1 /*
   2  * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciUtilities.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "gc/shared/barrierSetNMethod.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/universe.hpp"
  34 #include "nativeInst_x86.hpp"
  35 #include "oops/instanceOop.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubCodeGenerator.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/thread.inline.hpp"
  46 #ifdef COMPILER2
  47 #include "opto/runtime.hpp"
  48 #endif
  49 #if INCLUDE_ZGC
  50 #include "gc/z/zThreadLocalData.hpp"
  51 #endif
  52 
  53 // Declaration and definition of StubGenerator (no .hpp file).
  54 // For a more detailed description of the stub routine structure
  55 // see the comment in stubRoutines.hpp
  56 
  57 #define __ _masm->
  58 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  59 #define a__ ((Assembler*)_masm)->
  60 
  61 #ifdef PRODUCT
  62 #define BLOCK_COMMENT(str) /* nothing */
  63 #else
  64 #define BLOCK_COMMENT(str) __ block_comment(str)
  65 #endif
  66 
  67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  68 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
  69 
  70 // Stub Code definitions
  71 
  72 class StubGenerator: public StubCodeGenerator {
  73  private:
  74 
  75 #ifdef PRODUCT
  76 #define inc_counter_np(counter) ((void)0)
  77 #else
  78   void inc_counter_np_(int& counter) {
  79     // This can destroy rscratch1 if counter is far from the code cache
  80     __ incrementl(ExternalAddress((address)&counter));
  81   }
  82 #define inc_counter_np(counter) \
  83   BLOCK_COMMENT("inc_counter " #counter); \
  84   inc_counter_np_(counter);
  85 #endif
  86 
  87   // Call stubs are used to call Java from C
  88   //
  89   // Linux Arguments:
  90   //    c_rarg0:   call wrapper address                   address
  91   //    c_rarg1:   result                                 address
  92   //    c_rarg2:   result type                            BasicType
  93   //    c_rarg3:   method                                 Method*
  94   //    c_rarg4:   (interpreter) entry point              address
  95   //    c_rarg5:   parameters                             intptr_t*
  96   //    16(rbp): parameter size (in words)              int
  97   //    24(rbp): thread                                 Thread*
  98   //
  99   //     [ return_from_Java     ] <--- rsp
 100   //     [ argument word n      ]
 101   //      ...
 102   // -12 [ argument word 1      ]
 103   // -11 [ saved r15            ] <--- rsp_after_call
 104   // -10 [ saved r14            ]
 105   //  -9 [ saved r13            ]
 106   //  -8 [ saved r12            ]
 107   //  -7 [ saved rbx            ]
 108   //  -6 [ call wrapper         ]
 109   //  -5 [ result               ]
 110   //  -4 [ result type          ]
 111   //  -3 [ method               ]
 112   //  -2 [ entry point          ]
 113   //  -1 [ parameters           ]
 114   //   0 [ saved rbp            ] <--- rbp
 115   //   1 [ return address       ]
 116   //   2 [ parameter size       ]
 117   //   3 [ thread               ]
 118   //
 119   // Windows Arguments:
 120   //    c_rarg0:   call wrapper address                   address
 121   //    c_rarg1:   result                                 address
 122   //    c_rarg2:   result type                            BasicType
 123   //    c_rarg3:   method                                 Method*
 124   //    48(rbp): (interpreter) entry point              address
 125   //    56(rbp): parameters                             intptr_t*
 126   //    64(rbp): parameter size (in words)              int
 127   //    72(rbp): thread                                 Thread*
 128   //
 129   //     [ return_from_Java     ] <--- rsp
 130   //     [ argument word n      ]
 131   //      ...
 132   // -60 [ argument word 1      ]
 133   // -59 [ saved xmm31          ] <--- rsp after_call
 134   //     [ saved xmm16-xmm30    ] (EVEX enabled, else the space is blank)
 135   // -27 [ saved xmm15          ]
 136   //     [ saved xmm7-xmm14     ]
 137   //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 138   //  -7 [ saved r15            ]
 139   //  -6 [ saved r14            ]
 140   //  -5 [ saved r13            ]
 141   //  -4 [ saved r12            ]
 142   //  -3 [ saved rdi            ]
 143   //  -2 [ saved rsi            ]
 144   //  -1 [ saved rbx            ]
 145   //   0 [ saved rbp            ] <--- rbp
 146   //   1 [ return address       ]
 147   //   2 [ call wrapper         ]
 148   //   3 [ result               ]
 149   //   4 [ result type          ]
 150   //   5 [ method               ]
 151   //   6 [ entry point          ]
 152   //   7 [ parameters           ]
 153   //   8 [ parameter size       ]
 154   //   9 [ thread               ]
 155   //
 156   //    Windows reserves the callers stack space for arguments 1-4.
 157   //    We spill c_rarg0-c_rarg3 to this space.
 158 
 159   // Call stub stack layout word offsets from rbp
 160   enum call_stub_layout {
 161 #ifdef _WIN64
 162     xmm_save_first     = 6,  // save from xmm6
 163     xmm_save_last      = 31, // to xmm31
 164     xmm_save_base      = -9,
 165     rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 166     r15_off            = -7,
 167     r14_off            = -6,
 168     r13_off            = -5,
 169     r12_off            = -4,
 170     rdi_off            = -3,
 171     rsi_off            = -2,
 172     rbx_off            = -1,
 173     rbp_off            =  0,
 174     retaddr_off        =  1,
 175     call_wrapper_off   =  2,
 176     result_off         =  3,
 177     result_type_off    =  4,
 178     method_off         =  5,
 179     entry_point_off    =  6,
 180     parameters_off     =  7,
 181     parameter_size_off =  8,
 182     thread_off         =  9
 183 #else
 184     rsp_after_call_off = -12,
 185     mxcsr_off          = rsp_after_call_off,
 186     r15_off            = -11,
 187     r14_off            = -10,
 188     r13_off            = -9,
 189     r12_off            = -8,
 190     rbx_off            = -7,
 191     call_wrapper_off   = -6,
 192     result_off         = -5,
 193     result_type_off    = -4,
 194     method_off         = -3,
 195     entry_point_off    = -2,
 196     parameters_off     = -1,
 197     rbp_off            =  0,
 198     retaddr_off        =  1,
 199     parameter_size_off =  2,
 200     thread_off         =  3
 201 #endif
 202   };
 203 
 204 #ifdef _WIN64
 205   Address xmm_save(int reg) {
 206     assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 207     return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 208   }
 209 #endif
 210 
 211   address generate_call_stub(address& return_address) {
 212     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 213            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 214            "adjust this code");
 215     StubCodeMark mark(this, "StubRoutines", "call_stub");
 216     address start = __ pc();
 217 
 218     // same as in generate_catch_exception()!
 219     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 220 
 221     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 222     const Address result        (rbp, result_off         * wordSize);
 223     const Address result_type   (rbp, result_type_off    * wordSize);
 224     const Address method        (rbp, method_off         * wordSize);
 225     const Address entry_point   (rbp, entry_point_off    * wordSize);
 226     const Address parameters    (rbp, parameters_off     * wordSize);
 227     const Address parameter_size(rbp, parameter_size_off * wordSize);
 228 
 229     // same as in generate_catch_exception()!
 230     const Address thread        (rbp, thread_off         * wordSize);
 231 
 232     const Address r15_save(rbp, r15_off * wordSize);
 233     const Address r14_save(rbp, r14_off * wordSize);
 234     const Address r13_save(rbp, r13_off * wordSize);
 235     const Address r12_save(rbp, r12_off * wordSize);
 236     const Address rbx_save(rbp, rbx_off * wordSize);
 237 
 238     // stub code
 239     __ enter();
 240     __ subptr(rsp, -rsp_after_call_off * wordSize);
 241 
 242     // save register parameters
 243 #ifndef _WIN64
 244     __ movptr(parameters,   c_rarg5); // parameters
 245     __ movptr(entry_point,  c_rarg4); // entry_point
 246 #endif
 247 
 248     __ movptr(method,       c_rarg3); // method
 249     __ movl(result_type,  c_rarg2);   // result type
 250     __ movptr(result,       c_rarg1); // result
 251     __ movptr(call_wrapper, c_rarg0); // call wrapper
 252 
 253     // save regs belonging to calling function
 254     __ movptr(rbx_save, rbx);
 255     __ movptr(r12_save, r12);
 256     __ movptr(r13_save, r13);
 257     __ movptr(r14_save, r14);
 258     __ movptr(r15_save, r15);
 259 
 260 #ifdef _WIN64
 261     int last_reg = 15;
 262     if (UseAVX > 2) {
 263       last_reg = 31;
 264     }
 265     if (VM_Version::supports_evex()) {
 266       for (int i = xmm_save_first; i <= last_reg; i++) {
 267         __ vextractf32x4(xmm_save(i), as_XMMRegister(i), 0);
 268       }
 269     } else {
 270       for (int i = xmm_save_first; i <= last_reg; i++) {
 271         __ movdqu(xmm_save(i), as_XMMRegister(i));
 272       }
 273     }
 274 
 275     const Address rdi_save(rbp, rdi_off * wordSize);
 276     const Address rsi_save(rbp, rsi_off * wordSize);
 277 
 278     __ movptr(rsi_save, rsi);
 279     __ movptr(rdi_save, rdi);
 280 #else
 281     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 282     {
 283       Label skip_ldmx;
 284       __ stmxcsr(mxcsr_save);
 285       __ movl(rax, mxcsr_save);
 286       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 287       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 288       __ cmp32(rax, mxcsr_std);
 289       __ jcc(Assembler::equal, skip_ldmx);
 290       __ ldmxcsr(mxcsr_std);
 291       __ bind(skip_ldmx);
 292     }
 293 #endif
 294 
 295     // Load up thread register
 296     __ movptr(r15_thread, thread);
 297     __ reinit_heapbase();
 298 
 299 #ifdef ASSERT
 300     // make sure we have no pending exceptions
 301     {
 302       Label L;
 303       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 304       __ jcc(Assembler::equal, L);
 305       __ stop("StubRoutines::call_stub: entered with pending exception");
 306       __ bind(L);
 307     }
 308 #endif
 309 
 310     // pass parameters if any
 311     BLOCK_COMMENT("pass parameters if any");
 312     Label parameters_done;
 313     __ movl(c_rarg3, parameter_size);
 314     __ testl(c_rarg3, c_rarg3);
 315     __ jcc(Assembler::zero, parameters_done);
 316 
 317     Label loop;
 318     __ movptr(c_rarg2, parameters);       // parameter pointer
 319     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 320     __ BIND(loop);
 321     __ movptr(rax, Address(c_rarg2, 0));// get parameter
 322     __ addptr(c_rarg2, wordSize);       // advance to next parameter
 323     __ decrementl(c_rarg1);             // decrement counter
 324     __ push(rax);                       // pass parameter
 325     __ jcc(Assembler::notZero, loop);
 326 
 327     // call Java function
 328     __ BIND(parameters_done);
 329     __ movptr(rbx, method);             // get Method*
 330     __ movptr(c_rarg1, entry_point);    // get entry_point
 331     __ mov(r13, rsp);                   // set sender sp
 332     BLOCK_COMMENT("call Java function");
 333     __ call(c_rarg1);
 334 
 335     BLOCK_COMMENT("call_stub_return_address:");
 336     return_address = __ pc();
 337 
 338     // store result depending on type (everything that is not
 339     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 340     __ movptr(c_rarg0, result);
 341     Label is_long, is_float, is_double, exit;
 342     __ movl(c_rarg1, result_type);
 343     __ cmpl(c_rarg1, T_OBJECT);
 344     __ jcc(Assembler::equal, is_long);
 345     __ cmpl(c_rarg1, T_LONG);
 346     __ jcc(Assembler::equal, is_long);
 347     __ cmpl(c_rarg1, T_FLOAT);
 348     __ jcc(Assembler::equal, is_float);
 349     __ cmpl(c_rarg1, T_DOUBLE);
 350     __ jcc(Assembler::equal, is_double);
 351 
 352     // handle T_INT case
 353     __ movl(Address(c_rarg0, 0), rax);
 354 
 355     __ BIND(exit);
 356 
 357     // pop parameters
 358     __ lea(rsp, rsp_after_call);
 359 
 360 #ifdef ASSERT
 361     // verify that threads correspond
 362     {
 363      Label L1, L2, L3;
 364       __ cmpptr(r15_thread, thread);
 365       __ jcc(Assembler::equal, L1);
 366       __ stop("StubRoutines::call_stub: r15_thread is corrupted");
 367       __ bind(L1);
 368       __ get_thread(rbx);
 369       __ cmpptr(r15_thread, thread);
 370       __ jcc(Assembler::equal, L2);
 371       __ stop("StubRoutines::call_stub: r15_thread is modified by call");
 372       __ bind(L2);
 373       __ cmpptr(r15_thread, rbx);
 374       __ jcc(Assembler::equal, L3);
 375       __ stop("StubRoutines::call_stub: threads must correspond");
 376       __ bind(L3);
 377     }
 378 #endif
 379 
 380     // restore regs belonging to calling function
 381 #ifdef _WIN64
 382     // emit the restores for xmm regs
 383     if (VM_Version::supports_evex()) {
 384       for (int i = xmm_save_first; i <= last_reg; i++) {
 385         __ vinsertf32x4(as_XMMRegister(i), as_XMMRegister(i), xmm_save(i), 0);
 386       }
 387     } else {
 388       for (int i = xmm_save_first; i <= last_reg; i++) {
 389         __ movdqu(as_XMMRegister(i), xmm_save(i));
 390       }
 391     }
 392 #endif
 393     __ movptr(r15, r15_save);
 394     __ movptr(r14, r14_save);
 395     __ movptr(r13, r13_save);
 396     __ movptr(r12, r12_save);
 397     __ movptr(rbx, rbx_save);
 398 
 399 #ifdef _WIN64
 400     __ movptr(rdi, rdi_save);
 401     __ movptr(rsi, rsi_save);
 402 #else
 403     __ ldmxcsr(mxcsr_save);
 404 #endif
 405 
 406     // restore rsp
 407     __ addptr(rsp, -rsp_after_call_off * wordSize);
 408 
 409     // return
 410     __ vzeroupper();
 411     __ pop(rbp);
 412     __ ret(0);
 413 
 414     // handle return types different from T_INT
 415     __ BIND(is_long);
 416     __ movq(Address(c_rarg0, 0), rax);
 417     __ jmp(exit);
 418 
 419     __ BIND(is_float);
 420     __ movflt(Address(c_rarg0, 0), xmm0);
 421     __ jmp(exit);
 422 
 423     __ BIND(is_double);
 424     __ movdbl(Address(c_rarg0, 0), xmm0);
 425     __ jmp(exit);
 426 
 427     return start;
 428   }
 429 
 430   // Return point for a Java call if there's an exception thrown in
 431   // Java code.  The exception is caught and transformed into a
 432   // pending exception stored in JavaThread that can be tested from
 433   // within the VM.
 434   //
 435   // Note: Usually the parameters are removed by the callee. In case
 436   // of an exception crossing an activation frame boundary, that is
 437   // not the case if the callee is compiled code => need to setup the
 438   // rsp.
 439   //
 440   // rax: exception oop
 441 
 442   address generate_catch_exception() {
 443     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 444     address start = __ pc();
 445 
 446     // same as in generate_call_stub():
 447     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 448     const Address thread        (rbp, thread_off         * wordSize);
 449 
 450 #ifdef ASSERT
 451     // verify that threads correspond
 452     {
 453       Label L1, L2, L3;
 454       __ cmpptr(r15_thread, thread);
 455       __ jcc(Assembler::equal, L1);
 456       __ stop("StubRoutines::catch_exception: r15_thread is corrupted");
 457       __ bind(L1);
 458       __ get_thread(rbx);
 459       __ cmpptr(r15_thread, thread);
 460       __ jcc(Assembler::equal, L2);
 461       __ stop("StubRoutines::catch_exception: r15_thread is modified by call");
 462       __ bind(L2);
 463       __ cmpptr(r15_thread, rbx);
 464       __ jcc(Assembler::equal, L3);
 465       __ stop("StubRoutines::catch_exception: threads must correspond");
 466       __ bind(L3);
 467     }
 468 #endif
 469 
 470     // set pending exception
 471     __ verify_oop(rax);
 472 
 473     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 474     __ lea(rscratch1, ExternalAddress((address)__FILE__));
 475     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 476     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 477 
 478     // complete return to VM
 479     assert(StubRoutines::_call_stub_return_address != NULL,
 480            "_call_stub_return_address must have been generated before");
 481     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 482 
 483     return start;
 484   }
 485 
 486   // Continuation point for runtime calls returning with a pending
 487   // exception.  The pending exception check happened in the runtime
 488   // or native call stub.  The pending exception in Thread is
 489   // converted into a Java-level exception.
 490   //
 491   // Contract with Java-level exception handlers:
 492   // rax: exception
 493   // rdx: throwing pc
 494   //
 495   // NOTE: At entry of this stub, exception-pc must be on stack !!
 496 
 497   address generate_forward_exception() {
 498     StubCodeMark mark(this, "StubRoutines", "forward exception");
 499     address start = __ pc();
 500 
 501     // Upon entry, the sp points to the return address returning into
 502     // Java (interpreted or compiled) code; i.e., the return address
 503     // becomes the throwing pc.
 504     //
 505     // Arguments pushed before the runtime call are still on the stack
 506     // but the exception handler will reset the stack pointer ->
 507     // ignore them.  A potential result in registers can be ignored as
 508     // well.
 509 
 510 #ifdef ASSERT
 511     // make sure this code is only executed if there is a pending exception
 512     {
 513       Label L;
 514       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
 515       __ jcc(Assembler::notEqual, L);
 516       __ stop("StubRoutines::forward exception: no pending exception (1)");
 517       __ bind(L);
 518     }
 519 #endif
 520 
 521     // compute exception handler into rbx
 522     __ movptr(c_rarg0, Address(rsp, 0));
 523     BLOCK_COMMENT("call exception_handler_for_return_address");
 524     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 525                          SharedRuntime::exception_handler_for_return_address),
 526                     r15_thread, c_rarg0);
 527     __ mov(rbx, rax);
 528 
 529     // setup rax & rdx, remove return address & clear pending exception
 530     __ pop(rdx);
 531     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 532     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 533 
 534 #ifdef ASSERT
 535     // make sure exception is set
 536     {
 537       Label L;
 538       __ testptr(rax, rax);
 539       __ jcc(Assembler::notEqual, L);
 540       __ stop("StubRoutines::forward exception: no pending exception (2)");
 541       __ bind(L);
 542     }
 543 #endif
 544 
 545     // continue at exception handler (return address removed)
 546     // rax: exception
 547     // rbx: exception handler
 548     // rdx: throwing pc
 549     __ verify_oop(rax);
 550     __ jmp(rbx);
 551 
 552     return start;
 553   }
 554 
 555   // Support for intptr_t OrderAccess::fence()
 556   //
 557   // Arguments :
 558   //
 559   // Result:
 560   address generate_orderaccess_fence() {
 561     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 562     address start = __ pc();
 563     __ membar(Assembler::StoreLoad);
 564     __ ret(0);
 565 
 566     return start;
 567   }
 568 
 569   // Support for intptr_t get_previous_fp()
 570   //
 571   // This routine is used to find the previous frame pointer for the
 572   // caller (current_frame_guess). This is used as part of debugging
 573   // ps() is seemingly lost trying to find frames.
 574   // This code assumes that caller current_frame_guess) has a frame.
 575   address generate_get_previous_fp() {
 576     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
 577     const Address old_fp(rbp, 0);
 578     const Address older_fp(rax, 0);
 579     address start = __ pc();
 580 
 581     __ enter();
 582     __ movptr(rax, old_fp); // callers fp
 583     __ movptr(rax, older_fp); // the frame for ps()
 584     __ pop(rbp);
 585     __ ret(0);
 586 
 587     return start;
 588   }
 589 
 590   // Support for intptr_t get_previous_sp()
 591   //
 592   // This routine is used to find the previous stack pointer for the
 593   // caller.
 594   address generate_get_previous_sp() {
 595     StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
 596     address start = __ pc();
 597 
 598     __ movptr(rax, rsp);
 599     __ addptr(rax, 8); // return address is at the top of the stack.
 600     __ ret(0);
 601 
 602     return start;
 603   }
 604 
 605   //----------------------------------------------------------------------------------------------------
 606   // Support for void verify_mxcsr()
 607   //
 608   // This routine is used with -Xcheck:jni to verify that native
 609   // JNI code does not return to Java code without restoring the
 610   // MXCSR register to our expected state.
 611 
 612   address generate_verify_mxcsr() {
 613     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 614     address start = __ pc();
 615 
 616     const Address mxcsr_save(rsp, 0);
 617 
 618     if (CheckJNICalls) {
 619       Label ok_ret;
 620       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 621       __ push(rax);
 622       __ subptr(rsp, wordSize);      // allocate a temp location
 623       __ stmxcsr(mxcsr_save);
 624       __ movl(rax, mxcsr_save);
 625       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 626       __ cmp32(rax, mxcsr_std);
 627       __ jcc(Assembler::equal, ok_ret);
 628 
 629       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 630 
 631       __ ldmxcsr(mxcsr_std);
 632 
 633       __ bind(ok_ret);
 634       __ addptr(rsp, wordSize);
 635       __ pop(rax);
 636     }
 637 
 638     __ ret(0);
 639 
 640     return start;
 641   }
 642 
 643   address generate_f2i_fixup() {
 644     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 645     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 646 
 647     address start = __ pc();
 648 
 649     Label L;
 650 
 651     __ push(rax);
 652     __ push(c_rarg3);
 653     __ push(c_rarg2);
 654     __ push(c_rarg1);
 655 
 656     __ movl(rax, 0x7f800000);
 657     __ xorl(c_rarg3, c_rarg3);
 658     __ movl(c_rarg2, inout);
 659     __ movl(c_rarg1, c_rarg2);
 660     __ andl(c_rarg1, 0x7fffffff);
 661     __ cmpl(rax, c_rarg1); // NaN? -> 0
 662     __ jcc(Assembler::negative, L);
 663     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 664     __ movl(c_rarg3, 0x80000000);
 665     __ movl(rax, 0x7fffffff);
 666     __ cmovl(Assembler::positive, c_rarg3, rax);
 667 
 668     __ bind(L);
 669     __ movptr(inout, c_rarg3);
 670 
 671     __ pop(c_rarg1);
 672     __ pop(c_rarg2);
 673     __ pop(c_rarg3);
 674     __ pop(rax);
 675 
 676     __ ret(0);
 677 
 678     return start;
 679   }
 680 
 681   address generate_f2l_fixup() {
 682     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 683     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 684     address start = __ pc();
 685 
 686     Label L;
 687 
 688     __ push(rax);
 689     __ push(c_rarg3);
 690     __ push(c_rarg2);
 691     __ push(c_rarg1);
 692 
 693     __ movl(rax, 0x7f800000);
 694     __ xorl(c_rarg3, c_rarg3);
 695     __ movl(c_rarg2, inout);
 696     __ movl(c_rarg1, c_rarg2);
 697     __ andl(c_rarg1, 0x7fffffff);
 698     __ cmpl(rax, c_rarg1); // NaN? -> 0
 699     __ jcc(Assembler::negative, L);
 700     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 701     __ mov64(c_rarg3, 0x8000000000000000);
 702     __ mov64(rax, 0x7fffffffffffffff);
 703     __ cmov(Assembler::positive, c_rarg3, rax);
 704 
 705     __ bind(L);
 706     __ movptr(inout, c_rarg3);
 707 
 708     __ pop(c_rarg1);
 709     __ pop(c_rarg2);
 710     __ pop(c_rarg3);
 711     __ pop(rax);
 712 
 713     __ ret(0);
 714 
 715     return start;
 716   }
 717 
 718   address generate_d2i_fixup() {
 719     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 720     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 721 
 722     address start = __ pc();
 723 
 724     Label L;
 725 
 726     __ push(rax);
 727     __ push(c_rarg3);
 728     __ push(c_rarg2);
 729     __ push(c_rarg1);
 730     __ push(c_rarg0);
 731 
 732     __ movl(rax, 0x7ff00000);
 733     __ movq(c_rarg2, inout);
 734     __ movl(c_rarg3, c_rarg2);
 735     __ mov(c_rarg1, c_rarg2);
 736     __ mov(c_rarg0, c_rarg2);
 737     __ negl(c_rarg3);
 738     __ shrptr(c_rarg1, 0x20);
 739     __ orl(c_rarg3, c_rarg2);
 740     __ andl(c_rarg1, 0x7fffffff);
 741     __ xorl(c_rarg2, c_rarg2);
 742     __ shrl(c_rarg3, 0x1f);
 743     __ orl(c_rarg1, c_rarg3);
 744     __ cmpl(rax, c_rarg1);
 745     __ jcc(Assembler::negative, L); // NaN -> 0
 746     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 747     __ movl(c_rarg2, 0x80000000);
 748     __ movl(rax, 0x7fffffff);
 749     __ cmov(Assembler::positive, c_rarg2, rax);
 750 
 751     __ bind(L);
 752     __ movptr(inout, c_rarg2);
 753 
 754     __ pop(c_rarg0);
 755     __ pop(c_rarg1);
 756     __ pop(c_rarg2);
 757     __ pop(c_rarg3);
 758     __ pop(rax);
 759 
 760     __ ret(0);
 761 
 762     return start;
 763   }
 764 
 765   address generate_d2l_fixup() {
 766     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 767     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 768 
 769     address start = __ pc();
 770 
 771     Label L;
 772 
 773     __ push(rax);
 774     __ push(c_rarg3);
 775     __ push(c_rarg2);
 776     __ push(c_rarg1);
 777     __ push(c_rarg0);
 778 
 779     __ movl(rax, 0x7ff00000);
 780     __ movq(c_rarg2, inout);
 781     __ movl(c_rarg3, c_rarg2);
 782     __ mov(c_rarg1, c_rarg2);
 783     __ mov(c_rarg0, c_rarg2);
 784     __ negl(c_rarg3);
 785     __ shrptr(c_rarg1, 0x20);
 786     __ orl(c_rarg3, c_rarg2);
 787     __ andl(c_rarg1, 0x7fffffff);
 788     __ xorl(c_rarg2, c_rarg2);
 789     __ shrl(c_rarg3, 0x1f);
 790     __ orl(c_rarg1, c_rarg3);
 791     __ cmpl(rax, c_rarg1);
 792     __ jcc(Assembler::negative, L); // NaN -> 0
 793     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 794     __ mov64(c_rarg2, 0x8000000000000000);
 795     __ mov64(rax, 0x7fffffffffffffff);
 796     __ cmovq(Assembler::positive, c_rarg2, rax);
 797 
 798     __ bind(L);
 799     __ movq(inout, c_rarg2);
 800 
 801     __ pop(c_rarg0);
 802     __ pop(c_rarg1);
 803     __ pop(c_rarg2);
 804     __ pop(c_rarg3);
 805     __ pop(rax);
 806 
 807     __ ret(0);
 808 
 809     return start;
 810   }
 811 
 812   address generate_fp_mask(const char *stub_name, int64_t mask) {
 813     __ align(CodeEntryAlignment);
 814     StubCodeMark mark(this, "StubRoutines", stub_name);
 815     address start = __ pc();
 816 
 817     __ emit_data64( mask, relocInfo::none );
 818     __ emit_data64( mask, relocInfo::none );
 819 
 820     return start;
 821   }
 822 
 823   address generate_vector_mask(const char *stub_name, int64_t mask) {
 824     __ align(CodeEntryAlignment);
 825     StubCodeMark mark(this, "StubRoutines", stub_name);
 826     address start = __ pc();
 827 
 828     __ emit_data64(mask, relocInfo::none);
 829     __ emit_data64(mask, relocInfo::none);
 830     __ emit_data64(mask, relocInfo::none);
 831     __ emit_data64(mask, relocInfo::none);
 832     __ emit_data64(mask, relocInfo::none);
 833     __ emit_data64(mask, relocInfo::none);
 834     __ emit_data64(mask, relocInfo::none);
 835     __ emit_data64(mask, relocInfo::none);
 836 
 837     return start;
 838   }
 839 
 840   address generate_vector_byte_perm_mask(const char *stub_name) {
 841     __ align(CodeEntryAlignment);
 842     StubCodeMark mark(this, "StubRoutines", stub_name);
 843     address start = __ pc();
 844 
 845     __ emit_data64(0x0000000000000001, relocInfo::none);
 846     __ emit_data64(0x0000000000000003, relocInfo::none);
 847     __ emit_data64(0x0000000000000005, relocInfo::none);
 848     __ emit_data64(0x0000000000000007, relocInfo::none);
 849     __ emit_data64(0x0000000000000000, relocInfo::none);
 850     __ emit_data64(0x0000000000000002, relocInfo::none);
 851     __ emit_data64(0x0000000000000004, relocInfo::none);
 852     __ emit_data64(0x0000000000000006, relocInfo::none);
 853 
 854     return start;
 855   }
 856 
 857   // Non-destructive plausibility checks for oops
 858   //
 859   // Arguments:
 860   //    all args on stack!
 861   //
 862   // Stack after saving c_rarg3:
 863   //    [tos + 0]: saved c_rarg3
 864   //    [tos + 1]: saved c_rarg2
 865   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
 866   //    [tos + 3]: saved flags
 867   //    [tos + 4]: return address
 868   //  * [tos + 5]: error message (char*)
 869   //  * [tos + 6]: object to verify (oop)
 870   //  * [tos + 7]: saved rax - saved by caller and bashed
 871   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
 872   //  * = popped on exit
 873   address generate_verify_oop() {
 874     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 875     address start = __ pc();
 876 
 877     Label exit, error;
 878 
 879     __ pushf();
 880     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 881 
 882     __ push(r12);
 883 
 884     // save c_rarg2 and c_rarg3
 885     __ push(c_rarg2);
 886     __ push(c_rarg3);
 887 
 888     enum {
 889            // After previous pushes.
 890            oop_to_verify = 6 * wordSize,
 891            saved_rax     = 7 * wordSize,
 892            saved_r10     = 8 * wordSize,
 893 
 894            // Before the call to MacroAssembler::debug(), see below.
 895            return_addr   = 16 * wordSize,
 896            error_msg     = 17 * wordSize
 897     };
 898 
 899     // get object
 900     __ movptr(rax, Address(rsp, oop_to_verify));
 901 
 902     // make sure object is 'reasonable'
 903     __ testptr(rax, rax);
 904     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
 905 
 906 #if INCLUDE_ZGC
 907     if (UseZGC) {
 908       // Check if metadata bits indicate a bad oop
 909       __ testptr(rax, Address(r15_thread, ZThreadLocalData::address_bad_mask_offset()));
 910       __ jcc(Assembler::notZero, error);
 911     }
 912 #endif
 913 
 914     // Check if the oop is in the right area of memory
 915     __ movptr(c_rarg2, rax);
 916     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
 917     __ andptr(c_rarg2, c_rarg3);
 918     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
 919     __ cmpptr(c_rarg2, c_rarg3);
 920     __ jcc(Assembler::notZero, error);
 921 
 922     // make sure klass is 'reasonable', which is not zero.
 923     __ load_klass(rax, rax, rscratch1);  // get klass
 924     __ testptr(rax, rax);
 925     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
 926 
 927     // return if everything seems ok
 928     __ bind(exit);
 929     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
 930     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
 931     __ pop(c_rarg3);                             // restore c_rarg3
 932     __ pop(c_rarg2);                             // restore c_rarg2
 933     __ pop(r12);                                 // restore r12
 934     __ popf();                                   // restore flags
 935     __ ret(4 * wordSize);                        // pop caller saved stuff
 936 
 937     // handle errors
 938     __ bind(error);
 939     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
 940     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
 941     __ pop(c_rarg3);                             // get saved c_rarg3 back
 942     __ pop(c_rarg2);                             // get saved c_rarg2 back
 943     __ pop(r12);                                 // get saved r12 back
 944     __ popf();                                   // get saved flags off stack --
 945                                                  // will be ignored
 946 
 947     __ pusha();                                  // push registers
 948                                                  // (rip is already
 949                                                  // already pushed)
 950     // debug(char* msg, int64_t pc, int64_t regs[])
 951     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
 952     // pushed all the registers, so now the stack looks like:
 953     //     [tos +  0] 16 saved registers
 954     //     [tos + 16] return address
 955     //   * [tos + 17] error message (char*)
 956     //   * [tos + 18] object to verify (oop)
 957     //   * [tos + 19] saved rax - saved by caller and bashed
 958     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
 959     //   * = popped on exit
 960 
 961     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
 962     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
 963     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
 964     __ mov(r12, rsp);                               // remember rsp
 965     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
 966     __ andptr(rsp, -16);                            // align stack as required by ABI
 967     BLOCK_COMMENT("call MacroAssembler::debug");
 968     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 969     __ hlt();
 970     return start;
 971   }
 972 
 973   //
 974   // Verify that a register contains clean 32-bits positive value
 975   // (high 32-bits are 0) so it could be used in 64-bits shifts.
 976   //
 977   //  Input:
 978   //    Rint  -  32-bits value
 979   //    Rtmp  -  scratch
 980   //
 981   void assert_clean_int(Register Rint, Register Rtmp) {
 982 #ifdef ASSERT
 983     Label L;
 984     assert_different_registers(Rtmp, Rint);
 985     __ movslq(Rtmp, Rint);
 986     __ cmpq(Rtmp, Rint);
 987     __ jcc(Assembler::equal, L);
 988     __ stop("high 32-bits of int value are not 0");
 989     __ bind(L);
 990 #endif
 991   }
 992 
 993   //  Generate overlap test for array copy stubs
 994   //
 995   //  Input:
 996   //     c_rarg0 - from
 997   //     c_rarg1 - to
 998   //     c_rarg2 - element count
 999   //
1000   //  Output:
1001   //     rax   - &from[element count - 1]
1002   //
1003   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1004     assert(no_overlap_target != NULL, "must be generated");
1005     array_overlap_test(no_overlap_target, NULL, sf);
1006   }
1007   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1008     array_overlap_test(NULL, &L_no_overlap, sf);
1009   }
1010   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1011     const Register from     = c_rarg0;
1012     const Register to       = c_rarg1;
1013     const Register count    = c_rarg2;
1014     const Register end_from = rax;
1015 
1016     __ cmpptr(to, from);
1017     __ lea(end_from, Address(from, count, sf, 0));
1018     if (NOLp == NULL) {
1019       ExternalAddress no_overlap(no_overlap_target);
1020       __ jump_cc(Assembler::belowEqual, no_overlap);
1021       __ cmpptr(to, end_from);
1022       __ jump_cc(Assembler::aboveEqual, no_overlap);
1023     } else {
1024       __ jcc(Assembler::belowEqual, (*NOLp));
1025       __ cmpptr(to, end_from);
1026       __ jcc(Assembler::aboveEqual, (*NOLp));
1027     }
1028   }
1029 
1030   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1031   //
1032   // Outputs:
1033   //    rdi - rcx
1034   //    rsi - rdx
1035   //    rdx - r8
1036   //    rcx - r9
1037   //
1038   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1039   // are non-volatile.  r9 and r10 should not be used by the caller.
1040   //
1041   DEBUG_ONLY(bool regs_in_thread;)
1042 
1043   void setup_arg_regs(int nargs = 3) {
1044     const Register saved_rdi = r9;
1045     const Register saved_rsi = r10;
1046     assert(nargs == 3 || nargs == 4, "else fix");
1047 #ifdef _WIN64
1048     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1049            "unexpected argument registers");
1050     if (nargs >= 4)
1051       __ mov(rax, r9);  // r9 is also saved_rdi
1052     __ movptr(saved_rdi, rdi);
1053     __ movptr(saved_rsi, rsi);
1054     __ mov(rdi, rcx); // c_rarg0
1055     __ mov(rsi, rdx); // c_rarg1
1056     __ mov(rdx, r8);  // c_rarg2
1057     if (nargs >= 4)
1058       __ mov(rcx, rax); // c_rarg3 (via rax)
1059 #else
1060     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1061            "unexpected argument registers");
1062 #endif
1063     DEBUG_ONLY(regs_in_thread = false;)
1064   }
1065 
1066   void restore_arg_regs() {
1067     assert(!regs_in_thread, "wrong call to restore_arg_regs");
1068     const Register saved_rdi = r9;
1069     const Register saved_rsi = r10;
1070 #ifdef _WIN64
1071     __ movptr(rdi, saved_rdi);
1072     __ movptr(rsi, saved_rsi);
1073 #endif
1074   }
1075 
1076   // This is used in places where r10 is a scratch register, and can
1077   // be adapted if r9 is needed also.
1078   void setup_arg_regs_using_thread() {
1079     const Register saved_r15 = r9;
1080 #ifdef _WIN64
1081     __ mov(saved_r15, r15);  // r15 is callee saved and needs to be restored
1082     __ get_thread(r15_thread);
1083     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1084            "unexpected argument registers");
1085     __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi);
1086     __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi);
1087 
1088     __ mov(rdi, rcx); // c_rarg0
1089     __ mov(rsi, rdx); // c_rarg1
1090     __ mov(rdx, r8);  // c_rarg2
1091 #else
1092     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1093            "unexpected argument registers");
1094 #endif
1095     DEBUG_ONLY(regs_in_thread = true;)
1096   }
1097 
1098   void restore_arg_regs_using_thread() {
1099     assert(regs_in_thread, "wrong call to restore_arg_regs");
1100     const Register saved_r15 = r9;
1101 #ifdef _WIN64
1102     __ get_thread(r15_thread);
1103     __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())));
1104     __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())));
1105     __ mov(r15, saved_r15);  // r15 is callee saved and needs to be restored
1106 #endif
1107   }
1108 
1109   // Copy big chunks forward
1110   //
1111   // Inputs:
1112   //   end_from     - source arrays end address
1113   //   end_to       - destination array end address
1114   //   qword_count  - 64-bits element count, negative
1115   //   to           - scratch
1116   //   L_copy_bytes - entry label
1117   //   L_copy_8_bytes  - exit  label
1118   //
1119   void copy_bytes_forward(Register end_from, Register end_to,
1120                              Register qword_count, Register to,
1121                              Label& L_copy_bytes, Label& L_copy_8_bytes) {
1122     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1123     Label L_loop;
1124     __ align(OptoLoopAlignment);
1125     if (UseUnalignedLoadStores) {
1126       Label L_end;
1127       // Copy 64-bytes per iteration
1128       if (UseAVX > 2) {
1129         Label L_loop_avx512, L_loop_avx2, L_32_byte_head, L_above_threshold, L_below_threshold;
1130 
1131         __ BIND(L_copy_bytes);
1132         __ cmpptr(qword_count, (-1 * AVX3Threshold / 8));
1133         __ jccb(Assembler::less, L_above_threshold);
1134         __ jmpb(L_below_threshold);
1135 
1136         __ bind(L_loop_avx512);
1137         __ evmovdqul(xmm0, Address(end_from, qword_count, Address::times_8, -56), Assembler::AVX_512bit);
1138         __ evmovdqul(Address(end_to, qword_count, Address::times_8, -56), xmm0, Assembler::AVX_512bit);
1139         __ bind(L_above_threshold);
1140         __ addptr(qword_count, 8);
1141         __ jcc(Assembler::lessEqual, L_loop_avx512);
1142         __ jmpb(L_32_byte_head);
1143 
1144         __ bind(L_loop_avx2);
1145         __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
1146         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
1147         __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24));
1148         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
1149         __ bind(L_below_threshold);
1150         __ addptr(qword_count, 8);
1151         __ jcc(Assembler::lessEqual, L_loop_avx2);
1152 
1153         __ bind(L_32_byte_head);
1154         __ subptr(qword_count, 4);  // sub(8) and add(4)
1155         __ jccb(Assembler::greater, L_end);
1156       } else {
1157         __ BIND(L_loop);
1158         if (UseAVX == 2) {
1159           __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
1160           __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
1161           __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24));
1162           __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
1163         } else {
1164           __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
1165           __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
1166           __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40));
1167           __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1);
1168           __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24));
1169           __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2);
1170           __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8));
1171           __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3);
1172         }
1173 
1174         __ BIND(L_copy_bytes);
1175         __ addptr(qword_count, 8);
1176         __ jcc(Assembler::lessEqual, L_loop);
1177         __ subptr(qword_count, 4);  // sub(8) and add(4)
1178         __ jccb(Assembler::greater, L_end);
1179       }
1180       // Copy trailing 32 bytes
1181       if (UseAVX >= 2) {
1182         __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1183         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1184       } else {
1185         __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1186         __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1187         __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
1188         __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
1189       }
1190       __ addptr(qword_count, 4);
1191       __ BIND(L_end);
1192       if (UseAVX >= 2) {
1193         // clean upper bits of YMM registers
1194         __ vpxor(xmm0, xmm0);
1195         __ vpxor(xmm1, xmm1);
1196       }
1197     } else {
1198       // Copy 32-bytes per iteration
1199       __ BIND(L_loop);
1200       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1201       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1202       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1203       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1204       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1205       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1206       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1207       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1208 
1209       __ BIND(L_copy_bytes);
1210       __ addptr(qword_count, 4);
1211       __ jcc(Assembler::lessEqual, L_loop);
1212     }
1213     __ subptr(qword_count, 4);
1214     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1215   }
1216 
1217   // Copy big chunks backward
1218   //
1219   // Inputs:
1220   //   from         - source arrays address
1221   //   dest         - destination array address
1222   //   qword_count  - 64-bits element count
1223   //   to           - scratch
1224   //   L_copy_bytes - entry label
1225   //   L_copy_8_bytes  - exit  label
1226   //
1227   void copy_bytes_backward(Register from, Register dest,
1228                               Register qword_count, Register to,
1229                               Label& L_copy_bytes, Label& L_copy_8_bytes) {
1230     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1231     Label L_loop;
1232     __ align(OptoLoopAlignment);
1233     if (UseUnalignedLoadStores) {
1234       Label L_end;
1235       // Copy 64-bytes per iteration
1236       if (UseAVX > 2) {
1237         Label L_loop_avx512, L_loop_avx2, L_32_byte_head, L_above_threshold, L_below_threshold;
1238 
1239         __ BIND(L_copy_bytes);
1240         __ cmpptr(qword_count, (AVX3Threshold / 8));
1241         __ jccb(Assembler::greater, L_above_threshold);
1242         __ jmpb(L_below_threshold);
1243 
1244         __ BIND(L_loop_avx512);
1245         __ evmovdqul(xmm0, Address(from, qword_count, Address::times_8, 0), Assembler::AVX_512bit);
1246         __ evmovdqul(Address(dest, qword_count, Address::times_8, 0), xmm0, Assembler::AVX_512bit);
1247         __ bind(L_above_threshold);
1248         __ subptr(qword_count, 8);
1249         __ jcc(Assembler::greaterEqual, L_loop_avx512);
1250         __ jmpb(L_32_byte_head);
1251 
1252         __ bind(L_loop_avx2);
1253         __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
1254         __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
1255         __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
1256         __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
1257         __ bind(L_below_threshold);
1258         __ subptr(qword_count, 8);
1259         __ jcc(Assembler::greaterEqual, L_loop_avx2);
1260 
1261         __ bind(L_32_byte_head);
1262         __ addptr(qword_count, 4);  // add(8) and sub(4)
1263         __ jccb(Assembler::less, L_end);
1264       } else {
1265         __ BIND(L_loop);
1266         if (UseAVX == 2) {
1267           __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
1268           __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
1269           __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1270           __ vmovdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1271         } else {
1272           __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48));
1273           __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0);
1274           __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32));
1275           __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1);
1276           __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16));
1277           __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2);
1278           __ movdqu(xmm3, Address(from, qword_count, Address::times_8,  0));
1279           __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm3);
1280         }
1281 
1282         __ BIND(L_copy_bytes);
1283         __ subptr(qword_count, 8);
1284         __ jcc(Assembler::greaterEqual, L_loop);
1285 
1286         __ addptr(qword_count, 4);  // add(8) and sub(4)
1287         __ jccb(Assembler::less, L_end);
1288       }
1289       // Copy trailing 32 bytes
1290       if (UseAVX >= 2) {
1291         __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0));
1292         __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0);
1293       } else {
1294         __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
1295         __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
1296         __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1297         __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1298       }
1299       __ subptr(qword_count, 4);
1300       __ BIND(L_end);
1301       if (UseAVX >= 2) {
1302         // clean upper bits of YMM registers
1303         __ vpxor(xmm0, xmm0);
1304         __ vpxor(xmm1, xmm1);
1305       }
1306     } else {
1307       // Copy 32-bytes per iteration
1308       __ BIND(L_loop);
1309       __ movq(to, Address(from, qword_count, Address::times_8, 24));
1310       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1311       __ movq(to, Address(from, qword_count, Address::times_8, 16));
1312       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1313       __ movq(to, Address(from, qword_count, Address::times_8,  8));
1314       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1315       __ movq(to, Address(from, qword_count, Address::times_8,  0));
1316       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1317 
1318       __ BIND(L_copy_bytes);
1319       __ subptr(qword_count, 4);
1320       __ jcc(Assembler::greaterEqual, L_loop);
1321     }
1322     __ addptr(qword_count, 4);
1323     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1324   }
1325 
1326   // Arguments:
1327   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1328   //             ignored
1329   //   name    - stub name string
1330   //
1331   // Inputs:
1332   //   c_rarg0   - source array address
1333   //   c_rarg1   - destination array address
1334   //   c_rarg2   - element count, treated as ssize_t, can be zero
1335   //
1336   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1337   // we let the hardware handle it.  The one to eight bytes within words,
1338   // dwords or qwords that span cache line boundaries will still be loaded
1339   // and stored atomically.
1340   //
1341   // Side Effects:
1342   //   disjoint_byte_copy_entry is set to the no-overlap entry point
1343   //   used by generate_conjoint_byte_copy().
1344   //
1345   address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
1346     __ align(CodeEntryAlignment);
1347     StubCodeMark mark(this, "StubRoutines", name);
1348     address start = __ pc();
1349 
1350     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1351     Label L_copy_byte, L_exit;
1352     const Register from        = rdi;  // source array address
1353     const Register to          = rsi;  // destination array address
1354     const Register count       = rdx;  // elements count
1355     const Register byte_count  = rcx;
1356     const Register qword_count = count;
1357     const Register end_from    = from; // source array end address
1358     const Register end_to      = to;   // destination array end address
1359     // End pointers are inclusive, and if count is not zero they point
1360     // to the last unit copied:  end_to[0] := end_from[0]
1361 
1362     __ enter(); // required for proper stackwalking of RuntimeStub frame
1363     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1364 
1365     if (entry != NULL) {
1366       *entry = __ pc();
1367        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1368       BLOCK_COMMENT("Entry:");
1369     }
1370 
1371     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1372                       // r9 and r10 may be used to save non-volatile registers
1373 
1374     {
1375       // UnsafeCopyMemory page error: continue after ucm
1376       UnsafeCopyMemoryMark ucmm(this, !aligned, true);
1377       // 'from', 'to' and 'count' are now valid
1378       __ movptr(byte_count, count);
1379       __ shrptr(count, 3); // count => qword_count
1380 
1381       // Copy from low to high addresses.  Use 'to' as scratch.
1382       __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1383       __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1384       __ negptr(qword_count); // make the count negative
1385       __ jmp(L_copy_bytes);
1386 
1387       // Copy trailing qwords
1388     __ BIND(L_copy_8_bytes);
1389       __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1390       __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1391       __ increment(qword_count);
1392       __ jcc(Assembler::notZero, L_copy_8_bytes);
1393 
1394       // Check for and copy trailing dword
1395     __ BIND(L_copy_4_bytes);
1396       __ testl(byte_count, 4);
1397       __ jccb(Assembler::zero, L_copy_2_bytes);
1398       __ movl(rax, Address(end_from, 8));
1399       __ movl(Address(end_to, 8), rax);
1400 
1401       __ addptr(end_from, 4);
1402       __ addptr(end_to, 4);
1403 
1404       // Check for and copy trailing word
1405     __ BIND(L_copy_2_bytes);
1406       __ testl(byte_count, 2);
1407       __ jccb(Assembler::zero, L_copy_byte);
1408       __ movw(rax, Address(end_from, 8));
1409       __ movw(Address(end_to, 8), rax);
1410 
1411       __ addptr(end_from, 2);
1412       __ addptr(end_to, 2);
1413 
1414       // Check for and copy trailing byte
1415     __ BIND(L_copy_byte);
1416       __ testl(byte_count, 1);
1417       __ jccb(Assembler::zero, L_exit);
1418       __ movb(rax, Address(end_from, 8));
1419       __ movb(Address(end_to, 8), rax);
1420     }
1421   __ BIND(L_exit);
1422     address ucme_exit_pc = __ pc();
1423     restore_arg_regs();
1424     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1425     __ xorptr(rax, rax); // return 0
1426     __ vzeroupper();
1427     __ leave(); // required for proper stackwalking of RuntimeStub frame
1428     __ ret(0);
1429 
1430     {
1431       UnsafeCopyMemoryMark ucmm(this, !aligned, false, ucme_exit_pc);
1432       // Copy in multi-bytes chunks
1433       copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1434       __ jmp(L_copy_4_bytes);
1435     }
1436     return start;
1437   }
1438 
1439   // Arguments:
1440   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1441   //             ignored
1442   //   name    - stub name string
1443   //
1444   // Inputs:
1445   //   c_rarg0   - source array address
1446   //   c_rarg1   - destination array address
1447   //   c_rarg2   - element count, treated as ssize_t, can be zero
1448   //
1449   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1450   // we let the hardware handle it.  The one to eight bytes within words,
1451   // dwords or qwords that span cache line boundaries will still be loaded
1452   // and stored atomically.
1453   //
1454   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
1455                                       address* entry, const char *name) {
1456     __ align(CodeEntryAlignment);
1457     StubCodeMark mark(this, "StubRoutines", name);
1458     address start = __ pc();
1459 
1460     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1461     const Register from        = rdi;  // source array address
1462     const Register to          = rsi;  // destination array address
1463     const Register count       = rdx;  // elements count
1464     const Register byte_count  = rcx;
1465     const Register qword_count = count;
1466 
1467     __ enter(); // required for proper stackwalking of RuntimeStub frame
1468     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1469 
1470     if (entry != NULL) {
1471       *entry = __ pc();
1472       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1473       BLOCK_COMMENT("Entry:");
1474     }
1475 
1476     array_overlap_test(nooverlap_target, Address::times_1);
1477     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1478                       // r9 and r10 may be used to save non-volatile registers
1479 
1480     {
1481       // UnsafeCopyMemory page error: continue after ucm
1482       UnsafeCopyMemoryMark ucmm(this, !aligned, true);
1483       // 'from', 'to' and 'count' are now valid
1484       __ movptr(byte_count, count);
1485       __ shrptr(count, 3);   // count => qword_count
1486 
1487       // Copy from high to low addresses.
1488 
1489       // Check for and copy trailing byte
1490       __ testl(byte_count, 1);
1491       __ jcc(Assembler::zero, L_copy_2_bytes);
1492       __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1493       __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1494       __ decrement(byte_count); // Adjust for possible trailing word
1495 
1496       // Check for and copy trailing word
1497     __ BIND(L_copy_2_bytes);
1498       __ testl(byte_count, 2);
1499       __ jcc(Assembler::zero, L_copy_4_bytes);
1500       __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1501       __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1502 
1503       // Check for and copy trailing dword
1504     __ BIND(L_copy_4_bytes);
1505       __ testl(byte_count, 4);
1506       __ jcc(Assembler::zero, L_copy_bytes);
1507       __ movl(rax, Address(from, qword_count, Address::times_8));
1508       __ movl(Address(to, qword_count, Address::times_8), rax);
1509       __ jmp(L_copy_bytes);
1510 
1511       // Copy trailing qwords
1512     __ BIND(L_copy_8_bytes);
1513       __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1514       __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1515       __ decrement(qword_count);
1516       __ jcc(Assembler::notZero, L_copy_8_bytes);
1517     }
1518     restore_arg_regs();
1519     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1520     __ xorptr(rax, rax); // return 0
1521     __ vzeroupper();
1522     __ leave(); // required for proper stackwalking of RuntimeStub frame
1523     __ ret(0);
1524 
1525     {
1526       // UnsafeCopyMemory page error: continue after ucm
1527       UnsafeCopyMemoryMark ucmm(this, !aligned, true);
1528       // Copy in multi-bytes chunks
1529       copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1530     }
1531     restore_arg_regs();
1532     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1533     __ xorptr(rax, rax); // return 0
1534     __ vzeroupper();
1535     __ leave(); // required for proper stackwalking of RuntimeStub frame
1536     __ ret(0);
1537 
1538     return start;
1539   }
1540 
1541   // Arguments:
1542   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1543   //             ignored
1544   //   name    - stub name string
1545   //
1546   // Inputs:
1547   //   c_rarg0   - source array address
1548   //   c_rarg1   - destination array address
1549   //   c_rarg2   - element count, treated as ssize_t, can be zero
1550   //
1551   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1552   // let the hardware handle it.  The two or four words within dwords
1553   // or qwords that span cache line boundaries will still be loaded
1554   // and stored atomically.
1555   //
1556   // Side Effects:
1557   //   disjoint_short_copy_entry is set to the no-overlap entry point
1558   //   used by generate_conjoint_short_copy().
1559   //
1560   address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
1561     __ align(CodeEntryAlignment);
1562     StubCodeMark mark(this, "StubRoutines", name);
1563     address start = __ pc();
1564 
1565     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1566     const Register from        = rdi;  // source array address
1567     const Register to          = rsi;  // destination array address
1568     const Register count       = rdx;  // elements count
1569     const Register word_count  = rcx;
1570     const Register qword_count = count;
1571     const Register end_from    = from; // source array end address
1572     const Register end_to      = to;   // destination array end address
1573     // End pointers are inclusive, and if count is not zero they point
1574     // to the last unit copied:  end_to[0] := end_from[0]
1575 
1576     __ enter(); // required for proper stackwalking of RuntimeStub frame
1577     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1578 
1579     if (entry != NULL) {
1580       *entry = __ pc();
1581       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1582       BLOCK_COMMENT("Entry:");
1583     }
1584 
1585     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1586                       // r9 and r10 may be used to save non-volatile registers
1587 
1588     {
1589       // UnsafeCopyMemory page error: continue after ucm
1590       UnsafeCopyMemoryMark ucmm(this, !aligned, true);
1591       // 'from', 'to' and 'count' are now valid
1592       __ movptr(word_count, count);
1593       __ shrptr(count, 2); // count => qword_count
1594 
1595       // Copy from low to high addresses.  Use 'to' as scratch.
1596       __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1597       __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1598       __ negptr(qword_count);
1599       __ jmp(L_copy_bytes);
1600 
1601       // Copy trailing qwords
1602     __ BIND(L_copy_8_bytes);
1603       __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1604       __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1605       __ increment(qword_count);
1606       __ jcc(Assembler::notZero, L_copy_8_bytes);
1607 
1608       // Original 'dest' is trashed, so we can't use it as a
1609       // base register for a possible trailing word copy
1610 
1611       // Check for and copy trailing dword
1612     __ BIND(L_copy_4_bytes);
1613       __ testl(word_count, 2);
1614       __ jccb(Assembler::zero, L_copy_2_bytes);
1615       __ movl(rax, Address(end_from, 8));
1616       __ movl(Address(end_to, 8), rax);
1617 
1618       __ addptr(end_from, 4);
1619       __ addptr(end_to, 4);
1620 
1621       // Check for and copy trailing word
1622     __ BIND(L_copy_2_bytes);
1623       __ testl(word_count, 1);
1624       __ jccb(Assembler::zero, L_exit);
1625       __ movw(rax, Address(end_from, 8));
1626       __ movw(Address(end_to, 8), rax);
1627     }
1628   __ BIND(L_exit);
1629     address ucme_exit_pc = __ pc();
1630     restore_arg_regs();
1631     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1632     __ xorptr(rax, rax); // return 0
1633     __ vzeroupper();
1634     __ leave(); // required for proper stackwalking of RuntimeStub frame
1635     __ ret(0);
1636 
1637     {
1638       UnsafeCopyMemoryMark ucmm(this, !aligned, false, ucme_exit_pc);
1639       // Copy in multi-bytes chunks
1640       copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1641       __ jmp(L_copy_4_bytes);
1642     }
1643 
1644     return start;
1645   }
1646 
1647   address generate_fill(BasicType t, bool aligned, const char *name) {
1648     __ align(CodeEntryAlignment);
1649     StubCodeMark mark(this, "StubRoutines", name);
1650     address start = __ pc();
1651 
1652     BLOCK_COMMENT("Entry:");
1653 
1654     const Register to       = c_rarg0;  // source array address
1655     const Register value    = c_rarg1;  // value
1656     const Register count    = c_rarg2;  // elements count
1657 
1658     __ enter(); // required for proper stackwalking of RuntimeStub frame
1659 
1660     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1661 
1662     __ vzeroupper();
1663     __ leave(); // required for proper stackwalking of RuntimeStub frame
1664     __ ret(0);
1665     return start;
1666   }
1667 
1668   // Arguments:
1669   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1670   //             ignored
1671   //   name    - stub name string
1672   //
1673   // Inputs:
1674   //   c_rarg0   - source array address
1675   //   c_rarg1   - destination array address
1676   //   c_rarg2   - element count, treated as ssize_t, can be zero
1677   //
1678   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1679   // let the hardware handle it.  The two or four words within dwords
1680   // or qwords that span cache line boundaries will still be loaded
1681   // and stored atomically.
1682   //
1683   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
1684                                        address *entry, const char *name) {
1685     __ align(CodeEntryAlignment);
1686     StubCodeMark mark(this, "StubRoutines", name);
1687     address start = __ pc();
1688 
1689     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
1690     const Register from        = rdi;  // source array address
1691     const Register to          = rsi;  // destination array address
1692     const Register count       = rdx;  // elements count
1693     const Register word_count  = rcx;
1694     const Register qword_count = count;
1695 
1696     __ enter(); // required for proper stackwalking of RuntimeStub frame
1697     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1698 
1699     if (entry != NULL) {
1700       *entry = __ pc();
1701       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1702       BLOCK_COMMENT("Entry:");
1703     }
1704 
1705     array_overlap_test(nooverlap_target, Address::times_2);
1706     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1707                       // r9 and r10 may be used to save non-volatile registers
1708 
1709     {
1710       // UnsafeCopyMemory page error: continue after ucm
1711       UnsafeCopyMemoryMark ucmm(this, !aligned, true);
1712       // 'from', 'to' and 'count' are now valid
1713       __ movptr(word_count, count);
1714       __ shrptr(count, 2); // count => qword_count
1715 
1716       // Copy from high to low addresses.  Use 'to' as scratch.
1717 
1718       // Check for and copy trailing word
1719       __ testl(word_count, 1);
1720       __ jccb(Assembler::zero, L_copy_4_bytes);
1721       __ movw(rax, Address(from, word_count, Address::times_2, -2));
1722       __ movw(Address(to, word_count, Address::times_2, -2), rax);
1723 
1724      // Check for and copy trailing dword
1725     __ BIND(L_copy_4_bytes);
1726       __ testl(word_count, 2);
1727       __ jcc(Assembler::zero, L_copy_bytes);
1728       __ movl(rax, Address(from, qword_count, Address::times_8));
1729       __ movl(Address(to, qword_count, Address::times_8), rax);
1730       __ jmp(L_copy_bytes);
1731 
1732       // Copy trailing qwords
1733     __ BIND(L_copy_8_bytes);
1734       __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1735       __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1736       __ decrement(qword_count);
1737       __ jcc(Assembler::notZero, L_copy_8_bytes);
1738     }
1739     restore_arg_regs();
1740     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1741     __ xorptr(rax, rax); // return 0
1742     __ vzeroupper();
1743     __ leave(); // required for proper stackwalking of RuntimeStub frame
1744     __ ret(0);
1745 
1746     {
1747       // UnsafeCopyMemory page error: continue after ucm
1748       UnsafeCopyMemoryMark ucmm(this, !aligned, true);
1749       // Copy in multi-bytes chunks
1750       copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1751     }
1752     restore_arg_regs();
1753     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1754     __ xorptr(rax, rax); // return 0
1755     __ vzeroupper();
1756     __ leave(); // required for proper stackwalking of RuntimeStub frame
1757     __ ret(0);
1758 
1759     return start;
1760   }
1761 
1762   // Arguments:
1763   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1764   //             ignored
1765   //   is_oop  - true => oop array, so generate store check code
1766   //   name    - stub name string
1767   //
1768   // Inputs:
1769   //   c_rarg0   - source array address
1770   //   c_rarg1   - destination array address
1771   //   c_rarg2   - element count, treated as ssize_t, can be zero
1772   //
1773   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1774   // the hardware handle it.  The two dwords within qwords that span
1775   // cache line boundaries will still be loaded and stored atomicly.
1776   //
1777   // Side Effects:
1778   //   disjoint_int_copy_entry is set to the no-overlap entry point
1779   //   used by generate_conjoint_int_oop_copy().
1780   //
1781   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
1782                                          const char *name, bool dest_uninitialized = false) {
1783     __ align(CodeEntryAlignment);
1784     StubCodeMark mark(this, "StubRoutines", name);
1785     address start = __ pc();
1786 
1787     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1788     const Register from        = rdi;  // source array address
1789     const Register to          = rsi;  // destination array address
1790     const Register count       = rdx;  // elements count
1791     const Register dword_count = rcx;
1792     const Register qword_count = count;
1793     const Register end_from    = from; // source array end address
1794     const Register end_to      = to;   // destination array end address
1795     // End pointers are inclusive, and if count is not zero they point
1796     // to the last unit copied:  end_to[0] := end_from[0]
1797 
1798     __ enter(); // required for proper stackwalking of RuntimeStub frame
1799     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1800 
1801     if (entry != NULL) {
1802       *entry = __ pc();
1803       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1804       BLOCK_COMMENT("Entry:");
1805     }
1806 
1807     setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
1808                                    // r9 is used to save r15_thread
1809 
1810     DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
1811     if (dest_uninitialized) {
1812       decorators |= IS_DEST_UNINITIALIZED;
1813     }
1814     if (aligned) {
1815       decorators |= ARRAYCOPY_ALIGNED;
1816     }
1817 
1818     BasicType type = is_oop ? T_OBJECT : T_INT;
1819     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
1820     bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
1821 
1822     {
1823       // UnsafeCopyMemory page error: continue after ucm
1824       UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
1825       // 'from', 'to' and 'count' are now valid
1826       __ movptr(dword_count, count);
1827       __ shrptr(count, 1); // count => qword_count
1828 
1829       // Copy from low to high addresses.  Use 'to' as scratch.
1830       __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1831       __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1832       __ negptr(qword_count);
1833       __ jmp(L_copy_bytes);
1834 
1835       // Copy trailing qwords
1836     __ BIND(L_copy_8_bytes);
1837       __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1838       __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1839       __ increment(qword_count);
1840       __ jcc(Assembler::notZero, L_copy_8_bytes);
1841 
1842       // Check for and copy trailing dword
1843     __ BIND(L_copy_4_bytes);
1844       __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
1845       __ jccb(Assembler::zero, L_exit);
1846       __ movl(rax, Address(end_from, 8));
1847       __ movl(Address(end_to, 8), rax);
1848     }
1849   __ BIND(L_exit);
1850     address ucme_exit_pc = __ pc();
1851     bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count);
1852     restore_arg_regs_using_thread();
1853     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1854     __ vzeroupper();
1855     __ xorptr(rax, rax); // return 0
1856     __ leave(); // required for proper stackwalking of RuntimeStub frame
1857     __ ret(0);
1858 
1859     {
1860       UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, false, ucme_exit_pc);
1861       // Copy in multi-bytes chunks
1862       copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1863       __ jmp(L_copy_4_bytes);
1864     }
1865 
1866     return start;
1867   }
1868 
1869   // Arguments:
1870   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1871   //             ignored
1872   //   is_oop  - true => oop array, so generate store check code
1873   //   name    - stub name string
1874   //
1875   // Inputs:
1876   //   c_rarg0   - source array address
1877   //   c_rarg1   - destination array address
1878   //   c_rarg2   - element count, treated as ssize_t, can be zero
1879   //
1880   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1881   // the hardware handle it.  The two dwords within qwords that span
1882   // cache line boundaries will still be loaded and stored atomicly.
1883   //
1884   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
1885                                          address *entry, const char *name,
1886                                          bool dest_uninitialized = false) {
1887     __ align(CodeEntryAlignment);
1888     StubCodeMark mark(this, "StubRoutines", name);
1889     address start = __ pc();
1890 
1891     Label L_copy_bytes, L_copy_8_bytes, L_exit;
1892     const Register from        = rdi;  // source array address
1893     const Register to          = rsi;  // destination array address
1894     const Register count       = rdx;  // elements count
1895     const Register dword_count = rcx;
1896     const Register qword_count = count;
1897 
1898     __ enter(); // required for proper stackwalking of RuntimeStub frame
1899     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1900 
1901     if (entry != NULL) {
1902       *entry = __ pc();
1903        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1904       BLOCK_COMMENT("Entry:");
1905     }
1906 
1907     array_overlap_test(nooverlap_target, Address::times_4);
1908     setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
1909                                    // r9 is used to save r15_thread
1910 
1911     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1912     if (dest_uninitialized) {
1913       decorators |= IS_DEST_UNINITIALIZED;
1914     }
1915     if (aligned) {
1916       decorators |= ARRAYCOPY_ALIGNED;
1917     }
1918 
1919     BasicType type = is_oop ? T_OBJECT : T_INT;
1920     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
1921     // no registers are destroyed by this call
1922     bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
1923 
1924     assert_clean_int(count, rax); // Make sure 'count' is clean int.
1925     {
1926       // UnsafeCopyMemory page error: continue after ucm
1927       UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
1928       // 'from', 'to' and 'count' are now valid
1929       __ movptr(dword_count, count);
1930       __ shrptr(count, 1); // count => qword_count
1931 
1932       // Copy from high to low addresses.  Use 'to' as scratch.
1933 
1934       // Check for and copy trailing dword
1935       __ testl(dword_count, 1);
1936       __ jcc(Assembler::zero, L_copy_bytes);
1937       __ movl(rax, Address(from, dword_count, Address::times_4, -4));
1938       __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1939       __ jmp(L_copy_bytes);
1940 
1941       // Copy trailing qwords
1942     __ BIND(L_copy_8_bytes);
1943       __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1944       __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1945       __ decrement(qword_count);
1946       __ jcc(Assembler::notZero, L_copy_8_bytes);
1947     }
1948     if (is_oop) {
1949       __ jmp(L_exit);
1950     }
1951     restore_arg_regs_using_thread();
1952     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1953     __ xorptr(rax, rax); // return 0
1954     __ vzeroupper();
1955     __ leave(); // required for proper stackwalking of RuntimeStub frame
1956     __ ret(0);
1957 
1958     {
1959       // UnsafeCopyMemory page error: continue after ucm
1960       UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
1961       // Copy in multi-bytes chunks
1962       copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1963     }
1964 
1965   __ BIND(L_exit);
1966     bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count);
1967     restore_arg_regs_using_thread();
1968     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1969     __ xorptr(rax, rax); // return 0
1970     __ vzeroupper();
1971     __ leave(); // required for proper stackwalking of RuntimeStub frame
1972     __ ret(0);
1973 
1974     return start;
1975   }
1976 
1977   // Arguments:
1978   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1979   //             ignored
1980   //   is_oop  - true => oop array, so generate store check code
1981   //   name    - stub name string
1982   //
1983   // Inputs:
1984   //   c_rarg0   - source array address
1985   //   c_rarg1   - destination array address
1986   //   c_rarg2   - element count, treated as ssize_t, can be zero
1987   //
1988  // Side Effects:
1989   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
1990   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
1991   //
1992   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
1993                                           const char *name, bool dest_uninitialized = false) {
1994     __ align(CodeEntryAlignment);
1995     StubCodeMark mark(this, "StubRoutines", name);
1996     address start = __ pc();
1997 
1998     Label L_copy_bytes, L_copy_8_bytes, L_exit;
1999     const Register from        = rdi;  // source array address
2000     const Register to          = rsi;  // destination array address
2001     const Register qword_count = rdx;  // elements count
2002     const Register end_from    = from; // source array end address
2003     const Register end_to      = rcx;  // destination array end address
2004     const Register saved_count = r11;
2005     // End pointers are inclusive, and if count is not zero they point
2006     // to the last unit copied:  end_to[0] := end_from[0]
2007 
2008     __ enter(); // required for proper stackwalking of RuntimeStub frame
2009     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
2010     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2011 
2012     if (entry != NULL) {
2013       *entry = __ pc();
2014       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2015       BLOCK_COMMENT("Entry:");
2016     }
2017 
2018     setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
2019                                      // r9 is used to save r15_thread
2020     // 'from', 'to' and 'qword_count' are now valid
2021 
2022     DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
2023     if (dest_uninitialized) {
2024       decorators |= IS_DEST_UNINITIALIZED;
2025     }
2026     if (aligned) {
2027       decorators |= ARRAYCOPY_ALIGNED;
2028     }
2029 
2030     BasicType type = is_oop ? T_OBJECT : T_LONG;
2031     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
2032     bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count);
2033     {
2034       // UnsafeCopyMemory page error: continue after ucm
2035       UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
2036 
2037       // Copy from low to high addresses.  Use 'to' as scratch.
2038       __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
2039       __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
2040       __ negptr(qword_count);
2041       __ jmp(L_copy_bytes);
2042 
2043       // Copy trailing qwords
2044     __ BIND(L_copy_8_bytes);
2045       __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
2046       __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
2047       __ increment(qword_count);
2048       __ jcc(Assembler::notZero, L_copy_8_bytes);
2049     }
2050     if (is_oop) {
2051       __ jmp(L_exit);
2052     } else {
2053       restore_arg_regs_using_thread();
2054       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2055       __ xorptr(rax, rax); // return 0
2056       __ vzeroupper();
2057       __ leave(); // required for proper stackwalking of RuntimeStub frame
2058       __ ret(0);
2059     }
2060 
2061     {
2062       // UnsafeCopyMemory page error: continue after ucm
2063       UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
2064       // Copy in multi-bytes chunks
2065       copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2066     }
2067 
2068     __ BIND(L_exit);
2069     bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count);
2070     restore_arg_regs_using_thread();
2071     if (is_oop) {
2072       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2073     } else {
2074       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2075     }
2076     __ vzeroupper();
2077     __ xorptr(rax, rax); // return 0
2078     __ leave(); // required for proper stackwalking of RuntimeStub frame
2079     __ ret(0);
2080 
2081     return start;
2082   }
2083 
2084   // Arguments:
2085   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
2086   //             ignored
2087   //   is_oop  - true => oop array, so generate store check code
2088   //   name    - stub name string
2089   //
2090   // Inputs:
2091   //   c_rarg0   - source array address
2092   //   c_rarg1   - destination array address
2093   //   c_rarg2   - element count, treated as ssize_t, can be zero
2094   //
2095   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
2096                                           address nooverlap_target, address *entry,
2097                                           const char *name, bool dest_uninitialized = false) {
2098     __ align(CodeEntryAlignment);
2099     StubCodeMark mark(this, "StubRoutines", name);
2100     address start = __ pc();
2101 
2102     Label L_copy_bytes, L_copy_8_bytes, L_exit;
2103     const Register from        = rdi;  // source array address
2104     const Register to          = rsi;  // destination array address
2105     const Register qword_count = rdx;  // elements count
2106     const Register saved_count = rcx;
2107 
2108     __ enter(); // required for proper stackwalking of RuntimeStub frame
2109     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2110 
2111     if (entry != NULL) {
2112       *entry = __ pc();
2113       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2114       BLOCK_COMMENT("Entry:");
2115     }
2116 
2117     array_overlap_test(nooverlap_target, Address::times_8);
2118     setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
2119                                    // r9 is used to save r15_thread
2120     // 'from', 'to' and 'qword_count' are now valid
2121 
2122     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2123     if (dest_uninitialized) {
2124       decorators |= IS_DEST_UNINITIALIZED;
2125     }
2126     if (aligned) {
2127       decorators |= ARRAYCOPY_ALIGNED;
2128     }
2129 
2130     BasicType type = is_oop ? T_OBJECT : T_LONG;
2131     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
2132     bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count);
2133     {
2134       // UnsafeCopyMemory page error: continue after ucm
2135       UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
2136 
2137       __ jmp(L_copy_bytes);
2138 
2139       // Copy trailing qwords
2140     __ BIND(L_copy_8_bytes);
2141       __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2142       __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2143       __ decrement(qword_count);
2144       __ jcc(Assembler::notZero, L_copy_8_bytes);
2145     }
2146     if (is_oop) {
2147       __ jmp(L_exit);
2148     } else {
2149       restore_arg_regs_using_thread();
2150       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2151       __ xorptr(rax, rax); // return 0
2152       __ vzeroupper();
2153       __ leave(); // required for proper stackwalking of RuntimeStub frame
2154       __ ret(0);
2155     }
2156     {
2157       // UnsafeCopyMemory page error: continue after ucm
2158       UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true);
2159 
2160       // Copy in multi-bytes chunks
2161       copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2162     }
2163     __ BIND(L_exit);
2164     bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count);
2165     restore_arg_regs_using_thread();
2166     if (is_oop) {
2167       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2168     } else {
2169       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2170     }
2171     __ vzeroupper();
2172     __ xorptr(rax, rax); // return 0
2173     __ leave(); // required for proper stackwalking of RuntimeStub frame
2174     __ ret(0);
2175 
2176     return start;
2177   }
2178 
2179 
2180   // Helper for generating a dynamic type check.
2181   // Smashes no registers.
2182   void generate_type_check(Register sub_klass,
2183                            Register super_check_offset,
2184                            Register super_klass,
2185                            Label& L_success) {
2186     assert_different_registers(sub_klass, super_check_offset, super_klass);
2187 
2188     BLOCK_COMMENT("type_check:");
2189 
2190     Label L_miss;
2191 
2192     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
2193                                      super_check_offset);
2194     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
2195 
2196     // Fall through on failure!
2197     __ BIND(L_miss);
2198   }
2199 
2200   //
2201   //  Generate checkcasting array copy stub
2202   //
2203   //  Input:
2204   //    c_rarg0   - source array address
2205   //    c_rarg1   - destination array address
2206   //    c_rarg2   - element count, treated as ssize_t, can be zero
2207   //    c_rarg3   - size_t ckoff (super_check_offset)
2208   // not Win64
2209   //    c_rarg4   - oop ckval (super_klass)
2210   // Win64
2211   //    rsp+40    - oop ckval (super_klass)
2212   //
2213   //  Output:
2214   //    rax ==  0  -  success
2215   //    rax == -1^K - failure, where K is partial transfer count
2216   //
2217   address generate_checkcast_copy(const char *name, address *entry,
2218                                   bool dest_uninitialized = false) {
2219 
2220     Label L_load_element, L_store_element, L_do_card_marks, L_done;
2221 
2222     // Input registers (after setup_arg_regs)
2223     const Register from        = rdi;   // source array address
2224     const Register to          = rsi;   // destination array address
2225     const Register length      = rdx;   // elements count
2226     const Register ckoff       = rcx;   // super_check_offset
2227     const Register ckval       = r8;    // super_klass
2228 
2229     // Registers used as temps (r13, r14 are save-on-entry)
2230     const Register end_from    = from;  // source array end address
2231     const Register end_to      = r13;   // destination array end address
2232     const Register count       = rdx;   // -(count_remaining)
2233     const Register r14_length  = r14;   // saved copy of length
2234     // End pointers are inclusive, and if length is not zero they point
2235     // to the last unit copied:  end_to[0] := end_from[0]
2236 
2237     const Register rax_oop    = rax;    // actual oop copied
2238     const Register r11_klass  = r11;    // oop._klass
2239 
2240     //---------------------------------------------------------------
2241     // Assembler stub will be used for this call to arraycopy
2242     // if the two arrays are subtypes of Object[] but the
2243     // destination array type is not equal to or a supertype
2244     // of the source type.  Each element must be separately
2245     // checked.
2246 
2247     __ align(CodeEntryAlignment);
2248     StubCodeMark mark(this, "StubRoutines", name);
2249     address start = __ pc();
2250 
2251     __ enter(); // required for proper stackwalking of RuntimeStub frame
2252 
2253 #ifdef ASSERT
2254     // caller guarantees that the arrays really are different
2255     // otherwise, we would have to make conjoint checks
2256     { Label L;
2257       array_overlap_test(L, TIMES_OOP);
2258       __ stop("checkcast_copy within a single array");
2259       __ bind(L);
2260     }
2261 #endif //ASSERT
2262 
2263     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2264                        // ckoff => rcx, ckval => r8
2265                        // r9 and r10 may be used to save non-volatile registers
2266 #ifdef _WIN64
2267     // last argument (#4) is on stack on Win64
2268     __ movptr(ckval, Address(rsp, 6 * wordSize));
2269 #endif
2270 
2271     // Caller of this entry point must set up the argument registers.
2272     if (entry != NULL) {
2273       *entry = __ pc();
2274       BLOCK_COMMENT("Entry:");
2275     }
2276 
2277     // allocate spill slots for r13, r14
2278     enum {
2279       saved_r13_offset,
2280       saved_r14_offset,
2281       saved_r10_offset,
2282       saved_rbp_offset
2283     };
2284     __ subptr(rsp, saved_rbp_offset * wordSize);
2285     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
2286     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
2287     __ movptr(Address(rsp, saved_r10_offset * wordSize), r10);
2288 
2289 #ifdef ASSERT
2290       Label L2;
2291       __ get_thread(r14);
2292       __ cmpptr(r15_thread, r14);
2293       __ jcc(Assembler::equal, L2);
2294       __ stop("StubRoutines::call_stub: r15_thread is modified by call");
2295       __ bind(L2);
2296 #endif // ASSERT
2297 
2298     // check that int operands are properly extended to size_t
2299     assert_clean_int(length, rax);
2300     assert_clean_int(ckoff, rax);
2301 
2302 #ifdef ASSERT
2303     BLOCK_COMMENT("assert consistent ckoff/ckval");
2304     // The ckoff and ckval must be mutually consistent,
2305     // even though caller generates both.
2306     { Label L;
2307       int sco_offset = in_bytes(Klass::super_check_offset_offset());
2308       __ cmpl(ckoff, Address(ckval, sco_offset));
2309       __ jcc(Assembler::equal, L);
2310       __ stop("super_check_offset inconsistent");
2311       __ bind(L);
2312     }
2313 #endif //ASSERT
2314 
2315     // Loop-invariant addresses.  They are exclusive end pointers.
2316     Address end_from_addr(from, length, TIMES_OOP, 0);
2317     Address   end_to_addr(to,   length, TIMES_OOP, 0);
2318     // Loop-variant addresses.  They assume post-incremented count < 0.
2319     Address from_element_addr(end_from, count, TIMES_OOP, 0);
2320     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2321 
2322     DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT;
2323     if (dest_uninitialized) {
2324       decorators |= IS_DEST_UNINITIALIZED;
2325     }
2326 
2327     BasicType type = T_OBJECT;
2328     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
2329     bs->arraycopy_prologue(_masm, decorators, type, from, to, count);
2330 
2331     // Copy from low to high addresses, indexed from the end of each array.
2332     __ lea(end_from, end_from_addr);
2333     __ lea(end_to,   end_to_addr);
2334     __ movptr(r14_length, length);        // save a copy of the length
2335     assert(length == count, "");          // else fix next line:
2336     __ negptr(count);                     // negate and test the length
2337     __ jcc(Assembler::notZero, L_load_element);
2338 
2339     // Empty array:  Nothing to do.
2340     __ xorptr(rax, rax);                  // return 0 on (trivial) success
2341     __ jmp(L_done);
2342 
2343     // ======== begin loop ========
2344     // (Loop is rotated; its entry is L_load_element.)
2345     // Loop control:
2346     //   for (count = -count; count != 0; count++)
2347     // Base pointers src, dst are biased by 8*(count-1),to last element.
2348     __ align(OptoLoopAlignment);
2349 
2350     __ BIND(L_store_element);
2351     __ store_heap_oop(to_element_addr, rax_oop, noreg, noreg, AS_RAW);  // store the oop
2352     __ increment(count);               // increment the count toward zero
2353     __ jcc(Assembler::zero, L_do_card_marks);
2354 
2355     // ======== loop entry is here ========
2356     __ BIND(L_load_element);
2357     __ load_heap_oop(rax_oop, from_element_addr, noreg, noreg, AS_RAW); // load the oop
2358     __ testptr(rax_oop, rax_oop);
2359     __ jcc(Assembler::zero, L_store_element);
2360 
2361     __ load_klass(r11_klass, rax_oop, rscratch1);// query the object klass
2362     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2363     // ======== end loop ========
2364 
2365     // It was a real error; we must depend on the caller to finish the job.
2366     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2367     // Emit GC store barriers for the oops we have copied (r14 + rdx),
2368     // and report their number to the caller.
2369     assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1);
2370     Label L_post_barrier;
2371     __ addptr(r14_length, count);     // K = (original - remaining) oops
2372     __ movptr(rax, r14_length);       // save the value
2373     __ notptr(rax);                   // report (-1^K) to caller (does not affect flags)
2374     __ jccb(Assembler::notZero, L_post_barrier);
2375     __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
2376 
2377     // Come here on success only.
2378     __ BIND(L_do_card_marks);
2379     __ xorptr(rax, rax);              // return 0 on success
2380 
2381     __ BIND(L_post_barrier);
2382     bs->arraycopy_epilogue(_masm, decorators, type, from, to, r14_length);
2383 
2384     // Common exit point (success or failure).
2385     __ BIND(L_done);
2386     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
2387     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
2388     __ movptr(r10, Address(rsp, saved_r10_offset * wordSize));
2389     restore_arg_regs();
2390     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
2391     __ leave(); // required for proper stackwalking of RuntimeStub frame
2392     __ ret(0);
2393 
2394     return start;
2395   }
2396 
2397   //
2398   //  Generate 'unsafe' array copy stub
2399   //  Though just as safe as the other stubs, it takes an unscaled
2400   //  size_t argument instead of an element count.
2401   //
2402   //  Input:
2403   //    c_rarg0   - source array address
2404   //    c_rarg1   - destination array address
2405   //    c_rarg2   - byte count, treated as ssize_t, can be zero
2406   //
2407   // Examines the alignment of the operands and dispatches
2408   // to a long, int, short, or byte copy loop.
2409   //
2410   address generate_unsafe_copy(const char *name,
2411                                address byte_copy_entry, address short_copy_entry,
2412                                address int_copy_entry, address long_copy_entry) {
2413 
2414     Label L_long_aligned, L_int_aligned, L_short_aligned;
2415 
2416     // Input registers (before setup_arg_regs)
2417     const Register from        = c_rarg0;  // source array address
2418     const Register to          = c_rarg1;  // destination array address
2419     const Register size        = c_rarg2;  // byte count (size_t)
2420 
2421     // Register used as a temp
2422     const Register bits        = rax;      // test copy of low bits
2423 
2424     __ align(CodeEntryAlignment);
2425     StubCodeMark mark(this, "StubRoutines", name);
2426     address start = __ pc();
2427 
2428     __ enter(); // required for proper stackwalking of RuntimeStub frame
2429 
2430     // bump this on entry, not on exit:
2431     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2432 
2433     __ mov(bits, from);
2434     __ orptr(bits, to);
2435     __ orptr(bits, size);
2436 
2437     __ testb(bits, BytesPerLong-1);
2438     __ jccb(Assembler::zero, L_long_aligned);
2439 
2440     __ testb(bits, BytesPerInt-1);
2441     __ jccb(Assembler::zero, L_int_aligned);
2442 
2443     __ testb(bits, BytesPerShort-1);
2444     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2445 
2446     __ BIND(L_short_aligned);
2447     __ shrptr(size, LogBytesPerShort); // size => short_count
2448     __ jump(RuntimeAddress(short_copy_entry));
2449 
2450     __ BIND(L_int_aligned);
2451     __ shrptr(size, LogBytesPerInt); // size => int_count
2452     __ jump(RuntimeAddress(int_copy_entry));
2453 
2454     __ BIND(L_long_aligned);
2455     __ shrptr(size, LogBytesPerLong); // size => qword_count
2456     __ jump(RuntimeAddress(long_copy_entry));
2457 
2458     return start;
2459   }
2460 
2461   // Perform range checks on the proposed arraycopy.
2462   // Kills temp, but nothing else.
2463   // Also, clean the sign bits of src_pos and dst_pos.
2464   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2465                               Register src_pos, // source position (c_rarg1)
2466                               Register dst,     // destination array oo (c_rarg2)
2467                               Register dst_pos, // destination position (c_rarg3)
2468                               Register length,
2469                               Register temp,
2470                               Label& L_failed) {
2471     BLOCK_COMMENT("arraycopy_range_checks:");
2472 
2473     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2474     __ movl(temp, length);
2475     __ addl(temp, src_pos);             // src_pos + length
2476     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2477     __ jcc(Assembler::above, L_failed);
2478 
2479     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2480     __ movl(temp, length);
2481     __ addl(temp, dst_pos);             // dst_pos + length
2482     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2483     __ jcc(Assembler::above, L_failed);
2484 
2485     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2486     // Move with sign extension can be used since they are positive.
2487     __ movslq(src_pos, src_pos);
2488     __ movslq(dst_pos, dst_pos);
2489 
2490     BLOCK_COMMENT("arraycopy_range_checks done");
2491   }
2492 
2493   //
2494   //  Generate generic array copy stubs
2495   //
2496   //  Input:
2497   //    c_rarg0    -  src oop
2498   //    c_rarg1    -  src_pos (32-bits)
2499   //    c_rarg2    -  dst oop
2500   //    c_rarg3    -  dst_pos (32-bits)
2501   // not Win64
2502   //    c_rarg4    -  element count (32-bits)
2503   // Win64
2504   //    rsp+40     -  element count (32-bits)
2505   //
2506   //  Output:
2507   //    rax ==  0  -  success
2508   //    rax == -1^K - failure, where K is partial transfer count
2509   //
2510   address generate_generic_copy(const char *name,
2511                                 address byte_copy_entry, address short_copy_entry,
2512                                 address int_copy_entry, address oop_copy_entry,
2513                                 address long_copy_entry, address checkcast_copy_entry) {
2514 
2515     Label L_failed, L_failed_0, L_objArray;
2516     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2517 
2518     // Input registers
2519     const Register src        = c_rarg0;  // source array oop
2520     const Register src_pos    = c_rarg1;  // source position
2521     const Register dst        = c_rarg2;  // destination array oop
2522     const Register dst_pos    = c_rarg3;  // destination position
2523 #ifndef _WIN64
2524     const Register length     = c_rarg4;
2525     const Register rklass_tmp = r9;  // load_klass
2526 #else
2527     const Address  length(rsp, 6 * wordSize);  // elements count is on stack on Win64
2528     const Register rklass_tmp = rdi;  // load_klass
2529 #endif
2530 
2531     { int modulus = CodeEntryAlignment;
2532       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2533       int advance = target - (__ offset() % modulus);
2534       if (advance < 0)  advance += modulus;
2535       if (advance > 0)  __ nop(advance);
2536     }
2537     StubCodeMark mark(this, "StubRoutines", name);
2538 
2539     // Short-hop target to L_failed.  Makes for denser prologue code.
2540     __ BIND(L_failed_0);
2541     __ jmp(L_failed);
2542     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2543 
2544     __ align(CodeEntryAlignment);
2545     address start = __ pc();
2546 
2547     __ enter(); // required for proper stackwalking of RuntimeStub frame
2548 
2549     // bump this on entry, not on exit:
2550     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2551 
2552     //-----------------------------------------------------------------------
2553     // Assembler stub will be used for this call to arraycopy
2554     // if the following conditions are met:
2555     //
2556     // (1) src and dst must not be null.
2557     // (2) src_pos must not be negative.
2558     // (3) dst_pos must not be negative.
2559     // (4) length  must not be negative.
2560     // (5) src klass and dst klass should be the same and not NULL.
2561     // (6) src and dst should be arrays.
2562     // (7) src_pos + length must not exceed length of src.
2563     // (8) dst_pos + length must not exceed length of dst.
2564     //
2565 
2566     //  if (src == NULL) return -1;
2567     __ testptr(src, src);         // src oop
2568     size_t j1off = __ offset();
2569     __ jccb(Assembler::zero, L_failed_0);
2570 
2571     //  if (src_pos < 0) return -1;
2572     __ testl(src_pos, src_pos); // src_pos (32-bits)
2573     __ jccb(Assembler::negative, L_failed_0);
2574 
2575     //  if (dst == NULL) return -1;
2576     __ testptr(dst, dst);         // dst oop
2577     __ jccb(Assembler::zero, L_failed_0);
2578 
2579     //  if (dst_pos < 0) return -1;
2580     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2581     size_t j4off = __ offset();
2582     __ jccb(Assembler::negative, L_failed_0);
2583 
2584     // The first four tests are very dense code,
2585     // but not quite dense enough to put four
2586     // jumps in a 16-byte instruction fetch buffer.
2587     // That's good, because some branch predicters
2588     // do not like jumps so close together.
2589     // Make sure of this.
2590     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2591 
2592     // registers used as temp
2593     const Register r11_length    = r11; // elements count to copy
2594     const Register r10_src_klass = r10; // array klass
2595 
2596     //  if (length < 0) return -1;
2597     __ movl(r11_length, length);        // length (elements count, 32-bits value)
2598     __ testl(r11_length, r11_length);
2599     __ jccb(Assembler::negative, L_failed_0);
2600 
2601     __ load_klass(r10_src_klass, src, rklass_tmp);
2602 #ifdef ASSERT
2603     //  assert(src->klass() != NULL);
2604     {
2605       BLOCK_COMMENT("assert klasses not null {");
2606       Label L1, L2;
2607       __ testptr(r10_src_klass, r10_src_klass);
2608       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2609       __ bind(L1);
2610       __ stop("broken null klass");
2611       __ bind(L2);
2612       __ load_klass(rax, dst, rklass_tmp);
2613       __ cmpq(rax, 0);
2614       __ jcc(Assembler::equal, L1);     // this would be broken also
2615       BLOCK_COMMENT("} assert klasses not null done");
2616     }
2617 #endif
2618 
2619     // Load layout helper (32-bits)
2620     //
2621     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2622     // 32        30    24            16              8     2                 0
2623     //
2624     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2625     //
2626 
2627     const int lh_offset = in_bytes(Klass::layout_helper_offset());
2628 
2629     // Handle objArrays completely differently...
2630     const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2631     __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
2632     __ jcc(Assembler::equal, L_objArray);
2633 
2634     //  if (src->klass() != dst->klass()) return -1;
2635     __ load_klass(rax, dst, rklass_tmp);
2636     __ cmpq(r10_src_klass, rax);
2637     __ jcc(Assembler::notEqual, L_failed);
2638 
2639     const Register rax_lh = rax;  // layout helper
2640     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2641 
2642     //  if (!src->is_Array()) return -1;
2643     __ cmpl(rax_lh, Klass::_lh_neutral_value);
2644     __ jcc(Assembler::greaterEqual, L_failed);
2645 
2646     // At this point, it is known to be a typeArray (array_tag 0x3).
2647 #ifdef ASSERT
2648     {
2649       BLOCK_COMMENT("assert primitive array {");
2650       Label L;
2651       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2652       __ jcc(Assembler::greaterEqual, L);
2653       __ stop("must be a primitive array");
2654       __ bind(L);
2655       BLOCK_COMMENT("} assert primitive array done");
2656     }
2657 #endif
2658 
2659     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2660                            r10, L_failed);
2661 
2662     // TypeArrayKlass
2663     //
2664     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2665     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2666     //
2667 
2668     const Register r10_offset = r10;    // array offset
2669     const Register rax_elsize = rax_lh; // element size
2670 
2671     __ movl(r10_offset, rax_lh);
2672     __ shrl(r10_offset, Klass::_lh_header_size_shift);
2673     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2674     __ addptr(src, r10_offset);           // src array offset
2675     __ addptr(dst, r10_offset);           // dst array offset
2676     BLOCK_COMMENT("choose copy loop based on element size");
2677     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2678 
2679     // next registers should be set before the jump to corresponding stub
2680     const Register from     = c_rarg0;  // source array address
2681     const Register to       = c_rarg1;  // destination array address
2682     const Register count    = c_rarg2;  // elements count
2683 
2684     // 'from', 'to', 'count' registers should be set in such order
2685     // since they are the same as 'src', 'src_pos', 'dst'.
2686 
2687   __ BIND(L_copy_bytes);
2688     __ cmpl(rax_elsize, 0);
2689     __ jccb(Assembler::notEqual, L_copy_shorts);
2690     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2691     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2692     __ movl2ptr(count, r11_length); // length
2693     __ jump(RuntimeAddress(byte_copy_entry));
2694 
2695   __ BIND(L_copy_shorts);
2696     __ cmpl(rax_elsize, LogBytesPerShort);
2697     __ jccb(Assembler::notEqual, L_copy_ints);
2698     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2699     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2700     __ movl2ptr(count, r11_length); // length
2701     __ jump(RuntimeAddress(short_copy_entry));
2702 
2703   __ BIND(L_copy_ints);
2704     __ cmpl(rax_elsize, LogBytesPerInt);
2705     __ jccb(Assembler::notEqual, L_copy_longs);
2706     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2707     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2708     __ movl2ptr(count, r11_length); // length
2709     __ jump(RuntimeAddress(int_copy_entry));
2710 
2711   __ BIND(L_copy_longs);
2712 #ifdef ASSERT
2713     {
2714       BLOCK_COMMENT("assert long copy {");
2715       Label L;
2716       __ cmpl(rax_elsize, LogBytesPerLong);
2717       __ jcc(Assembler::equal, L);
2718       __ stop("must be long copy, but elsize is wrong");
2719       __ bind(L);
2720       BLOCK_COMMENT("} assert long copy done");
2721     }
2722 #endif
2723     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2724     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2725     __ movl2ptr(count, r11_length); // length
2726     __ jump(RuntimeAddress(long_copy_entry));
2727 
2728     // ObjArrayKlass
2729   __ BIND(L_objArray);
2730     // live at this point:  r10_src_klass, r11_length, src[_pos], dst[_pos]
2731 
2732     Label L_plain_copy, L_checkcast_copy;
2733     //  test array classes for subtyping
2734     __ load_klass(rax, dst, rklass_tmp);
2735     __ cmpq(r10_src_klass, rax); // usual case is exact equality
2736     __ jcc(Assembler::notEqual, L_checkcast_copy);
2737 
2738     // Identically typed arrays can be copied without element-wise checks.
2739     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2740                            r10, L_failed);
2741 
2742     __ lea(from, Address(src, src_pos, TIMES_OOP,
2743                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2744     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2745                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2746     __ movl2ptr(count, r11_length); // length
2747   __ BIND(L_plain_copy);
2748     __ jump(RuntimeAddress(oop_copy_entry));
2749 
2750   __ BIND(L_checkcast_copy);
2751     // live at this point:  r10_src_klass, r11_length, rax (dst_klass)
2752     {
2753       // Before looking at dst.length, make sure dst is also an objArray.
2754       __ cmpl(Address(rax, lh_offset), objArray_lh);
2755       __ jcc(Assembler::notEqual, L_failed);
2756 
2757       // It is safe to examine both src.length and dst.length.
2758       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2759                              rax, L_failed);
2760 
2761       const Register r11_dst_klass = r11;
2762       __ load_klass(r11_dst_klass, dst, rklass_tmp); // reload
2763 
2764       // Marshal the base address arguments now, freeing registers.
2765       __ lea(from, Address(src, src_pos, TIMES_OOP,
2766                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2767       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2768                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2769       __ movl(count, length);           // length (reloaded)
2770       Register sco_temp = c_rarg3;      // this register is free now
2771       assert_different_registers(from, to, count, sco_temp,
2772                                  r11_dst_klass, r10_src_klass);
2773       assert_clean_int(count, sco_temp);
2774 
2775       // Generate the type check.
2776       const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2777       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2778       assert_clean_int(sco_temp, rax);
2779       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2780 
2781       // Fetch destination element klass from the ObjArrayKlass header.
2782       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2783       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2784       __ movl(  sco_temp,      Address(r11_dst_klass, sco_offset));
2785       assert_clean_int(sco_temp, rax);
2786 
2787       // the checkcast_copy loop needs two extra arguments:
2788       assert(c_rarg3 == sco_temp, "#3 already in place");
2789       // Set up arguments for checkcast_copy_entry.
2790       setup_arg_regs(4);
2791       __ movptr(r8, r11_dst_klass);  // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
2792       __ jump(RuntimeAddress(checkcast_copy_entry));
2793     }
2794 
2795   __ BIND(L_failed);
2796     __ xorptr(rax, rax);
2797     __ notptr(rax); // return -1
2798     __ leave();   // required for proper stackwalking of RuntimeStub frame
2799     __ ret(0);
2800 
2801     return start;
2802   }
2803 
2804   address generate_data_cache_writeback() {
2805     const Register src        = c_rarg0;  // source address
2806 
2807     __ align(CodeEntryAlignment);
2808 
2809     StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback");
2810 
2811     address start = __ pc();
2812     __ enter();
2813     __ cache_wb(Address(src, 0));
2814     __ leave();
2815     __ ret(0);
2816 
2817     return start;
2818   }
2819 
2820   address generate_data_cache_writeback_sync() {
2821     const Register is_pre    = c_rarg0;  // pre or post sync
2822 
2823     __ align(CodeEntryAlignment);
2824 
2825     StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync");
2826 
2827     // pre wbsync is a no-op
2828     // post wbsync translates to an sfence
2829 
2830     Label skip;
2831     address start = __ pc();
2832     __ enter();
2833     __ cmpl(is_pre, 0);
2834     __ jcc(Assembler::notEqual, skip);
2835     __ cache_wbsync(false);
2836     __ bind(skip);
2837     __ leave();
2838     __ ret(0);
2839 
2840     return start;
2841   }
2842 
2843   void generate_arraycopy_stubs() {
2844     address entry;
2845     address entry_jbyte_arraycopy;
2846     address entry_jshort_arraycopy;
2847     address entry_jint_arraycopy;
2848     address entry_oop_arraycopy;
2849     address entry_jlong_arraycopy;
2850     address entry_checkcast_arraycopy;
2851 
2852     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, &entry,
2853                                                                            "jbyte_disjoint_arraycopy");
2854     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
2855                                                                            "jbyte_arraycopy");
2856 
2857     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
2858                                                                             "jshort_disjoint_arraycopy");
2859     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
2860                                                                             "jshort_arraycopy");
2861 
2862     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, &entry,
2863                                                                               "jint_disjoint_arraycopy");
2864     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, entry,
2865                                                                               &entry_jint_arraycopy, "jint_arraycopy");
2866 
2867     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, &entry,
2868                                                                                "jlong_disjoint_arraycopy");
2869     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, entry,
2870                                                                                &entry_jlong_arraycopy, "jlong_arraycopy");
2871 
2872 
2873     if (UseCompressedOops) {
2874       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, &entry,
2875                                                                               "oop_disjoint_arraycopy");
2876       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, entry,
2877                                                                               &entry_oop_arraycopy, "oop_arraycopy");
2878       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_int_oop_copy(false, true, &entry,
2879                                                                                      "oop_disjoint_arraycopy_uninit",
2880                                                                                      /*dest_uninitialized*/true);
2881       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_int_oop_copy(false, true, entry,
2882                                                                                      NULL, "oop_arraycopy_uninit",
2883                                                                                      /*dest_uninitialized*/true);
2884     } else {
2885       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, &entry,
2886                                                                                "oop_disjoint_arraycopy");
2887       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, entry,
2888                                                                                &entry_oop_arraycopy, "oop_arraycopy");
2889       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_long_oop_copy(false, true, &entry,
2890                                                                                       "oop_disjoint_arraycopy_uninit",
2891                                                                                       /*dest_uninitialized*/true);
2892       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_long_oop_copy(false, true, entry,
2893                                                                                       NULL, "oop_arraycopy_uninit",
2894                                                                                       /*dest_uninitialized*/true);
2895     }
2896 
2897     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2898     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
2899                                                                         /*dest_uninitialized*/true);
2900 
2901     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
2902                                                               entry_jbyte_arraycopy,
2903                                                               entry_jshort_arraycopy,
2904                                                               entry_jint_arraycopy,
2905                                                               entry_jlong_arraycopy);
2906     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
2907                                                                entry_jbyte_arraycopy,
2908                                                                entry_jshort_arraycopy,
2909                                                                entry_jint_arraycopy,
2910                                                                entry_oop_arraycopy,
2911                                                                entry_jlong_arraycopy,
2912                                                                entry_checkcast_arraycopy);
2913 
2914     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2915     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2916     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2917     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2918     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2919     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2920 
2921     // We don't generate specialized code for HeapWord-aligned source
2922     // arrays, so just use the code we've already generated
2923     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2924     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2925 
2926     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2927     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2928 
2929     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2930     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2931 
2932     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2933     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2934 
2935     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2936     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2937 
2938     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit    = StubRoutines::_oop_disjoint_arraycopy_uninit;
2939     StubRoutines::_arrayof_oop_arraycopy_uninit             = StubRoutines::_oop_arraycopy_uninit;
2940   }
2941 
2942   // AES intrinsic stubs
2943   enum {AESBlockSize = 16};
2944 
2945   address generate_key_shuffle_mask() {
2946     __ align(16);
2947     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
2948     address start = __ pc();
2949     __ emit_data64( 0x0405060700010203, relocInfo::none );
2950     __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none );
2951     return start;
2952   }
2953 
2954   address generate_counter_shuffle_mask() {
2955     __ align(16);
2956     StubCodeMark mark(this, "StubRoutines", "counter_shuffle_mask");
2957     address start = __ pc();
2958     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
2959     __ emit_data64(0x0001020304050607, relocInfo::none);
2960     return start;
2961   }
2962 
2963   // Utility routine for loading a 128-bit key word in little endian format
2964   // can optionally specify that the shuffle mask is already in an xmmregister
2965   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2966     __ movdqu(xmmdst, Address(key, offset));
2967     if (xmm_shuf_mask != NULL) {
2968       __ pshufb(xmmdst, xmm_shuf_mask);
2969     } else {
2970       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2971     }
2972   }
2973 
2974   // Utility routine for increase 128bit counter (iv in CTR mode)
2975   void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block) {
2976     __ pextrq(reg, xmmdst, 0x0);
2977     __ addq(reg, inc_delta);
2978     __ pinsrq(xmmdst, reg, 0x0);
2979     __ jcc(Assembler::carryClear, next_block); // jump if no carry
2980     __ pextrq(reg, xmmdst, 0x01); // Carry
2981     __ addq(reg, 0x01);
2982     __ pinsrq(xmmdst, reg, 0x01); //Carry end
2983     __ BIND(next_block);          // next instruction
2984   }
2985 
2986   // Arguments:
2987   //
2988   // Inputs:
2989   //   c_rarg0   - source byte array address
2990   //   c_rarg1   - destination byte array address
2991   //   c_rarg2   - K (key) in little endian int array
2992   //
2993   address generate_aescrypt_encryptBlock() {
2994     assert(UseAES, "need AES instructions and misaligned SSE support");
2995     __ align(CodeEntryAlignment);
2996     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2997     Label L_doLast;
2998     address start = __ pc();
2999 
3000     const Register from        = c_rarg0;  // source array address
3001     const Register to          = c_rarg1;  // destination array address
3002     const Register key         = c_rarg2;  // key array address
3003     const Register keylen      = rax;
3004 
3005     const XMMRegister xmm_result = xmm0;
3006     const XMMRegister xmm_key_shuf_mask = xmm1;
3007     // On win64 xmm6-xmm15 must be preserved so don't use them.
3008     const XMMRegister xmm_temp1  = xmm2;
3009     const XMMRegister xmm_temp2  = xmm3;
3010     const XMMRegister xmm_temp3  = xmm4;
3011     const XMMRegister xmm_temp4  = xmm5;
3012 
3013     __ enter(); // required for proper stackwalking of RuntimeStub frame
3014 
3015     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
3016     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3017 
3018     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3019     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
3020 
3021     // For encryption, the java expanded key ordering is just what we need
3022     // we don't know if the key is aligned, hence not using load-execute form
3023 
3024     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
3025     __ pxor(xmm_result, xmm_temp1);
3026 
3027     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
3028     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
3029     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
3030     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
3031 
3032     __ aesenc(xmm_result, xmm_temp1);
3033     __ aesenc(xmm_result, xmm_temp2);
3034     __ aesenc(xmm_result, xmm_temp3);
3035     __ aesenc(xmm_result, xmm_temp4);
3036 
3037     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
3038     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
3039     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
3040     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
3041 
3042     __ aesenc(xmm_result, xmm_temp1);
3043     __ aesenc(xmm_result, xmm_temp2);
3044     __ aesenc(xmm_result, xmm_temp3);
3045     __ aesenc(xmm_result, xmm_temp4);
3046 
3047     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
3048     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
3049 
3050     __ cmpl(keylen, 44);
3051     __ jccb(Assembler::equal, L_doLast);
3052 
3053     __ aesenc(xmm_result, xmm_temp1);
3054     __ aesenc(xmm_result, xmm_temp2);
3055 
3056     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
3057     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
3058 
3059     __ cmpl(keylen, 52);
3060     __ jccb(Assembler::equal, L_doLast);
3061 
3062     __ aesenc(xmm_result, xmm_temp1);
3063     __ aesenc(xmm_result, xmm_temp2);
3064 
3065     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
3066     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
3067 
3068     __ BIND(L_doLast);
3069     __ aesenc(xmm_result, xmm_temp1);
3070     __ aesenclast(xmm_result, xmm_temp2);
3071     __ movdqu(Address(to, 0), xmm_result);        // store the result
3072     __ xorptr(rax, rax); // return 0
3073     __ leave(); // required for proper stackwalking of RuntimeStub frame
3074     __ ret(0);
3075 
3076     return start;
3077   }
3078 
3079 
3080   // Arguments:
3081   //
3082   // Inputs:
3083   //   c_rarg0   - source byte array address
3084   //   c_rarg1   - destination byte array address
3085   //   c_rarg2   - K (key) in little endian int array
3086   //
3087   address generate_aescrypt_decryptBlock() {
3088     assert(UseAES, "need AES instructions and misaligned SSE support");
3089     __ align(CodeEntryAlignment);
3090     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
3091     Label L_doLast;
3092     address start = __ pc();
3093 
3094     const Register from        = c_rarg0;  // source array address
3095     const Register to          = c_rarg1;  // destination array address
3096     const Register key         = c_rarg2;  // key array address
3097     const Register keylen      = rax;
3098 
3099     const XMMRegister xmm_result = xmm0;
3100     const XMMRegister xmm_key_shuf_mask = xmm1;
3101     // On win64 xmm6-xmm15 must be preserved so don't use them.
3102     const XMMRegister xmm_temp1  = xmm2;
3103     const XMMRegister xmm_temp2  = xmm3;
3104     const XMMRegister xmm_temp3  = xmm4;
3105     const XMMRegister xmm_temp4  = xmm5;
3106 
3107     __ enter(); // required for proper stackwalking of RuntimeStub frame
3108 
3109     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
3110     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3111 
3112     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3113     __ movdqu(xmm_result, Address(from, 0));
3114 
3115     // for decryption java expanded key ordering is rotated one position from what we want
3116     // so we start from 0x10 here and hit 0x00 last
3117     // we don't know if the key is aligned, hence not using load-execute form
3118     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
3119     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
3120     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
3121     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
3122 
3123     __ pxor  (xmm_result, xmm_temp1);
3124     __ aesdec(xmm_result, xmm_temp2);
3125     __ aesdec(xmm_result, xmm_temp3);
3126     __ aesdec(xmm_result, xmm_temp4);
3127 
3128     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
3129     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
3130     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
3131     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
3132 
3133     __ aesdec(xmm_result, xmm_temp1);
3134     __ aesdec(xmm_result, xmm_temp2);
3135     __ aesdec(xmm_result, xmm_temp3);
3136     __ aesdec(xmm_result, xmm_temp4);
3137 
3138     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
3139     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
3140     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
3141 
3142     __ cmpl(keylen, 44);
3143     __ jccb(Assembler::equal, L_doLast);
3144 
3145     __ aesdec(xmm_result, xmm_temp1);
3146     __ aesdec(xmm_result, xmm_temp2);
3147 
3148     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
3149     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
3150 
3151     __ cmpl(keylen, 52);
3152     __ jccb(Assembler::equal, L_doLast);
3153 
3154     __ aesdec(xmm_result, xmm_temp1);
3155     __ aesdec(xmm_result, xmm_temp2);
3156 
3157     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
3158     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
3159 
3160     __ BIND(L_doLast);
3161     __ aesdec(xmm_result, xmm_temp1);
3162     __ aesdec(xmm_result, xmm_temp2);
3163 
3164     // for decryption the aesdeclast operation is always on key+0x00
3165     __ aesdeclast(xmm_result, xmm_temp3);
3166     __ movdqu(Address(to, 0), xmm_result);  // store the result
3167     __ xorptr(rax, rax); // return 0
3168     __ leave(); // required for proper stackwalking of RuntimeStub frame
3169     __ ret(0);
3170 
3171     return start;
3172   }
3173 
3174 
3175   // Arguments:
3176   //
3177   // Inputs:
3178   //   c_rarg0   - source byte array address
3179   //   c_rarg1   - destination byte array address
3180   //   c_rarg2   - K (key) in little endian int array
3181   //   c_rarg3   - r vector byte array address
3182   //   c_rarg4   - input length
3183   //
3184   // Output:
3185   //   rax       - input length
3186   //
3187   address generate_cipherBlockChaining_encryptAESCrypt() {
3188     assert(UseAES, "need AES instructions and misaligned SSE support");
3189     __ align(CodeEntryAlignment);
3190     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
3191     address start = __ pc();
3192 
3193     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
3194     const Register from        = c_rarg0;  // source array address
3195     const Register to          = c_rarg1;  // destination array address
3196     const Register key         = c_rarg2;  // key array address
3197     const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
3198                                            // and left with the results of the last encryption block
3199 #ifndef _WIN64
3200     const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
3201 #else
3202     const Address  len_mem(rbp, 6 * wordSize);  // length is on stack on Win64
3203     const Register len_reg     = r11;      // pick the volatile windows register
3204 #endif
3205     const Register pos         = rax;
3206 
3207     // xmm register assignments for the loops below
3208     const XMMRegister xmm_result = xmm0;
3209     const XMMRegister xmm_temp   = xmm1;
3210     // keys 0-10 preloaded into xmm2-xmm12
3211     const int XMM_REG_NUM_KEY_FIRST = 2;
3212     const int XMM_REG_NUM_KEY_LAST  = 15;
3213     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
3214     const XMMRegister xmm_key10  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10);
3215     const XMMRegister xmm_key11  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11);
3216     const XMMRegister xmm_key12  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12);
3217     const XMMRegister xmm_key13  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13);
3218 
3219     __ enter(); // required for proper stackwalking of RuntimeStub frame
3220 
3221 #ifdef _WIN64
3222     // on win64, fill len_reg from stack position
3223     __ movl(len_reg, len_mem);
3224 #else
3225     __ push(len_reg); // Save
3226 #endif
3227 
3228     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
3229     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3230     // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0
3231     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) {
3232       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
3233       offset += 0x10;
3234     }
3235     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
3236 
3237     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
3238     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3239     __ cmpl(rax, 44);
3240     __ jcc(Assembler::notEqual, L_key_192_256);
3241 
3242     // 128 bit code follows here
3243     __ movptr(pos, 0);
3244     __ align(OptoLoopAlignment);
3245 
3246     __ BIND(L_loopTop_128);
3247     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3248     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3249     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3250     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) {
3251       __ aesenc(xmm_result, as_XMMRegister(rnum));
3252     }
3253     __ aesenclast(xmm_result, xmm_key10);
3254     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3255     // no need to store r to memory until we exit
3256     __ addptr(pos, AESBlockSize);
3257     __ subptr(len_reg, AESBlockSize);
3258     __ jcc(Assembler::notEqual, L_loopTop_128);
3259 
3260     __ BIND(L_exit);
3261     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
3262 
3263 #ifdef _WIN64
3264     __ movl(rax, len_mem);
3265 #else
3266     __ pop(rax); // return length
3267 #endif
3268     __ leave(); // required for proper stackwalking of RuntimeStub frame
3269     __ ret(0);
3270 
3271     __ BIND(L_key_192_256);
3272     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
3273     load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask);
3274     load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask);
3275     __ cmpl(rax, 52);
3276     __ jcc(Assembler::notEqual, L_key_256);
3277 
3278     // 192-bit code follows here (could be changed to use more xmm registers)
3279     __ movptr(pos, 0);
3280     __ align(OptoLoopAlignment);
3281 
3282     __ BIND(L_loopTop_192);
3283     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3284     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3285     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3286     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) {
3287       __ aesenc(xmm_result, as_XMMRegister(rnum));
3288     }
3289     __ aesenclast(xmm_result, xmm_key12);
3290     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3291     // no need to store r to memory until we exit
3292     __ addptr(pos, AESBlockSize);
3293     __ subptr(len_reg, AESBlockSize);
3294     __ jcc(Assembler::notEqual, L_loopTop_192);
3295     __ jmp(L_exit);
3296 
3297     __ BIND(L_key_256);
3298     // 256-bit code follows here (could be changed to use more xmm registers)
3299     load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask);
3300     __ movptr(pos, 0);
3301     __ align(OptoLoopAlignment);
3302 
3303     __ BIND(L_loopTop_256);
3304     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3305     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3306     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3307     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) {
3308       __ aesenc(xmm_result, as_XMMRegister(rnum));
3309     }
3310     load_key(xmm_temp, key, 0xe0);
3311     __ aesenclast(xmm_result, xmm_temp);
3312     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3313     // no need to store r to memory until we exit
3314     __ addptr(pos, AESBlockSize);
3315     __ subptr(len_reg, AESBlockSize);
3316     __ jcc(Assembler::notEqual, L_loopTop_256);
3317     __ jmp(L_exit);
3318 
3319     return start;
3320   }
3321 
3322   // Safefetch stubs.
3323   void generate_safefetch(const char* name, int size, address* entry,
3324                           address* fault_pc, address* continuation_pc) {
3325     // safefetch signatures:
3326     //   int      SafeFetch32(int*      adr, int      errValue);
3327     //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
3328     //
3329     // arguments:
3330     //   c_rarg0 = adr
3331     //   c_rarg1 = errValue
3332     //
3333     // result:
3334     //   PPC_RET  = *adr or errValue
3335 
3336     StubCodeMark mark(this, "StubRoutines", name);
3337 
3338     // Entry point, pc or function descriptor.
3339     *entry = __ pc();
3340 
3341     // Load *adr into c_rarg1, may fault.
3342     *fault_pc = __ pc();
3343     switch (size) {
3344       case 4:
3345         // int32_t
3346         __ movl(c_rarg1, Address(c_rarg0, 0));
3347         break;
3348       case 8:
3349         // int64_t
3350         __ movq(c_rarg1, Address(c_rarg0, 0));
3351         break;
3352       default:
3353         ShouldNotReachHere();
3354     }
3355 
3356     // return errValue or *adr
3357     *continuation_pc = __ pc();
3358     __ movq(rax, c_rarg1);
3359     __ ret(0);
3360   }
3361 
3362   // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time
3363   // to hide instruction latency
3364   //
3365   // Arguments:
3366   //
3367   // Inputs:
3368   //   c_rarg0   - source byte array address
3369   //   c_rarg1   - destination byte array address
3370   //   c_rarg2   - K (key) in little endian int array
3371   //   c_rarg3   - r vector byte array address
3372   //   c_rarg4   - input length
3373   //
3374   // Output:
3375   //   rax       - input length
3376   //
3377   address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
3378     assert(UseAES, "need AES instructions and misaligned SSE support");
3379     __ align(CodeEntryAlignment);
3380     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
3381     address start = __ pc();
3382 
3383     const Register from        = c_rarg0;  // source array address
3384     const Register to          = c_rarg1;  // destination array address
3385     const Register key         = c_rarg2;  // key array address
3386     const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
3387                                            // and left with the results of the last encryption block
3388 #ifndef _WIN64
3389     const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
3390 #else
3391     const Address  len_mem(rbp, 6 * wordSize);  // length is on stack on Win64
3392     const Register len_reg     = r11;      // pick the volatile windows register
3393 #endif
3394     const Register pos         = rax;
3395 
3396     const int PARALLEL_FACTOR = 4;
3397     const int ROUNDS[3] = { 10, 12, 14 }; // aes rounds for key128, key192, key256
3398 
3399     Label L_exit;
3400     Label L_singleBlock_loopTopHead[3]; // 128, 192, 256
3401     Label L_singleBlock_loopTopHead2[3]; // 128, 192, 256
3402     Label L_singleBlock_loopTop[3]; // 128, 192, 256
3403     Label L_multiBlock_loopTopHead[3]; // 128, 192, 256
3404     Label L_multiBlock_loopTop[3]; // 128, 192, 256
3405 
3406     // keys 0-10 preloaded into xmm5-xmm15
3407     const int XMM_REG_NUM_KEY_FIRST = 5;
3408     const int XMM_REG_NUM_KEY_LAST  = 15;
3409     const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
3410     const XMMRegister xmm_key_last  = as_XMMRegister(XMM_REG_NUM_KEY_LAST);
3411 
3412     __ enter(); // required for proper stackwalking of RuntimeStub frame
3413 
3414 #ifdef _WIN64
3415     // on win64, fill len_reg from stack position
3416     __ movl(len_reg, len_mem);
3417 #else
3418     __ push(len_reg); // Save
3419 #endif
3420     __ push(rbx);
3421     // the java expanded key ordering is rotated one position from what we want
3422     // so we start from 0x10 here and hit 0x00 last
3423     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
3424     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3425     // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00
3426     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) {
3427       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
3428       offset += 0x10;
3429     }
3430     load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask);
3431 
3432     const XMMRegister xmm_prev_block_cipher = xmm1;  // holds cipher of previous block
3433 
3434     // registers holding the four results in the parallelized loop
3435     const XMMRegister xmm_result0 = xmm0;
3436     const XMMRegister xmm_result1 = xmm2;
3437     const XMMRegister xmm_result2 = xmm3;
3438     const XMMRegister xmm_result3 = xmm4;
3439 
3440     __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00));   // initialize with initial rvec
3441 
3442     __ xorptr(pos, pos);
3443 
3444     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
3445     __ movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3446     __ cmpl(rbx, 52);
3447     __ jcc(Assembler::equal, L_multiBlock_loopTopHead[1]);
3448     __ cmpl(rbx, 60);
3449     __ jcc(Assembler::equal, L_multiBlock_loopTopHead[2]);
3450 
3451 #define DoFour(opc, src_reg)           \
3452   __ opc(xmm_result0, src_reg);         \
3453   __ opc(xmm_result1, src_reg);         \
3454   __ opc(xmm_result2, src_reg);         \
3455   __ opc(xmm_result3, src_reg);         \
3456 
3457     for (int k = 0; k < 3; ++k) {
3458       __ BIND(L_multiBlock_loopTopHead[k]);
3459       if (k != 0) {
3460         __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left
3461         __ jcc(Assembler::less, L_singleBlock_loopTopHead2[k]);
3462       }
3463       if (k == 1) {
3464         __ subptr(rsp, 6 * wordSize);
3465         __ movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15
3466         load_key(xmm15, key, 0xb0); // 0xb0; 192-bit key goes up to 0xc0
3467         __ movdqu(Address(rsp, 2 * wordSize), xmm15);
3468         load_key(xmm1, key, 0xc0);  // 0xc0;
3469         __ movdqu(Address(rsp, 4 * wordSize), xmm1);
3470       } else if (k == 2) {
3471         __ subptr(rsp, 10 * wordSize);
3472         __ movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15
3473         load_key(xmm15, key, 0xd0); // 0xd0; 256-bit key goes upto 0xe0
3474         __ movdqu(Address(rsp, 6 * wordSize), xmm15);
3475         load_key(xmm1, key, 0xe0);  // 0xe0;
3476         __ movdqu(Address(rsp, 8 * wordSize), xmm1);
3477         load_key(xmm15, key, 0xb0); // 0xb0;
3478         __ movdqu(Address(rsp, 2 * wordSize), xmm15);
3479         load_key(xmm1, key, 0xc0);  // 0xc0;
3480         __ movdqu(Address(rsp, 4 * wordSize), xmm1);
3481       }
3482       __ align(OptoLoopAlignment);
3483       __ BIND(L_multiBlock_loopTop[k]);
3484       __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left
3485       __ jcc(Assembler::less, L_singleBlock_loopTopHead[k]);
3486 
3487       if  (k != 0) {
3488         __ movdqu(xmm15, Address(rsp, 2 * wordSize));
3489         __ movdqu(xmm1, Address(rsp, 4 * wordSize));
3490       }
3491 
3492       __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); // get next 4 blocks into xmmresult registers
3493       __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1 * AESBlockSize));
3494       __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2 * AESBlockSize));
3495       __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3 * AESBlockSize));
3496 
3497       DoFour(pxor, xmm_key_first);
3498       if (k == 0) {
3499         for (int rnum = 1; rnum < ROUNDS[k]; rnum++) {
3500           DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST));
3501         }
3502         DoFour(aesdeclast, xmm_key_last);
3503       } else if (k == 1) {
3504         for (int rnum = 1; rnum <= ROUNDS[k]-2; rnum++) {
3505           DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST));
3506         }
3507         __ movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again.
3508         DoFour(aesdec, xmm1);  // key : 0xc0
3509         __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00));  // xmm1 needs to be loaded again
3510         DoFour(aesdeclast, xmm_key_last);
3511       } else if (k == 2) {
3512         for (int rnum = 1; rnum <= ROUNDS[k] - 4; rnum++) {
3513           DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST));
3514         }
3515         DoFour(aesdec, xmm1);  // key : 0xc0
3516         __ movdqu(xmm15, Address(rsp, 6 * wordSize));
3517         __ movdqu(xmm1, Address(rsp, 8 * wordSize));
3518         DoFour(aesdec, xmm15);  // key : 0xd0
3519         __ movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again.
3520         DoFour(aesdec, xmm1);  // key : 0xe0
3521         __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00));  // xmm1 needs to be loaded again
3522         DoFour(aesdeclast, xmm_key_last);
3523       }
3524 
3525       // for each result, xor with the r vector of previous cipher block
3526       __ pxor(xmm_result0, xmm_prev_block_cipher);
3527       __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0 * AESBlockSize));
3528       __ pxor(xmm_result1, xmm_prev_block_cipher);
3529       __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1 * AESBlockSize));
3530       __ pxor(xmm_result2, xmm_prev_block_cipher);
3531       __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2 * AESBlockSize));
3532       __ pxor(xmm_result3, xmm_prev_block_cipher);
3533       __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3 * AESBlockSize));   // this will carry over to next set of blocks
3534       if (k != 0) {
3535         __ movdqu(Address(rvec, 0x00), xmm_prev_block_cipher);
3536       }
3537 
3538       __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);     // store 4 results into the next 64 bytes of output
3539       __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1);
3540       __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2);
3541       __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3);
3542 
3543       __ addptr(pos, PARALLEL_FACTOR * AESBlockSize);
3544       __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize);
3545       __ jmp(L_multiBlock_loopTop[k]);
3546 
3547       // registers used in the non-parallelized loops
3548       // xmm register assignments for the loops below
3549       const XMMRegister xmm_result = xmm0;
3550       const XMMRegister xmm_prev_block_cipher_save = xmm2;
3551       const XMMRegister xmm_key11 = xmm3;
3552       const XMMRegister xmm_key12 = xmm4;
3553       const XMMRegister key_tmp = xmm4;
3554 
3555       __ BIND(L_singleBlock_loopTopHead[k]);
3556       if (k == 1) {
3557         __ addptr(rsp, 6 * wordSize);
3558       } else if (k == 2) {
3559         __ addptr(rsp, 10 * wordSize);
3560       }
3561       __ cmpptr(len_reg, 0); // any blocks left??
3562       __ jcc(Assembler::equal, L_exit);
3563       __ BIND(L_singleBlock_loopTopHead2[k]);
3564       if (k == 1) {
3565         load_key(xmm_key11, key, 0xb0); // 0xb0; 192-bit key goes upto 0xc0
3566         load_key(xmm_key12, key, 0xc0); // 0xc0; 192-bit key goes upto 0xc0
3567       }
3568       if (k == 2) {
3569         load_key(xmm_key11, key, 0xb0); // 0xb0; 256-bit key goes upto 0xe0
3570       }
3571       __ align(OptoLoopAlignment);
3572       __ BIND(L_singleBlock_loopTop[k]);
3573       __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
3574       __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
3575       __ pxor(xmm_result, xmm_key_first); // do the aes dec rounds
3576       for (int rnum = 1; rnum <= 9 ; rnum++) {
3577           __ aesdec(xmm_result, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST));
3578       }
3579       if (k == 1) {
3580         __ aesdec(xmm_result, xmm_key11);
3581         __ aesdec(xmm_result, xmm_key12);
3582       }
3583       if (k == 2) {
3584         __ aesdec(xmm_result, xmm_key11);
3585         load_key(key_tmp, key, 0xc0);
3586         __ aesdec(xmm_result, key_tmp);
3587         load_key(key_tmp, key, 0xd0);
3588         __ aesdec(xmm_result, key_tmp);
3589         load_key(key_tmp, key, 0xe0);
3590         __ aesdec(xmm_result, key_tmp);
3591       }
3592 
3593       __ aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0
3594       __ pxor(xmm_result, xmm_prev_block_cipher); // xor with the current r vector
3595       __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
3596       // no need to store r to memory until we exit
3597       __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
3598       __ addptr(pos, AESBlockSize);
3599       __ subptr(len_reg, AESBlockSize);
3600       __ jcc(Assembler::notEqual, L_singleBlock_loopTop[k]);
3601       if (k != 2) {
3602         __ jmp(L_exit);
3603       }
3604     } //for 128/192/256
3605 
3606     __ BIND(L_exit);
3607     __ movdqu(Address(rvec, 0), xmm_prev_block_cipher);     // final value of r stored in rvec of CipherBlockChaining object
3608     __ pop(rbx);
3609 #ifdef _WIN64
3610     __ movl(rax, len_mem);
3611 #else
3612     __ pop(rax); // return length
3613 #endif
3614     __ leave(); // required for proper stackwalking of RuntimeStub frame
3615     __ ret(0);
3616     return start;
3617 }
3618 
3619   address generate_electronicCodeBook_encryptAESCrypt() {
3620     __ align(CodeEntryAlignment);
3621     StubCodeMark mark(this, "StubRoutines", "electronicCodeBook_encryptAESCrypt");
3622     address start = __ pc();
3623     const Register from = c_rarg0;  // source array address
3624     const Register to = c_rarg1;  // destination array address
3625     const Register key = c_rarg2;  // key array address
3626     const Register len = c_rarg3;  // src len (must be multiple of blocksize 16)
3627     __ enter(); // required for proper stackwalking of RuntimeStub frame
3628     __ aesecb_encrypt(from, to, key, len);
3629     __ leave(); // required for proper stackwalking of RuntimeStub frame
3630     __ ret(0);
3631     return start;
3632  }
3633 
3634   address generate_electronicCodeBook_decryptAESCrypt() {
3635     __ align(CodeEntryAlignment);
3636     StubCodeMark mark(this, "StubRoutines", "electronicCodeBook_decryptAESCrypt");
3637     address start = __ pc();
3638     const Register from = c_rarg0;  // source array address
3639     const Register to = c_rarg1;  // destination array address
3640     const Register key = c_rarg2;  // key array address
3641     const Register len = c_rarg3;  // src len (must be multiple of blocksize 16)
3642     __ enter(); // required for proper stackwalking of RuntimeStub frame
3643     __ aesecb_decrypt(from, to, key, len);
3644     __ leave(); // required for proper stackwalking of RuntimeStub frame
3645     __ ret(0);
3646     return start;
3647   }
3648 
3649   address generate_upper_word_mask() {
3650     __ align(64);
3651     StubCodeMark mark(this, "StubRoutines", "upper_word_mask");
3652     address start = __ pc();
3653     __ emit_data64(0x0000000000000000, relocInfo::none);
3654     __ emit_data64(0xFFFFFFFF00000000, relocInfo::none);
3655     return start;
3656   }
3657 
3658   address generate_shuffle_byte_flip_mask() {
3659     __ align(64);
3660     StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask");
3661     address start = __ pc();
3662     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
3663     __ emit_data64(0x0001020304050607, relocInfo::none);
3664     return start;
3665   }
3666 
3667   // ofs and limit are use for multi-block byte array.
3668   // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
3669   address generate_sha1_implCompress(bool multi_block, const char *name) {
3670     __ align(CodeEntryAlignment);
3671     StubCodeMark mark(this, "StubRoutines", name);
3672     address start = __ pc();
3673 
3674     Register buf = c_rarg0;
3675     Register state = c_rarg1;
3676     Register ofs = c_rarg2;
3677     Register limit = c_rarg3;
3678 
3679     const XMMRegister abcd = xmm0;
3680     const XMMRegister e0 = xmm1;
3681     const XMMRegister e1 = xmm2;
3682     const XMMRegister msg0 = xmm3;
3683 
3684     const XMMRegister msg1 = xmm4;
3685     const XMMRegister msg2 = xmm5;
3686     const XMMRegister msg3 = xmm6;
3687     const XMMRegister shuf_mask = xmm7;
3688 
3689     __ enter();
3690 
3691     __ subptr(rsp, 4 * wordSize);
3692 
3693     __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
3694       buf, state, ofs, limit, rsp, multi_block);
3695 
3696     __ addptr(rsp, 4 * wordSize);
3697 
3698     __ leave();
3699     __ ret(0);
3700     return start;
3701   }
3702 
3703   address generate_pshuffle_byte_flip_mask() {
3704     __ align(64);
3705     StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask");
3706     address start = __ pc();
3707     __ emit_data64(0x0405060700010203, relocInfo::none);
3708     __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
3709 
3710     if (VM_Version::supports_avx2()) {
3711       __ emit_data64(0x0405060700010203, relocInfo::none); // second copy
3712       __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
3713       // _SHUF_00BA
3714       __ emit_data64(0x0b0a090803020100, relocInfo::none);
3715       __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
3716       __ emit_data64(0x0b0a090803020100, relocInfo::none);
3717       __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
3718       // _SHUF_DC00
3719       __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
3720       __ emit_data64(0x0b0a090803020100, relocInfo::none);
3721       __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
3722       __ emit_data64(0x0b0a090803020100, relocInfo::none);
3723     }
3724 
3725     return start;
3726   }
3727 
3728   //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
3729   address generate_pshuffle_byte_flip_mask_sha512() {
3730     __ align(32);
3731     StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512");
3732     address start = __ pc();
3733     if (VM_Version::supports_avx2()) {
3734       __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK
3735       __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
3736       __ emit_data64(0x1011121314151617, relocInfo::none);
3737       __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none);
3738       __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO
3739       __ emit_data64(0x0000000000000000, relocInfo::none);
3740       __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
3741       __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
3742     }
3743 
3744     return start;
3745   }
3746 
3747 // ofs and limit are use for multi-block byte array.
3748 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
3749   address generate_sha256_implCompress(bool multi_block, const char *name) {
3750     assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "");
3751     __ align(CodeEntryAlignment);
3752     StubCodeMark mark(this, "StubRoutines", name);
3753     address start = __ pc();
3754 
3755     Register buf = c_rarg0;
3756     Register state = c_rarg1;
3757     Register ofs = c_rarg2;
3758     Register limit = c_rarg3;
3759 
3760     const XMMRegister msg = xmm0;
3761     const XMMRegister state0 = xmm1;
3762     const XMMRegister state1 = xmm2;
3763     const XMMRegister msgtmp0 = xmm3;
3764 
3765     const XMMRegister msgtmp1 = xmm4;
3766     const XMMRegister msgtmp2 = xmm5;
3767     const XMMRegister msgtmp3 = xmm6;
3768     const XMMRegister msgtmp4 = xmm7;
3769 
3770     const XMMRegister shuf_mask = xmm8;
3771 
3772     __ enter();
3773 
3774     __ subptr(rsp, 4 * wordSize);
3775 
3776     if (VM_Version::supports_sha()) {
3777       __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
3778         buf, state, ofs, limit, rsp, multi_block, shuf_mask);
3779     } else if (VM_Version::supports_avx2()) {
3780       __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
3781         buf, state, ofs, limit, rsp, multi_block, shuf_mask);
3782     }
3783     __ addptr(rsp, 4 * wordSize);
3784     __ vzeroupper();
3785     __ leave();
3786     __ ret(0);
3787     return start;
3788   }
3789 
3790   address generate_sha512_implCompress(bool multi_block, const char *name) {
3791     assert(VM_Version::supports_avx2(), "");
3792     assert(VM_Version::supports_bmi2(), "");
3793     __ align(CodeEntryAlignment);
3794     StubCodeMark mark(this, "StubRoutines", name);
3795     address start = __ pc();
3796 
3797     Register buf = c_rarg0;
3798     Register state = c_rarg1;
3799     Register ofs = c_rarg2;
3800     Register limit = c_rarg3;
3801 
3802     const XMMRegister msg = xmm0;
3803     const XMMRegister state0 = xmm1;
3804     const XMMRegister state1 = xmm2;
3805     const XMMRegister msgtmp0 = xmm3;
3806     const XMMRegister msgtmp1 = xmm4;
3807     const XMMRegister msgtmp2 = xmm5;
3808     const XMMRegister msgtmp3 = xmm6;
3809     const XMMRegister msgtmp4 = xmm7;
3810 
3811     const XMMRegister shuf_mask = xmm8;
3812 
3813     __ enter();
3814 
3815     __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
3816     buf, state, ofs, limit, rsp, multi_block, shuf_mask);
3817 
3818     __ vzeroupper();
3819     __ leave();
3820     __ ret(0);
3821     return start;
3822   }
3823 
3824   // This mask is used for incrementing counter value(linc0, linc4, etc.)
3825   address counter_mask_addr() {
3826     __ align(64);
3827     StubCodeMark mark(this, "StubRoutines", "counter_mask_addr");
3828     address start = __ pc();
3829     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);//lbswapmask
3830     __ emit_data64(0x0001020304050607, relocInfo::none);
3831     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
3832     __ emit_data64(0x0001020304050607, relocInfo::none);
3833     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
3834     __ emit_data64(0x0001020304050607, relocInfo::none);
3835     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
3836     __ emit_data64(0x0001020304050607, relocInfo::none);
3837     __ emit_data64(0x0000000000000000, relocInfo::none);//linc0 = counter_mask_addr+64
3838     __ emit_data64(0x0000000000000000, relocInfo::none);
3839     __ emit_data64(0x0000000000000001, relocInfo::none);//counter_mask_addr() + 80
3840     __ emit_data64(0x0000000000000000, relocInfo::none);
3841     __ emit_data64(0x0000000000000002, relocInfo::none);
3842     __ emit_data64(0x0000000000000000, relocInfo::none);
3843     __ emit_data64(0x0000000000000003, relocInfo::none);
3844     __ emit_data64(0x0000000000000000, relocInfo::none);
3845     __ emit_data64(0x0000000000000004, relocInfo::none);//linc4 = counter_mask_addr() + 128
3846     __ emit_data64(0x0000000000000000, relocInfo::none);
3847     __ emit_data64(0x0000000000000004, relocInfo::none);
3848     __ emit_data64(0x0000000000000000, relocInfo::none);
3849     __ emit_data64(0x0000000000000004, relocInfo::none);
3850     __ emit_data64(0x0000000000000000, relocInfo::none);
3851     __ emit_data64(0x0000000000000004, relocInfo::none);
3852     __ emit_data64(0x0000000000000000, relocInfo::none);
3853     __ emit_data64(0x0000000000000008, relocInfo::none);//linc8 = counter_mask_addr() + 192
3854     __ emit_data64(0x0000000000000000, relocInfo::none);
3855     __ emit_data64(0x0000000000000008, relocInfo::none);
3856     __ emit_data64(0x0000000000000000, relocInfo::none);
3857     __ emit_data64(0x0000000000000008, relocInfo::none);
3858     __ emit_data64(0x0000000000000000, relocInfo::none);
3859     __ emit_data64(0x0000000000000008, relocInfo::none);
3860     __ emit_data64(0x0000000000000000, relocInfo::none);
3861     __ emit_data64(0x0000000000000020, relocInfo::none);//linc32 = counter_mask_addr() + 256
3862     __ emit_data64(0x0000000000000000, relocInfo::none);
3863     __ emit_data64(0x0000000000000020, relocInfo::none);
3864     __ emit_data64(0x0000000000000000, relocInfo::none);
3865     __ emit_data64(0x0000000000000020, relocInfo::none);
3866     __ emit_data64(0x0000000000000000, relocInfo::none);
3867     __ emit_data64(0x0000000000000020, relocInfo::none);
3868     __ emit_data64(0x0000000000000000, relocInfo::none);
3869     __ emit_data64(0x0000000000000010, relocInfo::none);//linc16 = counter_mask_addr() + 320
3870     __ emit_data64(0x0000000000000000, relocInfo::none);
3871     __ emit_data64(0x0000000000000010, relocInfo::none);
3872     __ emit_data64(0x0000000000000000, relocInfo::none);
3873     __ emit_data64(0x0000000000000010, relocInfo::none);
3874     __ emit_data64(0x0000000000000000, relocInfo::none);
3875     __ emit_data64(0x0000000000000010, relocInfo::none);
3876     __ emit_data64(0x0000000000000000, relocInfo::none);
3877     return start;
3878   }
3879 
3880  // Vector AES Counter implementation
3881   address generate_counterMode_VectorAESCrypt()  {
3882     __ align(CodeEntryAlignment);
3883     StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt");
3884     address start = __ pc();
3885     const Register from = c_rarg0; // source array address
3886     const Register to = c_rarg1; // destination array address
3887     const Register key = c_rarg2; // key array address r8
3888     const Register counter = c_rarg3; // counter byte array initialized from counter array address
3889     // and updated with the incremented counter in the end
3890 #ifndef _WIN64
3891     const Register len_reg = c_rarg4;
3892     const Register saved_encCounter_start = c_rarg5;
3893     const Register used_addr = r10;
3894     const Address  used_mem(rbp, 2 * wordSize);
3895     const Register used = r11;
3896 #else
3897     const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
3898     const Address saved_encCounter_mem(rbp, 7 * wordSize); // saved encrypted counter is on stack on Win64
3899     const Address used_mem(rbp, 8 * wordSize); // used length is on stack on Win64
3900     const Register len_reg = r10; // pick the first volatile windows register
3901     const Register saved_encCounter_start = r11;
3902     const Register used_addr = r13;
3903     const Register used = r14;
3904 #endif
3905     __ enter();
3906    // Save state before entering routine
3907     __ push(r12);
3908     __ push(r13);
3909     __ push(r14);
3910     __ push(r15);
3911 #ifdef _WIN64
3912     // on win64, fill len_reg from stack position
3913     __ movl(len_reg, len_mem);
3914     __ movptr(saved_encCounter_start, saved_encCounter_mem);
3915     __ movptr(used_addr, used_mem);
3916     __ movl(used, Address(used_addr, 0));
3917 #else
3918     __ push(len_reg); // Save
3919     __ movptr(used_addr, used_mem);
3920     __ movl(used, Address(used_addr, 0));
3921 #endif
3922     __ push(rbx);
3923     __ aesctr_encrypt(from, to, key, counter, len_reg, used, used_addr, saved_encCounter_start);
3924     // Restore state before leaving routine
3925     __ pop(rbx);
3926 #ifdef _WIN64
3927     __ movl(rax, len_mem); // return length
3928 #else
3929     __ pop(rax); // return length
3930 #endif
3931     __ pop(r15);
3932     __ pop(r14);
3933     __ pop(r13);
3934     __ pop(r12);
3935 
3936     __ leave(); // required for proper stackwalking of RuntimeStub frame
3937     __ ret(0);
3938     return start;
3939   }
3940 
3941   // This is a version of CTR/AES crypt which does 6 blocks in a loop at a time
3942   // to hide instruction latency
3943   //
3944   // Arguments:
3945   //
3946   // Inputs:
3947   //   c_rarg0   - source byte array address
3948   //   c_rarg1   - destination byte array address
3949   //   c_rarg2   - K (key) in little endian int array
3950   //   c_rarg3   - counter vector byte array address
3951   //   Linux
3952   //     c_rarg4   -          input length
3953   //     c_rarg5   -          saved encryptedCounter start
3954   //     rbp + 6 * wordSize - saved used length
3955   //   Windows
3956   //     rbp + 6 * wordSize - input length
3957   //     rbp + 7 * wordSize - saved encryptedCounter start
3958   //     rbp + 8 * wordSize - saved used length
3959   //
3960   // Output:
3961   //   rax       - input length
3962   //
3963   address generate_counterMode_AESCrypt_Parallel() {
3964     assert(UseAES, "need AES instructions and misaligned SSE support");
3965     __ align(CodeEntryAlignment);
3966     StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt");
3967     address start = __ pc();
3968     const Register from = c_rarg0; // source array address
3969     const Register to = c_rarg1; // destination array address
3970     const Register key = c_rarg2; // key array address
3971     const Register counter = c_rarg3; // counter byte array initialized from counter array address
3972                                       // and updated with the incremented counter in the end
3973 #ifndef _WIN64
3974     const Register len_reg = c_rarg4;
3975     const Register saved_encCounter_start = c_rarg5;
3976     const Register used_addr = r10;
3977     const Address  used_mem(rbp, 2 * wordSize);
3978     const Register used = r11;
3979 #else
3980     const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
3981     const Address saved_encCounter_mem(rbp, 7 * wordSize); // length is on stack on Win64
3982     const Address used_mem(rbp, 8 * wordSize); // length is on stack on Win64
3983     const Register len_reg = r10; // pick the first volatile windows register
3984     const Register saved_encCounter_start = r11;
3985     const Register used_addr = r13;
3986     const Register used = r14;
3987 #endif
3988     const Register pos = rax;
3989 
3990     const int PARALLEL_FACTOR = 6;
3991     const XMMRegister xmm_counter_shuf_mask = xmm0;
3992     const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front
3993     const XMMRegister xmm_curr_counter = xmm2;
3994 
3995     const XMMRegister xmm_key_tmp0 = xmm3;
3996     const XMMRegister xmm_key_tmp1 = xmm4;
3997 
3998     // registers holding the four results in the parallelized loop
3999     const XMMRegister xmm_result0 = xmm5;
4000     const XMMRegister xmm_result1 = xmm6;
4001     const XMMRegister xmm_result2 = xmm7;
4002     const XMMRegister xmm_result3 = xmm8;
4003     const XMMRegister xmm_result4 = xmm9;
4004     const XMMRegister xmm_result5 = xmm10;
4005 
4006     const XMMRegister xmm_from0 = xmm11;
4007     const XMMRegister xmm_from1 = xmm12;
4008     const XMMRegister xmm_from2 = xmm13;
4009     const XMMRegister xmm_from3 = xmm14; //the last one is xmm14. we have to preserve it on WIN64.
4010     const XMMRegister xmm_from4 = xmm3; //reuse xmm3~4. Because xmm_key_tmp0~1 are useless when loading input text
4011     const XMMRegister xmm_from5 = xmm4;
4012 
4013     //for key_128, key_192, key_256
4014     const int rounds[3] = {10, 12, 14};
4015     Label L_exit_preLoop, L_preLoop_start;
4016     Label L_multiBlock_loopTop[3];
4017     Label L_singleBlockLoopTop[3];
4018     Label L__incCounter[3][6]; //for 6 blocks
4019     Label L__incCounter_single[3]; //for single block, key128, key192, key256
4020     Label L_processTail_insr[3], L_processTail_4_insr[3], L_processTail_2_insr[3], L_processTail_1_insr[3], L_processTail_exit_insr[3];
4021     Label L_processTail_4_extr[3], L_processTail_2_extr[3], L_processTail_1_extr[3], L_processTail_exit_extr[3];
4022 
4023     Label L_exit;
4024 
4025     __ enter(); // required for proper stackwalking of RuntimeStub frame
4026 
4027 #ifdef _WIN64
4028     // allocate spill slots for r13, r14
4029     enum {
4030         saved_r13_offset,
4031         saved_r14_offset
4032     };
4033     __ subptr(rsp, 2 * wordSize);
4034     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
4035     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
4036 
4037     // on win64, fill len_reg from stack position
4038     __ movl(len_reg, len_mem);
4039     __ movptr(saved_encCounter_start, saved_encCounter_mem);
4040     __ movptr(used_addr, used_mem);
4041     __ movl(used, Address(used_addr, 0));
4042 #else
4043     __ push(len_reg); // Save
4044     __ movptr(used_addr, used_mem);
4045     __ movl(used, Address(used_addr, 0));
4046 #endif
4047 
4048     __ push(rbx); // Save RBX
4049     __ movdqu(xmm_curr_counter, Address(counter, 0x00)); // initialize counter with initial counter
4050     __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()), pos); // pos as scratch
4051     __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled
4052     __ movptr(pos, 0);
4053 
4054     // Use the partially used encrpyted counter from last invocation
4055     __ BIND(L_preLoop_start);
4056     __ cmpptr(used, 16);
4057     __ jcc(Assembler::aboveEqual, L_exit_preLoop);
4058       __ cmpptr(len_reg, 0);
4059       __ jcc(Assembler::lessEqual, L_exit_preLoop);
4060       __ movb(rbx, Address(saved_encCounter_start, used));
4061       __ xorb(rbx, Address(from, pos));
4062       __ movb(Address(to, pos), rbx);
4063       __ addptr(pos, 1);
4064       __ addptr(used, 1);
4065       __ subptr(len_reg, 1);
4066 
4067     __ jmp(L_preLoop_start);
4068 
4069     __ BIND(L_exit_preLoop);
4070     __ movl(Address(used_addr, 0), used);
4071 
4072     // key length could be only {11, 13, 15} * 4 = {44, 52, 60}
4073     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()), rbx); // rbx as scratch
4074     __ movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
4075     __ cmpl(rbx, 52);
4076     __ jcc(Assembler::equal, L_multiBlock_loopTop[1]);
4077     __ cmpl(rbx, 60);
4078     __ jcc(Assembler::equal, L_multiBlock_loopTop[2]);
4079 
4080 #define CTR_DoSix(opc, src_reg)                \
4081     __ opc(xmm_result0, src_reg);              \
4082     __ opc(xmm_result1, src_reg);              \
4083     __ opc(xmm_result2, src_reg);              \
4084     __ opc(xmm_result3, src_reg);              \
4085     __ opc(xmm_result4, src_reg);              \
4086     __ opc(xmm_result5, src_reg);
4087 
4088     // k == 0 :  generate code for key_128
4089     // k == 1 :  generate code for key_192
4090     // k == 2 :  generate code for key_256
4091     for (int k = 0; k < 3; ++k) {
4092       //multi blocks starts here
4093       __ align(OptoLoopAlignment);
4094       __ BIND(L_multiBlock_loopTop[k]);
4095       __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least PARALLEL_FACTOR blocks left
4096       __ jcc(Assembler::less, L_singleBlockLoopTop[k]);
4097       load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask);
4098 
4099       //load, then increase counters
4100       CTR_DoSix(movdqa, xmm_curr_counter);
4101       inc_counter(rbx, xmm_result1, 0x01, L__incCounter[k][0]);
4102       inc_counter(rbx, xmm_result2, 0x02, L__incCounter[k][1]);
4103       inc_counter(rbx, xmm_result3, 0x03, L__incCounter[k][2]);
4104       inc_counter(rbx, xmm_result4, 0x04, L__incCounter[k][3]);
4105       inc_counter(rbx, xmm_result5,  0x05, L__incCounter[k][4]);
4106       inc_counter(rbx, xmm_curr_counter, 0x06, L__incCounter[k][5]);
4107       CTR_DoSix(pshufb, xmm_counter_shuf_mask); // after increased, shuffled counters back for PXOR
4108       CTR_DoSix(pxor, xmm_key_tmp0);   //PXOR with Round 0 key
4109 
4110       //load two ROUND_KEYs at a time
4111       for (int i = 1; i < rounds[k]; ) {
4112         load_key(xmm_key_tmp1, key, (0x10 * i), xmm_key_shuf_mask);
4113         load_key(xmm_key_tmp0, key, (0x10 * (i+1)), xmm_key_shuf_mask);
4114         CTR_DoSix(aesenc, xmm_key_tmp1);
4115         i++;
4116         if (i != rounds[k]) {
4117           CTR_DoSix(aesenc, xmm_key_tmp0);
4118         } else {
4119           CTR_DoSix(aesenclast, xmm_key_tmp0);
4120         }
4121         i++;
4122       }
4123 
4124       // get next PARALLEL_FACTOR blocks into xmm_result registers
4125       __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
4126       __ movdqu(xmm_from1, Address(from, pos, Address::times_1, 1 * AESBlockSize));
4127       __ movdqu(xmm_from2, Address(from, pos, Address::times_1, 2 * AESBlockSize));
4128       __ movdqu(xmm_from3, Address(from, pos, Address::times_1, 3 * AESBlockSize));
4129       __ movdqu(xmm_from4, Address(from, pos, Address::times_1, 4 * AESBlockSize));
4130       __ movdqu(xmm_from5, Address(from, pos, Address::times_1, 5 * AESBlockSize));
4131 
4132       __ pxor(xmm_result0, xmm_from0);
4133       __ pxor(xmm_result1, xmm_from1);
4134       __ pxor(xmm_result2, xmm_from2);
4135       __ pxor(xmm_result3, xmm_from3);
4136       __ pxor(xmm_result4, xmm_from4);
4137       __ pxor(xmm_result5, xmm_from5);
4138 
4139       // store 6 results into the next 64 bytes of output
4140       __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
4141       __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1);
4142       __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2);
4143       __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3);
4144       __ movdqu(Address(to, pos, Address::times_1, 4 * AESBlockSize), xmm_result4);
4145       __ movdqu(Address(to, pos, Address::times_1, 5 * AESBlockSize), xmm_result5);
4146 
4147       __ addptr(pos, PARALLEL_FACTOR * AESBlockSize); // increase the length of crypt text
4148       __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // decrease the remaining length
4149       __ jmp(L_multiBlock_loopTop[k]);
4150 
4151       // singleBlock starts here
4152       __ align(OptoLoopAlignment);
4153       __ BIND(L_singleBlockLoopTop[k]);
4154       __ cmpptr(len_reg, 0);
4155       __ jcc(Assembler::lessEqual, L_exit);
4156       load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask);
4157       __ movdqa(xmm_result0, xmm_curr_counter);
4158       inc_counter(rbx, xmm_curr_counter, 0x01, L__incCounter_single[k]);
4159       __ pshufb(xmm_result0, xmm_counter_shuf_mask);
4160       __ pxor(xmm_result0, xmm_key_tmp0);
4161       for (int i = 1; i < rounds[k]; i++) {
4162         load_key(xmm_key_tmp0, key, (0x10 * i), xmm_key_shuf_mask);
4163         __ aesenc(xmm_result0, xmm_key_tmp0);
4164       }
4165       load_key(xmm_key_tmp0, key, (rounds[k] * 0x10), xmm_key_shuf_mask);
4166       __ aesenclast(xmm_result0, xmm_key_tmp0);
4167       __ cmpptr(len_reg, AESBlockSize);
4168       __ jcc(Assembler::less, L_processTail_insr[k]);
4169         __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
4170         __ pxor(xmm_result0, xmm_from0);
4171         __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
4172         __ addptr(pos, AESBlockSize);
4173         __ subptr(len_reg, AESBlockSize);
4174         __ jmp(L_singleBlockLoopTop[k]);
4175       __ BIND(L_processTail_insr[k]);                               // Process the tail part of the input array
4176         __ addptr(pos, len_reg);                                    // 1. Insert bytes from src array into xmm_from0 register
4177         __ testptr(len_reg, 8);
4178         __ jcc(Assembler::zero, L_processTail_4_insr[k]);
4179           __ subptr(pos,8);
4180           __ pinsrq(xmm_from0, Address(from, pos), 0);
4181         __ BIND(L_processTail_4_insr[k]);
4182         __ testptr(len_reg, 4);
4183         __ jcc(Assembler::zero, L_processTail_2_insr[k]);
4184           __ subptr(pos,4);
4185           __ pslldq(xmm_from0, 4);
4186           __ pinsrd(xmm_from0, Address(from, pos), 0);
4187         __ BIND(L_processTail_2_insr[k]);
4188         __ testptr(len_reg, 2);
4189         __ jcc(Assembler::zero, L_processTail_1_insr[k]);
4190           __ subptr(pos, 2);
4191           __ pslldq(xmm_from0, 2);
4192           __ pinsrw(xmm_from0, Address(from, pos), 0);
4193         __ BIND(L_processTail_1_insr[k]);
4194         __ testptr(len_reg, 1);
4195         __ jcc(Assembler::zero, L_processTail_exit_insr[k]);
4196           __ subptr(pos, 1);
4197           __ pslldq(xmm_from0, 1);
4198           __ pinsrb(xmm_from0, Address(from, pos), 0);
4199         __ BIND(L_processTail_exit_insr[k]);
4200 
4201         __ movdqu(Address(saved_encCounter_start, 0), xmm_result0);  // 2. Perform pxor of the encrypted counter and plaintext Bytes.
4202         __ pxor(xmm_result0, xmm_from0);                             //    Also the encrypted counter is saved for next invocation.
4203 
4204         __ testptr(len_reg, 8);
4205         __ jcc(Assembler::zero, L_processTail_4_extr[k]);            // 3. Extract bytes from xmm_result0 into the dest. array
4206           __ pextrq(Address(to, pos), xmm_result0, 0);
4207           __ psrldq(xmm_result0, 8);
4208           __ addptr(pos, 8);
4209         __ BIND(L_processTail_4_extr[k]);
4210         __ testptr(len_reg, 4);
4211         __ jcc(Assembler::zero, L_processTail_2_extr[k]);
4212           __ pextrd(Address(to, pos), xmm_result0, 0);
4213           __ psrldq(xmm_result0, 4);
4214           __ addptr(pos, 4);
4215         __ BIND(L_processTail_2_extr[k]);
4216         __ testptr(len_reg, 2);
4217         __ jcc(Assembler::zero, L_processTail_1_extr[k]);
4218           __ pextrw(Address(to, pos), xmm_result0, 0);
4219           __ psrldq(xmm_result0, 2);
4220           __ addptr(pos, 2);
4221         __ BIND(L_processTail_1_extr[k]);
4222         __ testptr(len_reg, 1);
4223         __ jcc(Assembler::zero, L_processTail_exit_extr[k]);
4224           __ pextrb(Address(to, pos), xmm_result0, 0);
4225 
4226         __ BIND(L_processTail_exit_extr[k]);
4227         __ movl(Address(used_addr, 0), len_reg);
4228         __ jmp(L_exit);
4229 
4230     }
4231 
4232     __ BIND(L_exit);
4233     __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled back.
4234     __ movdqu(Address(counter, 0), xmm_curr_counter); //save counter back
4235     __ pop(rbx); // pop the saved RBX.
4236 #ifdef _WIN64
4237     __ movl(rax, len_mem);
4238     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
4239     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
4240     __ addptr(rsp, 2 * wordSize);
4241 #else
4242     __ pop(rax); // return 'len'
4243 #endif
4244     __ leave(); // required for proper stackwalking of RuntimeStub frame
4245     __ ret(0);
4246     return start;
4247   }
4248 
4249 void roundDec(XMMRegister xmm_reg) {
4250   __ vaesdec(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit);
4251   __ vaesdec(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit);
4252   __ vaesdec(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit);
4253   __ vaesdec(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit);
4254   __ vaesdec(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit);
4255   __ vaesdec(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit);
4256   __ vaesdec(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit);
4257   __ vaesdec(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit);
4258 }
4259 
4260 void roundDeclast(XMMRegister xmm_reg) {
4261   __ vaesdeclast(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit);
4262   __ vaesdeclast(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit);
4263   __ vaesdeclast(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit);
4264   __ vaesdeclast(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit);
4265   __ vaesdeclast(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit);
4266   __ vaesdeclast(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit);
4267   __ vaesdeclast(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit);
4268   __ vaesdeclast(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit);
4269 }
4270 
4271   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask = NULL) {
4272     __ movdqu(xmmdst, Address(key, offset));
4273     if (xmm_shuf_mask != NULL) {
4274       __ pshufb(xmmdst, xmm_shuf_mask);
4275     } else {
4276       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
4277     }
4278     __ evshufi64x2(xmmdst, xmmdst, xmmdst, 0x0, Assembler::AVX_512bit);
4279 
4280   }
4281 
4282 address generate_cipherBlockChaining_decryptVectorAESCrypt() {
4283     assert(VM_Version::supports_avx512_vaes(), "need AES instructions and misaligned SSE support");
4284     __ align(CodeEntryAlignment);
4285     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
4286     address start = __ pc();
4287 
4288     const Register from = c_rarg0;  // source array address
4289     const Register to = c_rarg1;  // destination array address
4290     const Register key = c_rarg2;  // key array address
4291     const Register rvec = c_rarg3;  // r byte array initialized from initvector array address
4292     // and left with the results of the last encryption block
4293 #ifndef _WIN64
4294     const Register len_reg = c_rarg4;  // src len (must be multiple of blocksize 16)
4295 #else
4296     const Address  len_mem(rbp, 6 * wordSize);  // length is on stack on Win64
4297     const Register len_reg = r11;      // pick the volatile windows register
4298 #endif
4299 
4300     Label Loop, Loop1, L_128, L_256, L_192, KEY_192, KEY_256, Loop2, Lcbc_dec_rem_loop,
4301           Lcbc_dec_rem_last, Lcbc_dec_ret, Lcbc_dec_rem, Lcbc_exit;
4302 
4303     __ enter();
4304 
4305 #ifdef _WIN64
4306   // on win64, fill len_reg from stack position
4307     __ movl(len_reg, len_mem);
4308 #else
4309     __ push(len_reg); // Save
4310 #endif
4311     __ push(rbx);
4312     __ vzeroupper();
4313 
4314     // Temporary variable declaration for swapping key bytes
4315     const XMMRegister xmm_key_shuf_mask = xmm1;
4316     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
4317 
4318     // Calculate number of rounds from key size: 44 for 10-rounds, 52 for 12-rounds, 60 for 14-rounds
4319     const Register rounds = rbx;
4320     __ movl(rounds, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
4321 
4322     const XMMRegister IV = xmm0;
4323     // Load IV and broadcast value to 512-bits
4324     __ evbroadcasti64x2(IV, Address(rvec, 0), Assembler::AVX_512bit);
4325 
4326     // Temporary variables for storing round keys
4327     const XMMRegister RK0 = xmm30;
4328     const XMMRegister RK1 = xmm9;
4329     const XMMRegister RK2 = xmm18;
4330     const XMMRegister RK3 = xmm19;
4331     const XMMRegister RK4 = xmm20;
4332     const XMMRegister RK5 = xmm21;
4333     const XMMRegister RK6 = xmm22;
4334     const XMMRegister RK7 = xmm23;
4335     const XMMRegister RK8 = xmm24;
4336     const XMMRegister RK9 = xmm25;
4337     const XMMRegister RK10 = xmm26;
4338 
4339      // Load and shuffle key
4340     // the java expanded key ordering is rotated one position from what we want
4341     // so we start from 1*16 here and hit 0*16 last
4342     ev_load_key(RK1, key, 1 * 16, xmm_key_shuf_mask);
4343     ev_load_key(RK2, key, 2 * 16, xmm_key_shuf_mask);
4344     ev_load_key(RK3, key, 3 * 16, xmm_key_shuf_mask);
4345     ev_load_key(RK4, key, 4 * 16, xmm_key_shuf_mask);
4346     ev_load_key(RK5, key, 5 * 16, xmm_key_shuf_mask);
4347     ev_load_key(RK6, key, 6 * 16, xmm_key_shuf_mask);
4348     ev_load_key(RK7, key, 7 * 16, xmm_key_shuf_mask);
4349     ev_load_key(RK8, key, 8 * 16, xmm_key_shuf_mask);
4350     ev_load_key(RK9, key, 9 * 16, xmm_key_shuf_mask);
4351     ev_load_key(RK10, key, 10 * 16, xmm_key_shuf_mask);
4352     ev_load_key(RK0, key, 0*16, xmm_key_shuf_mask);
4353 
4354     // Variables for storing source cipher text
4355     const XMMRegister S0 = xmm10;
4356     const XMMRegister S1 = xmm11;
4357     const XMMRegister S2 = xmm12;
4358     const XMMRegister S3 = xmm13;
4359     const XMMRegister S4 = xmm14;
4360     const XMMRegister S5 = xmm15;
4361     const XMMRegister S6 = xmm16;
4362     const XMMRegister S7 = xmm17;
4363 
4364     // Variables for storing decrypted text
4365     const XMMRegister B0 = xmm1;
4366     const XMMRegister B1 = xmm2;
4367     const XMMRegister B2 = xmm3;
4368     const XMMRegister B3 = xmm4;
4369     const XMMRegister B4 = xmm5;
4370     const XMMRegister B5 = xmm6;
4371     const XMMRegister B6 = xmm7;
4372     const XMMRegister B7 = xmm8;
4373 
4374     __ cmpl(rounds, 44);
4375     __ jcc(Assembler::greater, KEY_192);
4376     __ jmp(Loop);
4377 
4378     __ BIND(KEY_192);
4379     const XMMRegister RK11 = xmm27;
4380     const XMMRegister RK12 = xmm28;
4381     ev_load_key(RK11, key, 11*16, xmm_key_shuf_mask);
4382     ev_load_key(RK12, key, 12*16, xmm_key_shuf_mask);
4383 
4384     __ cmpl(rounds, 52);
4385     __ jcc(Assembler::greater, KEY_256);
4386     __ jmp(Loop);
4387 
4388     __ BIND(KEY_256);
4389     const XMMRegister RK13 = xmm29;
4390     const XMMRegister RK14 = xmm31;
4391     ev_load_key(RK13, key, 13*16, xmm_key_shuf_mask);
4392     ev_load_key(RK14, key, 14*16, xmm_key_shuf_mask);
4393 
4394     __ BIND(Loop);
4395     __ cmpl(len_reg, 512);
4396     __ jcc(Assembler::below, Lcbc_dec_rem);
4397     __ BIND(Loop1);
4398     __ subl(len_reg, 512);
4399     __ evmovdquq(S0, Address(from, 0 * 64), Assembler::AVX_512bit);
4400     __ evmovdquq(S1, Address(from, 1 * 64), Assembler::AVX_512bit);
4401     __ evmovdquq(S2, Address(from, 2 * 64), Assembler::AVX_512bit);
4402     __ evmovdquq(S3, Address(from, 3 * 64), Assembler::AVX_512bit);
4403     __ evmovdquq(S4, Address(from, 4 * 64), Assembler::AVX_512bit);
4404     __ evmovdquq(S5, Address(from, 5 * 64), Assembler::AVX_512bit);
4405     __ evmovdquq(S6, Address(from, 6 * 64), Assembler::AVX_512bit);
4406     __ evmovdquq(S7, Address(from, 7 * 64), Assembler::AVX_512bit);
4407     __ leaq(from, Address(from, 8 * 64));
4408 
4409     __ evpxorq(B0, S0, RK1, Assembler::AVX_512bit);
4410     __ evpxorq(B1, S1, RK1, Assembler::AVX_512bit);
4411     __ evpxorq(B2, S2, RK1, Assembler::AVX_512bit);
4412     __ evpxorq(B3, S3, RK1, Assembler::AVX_512bit);
4413     __ evpxorq(B4, S4, RK1, Assembler::AVX_512bit);
4414     __ evpxorq(B5, S5, RK1, Assembler::AVX_512bit);
4415     __ evpxorq(B6, S6, RK1, Assembler::AVX_512bit);
4416     __ evpxorq(B7, S7, RK1, Assembler::AVX_512bit);
4417 
4418     __ evalignq(IV, S0, IV, 0x06);
4419     __ evalignq(S0, S1, S0, 0x06);
4420     __ evalignq(S1, S2, S1, 0x06);
4421     __ evalignq(S2, S3, S2, 0x06);
4422     __ evalignq(S3, S4, S3, 0x06);
4423     __ evalignq(S4, S5, S4, 0x06);
4424     __ evalignq(S5, S6, S5, 0x06);
4425     __ evalignq(S6, S7, S6, 0x06);
4426 
4427     roundDec(RK2);
4428     roundDec(RK3);
4429     roundDec(RK4);
4430     roundDec(RK5);
4431     roundDec(RK6);
4432     roundDec(RK7);
4433     roundDec(RK8);
4434     roundDec(RK9);
4435     roundDec(RK10);
4436 
4437     __ cmpl(rounds, 44);
4438     __ jcc(Assembler::belowEqual, L_128);
4439     roundDec(RK11);
4440     roundDec(RK12);
4441 
4442     __ cmpl(rounds, 52);
4443     __ jcc(Assembler::belowEqual, L_192);
4444     roundDec(RK13);
4445     roundDec(RK14);
4446 
4447     __ BIND(L_256);
4448     roundDeclast(RK0);
4449     __ jmp(Loop2);
4450 
4451     __ BIND(L_128);
4452     roundDeclast(RK0);
4453     __ jmp(Loop2);
4454 
4455     __ BIND(L_192);
4456     roundDeclast(RK0);
4457 
4458     __ BIND(Loop2);
4459     __ evpxorq(B0, B0, IV, Assembler::AVX_512bit);
4460     __ evpxorq(B1, B1, S0, Assembler::AVX_512bit);
4461     __ evpxorq(B2, B2, S1, Assembler::AVX_512bit);
4462     __ evpxorq(B3, B3, S2, Assembler::AVX_512bit);
4463     __ evpxorq(B4, B4, S3, Assembler::AVX_512bit);
4464     __ evpxorq(B5, B5, S4, Assembler::AVX_512bit);
4465     __ evpxorq(B6, B6, S5, Assembler::AVX_512bit);
4466     __ evpxorq(B7, B7, S6, Assembler::AVX_512bit);
4467     __ evmovdquq(IV, S7, Assembler::AVX_512bit);
4468 
4469     __ evmovdquq(Address(to, 0 * 64), B0, Assembler::AVX_512bit);
4470     __ evmovdquq(Address(to, 1 * 64), B1, Assembler::AVX_512bit);
4471     __ evmovdquq(Address(to, 2 * 64), B2, Assembler::AVX_512bit);
4472     __ evmovdquq(Address(to, 3 * 64), B3, Assembler::AVX_512bit);
4473     __ evmovdquq(Address(to, 4 * 64), B4, Assembler::AVX_512bit);
4474     __ evmovdquq(Address(to, 5 * 64), B5, Assembler::AVX_512bit);
4475     __ evmovdquq(Address(to, 6 * 64), B6, Assembler::AVX_512bit);
4476     __ evmovdquq(Address(to, 7 * 64), B7, Assembler::AVX_512bit);
4477     __ leaq(to, Address(to, 8 * 64));
4478     __ jmp(Loop);
4479 
4480     __ BIND(Lcbc_dec_rem);
4481     __ evshufi64x2(IV, IV, IV, 0x03, Assembler::AVX_512bit);
4482 
4483     __ BIND(Lcbc_dec_rem_loop);
4484     __ subl(len_reg, 16);
4485     __ jcc(Assembler::carrySet, Lcbc_dec_ret);
4486 
4487     __ movdqu(S0, Address(from, 0));
4488     __ evpxorq(B0, S0, RK1, Assembler::AVX_512bit);
4489     __ vaesdec(B0, B0, RK2, Assembler::AVX_512bit);
4490     __ vaesdec(B0, B0, RK3, Assembler::AVX_512bit);
4491     __ vaesdec(B0, B0, RK4, Assembler::AVX_512bit);
4492     __ vaesdec(B0, B0, RK5, Assembler::AVX_512bit);
4493     __ vaesdec(B0, B0, RK6, Assembler::AVX_512bit);
4494     __ vaesdec(B0, B0, RK7, Assembler::AVX_512bit);
4495     __ vaesdec(B0, B0, RK8, Assembler::AVX_512bit);
4496     __ vaesdec(B0, B0, RK9, Assembler::AVX_512bit);
4497     __ vaesdec(B0, B0, RK10, Assembler::AVX_512bit);
4498     __ cmpl(rounds, 44);
4499     __ jcc(Assembler::belowEqual, Lcbc_dec_rem_last);
4500 
4501     __ vaesdec(B0, B0, RK11, Assembler::AVX_512bit);
4502     __ vaesdec(B0, B0, RK12, Assembler::AVX_512bit);
4503     __ cmpl(rounds, 52);
4504     __ jcc(Assembler::belowEqual, Lcbc_dec_rem_last);
4505 
4506     __ vaesdec(B0, B0, RK13, Assembler::AVX_512bit);
4507     __ vaesdec(B0, B0, RK14, Assembler::AVX_512bit);
4508 
4509     __ BIND(Lcbc_dec_rem_last);
4510     __ vaesdeclast(B0, B0, RK0, Assembler::AVX_512bit);
4511 
4512     __ evpxorq(B0, B0, IV, Assembler::AVX_512bit);
4513     __ evmovdquq(IV, S0, Assembler::AVX_512bit);
4514     __ movdqu(Address(to, 0), B0);
4515     __ leaq(from, Address(from, 16));
4516     __ leaq(to, Address(to, 16));
4517     __ jmp(Lcbc_dec_rem_loop);
4518 
4519     __ BIND(Lcbc_dec_ret);
4520     __ movdqu(Address(rvec, 0), IV);
4521 
4522     // Zero out the round keys
4523     __ evpxorq(RK0, RK0, RK0, Assembler::AVX_512bit);
4524     __ evpxorq(RK1, RK1, RK1, Assembler::AVX_512bit);
4525     __ evpxorq(RK2, RK2, RK2, Assembler::AVX_512bit);
4526     __ evpxorq(RK3, RK3, RK3, Assembler::AVX_512bit);
4527     __ evpxorq(RK4, RK4, RK4, Assembler::AVX_512bit);
4528     __ evpxorq(RK5, RK5, RK5, Assembler::AVX_512bit);
4529     __ evpxorq(RK6, RK6, RK6, Assembler::AVX_512bit);
4530     __ evpxorq(RK7, RK7, RK7, Assembler::AVX_512bit);
4531     __ evpxorq(RK8, RK8, RK8, Assembler::AVX_512bit);
4532     __ evpxorq(RK9, RK9, RK9, Assembler::AVX_512bit);
4533     __ evpxorq(RK10, RK10, RK10, Assembler::AVX_512bit);
4534     __ cmpl(rounds, 44);
4535     __ jcc(Assembler::belowEqual, Lcbc_exit);
4536     __ evpxorq(RK11, RK11, RK11, Assembler::AVX_512bit);
4537     __ evpxorq(RK12, RK12, RK12, Assembler::AVX_512bit);
4538     __ cmpl(rounds, 52);
4539     __ jcc(Assembler::belowEqual, Lcbc_exit);
4540     __ evpxorq(RK13, RK13, RK13, Assembler::AVX_512bit);
4541     __ evpxorq(RK14, RK14, RK14, Assembler::AVX_512bit);
4542 
4543     __ BIND(Lcbc_exit);
4544     __ pop(rbx);
4545 #ifdef _WIN64
4546     __ movl(rax, len_mem);
4547 #else
4548     __ pop(rax); // return length
4549 #endif
4550     __ leave(); // required for proper stackwalking of RuntimeStub frame
4551     __ ret(0);
4552     return start;
4553 }
4554 
4555 // Polynomial x^128+x^127+x^126+x^121+1
4556 address ghash_polynomial_addr() {
4557     __ align(CodeEntryAlignment);
4558     StubCodeMark mark(this, "StubRoutines", "_ghash_poly_addr");
4559     address start = __ pc();
4560     __ emit_data64(0x0000000000000001, relocInfo::none);
4561     __ emit_data64(0xc200000000000000, relocInfo::none);
4562     return start;
4563 }
4564 
4565 address ghash_shufflemask_addr() {
4566     __ align(CodeEntryAlignment);
4567     StubCodeMark mark(this, "StubRoutines", "_ghash_shuffmask_addr");
4568     address start = __ pc();
4569     __ emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none);
4570     __ emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none);
4571     return start;
4572 }
4573 
4574 // Ghash single and multi block operations using AVX instructions
4575 address generate_avx_ghash_processBlocks() {
4576     __ align(CodeEntryAlignment);
4577 
4578     StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
4579     address start = __ pc();
4580 
4581     // arguments
4582     const Register state = c_rarg0;
4583     const Register htbl = c_rarg1;
4584     const Register data = c_rarg2;
4585     const Register blocks = c_rarg3;
4586     __ enter();
4587    // Save state before entering routine
4588     __ avx_ghash(state, htbl, data, blocks);
4589     __ leave(); // required for proper stackwalking of RuntimeStub frame
4590     __ ret(0);
4591     return start;
4592 }
4593 
4594   // byte swap x86 long
4595   address generate_ghash_long_swap_mask() {
4596     __ align(CodeEntryAlignment);
4597     StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask");
4598     address start = __ pc();
4599     __ emit_data64(0x0f0e0d0c0b0a0908, relocInfo::none );
4600     __ emit_data64(0x0706050403020100, relocInfo::none );
4601   return start;
4602   }
4603 
4604   // byte swap x86 byte array
4605   address generate_ghash_byte_swap_mask() {
4606     __ align(CodeEntryAlignment);
4607     StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask");
4608     address start = __ pc();
4609     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none );
4610     __ emit_data64(0x0001020304050607, relocInfo::none );
4611   return start;
4612   }
4613 
4614   /* Single and multi-block ghash operations */
4615   address generate_ghash_processBlocks() {
4616     __ align(CodeEntryAlignment);
4617     Label L_ghash_loop, L_exit;
4618     StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
4619     address start = __ pc();
4620 
4621     const Register state        = c_rarg0;
4622     const Register subkeyH      = c_rarg1;
4623     const Register data         = c_rarg2;
4624     const Register blocks       = c_rarg3;
4625 
4626     const XMMRegister xmm_temp0 = xmm0;
4627     const XMMRegister xmm_temp1 = xmm1;
4628     const XMMRegister xmm_temp2 = xmm2;
4629     const XMMRegister xmm_temp3 = xmm3;
4630     const XMMRegister xmm_temp4 = xmm4;
4631     const XMMRegister xmm_temp5 = xmm5;
4632     const XMMRegister xmm_temp6 = xmm6;
4633     const XMMRegister xmm_temp7 = xmm7;
4634     const XMMRegister xmm_temp8 = xmm8;
4635     const XMMRegister xmm_temp9 = xmm9;
4636     const XMMRegister xmm_temp10 = xmm10;
4637 
4638     __ enter();
4639 
4640     __ movdqu(xmm_temp10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
4641 
4642     __ movdqu(xmm_temp0, Address(state, 0));
4643     __ pshufb(xmm_temp0, xmm_temp10);
4644 
4645 
4646     __ BIND(L_ghash_loop);
4647     __ movdqu(xmm_temp2, Address(data, 0));
4648     __ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr()));
4649 
4650     __ movdqu(xmm_temp1, Address(subkeyH, 0));
4651     __ pshufb(xmm_temp1, xmm_temp10);
4652 
4653     __ pxor(xmm_temp0, xmm_temp2);
4654 
4655     //
4656     // Multiply with the hash key
4657     //
4658     __ movdqu(xmm_temp3, xmm_temp0);
4659     __ pclmulqdq(xmm_temp3, xmm_temp1, 0);      // xmm3 holds a0*b0
4660     __ movdqu(xmm_temp4, xmm_temp0);
4661     __ pclmulqdq(xmm_temp4, xmm_temp1, 16);     // xmm4 holds a0*b1
4662 
4663     __ movdqu(xmm_temp5, xmm_temp0);
4664     __ pclmulqdq(xmm_temp5, xmm_temp1, 1);      // xmm5 holds a1*b0
4665     __ movdqu(xmm_temp6, xmm_temp0);
4666     __ pclmulqdq(xmm_temp6, xmm_temp1, 17);     // xmm6 holds a1*b1
4667 
4668     __ pxor(xmm_temp4, xmm_temp5);      // xmm4 holds a0*b1 + a1*b0
4669 
4670     __ movdqu(xmm_temp5, xmm_temp4);    // move the contents of xmm4 to xmm5
4671     __ psrldq(xmm_temp4, 8);    // shift by xmm4 64 bits to the right
4672     __ pslldq(xmm_temp5, 8);    // shift by xmm5 64 bits to the left
4673     __ pxor(xmm_temp3, xmm_temp5);
4674     __ pxor(xmm_temp6, xmm_temp4);      // Register pair <xmm6:xmm3> holds the result
4675                                         // of the carry-less multiplication of
4676                                         // xmm0 by xmm1.
4677 
4678     // We shift the result of the multiplication by one bit position
4679     // to the left to cope for the fact that the bits are reversed.
4680     __ movdqu(xmm_temp7, xmm_temp3);
4681     __ movdqu(xmm_temp8, xmm_temp6);
4682     __ pslld(xmm_temp3, 1);
4683     __ pslld(xmm_temp6, 1);
4684     __ psrld(xmm_temp7, 31);
4685     __ psrld(xmm_temp8, 31);
4686     __ movdqu(xmm_temp9, xmm_temp7);
4687     __ pslldq(xmm_temp8, 4);
4688     __ pslldq(xmm_temp7, 4);
4689     __ psrldq(xmm_temp9, 12);
4690     __ por(xmm_temp3, xmm_temp7);
4691     __ por(xmm_temp6, xmm_temp8);
4692     __ por(xmm_temp6, xmm_temp9);
4693 
4694     //
4695     // First phase of the reduction
4696     //
4697     // Move xmm3 into xmm7, xmm8, xmm9 in order to perform the shifts
4698     // independently.
4699     __ movdqu(xmm_temp7, xmm_temp3);
4700     __ movdqu(xmm_temp8, xmm_temp3);
4701     __ movdqu(xmm_temp9, xmm_temp3);
4702     __ pslld(xmm_temp7, 31);    // packed right shift shifting << 31
4703     __ pslld(xmm_temp8, 30);    // packed right shift shifting << 30
4704     __ pslld(xmm_temp9, 25);    // packed right shift shifting << 25
4705     __ pxor(xmm_temp7, xmm_temp8);      // xor the shifted versions
4706     __ pxor(xmm_temp7, xmm_temp9);
4707     __ movdqu(xmm_temp8, xmm_temp7);
4708     __ pslldq(xmm_temp7, 12);
4709     __ psrldq(xmm_temp8, 4);
4710     __ pxor(xmm_temp3, xmm_temp7);      // first phase of the reduction complete
4711 
4712     //
4713     // Second phase of the reduction
4714     //
4715     // Make 3 copies of xmm3 in xmm2, xmm4, xmm5 for doing these
4716     // shift operations.
4717     __ movdqu(xmm_temp2, xmm_temp3);
4718     __ movdqu(xmm_temp4, xmm_temp3);
4719     __ movdqu(xmm_temp5, xmm_temp3);
4720     __ psrld(xmm_temp2, 1);     // packed left shifting >> 1
4721     __ psrld(xmm_temp4, 2);     // packed left shifting >> 2
4722     __ psrld(xmm_temp5, 7);     // packed left shifting >> 7
4723     __ pxor(xmm_temp2, xmm_temp4);      // xor the shifted versions
4724     __ pxor(xmm_temp2, xmm_temp5);
4725     __ pxor(xmm_temp2, xmm_temp8);
4726     __ pxor(xmm_temp3, xmm_temp2);
4727     __ pxor(xmm_temp6, xmm_temp3);      // the result is in xmm6
4728 
4729     __ decrement(blocks);
4730     __ jcc(Assembler::zero, L_exit);
4731     __ movdqu(xmm_temp0, xmm_temp6);
4732     __ addptr(data, 16);
4733     __ jmp(L_ghash_loop);
4734 
4735     __ BIND(L_exit);
4736     __ pshufb(xmm_temp6, xmm_temp10);          // Byte swap 16-byte result
4737     __ movdqu(Address(state, 0), xmm_temp6);   // store the result
4738     __ leave();
4739     __ ret(0);
4740     return start;
4741   }
4742 
4743   //base64 character set
4744   address base64_charset_addr() {
4745     __ align(CodeEntryAlignment);
4746     StubCodeMark mark(this, "StubRoutines", "base64_charset");
4747     address start = __ pc();
4748     __ emit_data64(0x0000004200000041, relocInfo::none);
4749     __ emit_data64(0x0000004400000043, relocInfo::none);
4750     __ emit_data64(0x0000004600000045, relocInfo::none);
4751     __ emit_data64(0x0000004800000047, relocInfo::none);
4752     __ emit_data64(0x0000004a00000049, relocInfo::none);
4753     __ emit_data64(0x0000004c0000004b, relocInfo::none);
4754     __ emit_data64(0x0000004e0000004d, relocInfo::none);
4755     __ emit_data64(0x000000500000004f, relocInfo::none);
4756     __ emit_data64(0x0000005200000051, relocInfo::none);
4757     __ emit_data64(0x0000005400000053, relocInfo::none);
4758     __ emit_data64(0x0000005600000055, relocInfo::none);
4759     __ emit_data64(0x0000005800000057, relocInfo::none);
4760     __ emit_data64(0x0000005a00000059, relocInfo::none);
4761     __ emit_data64(0x0000006200000061, relocInfo::none);
4762     __ emit_data64(0x0000006400000063, relocInfo::none);
4763     __ emit_data64(0x0000006600000065, relocInfo::none);
4764     __ emit_data64(0x0000006800000067, relocInfo::none);
4765     __ emit_data64(0x0000006a00000069, relocInfo::none);
4766     __ emit_data64(0x0000006c0000006b, relocInfo::none);
4767     __ emit_data64(0x0000006e0000006d, relocInfo::none);
4768     __ emit_data64(0x000000700000006f, relocInfo::none);
4769     __ emit_data64(0x0000007200000071, relocInfo::none);
4770     __ emit_data64(0x0000007400000073, relocInfo::none);
4771     __ emit_data64(0x0000007600000075, relocInfo::none);
4772     __ emit_data64(0x0000007800000077, relocInfo::none);
4773     __ emit_data64(0x0000007a00000079, relocInfo::none);
4774     __ emit_data64(0x0000003100000030, relocInfo::none);
4775     __ emit_data64(0x0000003300000032, relocInfo::none);
4776     __ emit_data64(0x0000003500000034, relocInfo::none);
4777     __ emit_data64(0x0000003700000036, relocInfo::none);
4778     __ emit_data64(0x0000003900000038, relocInfo::none);
4779     __ emit_data64(0x0000002f0000002b, relocInfo::none);
4780     return start;
4781   }
4782 
4783   //base64 url character set
4784   address base64url_charset_addr() {
4785     __ align(CodeEntryAlignment);
4786     StubCodeMark mark(this, "StubRoutines", "base64url_charset");
4787     address start = __ pc();
4788     __ emit_data64(0x0000004200000041, relocInfo::none);
4789     __ emit_data64(0x0000004400000043, relocInfo::none);
4790     __ emit_data64(0x0000004600000045, relocInfo::none);
4791     __ emit_data64(0x0000004800000047, relocInfo::none);
4792     __ emit_data64(0x0000004a00000049, relocInfo::none);
4793     __ emit_data64(0x0000004c0000004b, relocInfo::none);
4794     __ emit_data64(0x0000004e0000004d, relocInfo::none);
4795     __ emit_data64(0x000000500000004f, relocInfo::none);
4796     __ emit_data64(0x0000005200000051, relocInfo::none);
4797     __ emit_data64(0x0000005400000053, relocInfo::none);
4798     __ emit_data64(0x0000005600000055, relocInfo::none);
4799     __ emit_data64(0x0000005800000057, relocInfo::none);
4800     __ emit_data64(0x0000005a00000059, relocInfo::none);
4801     __ emit_data64(0x0000006200000061, relocInfo::none);
4802     __ emit_data64(0x0000006400000063, relocInfo::none);
4803     __ emit_data64(0x0000006600000065, relocInfo::none);
4804     __ emit_data64(0x0000006800000067, relocInfo::none);
4805     __ emit_data64(0x0000006a00000069, relocInfo::none);
4806     __ emit_data64(0x0000006c0000006b, relocInfo::none);
4807     __ emit_data64(0x0000006e0000006d, relocInfo::none);
4808     __ emit_data64(0x000000700000006f, relocInfo::none);
4809     __ emit_data64(0x0000007200000071, relocInfo::none);
4810     __ emit_data64(0x0000007400000073, relocInfo::none);
4811     __ emit_data64(0x0000007600000075, relocInfo::none);
4812     __ emit_data64(0x0000007800000077, relocInfo::none);
4813     __ emit_data64(0x0000007a00000079, relocInfo::none);
4814     __ emit_data64(0x0000003100000030, relocInfo::none);
4815     __ emit_data64(0x0000003300000032, relocInfo::none);
4816     __ emit_data64(0x0000003500000034, relocInfo::none);
4817     __ emit_data64(0x0000003700000036, relocInfo::none);
4818     __ emit_data64(0x0000003900000038, relocInfo::none);
4819     __ emit_data64(0x0000005f0000002d, relocInfo::none);
4820 
4821     return start;
4822   }
4823 
4824   address base64_bswap_mask_addr() {
4825     __ align(CodeEntryAlignment);
4826     StubCodeMark mark(this, "StubRoutines", "bswap_mask_base64");
4827     address start = __ pc();
4828     __ emit_data64(0x0504038002010080, relocInfo::none);
4829     __ emit_data64(0x0b0a098008070680, relocInfo::none);
4830     __ emit_data64(0x0908078006050480, relocInfo::none);
4831     __ emit_data64(0x0f0e0d800c0b0a80, relocInfo::none);
4832     __ emit_data64(0x0605048003020180, relocInfo::none);
4833     __ emit_data64(0x0c0b0a8009080780, relocInfo::none);
4834     __ emit_data64(0x0504038002010080, relocInfo::none);
4835     __ emit_data64(0x0b0a098008070680, relocInfo::none);
4836 
4837     return start;
4838   }
4839 
4840   address base64_right_shift_mask_addr() {
4841     __ align(CodeEntryAlignment);
4842     StubCodeMark mark(this, "StubRoutines", "right_shift_mask");
4843     address start = __ pc();
4844     __ emit_data64(0x0006000400020000, relocInfo::none);
4845     __ emit_data64(0x0006000400020000, relocInfo::none);
4846     __ emit_data64(0x0006000400020000, relocInfo::none);
4847     __ emit_data64(0x0006000400020000, relocInfo::none);
4848     __ emit_data64(0x0006000400020000, relocInfo::none);
4849     __ emit_data64(0x0006000400020000, relocInfo::none);
4850     __ emit_data64(0x0006000400020000, relocInfo::none);
4851     __ emit_data64(0x0006000400020000, relocInfo::none);
4852 
4853     return start;
4854   }
4855 
4856   address base64_left_shift_mask_addr() {
4857     __ align(CodeEntryAlignment);
4858     StubCodeMark mark(this, "StubRoutines", "left_shift_mask");
4859     address start = __ pc();
4860     __ emit_data64(0x0000000200040000, relocInfo::none);
4861     __ emit_data64(0x0000000200040000, relocInfo::none);
4862     __ emit_data64(0x0000000200040000, relocInfo::none);
4863     __ emit_data64(0x0000000200040000, relocInfo::none);
4864     __ emit_data64(0x0000000200040000, relocInfo::none);
4865     __ emit_data64(0x0000000200040000, relocInfo::none);
4866     __ emit_data64(0x0000000200040000, relocInfo::none);
4867     __ emit_data64(0x0000000200040000, relocInfo::none);
4868 
4869     return start;
4870   }
4871 
4872   address base64_and_mask_addr() {
4873     __ align(CodeEntryAlignment);
4874     StubCodeMark mark(this, "StubRoutines", "and_mask");
4875     address start = __ pc();
4876     __ emit_data64(0x3f003f003f000000, relocInfo::none);
4877     __ emit_data64(0x3f003f003f000000, relocInfo::none);
4878     __ emit_data64(0x3f003f003f000000, relocInfo::none);
4879     __ emit_data64(0x3f003f003f000000, relocInfo::none);
4880     __ emit_data64(0x3f003f003f000000, relocInfo::none);
4881     __ emit_data64(0x3f003f003f000000, relocInfo::none);
4882     __ emit_data64(0x3f003f003f000000, relocInfo::none);
4883     __ emit_data64(0x3f003f003f000000, relocInfo::none);
4884     return start;
4885   }
4886 
4887   address base64_gather_mask_addr() {
4888     __ align(CodeEntryAlignment);
4889     StubCodeMark mark(this, "StubRoutines", "gather_mask");
4890     address start = __ pc();
4891     __ emit_data64(0xffffffffffffffff, relocInfo::none);
4892     return start;
4893   }
4894 
4895 // Code for generating Base64 encoding.
4896 // Intrinsic function prototype in Base64.java:
4897 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL) {
4898   address generate_base64_encodeBlock() {
4899     __ align(CodeEntryAlignment);
4900     StubCodeMark mark(this, "StubRoutines", "implEncode");
4901     address start = __ pc();
4902     __ enter();
4903 
4904     // Save callee-saved registers before using them
4905     __ push(r12);
4906     __ push(r13);
4907     __ push(r14);
4908     __ push(r15);
4909 
4910     // arguments
4911     const Register source = c_rarg0; // Source Array
4912     const Register start_offset = c_rarg1; // start offset
4913     const Register end_offset = c_rarg2; // end offset
4914     const Register dest = c_rarg3; // destination array
4915 
4916 #ifndef _WIN64
4917     const Register dp = c_rarg4;  // Position for writing to dest array
4918     const Register isURL = c_rarg5;// Base64 or URL character set
4919 #else
4920     const Address  dp_mem(rbp, 6 * wordSize);  // length is on stack on Win64
4921     const Address isURL_mem(rbp, 7 * wordSize);
4922     const Register isURL = r10;      // pick the volatile windows register
4923     const Register dp = r12;
4924     __ movl(dp, dp_mem);
4925     __ movl(isURL, isURL_mem);
4926 #endif
4927 
4928     const Register length = r14;
4929     Label L_process80, L_process32, L_process3, L_exit, L_processdata;
4930 
4931     // calculate length from offsets
4932     __ movl(length, end_offset);
4933     __ subl(length, start_offset);
4934     __ cmpl(length, 0);
4935     __ jcc(Assembler::lessEqual, L_exit);
4936 
4937     __ lea(r11, ExternalAddress(StubRoutines::x86::base64_charset_addr()));
4938     // check if base64 charset(isURL=0) or base64 url charset(isURL=1) needs to be loaded
4939     __ cmpl(isURL, 0);
4940     __ jcc(Assembler::equal, L_processdata);
4941     __ lea(r11, ExternalAddress(StubRoutines::x86::base64url_charset_addr()));
4942 
4943     // load masks required for encoding data
4944     __ BIND(L_processdata);
4945     __ movdqu(xmm16, ExternalAddress(StubRoutines::x86::base64_gather_mask_addr()));
4946     // Set 64 bits of K register.
4947     __ evpcmpeqb(k3, xmm16, xmm16, Assembler::AVX_512bit);
4948     __ evmovdquq(xmm12, ExternalAddress(StubRoutines::x86::base64_bswap_mask_addr()), Assembler::AVX_256bit, r13);
4949     __ evmovdquq(xmm13, ExternalAddress(StubRoutines::x86::base64_right_shift_mask_addr()), Assembler::AVX_512bit, r13);
4950     __ evmovdquq(xmm14, ExternalAddress(StubRoutines::x86::base64_left_shift_mask_addr()), Assembler::AVX_512bit, r13);
4951     __ evmovdquq(xmm15, ExternalAddress(StubRoutines::x86::base64_and_mask_addr()), Assembler::AVX_512bit, r13);
4952 
4953     // Vector Base64 implementation, producing 96 bytes of encoded data
4954     __ BIND(L_process80);
4955     __ cmpl(length, 80);
4956     __ jcc(Assembler::below, L_process32);
4957     __ evmovdquq(xmm0, Address(source, start_offset, Address::times_1, 0), Assembler::AVX_256bit);
4958     __ evmovdquq(xmm1, Address(source, start_offset, Address::times_1, 24), Assembler::AVX_256bit);
4959     __ evmovdquq(xmm2, Address(source, start_offset, Address::times_1, 48), Assembler::AVX_256bit);
4960 
4961     //permute the input data in such a manner that we have continuity of the source
4962     __ vpermq(xmm3, xmm0, 148, Assembler::AVX_256bit);
4963     __ vpermq(xmm4, xmm1, 148, Assembler::AVX_256bit);
4964     __ vpermq(xmm5, xmm2, 148, Assembler::AVX_256bit);
4965 
4966     //shuffle input and group 3 bytes of data and to it add 0 as the 4th byte.
4967     //we can deal with 12 bytes at a time in a 128 bit register
4968     __ vpshufb(xmm3, xmm3, xmm12, Assembler::AVX_256bit);
4969     __ vpshufb(xmm4, xmm4, xmm12, Assembler::AVX_256bit);
4970     __ vpshufb(xmm5, xmm5, xmm12, Assembler::AVX_256bit);
4971 
4972     //convert byte to word. Each 128 bit register will have 6 bytes for processing
4973     __ vpmovzxbw(xmm3, xmm3, Assembler::AVX_512bit);
4974     __ vpmovzxbw(xmm4, xmm4, Assembler::AVX_512bit);
4975     __ vpmovzxbw(xmm5, xmm5, Assembler::AVX_512bit);
4976 
4977     // Extract bits in the following pattern 6, 4+2, 2+4, 6 to convert 3, 8 bit numbers to 4, 6 bit numbers
4978     __ evpsrlvw(xmm0, xmm3, xmm13,  Assembler::AVX_512bit);
4979     __ evpsrlvw(xmm1, xmm4, xmm13, Assembler::AVX_512bit);
4980     __ evpsrlvw(xmm2, xmm5, xmm13, Assembler::AVX_512bit);
4981 
4982     __ evpsllvw(xmm3, xmm3, xmm14, Assembler::AVX_512bit);
4983     __ evpsllvw(xmm4, xmm4, xmm14, Assembler::AVX_512bit);
4984     __ evpsllvw(xmm5, xmm5, xmm14, Assembler::AVX_512bit);
4985 
4986     __ vpsrlq(xmm0, xmm0, 8, Assembler::AVX_512bit);
4987     __ vpsrlq(xmm1, xmm1, 8, Assembler::AVX_512bit);
4988     __ vpsrlq(xmm2, xmm2, 8, Assembler::AVX_512bit);
4989 
4990     __ vpsllq(xmm3, xmm3, 8, Assembler::AVX_512bit);
4991     __ vpsllq(xmm4, xmm4, 8, Assembler::AVX_512bit);
4992     __ vpsllq(xmm5, xmm5, 8, Assembler::AVX_512bit);
4993 
4994     __ vpandq(xmm3, xmm3, xmm15, Assembler::AVX_512bit);
4995     __ vpandq(xmm4, xmm4, xmm15, Assembler::AVX_512bit);
4996     __ vpandq(xmm5, xmm5, xmm15, Assembler::AVX_512bit);
4997 
4998     // Get the final 4*6 bits base64 encoding
4999     __ vporq(xmm3, xmm3, xmm0, Assembler::AVX_512bit);
5000     __ vporq(xmm4, xmm4, xmm1, Assembler::AVX_512bit);
5001     __ vporq(xmm5, xmm5, xmm2, Assembler::AVX_512bit);
5002 
5003     // Shift
5004     __ vpsrlq(xmm3, xmm3, 8, Assembler::AVX_512bit);
5005     __ vpsrlq(xmm4, xmm4, 8, Assembler::AVX_512bit);
5006     __ vpsrlq(xmm5, xmm5, 8, Assembler::AVX_512bit);
5007 
5008     // look up 6 bits in the base64 character set to fetch the encoding
5009     // we are converting word to dword as gather instructions need dword indices for looking up encoding
5010     __ vextracti64x4(xmm6, xmm3, 0);
5011     __ vpmovzxwd(xmm0, xmm6, Assembler::AVX_512bit);
5012     __ vextracti64x4(xmm6, xmm3, 1);
5013     __ vpmovzxwd(xmm1, xmm6, Assembler::AVX_512bit);
5014 
5015     __ vextracti64x4(xmm6, xmm4, 0);
5016     __ vpmovzxwd(xmm2, xmm6, Assembler::AVX_512bit);
5017     __ vextracti64x4(xmm6, xmm4, 1);
5018     __ vpmovzxwd(xmm3, xmm6, Assembler::AVX_512bit);
5019 
5020     __ vextracti64x4(xmm4, xmm5, 0);
5021     __ vpmovzxwd(xmm6, xmm4, Assembler::AVX_512bit);
5022 
5023     __ vextracti64x4(xmm4, xmm5, 1);
5024     __ vpmovzxwd(xmm7, xmm4, Assembler::AVX_512bit);
5025 
5026     __ kmovql(k2, k3);
5027     __ evpgatherdd(xmm4, k2, Address(r11, xmm0, Address::times_4, 0), Assembler::AVX_512bit);
5028     __ kmovql(k2, k3);
5029     __ evpgatherdd(xmm5, k2, Address(r11, xmm1, Address::times_4, 0), Assembler::AVX_512bit);
5030     __ kmovql(k2, k3);
5031     __ evpgatherdd(xmm8, k2, Address(r11, xmm2, Address::times_4, 0), Assembler::AVX_512bit);
5032     __ kmovql(k2, k3);
5033     __ evpgatherdd(xmm9, k2, Address(r11, xmm3, Address::times_4, 0), Assembler::AVX_512bit);
5034     __ kmovql(k2, k3);
5035     __ evpgatherdd(xmm10, k2, Address(r11, xmm6, Address::times_4, 0), Assembler::AVX_512bit);
5036     __ kmovql(k2, k3);
5037     __ evpgatherdd(xmm11, k2, Address(r11, xmm7, Address::times_4, 0), Assembler::AVX_512bit);
5038 
5039     //Down convert dword to byte. Final output is 16*6 = 96 bytes long
5040     __ evpmovdb(Address(dest, dp, Address::times_1, 0), xmm4, Assembler::AVX_512bit);
5041     __ evpmovdb(Address(dest, dp, Address::times_1, 16), xmm5, Assembler::AVX_512bit);
5042     __ evpmovdb(Address(dest, dp, Address::times_1, 32), xmm8, Assembler::AVX_512bit);
5043     __ evpmovdb(Address(dest, dp, Address::times_1, 48), xmm9, Assembler::AVX_512bit);
5044     __ evpmovdb(Address(dest, dp, Address::times_1, 64), xmm10, Assembler::AVX_512bit);
5045     __ evpmovdb(Address(dest, dp, Address::times_1, 80), xmm11, Assembler::AVX_512bit);
5046 
5047     __ addq(dest, 96);
5048     __ addq(source, 72);
5049     __ subq(length, 72);
5050     __ jmp(L_process80);
5051 
5052     // Vector Base64 implementation generating 32 bytes of encoded data
5053     __ BIND(L_process32);
5054     __ cmpl(length, 32);
5055     __ jcc(Assembler::below, L_process3);
5056     __ evmovdquq(xmm0, Address(source, start_offset), Assembler::AVX_256bit);
5057     __ vpermq(xmm0, xmm0, 148, Assembler::AVX_256bit);
5058     __ vpshufb(xmm6, xmm0, xmm12, Assembler::AVX_256bit);
5059     __ vpmovzxbw(xmm6, xmm6, Assembler::AVX_512bit);
5060     __ evpsrlvw(xmm2, xmm6, xmm13, Assembler::AVX_512bit);
5061     __ evpsllvw(xmm3, xmm6, xmm14, Assembler::AVX_512bit);
5062 
5063     __ vpsrlq(xmm2, xmm2, 8, Assembler::AVX_512bit);
5064     __ vpsllq(xmm3, xmm3, 8, Assembler::AVX_512bit);
5065     __ vpandq(xmm3, xmm3, xmm15, Assembler::AVX_512bit);
5066     __ vporq(xmm1, xmm2, xmm3, Assembler::AVX_512bit);
5067     __ vpsrlq(xmm1, xmm1, 8, Assembler::AVX_512bit);
5068     __ vextracti64x4(xmm9, xmm1, 0);
5069     __ vpmovzxwd(xmm6, xmm9, Assembler::AVX_512bit);
5070     __ vextracti64x4(xmm9, xmm1, 1);
5071     __ vpmovzxwd(xmm5, xmm9,  Assembler::AVX_512bit);
5072     __ kmovql(k2, k3);
5073     __ evpgatherdd(xmm8, k2, Address(r11, xmm6, Address::times_4, 0), Assembler::AVX_512bit);
5074     __ kmovql(k2, k3);
5075     __ evpgatherdd(xmm10, k2, Address(r11, xmm5, Address::times_4, 0), Assembler::AVX_512bit);
5076     __ evpmovdb(Address(dest, dp, Address::times_1, 0), xmm8, Assembler::AVX_512bit);
5077     __ evpmovdb(Address(dest, dp, Address::times_1, 16), xmm10, Assembler::AVX_512bit);
5078     __ subq(length, 24);
5079     __ addq(dest, 32);
5080     __ addq(source, 24);
5081     __ jmp(L_process32);
5082 
5083     // Scalar data processing takes 3 bytes at a time and produces 4 bytes of encoded data
5084     /* This code corresponds to the scalar version of the following snippet in Base64.java
5085     ** int bits = (src[sp0++] & 0xff) << 16 |(src[sp0++] & 0xff) << 8 |(src[sp0++] & 0xff);
5086     ** dst[dp0++] = (byte)base64[(bits >> > 18) & 0x3f];
5087     ** dst[dp0++] = (byte)base64[(bits >> > 12) & 0x3f];
5088     ** dst[dp0++] = (byte)base64[(bits >> > 6) & 0x3f];
5089     ** dst[dp0++] = (byte)base64[bits & 0x3f];*/
5090     __ BIND(L_process3);
5091     __ cmpl(length, 3);
5092     __ jcc(Assembler::below, L_exit);
5093     // Read 1 byte at a time
5094     __ movzbl(rax, Address(source, start_offset));
5095     __ shll(rax, 0x10);
5096     __ movl(r15, rax);
5097     __ movzbl(rax, Address(source, start_offset, Address::times_1, 1));
5098     __ shll(rax, 0x8);
5099     __ movzwl(rax, rax);
5100     __ orl(r15, rax);
5101     __ movzbl(rax, Address(source, start_offset, Address::times_1, 2));
5102     __ orl(rax, r15);
5103     // Save 3 bytes read in r15
5104     __ movl(r15, rax);
5105     __ shrl(rax, 0x12);
5106     __ andl(rax, 0x3f);
5107     // rax contains the index, r11 contains base64 lookup table
5108     __ movb(rax, Address(r11, rax, Address::times_4));
5109     // Write the encoded byte to destination
5110     __ movb(Address(dest, dp, Address::times_1, 0), rax);
5111     __ movl(rax, r15);
5112     __ shrl(rax, 0xc);
5113     __ andl(rax, 0x3f);
5114     __ movb(rax, Address(r11, rax, Address::times_4));
5115     __ movb(Address(dest, dp, Address::times_1, 1), rax);
5116     __ movl(rax, r15);
5117     __ shrl(rax, 0x6);
5118     __ andl(rax, 0x3f);
5119     __ movb(rax, Address(r11, rax, Address::times_4));
5120     __ movb(Address(dest, dp, Address::times_1, 2), rax);
5121     __ movl(rax, r15);
5122     __ andl(rax, 0x3f);
5123     __ movb(rax, Address(r11, rax, Address::times_4));
5124     __ movb(Address(dest, dp, Address::times_1, 3), rax);
5125     __ subl(length, 3);
5126     __ addq(dest, 4);
5127     __ addq(source, 3);
5128     __ jmp(L_process3);
5129     __ BIND(L_exit);
5130     __ pop(r15);
5131     __ pop(r14);
5132     __ pop(r13);
5133     __ pop(r12);
5134     __ leave();
5135     __ ret(0);
5136     return start;
5137   }
5138 
5139   /**
5140    *  Arguments:
5141    *
5142    * Inputs:
5143    *   c_rarg0   - int crc
5144    *   c_rarg1   - byte* buf
5145    *   c_rarg2   - int length
5146    *
5147    * Ouput:
5148    *       rax   - int crc result
5149    */
5150   address generate_updateBytesCRC32() {
5151     assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
5152 
5153     __ align(CodeEntryAlignment);
5154     StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
5155 
5156     address start = __ pc();
5157     // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
5158     // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
5159     // rscratch1: r10
5160     const Register crc   = c_rarg0;  // crc
5161     const Register buf   = c_rarg1;  // source java byte array address
5162     const Register len   = c_rarg2;  // length
5163     const Register table = c_rarg3;  // crc_table address (reuse register)
5164     const Register tmp1   = r11;
5165     const Register tmp2   = r10;
5166     assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax);
5167 
5168     BLOCK_COMMENT("Entry:");
5169     __ enter(); // required for proper stackwalking of RuntimeStub frame
5170 
5171     if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
5172         VM_Version::supports_avx512bw() &&
5173         VM_Version::supports_avx512vl()) {
5174       __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2);
5175     } else {
5176       __ kernel_crc32(crc, buf, len, table, tmp1);
5177     }
5178 
5179     __ movl(rax, crc);
5180     __ vzeroupper();
5181     __ leave(); // required for proper stackwalking of RuntimeStub frame
5182     __ ret(0);
5183 
5184     return start;
5185   }
5186 
5187   /**
5188   *  Arguments:
5189   *
5190   * Inputs:
5191   *   c_rarg0   - int crc
5192   *   c_rarg1   - byte* buf
5193   *   c_rarg2   - long length
5194   *   c_rarg3   - table_start - optional (present only when doing a library_call,
5195   *              not used by x86 algorithm)
5196   *
5197   * Ouput:
5198   *       rax   - int crc result
5199   */
5200   address generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
5201       assert(UseCRC32CIntrinsics, "need SSE4_2");
5202       __ align(CodeEntryAlignment);
5203       StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
5204       address start = __ pc();
5205       //reg.arg        int#0        int#1        int#2        int#3        int#4        int#5        float regs
5206       //Windows        RCX          RDX          R8           R9           none         none         XMM0..XMM3
5207       //Lin / Sol      RDI          RSI          RDX          RCX          R8           R9           XMM0..XMM7
5208       const Register crc = c_rarg0;  // crc
5209       const Register buf = c_rarg1;  // source java byte array address
5210       const Register len = c_rarg2;  // length
5211       const Register a = rax;
5212       const Register j = r9;
5213       const Register k = r10;
5214       const Register l = r11;
5215 #ifdef _WIN64
5216       const Register y = rdi;
5217       const Register z = rsi;
5218 #else
5219       const Register y = rcx;
5220       const Register z = r8;
5221 #endif
5222       assert_different_registers(crc, buf, len, a, j, k, l, y, z);
5223 
5224       BLOCK_COMMENT("Entry:");
5225       __ enter(); // required for proper stackwalking of RuntimeStub frame
5226 #ifdef _WIN64
5227       __ push(y);
5228       __ push(z);
5229 #endif
5230       __ crc32c_ipl_alg2_alt2(crc, buf, len,
5231                               a, j, k,
5232                               l, y, z,
5233                               c_farg0, c_farg1, c_farg2,
5234                               is_pclmulqdq_supported);
5235       __ movl(rax, crc);
5236 #ifdef _WIN64
5237       __ pop(z);
5238       __ pop(y);
5239 #endif
5240       __ vzeroupper();
5241       __ leave(); // required for proper stackwalking of RuntimeStub frame
5242       __ ret(0);
5243 
5244       return start;
5245   }
5246 
5247   /**
5248    *  Arguments:
5249    *
5250    *  Input:
5251    *    c_rarg0   - x address
5252    *    c_rarg1   - x length
5253    *    c_rarg2   - y address
5254    *    c_rarg3   - y length
5255    * not Win64
5256    *    c_rarg4   - z address
5257    *    c_rarg5   - z length
5258    * Win64
5259    *    rsp+40    - z address
5260    *    rsp+48    - z length
5261    */
5262   address generate_multiplyToLen() {
5263     __ align(CodeEntryAlignment);
5264     StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
5265 
5266     address start = __ pc();
5267     // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
5268     // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
5269     const Register x     = rdi;
5270     const Register xlen  = rax;
5271     const Register y     = rsi;
5272     const Register ylen  = rcx;
5273     const Register z     = r8;
5274     const Register zlen  = r11;
5275 
5276     // Next registers will be saved on stack in multiply_to_len().
5277     const Register tmp1  = r12;
5278     const Register tmp2  = r13;
5279     const Register tmp3  = r14;
5280     const Register tmp4  = r15;
5281     const Register tmp5  = rbx;
5282 
5283     BLOCK_COMMENT("Entry:");
5284     __ enter(); // required for proper stackwalking of RuntimeStub frame
5285 
5286 #ifndef _WIN64
5287     __ movptr(zlen, r9); // Save r9 in r11 - zlen
5288 #endif
5289     setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
5290                        // ylen => rcx, z => r8, zlen => r11
5291                        // r9 and r10 may be used to save non-volatile registers
5292 #ifdef _WIN64
5293     // last 2 arguments (#4, #5) are on stack on Win64
5294     __ movptr(z, Address(rsp, 6 * wordSize));
5295     __ movptr(zlen, Address(rsp, 7 * wordSize));
5296 #endif
5297 
5298     __ movptr(xlen, rsi);
5299     __ movptr(y,    rdx);
5300     __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5);
5301 
5302     restore_arg_regs();
5303 
5304     __ leave(); // required for proper stackwalking of RuntimeStub frame
5305     __ ret(0);
5306 
5307     return start;
5308   }
5309 
5310   /**
5311   *  Arguments:
5312   *
5313   *  Input:
5314   *    c_rarg0   - obja     address
5315   *    c_rarg1   - objb     address
5316   *    c_rarg3   - length   length
5317   *    c_rarg4   - scale    log2_array_indxscale
5318   *
5319   *  Output:
5320   *        rax   - int >= mismatched index, < 0 bitwise complement of tail
5321   */
5322   address generate_vectorizedMismatch() {
5323     __ align(CodeEntryAlignment);
5324     StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch");
5325     address start = __ pc();
5326 
5327     BLOCK_COMMENT("Entry:");
5328     __ enter();
5329 
5330 #ifdef _WIN64  // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
5331     const Register scale = c_rarg0;  //rcx, will exchange with r9
5332     const Register objb = c_rarg1;   //rdx
5333     const Register length = c_rarg2; //r8
5334     const Register obja = c_rarg3;   //r9
5335     __ xchgq(obja, scale);  //now obja and scale contains the correct contents
5336 
5337     const Register tmp1 = r10;
5338     const Register tmp2 = r11;
5339 #endif
5340 #ifndef _WIN64 // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
5341     const Register obja = c_rarg0;   //U:rdi
5342     const Register objb = c_rarg1;   //U:rsi
5343     const Register length = c_rarg2; //U:rdx
5344     const Register scale = c_rarg3;  //U:rcx
5345     const Register tmp1 = r8;
5346     const Register tmp2 = r9;
5347 #endif
5348     const Register result = rax; //return value
5349     const XMMRegister vec0 = xmm0;
5350     const XMMRegister vec1 = xmm1;
5351     const XMMRegister vec2 = xmm2;
5352 
5353     __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2);
5354 
5355     __ vzeroupper();
5356     __ leave();
5357     __ ret(0);
5358 
5359     return start;
5360   }
5361 
5362 /**
5363    *  Arguments:
5364    *
5365   //  Input:
5366   //    c_rarg0   - x address
5367   //    c_rarg1   - x length
5368   //    c_rarg2   - z address
5369   //    c_rarg3   - z lenth
5370    *
5371    */
5372   address generate_squareToLen() {
5373 
5374     __ align(CodeEntryAlignment);
5375     StubCodeMark mark(this, "StubRoutines", "squareToLen");
5376 
5377     address start = __ pc();
5378     // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
5379     // Unix:  rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...)
5380     const Register x      = rdi;
5381     const Register len    = rsi;
5382     const Register z      = r8;
5383     const Register zlen   = rcx;
5384 
5385    const Register tmp1      = r12;
5386    const Register tmp2      = r13;
5387    const Register tmp3      = r14;
5388    const Register tmp4      = r15;
5389    const Register tmp5      = rbx;
5390 
5391     BLOCK_COMMENT("Entry:");
5392     __ enter(); // required for proper stackwalking of RuntimeStub frame
5393 
5394     setup_arg_regs(4); // x => rdi, len => rsi, z => rdx
5395                        // zlen => rcx
5396                        // r9 and r10 may be used to save non-volatile registers
5397     __ movptr(r8, rdx);
5398     __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
5399 
5400     restore_arg_regs();
5401 
5402     __ leave(); // required for proper stackwalking of RuntimeStub frame
5403     __ ret(0);
5404 
5405     return start;
5406   }
5407 
5408   address generate_method_entry_barrier() {
5409     __ align(CodeEntryAlignment);
5410     StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier");
5411 
5412     Label deoptimize_label;
5413 
5414     address start = __ pc();
5415 
5416     __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing
5417 
5418     BLOCK_COMMENT("Entry:");
5419     __ enter(); // save rbp
5420 
5421     // save c_rarg0, because we want to use that value.
5422     // We could do without it but then we depend on the number of slots used by pusha
5423     __ push(c_rarg0);
5424 
5425     __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address
5426 
5427     __ pusha();
5428 
5429     // The method may have floats as arguments, and we must spill them before calling
5430     // the VM runtime.
5431     assert(Argument::n_float_register_parameters_j == 8, "Assumption");
5432     const int xmm_size = wordSize * 2;
5433     const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j;
5434     __ subptr(rsp, xmm_spill_size);
5435     __ movdqu(Address(rsp, xmm_size * 7), xmm7);
5436     __ movdqu(Address(rsp, xmm_size * 6), xmm6);
5437     __ movdqu(Address(rsp, xmm_size * 5), xmm5);
5438     __ movdqu(Address(rsp, xmm_size * 4), xmm4);
5439     __ movdqu(Address(rsp, xmm_size * 3), xmm3);
5440     __ movdqu(Address(rsp, xmm_size * 2), xmm2);
5441     __ movdqu(Address(rsp, xmm_size * 1), xmm1);
5442     __ movdqu(Address(rsp, xmm_size * 0), xmm0);
5443 
5444     __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1);
5445 
5446     __ movdqu(xmm0, Address(rsp, xmm_size * 0));
5447     __ movdqu(xmm1, Address(rsp, xmm_size * 1));
5448     __ movdqu(xmm2, Address(rsp, xmm_size * 2));
5449     __ movdqu(xmm3, Address(rsp, xmm_size * 3));
5450     __ movdqu(xmm4, Address(rsp, xmm_size * 4));
5451     __ movdqu(xmm5, Address(rsp, xmm_size * 5));
5452     __ movdqu(xmm6, Address(rsp, xmm_size * 6));
5453     __ movdqu(xmm7, Address(rsp, xmm_size * 7));
5454     __ addptr(rsp, xmm_spill_size);
5455 
5456     __ cmpl(rax, 1); // 1 means deoptimize
5457     __ jcc(Assembler::equal, deoptimize_label);
5458 
5459     __ popa();
5460     __ pop(c_rarg0);
5461 
5462     __ leave();
5463 
5464     __ addptr(rsp, 1 * wordSize); // cookie
5465     __ ret(0);
5466 
5467 
5468     __ BIND(deoptimize_label);
5469 
5470     __ popa();
5471     __ pop(c_rarg0);
5472 
5473     __ leave();
5474 
5475     // this can be taken out, but is good for verification purposes. getting a SIGSEGV
5476     // here while still having a correct stack is valuable
5477     __ testptr(rsp, Address(rsp, 0));
5478 
5479     __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier
5480     __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point
5481 
5482     return start;
5483   }
5484 
5485    /**
5486    *  Arguments:
5487    *
5488    *  Input:
5489    *    c_rarg0   - out address
5490    *    c_rarg1   - in address
5491    *    c_rarg2   - offset
5492    *    c_rarg3   - len
5493    * not Win64
5494    *    c_rarg4   - k
5495    * Win64
5496    *    rsp+40    - k
5497    */
5498   address generate_mulAdd() {
5499     __ align(CodeEntryAlignment);
5500     StubCodeMark mark(this, "StubRoutines", "mulAdd");
5501 
5502     address start = __ pc();
5503     // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
5504     // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
5505     const Register out     = rdi;
5506     const Register in      = rsi;
5507     const Register offset  = r11;
5508     const Register len     = rcx;
5509     const Register k       = r8;
5510 
5511     // Next registers will be saved on stack in mul_add().
5512     const Register tmp1  = r12;
5513     const Register tmp2  = r13;
5514     const Register tmp3  = r14;
5515     const Register tmp4  = r15;
5516     const Register tmp5  = rbx;
5517 
5518     BLOCK_COMMENT("Entry:");
5519     __ enter(); // required for proper stackwalking of RuntimeStub frame
5520 
5521     setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx
5522                        // len => rcx, k => r8
5523                        // r9 and r10 may be used to save non-volatile registers
5524 #ifdef _WIN64
5525     // last argument is on stack on Win64
5526     __ movl(k, Address(rsp, 6 * wordSize));
5527 #endif
5528     __ movptr(r11, rdx);  // move offset in rdx to offset(r11)
5529     __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
5530 
5531     restore_arg_regs();
5532 
5533     __ leave(); // required for proper stackwalking of RuntimeStub frame
5534     __ ret(0);
5535 
5536     return start;
5537   }
5538 
5539   address generate_bigIntegerRightShift() {
5540     __ align(CodeEntryAlignment);
5541     StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker");
5542 
5543     address start = __ pc();
5544     Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
5545     // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
5546     const Register newArr = rdi;
5547     const Register oldArr = rsi;
5548     const Register newIdx = rdx;
5549     const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
5550     const Register totalNumIter = r8;
5551 
5552     // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
5553     // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
5554     const Register tmp1 = r11;                    // Caller save.
5555     const Register tmp2 = rax;                    // Caller save.
5556     const Register tmp3 = WINDOWS_ONLY(r12) NOT_WINDOWS(r9);   // Windows: Callee save. Linux: Caller save.
5557     const Register tmp4 = WINDOWS_ONLY(r13) NOT_WINDOWS(r10);  // Windows: Callee save. Linux: Caller save.
5558     const Register tmp5 = r14;                    // Callee save.
5559     const Register tmp6 = r15;
5560 
5561     const XMMRegister x0 = xmm0;
5562     const XMMRegister x1 = xmm1;
5563     const XMMRegister x2 = xmm2;
5564 
5565     BLOCK_COMMENT("Entry:");
5566     __ enter(); // required for proper stackwalking of RuntimeStub frame
5567 
5568 #ifdef _WINDOWS
5569     setup_arg_regs(4);
5570     // For windows, since last argument is on stack, we need to move it to the appropriate register.
5571     __ movl(totalNumIter, Address(rsp, 6 * wordSize));
5572     // Save callee save registers.
5573     __ push(tmp3);
5574     __ push(tmp4);
5575 #endif
5576     __ push(tmp5);
5577 
5578     // Rename temps used throughout the code.
5579     const Register idx = tmp1;
5580     const Register nIdx = tmp2;
5581 
5582     __ xorl(idx, idx);
5583 
5584     // Start right shift from end of the array.
5585     // For example, if #iteration = 4 and newIdx = 1
5586     // then dest[4] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
5587     // if #iteration = 4 and newIdx = 0
5588     // then dest[3] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
5589     __ movl(idx, totalNumIter);
5590     __ movl(nIdx, idx);
5591     __ addl(nIdx, newIdx);
5592 
5593     // If vectorization is enabled, check if the number of iterations is at least 64
5594     // If not, then go to ShifTwo processing 2 iterations
5595     if (VM_Version::supports_avx512_vbmi2()) {
5596       __ cmpptr(totalNumIter, (AVX3Threshold/64));
5597       __ jcc(Assembler::less, ShiftTwo);
5598 
5599       if (AVX3Threshold < 16 * 64) {
5600         __ cmpl(totalNumIter, 16);
5601         __ jcc(Assembler::less, ShiftTwo);
5602       }
5603       __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
5604       __ subl(idx, 16);
5605       __ subl(nIdx, 16);
5606       __ BIND(Shift512Loop);
5607       __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit);
5608       __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
5609       __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit);
5610       __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit);
5611       __ subl(nIdx, 16);
5612       __ subl(idx, 16);
5613       __ jcc(Assembler::greaterEqual, Shift512Loop);
5614       __ addl(idx, 16);
5615       __ addl(nIdx, 16);
5616     }
5617     __ BIND(ShiftTwo);
5618     __ cmpl(idx, 2);
5619     __ jcc(Assembler::less, ShiftOne);
5620     __ subl(idx, 2);
5621     __ subl(nIdx, 2);
5622     __ BIND(ShiftTwoLoop);
5623     __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8));
5624     __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
5625     __ movl(tmp3, Address(oldArr, idx, Address::times_4));
5626     __ shrdl(tmp5, tmp4);
5627     __ shrdl(tmp4, tmp3);
5628     __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5);
5629     __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
5630     __ subl(nIdx, 2);
5631     __ subl(idx, 2);
5632     __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
5633     __ addl(idx, 2);
5634     __ addl(nIdx, 2);
5635 
5636     // Do the last iteration
5637     __ BIND(ShiftOne);
5638     __ cmpl(idx, 1);
5639     __ jcc(Assembler::less, Exit);
5640     __ subl(idx, 1);
5641     __ subl(nIdx, 1);
5642     __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
5643     __ movl(tmp3, Address(oldArr, idx, Address::times_4));
5644     __ shrdl(tmp4, tmp3);
5645     __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
5646     __ BIND(Exit);
5647     // Restore callee save registers.
5648     __ pop(tmp5);
5649 #ifdef _WINDOWS
5650     __ pop(tmp4);
5651     __ pop(tmp3);
5652     restore_arg_regs();
5653 #endif
5654     __ leave(); // required for proper stackwalking of RuntimeStub frame
5655     __ ret(0);
5656     return start;
5657   }
5658 
5659    /**
5660    *  Arguments:
5661    *
5662    *  Input:
5663    *    c_rarg0   - newArr address
5664    *    c_rarg1   - oldArr address
5665    *    c_rarg2   - newIdx
5666    *    c_rarg3   - shiftCount
5667    * not Win64
5668    *    c_rarg4   - numIter
5669    * Win64
5670    *    rsp40    - numIter
5671    */
5672   address generate_bigIntegerLeftShift() {
5673     __ align(CodeEntryAlignment);
5674     StubCodeMark mark(this,  "StubRoutines", "bigIntegerLeftShiftWorker");
5675     address start = __ pc();
5676     Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
5677     // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
5678     const Register newArr = rdi;
5679     const Register oldArr = rsi;
5680     const Register newIdx = rdx;
5681     const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
5682     const Register totalNumIter = r8;
5683     // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
5684     // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
5685     const Register tmp1 = r11;                    // Caller save.
5686     const Register tmp2 = rax;                    // Caller save.
5687     const Register tmp3 = WINDOWS_ONLY(r12) NOT_WINDOWS(r9);   // Windows: Callee save. Linux: Caller save.
5688     const Register tmp4 = WINDOWS_ONLY(r13) NOT_WINDOWS(r10);  // Windows: Callee save. Linux: Caller save.
5689     const Register tmp5 = r14;                    // Callee save.
5690 
5691     const XMMRegister x0 = xmm0;
5692     const XMMRegister x1 = xmm1;
5693     const XMMRegister x2 = xmm2;
5694     BLOCK_COMMENT("Entry:");
5695     __ enter(); // required for proper stackwalking of RuntimeStub frame
5696 
5697 #ifdef _WINDOWS
5698     setup_arg_regs(4);
5699     // For windows, since last argument is on stack, we need to move it to the appropriate register.
5700     __ movl(totalNumIter, Address(rsp, 6 * wordSize));
5701     // Save callee save registers.
5702     __ push(tmp3);
5703     __ push(tmp4);
5704 #endif
5705     __ push(tmp5);
5706 
5707     // Rename temps used throughout the code
5708     const Register idx = tmp1;
5709     const Register numIterTmp = tmp2;
5710 
5711     // Start idx from zero.
5712     __ xorl(idx, idx);
5713     // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays.
5714     __ lea(newArr, Address(newArr, newIdx, Address::times_4));
5715     __ movl(numIterTmp, totalNumIter);
5716 
5717     // If vectorization is enabled, check if the number of iterations is at least 64
5718     // If not, then go to ShiftTwo shifting two numbers at a time
5719     if (VM_Version::supports_avx512_vbmi2()) {
5720       __ cmpl(totalNumIter, (AVX3Threshold/64));
5721       __ jcc(Assembler::less, ShiftTwo);
5722 
5723       if (AVX3Threshold < 16 * 64) {
5724         __ cmpl(totalNumIter, 16);
5725         __ jcc(Assembler::less, ShiftTwo);
5726       }
5727       __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
5728       __ subl(numIterTmp, 16);
5729       __ BIND(Shift512Loop);
5730       __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
5731       __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit);
5732       __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit);
5733       __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit);
5734       __ addl(idx, 16);
5735       __ subl(numIterTmp, 16);
5736       __ jcc(Assembler::greaterEqual, Shift512Loop);
5737       __ addl(numIterTmp, 16);
5738     }
5739     __ BIND(ShiftTwo);
5740     __ cmpl(totalNumIter, 1);
5741     __ jcc(Assembler::less, Exit);
5742     __ movl(tmp3, Address(oldArr, idx, Address::times_4));
5743     __ subl(numIterTmp, 2);
5744     __ jcc(Assembler::less, ShiftOne);
5745 
5746     __ BIND(ShiftTwoLoop);
5747     __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
5748     __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8));
5749     __ shldl(tmp3, tmp4);
5750     __ shldl(tmp4, tmp5);
5751     __ movl(Address(newArr, idx, Address::times_4), tmp3);
5752     __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4);
5753     __ movl(tmp3, tmp5);
5754     __ addl(idx, 2);
5755     __ subl(numIterTmp, 2);
5756     __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
5757 
5758     // Do the last iteration
5759     __ BIND(ShiftOne);
5760     __ addl(numIterTmp, 2);
5761     __ cmpl(numIterTmp, 1);
5762     __ jcc(Assembler::less, Exit);
5763     __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
5764     __ shldl(tmp3, tmp4);
5765     __ movl(Address(newArr, idx, Address::times_4), tmp3);
5766 
5767     __ BIND(Exit);
5768     // Restore callee save registers.
5769     __ pop(tmp5);
5770 #ifdef _WINDOWS
5771     __ pop(tmp4);
5772     __ pop(tmp3);
5773     restore_arg_regs();
5774 #endif
5775     __ leave(); // required for proper stackwalking of RuntimeStub frame
5776     __ ret(0);
5777     return start;
5778   }
5779 
5780   address generate_libmExp() {
5781     StubCodeMark mark(this, "StubRoutines", "libmExp");
5782 
5783     address start = __ pc();
5784 
5785     const XMMRegister x0  = xmm0;
5786     const XMMRegister x1  = xmm1;
5787     const XMMRegister x2  = xmm2;
5788     const XMMRegister x3  = xmm3;
5789 
5790     const XMMRegister x4  = xmm4;
5791     const XMMRegister x5  = xmm5;
5792     const XMMRegister x6  = xmm6;
5793     const XMMRegister x7  = xmm7;
5794 
5795     const Register tmp   = r11;
5796 
5797     BLOCK_COMMENT("Entry:");
5798     __ enter(); // required for proper stackwalking of RuntimeStub frame
5799 
5800     __ fast_exp(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
5801 
5802     __ leave(); // required for proper stackwalking of RuntimeStub frame
5803     __ ret(0);
5804 
5805     return start;
5806 
5807   }
5808 
5809   address generate_libmLog() {
5810     StubCodeMark mark(this, "StubRoutines", "libmLog");
5811 
5812     address start = __ pc();
5813 
5814     const XMMRegister x0 = xmm0;
5815     const XMMRegister x1 = xmm1;
5816     const XMMRegister x2 = xmm2;
5817     const XMMRegister x3 = xmm3;
5818 
5819     const XMMRegister x4 = xmm4;
5820     const XMMRegister x5 = xmm5;
5821     const XMMRegister x6 = xmm6;
5822     const XMMRegister x7 = xmm7;
5823 
5824     const Register tmp1 = r11;
5825     const Register tmp2 = r8;
5826 
5827     BLOCK_COMMENT("Entry:");
5828     __ enter(); // required for proper stackwalking of RuntimeStub frame
5829 
5830     __ fast_log(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2);
5831 
5832     __ leave(); // required for proper stackwalking of RuntimeStub frame
5833     __ ret(0);
5834 
5835     return start;
5836 
5837   }
5838 
5839   address generate_libmLog10() {
5840     StubCodeMark mark(this, "StubRoutines", "libmLog10");
5841 
5842     address start = __ pc();
5843 
5844     const XMMRegister x0 = xmm0;
5845     const XMMRegister x1 = xmm1;
5846     const XMMRegister x2 = xmm2;
5847     const XMMRegister x3 = xmm3;
5848 
5849     const XMMRegister x4 = xmm4;
5850     const XMMRegister x5 = xmm5;
5851     const XMMRegister x6 = xmm6;
5852     const XMMRegister x7 = xmm7;
5853 
5854     const Register tmp = r11;
5855 
5856     BLOCK_COMMENT("Entry:");
5857     __ enter(); // required for proper stackwalking of RuntimeStub frame
5858 
5859     __ fast_log10(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
5860 
5861     __ leave(); // required for proper stackwalking of RuntimeStub frame
5862     __ ret(0);
5863 
5864     return start;
5865 
5866   }
5867 
5868   address generate_libmPow() {
5869     StubCodeMark mark(this, "StubRoutines", "libmPow");
5870 
5871     address start = __ pc();
5872 
5873     const XMMRegister x0 = xmm0;
5874     const XMMRegister x1 = xmm1;
5875     const XMMRegister x2 = xmm2;
5876     const XMMRegister x3 = xmm3;
5877 
5878     const XMMRegister x4 = xmm4;
5879     const XMMRegister x5 = xmm5;
5880     const XMMRegister x6 = xmm6;
5881     const XMMRegister x7 = xmm7;
5882 
5883     const Register tmp1 = r8;
5884     const Register tmp2 = r9;
5885     const Register tmp3 = r10;
5886     const Register tmp4 = r11;
5887 
5888     BLOCK_COMMENT("Entry:");
5889     __ enter(); // required for proper stackwalking of RuntimeStub frame
5890 
5891     __ fast_pow(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4);
5892 
5893     __ leave(); // required for proper stackwalking of RuntimeStub frame
5894     __ ret(0);
5895 
5896     return start;
5897 
5898   }
5899 
5900   address generate_libmSin() {
5901     StubCodeMark mark(this, "StubRoutines", "libmSin");
5902 
5903     address start = __ pc();
5904 
5905     const XMMRegister x0 = xmm0;
5906     const XMMRegister x1 = xmm1;
5907     const XMMRegister x2 = xmm2;
5908     const XMMRegister x3 = xmm3;
5909 
5910     const XMMRegister x4 = xmm4;
5911     const XMMRegister x5 = xmm5;
5912     const XMMRegister x6 = xmm6;
5913     const XMMRegister x7 = xmm7;
5914 
5915     const Register tmp1 = r8;
5916     const Register tmp2 = r9;
5917     const Register tmp3 = r10;
5918     const Register tmp4 = r11;
5919 
5920     BLOCK_COMMENT("Entry:");
5921     __ enter(); // required for proper stackwalking of RuntimeStub frame
5922 
5923 #ifdef _WIN64
5924     __ push(rsi);
5925     __ push(rdi);
5926 #endif
5927     __ fast_sin(x0, x1, x2, x3, x4, x5, x6, x7, rax, rbx, rcx, rdx, tmp1, tmp2, tmp3, tmp4);
5928 
5929 #ifdef _WIN64
5930     __ pop(rdi);
5931     __ pop(rsi);
5932 #endif
5933 
5934     __ leave(); // required for proper stackwalking of RuntimeStub frame
5935     __ ret(0);
5936 
5937     return start;
5938 
5939   }
5940 
5941   address generate_libmCos() {
5942     StubCodeMark mark(this, "StubRoutines", "libmCos");
5943 
5944     address start = __ pc();
5945 
5946     const XMMRegister x0 = xmm0;
5947     const XMMRegister x1 = xmm1;
5948     const XMMRegister x2 = xmm2;
5949     const XMMRegister x3 = xmm3;
5950 
5951     const XMMRegister x4 = xmm4;
5952     const XMMRegister x5 = xmm5;
5953     const XMMRegister x6 = xmm6;
5954     const XMMRegister x7 = xmm7;
5955 
5956     const Register tmp1 = r8;
5957     const Register tmp2 = r9;
5958     const Register tmp3 = r10;
5959     const Register tmp4 = r11;
5960 
5961     BLOCK_COMMENT("Entry:");
5962     __ enter(); // required for proper stackwalking of RuntimeStub frame
5963 
5964 #ifdef _WIN64
5965     __ push(rsi);
5966     __ push(rdi);
5967 #endif
5968     __ fast_cos(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4);
5969 
5970 #ifdef _WIN64
5971     __ pop(rdi);
5972     __ pop(rsi);
5973 #endif
5974 
5975     __ leave(); // required for proper stackwalking of RuntimeStub frame
5976     __ ret(0);
5977 
5978     return start;
5979 
5980   }
5981 
5982   address generate_libmTan() {
5983     StubCodeMark mark(this, "StubRoutines", "libmTan");
5984 
5985     address start = __ pc();
5986 
5987     const XMMRegister x0 = xmm0;
5988     const XMMRegister x1 = xmm1;
5989     const XMMRegister x2 = xmm2;
5990     const XMMRegister x3 = xmm3;
5991 
5992     const XMMRegister x4 = xmm4;
5993     const XMMRegister x5 = xmm5;
5994     const XMMRegister x6 = xmm6;
5995     const XMMRegister x7 = xmm7;
5996 
5997     const Register tmp1 = r8;
5998     const Register tmp2 = r9;
5999     const Register tmp3 = r10;
6000     const Register tmp4 = r11;
6001 
6002     BLOCK_COMMENT("Entry:");
6003     __ enter(); // required for proper stackwalking of RuntimeStub frame
6004 
6005 #ifdef _WIN64
6006     __ push(rsi);
6007     __ push(rdi);
6008 #endif
6009     __ fast_tan(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4);
6010 
6011 #ifdef _WIN64
6012     __ pop(rdi);
6013     __ pop(rsi);
6014 #endif
6015 
6016     __ leave(); // required for proper stackwalking of RuntimeStub frame
6017     __ ret(0);
6018 
6019     return start;
6020 
6021   }
6022 
6023 #undef __
6024 #define __ masm->
6025 
6026   // Continuation point for throwing of implicit exceptions that are
6027   // not handled in the current activation. Fabricates an exception
6028   // oop and initiates normal exception dispatching in this
6029   // frame. Since we need to preserve callee-saved values (currently
6030   // only for C2, but done for C1 as well) we need a callee-saved oop
6031   // map and therefore have to make these stubs into RuntimeStubs
6032   // rather than BufferBlobs.  If the compiler needs all registers to
6033   // be preserved between the fault point and the exception handler
6034   // then it must assume responsibility for that in
6035   // AbstractCompiler::continuation_for_implicit_null_exception or
6036   // continuation_for_implicit_division_by_zero_exception. All other
6037   // implicit exceptions (e.g., NullPointerException or
6038   // AbstractMethodError on entry) are either at call sites or
6039   // otherwise assume that stack unwinding will be initiated, so
6040   // caller saved registers were assumed volatile in the compiler.
6041   address generate_throw_exception(const char* name,
6042                                    address runtime_entry,
6043                                    Register arg1 = noreg,
6044                                    Register arg2 = noreg) {
6045     // Information about frame layout at time of blocking runtime call.
6046     // Note that we only have to preserve callee-saved registers since
6047     // the compilers are responsible for supplying a continuation point
6048     // if they expect all registers to be preserved.
6049     enum layout {
6050       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
6051       rbp_off2,
6052       return_off,
6053       return_off2,
6054       framesize // inclusive of return address
6055     };
6056 
6057     int insts_size = 512;
6058     int locs_size  = 64;
6059 
6060     CodeBuffer code(name, insts_size, locs_size);
6061     OopMapSet* oop_maps  = new OopMapSet();
6062     MacroAssembler* masm = new MacroAssembler(&code);
6063 
6064     address start = __ pc();
6065 
6066     // This is an inlined and slightly modified version of call_VM
6067     // which has the ability to fetch the return PC out of
6068     // thread-local storage and also sets up last_Java_sp slightly
6069     // differently than the real call_VM
6070 
6071     __ enter(); // required for proper stackwalking of RuntimeStub frame
6072 
6073     assert(is_even(framesize/2), "sp not 16-byte aligned");
6074 
6075     // return address and rbp are already in place
6076     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
6077 
6078     int frame_complete = __ pc() - start;
6079 
6080     // Set up last_Java_sp and last_Java_fp
6081     address the_pc = __ pc();
6082     __ set_last_Java_frame(rsp, rbp, the_pc);
6083     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
6084 
6085     // Call runtime
6086     if (arg1 != noreg) {
6087       assert(arg2 != c_rarg1, "clobbered");
6088       __ movptr(c_rarg1, arg1);
6089     }
6090     if (arg2 != noreg) {
6091       __ movptr(c_rarg2, arg2);
6092     }
6093     __ movptr(c_rarg0, r15_thread);
6094     BLOCK_COMMENT("call runtime_entry");
6095     __ call(RuntimeAddress(runtime_entry));
6096 
6097     // Generate oop map
6098     OopMap* map = new OopMap(framesize, 0);
6099 
6100     oop_maps->add_gc_map(the_pc - start, map);
6101 
6102     __ reset_last_Java_frame(true);
6103 
6104     __ leave(); // required for proper stackwalking of RuntimeStub frame
6105 
6106     // check for pending exceptions
6107 #ifdef ASSERT
6108     Label L;
6109     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
6110             (int32_t) NULL_WORD);
6111     __ jcc(Assembler::notEqual, L);
6112     __ should_not_reach_here();
6113     __ bind(L);
6114 #endif // ASSERT
6115     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
6116 
6117 
6118     // codeBlob framesize is in words (not VMRegImpl::slot_size)
6119     RuntimeStub* stub =
6120       RuntimeStub::new_runtime_stub(name,
6121                                     &code,
6122                                     frame_complete,
6123                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
6124                                     oop_maps, false);
6125     return stub->entry_point();
6126   }
6127 
6128   void create_control_words() {
6129     // Round to nearest, 53-bit mode, exceptions masked
6130     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
6131     // Round to zero, 53-bit mode, exception mased
6132     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
6133     // Round to nearest, 24-bit mode, exceptions masked
6134     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
6135     // Round to nearest, 64-bit mode, exceptions masked
6136     StubRoutines::_mxcsr_std           = 0x1F80;
6137     // Note: the following two constants are 80-bit values
6138     //       layout is critical for correct loading by FPU.
6139     // Bias for strict fp multiply/divide
6140     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
6141     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
6142     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
6143     // Un-Bias for strict fp multiply/divide
6144     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
6145     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
6146     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
6147   }
6148 
6149   // Initialization
6150   void generate_initial() {
6151     // Generates all stubs and initializes the entry points
6152 
6153     // This platform-specific settings are needed by generate_call_stub()
6154     create_control_words();
6155 
6156     // entry points that exist in all platforms Note: This is code
6157     // that could be shared among different platforms - however the
6158     // benefit seems to be smaller than the disadvantage of having a
6159     // much more complicated generator structure. See also comment in
6160     // stubRoutines.hpp.
6161 
6162     StubRoutines::_forward_exception_entry = generate_forward_exception();
6163 
6164     StubRoutines::_call_stub_entry =
6165       generate_call_stub(StubRoutines::_call_stub_return_address);
6166 
6167     // is referenced by megamorphic call
6168     StubRoutines::_catch_exception_entry = generate_catch_exception();
6169 
6170     // atomic calls
6171     StubRoutines::_fence_entry                = generate_orderaccess_fence();
6172 
6173     // platform dependent
6174     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
6175     StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
6176 
6177     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
6178 
6179     StubRoutines::x86::_f2i_fixup             = generate_f2i_fixup();
6180     StubRoutines::x86::_f2l_fixup             = generate_f2l_fixup();
6181     StubRoutines::x86::_d2i_fixup             = generate_d2i_fixup();
6182     StubRoutines::x86::_d2l_fixup             = generate_d2l_fixup();
6183 
6184     StubRoutines::x86::_float_sign_mask       = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
6185     StubRoutines::x86::_float_sign_flip       = generate_fp_mask("float_sign_flip",  0x8000000080000000);
6186     StubRoutines::x86::_double_sign_mask      = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
6187     StubRoutines::x86::_double_sign_flip      = generate_fp_mask("double_sign_flip", 0x8000000000000000);
6188 
6189     // Build this early so it's available for the interpreter.
6190     StubRoutines::_throw_StackOverflowError_entry =
6191       generate_throw_exception("StackOverflowError throw_exception",
6192                                CAST_FROM_FN_PTR(address,
6193                                                 SharedRuntime::
6194                                                 throw_StackOverflowError));
6195     StubRoutines::_throw_delayed_StackOverflowError_entry =
6196       generate_throw_exception("delayed StackOverflowError throw_exception",
6197                                CAST_FROM_FN_PTR(address,
6198                                                 SharedRuntime::
6199                                                 throw_delayed_StackOverflowError));
6200     if (UseCRC32Intrinsics) {
6201       // set table address before stub generation which use it
6202       StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
6203       StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
6204     }
6205 
6206     if (UseCRC32CIntrinsics) {
6207       bool supports_clmul = VM_Version::supports_clmul();
6208       StubRoutines::x86::generate_CRC32C_table(supports_clmul);
6209       StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table;
6210       StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
6211     }
6212     if (UseLibmIntrinsic && InlineIntrinsics) {
6213       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) ||
6214           vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos) ||
6215           vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
6216         StubRoutines::x86::_ONEHALF_adr = (address)StubRoutines::x86::_ONEHALF;
6217         StubRoutines::x86::_P_2_adr = (address)StubRoutines::x86::_P_2;
6218         StubRoutines::x86::_SC_4_adr = (address)StubRoutines::x86::_SC_4;
6219         StubRoutines::x86::_Ctable_adr = (address)StubRoutines::x86::_Ctable;
6220         StubRoutines::x86::_SC_2_adr = (address)StubRoutines::x86::_SC_2;
6221         StubRoutines::x86::_SC_3_adr = (address)StubRoutines::x86::_SC_3;
6222         StubRoutines::x86::_SC_1_adr = (address)StubRoutines::x86::_SC_1;
6223         StubRoutines::x86::_PI_INV_TABLE_adr = (address)StubRoutines::x86::_PI_INV_TABLE;
6224         StubRoutines::x86::_PI_4_adr = (address)StubRoutines::x86::_PI_4;
6225         StubRoutines::x86::_PI32INV_adr = (address)StubRoutines::x86::_PI32INV;
6226         StubRoutines::x86::_SIGN_MASK_adr = (address)StubRoutines::x86::_SIGN_MASK;
6227         StubRoutines::x86::_P_1_adr = (address)StubRoutines::x86::_P_1;
6228         StubRoutines::x86::_P_3_adr = (address)StubRoutines::x86::_P_3;
6229         StubRoutines::x86::_NEG_ZERO_adr = (address)StubRoutines::x86::_NEG_ZERO;
6230       }
6231       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
6232         StubRoutines::_dexp = generate_libmExp();
6233       }
6234       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
6235         StubRoutines::_dlog = generate_libmLog();
6236       }
6237       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
6238         StubRoutines::_dlog10 = generate_libmLog10();
6239       }
6240       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
6241         StubRoutines::_dpow = generate_libmPow();
6242       }
6243       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
6244         StubRoutines::_dsin = generate_libmSin();
6245       }
6246       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
6247         StubRoutines::_dcos = generate_libmCos();
6248       }
6249       if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
6250         StubRoutines::_dtan = generate_libmTan();
6251       }
6252     }
6253 
6254     // Safefetch stubs.
6255     generate_safefetch("SafeFetch32", sizeof(int),     &StubRoutines::_safefetch32_entry,
6256                                                        &StubRoutines::_safefetch32_fault_pc,
6257                                                        &StubRoutines::_safefetch32_continuation_pc);
6258     generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
6259                                                        &StubRoutines::_safefetchN_fault_pc,
6260                                                        &StubRoutines::_safefetchN_continuation_pc);
6261   }
6262 
6263   void generate_all() {
6264     // Generates all stubs and initializes the entry points
6265 
6266     // These entry points require SharedInfo::stack0 to be set up in
6267     // non-core builds and need to be relocatable, so they each
6268     // fabricate a RuntimeStub internally.
6269     StubRoutines::_throw_AbstractMethodError_entry =
6270       generate_throw_exception("AbstractMethodError throw_exception",
6271                                CAST_FROM_FN_PTR(address,
6272                                                 SharedRuntime::
6273                                                 throw_AbstractMethodError));
6274 
6275     StubRoutines::_throw_IncompatibleClassChangeError_entry =
6276       generate_throw_exception("IncompatibleClassChangeError throw_exception",
6277                                CAST_FROM_FN_PTR(address,
6278                                                 SharedRuntime::
6279                                                 throw_IncompatibleClassChangeError));
6280 
6281     StubRoutines::_throw_NullPointerException_at_call_entry =
6282       generate_throw_exception("NullPointerException at call throw_exception",
6283                                CAST_FROM_FN_PTR(address,
6284                                                 SharedRuntime::
6285                                                 throw_NullPointerException_at_call));
6286 
6287     // entry points that are platform specific
6288     StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF);
6289     StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000);
6290     StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF);
6291     StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000);
6292     StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff);
6293     StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask");
6294     StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000);
6295 
6296     // support for verify_oop (must happen after universe_init)
6297     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
6298 
6299     // data cache line writeback
6300     StubRoutines::_data_cache_writeback = generate_data_cache_writeback();
6301     StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync();
6302 
6303     // arraycopy stubs used by compilers
6304     generate_arraycopy_stubs();
6305 
6306     // don't bother generating these AES intrinsic stubs unless global flag is set
6307     if (UseAESIntrinsics) {
6308       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // needed by the others
6309       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
6310       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
6311       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
6312       if (VM_Version::supports_avx512_vaes() &&  VM_Version::supports_avx512vl() && VM_Version::supports_avx512dq() ) {
6313         StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptVectorAESCrypt();
6314         StubRoutines::_electronicCodeBook_encryptAESCrypt = generate_electronicCodeBook_encryptAESCrypt();
6315         StubRoutines::_electronicCodeBook_decryptAESCrypt = generate_electronicCodeBook_decryptAESCrypt();
6316       } else {
6317         StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
6318       }
6319     }
6320     if (UseAESCTRIntrinsics) {
6321       if (VM_Version::supports_avx512_vaes() && VM_Version::supports_avx512bw() && VM_Version::supports_avx512vl()) {
6322         StubRoutines::x86::_counter_mask_addr = counter_mask_addr();
6323         StubRoutines::_counterMode_AESCrypt = generate_counterMode_VectorAESCrypt();
6324       } else {
6325         StubRoutines::x86::_counter_shuffle_mask_addr = generate_counter_shuffle_mask();
6326         StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt_Parallel();
6327       }
6328     }
6329 
6330     if (UseSHA1Intrinsics) {
6331       StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
6332       StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
6333       StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress");
6334       StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB");
6335     }
6336     if (UseSHA256Intrinsics) {
6337       StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
6338       char* dst = (char*)StubRoutines::x86::_k256_W;
6339       char* src = (char*)StubRoutines::x86::_k256;
6340       for (int ii = 0; ii < 16; ++ii) {
6341         memcpy(dst + 32 * ii,      src + 16 * ii, 16);
6342         memcpy(dst + 32 * ii + 16, src + 16 * ii, 16);
6343       }
6344       StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W;
6345       StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
6346       StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress");
6347       StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB");
6348     }
6349     if (UseSHA512Intrinsics) {
6350       StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W;
6351       StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512();
6352       StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress");
6353       StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB");
6354     }
6355 
6356     // Generate GHASH intrinsics code
6357     if (UseGHASHIntrinsics) {
6358     StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask();
6359     StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask();
6360       if (VM_Version::supports_avx()) {
6361         StubRoutines::x86::_ghash_shuffmask_addr = ghash_shufflemask_addr();
6362         StubRoutines::x86::_ghash_poly_addr = ghash_polynomial_addr();
6363         StubRoutines::_ghash_processBlocks = generate_avx_ghash_processBlocks();
6364       } else {
6365         StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
6366       }
6367     }
6368 
6369     if (UseBASE64Intrinsics) {
6370       StubRoutines::x86::_and_mask = base64_and_mask_addr();
6371       StubRoutines::x86::_bswap_mask = base64_bswap_mask_addr();
6372       StubRoutines::x86::_base64_charset = base64_charset_addr();
6373       StubRoutines::x86::_url_charset = base64url_charset_addr();
6374       StubRoutines::x86::_gather_mask = base64_gather_mask_addr();
6375       StubRoutines::x86::_left_shift_mask = base64_left_shift_mask_addr();
6376       StubRoutines::x86::_right_shift_mask = base64_right_shift_mask_addr();
6377       StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock();
6378     }
6379 
6380     BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
6381     if (bs_nm != NULL) {
6382       StubRoutines::x86::_method_entry_barrier = generate_method_entry_barrier();
6383     }
6384 #ifdef COMPILER2
6385     if (UseMultiplyToLenIntrinsic) {
6386       StubRoutines::_multiplyToLen = generate_multiplyToLen();
6387     }
6388     if (UseSquareToLenIntrinsic) {
6389       StubRoutines::_squareToLen = generate_squareToLen();
6390     }
6391     if (UseMulAddIntrinsic) {
6392       StubRoutines::_mulAdd = generate_mulAdd();
6393     }
6394     if (VM_Version::supports_avx512_vbmi2()) {
6395       StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
6396       StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
6397     }
6398     if (UseMontgomeryMultiplyIntrinsic) {
6399       StubRoutines::_montgomeryMultiply
6400         = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
6401     }
6402     if (UseMontgomerySquareIntrinsic) {
6403       StubRoutines::_montgomerySquare
6404         = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
6405     }
6406 #endif // COMPILER2
6407 
6408     if (UseVectorizedMismatchIntrinsic) {
6409       StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch();
6410     }
6411   }
6412 
6413  public:
6414   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
6415     if (all) {
6416       generate_all();
6417     } else {
6418       generate_initial();
6419     }
6420   }
6421 }; // end class declaration
6422 
6423 #define UCM_TABLE_MAX_ENTRIES 16
6424 void StubGenerator_generate(CodeBuffer* code, bool all) {
6425   if (UnsafeCopyMemory::_table == NULL) {
6426     UnsafeCopyMemory::create_table(UCM_TABLE_MAX_ENTRIES);
6427   }
6428   StubGenerator g(code, all);
6429 }