1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 #include "utilities/powerOfTwo.hpp"
  31 
  32 #ifdef __GNUC__
  33 
  34 // __nop needs volatile so that compiler doesn't optimize it away
  35 #define NOP() asm volatile ("nop");
  36 
  37 #elif defined(_MSC_VER)
  38 
  39 // Use MSVC instrinsic: https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=vs-2019#I
  40 #define NOP() __nop();
  41 
  42 #endif
  43 
  44 
  45 
  46 // definitions of various symbolic names for machine registers
  47 
  48 // First intercalls between C and Java which use 8 general registers
  49 // and 8 floating registers
  50 
  51 // we also have to copy between x86 and ARM registers but that's a
  52 // secondary complication -- not all code employing C call convention
  53 // executes as x86 code though -- we generate some of it
  54 
  55 class Argument {
  56  public:
  57   enum {
  58     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  59     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  60 
  61     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  62     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  63   };
  64 };
  65 
  66 REGISTER_DECLARATION(Register, c_rarg0, r0);
  67 REGISTER_DECLARATION(Register, c_rarg1, r1);
  68 REGISTER_DECLARATION(Register, c_rarg2, r2);
  69 REGISTER_DECLARATION(Register, c_rarg3, r3);
  70 REGISTER_DECLARATION(Register, c_rarg4, r4);
  71 REGISTER_DECLARATION(Register, c_rarg5, r5);
  72 REGISTER_DECLARATION(Register, c_rarg6, r6);
  73 REGISTER_DECLARATION(Register, c_rarg7, r7);
  74 
  75 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  76 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  77 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  78 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  79 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  80 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  81 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  82 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  83 
  84 // Symbolically name the register arguments used by the Java calling convention.
  85 // We have control over the convention for java so we can do what we please.
  86 // What pleases us is to offset the java calling convention so that when
  87 // we call a suitable jni method the arguments are lined up and we don't
  88 // have to do much shuffling. A suitable jni method is non-static and a
  89 // small number of arguments
  90 //
  91 //  |--------------------------------------------------------------------|
  92 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  93 //  |--------------------------------------------------------------------|
  94 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  95 //  |--------------------------------------------------------------------|
  96 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  97 //  |--------------------------------------------------------------------|
  98 
  99 
 100 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 101 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 102 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 103 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 104 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 105 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
 106 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
 107 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
 108 
 109 // Java floating args are passed as per C
 110 
 111 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
 112 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
 113 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
 114 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 115 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 116 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 117 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 118 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 119 
 120 // registers used to hold VM data either temporarily within a method
 121 // or across method calls
 122 
 123 // volatile (caller-save) registers
 124 
 125 // r8 is used for indirect result location return
 126 // we use it and r9 as scratch registers
 127 REGISTER_DECLARATION(Register, rscratch1, r8);
 128 REGISTER_DECLARATION(Register, rscratch2, r9);
 129 
 130 // current method -- must be in a call-clobbered register
 131 REGISTER_DECLARATION(Register, rmethod,   r12);
 132 
 133 // non-volatile (callee-save) registers are r16-29
 134 // of which the following are dedicated global state
 135 
 136 // link register
 137 REGISTER_DECLARATION(Register, lr,        r30);
 138 // frame pointer
 139 REGISTER_DECLARATION(Register, rfp,       r29);
 140 // current thread
 141 REGISTER_DECLARATION(Register, rthread,   r28);
 142 // base of heap
 143 REGISTER_DECLARATION(Register, rheapbase, r27);
 144 // constant pool cache
 145 REGISTER_DECLARATION(Register, rcpool,    r26);
 146 // monitors allocated on stack
 147 REGISTER_DECLARATION(Register, rmonitors, r25);
 148 // locals on stack
 149 REGISTER_DECLARATION(Register, rlocals,   r24);
 150 // bytecode pointer
 151 REGISTER_DECLARATION(Register, rbcp,      r22);
 152 // Dispatch table base
 153 REGISTER_DECLARATION(Register, rdispatch, r21);
 154 // Java stack pointer
 155 REGISTER_DECLARATION(Register, esp,      r20);
 156 
 157 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 158 
 159 namespace asm_util {
 160   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 161 };
 162 
 163 using namespace asm_util;
 164 
 165 
 166 class Assembler;
 167 
 168 class Instruction_aarch64 {
 169   unsigned insn;
 170 #ifdef ASSERT
 171   unsigned bits;
 172 #endif
 173   Assembler *assem;
 174 
 175 public:
 176 
 177   Instruction_aarch64(class Assembler *as) {
 178 #ifdef ASSERT
 179     bits = 0;
 180 #endif
 181     insn = 0;
 182     assem = as;
 183   }
 184 
 185   inline ~Instruction_aarch64();
 186 
 187   unsigned &get_insn() { return insn; }
 188 #ifdef ASSERT
 189   unsigned &get_bits() { return bits; }
 190 #endif
 191 
 192   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 193     union {
 194       unsigned u;
 195       int n;
 196     };
 197 
 198     u = val << (31 - hi);
 199     n = n >> (31 - hi + lo);
 200     return n;
 201   }
 202 
 203   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 204     int nbits = msb - lsb + 1;
 205     assert_cond(msb >= lsb);
 206     uint32_t mask = (1U << nbits) - 1;
 207     uint32_t result = val >> lsb;
 208     result &= mask;
 209     return result;
 210   }
 211 
 212   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 213     uint32_t uval = extract(val, msb, lsb);
 214     return extend(uval, msb - lsb);
 215   }
 216 
 217   static void patch(address a, int msb, int lsb, uint64_t val) {
 218     int nbits = msb - lsb + 1;
 219     guarantee(val < (1U << nbits), "Field too big for insn");
 220     assert_cond(msb >= lsb);
 221     unsigned mask = (1U << nbits) - 1;
 222     val <<= lsb;
 223     mask <<= lsb;
 224     unsigned target = *(unsigned *)a;
 225     target &= ~mask;
 226     target |= val;
 227     *(unsigned *)a = target;
 228   }
 229 
 230   static void spatch(address a, int msb, int lsb, int64_t val) {
 231     int nbits = msb - lsb + 1;
 232     int64_t chk = val >> (nbits - 1);
 233     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 234     unsigned uval = val;
 235     unsigned mask = (1U << nbits) - 1;
 236     uval &= mask;
 237     uval <<= lsb;
 238     mask <<= lsb;
 239     unsigned target = *(unsigned *)a;
 240     target &= ~mask;
 241     target |= uval;
 242     *(unsigned *)a = target;
 243   }
 244 
 245   void f(unsigned val, int msb, int lsb) {
 246     int nbits = msb - lsb + 1;
 247     guarantee(val < (1U << nbits), "Field too big for insn");
 248     assert_cond(msb >= lsb);
 249     unsigned mask = (1U << nbits) - 1;
 250     val <<= lsb;
 251     mask <<= lsb;
 252     insn |= val;
 253     assert_cond((bits & mask) == 0);
 254 #ifdef ASSERT
 255     bits |= mask;
 256 #endif
 257   }
 258 
 259   void f(unsigned val, int bit) {
 260     f(val, bit, bit);
 261   }
 262 
 263   void sf(int64_t val, int msb, int lsb) {
 264     int nbits = msb - lsb + 1;
 265     int64_t chk = val >> (nbits - 1);
 266     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 267     unsigned uval = val;
 268     unsigned mask = (1U << nbits) - 1;
 269     uval &= mask;
 270     f(uval, lsb + nbits - 1, lsb);
 271   }
 272 
 273   void rf(Register r, int lsb) {
 274     f(r->encoding_nocheck(), lsb + 4, lsb);
 275   }
 276 
 277   // reg|ZR
 278   void zrf(Register r, int lsb) {
 279     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 280   }
 281 
 282   // reg|SP
 283   void srf(Register r, int lsb) {
 284     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 285   }
 286 
 287   void rf(FloatRegister r, int lsb) {
 288     f(r->encoding_nocheck(), lsb + 4, lsb);
 289   }
 290 
 291   unsigned get(int msb = 31, int lsb = 0) {
 292     int nbits = msb - lsb + 1;
 293     unsigned mask = ((1U << nbits) - 1) << lsb;
 294     assert_cond((bits & mask) == mask);
 295     return (insn & mask) >> lsb;
 296   }
 297 
 298   void fixed(unsigned value, unsigned mask) {
 299     assert_cond ((mask & bits) == 0);
 300 #ifdef ASSERT
 301     bits |= mask;
 302 #endif
 303     insn |= value;
 304   }
 305 };
 306 
 307 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 308 
 309 class PrePost {
 310   int _offset;
 311   Register _r;
 312 public:
 313   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 314   int offset() { return _offset; }
 315   Register reg() { return _r; }
 316 };
 317 
 318 class Pre : public PrePost {
 319 public:
 320   Pre(Register reg, int o) : PrePost(reg, o) { }
 321 };
 322 class Post : public PrePost {
 323   Register _idx;
 324   bool _is_postreg;
 325 public:
 326   Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; _is_postreg = false; }
 327   Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; _is_postreg = true; }
 328   Register idx_reg() { return _idx; }
 329   bool is_postreg() {return _is_postreg; }
 330 };
 331 
 332 namespace ext
 333 {
 334   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 335 };
 336 
 337 // Addressing modes
 338 class Address {
 339  public:
 340 
 341   enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel,
 342               base_plus_offset_reg, literal };
 343 
 344   // Shift and extend for base reg + reg offset addressing
 345   class extend {
 346     int _option, _shift;
 347     ext::operation _op;
 348   public:
 349     extend() { }
 350     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 351     int option() const{ return _option; }
 352     int shift() const { return _shift; }
 353     ext::operation op() const { return _op; }
 354   };
 355   class uxtw : public extend {
 356   public:
 357     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 358   };
 359   class lsl : public extend {
 360   public:
 361     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 362   };
 363   class sxtw : public extend {
 364   public:
 365     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 366   };
 367   class sxtx : public extend {
 368   public:
 369     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 370   };
 371 
 372  private:
 373   Register _base;
 374   Register _index;
 375   int64_t _offset;
 376   enum mode _mode;
 377   extend _ext;
 378 
 379   RelocationHolder _rspec;
 380 
 381   // Typically we use AddressLiterals we want to use their rval
 382   // However in some situations we want the lval (effect address) of
 383   // the item.  We provide a special factory for making those lvals.
 384   bool _is_lval;
 385 
 386   // If the target is far we'll need to load the ea of this to a
 387   // register to reach it. Otherwise if near we can do PC-relative
 388   // addressing.
 389   address          _target;
 390 
 391  public:
 392   Address()
 393     : _mode(no_mode) { }
 394   Address(Register r)
 395     : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { }
 396   Address(Register r, int o)
 397     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 398   Address(Register r, int64_t o)
 399     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 400   Address(Register r, uint64_t o)
 401     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 402 #ifdef ASSERT
 403   Address(Register r, ByteSize disp)
 404     : _base(r), _index(noreg), _offset(in_bytes(disp)), _mode(base_plus_offset), _target(0) { }
 405 #endif
 406   Address(Register r, Register r1, extend ext = lsl())
 407     : _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg),
 408       _ext(ext), _target(0) { }
 409   Address(Pre p)
 410     : _base(p.reg()), _offset(p.offset()), _mode(pre) { }
 411   Address(Post p)
 412     : _base(p.reg()),  _index(p.idx_reg()), _offset(p.offset()),
 413       _mode(p.is_postreg() ? post_reg : post), _target(0) { }
 414   Address(address target, RelocationHolder const& rspec)
 415     : _mode(literal),
 416       _rspec(rspec),
 417       _is_lval(false),
 418       _target(target)  { }
 419   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 420   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 421     : _base (base),
 422       _offset(0), _ext(ext), _target(0) {
 423     if (index.is_register()) {
 424       _mode = base_plus_offset_reg;
 425       _index = index.as_register();
 426     } else {
 427       guarantee(ext.option() == ext::uxtx, "should be");
 428       assert(index.is_constant(), "should be");
 429       _mode = base_plus_offset;
 430       _offset = index.as_constant() << ext.shift();
 431     }
 432   }
 433 
 434   Register base() const {
 435     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 436                | _mode == post | _mode == post_reg),
 437               "wrong mode");
 438     return _base;
 439   }
 440   int64_t offset() const {
 441     return _offset;
 442   }
 443   Register index() const {
 444     return _index;
 445   }
 446   mode getMode() const {
 447     return _mode;
 448   }
 449   bool uses(Register reg) const { return _base == reg || _index == reg; }
 450   address target() const { return _target; }
 451   const RelocationHolder& rspec() const { return _rspec; }
 452 
 453   void encode(Instruction_aarch64 *i) const {
 454     i->f(0b111, 29, 27);
 455     i->srf(_base, 5);
 456 
 457     switch(_mode) {
 458     case base_plus_offset:
 459       {
 460         unsigned size = i->get(31, 30);
 461         if (i->get(26, 26) && i->get(23, 23)) {
 462           // SIMD Q Type - Size = 128 bits
 463           assert(size == 0, "bad size");
 464           size = 0b100;
 465         }
 466         unsigned mask = (1 << size) - 1;
 467         if (_offset < 0 || _offset & mask)
 468           {
 469             i->f(0b00, 25, 24);
 470             i->f(0, 21), i->f(0b00, 11, 10);
 471             i->sf(_offset, 20, 12);
 472           } else {
 473             i->f(0b01, 25, 24);
 474             i->f(_offset >> size, 21, 10);
 475           }
 476       }
 477       break;
 478 
 479     case base_plus_offset_reg:
 480       {
 481         i->f(0b00, 25, 24);
 482         i->f(1, 21);
 483         i->rf(_index, 16);
 484         i->f(_ext.option(), 15, 13);
 485         unsigned size = i->get(31, 30);
 486         if (i->get(26, 26) && i->get(23, 23)) {
 487           // SIMD Q Type - Size = 128 bits
 488           assert(size == 0, "bad size");
 489           size = 0b100;
 490         }
 491         if (size == 0) // It's a byte
 492           i->f(_ext.shift() >= 0, 12);
 493         else {
 494           if (_ext.shift() > 0)
 495             assert(_ext.shift() == (int)size, "bad shift");
 496           i->f(_ext.shift() > 0, 12);
 497         }
 498         i->f(0b10, 11, 10);
 499       }
 500       break;
 501 
 502     case pre:
 503       i->f(0b00, 25, 24);
 504       i->f(0, 21), i->f(0b11, 11, 10);
 505       i->sf(_offset, 20, 12);
 506       break;
 507 
 508     case post:
 509       i->f(0b00, 25, 24);
 510       i->f(0, 21), i->f(0b01, 11, 10);
 511       i->sf(_offset, 20, 12);
 512       break;
 513 
 514     default:
 515       ShouldNotReachHere();
 516     }
 517   }
 518 
 519   void encode_pair(Instruction_aarch64 *i) const {
 520     switch(_mode) {
 521     case base_plus_offset:
 522       i->f(0b010, 25, 23);
 523       break;
 524     case pre:
 525       i->f(0b011, 25, 23);
 526       break;
 527     case post:
 528       i->f(0b001, 25, 23);
 529       break;
 530     default:
 531       ShouldNotReachHere();
 532     }
 533 
 534     unsigned size; // Operand shift in 32-bit words
 535 
 536     if (i->get(26, 26)) { // float
 537       switch(i->get(31, 30)) {
 538       case 0b10:
 539         size = 2; break;
 540       case 0b01:
 541         size = 1; break;
 542       case 0b00:
 543         size = 0; break;
 544       default:
 545         ShouldNotReachHere();
 546         size = 0;  // unreachable
 547       }
 548     } else {
 549       size = i->get(31, 31);
 550     }
 551 
 552     size = 4 << size;
 553     guarantee(_offset % size == 0, "bad offset");
 554     i->sf(_offset / size, 21, 15);
 555     i->srf(_base, 5);
 556   }
 557 
 558   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 559     // Only base + offset is allowed
 560     i->f(0b000, 25, 23);
 561     unsigned size = i->get(31, 31);
 562     size = 4 << size;
 563     guarantee(_offset % size == 0, "bad offset");
 564     i->sf(_offset / size, 21, 15);
 565     i->srf(_base, 5);
 566     guarantee(_mode == Address::base_plus_offset,
 567               "Bad addressing mode for non-temporal op");
 568   }
 569 
 570   void lea(MacroAssembler *, Register) const;
 571 
 572   static bool offset_ok_for_immed(int64_t offset, uint shift);
 573 };
 574 
 575 // Convience classes
 576 class RuntimeAddress: public Address {
 577 
 578   public:
 579 
 580   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 581 
 582 };
 583 
 584 class OopAddress: public Address {
 585 
 586   public:
 587 
 588   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 589 
 590 };
 591 
 592 class ExternalAddress: public Address {
 593  private:
 594   static relocInfo::relocType reloc_for_target(address target) {
 595     // Sometimes ExternalAddress is used for values which aren't
 596     // exactly addresses, like the card table base.
 597     // external_word_type can't be used for values in the first page
 598     // so just skip the reloc in that case.
 599     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 600   }
 601 
 602  public:
 603 
 604   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 605 
 606 };
 607 
 608 class InternalAddress: public Address {
 609 
 610   public:
 611 
 612   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 613 };
 614 
 615 const int FPUStateSizeInWords = FloatRegisterImpl::number_of_registers *
 616                                 FloatRegisterImpl::save_slots_per_register;
 617 
 618 typedef enum {
 619   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 620   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 621   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 622 } prfop;
 623 
 624 class Assembler : public AbstractAssembler {
 625 
 626 #ifndef PRODUCT
 627   static const uintptr_t asm_bp;
 628 
 629   void emit_long(jint x) {
 630     if ((uintptr_t)pc() == asm_bp)
 631       NOP();
 632     AbstractAssembler::emit_int32(x);
 633   }
 634 #else
 635   void emit_long(jint x) {
 636     AbstractAssembler::emit_int32(x);
 637   }
 638 #endif
 639 
 640 public:
 641 
 642   enum { instruction_size = 4 };
 643 
 644   //---<  calculate length of instruction  >---
 645   // We just use the values set above.
 646   // instruction must start at passed address
 647   static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
 648 
 649   //---<  longest instructions  >---
 650   static unsigned int instr_maxlen() { return instruction_size; }
 651 
 652   Address adjust(Register base, int offset, bool preIncrement) {
 653     if (preIncrement)
 654       return Address(Pre(base, offset));
 655     else
 656       return Address(Post(base, offset));
 657   }
 658 
 659   Address pre(Register base, int offset) {
 660     return adjust(base, offset, true);
 661   }
 662 
 663   Address post(Register base, int offset) {
 664     return adjust(base, offset, false);
 665   }
 666 
 667   Address post(Register base, Register idx) {
 668     return Address(Post(base, idx));
 669   }
 670 
 671   static address locate_next_instruction(address inst);
 672 
 673   Instruction_aarch64* current;
 674 
 675   void set_current(Instruction_aarch64* i) { current = i; }
 676 
 677   void f(unsigned val, int msb, int lsb) {
 678     current->f(val, msb, lsb);
 679   }
 680   void f(unsigned val, int msb) {
 681     current->f(val, msb, msb);
 682   }
 683   void sf(int64_t val, int msb, int lsb) {
 684     current->sf(val, msb, lsb);
 685   }
 686   void rf(Register reg, int lsb) {
 687     current->rf(reg, lsb);
 688   }
 689   void srf(Register reg, int lsb) {
 690     current->srf(reg, lsb);
 691   }
 692   void zrf(Register reg, int lsb) {
 693     current->zrf(reg, lsb);
 694   }
 695   void rf(FloatRegister reg, int lsb) {
 696     current->rf(reg, lsb);
 697   }
 698   void fixed(unsigned value, unsigned mask) {
 699     current->fixed(value, mask);
 700   }
 701 
 702   void emit() {
 703     emit_long(current->get_insn());
 704     assert_cond(current->get_bits() == 0xffffffff);
 705     current = NULL;
 706   }
 707 
 708   typedef void (Assembler::* uncond_branch_insn)(address dest);
 709   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 710   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 711   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 712 
 713   void wrap_label(Label &L, uncond_branch_insn insn);
 714   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 715   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 716   void wrap_label(Label &L, prfop, prefetch_insn insn);
 717 
 718   // PC-rel. addressing
 719 
 720   void adr(Register Rd, address dest);
 721   void _adrp(Register Rd, address dest);
 722 
 723   void adr(Register Rd, const Address &dest);
 724   void _adrp(Register Rd, const Address &dest);
 725 
 726   void adr(Register Rd, Label &L) {
 727     wrap_label(Rd, L, &Assembler::Assembler::adr);
 728   }
 729   void _adrp(Register Rd, Label &L) {
 730     wrap_label(Rd, L, &Assembler::_adrp);
 731   }
 732 
 733   void adrp(Register Rd, const Address &dest, uint64_t &offset);
 734 
 735 #undef INSN
 736 
 737   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 738                          int negated_op);
 739 
 740   // Add/subtract (immediate)
 741 #define INSN(NAME, decode, negated)                                     \
 742   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 743     starti;                                                             \
 744     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 745     zrf(Rd, 0), srf(Rn, 5);                                             \
 746   }                                                                     \
 747                                                                         \
 748   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 749     starti;                                                             \
 750     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 751   }
 752 
 753   INSN(addsw, 0b001, 0b011);
 754   INSN(subsw, 0b011, 0b001);
 755   INSN(adds,  0b101, 0b111);
 756   INSN(subs,  0b111, 0b101);
 757 
 758 #undef INSN
 759 
 760 #define INSN(NAME, decode, negated)                     \
 761   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 762     starti;                                             \
 763     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 764   }
 765 
 766   INSN(addw, 0b000, 0b010);
 767   INSN(subw, 0b010, 0b000);
 768   INSN(add,  0b100, 0b110);
 769   INSN(sub,  0b110, 0b100);
 770 
 771 #undef INSN
 772 
 773  // Logical (immediate)
 774 #define INSN(NAME, decode, is32)                                \
 775   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 776     starti;                                                     \
 777     uint32_t val = encode_logical_immediate(is32, imm);         \
 778     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 779     srf(Rd, 0), zrf(Rn, 5);                                     \
 780   }
 781 
 782   INSN(andw, 0b000, true);
 783   INSN(orrw, 0b001, true);
 784   INSN(eorw, 0b010, true);
 785   INSN(andr,  0b100, false);
 786   INSN(orr,  0b101, false);
 787   INSN(eor,  0b110, false);
 788 
 789 #undef INSN
 790 
 791 #define INSN(NAME, decode, is32)                                \
 792   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 793     starti;                                                     \
 794     uint32_t val = encode_logical_immediate(is32, imm);         \
 795     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 796     zrf(Rd, 0), zrf(Rn, 5);                                     \
 797   }
 798 
 799   INSN(ands, 0b111, false);
 800   INSN(andsw, 0b011, true);
 801 
 802 #undef INSN
 803 
 804   // Move wide (immediate)
 805 #define INSN(NAME, opcode)                                              \
 806   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 807     assert_cond((shift/16)*16 == shift);                                \
 808     starti;                                                             \
 809     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 810       f(imm, 20, 5);                                                    \
 811     rf(Rd, 0);                                                          \
 812   }
 813 
 814   INSN(movnw, 0b000);
 815   INSN(movzw, 0b010);
 816   INSN(movkw, 0b011);
 817   INSN(movn, 0b100);
 818   INSN(movz, 0b110);
 819   INSN(movk, 0b111);
 820 
 821 #undef INSN
 822 
 823   // Bitfield
 824 #define INSN(NAME, opcode, size)                                        \
 825   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 826     starti;                                                             \
 827     guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
 828     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 829     zrf(Rn, 5), rf(Rd, 0);                                              \
 830   }
 831 
 832   INSN(sbfmw, 0b0001001100, 0);
 833   INSN(bfmw,  0b0011001100, 0);
 834   INSN(ubfmw, 0b0101001100, 0);
 835   INSN(sbfm,  0b1001001101, 1);
 836   INSN(bfm,   0b1011001101, 1);
 837   INSN(ubfm,  0b1101001101, 1);
 838 
 839 #undef INSN
 840 
 841   // Extract
 842 #define INSN(NAME, opcode, size)                                        \
 843   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 844     starti;                                                             \
 845     guarantee(size == 1 || imms < 32, "incorrect imms");                \
 846     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 847     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
 848   }
 849 
 850   INSN(extrw, 0b00010011100, 0);
 851   INSN(extr,  0b10010011110, 1);
 852 
 853 #undef INSN
 854 
 855   // The maximum range of a branch is fixed for the AArch64
 856   // architecture.  In debug mode we shrink it in order to test
 857   // trampolines, but not so small that branches in the interpreter
 858   // are out of range.
 859   static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 860 
 861   static bool reachable_from_branch_at(address branch, address target) {
 862     return uabs(target - branch) < branch_range;
 863   }
 864 
 865   // Unconditional branch (immediate)
 866 #define INSN(NAME, opcode)                                              \
 867   void NAME(address dest) {                                             \
 868     starti;                                                             \
 869     int64_t offset = (dest - pc()) >> 2;                                \
 870     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 871     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 872   }                                                                     \
 873   void NAME(Label &L) {                                                 \
 874     wrap_label(L, &Assembler::NAME);                                    \
 875   }                                                                     \
 876   void NAME(const Address &dest);
 877 
 878   INSN(b, 0);
 879   INSN(bl, 1);
 880 
 881 #undef INSN
 882 
 883   // Compare & branch (immediate)
 884 #define INSN(NAME, opcode)                              \
 885   void NAME(Register Rt, address dest) {                \
 886     int64_t offset = (dest - pc()) >> 2;                \
 887     starti;                                             \
 888     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 889   }                                                     \
 890   void NAME(Register Rt, Label &L) {                    \
 891     wrap_label(Rt, L, &Assembler::NAME);                \
 892   }
 893 
 894   INSN(cbzw,  0b00110100);
 895   INSN(cbnzw, 0b00110101);
 896   INSN(cbz,   0b10110100);
 897   INSN(cbnz,  0b10110101);
 898 
 899 #undef INSN
 900 
 901   // Test & branch (immediate)
 902 #define INSN(NAME, opcode)                                              \
 903   void NAME(Register Rt, int bitpos, address dest) {                    \
 904     int64_t offset = (dest - pc()) >> 2;                                \
 905     int b5 = bitpos >> 5;                                               \
 906     bitpos &= 0x1f;                                                     \
 907     starti;                                                             \
 908     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 909     rf(Rt, 0);                                                          \
 910   }                                                                     \
 911   void NAME(Register Rt, int bitpos, Label &L) {                        \
 912     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 913   }
 914 
 915   INSN(tbz,  0b0110110);
 916   INSN(tbnz, 0b0110111);
 917 
 918 #undef INSN
 919 
 920   // Conditional branch (immediate)
 921   enum Condition
 922     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 923 
 924   void br(Condition  cond, address dest) {
 925     int64_t offset = (dest - pc()) >> 2;
 926     starti;
 927     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 928   }
 929 
 930 #define INSN(NAME, cond)                        \
 931   void NAME(address dest) {                     \
 932     br(cond, dest);                             \
 933   }
 934 
 935   INSN(beq, EQ);
 936   INSN(bne, NE);
 937   INSN(bhs, HS);
 938   INSN(bcs, CS);
 939   INSN(blo, LO);
 940   INSN(bcc, CC);
 941   INSN(bmi, MI);
 942   INSN(bpl, PL);
 943   INSN(bvs, VS);
 944   INSN(bvc, VC);
 945   INSN(bhi, HI);
 946   INSN(bls, LS);
 947   INSN(bge, GE);
 948   INSN(blt, LT);
 949   INSN(bgt, GT);
 950   INSN(ble, LE);
 951   INSN(bal, AL);
 952   INSN(bnv, NV);
 953 
 954   void br(Condition cc, Label &L);
 955 
 956 #undef INSN
 957 
 958   // Exception generation
 959   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 960     starti;
 961     f(0b11010100, 31, 24);
 962     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 963   }
 964 
 965 #define INSN(NAME, opc, op2, LL)                \
 966   void NAME(unsigned imm) {                     \
 967     generate_exception(opc, op2, LL, imm);      \
 968   }
 969 
 970   INSN(svc, 0b000, 0, 0b01);
 971   INSN(hvc, 0b000, 0, 0b10);
 972   INSN(smc, 0b000, 0, 0b11);
 973   INSN(brk, 0b001, 0, 0b00);
 974   INSN(hlt, 0b010, 0, 0b00);
 975   INSN(dcps1, 0b101, 0, 0b01);
 976   INSN(dcps2, 0b101, 0, 0b10);
 977   INSN(dcps3, 0b101, 0, 0b11);
 978 
 979 #undef INSN
 980 
 981   // System
 982   void system(int op0, int op1, int CRn, int CRm, int op2,
 983               Register rt = dummy_reg)
 984   {
 985     starti;
 986     f(0b11010101000, 31, 21);
 987     f(op0, 20, 19);
 988     f(op1, 18, 16);
 989     f(CRn, 15, 12);
 990     f(CRm, 11, 8);
 991     f(op2, 7, 5);
 992     rf(rt, 0);
 993   }
 994 
 995   void hint(int imm) {
 996     system(0b00, 0b011, 0b0010, 0b0000, imm);
 997   }
 998 
 999   void nop() {
1000     hint(0);
1001   }
1002 
1003   void yield() {
1004     hint(1);
1005   }
1006 
1007   void wfe() {
1008     hint(2);
1009   }
1010 
1011   void wfi() {
1012     hint(3);
1013   }
1014 
1015   void sev() {
1016     hint(4);
1017   }
1018 
1019   void sevl() {
1020     hint(5);
1021   }
1022 
1023   // we only provide mrs and msr for the special purpose system
1024   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1025   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1026 
1027   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1028     starti;
1029     f(0b1101010100011, 31, 19);
1030     f(op1, 18, 16);
1031     f(CRn, 15, 12);
1032     f(CRm, 11, 8);
1033     f(op2, 7, 5);
1034     // writing zr is ok
1035     zrf(rt, 0);
1036   }
1037 
1038   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1039     starti;
1040     f(0b1101010100111, 31, 19);
1041     f(op1, 18, 16);
1042     f(CRn, 15, 12);
1043     f(CRm, 11, 8);
1044     f(op2, 7, 5);
1045     // reading to zr is a mistake
1046     rf(rt, 0);
1047   }
1048 
1049   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1050                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1051 
1052   void dsb(barrier imm) {
1053     system(0b00, 0b011, 0b00011, imm, 0b100);
1054   }
1055 
1056   void dmb(barrier imm) {
1057     system(0b00, 0b011, 0b00011, imm, 0b101);
1058   }
1059 
1060   void isb() {
1061     system(0b00, 0b011, 0b00011, SY, 0b110);
1062   }
1063 
1064   void sys(int op1, int CRn, int CRm, int op2,
1065            Register rt = (Register)0b11111) {
1066     system(0b01, op1, CRn, CRm, op2, rt);
1067   }
1068 
1069   // Only implement operations accessible from EL0 or higher, i.e.,
1070   //            op1    CRn    CRm    op2
1071   // IC IVAU     3      7      5      1
1072   // DC CVAC     3      7      10     1
1073   // DC CVAP     3      7      12     1
1074   // DC CVAU     3      7      11     1
1075   // DC CIVAC    3      7      14     1
1076   // DC ZVA      3      7      4      1
1077   // So only deal with the CRm field.
1078   enum icache_maintenance {IVAU = 0b0101};
1079   enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1080 
1081   void dc(dcache_maintenance cm, Register Rt) {
1082     sys(0b011, 0b0111, cm, 0b001, Rt);
1083   }
1084 
1085   void ic(icache_maintenance cm, Register Rt) {
1086     sys(0b011, 0b0111, cm, 0b001, Rt);
1087   }
1088 
1089   // A more convenient access to dmb for our purposes
1090   enum Membar_mask_bits {
1091     // We can use ISH for a barrier because the ARM ARM says "This
1092     // architecture assumes that all Processing Elements that use the
1093     // same operating system or hypervisor are in the same Inner
1094     // Shareable shareability domain."
1095     StoreStore = ISHST,
1096     LoadStore  = ISHLD,
1097     LoadLoad   = ISHLD,
1098     StoreLoad  = ISH,
1099     AnyAny     = ISH
1100   };
1101 
1102   void membar(Membar_mask_bits order_constraint) {
1103     dmb(Assembler::barrier(order_constraint));
1104   }
1105 
1106   // Unconditional branch (register)
1107   void branch_reg(Register R, int opc) {
1108     starti;
1109     f(0b1101011, 31, 25);
1110     f(opc, 24, 21);
1111     f(0b11111000000, 20, 10);
1112     rf(R, 5);
1113     f(0b00000, 4, 0);
1114   }
1115 
1116 #define INSN(NAME, opc)                         \
1117   void NAME(Register R) {                       \
1118     branch_reg(R, opc);                         \
1119   }
1120 
1121   INSN(br, 0b0000);
1122   INSN(blr, 0b0001);
1123   INSN(ret, 0b0010);
1124 
1125   void ret(void *p); // This forces a compile-time error for ret(0)
1126 
1127 #undef INSN
1128 
1129 #define INSN(NAME, opc)                         \
1130   void NAME() {                 \
1131     branch_reg(dummy_reg, opc);         \
1132   }
1133 
1134   INSN(eret, 0b0100);
1135   INSN(drps, 0b0101);
1136 
1137 #undef INSN
1138 
1139   // Load/store exclusive
1140   enum operand_size { byte, halfword, word, xword };
1141 
1142   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1143     Register Rn, enum operand_size sz, int op, bool ordered) {
1144     starti;
1145     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1146     rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1147   }
1148 
1149   void load_exclusive(Register dst, Register addr,
1150                       enum operand_size sz, bool ordered) {
1151     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1152                          sz, 0b010, ordered);
1153   }
1154 
1155   void store_exclusive(Register status, Register new_val, Register addr,
1156                        enum operand_size sz, bool ordered) {
1157     load_store_exclusive(status, new_val, dummy_reg, addr,
1158                          sz, 0b000, ordered);
1159   }
1160 
1161 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1162   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1163     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1164     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1165   }
1166 
1167 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1168   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1169     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1170     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1171   }
1172 
1173 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1174   void NAME(Register Rt, Register Rn) {                                 \
1175     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1176                          Rn, sz, op, o0);                               \
1177   }
1178 
1179 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1180   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1181     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1182     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1183   }
1184 
1185   // bytes
1186   INSN3(stxrb, byte, 0b000, 0);
1187   INSN3(stlxrb, byte, 0b000, 1);
1188   INSN2(ldxrb, byte, 0b010, 0);
1189   INSN2(ldaxrb, byte, 0b010, 1);
1190   INSN2(stlrb, byte, 0b100, 1);
1191   INSN2(ldarb, byte, 0b110, 1);
1192 
1193   // halfwords
1194   INSN3(stxrh, halfword, 0b000, 0);
1195   INSN3(stlxrh, halfword, 0b000, 1);
1196   INSN2(ldxrh, halfword, 0b010, 0);
1197   INSN2(ldaxrh, halfword, 0b010, 1);
1198   INSN2(stlrh, halfword, 0b100, 1);
1199   INSN2(ldarh, halfword, 0b110, 1);
1200 
1201   // words
1202   INSN3(stxrw, word, 0b000, 0);
1203   INSN3(stlxrw, word, 0b000, 1);
1204   INSN4(stxpw, word, 0b001, 0);
1205   INSN4(stlxpw, word, 0b001, 1);
1206   INSN2(ldxrw, word, 0b010, 0);
1207   INSN2(ldaxrw, word, 0b010, 1);
1208   INSN_FOO(ldxpw, word, 0b011, 0);
1209   INSN_FOO(ldaxpw, word, 0b011, 1);
1210   INSN2(stlrw, word, 0b100, 1);
1211   INSN2(ldarw, word, 0b110, 1);
1212 
1213   // xwords
1214   INSN3(stxr, xword, 0b000, 0);
1215   INSN3(stlxr, xword, 0b000, 1);
1216   INSN4(stxp, xword, 0b001, 0);
1217   INSN4(stlxp, xword, 0b001, 1);
1218   INSN2(ldxr, xword, 0b010, 0);
1219   INSN2(ldaxr, xword, 0b010, 1);
1220   INSN_FOO(ldxp, xword, 0b011, 0);
1221   INSN_FOO(ldaxp, xword, 0b011, 1);
1222   INSN2(stlr, xword, 0b100, 1);
1223   INSN2(ldar, xword, 0b110, 1);
1224 
1225 #undef INSN2
1226 #undef INSN3
1227 #undef INSN4
1228 #undef INSN_FOO
1229 
1230   // 8.1 Compare and swap extensions
1231   void lse_cas(Register Rs, Register Rt, Register Rn,
1232                         enum operand_size sz, bool a, bool r, bool not_pair) {
1233     starti;
1234     if (! not_pair) { // Pair
1235       assert(sz == word || sz == xword, "invalid size");
1236       /* The size bit is in bit 30, not 31 */
1237       sz = (operand_size)(sz == word ? 0b00:0b01);
1238     }
1239     f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1240     zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1241   }
1242 
1243   // CAS
1244 #define INSN(NAME, a, r)                                                \
1245   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1246     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1247     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1248   }
1249   INSN(cas,    false, false)
1250   INSN(casa,   true,  false)
1251   INSN(casl,   false, true)
1252   INSN(casal,  true,  true)
1253 #undef INSN
1254 
1255   // CASP
1256 #define INSN(NAME, a, r)                                                \
1257   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1258             Register Rt, Register Rt1, Register Rn) {                   \
1259     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1260            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1261            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1262     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1263   }
1264   INSN(casp,    false, false)
1265   INSN(caspa,   true,  false)
1266   INSN(caspl,   false, true)
1267   INSN(caspal,  true,  true)
1268 #undef INSN
1269 
1270   // 8.1 Atomic operations
1271   void lse_atomic(Register Rs, Register Rt, Register Rn,
1272                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1273     starti;
1274     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1275     zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1276   }
1277 
1278 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1279   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1280     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1281   }                                                                     \
1282   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1283     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1284   }                                                                     \
1285   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1286     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1287   }                                                                     \
1288   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1289     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1290   }
1291   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1292   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1293   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1294   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1295   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1296   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1297   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1298   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1299   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1300 #undef INSN
1301 
1302   // Load register (literal)
1303 #define INSN(NAME, opc, V)                                              \
1304   void NAME(Register Rt, address dest) {                                \
1305     int64_t offset = (dest - pc()) >> 2;                                \
1306     starti;                                                             \
1307     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1308       sf(offset, 23, 5);                                                \
1309     rf(Rt, 0);                                                          \
1310   }                                                                     \
1311   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1312     InstructionMark im(this);                                           \
1313     guarantee(rtype == relocInfo::internal_word_type,                   \
1314               "only internal_word_type relocs make sense here");        \
1315     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1316     NAME(Rt, dest);                                                     \
1317   }                                                                     \
1318   void NAME(Register Rt, Label &L) {                                    \
1319     wrap_label(Rt, L, &Assembler::NAME);                                \
1320   }
1321 
1322   INSN(ldrw, 0b00, 0);
1323   INSN(ldr, 0b01, 0);
1324   INSN(ldrsw, 0b10, 0);
1325 
1326 #undef INSN
1327 
1328 #define INSN(NAME, opc, V)                                              \
1329   void NAME(FloatRegister Rt, address dest) {                           \
1330     int64_t offset = (dest - pc()) >> 2;                                \
1331     starti;                                                             \
1332     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1333       sf(offset, 23, 5);                                                \
1334     rf((Register)Rt, 0);                                                \
1335   }
1336 
1337   INSN(ldrs, 0b00, 1);
1338   INSN(ldrd, 0b01, 1);
1339   INSN(ldrq, 0b10, 1);
1340 
1341 #undef INSN
1342 
1343 #define INSN(NAME, opc, V)                                              \
1344   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1345     int64_t offset = (dest - pc()) >> 2;                                \
1346     starti;                                                             \
1347     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1348       sf(offset, 23, 5);                                                \
1349     f(op, 4, 0);                                                        \
1350   }                                                                     \
1351   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1352     wrap_label(L, op, &Assembler::NAME);                                \
1353   }
1354 
1355   INSN(prfm, 0b11, 0);
1356 
1357 #undef INSN
1358 
1359   // Load/store
1360   void ld_st1(int opc, int p1, int V, int L,
1361               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1362     starti;
1363     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1364     zrf(Rt2, 10), zrf(Rt1, 0);
1365     if (no_allocate) {
1366       adr.encode_nontemporal_pair(current);
1367     } else {
1368       adr.encode_pair(current);
1369     }
1370   }
1371 
1372   // Load/store register pair (offset)
1373 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1374   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1375     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1376    }
1377 
1378   INSN(stpw, 0b00, 0b101, 0, 0, false);
1379   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1380   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1381   INSN(stp, 0b10, 0b101, 0, 0, false);
1382   INSN(ldp, 0b10, 0b101, 0, 1, false);
1383 
1384   // Load/store no-allocate pair (offset)
1385   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1386   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1387   INSN(stnp, 0b10, 0b101, 0, 0, true);
1388   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1389 
1390 #undef INSN
1391 
1392 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1393   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1394     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1395    }
1396 
1397   INSN(stps, 0b00, 0b101, 1, 0, false);
1398   INSN(ldps, 0b00, 0b101, 1, 1, false);
1399   INSN(stpd, 0b01, 0b101, 1, 0, false);
1400   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1401   INSN(stpq, 0b10, 0b101, 1, 0, false);
1402   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1403 
1404 #undef INSN
1405 
1406   // Load/store register (all modes)
1407   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1408     starti;
1409 
1410     f(V, 26); // general reg?
1411     zrf(Rt, 0);
1412 
1413     // Encoding for literal loads is done here (rather than pushed
1414     // down into Address::encode) because the encoding of this
1415     // instruction is too different from all of the other forms to
1416     // make it worth sharing.
1417     if (adr.getMode() == Address::literal) {
1418       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1419       assert(op == 0b01, "literal form can only be used with loads");
1420       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1421       int64_t offset = (adr.target() - pc()) >> 2;
1422       sf(offset, 23, 5);
1423       code_section()->relocate(pc(), adr.rspec());
1424       return;
1425     }
1426 
1427     f(size, 31, 30);
1428     f(op, 23, 22); // str
1429     adr.encode(current);
1430   }
1431 
1432 #define INSN(NAME, size, op)                            \
1433   void NAME(Register Rt, const Address &adr) {          \
1434     ld_st2(Rt, adr, size, op);                          \
1435   }                                                     \
1436 
1437   INSN(str, 0b11, 0b00);
1438   INSN(strw, 0b10, 0b00);
1439   INSN(strb, 0b00, 0b00);
1440   INSN(strh, 0b01, 0b00);
1441 
1442   INSN(ldr, 0b11, 0b01);
1443   INSN(ldrw, 0b10, 0b01);
1444   INSN(ldrb, 0b00, 0b01);
1445   INSN(ldrh, 0b01, 0b01);
1446 
1447   INSN(ldrsb, 0b00, 0b10);
1448   INSN(ldrsbw, 0b00, 0b11);
1449   INSN(ldrsh, 0b01, 0b10);
1450   INSN(ldrshw, 0b01, 0b11);
1451   INSN(ldrsw, 0b10, 0b10);
1452 
1453 #undef INSN
1454 
1455 #define INSN(NAME, size, op)                                    \
1456   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1457     ld_st2((Register)pfop, adr, size, op);                      \
1458   }
1459 
1460   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1461                           // writeback modes, but the assembler
1462                           // doesn't enfore that.
1463 
1464 #undef INSN
1465 
1466 #define INSN(NAME, size, op)                            \
1467   void NAME(FloatRegister Rt, const Address &adr) {     \
1468     ld_st2((Register)Rt, adr, size, op, 1);             \
1469   }
1470 
1471   INSN(strd, 0b11, 0b00);
1472   INSN(strs, 0b10, 0b00);
1473   INSN(ldrd, 0b11, 0b01);
1474   INSN(ldrs, 0b10, 0b01);
1475   INSN(strq, 0b00, 0b10);
1476   INSN(ldrq, 0x00, 0b11);
1477 
1478 #undef INSN
1479 
1480   enum shift_kind { LSL, LSR, ASR, ROR };
1481 
1482   void op_shifted_reg(unsigned decode,
1483                       enum shift_kind kind, unsigned shift,
1484                       unsigned size, unsigned op) {
1485     f(size, 31);
1486     f(op, 30, 29);
1487     f(decode, 28, 24);
1488     f(shift, 15, 10);
1489     f(kind, 23, 22);
1490   }
1491 
1492   // Logical (shifted register)
1493 #define INSN(NAME, size, op, N)                                 \
1494   void NAME(Register Rd, Register Rn, Register Rm,              \
1495             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1496     starti;                                                     \
1497     guarantee(size == 1 || shift < 32, "incorrect shift");      \
1498     f(N, 21);                                                   \
1499     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1500     op_shifted_reg(0b01010, kind, shift, size, op);             \
1501   }
1502 
1503   INSN(andr, 1, 0b00, 0);
1504   INSN(orr, 1, 0b01, 0);
1505   INSN(eor, 1, 0b10, 0);
1506   INSN(ands, 1, 0b11, 0);
1507   INSN(andw, 0, 0b00, 0);
1508   INSN(orrw, 0, 0b01, 0);
1509   INSN(eorw, 0, 0b10, 0);
1510   INSN(andsw, 0, 0b11, 0);
1511 
1512 #undef INSN
1513 
1514 #define INSN(NAME, size, op, N)                                         \
1515   void NAME(Register Rd, Register Rn, Register Rm,                      \
1516             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1517     starti;                                                             \
1518     f(N, 21);                                                           \
1519     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1520     op_shifted_reg(0b01010, kind, shift, size, op);                     \
1521   }                                                                     \
1522                                                                         \
1523   /* These instructions have no immediate form. Provide an overload so  \
1524      that if anyone does try to use an immediate operand -- this has    \
1525      happened! -- we'll get a compile-time error. */                    \
1526   void NAME(Register Rd, Register Rn, unsigned imm,                     \
1527             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1528     assert(false, " can't be used with immediate operand");             \
1529   }
1530 
1531   INSN(bic, 1, 0b00, 1);
1532   INSN(orn, 1, 0b01, 1);
1533   INSN(eon, 1, 0b10, 1);
1534   INSN(bics, 1, 0b11, 1);
1535   INSN(bicw, 0, 0b00, 1);
1536   INSN(ornw, 0, 0b01, 1);
1537   INSN(eonw, 0, 0b10, 1);
1538   INSN(bicsw, 0, 0b11, 1);
1539 
1540 #undef INSN
1541 
1542 #ifdef _WIN64
1543 // In MSVC, `mvn` is defined as a macro and it affects compilation
1544 #undef mvn
1545 #endif
1546 
1547   // Aliases for short forms of orn
1548 void mvn(Register Rd, Register Rm,
1549             enum shift_kind kind = LSL, unsigned shift = 0) {
1550   orn(Rd, zr, Rm, kind, shift);
1551 }
1552 
1553 void mvnw(Register Rd, Register Rm,
1554             enum shift_kind kind = LSL, unsigned shift = 0) {
1555   ornw(Rd, zr, Rm, kind, shift);
1556 }
1557 
1558   // Add/subtract (shifted register)
1559 #define INSN(NAME, size, op)                            \
1560   void NAME(Register Rd, Register Rn, Register Rm,      \
1561             enum shift_kind kind, unsigned shift = 0) { \
1562     starti;                                             \
1563     f(0, 21);                                           \
1564     assert_cond(kind != ROR);                           \
1565     guarantee(size == 1 || shift < 32, "incorrect shift");\
1566     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1567     op_shifted_reg(0b01011, kind, shift, size, op);     \
1568   }
1569 
1570   INSN(add, 1, 0b000);
1571   INSN(sub, 1, 0b10);
1572   INSN(addw, 0, 0b000);
1573   INSN(subw, 0, 0b10);
1574 
1575   INSN(adds, 1, 0b001);
1576   INSN(subs, 1, 0b11);
1577   INSN(addsw, 0, 0b001);
1578   INSN(subsw, 0, 0b11);
1579 
1580 #undef INSN
1581 
1582   // Add/subtract (extended register)
1583 #define INSN(NAME, op)                                                  \
1584   void NAME(Register Rd, Register Rn, Register Rm,                      \
1585            ext::operation option, int amount = 0) {                     \
1586     starti;                                                             \
1587     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1588     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1589   }
1590 
1591   void add_sub_extended_reg(unsigned op, unsigned decode,
1592     Register Rd, Register Rn, Register Rm,
1593     unsigned opt, ext::operation option, unsigned imm) {
1594     guarantee(imm <= 4, "shift amount must be <= 4");
1595     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1596     f(option, 15, 13), f(imm, 12, 10);
1597   }
1598 
1599   INSN(addw, 0b000);
1600   INSN(subw, 0b010);
1601   INSN(add, 0b100);
1602   INSN(sub, 0b110);
1603 
1604 #undef INSN
1605 
1606 #define INSN(NAME, op)                                                  \
1607   void NAME(Register Rd, Register Rn, Register Rm,                      \
1608            ext::operation option, int amount = 0) {                     \
1609     starti;                                                             \
1610     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1611     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1612   }
1613 
1614   INSN(addsw, 0b001);
1615   INSN(subsw, 0b011);
1616   INSN(adds, 0b101);
1617   INSN(subs, 0b111);
1618 
1619 #undef INSN
1620 
1621   // Aliases for short forms of add and sub
1622 #define INSN(NAME)                                      \
1623   void NAME(Register Rd, Register Rn, Register Rm) {    \
1624     if (Rd == sp || Rn == sp)                           \
1625       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1626     else                                                \
1627       NAME(Rd, Rn, Rm, LSL);                            \
1628   }
1629 
1630   INSN(addw);
1631   INSN(subw);
1632   INSN(add);
1633   INSN(sub);
1634 
1635   INSN(addsw);
1636   INSN(subsw);
1637   INSN(adds);
1638   INSN(subs);
1639 
1640 #undef INSN
1641 
1642   // Add/subtract (with carry)
1643   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1644     starti;
1645     f(op, 31, 29);
1646     f(0b11010000, 28, 21);
1647     f(0b000000, 15, 10);
1648     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1649   }
1650 
1651   #define INSN(NAME, op)                                \
1652     void NAME(Register Rd, Register Rn, Register Rm) {  \
1653       add_sub_carry(op, Rd, Rn, Rm);                    \
1654     }
1655 
1656   INSN(adcw, 0b000);
1657   INSN(adcsw, 0b001);
1658   INSN(sbcw, 0b010);
1659   INSN(sbcsw, 0b011);
1660   INSN(adc, 0b100);
1661   INSN(adcs, 0b101);
1662   INSN(sbc,0b110);
1663   INSN(sbcs, 0b111);
1664 
1665 #undef INSN
1666 
1667   // Conditional compare (both kinds)
1668   void conditional_compare(unsigned op, int o1, int o2, int o3,
1669                            Register Rn, unsigned imm5, unsigned nzcv,
1670                            unsigned cond) {
1671     starti;
1672     f(op, 31, 29);
1673     f(0b11010010, 28, 21);
1674     f(cond, 15, 12);
1675     f(o1, 11);
1676     f(o2, 10);
1677     f(o3, 4);
1678     f(nzcv, 3, 0);
1679     f(imm5, 20, 16), zrf(Rn, 5);
1680   }
1681 
1682 #define INSN(NAME, op)                                                  \
1683   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1684     int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm);                    \
1685     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1686   }                                                                     \
1687                                                                         \
1688   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1689     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1690   }
1691 
1692   INSN(ccmnw, 0b001);
1693   INSN(ccmpw, 0b011);
1694   INSN(ccmn, 0b101);
1695   INSN(ccmp, 0b111);
1696 
1697 #undef INSN
1698 
1699   // Conditional select
1700   void conditional_select(unsigned op, unsigned op2,
1701                           Register Rd, Register Rn, Register Rm,
1702                           unsigned cond) {
1703     starti;
1704     f(op, 31, 29);
1705     f(0b11010100, 28, 21);
1706     f(cond, 15, 12);
1707     f(op2, 11, 10);
1708     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1709   }
1710 
1711 #define INSN(NAME, op, op2)                                             \
1712   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1713     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1714   }
1715 
1716   INSN(cselw, 0b000, 0b00);
1717   INSN(csincw, 0b000, 0b01);
1718   INSN(csinvw, 0b010, 0b00);
1719   INSN(csnegw, 0b010, 0b01);
1720   INSN(csel, 0b100, 0b00);
1721   INSN(csinc, 0b100, 0b01);
1722   INSN(csinv, 0b110, 0b00);
1723   INSN(csneg, 0b110, 0b01);
1724 
1725 #undef INSN
1726 
1727   // Data processing
1728   void data_processing(unsigned op29, unsigned opcode,
1729                        Register Rd, Register Rn) {
1730     f(op29, 31, 29), f(0b11010110, 28, 21);
1731     f(opcode, 15, 10);
1732     rf(Rn, 5), rf(Rd, 0);
1733   }
1734 
1735   // (1 source)
1736 #define INSN(NAME, op29, opcode2, opcode)       \
1737   void NAME(Register Rd, Register Rn) {         \
1738     starti;                                     \
1739     f(opcode2, 20, 16);                         \
1740     data_processing(op29, opcode, Rd, Rn);      \
1741   }
1742 
1743   INSN(rbitw,  0b010, 0b00000, 0b00000);
1744   INSN(rev16w, 0b010, 0b00000, 0b00001);
1745   INSN(revw,   0b010, 0b00000, 0b00010);
1746   INSN(clzw,   0b010, 0b00000, 0b00100);
1747   INSN(clsw,   0b010, 0b00000, 0b00101);
1748 
1749   INSN(rbit,   0b110, 0b00000, 0b00000);
1750   INSN(rev16,  0b110, 0b00000, 0b00001);
1751   INSN(rev32,  0b110, 0b00000, 0b00010);
1752   INSN(rev,    0b110, 0b00000, 0b00011);
1753   INSN(clz,    0b110, 0b00000, 0b00100);
1754   INSN(cls,    0b110, 0b00000, 0b00101);
1755 
1756 #undef INSN
1757 
1758   // (2 sources)
1759 #define INSN(NAME, op29, opcode)                        \
1760   void NAME(Register Rd, Register Rn, Register Rm) {    \
1761     starti;                                             \
1762     rf(Rm, 16);                                         \
1763     data_processing(op29, opcode, Rd, Rn);              \
1764   }
1765 
1766   INSN(udivw, 0b000, 0b000010);
1767   INSN(sdivw, 0b000, 0b000011);
1768   INSN(lslvw, 0b000, 0b001000);
1769   INSN(lsrvw, 0b000, 0b001001);
1770   INSN(asrvw, 0b000, 0b001010);
1771   INSN(rorvw, 0b000, 0b001011);
1772 
1773   INSN(udiv, 0b100, 0b000010);
1774   INSN(sdiv, 0b100, 0b000011);
1775   INSN(lslv, 0b100, 0b001000);
1776   INSN(lsrv, 0b100, 0b001001);
1777   INSN(asrv, 0b100, 0b001010);
1778   INSN(rorv, 0b100, 0b001011);
1779 
1780 #undef INSN
1781 
1782   // (3 sources)
1783   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1784                        Register Rd, Register Rn, Register Rm,
1785                        Register Ra) {
1786     starti;
1787     f(op54, 31, 29), f(0b11011, 28, 24);
1788     f(op31, 23, 21), f(o0, 15);
1789     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1790   }
1791 
1792 #define INSN(NAME, op54, op31, o0)                                      \
1793   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1794     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1795   }
1796 
1797   INSN(maddw, 0b000, 0b000, 0);
1798   INSN(msubw, 0b000, 0b000, 1);
1799   INSN(madd, 0b100, 0b000, 0);
1800   INSN(msub, 0b100, 0b000, 1);
1801   INSN(smaddl, 0b100, 0b001, 0);
1802   INSN(smsubl, 0b100, 0b001, 1);
1803   INSN(umaddl, 0b100, 0b101, 0);
1804   INSN(umsubl, 0b100, 0b101, 1);
1805 
1806 #undef INSN
1807 
1808 #define INSN(NAME, op54, op31, o0)                      \
1809   void NAME(Register Rd, Register Rn, Register Rm) {    \
1810     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1811   }
1812 
1813   INSN(smulh, 0b100, 0b010, 0);
1814   INSN(umulh, 0b100, 0b110, 0);
1815 
1816 #undef INSN
1817 
1818   // Floating-point data-processing (1 source)
1819   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1820                        FloatRegister Vd, FloatRegister Vn) {
1821     starti;
1822     f(op31, 31, 29);
1823     f(0b11110, 28, 24);
1824     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1825     rf(Vn, 5), rf(Vd, 0);
1826   }
1827 
1828 #define INSN(NAME, op31, type, opcode)                  \
1829   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1830     data_processing(op31, type, opcode, Vd, Vn);        \
1831   }
1832 
1833 private:
1834   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1835 public:
1836   INSN(fabss, 0b000, 0b00, 0b000001);
1837   INSN(fnegs, 0b000, 0b00, 0b000010);
1838   INSN(fsqrts, 0b000, 0b00, 0b000011);
1839   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1840 
1841 private:
1842   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1843 public:
1844   INSN(fabsd, 0b000, 0b01, 0b000001);
1845   INSN(fnegd, 0b000, 0b01, 0b000010);
1846   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1847   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1848 
1849   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1850     assert(Vd != Vn, "should be");
1851     i_fmovd(Vd, Vn);
1852   }
1853 
1854   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1855     assert(Vd != Vn, "should be");
1856     i_fmovs(Vd, Vn);
1857   }
1858 
1859 #undef INSN
1860 
1861   // Floating-point data-processing (2 source)
1862   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1863                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1864     starti;
1865     f(op31, 31, 29);
1866     f(0b11110, 28, 24);
1867     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1868     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1869   }
1870 
1871 #define INSN(NAME, op31, type, opcode)                  \
1872   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1873     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1874   }
1875 
1876   INSN(fmuls, 0b000, 0b00, 0b0000);
1877   INSN(fdivs, 0b000, 0b00, 0b0001);
1878   INSN(fadds, 0b000, 0b00, 0b0010);
1879   INSN(fsubs, 0b000, 0b00, 0b0011);
1880   INSN(fmaxs, 0b000, 0b00, 0b0100);
1881   INSN(fmins, 0b000, 0b00, 0b0101);
1882   INSN(fnmuls, 0b000, 0b00, 0b1000);
1883 
1884   INSN(fmuld, 0b000, 0b01, 0b0000);
1885   INSN(fdivd, 0b000, 0b01, 0b0001);
1886   INSN(faddd, 0b000, 0b01, 0b0010);
1887   INSN(fsubd, 0b000, 0b01, 0b0011);
1888   INSN(fmaxd, 0b000, 0b01, 0b0100);
1889   INSN(fmind, 0b000, 0b01, 0b0101);
1890   INSN(fnmuld, 0b000, 0b01, 0b1000);
1891 
1892 #undef INSN
1893 
1894    // Floating-point data-processing (3 source)
1895   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1896                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1897                        FloatRegister Va) {
1898     starti;
1899     f(op31, 31, 29);
1900     f(0b11111, 28, 24);
1901     f(type, 23, 22), f(o1, 21), f(o0, 15);
1902     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1903   }
1904 
1905 #define INSN(NAME, op31, type, o1, o0)                                  \
1906   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1907             FloatRegister Va) {                                         \
1908     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1909   }
1910 
1911   INSN(fmadds, 0b000, 0b00, 0, 0);
1912   INSN(fmsubs, 0b000, 0b00, 0, 1);
1913   INSN(fnmadds, 0b000, 0b00, 1, 0);
1914   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1915 
1916   INSN(fmaddd, 0b000, 0b01, 0, 0);
1917   INSN(fmsubd, 0b000, 0b01, 0, 1);
1918   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1919   INSN(fnmsub, 0b000, 0b01, 1, 1);
1920 
1921 #undef INSN
1922 
1923    // Floating-point conditional select
1924   void fp_conditional_select(unsigned op31, unsigned type,
1925                              unsigned op1, unsigned op2,
1926                              Condition cond, FloatRegister Vd,
1927                              FloatRegister Vn, FloatRegister Vm) {
1928     starti;
1929     f(op31, 31, 29);
1930     f(0b11110, 28, 24);
1931     f(type, 23, 22);
1932     f(op1, 21, 21);
1933     f(op2, 11, 10);
1934     f(cond, 15, 12);
1935     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1936   }
1937 
1938 #define INSN(NAME, op31, type, op1, op2)                                \
1939   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1940             FloatRegister Vm, Condition cond) {                         \
1941     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1942   }
1943 
1944   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1945   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1946 
1947 #undef INSN
1948 
1949    // Floating-point<->integer conversions
1950   void float_int_convert(unsigned op31, unsigned type,
1951                          unsigned rmode, unsigned opcode,
1952                          Register Rd, Register Rn) {
1953     starti;
1954     f(op31, 31, 29);
1955     f(0b11110, 28, 24);
1956     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1957     f(opcode, 18, 16), f(0b000000, 15, 10);
1958     zrf(Rn, 5), zrf(Rd, 0);
1959   }
1960 
1961 #define INSN(NAME, op31, type, rmode, opcode)                           \
1962   void NAME(Register Rd, FloatRegister Vn) {                            \
1963     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1964   }
1965 
1966   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1967   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1968   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1969   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1970 
1971   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1972   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1973 
1974   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1975 
1976 #undef INSN
1977 
1978 #define INSN(NAME, op31, type, rmode, opcode)                           \
1979   void NAME(FloatRegister Vd, Register Rn) {                            \
1980     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1981   }
1982 
1983   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1984   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1985 
1986   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1987   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1988   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1989   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1990 
1991   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1992 
1993 #undef INSN
1994 
1995   // Floating-point compare
1996   void float_compare(unsigned op31, unsigned type,
1997                      unsigned op, unsigned op2,
1998                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1999     starti;
2000     f(op31, 31, 29);
2001     f(0b11110, 28, 24);
2002     f(type, 23, 22), f(1, 21);
2003     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
2004     rf(Vn, 5), rf(Vm, 16);
2005   }
2006 
2007 
2008 #define INSN(NAME, op31, type, op, op2)                 \
2009   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
2010     float_compare(op31, type, op, op2, Vn, Vm);         \
2011   }
2012 
2013 #define INSN1(NAME, op31, type, op, op2)        \
2014   void NAME(FloatRegister Vn, double d) {       \
2015     assert_cond(d == 0.0);                      \
2016     float_compare(op31, type, op, op2, Vn);     \
2017   }
2018 
2019   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
2020   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
2021   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
2022   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
2023 
2024   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
2025   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
2026   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
2027   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
2028 
2029 #undef INSN
2030 #undef INSN1
2031 
2032   // Floating-point Move (immediate)
2033 private:
2034   unsigned pack(double value);
2035 
2036   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2037     starti;
2038     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2039     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2040     rf(Vn, 0);
2041   }
2042 
2043 public:
2044 
2045   void fmovs(FloatRegister Vn, double value) {
2046     if (value)
2047       fmov_imm(Vn, value, 0b00);
2048     else
2049       fmovs(Vn, zr);
2050   }
2051   void fmovd(FloatRegister Vn, double value) {
2052     if (value)
2053       fmov_imm(Vn, value, 0b01);
2054     else
2055       fmovd(Vn, zr);
2056   }
2057 
2058    // Floating-point rounding
2059    // type: half-precision = 11
2060    //       single         = 00
2061    //       double         = 01
2062    // rmode: A = Away     = 100
2063    //        I = current  = 111
2064    //        M = MinusInf = 010
2065    //        N = eveN     = 000
2066    //        P = PlusInf  = 001
2067    //        X = eXact    = 110
2068    //        Z = Zero     = 011
2069   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2070     starti;
2071     f(0b00011110, 31, 24);
2072     f(type, 23, 22);
2073     f(0b1001, 21, 18);
2074     f(rmode, 17, 15);
2075     f(0b10000, 14, 10);
2076     rf(Rn, 5), rf(Rd, 0);
2077   }
2078 #define INSN(NAME, type, rmode)                   \
2079   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2080     float_round(type, rmode, Vd, Vn);             \
2081   }
2082 
2083 public:
2084   INSN(frintah, 0b11, 0b100);
2085   INSN(frintih, 0b11, 0b111);
2086   INSN(frintmh, 0b11, 0b010);
2087   INSN(frintnh, 0b11, 0b000);
2088   INSN(frintph, 0b11, 0b001);
2089   INSN(frintxh, 0b11, 0b110);
2090   INSN(frintzh, 0b11, 0b011);
2091 
2092   INSN(frintas, 0b00, 0b100);
2093   INSN(frintis, 0b00, 0b111);
2094   INSN(frintms, 0b00, 0b010);
2095   INSN(frintns, 0b00, 0b000);
2096   INSN(frintps, 0b00, 0b001);
2097   INSN(frintxs, 0b00, 0b110);
2098   INSN(frintzs, 0b00, 0b011);
2099 
2100   INSN(frintad, 0b01, 0b100);
2101   INSN(frintid, 0b01, 0b111);
2102   INSN(frintmd, 0b01, 0b010);
2103   INSN(frintnd, 0b01, 0b000);
2104   INSN(frintpd, 0b01, 0b001);
2105   INSN(frintxd, 0b01, 0b110);
2106   INSN(frintzd, 0b01, 0b011);
2107 #undef INSN
2108 
2109 /* SIMD extensions
2110  *
2111  * We just use FloatRegister in the following. They are exactly the same
2112  * as SIMD registers.
2113  */
2114  public:
2115 
2116   enum SIMD_Arrangement {
2117        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
2118   };
2119 
2120   enum SIMD_RegVariant {
2121        B, H, S, D, Q
2122   };
2123 
2124 private:
2125   static short SIMD_Size_in_bytes[];
2126 
2127 public:
2128 #define INSN(NAME, op)                                            \
2129   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
2130     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2131   }                                                                      \
2132 
2133   INSN(ldr, 1);
2134   INSN(str, 0);
2135 
2136 #undef INSN
2137 
2138  private:
2139 
2140   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2141     starti;
2142     f(0,31), f((int)T & 1, 30);
2143     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2144     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2145   }
2146   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2147              int imm, int op1, int op2, int regs) {
2148 
2149     bool replicate = op2 >> 2 == 3;
2150     // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2151     int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2152     guarantee(T < T1Q , "incorrect arrangement");
2153     guarantee(imm == expectedImmediate, "bad offset");
2154     starti;
2155     f(0,31), f((int)T & 1, 30);
2156     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2157     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2158   }
2159   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2160              Register Xm, int op1, int op2) {
2161     starti;
2162     f(0,31), f((int)T & 1, 30);
2163     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2164     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2165   }
2166 
2167   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2168     switch (a.getMode()) {
2169     case Address::base_plus_offset:
2170       guarantee(a.offset() == 0, "no offset allowed here");
2171       ld_st(Vt, T, a.base(), op1, op2);
2172       break;
2173     case Address::post:
2174       ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs);
2175       break;
2176     case Address::post_reg:
2177       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2178       break;
2179     default:
2180       ShouldNotReachHere();
2181     }
2182   }
2183 
2184  public:
2185 
2186 #define INSN1(NAME, op1, op2)                                           \
2187   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2188     ld_st(Vt, T, a, op1, op2, 1);                                       \
2189  }
2190 
2191 #define INSN2(NAME, op1, op2)                                           \
2192   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2193     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2194     ld_st(Vt, T, a, op1, op2, 2);                                       \
2195   }
2196 
2197 #define INSN3(NAME, op1, op2)                                           \
2198   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2199             SIMD_Arrangement T, const Address &a) {                     \
2200     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2201            "Registers must be ordered");                                \
2202     ld_st(Vt, T, a, op1, op2, 3);                                       \
2203   }
2204 
2205 #define INSN4(NAME, op1, op2)                                           \
2206   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2207             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2208     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2209            Vt3->successor() == Vt4, "Registers must be ordered");       \
2210     ld_st(Vt, T, a, op1, op2, 4);                                       \
2211   }
2212 
2213   INSN1(ld1,  0b001100010, 0b0111);
2214   INSN2(ld1,  0b001100010, 0b1010);
2215   INSN3(ld1,  0b001100010, 0b0110);
2216   INSN4(ld1,  0b001100010, 0b0010);
2217 
2218   INSN2(ld2,  0b001100010, 0b1000);
2219   INSN3(ld3,  0b001100010, 0b0100);
2220   INSN4(ld4,  0b001100010, 0b0000);
2221 
2222   INSN1(st1,  0b001100000, 0b0111);
2223   INSN2(st1,  0b001100000, 0b1010);
2224   INSN3(st1,  0b001100000, 0b0110);
2225   INSN4(st1,  0b001100000, 0b0010);
2226 
2227   INSN2(st2,  0b001100000, 0b1000);
2228   INSN3(st3,  0b001100000, 0b0100);
2229   INSN4(st4,  0b001100000, 0b0000);
2230 
2231   INSN1(ld1r, 0b001101010, 0b1100);
2232   INSN2(ld2r, 0b001101011, 0b1100);
2233   INSN3(ld3r, 0b001101010, 0b1110);
2234   INSN4(ld4r, 0b001101011, 0b1110);
2235 
2236 #undef INSN1
2237 #undef INSN2
2238 #undef INSN3
2239 #undef INSN4
2240 
2241 #define INSN(NAME, opc)                                                                 \
2242   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2243     starti;                                                                             \
2244     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2245     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2246     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2247   }
2248 
2249   INSN(eor,  0b101110001);
2250   INSN(orr,  0b001110101);
2251   INSN(andr, 0b001110001);
2252   INSN(bic,  0b001110011);
2253   INSN(bif,  0b101110111);
2254   INSN(bit,  0b101110101);
2255   INSN(bsl,  0b101110011);
2256   INSN(orn,  0b001110111);
2257 
2258 #undef INSN
2259 
2260 #define INSN(NAME, opc, opc2, acceptT2D)                                                \
2261   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2262     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2263     if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement");                       \
2264     starti;                                                                             \
2265     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2266     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2267     rf(Vn, 5), rf(Vd, 0);                                                               \
2268   }
2269 
2270   INSN(addv,   0, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2271   INSN(subv,   1, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2272   INSN(mulv,   0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2273   INSN(mlav,   0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2274   INSN(mlsv,   1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2275   INSN(sshl,   0, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2276   INSN(ushl,   1, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2277   INSN(addpv,  0, 0b101111, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2278   INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2279   INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2280   INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2281 
2282 #undef INSN
2283 
2284 #define INSN(NAME, opc, opc2, accepted) \
2285   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2286     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2287     if (accepted < 3) guarantee(T != T2D, "incorrect arrangement");                     \
2288     if (accepted < 2) guarantee(T != T2S, "incorrect arrangement");                     \
2289     if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement");        \
2290     starti;                                                                             \
2291     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2292     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2293     rf(Vn, 5), rf(Vd, 0);                                                               \
2294   }
2295 
2296   INSN(absr,   0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2297   INSN(negr,   1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2298   INSN(notr,   1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2299   INSN(addv,   0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2300   INSN(cls,    0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2301   INSN(clz,    1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2302   INSN(cnt,    0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2303   INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2304   INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2305 
2306 #undef INSN
2307 
2308 #define INSN(NAME, opc) \
2309   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                  \
2310     starti;                                                                            \
2311     assert(T == T4S, "arrangement must be T4S");                                       \
2312     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23),                      \
2313     f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0);          \
2314   }
2315 
2316   INSN(fmaxv, 0);
2317   INSN(fminv, 1);
2318 
2319 #undef INSN
2320 
2321 #define INSN(NAME, op0, cmode0) \
2322   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2323     unsigned cmode = cmode0;                                                           \
2324     unsigned op = op0;                                                                 \
2325     starti;                                                                            \
2326     assert(lsl == 0 ||                                                                 \
2327            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2328            ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2329     cmode |= lsl >> 2;                                                                 \
2330     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2331     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2332       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2333       cmode = 0b1110;                                                                  \
2334       if (T == T1D || T == T2D) op = 1;                                                \
2335     }                                                                                  \
2336     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2337     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2338     rf(Vd, 0);                                                                         \
2339   }
2340 
2341   INSN(movi, 0, 0);
2342   INSN(orri, 0, 1);
2343   INSN(mvni, 1, 0);
2344   INSN(bici, 1, 1);
2345 
2346 #undef INSN
2347 
2348 #define INSN(NAME, op1, op2, op3) \
2349   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2350     starti;                                                                             \
2351     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2352     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2353     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2354   }
2355 
2356   INSN(fadd, 0, 0, 0b110101);
2357   INSN(fdiv, 1, 0, 0b111111);
2358   INSN(fmul, 1, 0, 0b110111);
2359   INSN(fsub, 0, 1, 0b110101);
2360   INSN(fmla, 0, 0, 0b110011);
2361   INSN(fmls, 0, 1, 0b110011);
2362   INSN(fmax, 0, 0, 0b111101);
2363   INSN(fmin, 0, 1, 0b111101);
2364 
2365 #undef INSN
2366 
2367 #define INSN(NAME, opc)                                                                 \
2368   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2369     starti;                                                                             \
2370     assert(T == T4S, "arrangement must be T4S");                                        \
2371     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2372   }
2373 
2374   INSN(sha1c,     0b000000);
2375   INSN(sha1m,     0b001000);
2376   INSN(sha1p,     0b000100);
2377   INSN(sha1su0,   0b001100);
2378   INSN(sha256h2,  0b010100);
2379   INSN(sha256h,   0b010000);
2380   INSN(sha256su1, 0b011000);
2381 
2382 #undef INSN
2383 
2384 #define INSN(NAME, opc)                                                                 \
2385   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2386     starti;                                                                             \
2387     assert(T == T4S, "arrangement must be T4S");                                        \
2388     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2389   }
2390 
2391   INSN(sha1h,     0b000010);
2392   INSN(sha1su1,   0b000110);
2393   INSN(sha256su0, 0b001010);
2394 
2395 #undef INSN
2396 
2397 #define INSN(NAME, opc)                                                                 \
2398   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2399     starti;                                                                             \
2400     assert(T == T2D, "arrangement must be T2D");                                        \
2401     f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2402   }
2403 
2404   INSN(sha512h,   0b100000);
2405   INSN(sha512h2,  0b100001);
2406   INSN(sha512su1, 0b100010);
2407 
2408 #undef INSN
2409 
2410 #define INSN(NAME, opc)                                                                 \
2411   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2412     starti;                                                                             \
2413     assert(T == T2D, "arrangement must be T2D");                                        \
2414     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);                                               \
2415   }
2416 
2417   INSN(sha512su0, 0b1100111011000000100000);
2418 
2419 #undef INSN
2420 
2421 #define INSN(NAME, opc)                           \
2422   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2423     starti;                                       \
2424     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2425   }
2426 
2427   INSN(aese, 0b0100111000101000010010);
2428   INSN(aesd, 0b0100111000101000010110);
2429   INSN(aesmc, 0b0100111000101000011010);
2430   INSN(aesimc, 0b0100111000101000011110);
2431 
2432 #undef INSN
2433 
2434 #define INSN(NAME, op1, op2) \
2435   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2436     starti;                                                                                            \
2437     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2438     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2439     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2440     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2441     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2442     rf(Vn, 5), rf(Vd, 0);                                                                              \
2443   }
2444 
2445   // FMLA/FMLS - Vector - Scalar
2446   INSN(fmlavs, 0, 0b0001);
2447   INSN(fmlsvs, 0, 0b0101);
2448   // FMULX - Vector - Scalar
2449   INSN(fmulxvs, 1, 0b1001);
2450 
2451 #undef INSN
2452 
2453   // Floating-point Reciprocal Estimate
2454   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2455     assert(type == D || type == S, "Wrong type for frecpe");
2456     starti;
2457     f(0b010111101, 31, 23);
2458     f(type == D ? 1 : 0, 22);
2459     f(0b100001110110, 21, 10);
2460     rf(Vn, 5), rf(Vd, 0);
2461   }
2462 
2463   // (double) {a, b} -> (a + b)
2464   void faddpd(FloatRegister Vd, FloatRegister Vn) {
2465     starti;
2466     f(0b0111111001110000110110, 31, 10);
2467     rf(Vn, 5), rf(Vd, 0);
2468   }
2469 
2470   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2471     starti;
2472     assert(T != Q, "invalid register variant");
2473     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2474     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2475   }
2476 
2477   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2478     starti;
2479     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2480     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2481     rf(Vn, 5), rf(Rd, 0);
2482   }
2483 
2484 #define INSN(NAME, opc, opc2, isSHR)                                    \
2485   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2486     starti;                                                             \
2487     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
2488      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
2489      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
2490      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
2491      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
2492      *   (1D is RESERVED)                                               \
2493      * for SHL shift is calculated as:                                  \
2494      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
2495      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
2496      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
2497      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
2498      *   (1D is RESERVED)                                               \
2499      */                                                                 \
2500     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2501     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
2502     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
2503     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2504     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2505   }
2506 
2507   INSN(shl,  0, 0b010101, /* isSHR = */ false);
2508   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2509   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2510 
2511 #undef INSN
2512 
2513 private:
2514   void _ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2515     starti;
2516     /* The encodings for the immh:immb fields (bits 22:16) are
2517      *   0001 xxx       8H, 8B/16b shift = xxx
2518      *   001x xxx       4S, 4H/8H  shift = xxxx
2519      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2520      *   1xxx xxx       RESERVED
2521      */
2522     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2523     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2524     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2525     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2526   }
2527 
2528 public:
2529   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2530     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2531     _ushll(Vd, Ta, Vn, Tb, shift);
2532   }
2533 
2534   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2535     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
2536     _ushll(Vd, Ta, Vn, Tb, shift);
2537   }
2538 
2539   // Move from general purpose register
2540   //   mov  Vd.T[index], Rn
2541   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2542     starti;
2543     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2544     f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
2545   }
2546 
2547   // Move to general purpose register
2548   //   mov  Rd, Vn.T[index]
2549   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2550     guarantee(T >= T2S && T < T1Q, "only D and S arrangements are supported");
2551     starti;
2552     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2553     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2554     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2555   }
2556 
2557 private:
2558   void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2559     starti;
2560     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2561            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2562     int size = (Ta == T1Q) ? 0b11 : 0b00;
2563     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2564     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2565   }
2566 
2567 public:
2568   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2569     assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
2570     _pmull(Vd, Ta, Vn, Vm, Tb);
2571   }
2572 
2573   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2574     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2575     _pmull(Vd, Ta, Vn, Vm, Tb);
2576   }
2577 
2578   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2579     starti;
2580     int size_b = (int)Tb >> 1;
2581     int size_a = (int)Ta >> 1;
2582     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2583     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2584     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2585   }
2586 
2587   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2588   {
2589     starti;
2590     assert(T != T1D, "reserved encoding");
2591     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2592     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
2593   }
2594 
2595   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2596   {
2597     starti;
2598     assert(T != T1D, "reserved encoding");
2599     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2600     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2601     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2602   }
2603 
2604   // AdvSIMD ZIP/UZP/TRN
2605 #define INSN(NAME, opcode)                                              \
2606   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2607     guarantee(T != T1D && T != T1Q, "invalid arrangement");             \
2608     starti;                                                             \
2609     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
2610     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
2611     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
2612     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
2613   }
2614 
2615   INSN(uzp1, 0b001);
2616   INSN(trn1, 0b010);
2617   INSN(zip1, 0b011);
2618   INSN(uzp2, 0b101);
2619   INSN(trn2, 0b110);
2620   INSN(zip2, 0b111);
2621 
2622 #undef INSN
2623 
2624   // CRC32 instructions
2625 #define INSN(NAME, c, sf, sz)                                             \
2626   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2627     starti;                                                               \
2628     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2629     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2630   }
2631 
2632   INSN(crc32b,  0, 0, 0b00);
2633   INSN(crc32h,  0, 0, 0b01);
2634   INSN(crc32w,  0, 0, 0b10);
2635   INSN(crc32x,  0, 1, 0b11);
2636   INSN(crc32cb, 1, 0, 0b00);
2637   INSN(crc32ch, 1, 0, 0b01);
2638   INSN(crc32cw, 1, 0, 0b10);
2639   INSN(crc32cx, 1, 1, 0b11);
2640 
2641 #undef INSN
2642 
2643   // Table vector lookup
2644 #define INSN(NAME, op)                                                  \
2645   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2646     starti;                                                             \
2647     assert(T == T8B || T == T16B, "invalid arrangement");               \
2648     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2649     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2650     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2651   }
2652 
2653   INSN(tbl, 0);
2654   INSN(tbx, 1);
2655 
2656 #undef INSN
2657 
2658   // AdvSIMD two-reg misc
2659   // In this instruction group, the 2 bits in the size field ([23:22]) may be
2660   // fixed or determined by the "SIMD_Arrangement T", or both. The additional
2661   // parameter "tmask" is a 2-bit mask used to indicate which bits in the size
2662   // field are determined by the SIMD_Arrangement. The bit of "tmask" should be
2663   // set to 1 if corresponding bit marked as "x" in the ArmARM.
2664 #define INSN(NAME, U, size, tmask, opcode)                                          \
2665   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2666        starti;                                                                      \
2667        assert((ASSERTION), MSG);                                                    \
2668        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2669        f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17);               \
2670        f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                    \
2671  }
2672 
2673 #define MSG "invalid arrangement"
2674 
2675 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2676   INSN(fsqrt,  1, 0b10, 0b01, 0b11111);
2677   INSN(fabs,   0, 0b10, 0b01, 0b01111);
2678   INSN(fneg,   1, 0b10, 0b01, 0b01111);
2679   INSN(frintn, 0, 0b00, 0b01, 0b11000);
2680   INSN(frintm, 0, 0b00, 0b01, 0b11001);
2681   INSN(frintp, 0, 0b10, 0b01, 0b11000);
2682 #undef ASSERTION
2683 
2684 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2685   INSN(rev64, 0, 0b00, 0b11, 0b00000);
2686 #undef ASSERTION
2687 
2688 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2689   INSN(rev32, 1, 0b00, 0b11, 0b00000);
2690 #undef ASSERTION
2691 
2692 #define ASSERTION (T == T8B || T == T16B)
2693   INSN(rev16, 0, 0b00, 0b11, 0b00001);
2694   INSN(rbit,  1, 0b01, 0b00, 0b00101);
2695 #undef ASSERTION
2696 
2697 #undef MSG
2698 
2699 #undef INSN
2700 
2701 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2702   {
2703     starti;
2704     assert(T == T8B || T == T16B, "invalid arrangement");
2705     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2706     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2707     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2708     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2709   }
2710 
2711   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2712   }
2713 
2714   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2715                                                 Register tmp,
2716                                                 int offset) {
2717     ShouldNotCallThis();
2718     return RegisterOrConstant();
2719   }
2720 
2721   // Stack overflow checking
2722   virtual void bang_stack_with_offset(int offset);
2723 
2724   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2725   static bool operand_valid_for_add_sub_immediate(int64_t imm);
2726   static bool operand_valid_for_float_immediate(double imm);
2727 
2728   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2729   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2730 };
2731 
2732 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2733                                              Assembler::Membar_mask_bits b) {
2734   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2735 }
2736 
2737 Instruction_aarch64::~Instruction_aarch64() {
2738   assem->emit();
2739 }
2740 
2741 #undef starti
2742 
2743 // Invert a condition
2744 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2745   return Assembler::Condition(int(cond) ^ 1);
2746 }
2747 
2748 class BiasedLockingCounters;
2749 
2750 extern "C" void das(uint64_t start, int len);
2751 
2752 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP