1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 #ifdef __GNUC__
  32 
  33 // __nop needs volatile so that compiler doesn't optimize it away
  34 #define NOP() asm volatile ("nop");
  35 
  36 #elif defined(_MSC_VER)
  37 
  38 // Use MSVC instrinsic: https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=vs-2019#I
  39 #define NOP() __nop();
  40 
  41 #endif
  42 
  43 
  44 
  45 // definitions of various symbolic names for machine registers
  46 
  47 // First intercalls between C and Java which use 8 general registers
  48 // and 8 floating registers
  49 
  50 // we also have to copy between x86 and ARM registers but that's a
  51 // secondary complication -- not all code employing C call convention
  52 // executes as x86 code though -- we generate some of it
  53 
  54 class Argument {
  55  public:
  56   enum {
  57     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  58     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  59 
  60     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  61     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  62   };
  63 };
  64 
  65 REGISTER_DECLARATION(Register, c_rarg0, r0);
  66 REGISTER_DECLARATION(Register, c_rarg1, r1);
  67 REGISTER_DECLARATION(Register, c_rarg2, r2);
  68 REGISTER_DECLARATION(Register, c_rarg3, r3);
  69 REGISTER_DECLARATION(Register, c_rarg4, r4);
  70 REGISTER_DECLARATION(Register, c_rarg5, r5);
  71 REGISTER_DECLARATION(Register, c_rarg6, r6);
  72 REGISTER_DECLARATION(Register, c_rarg7, r7);
  73 
  74 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  75 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  76 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  77 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  78 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  79 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  80 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  81 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  82 
  83 // Symbolically name the register arguments used by the Java calling convention.
  84 // We have control over the convention for java so we can do what we please.
  85 // What pleases us is to offset the java calling convention so that when
  86 // we call a suitable jni method the arguments are lined up and we don't
  87 // have to do much shuffling. A suitable jni method is non-static and a
  88 // small number of arguments
  89 //
  90 //  |--------------------------------------------------------------------|
  91 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  92 //  |--------------------------------------------------------------------|
  93 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  94 //  |--------------------------------------------------------------------|
  95 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  96 //  |--------------------------------------------------------------------|
  97 
  98 
  99 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 100 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 101 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 102 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 103 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 104 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
 105 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
 106 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
 107 
 108 // Java floating args are passed as per C
 109 
 110 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
 111 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
 112 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
 113 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 114 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 115 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 116 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 117 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 118 
 119 // registers used to hold VM data either temporarily within a method
 120 // or across method calls
 121 
 122 // volatile (caller-save) registers
 123 
 124 // r8 is used for indirect result location return
 125 // we use it and r9 as scratch registers
 126 REGISTER_DECLARATION(Register, rscratch1, r8);
 127 REGISTER_DECLARATION(Register, rscratch2, r9);
 128 
 129 // current method -- must be in a call-clobbered register
 130 REGISTER_DECLARATION(Register, rmethod,   r12);
 131 
 132 // non-volatile (callee-save) registers are r16-29
 133 // of which the following are dedicated global state
 134 
 135 // link register
 136 REGISTER_DECLARATION(Register, lr,        r30);
 137 // frame pointer
 138 REGISTER_DECLARATION(Register, rfp,       r29);
 139 // current thread
 140 REGISTER_DECLARATION(Register, rthread,   r28);
 141 // base of heap
 142 REGISTER_DECLARATION(Register, rheapbase, r27);
 143 // constant pool cache
 144 REGISTER_DECLARATION(Register, rcpool,    r26);
 145 // monitors allocated on stack
 146 REGISTER_DECLARATION(Register, rmonitors, r25);
 147 // locals on stack
 148 REGISTER_DECLARATION(Register, rlocals,   r24);
 149 // bytecode pointer
 150 REGISTER_DECLARATION(Register, rbcp,      r22);
 151 // Dispatch table base
 152 REGISTER_DECLARATION(Register, rdispatch, r21);
 153 // Java stack pointer
 154 REGISTER_DECLARATION(Register, esp,      r20);
 155 
 156 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 157 
 158 namespace asm_util {
 159   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 160 };
 161 
 162 using namespace asm_util;
 163 
 164 
 165 class Assembler;
 166 
 167 class Instruction_aarch64 {
 168   unsigned insn;
 169 #ifdef ASSERT
 170   unsigned bits;
 171 #endif
 172   Assembler *assem;
 173 
 174 public:
 175 
 176   Instruction_aarch64(class Assembler *as) {
 177 #ifdef ASSERT
 178     bits = 0;
 179 #endif
 180     insn = 0;
 181     assem = as;
 182   }
 183 
 184   inline ~Instruction_aarch64();
 185 
 186   unsigned &get_insn() { return insn; }
 187 #ifdef ASSERT
 188   unsigned &get_bits() { return bits; }
 189 #endif
 190 
 191   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 192     union {
 193       unsigned u;
 194       int n;
 195     };
 196 
 197     u = val << (31 - hi);
 198     n = n >> (31 - hi + lo);
 199     return n;
 200   }
 201 
 202   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 203     int nbits = msb - lsb + 1;
 204     assert_cond(msb >= lsb);
 205     uint32_t mask = (1U << nbits) - 1;
 206     uint32_t result = val >> lsb;
 207     result &= mask;
 208     return result;
 209   }
 210 
 211   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 212     uint32_t uval = extract(val, msb, lsb);
 213     return extend(uval, msb - lsb);
 214   }
 215 
 216   static void patch(address a, int msb, int lsb, uint64_t val) {
 217     int nbits = msb - lsb + 1;
 218     guarantee(val < (1U << nbits), "Field too big for insn");
 219     assert_cond(msb >= lsb);
 220     unsigned mask = (1U << nbits) - 1;
 221     val <<= lsb;
 222     mask <<= lsb;
 223     unsigned target = *(unsigned *)a;
 224     target &= ~mask;
 225     target |= val;
 226     *(unsigned *)a = target;
 227   }
 228 
 229   static void spatch(address a, int msb, int lsb, int64_t val) {
 230     int nbits = msb - lsb + 1;
 231     int64_t chk = val >> (nbits - 1);
 232     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 233     unsigned uval = val;
 234     unsigned mask = (1U << nbits) - 1;
 235     uval &= mask;
 236     uval <<= lsb;
 237     mask <<= lsb;
 238     unsigned target = *(unsigned *)a;
 239     target &= ~mask;
 240     target |= uval;
 241     *(unsigned *)a = target;
 242   }
 243 
 244   void f(unsigned val, int msb, int lsb) {
 245     int nbits = msb - lsb + 1;
 246     guarantee(val < (1U << nbits), "Field too big for insn");
 247     assert_cond(msb >= lsb);
 248     unsigned mask = (1U << nbits) - 1;
 249     val <<= lsb;
 250     mask <<= lsb;
 251     insn |= val;
 252     assert_cond((bits & mask) == 0);
 253 #ifdef ASSERT
 254     bits |= mask;
 255 #endif
 256   }
 257 
 258   void f(unsigned val, int bit) {
 259     f(val, bit, bit);
 260   }
 261 
 262   void sf(int64_t val, int msb, int lsb) {
 263     int nbits = msb - lsb + 1;
 264     int64_t chk = val >> (nbits - 1);
 265     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 266     unsigned uval = val;
 267     unsigned mask = (1U << nbits) - 1;
 268     uval &= mask;
 269     f(uval, lsb + nbits - 1, lsb);
 270   }
 271 
 272   void rf(Register r, int lsb) {
 273     f(r->encoding_nocheck(), lsb + 4, lsb);
 274   }
 275 
 276   // reg|ZR
 277   void zrf(Register r, int lsb) {
 278     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 279   }
 280 
 281   // reg|SP
 282   void srf(Register r, int lsb) {
 283     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 284   }
 285 
 286   void rf(FloatRegister r, int lsb) {
 287     f(r->encoding_nocheck(), lsb + 4, lsb);
 288   }
 289 
 290   unsigned get(int msb = 31, int lsb = 0) {
 291     int nbits = msb - lsb + 1;
 292     unsigned mask = ((1U << nbits) - 1) << lsb;
 293     assert_cond((bits & mask) == mask);
 294     return (insn & mask) >> lsb;
 295   }
 296 
 297   void fixed(unsigned value, unsigned mask) {
 298     assert_cond ((mask & bits) == 0);
 299 #ifdef ASSERT
 300     bits |= mask;
 301 #endif
 302     insn |= value;
 303   }
 304 };
 305 
 306 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 307 
 308 class PrePost {
 309   int _offset;
 310   Register _r;
 311 public:
 312   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 313   int offset() { return _offset; }
 314   Register reg() { return _r; }
 315 };
 316 
 317 class Pre : public PrePost {
 318 public:
 319   Pre(Register reg, int o) : PrePost(reg, o) { }
 320 };
 321 class Post : public PrePost {
 322   Register _idx;
 323   bool _is_postreg;
 324 public:
 325   Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; _is_postreg = false; }
 326   Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; _is_postreg = true; }
 327   Register idx_reg() { return _idx; }
 328   bool is_postreg() {return _is_postreg; }
 329 };
 330 
 331 namespace ext
 332 {
 333   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 334 };
 335 
 336 // Addressing modes
 337 class Address {
 338  public:
 339 
 340   enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel,
 341               base_plus_offset_reg, literal };
 342 
 343   // Shift and extend for base reg + reg offset addressing
 344   class extend {
 345     int _option, _shift;
 346     ext::operation _op;
 347   public:
 348     extend() { }
 349     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 350     int option() const{ return _option; }
 351     int shift() const { return _shift; }
 352     ext::operation op() const { return _op; }
 353   };
 354   class uxtw : public extend {
 355   public:
 356     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 357   };
 358   class lsl : public extend {
 359   public:
 360     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 361   };
 362   class sxtw : public extend {
 363   public:
 364     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 365   };
 366   class sxtx : public extend {
 367   public:
 368     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 369   };
 370 
 371  private:
 372   Register _base;
 373   Register _index;
 374   int64_t _offset;
 375   enum mode _mode;
 376   extend _ext;
 377 
 378   RelocationHolder _rspec;
 379 
 380   // Typically we use AddressLiterals we want to use their rval
 381   // However in some situations we want the lval (effect address) of
 382   // the item.  We provide a special factory for making those lvals.
 383   bool _is_lval;
 384 
 385   // If the target is far we'll need to load the ea of this to a
 386   // register to reach it. Otherwise if near we can do PC-relative
 387   // addressing.
 388   address          _target;
 389 
 390  public:
 391   Address()
 392     : _mode(no_mode) { }
 393   Address(Register r)
 394     : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { }
 395   Address(Register r, int o)
 396     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 397   Address(Register r, int64_t o)
 398     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 399   Address(Register r, uint64_t o)
 400     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 401 #ifdef ASSERT
 402   Address(Register r, ByteSize disp)
 403     : _base(r), _index(noreg), _offset(in_bytes(disp)), _mode(base_plus_offset), _target(0) { }
 404 #endif
 405   Address(Register r, Register r1, extend ext = lsl())
 406     : _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg),
 407       _ext(ext), _target(0) { }
 408   Address(Pre p)
 409     : _base(p.reg()), _offset(p.offset()), _mode(pre) { }
 410   Address(Post p)
 411     : _base(p.reg()),  _index(p.idx_reg()), _offset(p.offset()),
 412       _mode(p.is_postreg() ? post_reg : post), _target(0) { }
 413   Address(address target, RelocationHolder const& rspec)
 414     : _mode(literal),
 415       _rspec(rspec),
 416       _is_lval(false),
 417       _target(target)  { }
 418   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 419   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 420     : _base (base),
 421       _offset(0), _ext(ext), _target(0) {
 422     if (index.is_register()) {
 423       _mode = base_plus_offset_reg;
 424       _index = index.as_register();
 425     } else {
 426       guarantee(ext.option() == ext::uxtx, "should be");
 427       assert(index.is_constant(), "should be");
 428       _mode = base_plus_offset;
 429       _offset = index.as_constant() << ext.shift();
 430     }
 431   }
 432 
 433   Register base() const {
 434     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 435                | _mode == post | _mode == post_reg),
 436               "wrong mode");
 437     return _base;
 438   }
 439   int64_t offset() const {
 440     return _offset;
 441   }
 442   Register index() const {
 443     return _index;
 444   }
 445   mode getMode() const {
 446     return _mode;
 447   }
 448   bool uses(Register reg) const { return _base == reg || _index == reg; }
 449   address target() const { return _target; }
 450   const RelocationHolder& rspec() const { return _rspec; }
 451 
 452   void encode(Instruction_aarch64 *i) const {
 453     i->f(0b111, 29, 27);
 454     i->srf(_base, 5);
 455 
 456     switch(_mode) {
 457     case base_plus_offset:
 458       {
 459         unsigned size = i->get(31, 30);
 460         if (i->get(26, 26) && i->get(23, 23)) {
 461           // SIMD Q Type - Size = 128 bits
 462           assert(size == 0, "bad size");
 463           size = 0b100;
 464         }
 465         unsigned mask = (1 << size) - 1;
 466         if (_offset < 0 || _offset & mask)
 467           {
 468             i->f(0b00, 25, 24);
 469             i->f(0, 21), i->f(0b00, 11, 10);
 470             i->sf(_offset, 20, 12);
 471           } else {
 472             i->f(0b01, 25, 24);
 473             i->f(_offset >> size, 21, 10);
 474           }
 475       }
 476       break;
 477 
 478     case base_plus_offset_reg:
 479       {
 480         i->f(0b00, 25, 24);
 481         i->f(1, 21);
 482         i->rf(_index, 16);
 483         i->f(_ext.option(), 15, 13);
 484         unsigned size = i->get(31, 30);
 485         if (i->get(26, 26) && i->get(23, 23)) {
 486           // SIMD Q Type - Size = 128 bits
 487           assert(size == 0, "bad size");
 488           size = 0b100;
 489         }
 490         if (size == 0) // It's a byte
 491           i->f(_ext.shift() >= 0, 12);
 492         else {
 493           if (_ext.shift() > 0)
 494             assert(_ext.shift() == (int)size, "bad shift");
 495           i->f(_ext.shift() > 0, 12);
 496         }
 497         i->f(0b10, 11, 10);
 498       }
 499       break;
 500 
 501     case pre:
 502       i->f(0b00, 25, 24);
 503       i->f(0, 21), i->f(0b11, 11, 10);
 504       i->sf(_offset, 20, 12);
 505       break;
 506 
 507     case post:
 508       i->f(0b00, 25, 24);
 509       i->f(0, 21), i->f(0b01, 11, 10);
 510       i->sf(_offset, 20, 12);
 511       break;
 512 
 513     default:
 514       ShouldNotReachHere();
 515     }
 516   }
 517 
 518   void encode_pair(Instruction_aarch64 *i) const {
 519     switch(_mode) {
 520     case base_plus_offset:
 521       i->f(0b010, 25, 23);
 522       break;
 523     case pre:
 524       i->f(0b011, 25, 23);
 525       break;
 526     case post:
 527       i->f(0b001, 25, 23);
 528       break;
 529     default:
 530       ShouldNotReachHere();
 531     }
 532 
 533     unsigned size; // Operand shift in 32-bit words
 534 
 535     if (i->get(26, 26)) { // float
 536       switch(i->get(31, 30)) {
 537       case 0b10:
 538         size = 2; break;
 539       case 0b01:
 540         size = 1; break;
 541       case 0b00:
 542         size = 0; break;
 543       default:
 544         ShouldNotReachHere();
 545         size = 0;  // unreachable
 546       }
 547     } else {
 548       size = i->get(31, 31);
 549     }
 550 
 551     size = 4 << size;
 552     guarantee(_offset % size == 0, "bad offset");
 553     i->sf(_offset / size, 21, 15);
 554     i->srf(_base, 5);
 555   }
 556 
 557   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 558     // Only base + offset is allowed
 559     i->f(0b000, 25, 23);
 560     unsigned size = i->get(31, 31);
 561     size = 4 << size;
 562     guarantee(_offset % size == 0, "bad offset");
 563     i->sf(_offset / size, 21, 15);
 564     i->srf(_base, 5);
 565     guarantee(_mode == Address::base_plus_offset,
 566               "Bad addressing mode for non-temporal op");
 567   }
 568 
 569   void lea(MacroAssembler *, Register) const;
 570 
 571   static bool offset_ok_for_immed(int64_t offset, uint shift);
 572 };
 573 
 574 // Convience classes
 575 class RuntimeAddress: public Address {
 576 
 577   public:
 578 
 579   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 580 
 581 };
 582 
 583 class OopAddress: public Address {
 584 
 585   public:
 586 
 587   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 588 
 589 };
 590 
 591 class ExternalAddress: public Address {
 592  private:
 593   static relocInfo::relocType reloc_for_target(address target) {
 594     // Sometimes ExternalAddress is used for values which aren't
 595     // exactly addresses, like the card table base.
 596     // external_word_type can't be used for values in the first page
 597     // so just skip the reloc in that case.
 598     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 599   }
 600 
 601  public:
 602 
 603   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 604 
 605 };
 606 
 607 class InternalAddress: public Address {
 608 
 609   public:
 610 
 611   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 612 };
 613 
 614 const int FPUStateSizeInWords = FloatRegisterImpl::number_of_registers *
 615                                 FloatRegisterImpl::save_slots_per_register;
 616 
 617 typedef enum {
 618   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 619   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 620   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 621 } prfop;
 622 
 623 class Assembler : public AbstractAssembler {
 624 
 625 #ifndef PRODUCT
 626   static const uintptr_t asm_bp;
 627 
 628   void emit_long(jint x) {
 629     if ((uintptr_t)pc() == asm_bp)
 630       NOP();
 631     AbstractAssembler::emit_int32(x);
 632   }
 633 #else
 634   void emit_long(jint x) {
 635     AbstractAssembler::emit_int32(x);
 636   }
 637 #endif
 638 
 639 public:
 640 
 641   enum { instruction_size = 4 };
 642 
 643   //---<  calculate length of instruction  >---
 644   // We just use the values set above.
 645   // instruction must start at passed address
 646   static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
 647 
 648   //---<  longest instructions  >---
 649   static unsigned int instr_maxlen() { return instruction_size; }
 650 
 651   Address adjust(Register base, int offset, bool preIncrement) {
 652     if (preIncrement)
 653       return Address(Pre(base, offset));
 654     else
 655       return Address(Post(base, offset));
 656   }
 657 
 658   Address pre(Register base, int offset) {
 659     return adjust(base, offset, true);
 660   }
 661 
 662   Address post(Register base, int offset) {
 663     return adjust(base, offset, false);
 664   }
 665 
 666   Address post(Register base, Register idx) {
 667     return Address(Post(base, idx));
 668   }
 669 
 670   static address locate_next_instruction(address inst);
 671 
 672   Instruction_aarch64* current;
 673 
 674   void set_current(Instruction_aarch64* i) { current = i; }
 675 
 676   void f(unsigned val, int msb, int lsb) {
 677     current->f(val, msb, lsb);
 678   }
 679   void f(unsigned val, int msb) {
 680     current->f(val, msb, msb);
 681   }
 682   void sf(int64_t val, int msb, int lsb) {
 683     current->sf(val, msb, lsb);
 684   }
 685   void rf(Register reg, int lsb) {
 686     current->rf(reg, lsb);
 687   }
 688   void srf(Register reg, int lsb) {
 689     current->srf(reg, lsb);
 690   }
 691   void zrf(Register reg, int lsb) {
 692     current->zrf(reg, lsb);
 693   }
 694   void rf(FloatRegister reg, int lsb) {
 695     current->rf(reg, lsb);
 696   }
 697   void fixed(unsigned value, unsigned mask) {
 698     current->fixed(value, mask);
 699   }
 700 
 701   void emit() {
 702     emit_long(current->get_insn());
 703     assert_cond(current->get_bits() == 0xffffffff);
 704     current = NULL;
 705   }
 706 
 707   typedef void (Assembler::* uncond_branch_insn)(address dest);
 708   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 709   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 710   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 711 
 712   void wrap_label(Label &L, uncond_branch_insn insn);
 713   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 714   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 715   void wrap_label(Label &L, prfop, prefetch_insn insn);
 716 
 717   // PC-rel. addressing
 718 
 719   void adr(Register Rd, address dest);
 720   void _adrp(Register Rd, address dest);
 721 
 722   void adr(Register Rd, const Address &dest);
 723   void _adrp(Register Rd, const Address &dest);
 724 
 725   void adr(Register Rd, Label &L) {
 726     wrap_label(Rd, L, &Assembler::Assembler::adr);
 727   }
 728   void _adrp(Register Rd, Label &L) {
 729     wrap_label(Rd, L, &Assembler::_adrp);
 730   }
 731 
 732   void adrp(Register Rd, const Address &dest, uint64_t &offset);
 733 
 734 #undef INSN
 735 
 736   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 737                          int negated_op);
 738 
 739   // Add/subtract (immediate)
 740 #define INSN(NAME, decode, negated)                                     \
 741   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 742     starti;                                                             \
 743     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 744     zrf(Rd, 0), srf(Rn, 5);                                             \
 745   }                                                                     \
 746                                                                         \
 747   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 748     starti;                                                             \
 749     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 750   }
 751 
 752   INSN(addsw, 0b001, 0b011);
 753   INSN(subsw, 0b011, 0b001);
 754   INSN(adds,  0b101, 0b111);
 755   INSN(subs,  0b111, 0b101);
 756 
 757 #undef INSN
 758 
 759 #define INSN(NAME, decode, negated)                     \
 760   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 761     starti;                                             \
 762     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 763   }
 764 
 765   INSN(addw, 0b000, 0b010);
 766   INSN(subw, 0b010, 0b000);
 767   INSN(add,  0b100, 0b110);
 768   INSN(sub,  0b110, 0b100);
 769 
 770 #undef INSN
 771 
 772  // Logical (immediate)
 773 #define INSN(NAME, decode, is32)                                \
 774   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 775     starti;                                                     \
 776     uint32_t val = encode_logical_immediate(is32, imm);         \
 777     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 778     srf(Rd, 0), zrf(Rn, 5);                                     \
 779   }
 780 
 781   INSN(andw, 0b000, true);
 782   INSN(orrw, 0b001, true);
 783   INSN(eorw, 0b010, true);
 784   INSN(andr,  0b100, false);
 785   INSN(orr,  0b101, false);
 786   INSN(eor,  0b110, false);
 787 
 788 #undef INSN
 789 
 790 #define INSN(NAME, decode, is32)                                \
 791   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 792     starti;                                                     \
 793     uint32_t val = encode_logical_immediate(is32, imm);         \
 794     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 795     zrf(Rd, 0), zrf(Rn, 5);                                     \
 796   }
 797 
 798   INSN(ands, 0b111, false);
 799   INSN(andsw, 0b011, true);
 800 
 801 #undef INSN
 802 
 803   // Move wide (immediate)
 804 #define INSN(NAME, opcode)                                              \
 805   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 806     assert_cond((shift/16)*16 == shift);                                \
 807     starti;                                                             \
 808     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 809       f(imm, 20, 5);                                                    \
 810     rf(Rd, 0);                                                          \
 811   }
 812 
 813   INSN(movnw, 0b000);
 814   INSN(movzw, 0b010);
 815   INSN(movkw, 0b011);
 816   INSN(movn, 0b100);
 817   INSN(movz, 0b110);
 818   INSN(movk, 0b111);
 819 
 820 #undef INSN
 821 
 822   // Bitfield
 823 #define INSN(NAME, opcode, size)                                        \
 824   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 825     starti;                                                             \
 826     guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
 827     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 828     zrf(Rn, 5), rf(Rd, 0);                                              \
 829   }
 830 
 831   INSN(sbfmw, 0b0001001100, 0);
 832   INSN(bfmw,  0b0011001100, 0);
 833   INSN(ubfmw, 0b0101001100, 0);
 834   INSN(sbfm,  0b1001001101, 1);
 835   INSN(bfm,   0b1011001101, 1);
 836   INSN(ubfm,  0b1101001101, 1);
 837 
 838 #undef INSN
 839 
 840   // Extract
 841 #define INSN(NAME, opcode, size)                                        \
 842   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 843     starti;                                                             \
 844     guarantee(size == 1 || imms < 32, "incorrect imms");                \
 845     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 846     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
 847   }
 848 
 849   INSN(extrw, 0b00010011100, 0);
 850   INSN(extr,  0b10010011110, 1);
 851 
 852 #undef INSN
 853 
 854   // The maximum range of a branch is fixed for the AArch64
 855   // architecture.  In debug mode we shrink it in order to test
 856   // trampolines, but not so small that branches in the interpreter
 857   // are out of range.
 858   static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 859 
 860   static bool reachable_from_branch_at(address branch, address target) {
 861     return uabs(target - branch) < branch_range;
 862   }
 863 
 864   // Unconditional branch (immediate)
 865 #define INSN(NAME, opcode)                                              \
 866   void NAME(address dest) {                                             \
 867     starti;                                                             \
 868     int64_t offset = (dest - pc()) >> 2;                                \
 869     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 870     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 871   }                                                                     \
 872   void NAME(Label &L) {                                                 \
 873     wrap_label(L, &Assembler::NAME);                                    \
 874   }                                                                     \
 875   void NAME(const Address &dest);
 876 
 877   INSN(b, 0);
 878   INSN(bl, 1);
 879 
 880 #undef INSN
 881 
 882   // Compare & branch (immediate)
 883 #define INSN(NAME, opcode)                              \
 884   void NAME(Register Rt, address dest) {                \
 885     int64_t offset = (dest - pc()) >> 2;                \
 886     starti;                                             \
 887     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 888   }                                                     \
 889   void NAME(Register Rt, Label &L) {                    \
 890     wrap_label(Rt, L, &Assembler::NAME);                \
 891   }
 892 
 893   INSN(cbzw,  0b00110100);
 894   INSN(cbnzw, 0b00110101);
 895   INSN(cbz,   0b10110100);
 896   INSN(cbnz,  0b10110101);
 897 
 898 #undef INSN
 899 
 900   // Test & branch (immediate)
 901 #define INSN(NAME, opcode)                                              \
 902   void NAME(Register Rt, int bitpos, address dest) {                    \
 903     int64_t offset = (dest - pc()) >> 2;                                \
 904     int b5 = bitpos >> 5;                                               \
 905     bitpos &= 0x1f;                                                     \
 906     starti;                                                             \
 907     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 908     rf(Rt, 0);                                                          \
 909   }                                                                     \
 910   void NAME(Register Rt, int bitpos, Label &L) {                        \
 911     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 912   }
 913 
 914   INSN(tbz,  0b0110110);
 915   INSN(tbnz, 0b0110111);
 916 
 917 #undef INSN
 918 
 919   // Conditional branch (immediate)
 920   enum Condition
 921     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 922 
 923   void br(Condition  cond, address dest) {
 924     int64_t offset = (dest - pc()) >> 2;
 925     starti;
 926     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 927   }
 928 
 929 #define INSN(NAME, cond)                        \
 930   void NAME(address dest) {                     \
 931     br(cond, dest);                             \
 932   }
 933 
 934   INSN(beq, EQ);
 935   INSN(bne, NE);
 936   INSN(bhs, HS);
 937   INSN(bcs, CS);
 938   INSN(blo, LO);
 939   INSN(bcc, CC);
 940   INSN(bmi, MI);
 941   INSN(bpl, PL);
 942   INSN(bvs, VS);
 943   INSN(bvc, VC);
 944   INSN(bhi, HI);
 945   INSN(bls, LS);
 946   INSN(bge, GE);
 947   INSN(blt, LT);
 948   INSN(bgt, GT);
 949   INSN(ble, LE);
 950   INSN(bal, AL);
 951   INSN(bnv, NV);
 952 
 953   void br(Condition cc, Label &L);
 954 
 955 #undef INSN
 956 
 957   // Exception generation
 958   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 959     starti;
 960     f(0b11010100, 31, 24);
 961     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 962   }
 963 
 964 #define INSN(NAME, opc, op2, LL)                \
 965   void NAME(unsigned imm) {                     \
 966     generate_exception(opc, op2, LL, imm);      \
 967   }
 968 
 969   INSN(svc, 0b000, 0, 0b01);
 970   INSN(hvc, 0b000, 0, 0b10);
 971   INSN(smc, 0b000, 0, 0b11);
 972   INSN(brk, 0b001, 0, 0b00);
 973   INSN(hlt, 0b010, 0, 0b00);
 974   INSN(dcps1, 0b101, 0, 0b01);
 975   INSN(dcps2, 0b101, 0, 0b10);
 976   INSN(dcps3, 0b101, 0, 0b11);
 977 
 978 #undef INSN
 979 
 980   // System
 981   void system(int op0, int op1, int CRn, int CRm, int op2,
 982               Register rt = dummy_reg)
 983   {
 984     starti;
 985     f(0b11010101000, 31, 21);
 986     f(op0, 20, 19);
 987     f(op1, 18, 16);
 988     f(CRn, 15, 12);
 989     f(CRm, 11, 8);
 990     f(op2, 7, 5);
 991     rf(rt, 0);
 992   }
 993 
 994   void hint(int imm) {
 995     system(0b00, 0b011, 0b0010, 0b0000, imm);
 996   }
 997 
 998   void nop() {
 999     hint(0);
1000   }
1001 
1002   void yield() {
1003     hint(1);
1004   }
1005 
1006   void wfe() {
1007     hint(2);
1008   }
1009 
1010   void wfi() {
1011     hint(3);
1012   }
1013 
1014   void sev() {
1015     hint(4);
1016   }
1017 
1018   void sevl() {
1019     hint(5);
1020   }
1021 
1022   // we only provide mrs and msr for the special purpose system
1023   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1024   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1025 
1026   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1027     starti;
1028     f(0b1101010100011, 31, 19);
1029     f(op1, 18, 16);
1030     f(CRn, 15, 12);
1031     f(CRm, 11, 8);
1032     f(op2, 7, 5);
1033     // writing zr is ok
1034     zrf(rt, 0);
1035   }
1036 
1037   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1038     starti;
1039     f(0b1101010100111, 31, 19);
1040     f(op1, 18, 16);
1041     f(CRn, 15, 12);
1042     f(CRm, 11, 8);
1043     f(op2, 7, 5);
1044     // reading to zr is a mistake
1045     rf(rt, 0);
1046   }
1047 
1048   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1049                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1050 
1051   void dsb(barrier imm) {
1052     system(0b00, 0b011, 0b00011, imm, 0b100);
1053   }
1054 
1055   void dmb(barrier imm) {
1056     system(0b00, 0b011, 0b00011, imm, 0b101);
1057   }
1058 
1059   void isb() {
1060     system(0b00, 0b011, 0b00011, SY, 0b110);
1061   }
1062 
1063   void sys(int op1, int CRn, int CRm, int op2,
1064            Register rt = (Register)0b11111) {
1065     system(0b01, op1, CRn, CRm, op2, rt);
1066   }
1067 
1068   // Only implement operations accessible from EL0 or higher, i.e.,
1069   //            op1    CRn    CRm    op2
1070   // IC IVAU     3      7      5      1
1071   // DC CVAC     3      7      10     1
1072   // DC CVAP     3      7      12     1
1073   // DC CVAU     3      7      11     1
1074   // DC CIVAC    3      7      14     1
1075   // DC ZVA      3      7      4      1
1076   // So only deal with the CRm field.
1077   enum icache_maintenance {IVAU = 0b0101};
1078   enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1079 
1080   void dc(dcache_maintenance cm, Register Rt) {
1081     sys(0b011, 0b0111, cm, 0b001, Rt);
1082   }
1083 
1084   void ic(icache_maintenance cm, Register Rt) {
1085     sys(0b011, 0b0111, cm, 0b001, Rt);
1086   }
1087 
1088   // A more convenient access to dmb for our purposes
1089   enum Membar_mask_bits {
1090     // We can use ISH for a barrier because the ARM ARM says "This
1091     // architecture assumes that all Processing Elements that use the
1092     // same operating system or hypervisor are in the same Inner
1093     // Shareable shareability domain."
1094     StoreStore = ISHST,
1095     LoadStore  = ISHLD,
1096     LoadLoad   = ISHLD,
1097     StoreLoad  = ISH,
1098     AnyAny     = ISH
1099   };
1100 
1101   void membar(Membar_mask_bits order_constraint) {
1102     dmb(Assembler::barrier(order_constraint));
1103   }
1104 
1105   // Unconditional branch (register)
1106   void branch_reg(Register R, int opc) {
1107     starti;
1108     f(0b1101011, 31, 25);
1109     f(opc, 24, 21);
1110     f(0b11111000000, 20, 10);
1111     rf(R, 5);
1112     f(0b00000, 4, 0);
1113   }
1114 
1115 #define INSN(NAME, opc)                         \
1116   void NAME(Register R) {                       \
1117     branch_reg(R, opc);                         \
1118   }
1119 
1120   INSN(br, 0b0000);
1121   INSN(blr, 0b0001);
1122   INSN(ret, 0b0010);
1123 
1124   void ret(void *p); // This forces a compile-time error for ret(0)
1125 
1126 #undef INSN
1127 
1128 #define INSN(NAME, opc)                         \
1129   void NAME() {                 \
1130     branch_reg(dummy_reg, opc);         \
1131   }
1132 
1133   INSN(eret, 0b0100);
1134   INSN(drps, 0b0101);
1135 
1136 #undef INSN
1137 
1138   // Load/store exclusive
1139   enum operand_size { byte, halfword, word, xword };
1140 
1141   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1142     Register Rn, enum operand_size sz, int op, bool ordered) {
1143     starti;
1144     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1145     rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1146   }
1147 
1148   void load_exclusive(Register dst, Register addr,
1149                       enum operand_size sz, bool ordered) {
1150     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1151                          sz, 0b010, ordered);
1152   }
1153 
1154   void store_exclusive(Register status, Register new_val, Register addr,
1155                        enum operand_size sz, bool ordered) {
1156     load_store_exclusive(status, new_val, dummy_reg, addr,
1157                          sz, 0b000, ordered);
1158   }
1159 
1160 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1161   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1162     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1163     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1164   }
1165 
1166 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1167   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1168     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1169     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1170   }
1171 
1172 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1173   void NAME(Register Rt, Register Rn) {                                 \
1174     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1175                          Rn, sz, op, o0);                               \
1176   }
1177 
1178 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1179   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1180     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1181     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1182   }
1183 
1184   // bytes
1185   INSN3(stxrb, byte, 0b000, 0);
1186   INSN3(stlxrb, byte, 0b000, 1);
1187   INSN2(ldxrb, byte, 0b010, 0);
1188   INSN2(ldaxrb, byte, 0b010, 1);
1189   INSN2(stlrb, byte, 0b100, 1);
1190   INSN2(ldarb, byte, 0b110, 1);
1191 
1192   // halfwords
1193   INSN3(stxrh, halfword, 0b000, 0);
1194   INSN3(stlxrh, halfword, 0b000, 1);
1195   INSN2(ldxrh, halfword, 0b010, 0);
1196   INSN2(ldaxrh, halfword, 0b010, 1);
1197   INSN2(stlrh, halfword, 0b100, 1);
1198   INSN2(ldarh, halfword, 0b110, 1);
1199 
1200   // words
1201   INSN3(stxrw, word, 0b000, 0);
1202   INSN3(stlxrw, word, 0b000, 1);
1203   INSN4(stxpw, word, 0b001, 0);
1204   INSN4(stlxpw, word, 0b001, 1);
1205   INSN2(ldxrw, word, 0b010, 0);
1206   INSN2(ldaxrw, word, 0b010, 1);
1207   INSN_FOO(ldxpw, word, 0b011, 0);
1208   INSN_FOO(ldaxpw, word, 0b011, 1);
1209   INSN2(stlrw, word, 0b100, 1);
1210   INSN2(ldarw, word, 0b110, 1);
1211 
1212   // xwords
1213   INSN3(stxr, xword, 0b000, 0);
1214   INSN3(stlxr, xword, 0b000, 1);
1215   INSN4(stxp, xword, 0b001, 0);
1216   INSN4(stlxp, xword, 0b001, 1);
1217   INSN2(ldxr, xword, 0b010, 0);
1218   INSN2(ldaxr, xword, 0b010, 1);
1219   INSN_FOO(ldxp, xword, 0b011, 0);
1220   INSN_FOO(ldaxp, xword, 0b011, 1);
1221   INSN2(stlr, xword, 0b100, 1);
1222   INSN2(ldar, xword, 0b110, 1);
1223 
1224 #undef INSN2
1225 #undef INSN3
1226 #undef INSN4
1227 #undef INSN_FOO
1228 
1229   // 8.1 Compare and swap extensions
1230   void lse_cas(Register Rs, Register Rt, Register Rn,
1231                         enum operand_size sz, bool a, bool r, bool not_pair) {
1232     starti;
1233     if (! not_pair) { // Pair
1234       assert(sz == word || sz == xword, "invalid size");
1235       /* The size bit is in bit 30, not 31 */
1236       sz = (operand_size)(sz == word ? 0b00:0b01);
1237     }
1238     f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1239     zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1240   }
1241 
1242   // CAS
1243 #define INSN(NAME, a, r)                                                \
1244   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1245     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1246     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1247   }
1248   INSN(cas,    false, false)
1249   INSN(casa,   true,  false)
1250   INSN(casl,   false, true)
1251   INSN(casal,  true,  true)
1252 #undef INSN
1253 
1254   // CASP
1255 #define INSN(NAME, a, r)                                                \
1256   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1257             Register Rt, Register Rt1, Register Rn) {                   \
1258     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1259            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1260            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1261     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1262   }
1263   INSN(casp,    false, false)
1264   INSN(caspa,   true,  false)
1265   INSN(caspl,   false, true)
1266   INSN(caspal,  true,  true)
1267 #undef INSN
1268 
1269   // 8.1 Atomic operations
1270   void lse_atomic(Register Rs, Register Rt, Register Rn,
1271                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1272     starti;
1273     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1274     zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1275   }
1276 
1277 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1278   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1279     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1280   }                                                                     \
1281   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1282     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1283   }                                                                     \
1284   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1285     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1286   }                                                                     \
1287   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1288     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1289   }
1290   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1291   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1292   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1293   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1294   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1295   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1296   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1297   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1298   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1299 #undef INSN
1300 
1301   // Load register (literal)
1302 #define INSN(NAME, opc, V)                                              \
1303   void NAME(Register Rt, address dest) {                                \
1304     int64_t offset = (dest - pc()) >> 2;                                \
1305     starti;                                                             \
1306     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1307       sf(offset, 23, 5);                                                \
1308     rf(Rt, 0);                                                          \
1309   }                                                                     \
1310   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1311     InstructionMark im(this);                                           \
1312     guarantee(rtype == relocInfo::internal_word_type,                   \
1313               "only internal_word_type relocs make sense here");        \
1314     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1315     NAME(Rt, dest);                                                     \
1316   }                                                                     \
1317   void NAME(Register Rt, Label &L) {                                    \
1318     wrap_label(Rt, L, &Assembler::NAME);                                \
1319   }
1320 
1321   INSN(ldrw, 0b00, 0);
1322   INSN(ldr, 0b01, 0);
1323   INSN(ldrsw, 0b10, 0);
1324 
1325 #undef INSN
1326 
1327 #define INSN(NAME, opc, V)                                              \
1328   void NAME(FloatRegister Rt, address dest) {                           \
1329     int64_t offset = (dest - pc()) >> 2;                                \
1330     starti;                                                             \
1331     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1332       sf(offset, 23, 5);                                                \
1333     rf((Register)Rt, 0);                                                \
1334   }
1335 
1336   INSN(ldrs, 0b00, 1);
1337   INSN(ldrd, 0b01, 1);
1338   INSN(ldrq, 0b10, 1);
1339 
1340 #undef INSN
1341 
1342 #define INSN(NAME, opc, V)                                              \
1343   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1344     int64_t offset = (dest - pc()) >> 2;                                \
1345     starti;                                                             \
1346     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1347       sf(offset, 23, 5);                                                \
1348     f(op, 4, 0);                                                        \
1349   }                                                                     \
1350   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1351     wrap_label(L, op, &Assembler::NAME);                                \
1352   }
1353 
1354   INSN(prfm, 0b11, 0);
1355 
1356 #undef INSN
1357 
1358   // Load/store
1359   void ld_st1(int opc, int p1, int V, int L,
1360               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1361     starti;
1362     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1363     zrf(Rt2, 10), zrf(Rt1, 0);
1364     if (no_allocate) {
1365       adr.encode_nontemporal_pair(current);
1366     } else {
1367       adr.encode_pair(current);
1368     }
1369   }
1370 
1371   // Load/store register pair (offset)
1372 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1373   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1374     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1375    }
1376 
1377   INSN(stpw, 0b00, 0b101, 0, 0, false);
1378   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1379   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1380   INSN(stp, 0b10, 0b101, 0, 0, false);
1381   INSN(ldp, 0b10, 0b101, 0, 1, false);
1382 
1383   // Load/store no-allocate pair (offset)
1384   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1385   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1386   INSN(stnp, 0b10, 0b101, 0, 0, true);
1387   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1388 
1389 #undef INSN
1390 
1391 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1392   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1393     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1394    }
1395 
1396   INSN(stps, 0b00, 0b101, 1, 0, false);
1397   INSN(ldps, 0b00, 0b101, 1, 1, false);
1398   INSN(stpd, 0b01, 0b101, 1, 0, false);
1399   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1400   INSN(stpq, 0b10, 0b101, 1, 0, false);
1401   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1402 
1403 #undef INSN
1404 
1405   // Load/store register (all modes)
1406   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1407     starti;
1408 
1409     f(V, 26); // general reg?
1410     zrf(Rt, 0);
1411 
1412     // Encoding for literal loads is done here (rather than pushed
1413     // down into Address::encode) because the encoding of this
1414     // instruction is too different from all of the other forms to
1415     // make it worth sharing.
1416     if (adr.getMode() == Address::literal) {
1417       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1418       assert(op == 0b01, "literal form can only be used with loads");
1419       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1420       int64_t offset = (adr.target() - pc()) >> 2;
1421       sf(offset, 23, 5);
1422       code_section()->relocate(pc(), adr.rspec());
1423       return;
1424     }
1425 
1426     f(size, 31, 30);
1427     f(op, 23, 22); // str
1428     adr.encode(current);
1429   }
1430 
1431 #define INSN(NAME, size, op)                            \
1432   void NAME(Register Rt, const Address &adr) {          \
1433     ld_st2(Rt, adr, size, op);                          \
1434   }                                                     \
1435 
1436   INSN(str, 0b11, 0b00);
1437   INSN(strw, 0b10, 0b00);
1438   INSN(strb, 0b00, 0b00);
1439   INSN(strh, 0b01, 0b00);
1440 
1441   INSN(ldr, 0b11, 0b01);
1442   INSN(ldrw, 0b10, 0b01);
1443   INSN(ldrb, 0b00, 0b01);
1444   INSN(ldrh, 0b01, 0b01);
1445 
1446   INSN(ldrsb, 0b00, 0b10);
1447   INSN(ldrsbw, 0b00, 0b11);
1448   INSN(ldrsh, 0b01, 0b10);
1449   INSN(ldrshw, 0b01, 0b11);
1450   INSN(ldrsw, 0b10, 0b10);
1451 
1452 #undef INSN
1453 
1454 #define INSN(NAME, size, op)                                    \
1455   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1456     ld_st2((Register)pfop, adr, size, op);                      \
1457   }
1458 
1459   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1460                           // writeback modes, but the assembler
1461                           // doesn't enfore that.
1462 
1463 #undef INSN
1464 
1465 #define INSN(NAME, size, op)                            \
1466   void NAME(FloatRegister Rt, const Address &adr) {     \
1467     ld_st2((Register)Rt, adr, size, op, 1);             \
1468   }
1469 
1470   INSN(strd, 0b11, 0b00);
1471   INSN(strs, 0b10, 0b00);
1472   INSN(ldrd, 0b11, 0b01);
1473   INSN(ldrs, 0b10, 0b01);
1474   INSN(strq, 0b00, 0b10);
1475   INSN(ldrq, 0x00, 0b11);
1476 
1477 #undef INSN
1478 
1479   enum shift_kind { LSL, LSR, ASR, ROR };
1480 
1481   void op_shifted_reg(unsigned decode,
1482                       enum shift_kind kind, unsigned shift,
1483                       unsigned size, unsigned op) {
1484     f(size, 31);
1485     f(op, 30, 29);
1486     f(decode, 28, 24);
1487     f(shift, 15, 10);
1488     f(kind, 23, 22);
1489   }
1490 
1491   // Logical (shifted register)
1492 #define INSN(NAME, size, op, N)                                 \
1493   void NAME(Register Rd, Register Rn, Register Rm,              \
1494             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1495     starti;                                                     \
1496     guarantee(size == 1 || shift < 32, "incorrect shift");      \
1497     f(N, 21);                                                   \
1498     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1499     op_shifted_reg(0b01010, kind, shift, size, op);             \
1500   }
1501 
1502   INSN(andr, 1, 0b00, 0);
1503   INSN(orr, 1, 0b01, 0);
1504   INSN(eor, 1, 0b10, 0);
1505   INSN(ands, 1, 0b11, 0);
1506   INSN(andw, 0, 0b00, 0);
1507   INSN(orrw, 0, 0b01, 0);
1508   INSN(eorw, 0, 0b10, 0);
1509   INSN(andsw, 0, 0b11, 0);
1510 
1511 #undef INSN
1512 
1513 #define INSN(NAME, size, op, N)                                         \
1514   void NAME(Register Rd, Register Rn, Register Rm,                      \
1515             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1516     starti;                                                             \
1517     f(N, 21);                                                           \
1518     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1519     op_shifted_reg(0b01010, kind, shift, size, op);                     \
1520   }                                                                     \
1521                                                                         \
1522   /* These instructions have no immediate form. Provide an overload so  \
1523      that if anyone does try to use an immediate operand -- this has    \
1524      happened! -- we'll get a compile-time error. */                    \
1525   void NAME(Register Rd, Register Rn, unsigned imm,                     \
1526             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1527     assert(false, " can't be used with immediate operand");             \
1528   }
1529 
1530   INSN(bic, 1, 0b00, 1);
1531   INSN(orn, 1, 0b01, 1);
1532   INSN(eon, 1, 0b10, 1);
1533   INSN(bics, 1, 0b11, 1);
1534   INSN(bicw, 0, 0b00, 1);
1535   INSN(ornw, 0, 0b01, 1);
1536   INSN(eonw, 0, 0b10, 1);
1537   INSN(bicsw, 0, 0b11, 1);
1538 
1539 #undef INSN
1540 
1541 #ifdef _WIN64
1542 // In MSVC, `mvn` is defined as a macro and it affects compilation
1543 #undef mvn
1544 #endif
1545 
1546   // Aliases for short forms of orn
1547 void mvn(Register Rd, Register Rm,
1548             enum shift_kind kind = LSL, unsigned shift = 0) {
1549   orn(Rd, zr, Rm, kind, shift);
1550 }
1551 
1552 void mvnw(Register Rd, Register Rm,
1553             enum shift_kind kind = LSL, unsigned shift = 0) {
1554   ornw(Rd, zr, Rm, kind, shift);
1555 }
1556 
1557   // Add/subtract (shifted register)
1558 #define INSN(NAME, size, op)                            \
1559   void NAME(Register Rd, Register Rn, Register Rm,      \
1560             enum shift_kind kind, unsigned shift = 0) { \
1561     starti;                                             \
1562     f(0, 21);                                           \
1563     assert_cond(kind != ROR);                           \
1564     guarantee(size == 1 || shift < 32, "incorrect shift");\
1565     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1566     op_shifted_reg(0b01011, kind, shift, size, op);     \
1567   }
1568 
1569   INSN(add, 1, 0b000);
1570   INSN(sub, 1, 0b10);
1571   INSN(addw, 0, 0b000);
1572   INSN(subw, 0, 0b10);
1573 
1574   INSN(adds, 1, 0b001);
1575   INSN(subs, 1, 0b11);
1576   INSN(addsw, 0, 0b001);
1577   INSN(subsw, 0, 0b11);
1578 
1579 #undef INSN
1580 
1581   // Add/subtract (extended register)
1582 #define INSN(NAME, op)                                                  \
1583   void NAME(Register Rd, Register Rn, Register Rm,                      \
1584            ext::operation option, int amount = 0) {                     \
1585     starti;                                                             \
1586     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1587     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1588   }
1589 
1590   void add_sub_extended_reg(unsigned op, unsigned decode,
1591     Register Rd, Register Rn, Register Rm,
1592     unsigned opt, ext::operation option, unsigned imm) {
1593     guarantee(imm <= 4, "shift amount must be <= 4");
1594     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1595     f(option, 15, 13), f(imm, 12, 10);
1596   }
1597 
1598   INSN(addw, 0b000);
1599   INSN(subw, 0b010);
1600   INSN(add, 0b100);
1601   INSN(sub, 0b110);
1602 
1603 #undef INSN
1604 
1605 #define INSN(NAME, op)                                                  \
1606   void NAME(Register Rd, Register Rn, Register Rm,                      \
1607            ext::operation option, int amount = 0) {                     \
1608     starti;                                                             \
1609     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1610     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1611   }
1612 
1613   INSN(addsw, 0b001);
1614   INSN(subsw, 0b011);
1615   INSN(adds, 0b101);
1616   INSN(subs, 0b111);
1617 
1618 #undef INSN
1619 
1620   // Aliases for short forms of add and sub
1621 #define INSN(NAME)                                      \
1622   void NAME(Register Rd, Register Rn, Register Rm) {    \
1623     if (Rd == sp || Rn == sp)                           \
1624       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1625     else                                                \
1626       NAME(Rd, Rn, Rm, LSL);                            \
1627   }
1628 
1629   INSN(addw);
1630   INSN(subw);
1631   INSN(add);
1632   INSN(sub);
1633 
1634   INSN(addsw);
1635   INSN(subsw);
1636   INSN(adds);
1637   INSN(subs);
1638 
1639 #undef INSN
1640 
1641   // Add/subtract (with carry)
1642   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1643     starti;
1644     f(op, 31, 29);
1645     f(0b11010000, 28, 21);
1646     f(0b000000, 15, 10);
1647     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1648   }
1649 
1650   #define INSN(NAME, op)                                \
1651     void NAME(Register Rd, Register Rn, Register Rm) {  \
1652       add_sub_carry(op, Rd, Rn, Rm);                    \
1653     }
1654 
1655   INSN(adcw, 0b000);
1656   INSN(adcsw, 0b001);
1657   INSN(sbcw, 0b010);
1658   INSN(sbcsw, 0b011);
1659   INSN(adc, 0b100);
1660   INSN(adcs, 0b101);
1661   INSN(sbc,0b110);
1662   INSN(sbcs, 0b111);
1663 
1664 #undef INSN
1665 
1666   // Conditional compare (both kinds)
1667   void conditional_compare(unsigned op, int o1, int o2, int o3,
1668                            Register Rn, unsigned imm5, unsigned nzcv,
1669                            unsigned cond) {
1670     starti;
1671     f(op, 31, 29);
1672     f(0b11010010, 28, 21);
1673     f(cond, 15, 12);
1674     f(o1, 11);
1675     f(o2, 10);
1676     f(o3, 4);
1677     f(nzcv, 3, 0);
1678     f(imm5, 20, 16), zrf(Rn, 5);
1679   }
1680 
1681 #define INSN(NAME, op)                                                  \
1682   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1683     int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm);                    \
1684     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1685   }                                                                     \
1686                                                                         \
1687   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1688     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1689   }
1690 
1691   INSN(ccmnw, 0b001);
1692   INSN(ccmpw, 0b011);
1693   INSN(ccmn, 0b101);
1694   INSN(ccmp, 0b111);
1695 
1696 #undef INSN
1697 
1698   // Conditional select
1699   void conditional_select(unsigned op, unsigned op2,
1700                           Register Rd, Register Rn, Register Rm,
1701                           unsigned cond) {
1702     starti;
1703     f(op, 31, 29);
1704     f(0b11010100, 28, 21);
1705     f(cond, 15, 12);
1706     f(op2, 11, 10);
1707     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1708   }
1709 
1710 #define INSN(NAME, op, op2)                                             \
1711   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1712     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1713   }
1714 
1715   INSN(cselw, 0b000, 0b00);
1716   INSN(csincw, 0b000, 0b01);
1717   INSN(csinvw, 0b010, 0b00);
1718   INSN(csnegw, 0b010, 0b01);
1719   INSN(csel, 0b100, 0b00);
1720   INSN(csinc, 0b100, 0b01);
1721   INSN(csinv, 0b110, 0b00);
1722   INSN(csneg, 0b110, 0b01);
1723 
1724 #undef INSN
1725 
1726   // Data processing
1727   void data_processing(unsigned op29, unsigned opcode,
1728                        Register Rd, Register Rn) {
1729     f(op29, 31, 29), f(0b11010110, 28, 21);
1730     f(opcode, 15, 10);
1731     rf(Rn, 5), rf(Rd, 0);
1732   }
1733 
1734   // (1 source)
1735 #define INSN(NAME, op29, opcode2, opcode)       \
1736   void NAME(Register Rd, Register Rn) {         \
1737     starti;                                     \
1738     f(opcode2, 20, 16);                         \
1739     data_processing(op29, opcode, Rd, Rn);      \
1740   }
1741 
1742   INSN(rbitw,  0b010, 0b00000, 0b00000);
1743   INSN(rev16w, 0b010, 0b00000, 0b00001);
1744   INSN(revw,   0b010, 0b00000, 0b00010);
1745   INSN(clzw,   0b010, 0b00000, 0b00100);
1746   INSN(clsw,   0b010, 0b00000, 0b00101);
1747 
1748   INSN(rbit,   0b110, 0b00000, 0b00000);
1749   INSN(rev16,  0b110, 0b00000, 0b00001);
1750   INSN(rev32,  0b110, 0b00000, 0b00010);
1751   INSN(rev,    0b110, 0b00000, 0b00011);
1752   INSN(clz,    0b110, 0b00000, 0b00100);
1753   INSN(cls,    0b110, 0b00000, 0b00101);
1754 
1755 #undef INSN
1756 
1757   // (2 sources)
1758 #define INSN(NAME, op29, opcode)                        \
1759   void NAME(Register Rd, Register Rn, Register Rm) {    \
1760     starti;                                             \
1761     rf(Rm, 16);                                         \
1762     data_processing(op29, opcode, Rd, Rn);              \
1763   }
1764 
1765   INSN(udivw, 0b000, 0b000010);
1766   INSN(sdivw, 0b000, 0b000011);
1767   INSN(lslvw, 0b000, 0b001000);
1768   INSN(lsrvw, 0b000, 0b001001);
1769   INSN(asrvw, 0b000, 0b001010);
1770   INSN(rorvw, 0b000, 0b001011);
1771 
1772   INSN(udiv, 0b100, 0b000010);
1773   INSN(sdiv, 0b100, 0b000011);
1774   INSN(lslv, 0b100, 0b001000);
1775   INSN(lsrv, 0b100, 0b001001);
1776   INSN(asrv, 0b100, 0b001010);
1777   INSN(rorv, 0b100, 0b001011);
1778 
1779 #undef INSN
1780 
1781   // (3 sources)
1782   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1783                        Register Rd, Register Rn, Register Rm,
1784                        Register Ra) {
1785     starti;
1786     f(op54, 31, 29), f(0b11011, 28, 24);
1787     f(op31, 23, 21), f(o0, 15);
1788     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1789   }
1790 
1791 #define INSN(NAME, op54, op31, o0)                                      \
1792   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1793     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1794   }
1795 
1796   INSN(maddw, 0b000, 0b000, 0);
1797   INSN(msubw, 0b000, 0b000, 1);
1798   INSN(madd, 0b100, 0b000, 0);
1799   INSN(msub, 0b100, 0b000, 1);
1800   INSN(smaddl, 0b100, 0b001, 0);
1801   INSN(smsubl, 0b100, 0b001, 1);
1802   INSN(umaddl, 0b100, 0b101, 0);
1803   INSN(umsubl, 0b100, 0b101, 1);
1804 
1805 #undef INSN
1806 
1807 #define INSN(NAME, op54, op31, o0)                      \
1808   void NAME(Register Rd, Register Rn, Register Rm) {    \
1809     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1810   }
1811 
1812   INSN(smulh, 0b100, 0b010, 0);
1813   INSN(umulh, 0b100, 0b110, 0);
1814 
1815 #undef INSN
1816 
1817   // Floating-point data-processing (1 source)
1818   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1819                        FloatRegister Vd, FloatRegister Vn) {
1820     starti;
1821     f(op31, 31, 29);
1822     f(0b11110, 28, 24);
1823     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1824     rf(Vn, 5), rf(Vd, 0);
1825   }
1826 
1827 #define INSN(NAME, op31, type, opcode)                  \
1828   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1829     data_processing(op31, type, opcode, Vd, Vn);        \
1830   }
1831 
1832 private:
1833   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1834 public:
1835   INSN(fabss, 0b000, 0b00, 0b000001);
1836   INSN(fnegs, 0b000, 0b00, 0b000010);
1837   INSN(fsqrts, 0b000, 0b00, 0b000011);
1838   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1839 
1840 private:
1841   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1842 public:
1843   INSN(fabsd, 0b000, 0b01, 0b000001);
1844   INSN(fnegd, 0b000, 0b01, 0b000010);
1845   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1846   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1847 
1848   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1849     assert(Vd != Vn, "should be");
1850     i_fmovd(Vd, Vn);
1851   }
1852 
1853   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1854     assert(Vd != Vn, "should be");
1855     i_fmovs(Vd, Vn);
1856   }
1857 
1858 #undef INSN
1859 
1860   // Floating-point data-processing (2 source)
1861   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1862                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1863     starti;
1864     f(op31, 31, 29);
1865     f(0b11110, 28, 24);
1866     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1867     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1868   }
1869 
1870 #define INSN(NAME, op31, type, opcode)                  \
1871   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1872     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1873   }
1874 
1875   INSN(fmuls, 0b000, 0b00, 0b0000);
1876   INSN(fdivs, 0b000, 0b00, 0b0001);
1877   INSN(fadds, 0b000, 0b00, 0b0010);
1878   INSN(fsubs, 0b000, 0b00, 0b0011);
1879   INSN(fmaxs, 0b000, 0b00, 0b0100);
1880   INSN(fmins, 0b000, 0b00, 0b0101);
1881   INSN(fnmuls, 0b000, 0b00, 0b1000);
1882 
1883   INSN(fmuld, 0b000, 0b01, 0b0000);
1884   INSN(fdivd, 0b000, 0b01, 0b0001);
1885   INSN(faddd, 0b000, 0b01, 0b0010);
1886   INSN(fsubd, 0b000, 0b01, 0b0011);
1887   INSN(fmaxd, 0b000, 0b01, 0b0100);
1888   INSN(fmind, 0b000, 0b01, 0b0101);
1889   INSN(fnmuld, 0b000, 0b01, 0b1000);
1890 
1891 #undef INSN
1892 
1893    // Floating-point data-processing (3 source)
1894   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1895                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1896                        FloatRegister Va) {
1897     starti;
1898     f(op31, 31, 29);
1899     f(0b11111, 28, 24);
1900     f(type, 23, 22), f(o1, 21), f(o0, 15);
1901     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1902   }
1903 
1904 #define INSN(NAME, op31, type, o1, o0)                                  \
1905   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1906             FloatRegister Va) {                                         \
1907     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1908   }
1909 
1910   INSN(fmadds, 0b000, 0b00, 0, 0);
1911   INSN(fmsubs, 0b000, 0b00, 0, 1);
1912   INSN(fnmadds, 0b000, 0b00, 1, 0);
1913   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1914 
1915   INSN(fmaddd, 0b000, 0b01, 0, 0);
1916   INSN(fmsubd, 0b000, 0b01, 0, 1);
1917   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1918   INSN(fnmsub, 0b000, 0b01, 1, 1);
1919 
1920 #undef INSN
1921 
1922    // Floating-point conditional select
1923   void fp_conditional_select(unsigned op31, unsigned type,
1924                              unsigned op1, unsigned op2,
1925                              Condition cond, FloatRegister Vd,
1926                              FloatRegister Vn, FloatRegister Vm) {
1927     starti;
1928     f(op31, 31, 29);
1929     f(0b11110, 28, 24);
1930     f(type, 23, 22);
1931     f(op1, 21, 21);
1932     f(op2, 11, 10);
1933     f(cond, 15, 12);
1934     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1935   }
1936 
1937 #define INSN(NAME, op31, type, op1, op2)                                \
1938   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1939             FloatRegister Vm, Condition cond) {                         \
1940     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1941   }
1942 
1943   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1944   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1945 
1946 #undef INSN
1947 
1948    // Floating-point<->integer conversions
1949   void float_int_convert(unsigned op31, unsigned type,
1950                          unsigned rmode, unsigned opcode,
1951                          Register Rd, Register Rn) {
1952     starti;
1953     f(op31, 31, 29);
1954     f(0b11110, 28, 24);
1955     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1956     f(opcode, 18, 16), f(0b000000, 15, 10);
1957     zrf(Rn, 5), zrf(Rd, 0);
1958   }
1959 
1960 #define INSN(NAME, op31, type, rmode, opcode)                           \
1961   void NAME(Register Rd, FloatRegister Vn) {                            \
1962     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1963   }
1964 
1965   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1966   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1967   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1968   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1969 
1970   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1971   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1972 
1973   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1974 
1975 #undef INSN
1976 
1977 #define INSN(NAME, op31, type, rmode, opcode)                           \
1978   void NAME(FloatRegister Vd, Register Rn) {                            \
1979     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1980   }
1981 
1982   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1983   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1984 
1985   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1986   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1987   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1988   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1989 
1990   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1991 
1992 #undef INSN
1993 
1994   // Floating-point compare
1995   void float_compare(unsigned op31, unsigned type,
1996                      unsigned op, unsigned op2,
1997                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1998     starti;
1999     f(op31, 31, 29);
2000     f(0b11110, 28, 24);
2001     f(type, 23, 22), f(1, 21);
2002     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
2003     rf(Vn, 5), rf(Vm, 16);
2004   }
2005 
2006 
2007 #define INSN(NAME, op31, type, op, op2)                 \
2008   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
2009     float_compare(op31, type, op, op2, Vn, Vm);         \
2010   }
2011 
2012 #define INSN1(NAME, op31, type, op, op2)        \
2013   void NAME(FloatRegister Vn, double d) {       \
2014     assert_cond(d == 0.0);                      \
2015     float_compare(op31, type, op, op2, Vn);     \
2016   }
2017 
2018   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
2019   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
2020   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
2021   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
2022 
2023   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
2024   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
2025   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
2026   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
2027 
2028 #undef INSN
2029 #undef INSN1
2030 
2031   // Floating-point Move (immediate)
2032 private:
2033   unsigned pack(double value);
2034 
2035   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2036     starti;
2037     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2038     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2039     rf(Vn, 0);
2040   }
2041 
2042 public:
2043 
2044   void fmovs(FloatRegister Vn, double value) {
2045     if (value)
2046       fmov_imm(Vn, value, 0b00);
2047     else
2048       fmovs(Vn, zr);
2049   }
2050   void fmovd(FloatRegister Vn, double value) {
2051     if (value)
2052       fmov_imm(Vn, value, 0b01);
2053     else
2054       fmovd(Vn, zr);
2055   }
2056 
2057    // Floating-point rounding
2058    // type: half-precision = 11
2059    //       single         = 00
2060    //       double         = 01
2061    // rmode: A = Away     = 100
2062    //        I = current  = 111
2063    //        M = MinusInf = 010
2064    //        N = eveN     = 000
2065    //        P = PlusInf  = 001
2066    //        X = eXact    = 110
2067    //        Z = Zero     = 011
2068   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2069     starti;
2070     f(0b00011110, 31, 24);
2071     f(type, 23, 22);
2072     f(0b1001, 21, 18);
2073     f(rmode, 17, 15);
2074     f(0b10000, 14, 10);
2075     rf(Rn, 5), rf(Rd, 0);
2076   }
2077 #define INSN(NAME, type, rmode)                   \
2078   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2079     float_round(type, rmode, Vd, Vn);             \
2080   }
2081 
2082 public:
2083   INSN(frintah, 0b11, 0b100);
2084   INSN(frintih, 0b11, 0b111);
2085   INSN(frintmh, 0b11, 0b010);
2086   INSN(frintnh, 0b11, 0b000);
2087   INSN(frintph, 0b11, 0b001);
2088   INSN(frintxh, 0b11, 0b110);
2089   INSN(frintzh, 0b11, 0b011);
2090 
2091   INSN(frintas, 0b00, 0b100);
2092   INSN(frintis, 0b00, 0b111);
2093   INSN(frintms, 0b00, 0b010);
2094   INSN(frintns, 0b00, 0b000);
2095   INSN(frintps, 0b00, 0b001);
2096   INSN(frintxs, 0b00, 0b110);
2097   INSN(frintzs, 0b00, 0b011);
2098 
2099   INSN(frintad, 0b01, 0b100);
2100   INSN(frintid, 0b01, 0b111);
2101   INSN(frintmd, 0b01, 0b010);
2102   INSN(frintnd, 0b01, 0b000);
2103   INSN(frintpd, 0b01, 0b001);
2104   INSN(frintxd, 0b01, 0b110);
2105   INSN(frintzd, 0b01, 0b011);
2106 #undef INSN
2107 
2108 /* SIMD extensions
2109  *
2110  * We just use FloatRegister in the following. They are exactly the same
2111  * as SIMD registers.
2112  */
2113  public:
2114 
2115   enum SIMD_Arrangement {
2116        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
2117   };
2118 
2119   enum SIMD_RegVariant {
2120        B, H, S, D, Q
2121   };
2122 
2123 private:
2124   static short SIMD_Size_in_bytes[];
2125 
2126 public:
2127 #define INSN(NAME, op)                                            \
2128   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
2129     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2130   }                                                                      \
2131 
2132   INSN(ldr, 1);
2133   INSN(str, 0);
2134 
2135 #undef INSN
2136 
2137  private:
2138 
2139   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2140     starti;
2141     f(0,31), f((int)T & 1, 30);
2142     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2143     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2144   }
2145   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2146              int imm, int op1, int op2, int regs) {
2147 
2148     bool replicate = op2 >> 2 == 3;
2149     // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2150     int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2151     guarantee(T < T1Q , "incorrect arrangement");
2152     guarantee(imm == expectedImmediate, "bad offset");
2153     starti;
2154     f(0,31), f((int)T & 1, 30);
2155     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2156     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2157   }
2158   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2159              Register Xm, int op1, int op2) {
2160     starti;
2161     f(0,31), f((int)T & 1, 30);
2162     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2163     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2164   }
2165 
2166   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2167     switch (a.getMode()) {
2168     case Address::base_plus_offset:
2169       guarantee(a.offset() == 0, "no offset allowed here");
2170       ld_st(Vt, T, a.base(), op1, op2);
2171       break;
2172     case Address::post:
2173       ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs);
2174       break;
2175     case Address::post_reg:
2176       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2177       break;
2178     default:
2179       ShouldNotReachHere();
2180     }
2181   }
2182 
2183  public:
2184 
2185 #define INSN1(NAME, op1, op2)                                           \
2186   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2187     ld_st(Vt, T, a, op1, op2, 1);                                       \
2188  }
2189 
2190 #define INSN2(NAME, op1, op2)                                           \
2191   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2192     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2193     ld_st(Vt, T, a, op1, op2, 2);                                       \
2194   }
2195 
2196 #define INSN3(NAME, op1, op2)                                           \
2197   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2198             SIMD_Arrangement T, const Address &a) {                     \
2199     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2200            "Registers must be ordered");                                \
2201     ld_st(Vt, T, a, op1, op2, 3);                                       \
2202   }
2203 
2204 #define INSN4(NAME, op1, op2)                                           \
2205   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2206             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2207     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2208            Vt3->successor() == Vt4, "Registers must be ordered");       \
2209     ld_st(Vt, T, a, op1, op2, 4);                                       \
2210   }
2211 
2212   INSN1(ld1,  0b001100010, 0b0111);
2213   INSN2(ld1,  0b001100010, 0b1010);
2214   INSN3(ld1,  0b001100010, 0b0110);
2215   INSN4(ld1,  0b001100010, 0b0010);
2216 
2217   INSN2(ld2,  0b001100010, 0b1000);
2218   INSN3(ld3,  0b001100010, 0b0100);
2219   INSN4(ld4,  0b001100010, 0b0000);
2220 
2221   INSN1(st1,  0b001100000, 0b0111);
2222   INSN2(st1,  0b001100000, 0b1010);
2223   INSN3(st1,  0b001100000, 0b0110);
2224   INSN4(st1,  0b001100000, 0b0010);
2225 
2226   INSN2(st2,  0b001100000, 0b1000);
2227   INSN3(st3,  0b001100000, 0b0100);
2228   INSN4(st4,  0b001100000, 0b0000);
2229 
2230   INSN1(ld1r, 0b001101010, 0b1100);
2231   INSN2(ld2r, 0b001101011, 0b1100);
2232   INSN3(ld3r, 0b001101010, 0b1110);
2233   INSN4(ld4r, 0b001101011, 0b1110);
2234 
2235 #undef INSN1
2236 #undef INSN2
2237 #undef INSN3
2238 #undef INSN4
2239 
2240 #define INSN(NAME, opc)                                                                 \
2241   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2242     starti;                                                                             \
2243     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2244     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2245     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2246   }
2247 
2248   INSN(eor,  0b101110001);
2249   INSN(orr,  0b001110101);
2250   INSN(andr, 0b001110001);
2251   INSN(bic,  0b001110011);
2252   INSN(bif,  0b101110111);
2253   INSN(bit,  0b101110101);
2254   INSN(bsl,  0b101110011);
2255   INSN(orn,  0b001110111);
2256 
2257 #undef INSN
2258 
2259 #define INSN(NAME, opc, opc2, acceptT2D)                                                \
2260   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2261     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2262     if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement");                       \
2263     starti;                                                                             \
2264     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2265     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2266     rf(Vn, 5), rf(Vd, 0);                                                               \
2267   }
2268 
2269   INSN(addv,   0, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2270   INSN(subv,   1, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2271   INSN(mulv,   0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2272   INSN(mlav,   0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2273   INSN(mlsv,   1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2274   INSN(sshl,   0, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2275   INSN(ushl,   1, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2276   INSN(addpv,  0, 0b101111, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2277   INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2278   INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2279   INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2280 
2281 #undef INSN
2282 
2283 #define INSN(NAME, opc, opc2, accepted) \
2284   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2285     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2286     if (accepted < 3) guarantee(T != T2D, "incorrect arrangement");                     \
2287     if (accepted < 2) guarantee(T != T2S, "incorrect arrangement");                     \
2288     if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement");        \
2289     starti;                                                                             \
2290     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2291     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2292     rf(Vn, 5), rf(Vd, 0);                                                               \
2293   }
2294 
2295   INSN(absr,   0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2296   INSN(negr,   1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2297   INSN(notr,   1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2298   INSN(addv,   0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2299   INSN(cls,    0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2300   INSN(clz,    1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2301   INSN(cnt,    0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2302   INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2303   INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2304 
2305 #undef INSN
2306 
2307 #define INSN(NAME, opc) \
2308   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                  \
2309     starti;                                                                            \
2310     assert(T == T4S, "arrangement must be T4S");                                       \
2311     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23),                      \
2312     f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0);          \
2313   }
2314 
2315   INSN(fmaxv, 0);
2316   INSN(fminv, 1);
2317 
2318 #undef INSN
2319 
2320 #define INSN(NAME, op0, cmode0) \
2321   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2322     unsigned cmode = cmode0;                                                           \
2323     unsigned op = op0;                                                                 \
2324     starti;                                                                            \
2325     assert(lsl == 0 ||                                                                 \
2326            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2327            ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2328     cmode |= lsl >> 2;                                                                 \
2329     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2330     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2331       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2332       cmode = 0b1110;                                                                  \
2333       if (T == T1D || T == T2D) op = 1;                                                \
2334     }                                                                                  \
2335     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2336     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2337     rf(Vd, 0);                                                                         \
2338   }
2339 
2340   INSN(movi, 0, 0);
2341   INSN(orri, 0, 1);
2342   INSN(mvni, 1, 0);
2343   INSN(bici, 1, 1);
2344 
2345 #undef INSN
2346 
2347 #define INSN(NAME, op1, op2, op3) \
2348   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2349     starti;                                                                             \
2350     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2351     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2352     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2353   }
2354 
2355   INSN(fadd, 0, 0, 0b110101);
2356   INSN(fdiv, 1, 0, 0b111111);
2357   INSN(fmul, 1, 0, 0b110111);
2358   INSN(fsub, 0, 1, 0b110101);
2359   INSN(fmla, 0, 0, 0b110011);
2360   INSN(fmls, 0, 1, 0b110011);
2361   INSN(fmax, 0, 0, 0b111101);
2362   INSN(fmin, 0, 1, 0b111101);
2363 
2364 #undef INSN
2365 
2366 #define INSN(NAME, opc)                                                                 \
2367   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2368     starti;                                                                             \
2369     assert(T == T4S, "arrangement must be T4S");                                        \
2370     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2371   }
2372 
2373   INSN(sha1c,     0b000000);
2374   INSN(sha1m,     0b001000);
2375   INSN(sha1p,     0b000100);
2376   INSN(sha1su0,   0b001100);
2377   INSN(sha256h2,  0b010100);
2378   INSN(sha256h,   0b010000);
2379   INSN(sha256su1, 0b011000);
2380 
2381 #undef INSN
2382 
2383 #define INSN(NAME, opc)                                                                 \
2384   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2385     starti;                                                                             \
2386     assert(T == T4S, "arrangement must be T4S");                                        \
2387     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2388   }
2389 
2390   INSN(sha1h,     0b000010);
2391   INSN(sha1su1,   0b000110);
2392   INSN(sha256su0, 0b001010);
2393 
2394 #undef INSN
2395 
2396 #define INSN(NAME, opc)                                                                 \
2397   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2398     starti;                                                                             \
2399     assert(T == T2D, "arrangement must be T2D");                                        \
2400     f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2401   }
2402 
2403   INSN(sha512h,   0b100000);
2404   INSN(sha512h2,  0b100001);
2405   INSN(sha512su1, 0b100010);
2406 
2407 #undef INSN
2408 
2409 #define INSN(NAME, opc)                                                                 \
2410   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2411     starti;                                                                             \
2412     assert(T == T2D, "arrangement must be T2D");                                        \
2413     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);                                               \
2414   }
2415 
2416   INSN(sha512su0, 0b1100111011000000100000);
2417 
2418 #undef INSN
2419 
2420 #define INSN(NAME, opc)                           \
2421   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2422     starti;                                       \
2423     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2424   }
2425 
2426   INSN(aese, 0b0100111000101000010010);
2427   INSN(aesd, 0b0100111000101000010110);
2428   INSN(aesmc, 0b0100111000101000011010);
2429   INSN(aesimc, 0b0100111000101000011110);
2430 
2431 #undef INSN
2432 
2433 #define INSN(NAME, op1, op2) \
2434   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2435     starti;                                                                                            \
2436     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2437     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2438     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2439     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2440     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2441     rf(Vn, 5), rf(Vd, 0);                                                                              \
2442   }
2443 
2444   // FMLA/FMLS - Vector - Scalar
2445   INSN(fmlavs, 0, 0b0001);
2446   INSN(fmlsvs, 0, 0b0101);
2447   // FMULX - Vector - Scalar
2448   INSN(fmulxvs, 1, 0b1001);
2449 
2450 #undef INSN
2451 
2452   // Floating-point Reciprocal Estimate
2453   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2454     assert(type == D || type == S, "Wrong type for frecpe");
2455     starti;
2456     f(0b010111101, 31, 23);
2457     f(type == D ? 1 : 0, 22);
2458     f(0b100001110110, 21, 10);
2459     rf(Vn, 5), rf(Vd, 0);
2460   }
2461 
2462   // (double) {a, b} -> (a + b)
2463   void faddpd(FloatRegister Vd, FloatRegister Vn) {
2464     starti;
2465     f(0b0111111001110000110110, 31, 10);
2466     rf(Vn, 5), rf(Vd, 0);
2467   }
2468 
2469   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2470     starti;
2471     assert(T != Q, "invalid register variant");
2472     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2473     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2474   }
2475 
2476   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2477     starti;
2478     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2479     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2480     rf(Vn, 5), rf(Rd, 0);
2481   }
2482 
2483 #define INSN(NAME, opc, opc2, isSHR)                                    \
2484   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2485     starti;                                                             \
2486     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
2487      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
2488      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
2489      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
2490      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
2491      *   (1D is RESERVED)                                               \
2492      * for SHL shift is calculated as:                                  \
2493      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
2494      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
2495      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
2496      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
2497      *   (1D is RESERVED)                                               \
2498      */                                                                 \
2499     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2500     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
2501     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
2502     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2503     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2504   }
2505 
2506   INSN(shl,  0, 0b010101, /* isSHR = */ false);
2507   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2508   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2509 
2510 #undef INSN
2511 
2512 private:
2513   void _ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2514     starti;
2515     /* The encodings for the immh:immb fields (bits 22:16) are
2516      *   0001 xxx       8H, 8B/16b shift = xxx
2517      *   001x xxx       4S, 4H/8H  shift = xxxx
2518      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2519      *   1xxx xxx       RESERVED
2520      */
2521     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2522     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2523     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2524     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2525   }
2526 
2527 public:
2528   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2529     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2530     _ushll(Vd, Ta, Vn, Tb, shift);
2531   }
2532 
2533   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2534     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
2535     _ushll(Vd, Ta, Vn, Tb, shift);
2536   }
2537 
2538   // Move from general purpose register
2539   //   mov  Vd.T[index], Rn
2540   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2541     starti;
2542     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2543     f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
2544   }
2545 
2546   // Move to general purpose register
2547   //   mov  Rd, Vn.T[index]
2548   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2549     guarantee(T >= T2S && T < T1Q, "only D and S arrangements are supported");
2550     starti;
2551     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2552     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2553     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2554   }
2555 
2556 private:
2557   void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2558     starti;
2559     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2560            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2561     int size = (Ta == T1Q) ? 0b11 : 0b00;
2562     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2563     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2564   }
2565 
2566 public:
2567   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2568     assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
2569     _pmull(Vd, Ta, Vn, Vm, Tb);
2570   }
2571 
2572   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2573     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2574     _pmull(Vd, Ta, Vn, Vm, Tb);
2575   }
2576 
2577   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2578     starti;
2579     int size_b = (int)Tb >> 1;
2580     int size_a = (int)Ta >> 1;
2581     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2582     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2583     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2584   }
2585 
2586   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2587   {
2588     starti;
2589     assert(T != T1D, "reserved encoding");
2590     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2591     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
2592   }
2593 
2594   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2595   {
2596     starti;
2597     assert(T != T1D, "reserved encoding");
2598     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2599     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2600     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2601   }
2602 
2603   // AdvSIMD ZIP/UZP/TRN
2604 #define INSN(NAME, opcode)                                              \
2605   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2606     guarantee(T != T1D && T != T1Q, "invalid arrangement");             \
2607     starti;                                                             \
2608     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
2609     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
2610     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
2611     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
2612   }
2613 
2614   INSN(uzp1, 0b001);
2615   INSN(trn1, 0b010);
2616   INSN(zip1, 0b011);
2617   INSN(uzp2, 0b101);
2618   INSN(trn2, 0b110);
2619   INSN(zip2, 0b111);
2620 
2621 #undef INSN
2622 
2623   // CRC32 instructions
2624 #define INSN(NAME, c, sf, sz)                                             \
2625   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2626     starti;                                                               \
2627     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2628     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2629   }
2630 
2631   INSN(crc32b,  0, 0, 0b00);
2632   INSN(crc32h,  0, 0, 0b01);
2633   INSN(crc32w,  0, 0, 0b10);
2634   INSN(crc32x,  0, 1, 0b11);
2635   INSN(crc32cb, 1, 0, 0b00);
2636   INSN(crc32ch, 1, 0, 0b01);
2637   INSN(crc32cw, 1, 0, 0b10);
2638   INSN(crc32cx, 1, 1, 0b11);
2639 
2640 #undef INSN
2641 
2642   // Table vector lookup
2643 #define INSN(NAME, op)                                                  \
2644   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2645     starti;                                                             \
2646     assert(T == T8B || T == T16B, "invalid arrangement");               \
2647     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2648     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2649     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2650   }
2651 
2652   INSN(tbl, 0);
2653   INSN(tbx, 1);
2654 
2655 #undef INSN
2656 
2657   // AdvSIMD two-reg misc
2658   // In this instruction group, the 2 bits in the size field ([23:22]) may be
2659   // fixed or determined by the "SIMD_Arrangement T", or both. The additional
2660   // parameter "tmask" is a 2-bit mask used to indicate which bits in the size
2661   // field are determined by the SIMD_Arrangement. The bit of "tmask" should be
2662   // set to 1 if corresponding bit marked as "x" in the ArmARM.
2663 #define INSN(NAME, U, size, tmask, opcode)                                          \
2664   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2665        starti;                                                                      \
2666        assert((ASSERTION), MSG);                                                    \
2667        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2668        f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17);               \
2669        f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                    \
2670  }
2671 
2672 #define MSG "invalid arrangement"
2673 
2674 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2675   INSN(fsqrt,  1, 0b10, 0b01, 0b11111);
2676   INSN(fabs,   0, 0b10, 0b01, 0b01111);
2677   INSN(fneg,   1, 0b10, 0b01, 0b01111);
2678   INSN(frintn, 0, 0b00, 0b01, 0b11000);
2679   INSN(frintm, 0, 0b00, 0b01, 0b11001);
2680   INSN(frintp, 0, 0b10, 0b01, 0b11000);
2681 #undef ASSERTION
2682 
2683 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2684   INSN(rev64, 0, 0b00, 0b11, 0b00000);
2685 #undef ASSERTION
2686 
2687 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2688   INSN(rev32, 1, 0b00, 0b11, 0b00000);
2689 #undef ASSERTION
2690 
2691 #define ASSERTION (T == T8B || T == T16B)
2692   INSN(rev16, 0, 0b00, 0b11, 0b00001);
2693   INSN(rbit,  1, 0b01, 0b00, 0b00101);
2694 #undef ASSERTION
2695 
2696 #undef MSG
2697 
2698 #undef INSN
2699 
2700 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2701   {
2702     starti;
2703     assert(T == T8B || T == T16B, "invalid arrangement");
2704     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2705     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2706     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2707     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2708   }
2709 
2710   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2711   }
2712 
2713   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2714                                                 Register tmp,
2715                                                 int offset) {
2716     ShouldNotCallThis();
2717     return RegisterOrConstant();
2718   }
2719 
2720   // Stack overflow checking
2721   virtual void bang_stack_with_offset(int offset);
2722 
2723   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2724   static bool operand_valid_for_add_sub_immediate(int64_t imm);
2725   static bool operand_valid_for_float_immediate(double imm);
2726 
2727   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2728   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2729 };
2730 
2731 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2732                                              Assembler::Membar_mask_bits b) {
2733   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2734 }
2735 
2736 Instruction_aarch64::~Instruction_aarch64() {
2737   assem->emit();
2738 }
2739 
2740 #undef starti
2741 
2742 // Invert a condition
2743 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2744   return Assembler::Condition(int(cond) ^ 1);
2745 }
2746 
2747 class BiasedLockingCounters;
2748 
2749 extern "C" void das(uint64_t start, int len);
2750 
2751 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP