::INT);
4125 
4126     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4127     // Build the boolean node
4128     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4129 
4130     // Branch either way.
4131     // NaN case is less traveled, which makes all the difference.
4132     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4133     Node *opt_isnan = _gvn.transform(ifisnan);
4134     assert( opt_isnan->is_If(), "Expect an IfNode");
4135     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4136     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4137 
4138     set_control(iftrue);
4139 
4140     static const jint nan_bits = 0x7fc00000;
4141     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4142     phi->init_req(1, _gvn.transform( slow_result ));
4143     r->init_req(1, iftrue);
4144 
4145     // Else fall through
4146     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4147     set_control(iffalse);
4148 
4149     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4150     r->init_req(2, iffalse);
4151 
4152     // Post merge
4153     set_control(_gvn.transform(r));
4154     record_for_igvn(r);
4155 
4156     C->set_has_split_ifs(true); // Has chance for split-if optimization
4157     result = phi;
4158     assert(result->bottom_type()->isa_int(), "must be");
4159     break;
4160   }
4161 
4162   default:
4163     fatal_unexpected_iid(id);
4164     break;
4165   }
4166   set_result(_gvn.transform(result));
4167   return true;
4168 }
4169 
4170 //----------------------inline_unsafe_copyMemory-------------------------
4171 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4172 bool LibraryCallKit::inline_unsafe_copyMemory() {
4173   if (callee()->is_static())  return false;  // caller must have the capability!
4174   null_check_receiver();  // null-check receiver
4175   if (stopped())  return true;
4176 
4177   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4178 
4179   Node* src_ptr =         argument(1);   // type: oop
4180   Node* src_off = ConvL2X(argument(2));  // type: long
4181   Node* dst_ptr =         argument(4);   // type: oop
4182   Node* dst_off = ConvL2X(argument(5));  // type: long
4183   Node* size    = ConvL2X(argument(7));  // type: long
4184 
4185   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4186          "fieldOffset must be byte-scaled");
4187 
4188   Node* src = make_unsafe_address(src_ptr, src_off);
4189   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4190 
4191   // Conservatively insert a memory barrier on all memory slices.
4192   // Do not let writes of the copy source or destination float below the copy.
4193   insert_mem_bar(Op_MemBarCPUOrder);
4194 
4195   // Call it.  Note that the length argument is not scaled.
4196   make_runtime_call(RC_LEAF|RC_NO_FP,
4197                     OptoRuntime::fast_arraycopy_Type(),
4198                     StubRoutines::unsafe_arraycopy(),
4199                     "unsafe_arraycopy",
4200                     TypeRawPtr::BOTTOM,
4201                     src, dst, size XTOP);
4202 
4203   // Do not let reads of the copy destination float above the copy.
4204   insert_mem_bar(Op_MemBarCPUOrder);
4205 
4206   return true;
4207 }
4208 
4209 //------------------------clone_coping-----------------------------------
4210 // Helper function for inline_native_clone.
4211 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
4212   assert(obj_size != NULL, "");
4213   Node* raw_obj = alloc_obj->in(1);
4214   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4215 
4216   AllocateNode* alloc = NULL;
4217   if (ReduceBulkZeroing) {
4218     // We will be completely responsible for initializing this object -
4219     // mark Initialize node as complete.
4220     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4221     // The object was just allocated - there should be no any stores!
4222     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4223     // Mark as complete_with_arraycopy so that on AllocateNode
4224     // expansion, we know this AllocateNode is initialized by an array
4225     // copy and a StoreStore barrier exists after the array copy.
4226     alloc->initialization()->set_complete_with_arraycopy();
4227   }
4228 
4229   // Copy the fastest available way.
4230   // TODO: generate fields copies for small objects instead.
4231   Node* size = _gvn.transform(obj_size);
4232 
4233   access_clone(control(), obj, alloc_obj, size, is_array);
4234 
4235   // Do not let reads from the cloned object float above the arraycopy.
4236   if (alloc != NULL) {
4237     // Do not let stores that initialize this object be reordered with
4238     // a subsequent store that would make this object accessible by
4239     // other threads.
4240     // Record what AllocateNode this StoreStore protects so that
4241     // escape analysis can go from the MemBarStoreStoreNode to the
4242     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4243     // based on the escape status of the AllocateNode.
4244     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4245   } else {
4246     insert_mem_bar(Op_MemBarCPUOrder);
4247   }
4248 }
4249 
4250 //------------------------inline_native_clone----------------------------
4251 // protected native Object java.lang.Object.clone();
4252 //
4253 // Here are the simple edge cases:
4254 //  null receiver => normal trap
4255 //  virtual and clone was overridden => slow path to out-of-line clone
4256 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4257 //
4258 // The general case has two steps, allocation and copying.
4259 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4260 //
4261 // Copying also has two cases, oop arrays and everything else.
4262 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4263 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4264 //
4265 // These steps fold up nicely if and when the cloned object's klass
4266 // can be sharply typed as an object array, a type array, or an instance.
4267 //
4268 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4269   PhiNode* result_val;
4270 
4271   // Set the reexecute bit for the interpreter to reexecute
4272   // the bytecode that invokes Object.clone if deoptimization happens.
4273   { PreserveReexecuteState preexecs(this);
4274     jvms()->set_should_reexecute(true);
4275 
4276     Node* obj = null_check_receiver();
4277     if (stopped())  return true;
4278 
4279     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4280 
4281     // If we are going to clone an instance, we need its exact type to
4282     // know the number and types of fields to convert the clone to
4283     // loads/stores. Maybe a speculative type can help us.
4284     if (!obj_type->klass_is_exact() &&
4285         obj_type->speculative_type() != NULL &&
4286         obj_type->speculative_type()->is_instance_klass()) {
4287       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4288       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4289           !spec_ik->has_injected_fields()) {
4290         ciKlass* k = obj_type->klass();
4291         if (!k->is_instance_klass() ||
4292             k->as_instance_klass()->is_interface() ||
4293             k->as_instance_klass()->has_subklass()) {
4294           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4295         }
4296       }
4297     }
4298 
4299     Node* obj_klass = load_object_klass(obj);
4300     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4301     const TypeOopPtr*   toop   = ((tklass != NULL)
4302                                 ? tklass->as_instance_type()
4303                                 : TypeInstPtr::NOTNULL);
4304 
4305     // Conservatively insert a memory barrier on all memory slices.
4306     // Do not let writes into the original float below the clone.
4307     insert_mem_bar(Op_MemBarCPUOrder);
4308 
4309     // paths into result_reg:
4310     enum {
4311       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4312       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4313       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4314       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4315       PATH_LIMIT
4316     };
4317     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4318     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4319     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4320     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4321     record_for_igvn(result_reg);
4322 
4323     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4324     if (array_ctl != NULL) {
4325       // It's an array.
4326       PreserveJVMState pjvms(this);
4327       set_control(array_ctl);
4328       Node* obj_length = load_array_length(obj);
4329       Node* obj_size  = NULL;
4330       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4331 
4332       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4333       if (bs->array_copy_requires_gc_barriers(T_OBJECT)) {
4334         // If it is an oop array, it requires very special treatment,
4335         // because gc barriers are required when accessing the array.
4336         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4337         if (is_obja != NULL) {
4338           PreserveJVMState pjvms2(this);
4339           set_control(is_obja);
4340           obj = access_resolve(obj, ACCESS_READ);
4341           // Generate a direct call to the right arraycopy function(s).
4342           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4343           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4344           ac->set_cloneoop();
4345           Node* n = _gvn.transform(ac);
4346           assert(n == ac, "cannot disappear");
4347           ac->connect_outputs(this);
4348 
4349           result_reg->init_req(_objArray_path, control());
4350           result_val->init_req(_objArray_path, alloc_obj);
4351           result_i_o ->set_req(_objArray_path, i_o());
4352           result_mem ->set_req(_objArray_path, reset_memory());
4353         }
4354       }
4355       // Otherwise, there are no barriers to worry about.
4356       // (We can dispense with card marks if we know the allocation
4357       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4358       //  causes the non-eden paths to take compensating steps to
4359       //  simulate a fresh allocation, so that no further
4360       //  card marks are required in compiled code to initialize
4361       //  the object.)
4362 
4363       if (!stopped()) {
4364         copy_to_clone(obj, alloc_obj, obj_size, true);
4365 
4366         // Present the results of the copy.
4367         result_reg->init_req(_array_path, control());
4368         result_val->init_req(_array_path, alloc_obj);
4369         result_i_o ->set_req(_array_path, i_o());
4370         result_mem ->set_req(_array_path, reset_memory());
4371       }
4372     }
4373 
4374     // We only go to the instance fast case code if we pass a number of guards.
4375     // The paths which do not pass are accumulated in the slow_region.
4376     RegionNode* slow_region = new RegionNode(1);
4377     record_for_igvn(slow_region);
4378     if (!stopped()) {
4379       // It's an instance (we did array above).  Make the slow-path tests.
4380       // If this is a virtual call, we generate a funny guard.  We grab
4381       // the vtable entry corresponding to clone() from the target object.
4382       // If the target method which we are calling happens to be the
4383       // Object clone() method, we pass the guard.  We do not need this
4384       // guard for non-virtual calls; the caller is known to be the native
4385       // Object clone().
4386       if (is_virtual) {
4387         generate_virtual_guard(obj_klass, slow_region);
4388       }
4389 
4390       // The object must be easily cloneable and must not have a finalizer.
4391       // Both of these conditions may be checked in a single test.
4392       // We could optimize the test further, but we don't care.
4393       generate_access_flags_guard(obj_klass,
4394                                   // Test both conditions:
4395                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4396                                   // Must be cloneable but not finalizer:
4397                                   JVM_ACC_IS_CLONEABLE_FAST,
4398                                   slow_region);
4399     }
4400 
4401     if (!stopped()) {
4402       // It's an instance, and it passed the slow-path tests.
4403       PreserveJVMState pjvms(this);
4404       Node* obj_size  = NULL;
4405       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4406       // is reexecuted if deoptimization occurs and there could be problems when merging
4407       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4408       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4409 
4410       copy_to_clone(obj, alloc_obj, obj_size, false);
4411 
4412       // Present the results of the slow call.
4413       result_reg->init_req(_instance_path, control());
4414       result_val->init_req(_instance_path, alloc_obj);
4415       result_i_o ->set_req(_instance_path, i_o());
4416       result_mem ->set_req(_instance_path, reset_memory());
4417     }
4418 
4419     // Generate code for the slow case.  We make a call to clone().
4420     set_control(_gvn.transform(slow_region));
4421     if (!stopped()) {
4422       PreserveJVMState pjvms(this);
4423       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4424       // We need to deoptimize on exception (see comment above)
4425       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
4426       // this->control() comes from set_results_for_java_call
4427       result_reg->init_req(_slow_path, control());
4428       result_val->init_req(_slow_path, slow_result);
4429       result_i_o ->set_req(_slow_path, i_o());
4430       result_mem ->set_req(_slow_path, reset_memory());
4431     }
4432 
4433     // Return the combined state.
4434     set_control(    _gvn.transform(result_reg));
4435     set_i_o(        _gvn.transform(result_i_o));
4436     set_all_memory( _gvn.transform(result_mem));
4437   } // original reexecute is set back here
4438 
4439   set_result(_gvn.transform(result_val));
4440   return true;
4441 }
4442 
4443 // If we have a tighly coupled allocation, the arraycopy may take care
4444 // of the array initialization. If one of the guards we insert between
4445 // the allocation and the arraycopy causes a deoptimization, an
4446 // unitialized array will escape the compiled method. To prevent that
4447 // we set the JVM state for uncommon traps between the allocation and
4448 // the arraycopy to the state before the allocation so, in case of
4449 // deoptimization, we'll reexecute the allocation and the
4450 // initialization.
4451 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4452   if (alloc != NULL) {
4453     ciMethod* trap_method = alloc->jvms()->method();
4454     int trap_bci = alloc->jvms()->bci();
4455 
4456     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4457           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4458       // Make sure there's no store between the allocation and the
4459       // arraycopy otherwise visible side effects could be rexecuted
4460       // in case of deoptimization and cause incorrect execution.
4461       bool no_interfering_store = true;
4462       Node* mem = alloc->in(TypeFunc::Memory);
4463       if (mem->is_MergeMem()) {
4464         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4465           Node* n = mms.memory();
4466           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4467             assert(n->is_Store(), "what else?");
4468             no_interfering_store = false;
4469             break;
4470           }
4471         }
4472       } else {
4473         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4474           Node* n = mms.memory();
4475           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4476             assert(n->is_Store(), "what else?");
4477             no_interfering_store = false;
4478             break;
4479           }
4480         }
4481       }
4482 
4483       if (no_interfering_store) {
4484         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4485         uint size = alloc->req();
4486         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4487         old_jvms->set_map(sfpt);
4488         for (uint i = 0; i < size; i++) {
4489           sfpt->init_req(i, alloc->in(i));
4490         }
4491         // re-push array length for deoptimization
4492         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4493         old_jvms->set_sp(old_jvms->sp()+1);
4494         old_jvms->set_monoff(old_jvms->monoff()+1);
4495         old_jvms->set_scloff(old_jvms->scloff()+1);
4496         old_jvms->set_endoff(old_jvms->endoff()+1);
4497         old_jvms->set_should_reexecute(true);
4498 
4499         sfpt->set_i_o(map()->i_o());
4500         sfpt->set_memory(map()->memory());
4501         sfpt->set_control(map()->control());
4502 
4503         JVMState* saved_jvms = jvms();
4504         saved_reexecute_sp = _reexecute_sp;
4505 
4506         set_jvms(sfpt->jvms());
4507         _reexecute_sp = jvms()->sp();
4508 
4509         return saved_jvms;
4510       }
4511     }
4512   }
4513   return NULL;
4514 }
4515 
4516 // In case of a deoptimization, we restart execution at the
4517 // allocation, allocating a new array. We would leave an uninitialized
4518 // array in the heap that GCs wouldn't expect. Move the allocation
4519 // after the traps so we don't allocate the array if we
4520 // deoptimize. This is possible because tightly_coupled_allocation()
4521 // guarantees there's no observer of the allocated array at this point
4522 // and the control flow is simple enough.
4523 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4524                                                     int saved_reexecute_sp, uint new_idx) {
4525   if (saved_jvms != NULL && !stopped()) {
4526     assert(alloc != NULL, "only with a tightly coupled allocation");
4527     // restore JVM state to the state at the arraycopy
4528     saved_jvms->map()->set_control(map()->control());
4529     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4530     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4531     // If we've improved the types of some nodes (null check) while
4532     // emitting the guards, propagate them to the current state
4533     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4534     set_jvms(saved_jvms);
4535     _reexecute_sp = saved_reexecute_sp;
4536 
4537     // Remove the allocation from above the guards
4538     CallProjections callprojs;
4539     alloc->extract_projections(&callprojs, true);
4540     InitializeNode* init = alloc->initialization();
4541     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4542     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4543     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4544     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4545 
4546     // move the allocation here (after the guards)
4547     _gvn.hash_delete(alloc);
4548     alloc->set_req(TypeFunc::Control, control());
4549     alloc->set_req(TypeFunc::I_O, i_o());
4550     Node *mem = reset_memory();
4551     set_all_memory(mem);
4552     alloc->set_req(TypeFunc::Memory, mem);
4553     set_control(init->proj_out_or_null(TypeFunc::Control));
4554     set_i_o(callprojs.fallthrough_ioproj);
4555 
4556     // Update memory as done in GraphKit::set_output_for_allocation()
4557     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4558     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4559     if (ary_type->isa_aryptr() && length_type != NULL) {
4560       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4561     }
4562     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4563     int            elemidx  = C->get_alias_index(telemref);
4564     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
4565     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
4566 
4567     Node* allocx = _gvn.transform(alloc);
4568     assert(allocx == alloc, "where has the allocation gone?");
4569     assert(dest->is_CheckCastPP(), "not an allocation result?");
4570 
4571     _gvn.hash_delete(dest);
4572     dest->set_req(0, control());
4573     Node* destx = _gvn.transform(dest);
4574     assert(destx == dest, "where has the allocation result gone?");
4575   }
4576 }
4577 
4578 
4579 //------------------------------inline_arraycopy-----------------------
4580 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4581 //                                                      Object dest, int destPos,
4582 //                                                      int length);
4583 bool LibraryCallKit::inline_arraycopy() {
4584   // Get the arguments.
4585   Node* src         = argument(0);  // type: oop
4586   Node* src_offset  = argument(1);  // type: int
4587   Node* dest        = argument(2);  // type: oop
4588   Node* dest_offset = argument(3);  // type: int
4589   Node* length      = argument(4);  // type: int
4590 
4591   uint new_idx = C->unique();
4592 
4593   // Check for allocation before we add nodes that would confuse
4594   // tightly_coupled_allocation()
4595   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4596 
4597   int saved_reexecute_sp = -1;
4598   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4599   // See arraycopy_restore_alloc_state() comment
4600   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4601   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4602   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
4603   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4604 
4605   // The following tests must be performed
4606   // (1) src and dest are arrays.
4607   // (2) src and dest arrays must have elements of the same BasicType
4608   // (3) src and dest must not be null.
4609   // (4) src_offset must not be negative.
4610   // (5) dest_offset must not be negative.
4611   // (6) length must not be negative.
4612   // (7) src_offset + length must not exceed length of src.
4613   // (8) dest_offset + length must not exceed length of dest.
4614   // (9) each element of an oop array must be assignable
4615 
4616   // (3) src and dest must not be null.
4617   // always do this here because we need the JVM state for uncommon traps
4618   Node* null_ctl = top();
4619   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4620   assert(null_ctl->is_top(), "no null control here");
4621   dest = null_check(dest, T_ARRAY);
4622 
4623   if (!can_emit_guards) {
4624     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4625     // guards but the arraycopy node could still take advantage of a
4626     // tightly allocated allocation. tightly_coupled_allocation() is
4627     // called again to make sure it takes the null check above into
4628     // account: the null check is mandatory and if it caused an
4629     // uncommon trap to be emitted then the allocation can't be
4630     // considered tightly coupled in this context.
4631     alloc = tightly_coupled_allocation(dest, NULL);
4632   }
4633 
4634   bool validated = false;
4635 
4636   const Type* src_type  = _gvn.type(src);
4637   const Type* dest_type = _gvn.type(dest);
4638   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4639   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4640 
4641   // Do we have the type of src?
4642   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4643   // Do we have the type of dest?
4644   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4645   // Is the type for src from speculation?
4646   bool src_spec = false;
4647   // Is the type for dest from speculation?
4648   bool dest_spec = false;
4649 
4650   if ((!has_src || !has_dest) && can_emit_guards) {
4651     // We don't have sufficient type information, let's see if
4652     // speculative types can help. We need to have types for both src
4653     // and dest so that it pays off.
4654 
4655     // Do we already have or could we have type information for src
4656     bool could_have_src = has_src;
4657     // Do we already have or could we have type information for dest
4658     bool could_have_dest = has_dest;
4659 
4660     ciKlass* src_k = NULL;
4661     if (!has_src) {
4662       src_k = src_type->speculative_type_not_null();
4663       if (src_k != NULL && src_k->is_array_klass()) {
4664         could_have_src = true;
4665       }
4666     }
4667 
4668     ciKlass* dest_k = NULL;
4669     if (!has_dest) {
4670       dest_k = dest_type->speculative_type_not_null();
4671       if (dest_k != NULL && dest_k->is_array_klass()) {
4672         could_have_dest = true;
4673       }
4674     }
4675 
4676     if (could_have_src && could_have_dest) {
4677       // This is going to pay off so emit the required guards
4678       if (!has_src) {
4679         src = maybe_cast_profiled_obj(src, src_k, true);
4680         src_type  = _gvn.type(src);
4681         top_src  = src_type->isa_aryptr();
4682         has_src = (top_src != NULL && top_src->klass() != NULL);
4683         src_spec = true;
4684       }
4685       if (!has_dest) {
4686         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4687         dest_type  = _gvn.type(dest);
4688         top_dest  = dest_type->isa_aryptr();
4689         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4690         dest_spec = true;
4691       }
4692     }
4693   }
4694 
4695   if (has_src && has_dest && can_emit_guards) {
4696     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4697     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4698     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4699     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4700 
4701     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4702       // If both arrays are object arrays then having the exact types
4703       // for both will remove the need for a subtype check at runtime
4704       // before the call and may make it possible to pick a faster copy
4705       // routine (without a subtype check on every element)
4706       // Do we have the exact type of src?
4707       bool could_have_src = src_spec;
4708       // Do we have the exact type of dest?
4709       bool could_have_dest = dest_spec;
4710       ciKlass* src_k = top_src->klass();
4711       ciKlass* dest_k = top_dest->klass();
4712       if (!src_spec) {
4713         src_k = src_type->speculative_type_not_null();
4714         if (src_k != NULL && src_k->is_array_klass()) {
4715           could_have_src = true;
4716         }
4717       }
4718       if (!dest_spec) {
4719         dest_k = dest_type->speculative_type_not_null();
4720         if (dest_k != NULL && dest_k->is_array_klass()) {
4721           could_have_dest = true;
4722         }
4723       }
4724       if (could_have_src && could_have_dest) {
4725         // If we can have both exact types, emit the missing guards
4726         if (could_have_src && !src_spec) {
4727           src = maybe_cast_profiled_obj(src, src_k, true);
4728         }
4729         if (could_have_dest && !dest_spec) {
4730           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4731         }
4732       }
4733     }
4734   }
4735 
4736   ciMethod* trap_method = method();
4737   int trap_bci = bci();
4738   if (saved_jvms != NULL) {
4739     trap_method = alloc->jvms()->method();
4740     trap_bci = alloc->jvms()->bci();
4741   }
4742 
4743   bool negative_length_guard_generated = false;
4744 
4745   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4746       can_emit_guards &&
4747       !src->is_top() && !dest->is_top()) {
4748     // validate arguments: enables transformation the ArrayCopyNode
4749     validated = true;
4750 
4751     RegionNode* slow_region = new RegionNode(1);
4752     record_for_igvn(slow_region);
4753 
4754     // (1) src and dest are arrays.
4755     generate_non_array_guard(load_object_klass(src), slow_region);
4756     generate_non_array_guard(load_object_klass(dest), slow_region);
4757 
4758     // (2) src and dest arrays must have elements of the same BasicType
4759     // done at macro expansion or at Ideal transformation time
4760 
4761     // (4) src_offset must not be negative.
4762     generate_negative_guard(src_offset, slow_region);
4763 
4764     // (5) dest_offset must not be negative.
4765     generate_negative_guard(dest_offset, slow_region);
4766 
4767     // (7) src_offset + length must not exceed length of src.
4768     generate_limit_guard(src_offset, length,
4769                          load_array_length(src),
4770                          slow_region);
4771 
4772     // (8) dest_offset + length must not exceed length of dest.
4773     generate_limit_guard(dest_offset, length,
4774                          load_array_length(dest),
4775                          slow_region);
4776 
4777     // (6) length must not be negative.
4778     // This is also checked in generate_arraycopy() during macro expansion, but
4779     // we also have to check it here for the case where the ArrayCopyNode will
4780     // be eliminated by Escape Analysis.
4781     if (EliminateAllocations) {
4782       generate_negative_guard(length, slow_region);
4783       negative_length_guard_generated = true;
4784     }
4785 
4786     // (9) each element of an oop array must be assignable
4787     Node* src_klass  = load_object_klass(src);
4788     Node* dest_klass = load_object_klass(dest);
4789     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4790 
4791     if (not_subtype_ctrl != top()) {
4792       PreserveJVMState pjvms(this);
4793       set_control(not_subtype_ctrl);
4794       uncommon_trap(Deoptimization::Reason_intrinsic,
4795                     Deoptimization::Action_make_not_entrant);
4796       assert(stopped(), "Should be stopped");
4797     }
4798     {
4799       PreserveJVMState pjvms(this);
4800       set_control(_gvn.transform(slow_region));
4801       uncommon_trap(Deoptimization::Reason_intrinsic,
4802                     Deoptimization::Action_make_not_entrant);
4803       assert(stopped(), "Should be stopped");
4804     }
4805 
4806     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
4807     const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
4808     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
4809   }
4810 
4811   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
4812 
4813   if (stopped()) {
4814     return true;
4815   }
4816 
4817   Node* new_src = access_resolve(src, ACCESS_READ);
4818   Node* new_dest = access_resolve(dest, ACCESS_WRITE);
4819 
4820   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, new_src, src_offset, new_dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
4821                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4822                                           // so the compiler has a chance to eliminate them: during macro expansion,
4823                                           // we have to set their control (CastPP nodes are eliminated).
4824                                           load_object_klass(src), load_object_klass(dest),
4825                                           load_array_length(src), load_array_length(dest));
4826 
4827   ac->set_arraycopy(validated);
4828 
4829   Node* n = _gvn.transform(ac);
4830   if (n == ac) {
4831     ac->connect_outputs(this);
4832   } else {
4833     assert(validated, "shouldn't transform if all arguments not validated");
4834     set_all_memory(n);
4835   }
4836   clear_upper_avx();
4837 
4838 
4839   return true;
4840 }
4841 
4842 
4843 // Helper function which determines if an arraycopy immediately follows
4844 // an allocation, with no intervening tests or other escapes for the object.
4845 AllocateArrayNode*
4846 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4847                                            RegionNode* slow_region) {
4848   if (stopped())             return NULL;  // no fast path
4849   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4850 
4851   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4852   if (alloc == NULL)  return NULL;
4853 
4854   Node* rawmem = memory(Compile::AliasIdxRaw);
4855   // Is the allocation's memory state untouched?
4856   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4857     // Bail out if there have been raw-memory effects since the allocation.
4858     // (Example:  There might have been a call or safepoint.)
4859     return NULL;
4860   }
4861   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4862   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4863     return NULL;
4864   }
4865 
4866   // There must be no unexpected observers of this allocation.
4867   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4868     Node* obs = ptr->fast_out(i);
4869     if (obs != this->map()) {
4870       return NULL;
4871     }
4872   }
4873 
4874   // This arraycopy must unconditionally follow the allocation of the ptr.
4875   Node* alloc_ctl = ptr->in(0);
4876   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4877 
4878   Node* ctl = control();
4879   while (ctl != alloc_ctl) {
4880     // There may be guards which feed into the slow_region.
4881     // Any other control flow means that we might not get a chance
4882     // to finish initializing the allocated object.
4883     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4884       IfNode* iff = ctl->in(0)->as_If();
4885       Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
4886       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4887       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4888         ctl = iff->in(0);       // This test feeds the known slow_region.
4889         continue;
4890       }
4891       // One more try:  Various low-level checks bottom out in
4892       // uncommon traps.  If the debug-info of the trap omits
4893       // any reference to the allocation, as we've already
4894       // observed, then there can be no objection to the trap.
4895       bool found_trap = false;
4896       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4897         Node* obs = not_ctl->fast_out(j);
4898         if (obs->in(0) == not_ctl && obs->is_Call() &&
4899             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4900           found_trap = true; break;
4901         }
4902       }
4903       if (found_trap) {
4904         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4905         continue;
4906       }
4907     }
4908     return NULL;
4909   }
4910 
4911   // If we get this far, we have an allocation which immediately
4912   // precedes the arraycopy, and we can take over zeroing the new object.
4913   // The arraycopy will finish the initialization, and provide
4914   // a new control state to which we will anchor the destination pointer.
4915 
4916   return alloc;
4917 }
4918 
4919 //-------------inline_encodeISOArray-----------------------------------
4920 // encode char[] to byte[] in ISO_8859_1
4921 bool LibraryCallKit::inline_encodeISOArray() {
4922   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
4923   // no receiver since it is static method
4924   Node *src         = argument(0);
4925   Node *src_offset  = argument(1);
4926   Node *dst         = argument(2);
4927   Node *dst_offset  = argument(3);
4928   Node *length      = argument(4);
4929 
4930   src = must_be_not_null(src, true);
4931   dst = must_be_not_null(dst, true);
4932 
4933   src = access_resolve(src, ACCESS_READ);
4934   dst = access_resolve(dst, ACCESS_WRITE);
4935 
4936   const Type* src_type = src->Value(&_gvn);
4937   const Type* dst_type = dst->Value(&_gvn);
4938   const TypeAryPtr* top_src = src_type->isa_aryptr();
4939   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
4940   if (top_src  == NULL || top_src->klass()  == NULL ||
4941       top_dest == NULL || top_dest->klass() == NULL) {
4942     // failed array check
4943     return false;
4944   }
4945 
4946   // Figure out the size and type of the elements we will be copying.
4947   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4948   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4949   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
4950     return false;
4951   }
4952 
4953   Node* src_start = array_element_address(src, src_offset, T_CHAR);
4954   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
4955   // 'src_start' points to src array + scaled offset
4956   // 'dst_start' points to dst array + scaled offset
4957 
4958   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
4959   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
4960   enc = _gvn.transform(enc);
4961   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
4962   set_memory(res_mem, mtype);
4963   set_result(enc);
4964   clear_upper_avx();
4965 
4966   return true;
4967 }
4968 
4969 //-------------inline_multiplyToLen-----------------------------------
4970 bool LibraryCallKit::inline_multiplyToLen() {
4971   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
4972 
4973   address stubAddr = StubRoutines::multiplyToLen();
4974   if (stubAddr == NULL) {
4975     return false; // Intrinsic's stub is not implemented on this platform
4976   }
4977   const char* stubName = "multiplyToLen";
4978 
4979   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
4980 
4981   // no receiver because it is a static method
4982   Node* x    = argument(0);
4983   Node* xlen = argument(1);
4984   Node* y    = argument(2);
4985   Node* ylen = argument(3);
4986   Node* z    = argument(4);
4987 
4988   x = must_be_not_null(x, true);
4989   y = must_be_not_null(y, true);
4990 
4991   x = access_resolve(x, ACCESS_READ);
4992   y = access_resolve(y, ACCESS_READ);
4993   z = access_resolve(z, ACCESS_WRITE);
4994 
4995   const Type* x_type = x->Value(&_gvn);
4996   const Type* y_type = y->Value(&_gvn);
4997   const TypeAryPtr* top_x = x_type->isa_aryptr();
4998   const TypeAryPtr* top_y = y_type->isa_aryptr();
4999   if (top_x  == NULL || top_x->klass()  == NULL ||
5000       top_y == NULL || top_y->klass() == NULL) {
5001     // failed array check
5002     return false;
5003   }
5004 
5005   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5006   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5007   if (x_elem != T_INT || y_elem != T_INT) {
5008     return false;
5009   }
5010 
5011   // Set the original stack and the reexecute bit for the interpreter to reexecute
5012   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5013   // on the return from z array allocation in runtime.
5014   { PreserveReexecuteState preexecs(this);
5015     jvms()->set_should_reexecute(true);
5016 
5017     Node* x_start = array_element_address(x, intcon(0), x_elem);
5018     Node* y_start = array_element_address(y, intcon(0), y_elem);
5019     // 'x_start' points to x array + scaled xlen
5020     // 'y_start' points to y array + scaled ylen
5021 
5022     // Allocate the result array
5023     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5024     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5025     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5026 
5027     IdealKit ideal(this);
5028 
5029 #define __ ideal.
5030      Node* one = __ ConI(1);
5031      Node* zero = __ ConI(0);
5032      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5033      __ set(need_alloc, zero);
5034      __ set(z_alloc, z);
5035      __ if_then(z, BoolTest::eq, null()); {
5036        __ increment (need_alloc, one);
5037      } __ else_(); {
5038        // Update graphKit memory and control from IdealKit.
5039        sync_kit(ideal);
5040        Node *cast = new CastPPNode(z, TypePtr::NOTNULL);
5041        cast->init_req(0, control());
5042        _gvn.set_type(cast, cast->bottom_type());
5043        C->record_for_igvn(cast);
5044 
5045        Node* zlen_arg = load_array_length(cast);
5046        // Update IdealKit memory and control from graphKit.
5047        __ sync_kit(this);
5048        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5049          __ increment (need_alloc, one);
5050        } __ end_if();
5051      } __ end_if();
5052 
5053      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5054        // Update graphKit memory and control from IdealKit.
5055        sync_kit(ideal);
5056        Node * narr = new_array(klass_node, zlen, 1);
5057        // Update IdealKit memory and control from graphKit.
5058        __ sync_kit(this);
5059        __ set(z_alloc, narr);
5060      } __ end_if();
5061 
5062      sync_kit(ideal);
5063      z = __ value(z_alloc);
5064      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5065      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5066      // Final sync IdealKit and GraphKit.
5067      final_sync(ideal);
5068 #undef __
5069 
5070     Node* z_start = array_element_address(z, intcon(0), T_INT);
5071 
5072     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5073                                    OptoRuntime::multiplyToLen_Type(),
5074                                    stubAddr, stubName, TypePtr::BOTTOM,
5075                                    x_start, xlen, y_start, ylen, z_start, zlen);
5076   } // original reexecute is set back here
5077 
5078   C->set_has_split_ifs(true); // Has chance for split-if optimization
5079   set_result(z);
5080   return true;
5081 }
5082 
5083 //-------------inline_squareToLen------------------------------------
5084 bool LibraryCallKit::inline_squareToLen() {
5085   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5086 
5087   address stubAddr = StubRoutines::squareToLen();
5088   if (stubAddr == NULL) {
5089     return false; // Intrinsic's stub is not implemented on this platform
5090   }
5091   const char* stubName = "squareToLen";
5092 
5093   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5094 
5095   Node* x    = argument(0);
5096   Node* len  = argument(1);
5097   Node* z    = argument(2);
5098   Node* zlen = argument(3);
5099 
5100   x = must_be_not_null(x, true);
5101   z = must_be_not_null(z, true);
5102 
5103   x = access_resolve(x, ACCESS_READ);
5104   z = access_resolve(z, ACCESS_WRITE);
5105 
5106   const Type* x_type = x->Value(&_gvn);
5107   const Type* z_type = z->Value(&_gvn);
5108   const TypeAryPtr* top_x = x_type->isa_aryptr();
5109   const TypeAryPtr* top_z = z_type->isa_aryptr();
5110   if (top_x  == NULL || top_x->klass()  == NULL ||
5111       top_z  == NULL || top_z->klass()  == NULL) {
5112     // failed array check
5113     return false;
5114   }
5115 
5116   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5117   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5118   if (x_elem != T_INT || z_elem != T_INT) {
5119     return false;
5120   }
5121 
5122 
5123   Node* x_start = array_element_address(x, intcon(0), x_elem);
5124   Node* z_start = array_element_address(z, intcon(0), z_elem);
5125 
5126   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5127                                   OptoRuntime::squareToLen_Type(),
5128                                   stubAddr, stubName, TypePtr::BOTTOM,
5129                                   x_start, len, z_start, zlen);
5130 
5131   set_result(z);
5132   return true;
5133 }
5134 
5135 //-------------inline_mulAdd------------------------------------------
5136 bool LibraryCallKit::inline_mulAdd() {
5137   assert(UseMulAddIntrinsic, "not implemented on this platform");
5138 
5139   address stubAddr = StubRoutines::mulAdd();
5140   if (stubAddr == NULL) {
5141     return false; // Intrinsic's stub is not implemented on this platform
5142   }
5143   const char* stubName = "mulAdd";
5144 
5145   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5146 
5147   Node* out      = argument(0);
5148   Node* in       = argument(1);
5149   Node* offset   = argument(2);
5150   Node* len      = argument(3);
5151   Node* k        = argument(4);
5152 
5153   out = must_be_not_null(out, true);
5154 
5155   in = access_resolve(in, ACCESS_READ);
5156   out = access_resolve(out, ACCESS_WRITE);
5157 
5158   const Type* out_type = out->Value(&_gvn);
5159   const Type* in_type = in->Value(&_gvn);
5160   const TypeAryPtr* top_out = out_type->isa_aryptr();
5161   const TypeAryPtr* top_in = in_type->isa_aryptr();
5162   if (top_out  == NULL || top_out->klass()  == NULL ||
5163       top_in == NULL || top_in->klass() == NULL) {
5164     // failed array check
5165     return false;
5166   }
5167 
5168   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5169   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5170   if (out_elem != T_INT || in_elem != T_INT) {
5171     return false;
5172   }
5173 
5174   Node* outlen = load_array_length(out);
5175   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5176   Node* out_start = array_element_address(out, intcon(0), out_elem);
5177   Node* in_start = array_element_address(in, intcon(0), in_elem);
5178 
5179   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5180                                   OptoRuntime::mulAdd_Type(),
5181                                   stubAddr, stubName, TypePtr::BOTTOM,
5182                                   out_start,in_start, new_offset, len, k);
5183   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5184   set_result(result);
5185   return true;
5186 }
5187 
5188 //-------------inline_montgomeryMultiply-----------------------------------
5189 bool LibraryCallKit::inline_montgomeryMultiply() {
5190   address stubAddr = StubRoutines::montgomeryMultiply();
5191   if (stubAddr == NULL) {
5192     return false; // Intrinsic's stub is not implemented on this platform
5193   }
5194 
5195   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5196   const char* stubName = "montgomery_multiply";
5197 
5198   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5199 
5200   Node* a    = argument(0);
5201   Node* b    = argument(1);
5202   Node* n    = argument(2);
5203   Node* len  = argument(3);
5204   Node* inv  = argument(4);
5205   Node* m    = argument(6);
5206 
5207   a = access_resolve(a, ACCESS_READ);
5208   b = access_resolve(b, ACCESS_READ);
5209   n = access_resolve(n, ACCESS_READ);
5210   m = access_resolve(m, ACCESS_WRITE);
5211 
5212   const Type* a_type = a->Value(&_gvn);
5213   const TypeAryPtr* top_a = a_type->isa_aryptr();
5214   const Type* b_type = b->Value(&_gvn);
5215   const TypeAryPtr* top_b = b_type->isa_aryptr();
5216   const Type* n_type = a->Value(&_gvn);
5217   const TypeAryPtr* top_n = n_type->isa_aryptr();
5218   const Type* m_type = a->Value(&_gvn);
5219   const TypeAryPtr* top_m = m_type->isa_aryptr();
5220   if (top_a  == NULL || top_a->klass()  == NULL ||
5221       top_b == NULL || top_b->klass()  == NULL ||
5222       top_n == NULL || top_n->klass()  == NULL ||
5223       top_m == NULL || top_m->klass()  == NULL) {
5224     // failed array check
5225     return false;
5226   }
5227 
5228   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5229   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5230   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5231   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5232   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5233     return false;
5234   }
5235 
5236   // Make the call
5237   {
5238     Node* a_start = array_element_address(a, intcon(0), a_elem);
5239     Node* b_start = array_element_address(b, intcon(0), b_elem);
5240     Node* n_start = array_element_address(n, intcon(0), n_elem);
5241     Node* m_start = array_element_address(m, intcon(0), m_elem);
5242 
5243     Node* call = make_runtime_call(RC_LEAF,
5244                                    OptoRuntime::montgomeryMultiply_Type(),
5245                                    stubAddr, stubName, TypePtr::BOTTOM,
5246                                    a_start, b_start, n_start, len, inv, top(),
5247                                    m_start);
5248     set_result(m);
5249   }
5250 
5251   return true;
5252 }
5253 
5254 bool LibraryCallKit::inline_montgomerySquare() {
5255   address stubAddr = StubRoutines::montgomerySquare();
5256   if (stubAddr == NULL) {
5257     return false; // Intrinsic's stub is not implemented on this platform
5258   }
5259 
5260   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5261   const char* stubName = "montgomery_square";
5262 
5263   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5264 
5265   Node* a    = argument(0);
5266   Node* n    = argument(1);
5267   Node* len  = argument(2);
5268   Node* inv  = argument(3);
5269   Node* m    = argument(5);
5270 
5271   a = access_resolve(a, ACCESS_READ);
5272   n = access_resolve(n, ACCESS_READ);
5273   m = access_resolve(m, ACCESS_WRITE);
5274 
5275   const Type* a_type = a->Value(&_gvn);
5276   const TypeAryPtr* top_a = a_type->isa_aryptr();
5277   const Type* n_type = a->Value(&_gvn);
5278   const TypeAryPtr* top_n = n_type->isa_aryptr();
5279   const Type* m_type = a->Value(&_gvn);
5280   const TypeAryPtr* top_m = m_type->isa_aryptr();
5281   if (top_a  == NULL || top_a->klass()  == NULL ||
5282       top_n == NULL || top_n->klass()  == NULL ||
5283       top_m == NULL || top_m->klass()  == NULL) {
5284     // failed array check
5285     return false;
5286   }
5287 
5288   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5289   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5290   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5291   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5292     return false;
5293   }
5294 
5295   // Make the call
5296   {
5297     Node* a_start = array_element_address(a, intcon(0), a_elem);
5298     Node* n_start = array_element_address(n, intcon(0), n_elem);
5299     Node* m_start = array_element_address(m, intcon(0), m_elem);
5300 
5301     Node* call = make_runtime_call(RC_LEAF,
5302                                    OptoRuntime::montgomerySquare_Type(),
5303                                    stubAddr, stubName, TypePtr::BOTTOM,
5304                                    a_start, n_start, len, inv, top(),
5305                                    m_start);
5306     set_result(m);
5307   }
5308 
5309   return true;
5310 }
5311 
5312 //-------------inline_vectorizedMismatch------------------------------
5313 bool LibraryCallKit::inline_vectorizedMismatch() {
5314   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5315 
5316   address stubAddr = StubRoutines::vectorizedMismatch();
5317   if (stubAddr == NULL) {
5318     return false; // Intrinsic's stub is not implemented on this platform
5319   }
5320   const char* stubName = "vectorizedMismatch";
5321   int size_l = callee()->signature()->size();
5322   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5323 
5324   Node* obja = argument(0);
5325   Node* aoffset = argument(1);
5326   Node* objb = argument(3);
5327   Node* boffset = argument(4);
5328   Node* length = argument(6);
5329   Node* scale = argument(7);
5330 
5331   const Type* a_type = obja->Value(&_gvn);
5332   const Type* b_type = objb->Value(&_gvn);
5333   const TypeAryPtr* top_a = a_type->isa_aryptr();
5334   const TypeAryPtr* top_b = b_type->isa_aryptr();
5335   if (top_a == NULL || top_a->klass() == NULL ||
5336     top_b == NULL || top_b->klass() == NULL) {
5337     // failed array check
5338     return false;
5339   }
5340 
5341   Node* call;
5342   jvms()->set_should_reexecute(true);
5343 
5344   Node* obja_adr = make_unsafe_address(obja, aoffset);
5345   Node* objb_adr = make_unsafe_address(objb, boffset);
5346 
5347   call = make_runtime_call(RC_LEAF,
5348     OptoRuntime::vectorizedMismatch_Type(),
5349     stubAddr, stubName, TypePtr::BOTTOM,
5350     obja_adr, objb_adr, length, scale);
5351 
5352   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5353   set_result(result);
5354   return true;
5355 }
5356 
5357 /**
5358  * Calculate CRC32 for byte.
5359  * int java.util.zip.CRC32.update(int crc, int b)
5360  */
5361 bool LibraryCallKit::inline_updateCRC32() {
5362   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5363   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5364   // no receiver since it is static method
5365   Node* crc  = argument(0); // type: int
5366   Node* b    = argument(1); // type: int
5367 
5368   /*
5369    *    int c = ~ crc;
5370    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5371    *    b = b ^ (c >>> 8);
5372    *    crc = ~b;
5373    */
5374 
5375   Node* M1 = intcon(-1);
5376   crc = _gvn.transform(new XorINode(crc, M1));
5377   Node* result = _gvn.transform(new XorINode(crc, b));
5378   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5379 
5380   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5381   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5382   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5383   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5384 
5385   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5386   result = _gvn.transform(new XorINode(crc, result));
5387   result = _gvn.transform(new XorINode(result, M1));
5388   set_result(result);
5389   return true;
5390 }
5391 
5392 bool LibraryCallKit::inline_setBit() {
5393   Node* bits = argument(0); // type: oop
5394   Node* index = argument(1); // type: int
5395 
5396   Node* hi = _gvn.transform(new RShiftINode(index, intcon(3)));
5397   Node* bit = array_element_address(bits, hi, T_BYTE);
5398 
5399   Node* lo = _gvn.transform(new AndINode(index, intcon(7)));
5400   Node* value = _gvn.transform(new LShiftINode(intcon(1), lo));
5401 
5402   store_to_memory(control(), bit, value, T_BYTE, TypeAryPtr::BYTES, MemNode::unordered,
5403                   false, false, false, 1);
5404 
5405   return true;
5406 }
5407 
5408 bool LibraryCallKit::inline_clrBit() {
5409   Node* bits = argument(0); // type: oop
5410   Node* index = argument(1); // type: int
5411 
5412   Node* hi = _gvn.transform(new RShiftINode(index, intcon(3)));
5413   Node* bit = array_element_address(bits, hi, T_BYTE);
5414 
5415   Node* lo = _gvn.transform(new AndINode(index, intcon(7)));
5416   Node* value = _gvn.transform(new LShiftINode(intcon(1), lo));
5417   value = _gvn.transform(new XorINode(value, intcon(-1)));
5418 
5419   store_to_memory(control(), bit, value, T_BYTE, TypeAryPtr::BYTES, MemNode::unordered,
5420                   false, false, false, 0);
5421 
5422   return true;
5423 }
5424 
5425 /**
5426  * Calculate CRC32 for byte[] array.
5427  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5428  */
5429 bool LibraryCallKit::inline_updateBytesCRC32() {
5430   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5431   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5432   // no receiver since it is static method
5433   Node* crc     = argument(0); // type: int
5434   Node* src     = argument(1); // type: oop
5435   Node* offset  = argument(2); // type: int
5436   Node* length  = argument(3); // type: int
5437 
5438   const Type* src_type = src->Value(&_gvn);
5439   const TypeAryPtr* top_src = src_type->isa_aryptr();
5440   if (top_src  == NULL || top_src->klass()  == NULL) {
5441     // failed array check
5442     return false;
5443   }
5444 
5445   // Figure out the size and type of the elements we will be copying.
5446   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5447   if (src_elem != T_BYTE) {
5448     return false;
5449   }
5450 
5451   // 'src_start' points to src array + scaled offset
5452   src = must_be_not_null(src, true);
5453   src = access_resolve(src, ACCESS_READ);
5454   Node* src_start = array_element_address(src, offset, src_elem);
5455 
5456   // We assume that range check is done by caller.
5457   // TODO: generate range check (offset+length < src.length) in debug VM.
5458 
5459   // Call the stub.
5460   address stubAddr = StubRoutines::updateBytesCRC32();
5461   const char *stubName = "updateBytesCRC32";
5462 
5463   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5464                                  stubAddr, stubName, TypePtr::BOTTOM,
5465                                  crc, src_start, length);
5466   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5467   set_result(result);
5468   return true;
5469 }
5470 
5471 /**
5472  * Calculate CRC32 for ByteBuffer.
5473  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5474  */
5475 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5476   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5477   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5478   // no receiver since it is static method
5479   Node* crc     = argument(0); // type: int
5480   Node* src     = argument(1); // type: long
5481   Node* offset  = argument(3); // type: int
5482   Node* length  = argument(4); // type: int
5483 
5484   src = ConvL2X(src);  // adjust Java long to machine word
5485   Node* base = _gvn.transform(new CastX2PNode(src));
5486   offset = ConvI2X(offset);
5487 
5488   // 'src_start' points to src array + scaled offset
5489   Node* src_start = basic_plus_adr(top(), base, offset);
5490 
5491   // Call the stub.
5492   address stubAddr = StubRoutines::updateBytesCRC32();
5493   const char *stubName = "updateBytesCRC32";
5494 
5495   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5496                                  stubAddr, stubName, TypePtr::BOTTOM,
5497                                  crc, src_start, length);
5498   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5499   set_result(result);
5500   return true;
5501 }
5502 
5503 //------------------------------get_table_from_crc32c_class-----------------------
5504 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5505   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5506   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5507 
5508   return table;
5509 }
5510 
5511 //------------------------------inline_updateBytesCRC32C-----------------------
5512 //
5513 // Calculate CRC32C for byte[] array.
5514 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5515 //
5516 bool LibraryCallKit::inline_updateBytesCRC32C() {
5517   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5518   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5519   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5520   // no receiver since it is a static method
5521   Node* crc     = argument(0); // type: int
5522   Node* src     = argument(1); // type: oop
5523   Node* offset  = argument(2); // type: int
5524   Node* end     = argument(3); // type: int
5525 
5526   Node* length = _gvn.transform(new SubINode(end, offset));
5527 
5528   const Type* src_type = src->Value(&_gvn);
5529   const TypeAryPtr* top_src = src_type->isa_aryptr();
5530   if (top_src  == NULL || top_src->klass()  == NULL) {
5531     // failed array check
5532     return false;
5533   }
5534 
5535   // Figure out the size and type of the elements we will be copying.
5536   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5537   if (src_elem != T_BYTE) {
5538     return false;
5539   }
5540 
5541   // 'src_start' points to src array + scaled offset
5542   src = must_be_not_null(src, true);
5543   src = access_resolve(src, ACCESS_READ);
5544   Node* src_start = array_element_address(src, offset, src_elem);
5545 
5546   // static final int[] byteTable in class CRC32C
5547   Node* table = get_table_from_crc32c_class(callee()->holder());
5548   table = must_be_not_null(table, true);
5549   table = access_resolve(table, ACCESS_READ);
5550   Node* table_start = array_element_address(table, intcon(0), T_INT);
5551 
5552   // We assume that range check is done by caller.
5553   // TODO: generate range check (offset+length < src.length) in debug VM.
5554 
5555   // Call the stub.
5556   address stubAddr = StubRoutines::updateBytesCRC32C();
5557   const char *stubName = "updateBytesCRC32C";
5558 
5559   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5560                                  stubAddr, stubName, TypePtr::BOTTOM,
5561                                  crc, src_start, length, table_start);
5562   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5563   set_result(result);
5564   return true;
5565 }
5566 
5567 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5568 //
5569 // Calculate CRC32C for DirectByteBuffer.
5570 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5571 //
5572 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5573   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5574   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5575   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5576   // no receiver since it is a static method
5577   Node* crc     = argument(0); // type: int
5578   Node* src     = argument(1); // type: long
5579   Node* offset  = argument(3); // type: int
5580   Node* end     = argument(4); // type: int
5581 
5582   Node* length = _gvn.transform(new SubINode(end, offset));
5583 
5584   src = ConvL2X(src);  // adjust Java long to machine word
5585   Node* base = _gvn.transform(new CastX2PNode(src));
5586   offset = ConvI2X(offset);
5587 
5588   // 'src_start' points to src array + scaled offset
5589   Node* src_start = basic_plus_adr(top(), base, offset);
5590 
5591   // static final int[] byteTable in class CRC32C
5592   Node* table = get_table_from_crc32c_class(callee()->holder());
5593   table = must_be_not_null(table, true);
5594   table = access_resolve(table, ACCESS_READ);
5595   Node* table_start = array_element_address(table, intcon(0), T_INT);
5596 
5597   // Call the stub.
5598   address stubAddr = StubRoutines::updateBytesCRC32C();
5599   const char *stubName = "updateBytesCRC32C";
5600 
5601   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5602                                  stubAddr, stubName, TypePtr::BOTTOM,
5603                                  crc, src_start, length, table_start);
5604   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5605   set_result(result);
5606   return true;
5607 }
5608 
5609 //------------------------------inline_updateBytesAdler32----------------------
5610 //
5611 // Calculate Adler32 checksum for byte[] array.
5612 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5613 //
5614 bool LibraryCallKit::inline_updateBytesAdler32() {
5615   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5616   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5617   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5618   // no receiver since it is static method
5619   Node* crc     = argument(0); // type: int
5620   Node* src     = argument(1); // type: oop
5621   Node* offset  = argument(2); // type: int
5622   Node* length  = argument(3); // type: int
5623 
5624   const Type* src_type = src->Value(&_gvn);
5625   const TypeAryPtr* top_src = src_type->isa_aryptr();
5626   if (top_src  == NULL || top_src->klass()  == NULL) {
5627     // failed array check
5628     return false;
5629   }
5630 
5631   // Figure out the size and type of the elements we will be copying.
5632   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5633   if (src_elem != T_BYTE) {
5634     return false;
5635   }
5636 
5637   // 'src_start' points to src array + scaled offset
5638   src = access_resolve(src, ACCESS_READ);
5639   Node* src_start = array_element_address(src, offset, src_elem);
5640 
5641   // We assume that range check is done by caller.
5642   // TODO: generate range check (offset+length < src.length) in debug VM.
5643 
5644   // Call the stub.
5645   address stubAddr = StubRoutines::updateBytesAdler32();
5646   const char *stubName = "updateBytesAdler32";
5647 
5648   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5649                                  stubAddr, stubName, TypePtr::BOTTOM,
5650                                  crc, src_start, length);
5651   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5652   set_result(result);
5653   return true;
5654 }
5655 
5656 //------------------------------inline_updateByteBufferAdler32---------------
5657 //
5658 // Calculate Adler32 checksum for DirectByteBuffer.
5659 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5660 //
5661 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5662   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5663   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5664   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5665   // no receiver since it is static method
5666   Node* crc     = argument(0); // type: int
5667   Node* src     = argument(1); // type: long
5668   Node* offset  = argument(3); // type: int
5669   Node* length  = argument(4); // type: int
5670 
5671   src = ConvL2X(src);  // adjust Java long to machine word
5672   Node* base = _gvn.transform(new CastX2PNode(src));
5673   offset = ConvI2X(offset);
5674 
5675   // 'src_start' points to src array + scaled offset
5676   Node* src_start = basic_plus_adr(top(), base, offset);
5677 
5678   // Call the stub.
5679   address stubAddr = StubRoutines::updateBytesAdler32();
5680   const char *stubName = "updateBytesAdler32";
5681 
5682   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5683                                  stubAddr, stubName, TypePtr::BOTTOM,
5684                                  crc, src_start, length);
5685 
5686   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5687   set_result(result);
5688   return true;
5689 }
5690 
5691 //----------------------------inline_reference_get----------------------------
5692 // public T java.lang.ref.Reference.get();
5693 bool LibraryCallKit::inline_reference_get() {
5694   const int referent_offset = java_lang_ref_Reference::referent_offset;
5695   guarantee(referent_offset > 0, "should have already been set");
5696 
5697   // Get the argument:
5698   Node* reference_obj = null_check_receiver();
5699   if (stopped()) return true;
5700 
5701   const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr();
5702   assert(tinst != NULL, "obj is null");
5703   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5704   ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass();
5705   ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"),
5706                                                      ciSymbol::make("Ljava/lang/Object;"),
5707                                                      false);
5708   assert (field != NULL, "undefined field");
5709 
5710   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5711   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5712 
5713   ciInstanceKlass* klass = env()->Object_klass();
5714   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5715 
5716   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
5717   Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators);
5718   // Add memory barrier to prevent commoning reads from this field
5719   // across safepoint since GC can change its value.
5720   insert_mem_bar(Op_MemBarCPUOrder);
5721 
5722   set_result(result);
5723   return true;
5724 }
5725 
5726 
5727 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5728                                               bool is_exact=true, bool is_static=false,
5729                                               ciInstanceKlass * fromKls=NULL) {
5730   if (fromKls == NULL) {
5731     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5732     assert(tinst != NULL, "obj is null");
5733     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5734     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5735     fromKls = tinst->klass()->as_instance_klass();
5736   } else {
5737     assert(is_static, "only for static field access");
5738   }
5739   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5740                                               ciSymbol::make(fieldTypeString),
5741                                               is_static);
5742 
5743   assert (field != NULL, "undefined field");
5744   if (field == NULL) return (Node *) NULL;
5745 
5746   if (is_static) {
5747     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5748     fromObj = makecon(tip);
5749   }
5750 
5751   // Next code  copied from Parse::do_get_xxx():
5752 
5753   // Compute address and memory type.
5754   int offset  = field->offset_in_bytes();
5755   bool is_vol = field->is_volatile();
5756   ciType* field_klass = field->type();
5757   assert(field_klass->is_loaded(), "should be loaded");
5758   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5759   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5760   BasicType bt = field->layout_type();
5761 
5762   // Build the resultant type of the load
5763   const Type *type;
5764   if (bt == T_OBJECT) {
5765     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5766   } else {
5767     type = Type::get_const_basic_type(bt);
5768   }
5769 
5770   DecoratorSet decorators = IN_HEAP;
5771 
5772   if (is_vol) {
5773     decorators |= MO_SEQ_CST;
5774   }
5775 
5776   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
5777 }
5778 
5779 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5780                                                  bool is_exact = true, bool is_static = false,
5781                                                  ciInstanceKlass * fromKls = NULL) {
5782   if (fromKls == NULL) {
5783     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5784     assert(tinst != NULL, "obj is null");
5785     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5786     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5787     fromKls = tinst->klass()->as_instance_klass();
5788   }
5789   else {
5790     assert(is_static, "only for static field access");
5791   }
5792   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5793     ciSymbol::make(fieldTypeString),
5794     is_static);
5795 
5796   assert(field != NULL, "undefined field");
5797   assert(!field->is_volatile(), "not defined for volatile fields");
5798 
5799   if (is_static) {
5800     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5801     fromObj = makecon(tip);
5802   }
5803 
5804   // Next code  copied from Parse::do_get_xxx():
5805 
5806   // Compute address and memory type.
5807   int offset = field->offset_in_bytes();
5808   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5809 
5810   return adr;
5811 }
5812 
5813 //------------------------------inline_aescrypt_Block-----------------------
5814 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5815   address stubAddr = NULL;
5816   const char *stubName;
5817   assert(UseAES, "need AES instruction support");
5818 
5819   switch(id) {
5820   case vmIntrinsics::_aescrypt_encryptBlock:
5821     stubAddr = StubRoutines::aescrypt_encryptBlock();
5822     stubName = "aescrypt_encryptBlock";
5823     break;
5824   case vmIntrinsics::_aescrypt_decryptBlock:
5825     stubAddr = StubRoutines::aescrypt_decryptBlock();
5826     stubName = "aescrypt_decryptBlock";
5827     break;
5828   default:
5829     break;
5830   }
5831   if (stubAddr == NULL) return false;
5832 
5833   Node* aescrypt_object = argument(0);
5834   Node* src             = argument(1);
5835   Node* src_offset      = argument(2);
5836   Node* dest            = argument(3);
5837   Node* dest_offset     = argument(4);
5838 
5839   src = must_be_not_null(src, true);
5840   dest = must_be_not_null(dest, true);
5841 
5842   src = access_resolve(src, ACCESS_READ);
5843   dest = access_resolve(dest, ACCESS_WRITE);
5844 
5845   // (1) src and dest are arrays.
5846   const Type* src_type = src->Value(&_gvn);
5847   const Type* dest_type = dest->Value(&_gvn);
5848   const TypeAryPtr* top_src = src_type->isa_aryptr();
5849   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5850   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5851 
5852   // for the quick and dirty code we will skip all the checks.
5853   // we are just trying to get the call to be generated.
5854   Node* src_start  = src;
5855   Node* dest_start = dest;
5856   if (src_offset != NULL || dest_offset != NULL) {
5857     assert(src_offset != NULL && dest_offset != NULL, "");
5858     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5859     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5860   }
5861 
5862   // now need to get the start of its expanded key array
5863   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5864   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5865   if (k_start == NULL) return false;
5866 
5867   if (Matcher::pass_original_key_for_aes()) {
5868     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5869     // compatibility issues between Java key expansion and SPARC crypto instructions
5870     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5871     if (original_k_start == NULL) return false;
5872 
5873     // Call the stub.
5874     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5875                       stubAddr, stubName, TypePtr::BOTTOM,
5876                       src_start, dest_start, k_start, original_k_start);
5877   } else {
5878     // Call the stub.
5879     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5880                       stubAddr, stubName, TypePtr::BOTTOM,
5881                       src_start, dest_start, k_start);
5882   }
5883 
5884   return true;
5885 }
5886 
5887 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5888 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5889   address stubAddr = NULL;
5890   const char *stubName = NULL;
5891 
5892   assert(UseAES, "need AES instruction support");
5893 
5894   switch(id) {
5895   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5896     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5897     stubName = "cipherBlockChaining_encryptAESCrypt";
5898     break;
5899   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5900     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5901     stubName = "cipherBlockChaining_decryptAESCrypt";
5902     break;
5903   default:
5904     break;
5905   }
5906   if (stubAddr == NULL) return false;
5907 
5908   Node* cipherBlockChaining_object = argument(0);
5909   Node* src                        = argument(1);
5910   Node* src_offset                 = argument(2);
5911   Node* len                        = argument(3);
5912   Node* dest                       = argument(4);
5913   Node* dest_offset                = argument(5);
5914 
5915   src = must_be_not_null(src, false);
5916   dest = must_be_not_null(dest, false);
5917 
5918   src = access_resolve(src, ACCESS_READ);
5919   dest = access_resolve(dest, ACCESS_WRITE);
5920 
5921   // (1) src and dest are arrays.
5922   const Type* src_type = src->Value(&_gvn);
5923   const Type* dest_type = dest->Value(&_gvn);
5924   const TypeAryPtr* top_src = src_type->isa_aryptr();
5925   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5926   assert (top_src  != NULL && top_src->klass()  != NULL
5927           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5928 
5929   // checks are the responsibility of the caller
5930   Node* src_start  = src;
5931   Node* dest_start = dest;
5932   if (src_offset != NULL || dest_offset != NULL) {
5933     assert(src_offset != NULL && dest_offset != NULL, "");
5934     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5935     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5936   }
5937 
5938   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5939   // (because of the predicated logic executed earlier).
5940   // so we cast it here safely.
5941   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5942 
5943   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5944   if (embeddedCipherObj == NULL) return false;
5945 
5946   // cast it to what we know it will be at runtime
5947   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5948   assert(tinst != NULL, "CBC obj is null");
5949   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5950   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5951   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5952 
5953   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5954   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5955   const TypeOopPtr* xtype = aklass->as_instance_type();
5956   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5957   aescrypt_object = _gvn.transform(aescrypt_object);
5958 
5959   // we need to get the start of the aescrypt_object's expanded key array
5960   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5961   if (k_start == NULL) return false;
5962 
5963   // similarly, get the start address of the r vector
5964   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5965   if (objRvec == NULL) return false;
5966   objRvec = access_resolve(objRvec, ACCESS_WRITE);
5967   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5968 
5969   Node* cbcCrypt;
5970   if (Matcher::pass_original_key_for_aes()) {
5971     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5972     // compatibility issues between Java key expansion and SPARC crypto instructions
5973     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5974     if (original_k_start == NULL) return false;
5975 
5976     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5977     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5978                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5979                                  stubAddr, stubName, TypePtr::BOTTOM,
5980                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5981   } else {
5982     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5983     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5984                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5985                                  stubAddr, stubName, TypePtr::BOTTOM,
5986                                  src_start, dest_start, k_start, r_start, len);
5987   }
5988 
5989   // return cipher length (int)
5990   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5991   set_result(retvalue);
5992   return true;
5993 }
5994 
5995 //------------------------------inline_counterMode_AESCrypt-----------------------
5996 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
5997   assert(UseAES, "need AES instruction support");
5998   if (!UseAESCTRIntrinsics) return false;
5999 
6000   address stubAddr = NULL;
6001   const char *stubName = NULL;
6002   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6003     stubAddr = StubRoutines::counterMode_AESCrypt();
6004     stubName = "counterMode_AESCrypt";
6005   }
6006   if (stubAddr == NULL) return false;
6007 
6008   Node* counterMode_object = argument(0);
6009   Node* src = argument(1);
6010   Node* src_offset = argument(2);
6011   Node* len = argument(3);
6012   Node* dest = argument(4);
6013   Node* dest_offset = argument(5);
6014 
6015   src = access_resolve(src, ACCESS_READ);
6016   dest = access_resolve(dest, ACCESS_WRITE);
6017   counterMode_object = access_resolve(counterMode_object, ACCESS_WRITE);
6018 
6019   // (1) src and dest are arrays.
6020   const Type* src_type = src->Value(&_gvn);
6021   const Type* dest_type = dest->Value(&_gvn);
6022   const TypeAryPtr* top_src = src_type->isa_aryptr();
6023   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6024   assert(top_src != NULL && top_src->klass() != NULL &&
6025          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6026 
6027   // checks are the responsibility of the caller
6028   Node* src_start = src;
6029   Node* dest_start = dest;
6030   if (src_offset != NULL || dest_offset != NULL) {
6031     assert(src_offset != NULL && dest_offset != NULL, "");
6032     src_start = array_element_address(src, src_offset, T_BYTE);
6033     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6034   }
6035 
6036   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6037   // (because of the predicated logic executed earlier).
6038   // so we cast it here safely.
6039   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6040   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6041   if (embeddedCipherObj == NULL) return false;
6042   // cast it to what we know it will be at runtime
6043   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6044   assert(tinst != NULL, "CTR obj is null");
6045   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6046   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6047   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6048   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6049   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6050   const TypeOopPtr* xtype = aklass->as_instance_type();
6051   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6052   aescrypt_object = _gvn.transform(aescrypt_object);
6053   // we need to get the start of the aescrypt_object's expanded key array
6054   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6055   if (k_start == NULL) return false;
6056   // similarly, get the start address of the r vector
6057   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6058   if (obj_counter == NULL) return false;
6059   obj_counter = access_resolve(obj_counter, ACCESS_WRITE);
6060   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6061 
6062   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6063   if (saved_encCounter == NULL) return false;
6064   saved_encCounter = access_resolve(saved_encCounter, ACCESS_WRITE);
6065   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6066   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6067 
6068   Node* ctrCrypt;
6069   if (Matcher::pass_original_key_for_aes()) {
6070     // no SPARC version for AES/CTR intrinsics now.
6071     return false;
6072   }
6073   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6074   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6075                                OptoRuntime::counterMode_aescrypt_Type(),
6076                                stubAddr, stubName, TypePtr::BOTTOM,
6077                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6078 
6079   // return cipher length (int)
6080   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6081   set_result(retvalue);
6082   return true;
6083 }
6084 
6085 //------------------------------get_key_start_from_aescrypt_object-----------------------
6086 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6087 #if defined(PPC64) || defined(S390)
6088   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6089   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6090   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6091   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6092   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6093   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6094   if (objSessionK == NULL) {
6095     return (Node *) NULL;
6096   }
6097   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6098 #else
6099   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6100 #endif // PPC64
6101   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6102   if (objAESCryptKey == NULL) return (Node *) NULL;
6103 
6104   // now have the array, need to get the start address of the K array
6105   objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ);
6106   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6107   return k_start;
6108 }
6109 
6110 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6111 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6112   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6113   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6114   if (objAESCryptKey == NULL) return (Node *) NULL;
6115 
6116   // now have the array, need to get the start address of the lastKey array
6117   objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ);
6118   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6119   return original_k_start;
6120 }
6121 
6122 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6123 // Return node representing slow path of predicate check.
6124 // the pseudo code we want to emulate with this predicate is:
6125 // for encryption:
6126 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6127 // for decryption:
6128 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6129 //    note cipher==plain is more conservative than the original java code but that's OK
6130 //
6131 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6132   // The receiver was checked for NULL already.
6133   Node* objCBC = argument(0);
6134 
6135   Node* src = argument(1);
6136   Node* dest = argument(4);
6137 
6138   // Load embeddedCipher field of CipherBlockChaining object.
6139   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6140 
6141   // get AESCrypt klass for instanceOf check
6142   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6143   // will have same classloader as CipherBlockChaining object
6144   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6145   assert(tinst != NULL, "CBCobj is null");
6146   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6147 
6148   // we want to do an instanceof comparison against the AESCrypt class
6149   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6150   if (!klass_AESCrypt->is_loaded()) {
6151     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6152     Node* ctrl = control();
6153     set_control(top()); // no regular fast path
6154     return ctrl;
6155   }
6156 
6157   src = must_be_not_null(src, true);
6158   dest = must_be_not_null(dest, true);
6159 
6160   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6161 
6162   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6163   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6164   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6165 
6166   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6167 
6168   // for encryption, we are done
6169   if (!decrypting)
6170     return instof_false;  // even if it is NULL
6171 
6172   // for decryption, we need to add a further check to avoid
6173   // taking the intrinsic path when cipher and plain are the same
6174   // see the original java code for why.
6175   RegionNode* region = new RegionNode(3);
6176   region->init_req(1, instof_false);
6177 
6178   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6179   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6180   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6181   region->init_req(2, src_dest_conjoint);
6182 
6183   record_for_igvn(region);
6184   return _gvn.transform(region);
6185 }
6186 
6187 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6188 // Return node representing slow path of predicate check.
6189 // the pseudo code we want to emulate with this predicate is:
6190 // for encryption:
6191 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6192 // for decryption:
6193 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6194 //    note cipher==plain is more conservative than the original java code but that's OK
6195 //
6196 
6197 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6198   // The receiver was checked for NULL already.
6199   Node* objCTR = argument(0);
6200 
6201   // Load embeddedCipher field of CipherBlockChaining object.
6202   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6203 
6204   // get AESCrypt klass for instanceOf check
6205   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6206   // will have same classloader as CipherBlockChaining object
6207   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6208   assert(tinst != NULL, "CTRobj is null");
6209   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6210 
6211   // we want to do an instanceof comparison against the AESCrypt class
6212   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6213   if (!klass_AESCrypt->is_loaded()) {
6214     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6215     Node* ctrl = control();
6216     set_control(top()); // no regular fast path
6217     return ctrl;
6218   }
6219 
6220   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6221   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6222   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6223   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6224   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6225 
6226   return instof_false; // even if it is NULL
6227 }
6228 
6229 //------------------------------inline_ghash_processBlocks
6230 bool LibraryCallKit::inline_ghash_processBlocks() {
6231   address stubAddr;
6232   const char *stubName;
6233   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6234 
6235   stubAddr = StubRoutines::ghash_processBlocks();
6236   stubName = "ghash_processBlocks";
6237 
6238   Node* data           = argument(0);
6239   Node* offset         = argument(1);
6240   Node* len            = argument(2);
6241   Node* state          = argument(3);
6242   Node* subkeyH        = argument(4);
6243 
6244   state = must_be_not_null(state, true);
6245   subkeyH = must_be_not_null(subkeyH, true);
6246   data = must_be_not_null(data, true);
6247 
6248   state = access_resolve(state, ACCESS_WRITE);
6249   subkeyH = access_resolve(subkeyH, ACCESS_READ);
6250   data = access_resolve(data, ACCESS_READ);
6251 
6252   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6253   assert(state_start, "state is NULL");
6254   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6255   assert(subkeyH_start, "subkeyH is NULL");
6256   Node* data_start  = array_element_address(data, offset, T_BYTE);
6257   assert(data_start, "data is NULL");
6258 
6259   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6260                                   OptoRuntime::ghash_processBlocks_Type(),
6261                                   stubAddr, stubName, TypePtr::BOTTOM,
6262                                   state_start, subkeyH_start, data_start, len);
6263   return true;
6264 }
6265 
6266 bool LibraryCallKit::inline_base64_encodeBlock() {
6267   address stubAddr;
6268   const char *stubName;
6269   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
6270   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
6271   stubAddr = StubRoutines::base64_encodeBlock();
6272   stubName = "encodeBlock";
6273 
6274   if (!stubAddr) return false;
6275   Node* base64obj = argument(0);
6276   Node* src = argument(1);
6277   Node* offset = argument(2);
6278   Node* len = argument(3);
6279   Node* dest = argument(4);
6280   Node* dp = argument(5);
6281   Node* isURL = argument(6);
6282 
6283   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
6284   assert(src_start, "source array is NULL");
6285   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
6286   assert(dest_start, "destination array is NULL");
6287 
6288   Node* base64 = make_runtime_call(RC_LEAF,
6289                                    OptoRuntime::base64_encodeBlock_Type(),
6290                                    stubAddr, stubName, TypePtr::BOTTOM,
6291                                    src_start, offset, len, dest_start, dp, isURL);
6292   return true;
6293 }
6294 
6295 //------------------------------inline_sha_implCompress-----------------------
6296 //
6297 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6298 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6299 //
6300 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6301 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6302 //
6303 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6304 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6305 //
6306 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6307   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6308 
6309   Node* sha_obj = argument(0);
6310   Node* src     = argument(1); // type oop
6311   Node* ofs     = argument(2); // type int
6312 
6313   const Type* src_type = src->Value(&_gvn);
6314   const TypeAryPtr* top_src = src_type->isa_aryptr();
6315   if (top_src  == NULL || top_src->klass()  == NULL) {
6316     // failed array check
6317     return false;
6318   }
6319   // Figure out the size and type of the elements we will be copying.
6320   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6321   if (src_elem != T_BYTE) {
6322     return false;
6323   }
6324   // 'src_start' points to src array + offset
6325   src = must_be_not_null(src, true);
6326   src = access_resolve(src, ACCESS_READ);
6327   Node* src_start = array_element_address(src, ofs, src_elem);
6328   Node* state = NULL;
6329   address stubAddr;
6330   const char *stubName;
6331 
6332   switch(id) {
6333   case vmIntrinsics::_sha_implCompress:
6334     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6335     state = get_state_from_sha_object(sha_obj);
6336     stubAddr = StubRoutines::sha1_implCompress();
6337     stubName = "sha1_implCompress";
6338     break;
6339   case vmIntrinsics::_sha2_implCompress:
6340     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6341     state = get_state_from_sha_object(sha_obj);
6342     stubAddr = StubRoutines::sha256_implCompress();
6343     stubName = "sha256_implCompress";
6344     break;
6345   case vmIntrinsics::_sha5_implCompress:
6346     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6347     state = get_state_from_sha5_object(sha_obj);
6348     stubAddr = StubRoutines::sha512_implCompress();
6349     stubName = "sha512_implCompress";
6350     break;
6351   default:
6352     fatal_unexpected_iid(id);
6353     return false;
6354   }
6355   if (state == NULL) return false;
6356 
6357   // Call the stub.
6358   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6359                                  stubAddr, stubName, TypePtr::BOTTOM,
6360                                  src_start, state);
6361 
6362   return true;
6363 }
6364 
6365 //------------------------------inline_digestBase_implCompressMB-----------------------
6366 //
6367 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6368 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6369 //
6370 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6371   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6372          "need SHA1/SHA256/SHA512 instruction support");
6373   assert((uint)predicate < 3, "sanity");
6374   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6375 
6376   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6377   Node* src            = argument(1); // byte[] array
6378   Node* ofs            = argument(2); // type int
6379   Node* limit          = argument(3); // type int
6380 
6381   const Type* src_type = src->Value(&_gvn);
6382   const TypeAryPtr* top_src = src_type->isa_aryptr();
6383   if (top_src  == NULL || top_src->klass()  == NULL) {
6384     // failed array check
6385     return false;
6386   }
6387   // Figure out the size and type of the elements we will be copying.
6388   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6389   if (src_elem != T_BYTE) {
6390     return false;
6391   }
6392   // 'src_start' points to src array + offset
6393   src = must_be_not_null(src, false);
6394   src = access_resolve(src, ACCESS_READ);
6395   Node* src_start = array_element_address(src, ofs, src_elem);
6396 
6397   const char* klass_SHA_name = NULL;
6398   const char* stub_name = NULL;
6399   address     stub_addr = NULL;
6400   bool        long_state = false;
6401 
6402   switch (predicate) {
6403   case 0:
6404     if (UseSHA1Intrinsics) {
6405       klass_SHA_name = "sun/security/provider/SHA";
6406       stub_name = "sha1_implCompressMB";
6407       stub_addr = StubRoutines::sha1_implCompressMB();
6408     }
6409     break;
6410   case 1:
6411     if (UseSHA256Intrinsics) {
6412       klass_SHA_name = "sun/security/provider/SHA2";
6413       stub_name = "sha256_implCompressMB";
6414       stub_addr = StubRoutines::sha256_implCompressMB();
6415     }
6416     break;
6417   case 2:
6418     if (UseSHA512Intrinsics) {
6419       klass_SHA_name = "sun/security/provider/SHA5";
6420       stub_name = "sha512_implCompressMB";
6421       stub_addr = StubRoutines::sha512_implCompressMB();
6422       long_state = true;
6423     }
6424     break;
6425   default:
6426     fatal("unknown SHA intrinsic predicate: %d", predicate);
6427   }
6428   if (klass_SHA_name != NULL) {
6429     // get DigestBase klass to lookup for SHA klass
6430     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6431     assert(tinst != NULL, "digestBase_obj is not instance???");
6432     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6433 
6434     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6435     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6436     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6437     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6438   }
6439   return false;
6440 }
6441 //------------------------------inline_sha_implCompressMB-----------------------
6442 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6443                                                bool long_state, address stubAddr, const char *stubName,
6444                                                Node* src_start, Node* ofs, Node* limit) {
6445   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6446   const TypeOopPtr* xtype = aklass->as_instance_type();
6447   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6448   sha_obj = _gvn.transform(sha_obj);
6449 
6450   Node* state;
6451   if (long_state) {
6452     state = get_state_from_sha5_object(sha_obj);
6453   } else {
6454     state = get_state_from_sha_object(sha_obj);
6455   }
6456   if (state == NULL) return false;
6457 
6458   // Call the stub.
6459   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6460                                  OptoRuntime::digestBase_implCompressMB_Type(),
6461                                  stubAddr, stubName, TypePtr::BOTTOM,
6462                                  src_start, state, ofs, limit);
6463   // return ofs (int)
6464   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6465   set_result(result);
6466 
6467   return true;
6468 }
6469 
6470 //------------------------------get_state_from_sha_object-----------------------
6471 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6472   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6473   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6474   if (sha_state == NULL) return (Node *) NULL;
6475 
6476   // now have the array, need to get the start address of the state array
6477   sha_state = access_resolve(sha_state, ACCESS_WRITE);
6478   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6479   return state;
6480 }
6481 
6482 //------------------------------get_state_from_sha5_object-----------------------
6483 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6484   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6485   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6486   if (sha_state == NULL) return (Node *) NULL;
6487 
6488   // now have the array, need to get the start address of the state array
6489   sha_state = access_resolve(sha_state, ACCESS_WRITE);
6490   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6491   return state;
6492 }
6493 
6494 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6495 // Return node representing slow path of predicate check.
6496 // the pseudo code we want to emulate with this predicate is:
6497 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6498 //
6499 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6500   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6501          "need SHA1/SHA256/SHA512 instruction support");
6502   assert((uint)predicate < 3, "sanity");
6503 
6504   // The receiver was checked for NULL already.
6505   Node* digestBaseObj = argument(0);
6506 
6507   // get DigestBase klass for instanceOf check
6508   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6509   assert(tinst != NULL, "digestBaseObj is null");
6510   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6511 
6512   const char* klass_SHA_name = NULL;
6513   switch (predicate) {
6514   case 0:
6515     if (UseSHA1Intrinsics) {
6516       // we want to do an instanceof comparison against the SHA class
6517       klass_SHA_name = "sun/security/provider/SHA";
6518     }
6519     break;
6520   case 1:
6521     if (UseSHA256Intrinsics) {
6522       // we want to do an instanceof comparison against the SHA2 class
6523       klass_SHA_name = "sun/security/provider/SHA2";
6524     }
6525     break;
6526   case 2:
6527     if (UseSHA512Intrinsics) {
6528       // we want to do an instanceof comparison against the SHA5 class
6529       klass_SHA_name = "sun/security/provider/SHA5";
6530     }
6531     break;
6532   default:
6533     fatal("unknown SHA intrinsic predicate: %d", predicate);
6534   }
6535 
6536   ciKlass* klass_SHA = NULL;
6537   if (klass_SHA_name != NULL) {
6538     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6539   }
6540   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6541     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6542     Node* ctrl = control();
6543     set_control(top()); // no intrinsic path
6544     return ctrl;
6545   }
6546   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6547 
6548   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6549   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6550   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6551   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6552 
6553   return instof_false;  // even if it is NULL
6554 }
6555 
6556 //-------------inline_fma-----------------------------------
6557 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6558   Node *a = NULL;
6559   Node *b = NULL;
6560   Node *c = NULL;
6561   Node* result = NULL;
6562   switch (id) {
6563   case vmIntrinsics::_fmaD:
6564     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6565     // no receiver since it is static method
6566     a = round_double_node(argument(0));
6567     b = round_double_node(argument(2));
6568     c = round_double_node(argument(4));
6569     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6570     break;
6571   case vmIntrinsics::_fmaF:
6572     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6573     a = argument(0);
6574     b = argument(1);
6575     c = argument(2);
6576     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6577     break;
6578   default:
6579     fatal_unexpected_iid(id);  break;
6580   }
6581   set_result(result);
6582   return true;
6583 }
6584 
6585 bool LibraryCallKit::inline_profileBoolean() {
6586   Node* counts = argument(1);
6587   const TypeAryPtr* ary = NULL;
6588   ciArray* aobj = NULL;
6589   if (counts->is_Con()
6590       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6591       && (aobj = ary->const_oop()->as_array()) != NULL
6592       && (aobj->length() == 2)) {
6593     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6594     jint false_cnt = aobj->element_value(0).as_int();
6595     jint  true_cnt = aobj->element_value(1).as_int();
6596 
6597     if (C->log() != NULL) {
6598       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6599                      false_cnt, true_cnt);
6600     }
6601 
6602     if (false_cnt + true_cnt == 0) {
6603       // According to profile, never executed.
6604       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6605                           Deoptimization::Action_reinterpret);
6606       return true;
6607     }
6608 
6609     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6610     // is a number of each value occurrences.
6611     Node* result = argument(0);
6612     if (false_cnt == 0 || true_cnt == 0) {
6613       // According to profile, one value has been never seen.
6614       int expected_val = (false_cnt == 0) ? 1 : 0;
6615 
6616       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6617       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6618 
6619       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6620       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6621       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6622 
6623       { // Slow path: uncommon trap for never seen value and then reexecute
6624         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6625         // the value has been seen at least once.
6626         PreserveJVMState pjvms(this);
6627         PreserveReexecuteState preexecs(this);
6628         jvms()->set_should_reexecute(true);
6629 
6630         set_control(slow_path);
6631         set_i_o(i_o());
6632 
6633         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6634                             Deoptimization::Action_reinterpret);
6635       }
6636       // The guard for never seen value enables sharpening of the result and
6637       // returning a constant. It allows to eliminate branches on the same value
6638       // later on.
6639       set_control(fast_path);
6640       result = intcon(expected_val);
6641     }
6642     // Stop profiling.
6643     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6644     // By replacing method body with profile data (represented as ProfileBooleanNode
6645     // on IR level) we effectively disable profiling.
6646     // It enables full speed execution once optimized code is generated.
6647     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6648     C->record_for_igvn(profile);
6649     set_result(profile);
6650     return true;
6651   } else {
6652     // Continue profiling.
6653     // Profile data isn't available at the moment. So, execute method's bytecode version.
6654     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6655     // is compiled and counters aren't available since corresponding MethodHandle
6656     // isn't a compile-time constant.
6657     return false;
6658   }
6659 }
6660 
6661 bool LibraryCallKit::inline_isCompileConstant() {
6662   Node* n = argument(0);
6663   set_result(n->is_Con() ? intcon(1) : intcon(0));
6664   return true;
6665 }