/* * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP #include "asm/register.hpp" // definitions of various symbolic names for machine registers // First intercalls between C and Java which use 8 general registers // and 8 floating registers // we also have to copy between x86 and ARM registers but that's a // secondary complication -- not all code employing C call convention // executes as x86 code though -- we generate some of it class Argument { public: enum { n_int_register_parameters_c = 8, // r0, r1, ... r7 (c_rarg0, c_rarg1, ...) n_float_register_parameters_c = 8, // v0, v1, ... v7 (c_farg0, c_farg1, ... ) n_int_register_parameters_j = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ... n_float_register_parameters_j = 8 // v0, v1, ... v7 (j_farg0, j_farg1, ... }; }; REGISTER_DECLARATION(Register, c_rarg0, r0); REGISTER_DECLARATION(Register, c_rarg1, r1); REGISTER_DECLARATION(Register, c_rarg2, r2); REGISTER_DECLARATION(Register, c_rarg3, r3); REGISTER_DECLARATION(Register, c_rarg4, r4); REGISTER_DECLARATION(Register, c_rarg5, r5); REGISTER_DECLARATION(Register, c_rarg6, r6); REGISTER_DECLARATION(Register, c_rarg7, r7); REGISTER_DECLARATION(FloatRegister, c_farg0, v0); REGISTER_DECLARATION(FloatRegister, c_farg1, v1); REGISTER_DECLARATION(FloatRegister, c_farg2, v2); REGISTER_DECLARATION(FloatRegister, c_farg3, v3); REGISTER_DECLARATION(FloatRegister, c_farg4, v4); REGISTER_DECLARATION(FloatRegister, c_farg5, v5); REGISTER_DECLARATION(FloatRegister, c_farg6, v6); REGISTER_DECLARATION(FloatRegister, c_farg7, v7); // Symbolically name the register arguments used by the Java calling convention. // We have control over the convention for java so we can do what we please. // What pleases us is to offset the java calling convention so that when // we call a suitable jni method the arguments are lined up and we don't // have to do much shuffling. A suitable jni method is non-static and a // small number of arguments // // |--------------------------------------------------------------------| // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7 | // |--------------------------------------------------------------------| // | r0 r1 r2 r3 r4 r5 r6 r7 | // |--------------------------------------------------------------------| // | j_rarg7 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6 | // |--------------------------------------------------------------------| REGISTER_DECLARATION(Register, j_rarg0, c_rarg1); REGISTER_DECLARATION(Register, j_rarg1, c_rarg2); REGISTER_DECLARATION(Register, j_rarg2, c_rarg3); REGISTER_DECLARATION(Register, j_rarg3, c_rarg4); REGISTER_DECLARATION(Register, j_rarg4, c_rarg5); REGISTER_DECLARATION(Register, j_rarg5, c_rarg6); REGISTER_DECLARATION(Register, j_rarg6, c_rarg7); REGISTER_DECLARATION(Register, j_rarg7, c_rarg0); // Java floating args are passed as per C REGISTER_DECLARATION(FloatRegister, j_farg0, v0); REGISTER_DECLARATION(FloatRegister, j_farg1, v1); REGISTER_DECLARATION(FloatRegister, j_farg2, v2); REGISTER_DECLARATION(FloatRegister, j_farg3, v3); REGISTER_DECLARATION(FloatRegister, j_farg4, v4); REGISTER_DECLARATION(FloatRegister, j_farg5, v5); REGISTER_DECLARATION(FloatRegister, j_farg6, v6); REGISTER_DECLARATION(FloatRegister, j_farg7, v7); // registers used to hold VM data either temporarily within a method // or across method calls // volatile (caller-save) registers // r8 is used for indirect result location return // we use it and r9 as scratch registers REGISTER_DECLARATION(Register, rscratch1, r8); REGISTER_DECLARATION(Register, rscratch2, r9); // current method -- must be in a call-clobbered register REGISTER_DECLARATION(Register, rmethod, r12); // non-volatile (callee-save) registers are r16-29 // of which the following are dedicated global state // link register REGISTER_DECLARATION(Register, lr, r30); // frame pointer REGISTER_DECLARATION(Register, rfp, r29); // current thread REGISTER_DECLARATION(Register, rthread, r28); // base of heap REGISTER_DECLARATION(Register, rheapbase, r27); // constant pool cache REGISTER_DECLARATION(Register, rcpool, r26); // monitors allocated on stack REGISTER_DECLARATION(Register, rmonitors, r25); // locals on stack REGISTER_DECLARATION(Register, rlocals, r24); // bytecode pointer REGISTER_DECLARATION(Register, rbcp, r22); // Dispatch table base REGISTER_DECLARATION(Register, rdispatch, r21); // Java stack pointer REGISTER_DECLARATION(Register, esp, r20); #define assert_cond(ARG1) assert(ARG1, #ARG1) namespace asm_util { uint32_t encode_logical_immediate(bool is32, uint64_t imm); }; using namespace asm_util; class Assembler; class Instruction_aarch64 { unsigned insn; #ifdef ASSERT unsigned bits; #endif Assembler *assem; public: Instruction_aarch64(class Assembler *as) { #ifdef ASSERT bits = 0; #endif insn = 0; assem = as; } inline ~Instruction_aarch64(); unsigned &get_insn() { return insn; } #ifdef ASSERT unsigned &get_bits() { return bits; } #endif static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) { union { unsigned u; int n; }; u = val << (31 - hi); n = n >> (31 - hi + lo); return n; } static inline uint32_t extract(uint32_t val, int msb, int lsb) { int nbits = msb - lsb + 1; assert_cond(msb >= lsb); uint32_t mask = (1U << nbits) - 1; uint32_t result = val >> lsb; result &= mask; return result; } static inline int32_t sextract(uint32_t val, int msb, int lsb) { uint32_t uval = extract(val, msb, lsb); return extend(uval, msb - lsb); } static void patch(address a, int msb, int lsb, uint64_t val) { int nbits = msb - lsb + 1; guarantee(val < (1U << nbits), "Field too big for insn"); assert_cond(msb >= lsb); unsigned mask = (1U << nbits) - 1; val <<= lsb; mask <<= lsb; unsigned target = *(unsigned *)a; target &= ~mask; target |= val; *(unsigned *)a = target; } static void spatch(address a, int msb, int lsb, int64_t val) { int nbits = msb - lsb + 1; int64_t chk = val >> (nbits - 1); guarantee (chk == -1 || chk == 0, "Field too big for insn"); unsigned uval = val; unsigned mask = (1U << nbits) - 1; uval &= mask; uval <<= lsb; mask <<= lsb; unsigned target = *(unsigned *)a; target &= ~mask; target |= uval; *(unsigned *)a = target; } void f(unsigned val, int msb, int lsb) { int nbits = msb - lsb + 1; guarantee(val < (1U << nbits), "Field too big for insn"); assert_cond(msb >= lsb); unsigned mask = (1U << nbits) - 1; val <<= lsb; mask <<= lsb; insn |= val; assert_cond((bits & mask) == 0); #ifdef ASSERT bits |= mask; #endif } void f(unsigned val, int bit) { f(val, bit, bit); } void sf(int64_t val, int msb, int lsb) { int nbits = msb - lsb + 1; int64_t chk = val >> (nbits - 1); guarantee (chk == -1 || chk == 0, "Field too big for insn"); unsigned uval = val; unsigned mask = (1U << nbits) - 1; uval &= mask; f(uval, lsb + nbits - 1, lsb); } void rf(Register r, int lsb) { f(r->encoding_nocheck(), lsb + 4, lsb); } // reg|ZR void zrf(Register r, int lsb) { f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb); } // reg|SP void srf(Register r, int lsb) { f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb); } void rf(FloatRegister r, int lsb) { f(r->encoding_nocheck(), lsb + 4, lsb); } unsigned get(int msb = 31, int lsb = 0) { int nbits = msb - lsb + 1; unsigned mask = ((1U << nbits) - 1) << lsb; assert_cond((bits & mask) == mask); return (insn & mask) >> lsb; } void fixed(unsigned value, unsigned mask) { assert_cond ((mask & bits) == 0); #ifdef ASSERT bits |= mask; #endif insn |= value; } }; #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use) class PrePost { int _offset; Register _r; public: PrePost(Register reg, int o) : _offset(o), _r(reg) { } int offset() { return _offset; } Register reg() { return _r; } }; class Pre : public PrePost { public: Pre(Register reg, int o) : PrePost(reg, o) { } }; class Post : public PrePost { Register _idx; bool _is_postreg; public: Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; _is_postreg = false; } Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; _is_postreg = true; } Register idx_reg() { return _idx; } bool is_postreg() {return _is_postreg; } }; namespace ext { enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx }; }; // Addressing modes class Address { public: enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel, base_plus_offset_reg, literal }; // Shift and extend for base reg + reg offset addressing class extend { int _option, _shift; ext::operation _op; public: extend() { } extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { } int option() const{ return _option; } int shift() const { return _shift; } ext::operation op() const { return _op; } }; class uxtw : public extend { public: uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { } }; class lsl : public extend { public: lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { } }; class sxtw : public extend { public: sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { } }; class sxtx : public extend { public: sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { } }; private: Register _base; Register _index; int64_t _offset; enum mode _mode; extend _ext; RelocationHolder _rspec; // Typically we use AddressLiterals we want to use their rval // However in some situations we want the lval (effect address) of // the item. We provide a special factory for making those lvals. bool _is_lval; // If the target is far we'll need to load the ea of this to a // register to reach it. Otherwise if near we can do PC-relative // addressing. address _target; public: Address() : _mode(no_mode) { } Address(Register r) : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { } Address(Register r, int o) : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { } Address(Register r, int64_t o) : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { } Address(Register r, uint64_t o) : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { } #ifdef ASSERT Address(Register r, ByteSize disp) : _base(r), _index(noreg), _offset(in_bytes(disp)), _mode(base_plus_offset), _target(0) { } #endif Address(Register r, Register r1, extend ext = lsl()) : _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg), _ext(ext), _target(0) { } Address(Pre p) : _base(p.reg()), _offset(p.offset()), _mode(pre) { } Address(Post p) : _base(p.reg()), _index(p.idx_reg()), _offset(p.offset()), _mode(p.is_postreg() ? post_reg : post), _target(0) { } Address(address target, RelocationHolder const& rspec) : _mode(literal), _rspec(rspec), _is_lval(false), _target(target) { } Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type); Address(Register base, RegisterOrConstant index, extend ext = lsl()) : _base (base), _offset(0), _ext(ext), _target(0) { if (index.is_register()) { _mode = base_plus_offset_reg; _index = index.as_register(); } else { guarantee(ext.option() == ext::uxtx, "should be"); assert(index.is_constant(), "should be"); _mode = base_plus_offset; _offset = index.as_constant() << ext.shift(); } } Register base() const { guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg | _mode == post | _mode == post_reg), "wrong mode"); return _base; } int64_t offset() const { return _offset; } Register index() const { return _index; } mode getMode() const { return _mode; } bool uses(Register reg) const { return _base == reg || _index == reg; } address target() const { return _target; } const RelocationHolder& rspec() const { return _rspec; } void encode(Instruction_aarch64 *i) const { i->f(0b111, 29, 27); i->srf(_base, 5); switch(_mode) { case base_plus_offset: { unsigned size = i->get(31, 30); if (i->get(26, 26) && i->get(23, 23)) { // SIMD Q Type - Size = 128 bits assert(size == 0, "bad size"); size = 0b100; } unsigned mask = (1 << size) - 1; if (_offset < 0 || _offset & mask) { i->f(0b00, 25, 24); i->f(0, 21), i->f(0b00, 11, 10); i->sf(_offset, 20, 12); } else { i->f(0b01, 25, 24); i->f(_offset >> size, 21, 10); } } break; case base_plus_offset_reg: { i->f(0b00, 25, 24); i->f(1, 21); i->rf(_index, 16); i->f(_ext.option(), 15, 13); unsigned size = i->get(31, 30); if (i->get(26, 26) && i->get(23, 23)) { // SIMD Q Type - Size = 128 bits assert(size == 0, "bad size"); size = 0b100; } if (size == 0) // It's a byte i->f(_ext.shift() >= 0, 12); else { if (_ext.shift() > 0) assert(_ext.shift() == (int)size, "bad shift"); i->f(_ext.shift() > 0, 12); } i->f(0b10, 11, 10); } break; case pre: i->f(0b00, 25, 24); i->f(0, 21), i->f(0b11, 11, 10); i->sf(_offset, 20, 12); break; case post: i->f(0b00, 25, 24); i->f(0, 21), i->f(0b01, 11, 10); i->sf(_offset, 20, 12); break; default: ShouldNotReachHere(); } } void encode_pair(Instruction_aarch64 *i) const { switch(_mode) { case base_plus_offset: i->f(0b010, 25, 23); break; case pre: i->f(0b011, 25, 23); break; case post: i->f(0b001, 25, 23); break; default: ShouldNotReachHere(); } unsigned size; // Operand shift in 32-bit words if (i->get(26, 26)) { // float switch(i->get(31, 30)) { case 0b10: size = 2; break; case 0b01: size = 1; break; case 0b00: size = 0; break; default: ShouldNotReachHere(); size = 0; // unreachable } } else { size = i->get(31, 31); } size = 4 << size; guarantee(_offset % size == 0, "bad offset"); i->sf(_offset / size, 21, 15); i->srf(_base, 5); } void encode_nontemporal_pair(Instruction_aarch64 *i) const { // Only base + offset is allowed i->f(0b000, 25, 23); unsigned size = i->get(31, 31); size = 4 << size; guarantee(_offset % size == 0, "bad offset"); i->sf(_offset / size, 21, 15); i->srf(_base, 5); guarantee(_mode == Address::base_plus_offset, "Bad addressing mode for non-temporal op"); } void lea(MacroAssembler *, Register) const; static bool offset_ok_for_immed(int64_t offset, int shift) { unsigned mask = (1 << shift) - 1; if (offset < 0 || offset & mask) { return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset } else { return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset } } }; // Convience classes class RuntimeAddress: public Address { public: RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {} }; class OopAddress: public Address { public: OopAddress(address target) : Address(target, relocInfo::oop_type){} }; class ExternalAddress: public Address { private: static relocInfo::relocType reloc_for_target(address target) { // Sometimes ExternalAddress is used for values which aren't // exactly addresses, like the card table base. // external_word_type can't be used for values in the first page // so just skip the reloc in that case. return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none; } public: ExternalAddress(address target) : Address(target, reloc_for_target(target)) {} }; class InternalAddress: public Address { public: InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {} }; const int FPUStateSizeInWords = FloatRegisterImpl::number_of_registers * FloatRegisterImpl::save_slots_per_register; typedef enum { PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM, PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM, PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM } prfop; class Assembler : public AbstractAssembler { #ifndef PRODUCT static const uint64_t asm_bp; void emit_long(jint x) { if ((uint64_t)pc() == asm_bp) asm volatile ("nop"); AbstractAssembler::emit_int32(x); } #else void emit_long(jint x) { AbstractAssembler::emit_int32(x); } #endif public: enum { instruction_size = 4 }; //---< calculate length of instruction >--- // We just use the values set above. // instruction must start at passed address static unsigned int instr_len(unsigned char *instr) { return instruction_size; } //---< longest instructions >--- static unsigned int instr_maxlen() { return instruction_size; } Address adjust(Register base, int offset, bool preIncrement) { if (preIncrement) return Address(Pre(base, offset)); else return Address(Post(base, offset)); } Address pre(Register base, int offset) { return adjust(base, offset, true); } Address post(Register base, int offset) { return adjust(base, offset, false); } Address post(Register base, Register idx) { return Address(Post(base, idx)); } Instruction_aarch64* current; void set_current(Instruction_aarch64* i) { current = i; } void f(unsigned val, int msb, int lsb) { current->f(val, msb, lsb); } void f(unsigned val, int msb) { current->f(val, msb, msb); } void sf(int64_t val, int msb, int lsb) { current->sf(val, msb, lsb); } void rf(Register reg, int lsb) { current->rf(reg, lsb); } void srf(Register reg, int lsb) { current->srf(reg, lsb); } void zrf(Register reg, int lsb) { current->zrf(reg, lsb); } void rf(FloatRegister reg, int lsb) { current->rf(reg, lsb); } void fixed(unsigned value, unsigned mask) { current->fixed(value, mask); } void emit() { emit_long(current->get_insn()); assert_cond(current->get_bits() == 0xffffffff); current = NULL; } typedef void (Assembler::* uncond_branch_insn)(address dest); typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest); typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest); typedef void (Assembler::* prefetch_insn)(address target, prfop); void wrap_label(Label &L, uncond_branch_insn insn); void wrap_label(Register r, Label &L, compare_and_branch_insn insn); void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn); void wrap_label(Label &L, prfop, prefetch_insn insn); // PC-rel. addressing void adr(Register Rd, address dest); void _adrp(Register Rd, address dest); void adr(Register Rd, const Address &dest); void _adrp(Register Rd, const Address &dest); void adr(Register Rd, Label &L) { wrap_label(Rd, L, &Assembler::Assembler::adr); } void _adrp(Register Rd, Label &L) { wrap_label(Rd, L, &Assembler::_adrp); } void adrp(Register Rd, const Address &dest, uint64_t &offset); #undef INSN void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op, int negated_op); // Add/subtract (immediate) #define INSN(NAME, decode, negated) \ void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) { \ starti; \ f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \ zrf(Rd, 0), srf(Rn, 5); \ } \ \ void NAME(Register Rd, Register Rn, unsigned imm) { \ starti; \ add_sub_immediate(Rd, Rn, imm, decode, negated); \ } INSN(addsw, 0b001, 0b011); INSN(subsw, 0b011, 0b001); INSN(adds, 0b101, 0b111); INSN(subs, 0b111, 0b101); #undef INSN #define INSN(NAME, decode, negated) \ void NAME(Register Rd, Register Rn, unsigned imm) { \ starti; \ add_sub_immediate(Rd, Rn, imm, decode, negated); \ } INSN(addw, 0b000, 0b010); INSN(subw, 0b010, 0b000); INSN(add, 0b100, 0b110); INSN(sub, 0b110, 0b100); #undef INSN // Logical (immediate) #define INSN(NAME, decode, is32) \ void NAME(Register Rd, Register Rn, uint64_t imm) { \ starti; \ uint32_t val = encode_logical_immediate(is32, imm); \ f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \ srf(Rd, 0), zrf(Rn, 5); \ } INSN(andw, 0b000, true); INSN(orrw, 0b001, true); INSN(eorw, 0b010, true); INSN(andr, 0b100, false); INSN(orr, 0b101, false); INSN(eor, 0b110, false); #undef INSN #define INSN(NAME, decode, is32) \ void NAME(Register Rd, Register Rn, uint64_t imm) { \ starti; \ uint32_t val = encode_logical_immediate(is32, imm); \ f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \ zrf(Rd, 0), zrf(Rn, 5); \ } INSN(ands, 0b111, false); INSN(andsw, 0b011, true); #undef INSN // Move wide (immediate) #define INSN(NAME, opcode) \ void NAME(Register Rd, unsigned imm, unsigned shift = 0) { \ assert_cond((shift/16)*16 == shift); \ starti; \ f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21), \ f(imm, 20, 5); \ rf(Rd, 0); \ } INSN(movnw, 0b000); INSN(movzw, 0b010); INSN(movkw, 0b011); INSN(movn, 0b100); INSN(movz, 0b110); INSN(movk, 0b111); #undef INSN // Bitfield #define INSN(NAME, opcode, size) \ void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) { \ starti; \ guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\ f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10); \ zrf(Rn, 5), rf(Rd, 0); \ } INSN(sbfmw, 0b0001001100, 0); INSN(bfmw, 0b0011001100, 0); INSN(ubfmw, 0b0101001100, 0); INSN(sbfm, 0b1001001101, 1); INSN(bfm, 0b1011001101, 1); INSN(ubfm, 0b1101001101, 1); #undef INSN // Extract #define INSN(NAME, opcode, size) \ void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) { \ starti; \ guarantee(size == 1 || imms < 32, "incorrect imms"); \ f(opcode, 31, 21), f(imms, 15, 10); \ zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \ } INSN(extrw, 0b00010011100, 0); INSN(extr, 0b10010011110, 1); #undef INSN // The maximum range of a branch is fixed for the AArch64 // architecture. In debug mode we shrink it in order to test // trampolines, but not so small that branches in the interpreter // are out of range. static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M); static bool reachable_from_branch_at(address branch, address target) { return uabs(target - branch) < branch_range; } // Unconditional branch (immediate) #define INSN(NAME, opcode) \ void NAME(address dest) { \ starti; \ int64_t offset = (dest - pc()) >> 2; \ DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \ f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0); \ } \ void NAME(Label &L) { \ wrap_label(L, &Assembler::NAME); \ } \ void NAME(const Address &dest); INSN(b, 0); INSN(bl, 1); #undef INSN // Compare & branch (immediate) #define INSN(NAME, opcode) \ void NAME(Register Rt, address dest) { \ int64_t offset = (dest - pc()) >> 2; \ starti; \ f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0); \ } \ void NAME(Register Rt, Label &L) { \ wrap_label(Rt, L, &Assembler::NAME); \ } INSN(cbzw, 0b00110100); INSN(cbnzw, 0b00110101); INSN(cbz, 0b10110100); INSN(cbnz, 0b10110101); #undef INSN // Test & branch (immediate) #define INSN(NAME, opcode) \ void NAME(Register Rt, int bitpos, address dest) { \ int64_t offset = (dest - pc()) >> 2; \ int b5 = bitpos >> 5; \ bitpos &= 0x1f; \ starti; \ f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \ rf(Rt, 0); \ } \ void NAME(Register Rt, int bitpos, Label &L) { \ wrap_label(Rt, bitpos, L, &Assembler::NAME); \ } INSN(tbz, 0b0110110); INSN(tbnz, 0b0110111); #undef INSN // Conditional branch (immediate) enum Condition {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV}; void br(Condition cond, address dest) { int64_t offset = (dest - pc()) >> 2; starti; f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0); } #define INSN(NAME, cond) \ void NAME(address dest) { \ br(cond, dest); \ } INSN(beq, EQ); INSN(bne, NE); INSN(bhs, HS); INSN(bcs, CS); INSN(blo, LO); INSN(bcc, CC); INSN(bmi, MI); INSN(bpl, PL); INSN(bvs, VS); INSN(bvc, VC); INSN(bhi, HI); INSN(bls, LS); INSN(bge, GE); INSN(blt, LT); INSN(bgt, GT); INSN(ble, LE); INSN(bal, AL); INSN(bnv, NV); void br(Condition cc, Label &L); #undef INSN // Exception generation void generate_exception(int opc, int op2, int LL, unsigned imm) { starti; f(0b11010100, 31, 24); f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0); } #define INSN(NAME, opc, op2, LL) \ void NAME(unsigned imm) { \ generate_exception(opc, op2, LL, imm); \ } INSN(svc, 0b000, 0, 0b01); INSN(hvc, 0b000, 0, 0b10); INSN(smc, 0b000, 0, 0b11); INSN(brk, 0b001, 0, 0b00); INSN(hlt, 0b010, 0, 0b00); INSN(dcps1, 0b101, 0, 0b01); INSN(dcps2, 0b101, 0, 0b10); INSN(dcps3, 0b101, 0, 0b11); #undef INSN // System void system(int op0, int op1, int CRn, int CRm, int op2, Register rt = dummy_reg) { starti; f(0b11010101000, 31, 21); f(op0, 20, 19); f(op1, 18, 16); f(CRn, 15, 12); f(CRm, 11, 8); f(op2, 7, 5); rf(rt, 0); } void hint(int imm) { system(0b00, 0b011, 0b0010, 0b0000, imm); } void nop() { hint(0); } void yield() { hint(1); } void wfe() { hint(2); } void wfi() { hint(3); } void sev() { hint(4); } void sevl() { hint(5); } // we only provide mrs and msr for the special purpose system // registers where op1 (instr[20:19]) == 11 and, (currently) only // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1 void msr(int op1, int CRn, int CRm, int op2, Register rt) { starti; f(0b1101010100011, 31, 19); f(op1, 18, 16); f(CRn, 15, 12); f(CRm, 11, 8); f(op2, 7, 5); // writing zr is ok zrf(rt, 0); } void mrs(int op1, int CRn, int CRm, int op2, Register rt) { starti; f(0b1101010100111, 31, 19); f(op1, 18, 16); f(CRn, 15, 12); f(CRm, 11, 8); f(op2, 7, 5); // reading to zr is a mistake rf(rt, 0); } enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH, ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY}; void dsb(barrier imm) { system(0b00, 0b011, 0b00011, imm, 0b100); } void dmb(barrier imm) { system(0b00, 0b011, 0b00011, imm, 0b101); } void isb() { system(0b00, 0b011, 0b00011, SY, 0b110); } void sys(int op1, int CRn, int CRm, int op2, Register rt = (Register)0b11111) { system(0b01, op1, CRn, CRm, op2, rt); } // Only implement operations accessible from EL0 or higher, i.e., // op1 CRn CRm op2 // IC IVAU 3 7 5 1 // DC CVAC 3 7 10 1 // DC CVAP 3 7 12 1 // DC CVAU 3 7 11 1 // DC CIVAC 3 7 14 1 // DC ZVA 3 7 4 1 // So only deal with the CRm field. enum icache_maintenance {IVAU = 0b0101}; enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100}; void dc(dcache_maintenance cm, Register Rt) { sys(0b011, 0b0111, cm, 0b001, Rt); } void ic(icache_maintenance cm, Register Rt) { sys(0b011, 0b0111, cm, 0b001, Rt); } // A more convenient access to dmb for our purposes enum Membar_mask_bits { // We can use ISH for a barrier because the ARM ARM says "This // architecture assumes that all Processing Elements that use the // same operating system or hypervisor are in the same Inner // Shareable shareability domain." StoreStore = ISHST, LoadStore = ISHLD, LoadLoad = ISHLD, StoreLoad = ISH, AnyAny = ISH }; void membar(Membar_mask_bits order_constraint) { dmb(Assembler::barrier(order_constraint)); } // Unconditional branch (register) void branch_reg(Register R, int opc) { starti; f(0b1101011, 31, 25); f(opc, 24, 21); f(0b11111000000, 20, 10); rf(R, 5); f(0b00000, 4, 0); } #define INSN(NAME, opc) \ void NAME(Register R) { \ branch_reg(R, opc); \ } INSN(br, 0b0000); INSN(blr, 0b0001); INSN(ret, 0b0010); void ret(void *p); // This forces a compile-time error for ret(0) #undef INSN #define INSN(NAME, opc) \ void NAME() { \ branch_reg(dummy_reg, opc); \ } INSN(eret, 0b0100); INSN(drps, 0b0101); #undef INSN // Load/store exclusive enum operand_size { byte, halfword, word, xword }; void load_store_exclusive(Register Rs, Register Rt1, Register Rt2, Register Rn, enum operand_size sz, int op, bool ordered) { starti; f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21); rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0); } void load_exclusive(Register dst, Register addr, enum operand_size sz, bool ordered) { load_store_exclusive(dummy_reg, dst, dummy_reg, addr, sz, 0b010, ordered); } void store_exclusive(Register status, Register new_val, Register addr, enum operand_size sz, bool ordered) { load_store_exclusive(status, new_val, dummy_reg, addr, sz, 0b000, ordered); } #define INSN4(NAME, sz, op, o0) /* Four registers */ \ void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) { \ guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \ load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0); \ } #define INSN3(NAME, sz, op, o0) /* Three registers */ \ void NAME(Register Rs, Register Rt, Register Rn) { \ guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction"); \ load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \ } #define INSN2(NAME, sz, op, o0) /* Two registers */ \ void NAME(Register Rt, Register Rn) { \ load_store_exclusive(dummy_reg, Rt, dummy_reg, \ Rn, sz, op, o0); \ } #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \ void NAME(Register Rt1, Register Rt2, Register Rn) { \ guarantee(Rt1 != Rt2, "unpredictable instruction"); \ load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0); \ } // bytes INSN3(stxrb, byte, 0b000, 0); INSN3(stlxrb, byte, 0b000, 1); INSN2(ldxrb, byte, 0b010, 0); INSN2(ldaxrb, byte, 0b010, 1); INSN2(stlrb, byte, 0b100, 1); INSN2(ldarb, byte, 0b110, 1); // halfwords INSN3(stxrh, halfword, 0b000, 0); INSN3(stlxrh, halfword, 0b000, 1); INSN2(ldxrh, halfword, 0b010, 0); INSN2(ldaxrh, halfword, 0b010, 1); INSN2(stlrh, halfword, 0b100, 1); INSN2(ldarh, halfword, 0b110, 1); // words INSN3(stxrw, word, 0b000, 0); INSN3(stlxrw, word, 0b000, 1); INSN4(stxpw, word, 0b001, 0); INSN4(stlxpw, word, 0b001, 1); INSN2(ldxrw, word, 0b010, 0); INSN2(ldaxrw, word, 0b010, 1); INSN_FOO(ldxpw, word, 0b011, 0); INSN_FOO(ldaxpw, word, 0b011, 1); INSN2(stlrw, word, 0b100, 1); INSN2(ldarw, word, 0b110, 1); // xwords INSN3(stxr, xword, 0b000, 0); INSN3(stlxr, xword, 0b000, 1); INSN4(stxp, xword, 0b001, 0); INSN4(stlxp, xword, 0b001, 1); INSN2(ldxr, xword, 0b010, 0); INSN2(ldaxr, xword, 0b010, 1); INSN_FOO(ldxp, xword, 0b011, 0); INSN_FOO(ldaxp, xword, 0b011, 1); INSN2(stlr, xword, 0b100, 1); INSN2(ldar, xword, 0b110, 1); #undef INSN2 #undef INSN3 #undef INSN4 #undef INSN_FOO // 8.1 Compare and swap extensions void lse_cas(Register Rs, Register Rt, Register Rn, enum operand_size sz, bool a, bool r, bool not_pair) { starti; if (! not_pair) { // Pair assert(sz == word || sz == xword, "invalid size"); /* The size bit is in bit 30, not 31 */ sz = (operand_size)(sz == word ? 0b00:0b01); } f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21); zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0); } // CAS #define INSN(NAME, a, r) \ void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \ assert(Rs != Rn && Rs != Rt, "unpredictable instruction"); \ lse_cas(Rs, Rt, Rn, sz, a, r, true); \ } INSN(cas, false, false) INSN(casa, true, false) INSN(casl, false, true) INSN(casal, true, true) #undef INSN // CASP #define INSN(NAME, a, r) \ void NAME(operand_size sz, Register Rs, Register Rs1, \ Register Rt, Register Rt1, Register Rn) { \ assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 && \ Rs->successor() == Rs1 && Rt->successor() == Rt1 && \ Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers"); \ lse_cas(Rs, Rt, Rn, sz, a, r, false); \ } INSN(casp, false, false) INSN(caspa, true, false) INSN(caspl, false, true) INSN(caspal, true, true) #undef INSN // 8.1 Atomic operations void lse_atomic(Register Rs, Register Rt, Register Rn, enum operand_size sz, int op1, int op2, bool a, bool r) { starti; f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21); zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0); } #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2) \ void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \ lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false); \ } \ void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \ lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false); \ } \ void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \ lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true); \ } \ void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\ lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true); \ } INSN(ldadd, ldadda, ldaddl, ldaddal, 0, 0b000); INSN(ldbic, ldbica, ldbicl, ldbical, 0, 0b001); INSN(ldeor, ldeora, ldeorl, ldeoral, 0, 0b010); INSN(ldorr, ldorra, ldorrl, ldorral, 0, 0b011); INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100); INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101); INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110); INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111); INSN(swp, swpa, swpl, swpal, 1, 0b000); #undef INSN // Load register (literal) #define INSN(NAME, opc, V) \ void NAME(Register Rt, address dest) { \ int64_t offset = (dest - pc()) >> 2; \ starti; \ f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \ sf(offset, 23, 5); \ rf(Rt, 0); \ } \ void NAME(Register Rt, address dest, relocInfo::relocType rtype) { \ InstructionMark im(this); \ guarantee(rtype == relocInfo::internal_word_type, \ "only internal_word_type relocs make sense here"); \ code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \ NAME(Rt, dest); \ } \ void NAME(Register Rt, Label &L) { \ wrap_label(Rt, L, &Assembler::NAME); \ } INSN(ldrw, 0b00, 0); INSN(ldr, 0b01, 0); INSN(ldrsw, 0b10, 0); #undef INSN #define INSN(NAME, opc, V) \ void NAME(FloatRegister Rt, address dest) { \ int64_t offset = (dest - pc()) >> 2; \ starti; \ f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \ sf(offset, 23, 5); \ rf((Register)Rt, 0); \ } INSN(ldrs, 0b00, 1); INSN(ldrd, 0b01, 1); INSN(ldrq, 0b10, 1); #undef INSN #define INSN(NAME, opc, V) \ void NAME(address dest, prfop op = PLDL1KEEP) { \ int64_t offset = (dest - pc()) >> 2; \ starti; \ f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \ sf(offset, 23, 5); \ f(op, 4, 0); \ } \ void NAME(Label &L, prfop op = PLDL1KEEP) { \ wrap_label(L, op, &Assembler::NAME); \ } INSN(prfm, 0b11, 0); #undef INSN // Load/store void ld_st1(int opc, int p1, int V, int L, Register Rt1, Register Rt2, Address adr, bool no_allocate) { starti; f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22); zrf(Rt2, 10), zrf(Rt1, 0); if (no_allocate) { adr.encode_nontemporal_pair(current); } else { adr.encode_pair(current); } } // Load/store register pair (offset) #define INSN(NAME, size, p1, V, L, no_allocate) \ void NAME(Register Rt1, Register Rt2, Address adr) { \ ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \ } INSN(stpw, 0b00, 0b101, 0, 0, false); INSN(ldpw, 0b00, 0b101, 0, 1, false); INSN(ldpsw, 0b01, 0b101, 0, 1, false); INSN(stp, 0b10, 0b101, 0, 0, false); INSN(ldp, 0b10, 0b101, 0, 1, false); // Load/store no-allocate pair (offset) INSN(stnpw, 0b00, 0b101, 0, 0, true); INSN(ldnpw, 0b00, 0b101, 0, 1, true); INSN(stnp, 0b10, 0b101, 0, 0, true); INSN(ldnp, 0b10, 0b101, 0, 1, true); #undef INSN #define INSN(NAME, size, p1, V, L, no_allocate) \ void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) { \ ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \ } INSN(stps, 0b00, 0b101, 1, 0, false); INSN(ldps, 0b00, 0b101, 1, 1, false); INSN(stpd, 0b01, 0b101, 1, 0, false); INSN(ldpd, 0b01, 0b101, 1, 1, false); INSN(stpq, 0b10, 0b101, 1, 0, false); INSN(ldpq, 0b10, 0b101, 1, 1, false); #undef INSN // Load/store register (all modes) void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) { starti; f(V, 26); // general reg? zrf(Rt, 0); // Encoding for literal loads is done here (rather than pushed // down into Address::encode) because the encoding of this // instruction is too different from all of the other forms to // make it worth sharing. if (adr.getMode() == Address::literal) { assert(size == 0b10 || size == 0b11, "bad operand size in ldr"); assert(op == 0b01, "literal form can only be used with loads"); f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24); int64_t offset = (adr.target() - pc()) >> 2; sf(offset, 23, 5); code_section()->relocate(pc(), adr.rspec()); return; } f(size, 31, 30); f(op, 23, 22); // str adr.encode(current); } #define INSN(NAME, size, op) \ void NAME(Register Rt, const Address &adr) { \ ld_st2(Rt, adr, size, op); \ } \ INSN(str, 0b11, 0b00); INSN(strw, 0b10, 0b00); INSN(strb, 0b00, 0b00); INSN(strh, 0b01, 0b00); INSN(ldr, 0b11, 0b01); INSN(ldrw, 0b10, 0b01); INSN(ldrb, 0b00, 0b01); INSN(ldrh, 0b01, 0b01); INSN(ldrsb, 0b00, 0b10); INSN(ldrsbw, 0b00, 0b11); INSN(ldrsh, 0b01, 0b10); INSN(ldrshw, 0b01, 0b11); INSN(ldrsw, 0b10, 0b10); #undef INSN #define INSN(NAME, size, op) \ void NAME(const Address &adr, prfop pfop = PLDL1KEEP) { \ ld_st2((Register)pfop, adr, size, op); \ } INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with // writeback modes, but the assembler // doesn't enfore that. #undef INSN #define INSN(NAME, size, op) \ void NAME(FloatRegister Rt, const Address &adr) { \ ld_st2((Register)Rt, adr, size, op, 1); \ } INSN(strd, 0b11, 0b00); INSN(strs, 0b10, 0b00); INSN(ldrd, 0b11, 0b01); INSN(ldrs, 0b10, 0b01); INSN(strq, 0b00, 0b10); INSN(ldrq, 0x00, 0b11); #undef INSN enum shift_kind { LSL, LSR, ASR, ROR }; void op_shifted_reg(unsigned decode, enum shift_kind kind, unsigned shift, unsigned size, unsigned op) { f(size, 31); f(op, 30, 29); f(decode, 28, 24); f(shift, 15, 10); f(kind, 23, 22); } // Logical (shifted register) #define INSN(NAME, size, op, N) \ void NAME(Register Rd, Register Rn, Register Rm, \ enum shift_kind kind = LSL, unsigned shift = 0) { \ starti; \ guarantee(size == 1 || shift < 32, "incorrect shift"); \ f(N, 21); \ zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \ op_shifted_reg(0b01010, kind, shift, size, op); \ } INSN(andr, 1, 0b00, 0); INSN(orr, 1, 0b01, 0); INSN(eor, 1, 0b10, 0); INSN(ands, 1, 0b11, 0); INSN(andw, 0, 0b00, 0); INSN(orrw, 0, 0b01, 0); INSN(eorw, 0, 0b10, 0); INSN(andsw, 0, 0b11, 0); #undef INSN #define INSN(NAME, size, op, N) \ void NAME(Register Rd, Register Rn, Register Rm, \ enum shift_kind kind = LSL, unsigned shift = 0) { \ starti; \ f(N, 21); \ zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \ op_shifted_reg(0b01010, kind, shift, size, op); \ } \ \ /* These instructions have no immediate form. Provide an overload so \ that if anyone does try to use an immediate operand -- this has \ happened! -- we'll get a compile-time error. */ \ void NAME(Register Rd, Register Rn, unsigned imm, \ enum shift_kind kind = LSL, unsigned shift = 0) { \ assert(false, " can't be used with immediate operand"); \ } INSN(bic, 1, 0b00, 1); INSN(orn, 1, 0b01, 1); INSN(eon, 1, 0b10, 1); INSN(bics, 1, 0b11, 1); INSN(bicw, 0, 0b00, 1); INSN(ornw, 0, 0b01, 1); INSN(eonw, 0, 0b10, 1); INSN(bicsw, 0, 0b11, 1); #undef INSN // Aliases for short forms of orn void mvn(Register Rd, Register Rm, enum shift_kind kind = LSL, unsigned shift = 0) { orn(Rd, zr, Rm, kind, shift); } void mvnw(Register Rd, Register Rm, enum shift_kind kind = LSL, unsigned shift = 0) { ornw(Rd, zr, Rm, kind, shift); } // Add/subtract (shifted register) #define INSN(NAME, size, op) \ void NAME(Register Rd, Register Rn, Register Rm, \ enum shift_kind kind, unsigned shift = 0) { \ starti; \ f(0, 21); \ assert_cond(kind != ROR); \ guarantee(size == 1 || shift < 32, "incorrect shift");\ zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16); \ op_shifted_reg(0b01011, kind, shift, size, op); \ } INSN(add, 1, 0b000); INSN(sub, 1, 0b10); INSN(addw, 0, 0b000); INSN(subw, 0, 0b10); INSN(adds, 1, 0b001); INSN(subs, 1, 0b11); INSN(addsw, 0, 0b001); INSN(subsw, 0, 0b11); #undef INSN // Add/subtract (extended register) #define INSN(NAME, op) \ void NAME(Register Rd, Register Rn, Register Rm, \ ext::operation option, int amount = 0) { \ starti; \ zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0); \ add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \ } void add_sub_extended_reg(unsigned op, unsigned decode, Register Rd, Register Rn, Register Rm, unsigned opt, ext::operation option, unsigned imm) { guarantee(imm <= 4, "shift amount must be <= 4"); f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21); f(option, 15, 13), f(imm, 12, 10); } INSN(addw, 0b000); INSN(subw, 0b010); INSN(add, 0b100); INSN(sub, 0b110); #undef INSN #define INSN(NAME, op) \ void NAME(Register Rd, Register Rn, Register Rm, \ ext::operation option, int amount = 0) { \ starti; \ zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0); \ add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \ } INSN(addsw, 0b001); INSN(subsw, 0b011); INSN(adds, 0b101); INSN(subs, 0b111); #undef INSN // Aliases for short forms of add and sub #define INSN(NAME) \ void NAME(Register Rd, Register Rn, Register Rm) { \ if (Rd == sp || Rn == sp) \ NAME(Rd, Rn, Rm, ext::uxtx); \ else \ NAME(Rd, Rn, Rm, LSL); \ } INSN(addw); INSN(subw); INSN(add); INSN(sub); INSN(addsw); INSN(subsw); INSN(adds); INSN(subs); #undef INSN // Add/subtract (with carry) void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) { starti; f(op, 31, 29); f(0b11010000, 28, 21); f(0b000000, 15, 10); zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); } #define INSN(NAME, op) \ void NAME(Register Rd, Register Rn, Register Rm) { \ add_sub_carry(op, Rd, Rn, Rm); \ } INSN(adcw, 0b000); INSN(adcsw, 0b001); INSN(sbcw, 0b010); INSN(sbcsw, 0b011); INSN(adc, 0b100); INSN(adcs, 0b101); INSN(sbc,0b110); INSN(sbcs, 0b111); #undef INSN // Conditional compare (both kinds) void conditional_compare(unsigned op, int o1, int o2, int o3, Register Rn, unsigned imm5, unsigned nzcv, unsigned cond) { starti; f(op, 31, 29); f(0b11010010, 28, 21); f(cond, 15, 12); f(o1, 11); f(o2, 10); f(o3, 4); f(nzcv, 3, 0); f(imm5, 20, 16), zrf(Rn, 5); } #define INSN(NAME, op) \ void NAME(Register Rn, Register Rm, int imm, Condition cond) { \ int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm); \ conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond); \ } \ \ void NAME(Register Rn, int imm5, int imm, Condition cond) { \ conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond); \ } INSN(ccmnw, 0b001); INSN(ccmpw, 0b011); INSN(ccmn, 0b101); INSN(ccmp, 0b111); #undef INSN // Conditional select void conditional_select(unsigned op, unsigned op2, Register Rd, Register Rn, Register Rm, unsigned cond) { starti; f(op, 31, 29); f(0b11010100, 28, 21); f(cond, 15, 12); f(op2, 11, 10); zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0); } #define INSN(NAME, op, op2) \ void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \ conditional_select(op, op2, Rd, Rn, Rm, cond); \ } INSN(cselw, 0b000, 0b00); INSN(csincw, 0b000, 0b01); INSN(csinvw, 0b010, 0b00); INSN(csnegw, 0b010, 0b01); INSN(csel, 0b100, 0b00); INSN(csinc, 0b100, 0b01); INSN(csinv, 0b110, 0b00); INSN(csneg, 0b110, 0b01); #undef INSN // Data processing void data_processing(unsigned op29, unsigned opcode, Register Rd, Register Rn) { f(op29, 31, 29), f(0b11010110, 28, 21); f(opcode, 15, 10); rf(Rn, 5), rf(Rd, 0); } // (1 source) #define INSN(NAME, op29, opcode2, opcode) \ void NAME(Register Rd, Register Rn) { \ starti; \ f(opcode2, 20, 16); \ data_processing(op29, opcode, Rd, Rn); \ } INSN(rbitw, 0b010, 0b00000, 0b00000); INSN(rev16w, 0b010, 0b00000, 0b00001); INSN(revw, 0b010, 0b00000, 0b00010); INSN(clzw, 0b010, 0b00000, 0b00100); INSN(clsw, 0b010, 0b00000, 0b00101); INSN(rbit, 0b110, 0b00000, 0b00000); INSN(rev16, 0b110, 0b00000, 0b00001); INSN(rev32, 0b110, 0b00000, 0b00010); INSN(rev, 0b110, 0b00000, 0b00011); INSN(clz, 0b110, 0b00000, 0b00100); INSN(cls, 0b110, 0b00000, 0b00101); #undef INSN // (2 sources) #define INSN(NAME, op29, opcode) \ void NAME(Register Rd, Register Rn, Register Rm) { \ starti; \ rf(Rm, 16); \ data_processing(op29, opcode, Rd, Rn); \ } INSN(udivw, 0b000, 0b000010); INSN(sdivw, 0b000, 0b000011); INSN(lslvw, 0b000, 0b001000); INSN(lsrvw, 0b000, 0b001001); INSN(asrvw, 0b000, 0b001010); INSN(rorvw, 0b000, 0b001011); INSN(udiv, 0b100, 0b000010); INSN(sdiv, 0b100, 0b000011); INSN(lslv, 0b100, 0b001000); INSN(lsrv, 0b100, 0b001001); INSN(asrv, 0b100, 0b001010); INSN(rorv, 0b100, 0b001011); #undef INSN // (3 sources) void data_processing(unsigned op54, unsigned op31, unsigned o0, Register Rd, Register Rn, Register Rm, Register Ra) { starti; f(op54, 31, 29), f(0b11011, 28, 24); f(op31, 23, 21), f(o0, 15); zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0); } #define INSN(NAME, op54, op31, o0) \ void NAME(Register Rd, Register Rn, Register Rm, Register Ra) { \ data_processing(op54, op31, o0, Rd, Rn, Rm, Ra); \ } INSN(maddw, 0b000, 0b000, 0); INSN(msubw, 0b000, 0b000, 1); INSN(madd, 0b100, 0b000, 0); INSN(msub, 0b100, 0b000, 1); INSN(smaddl, 0b100, 0b001, 0); INSN(smsubl, 0b100, 0b001, 1); INSN(umaddl, 0b100, 0b101, 0); INSN(umsubl, 0b100, 0b101, 1); #undef INSN #define INSN(NAME, op54, op31, o0) \ void NAME(Register Rd, Register Rn, Register Rm) { \ data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31); \ } INSN(smulh, 0b100, 0b010, 0); INSN(umulh, 0b100, 0b110, 0); #undef INSN // Floating-point data-processing (1 source) void data_processing(unsigned op31, unsigned type, unsigned opcode, FloatRegister Vd, FloatRegister Vn) { starti; f(op31, 31, 29); f(0b11110, 28, 24); f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10); rf(Vn, 5), rf(Vd, 0); } #define INSN(NAME, op31, type, opcode) \ void NAME(FloatRegister Vd, FloatRegister Vn) { \ data_processing(op31, type, opcode, Vd, Vn); \ } private: INSN(i_fmovs, 0b000, 0b00, 0b000000); public: INSN(fabss, 0b000, 0b00, 0b000001); INSN(fnegs, 0b000, 0b00, 0b000010); INSN(fsqrts, 0b000, 0b00, 0b000011); INSN(fcvts, 0b000, 0b00, 0b000101); // Single-precision to double-precision private: INSN(i_fmovd, 0b000, 0b01, 0b000000); public: INSN(fabsd, 0b000, 0b01, 0b000001); INSN(fnegd, 0b000, 0b01, 0b000010); INSN(fsqrtd, 0b000, 0b01, 0b000011); INSN(fcvtd, 0b000, 0b01, 0b000100); // Double-precision to single-precision void fmovd(FloatRegister Vd, FloatRegister Vn) { assert(Vd != Vn, "should be"); i_fmovd(Vd, Vn); } void fmovs(FloatRegister Vd, FloatRegister Vn) { assert(Vd != Vn, "should be"); i_fmovs(Vd, Vn); } #undef INSN // Floating-point data-processing (2 source) void data_processing(unsigned op31, unsigned type, unsigned opcode, FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { starti; f(op31, 31, 29); f(0b11110, 28, 24); f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10); rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); } #define INSN(NAME, op31, type, opcode) \ void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \ data_processing(op31, type, opcode, Vd, Vn, Vm); \ } INSN(fmuls, 0b000, 0b00, 0b0000); INSN(fdivs, 0b000, 0b00, 0b0001); INSN(fadds, 0b000, 0b00, 0b0010); INSN(fsubs, 0b000, 0b00, 0b0011); INSN(fmaxs, 0b000, 0b00, 0b0100); INSN(fmins, 0b000, 0b00, 0b0101); INSN(fnmuls, 0b000, 0b00, 0b1000); INSN(fmuld, 0b000, 0b01, 0b0000); INSN(fdivd, 0b000, 0b01, 0b0001); INSN(faddd, 0b000, 0b01, 0b0010); INSN(fsubd, 0b000, 0b01, 0b0011); INSN(fmaxd, 0b000, 0b01, 0b0100); INSN(fmind, 0b000, 0b01, 0b0101); INSN(fnmuld, 0b000, 0b01, 0b1000); #undef INSN // Floating-point data-processing (3 source) void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0, FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, FloatRegister Va) { starti; f(op31, 31, 29); f(0b11111, 28, 24); f(type, 23, 22), f(o1, 21), f(o0, 15); rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0); } #define INSN(NAME, op31, type, o1, o0) \ void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, \ FloatRegister Va) { \ data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va); \ } INSN(fmadds, 0b000, 0b00, 0, 0); INSN(fmsubs, 0b000, 0b00, 0, 1); INSN(fnmadds, 0b000, 0b00, 1, 0); INSN(fnmsubs, 0b000, 0b00, 1, 1); INSN(fmaddd, 0b000, 0b01, 0, 0); INSN(fmsubd, 0b000, 0b01, 0, 1); INSN(fnmaddd, 0b000, 0b01, 1, 0); INSN(fnmsub, 0b000, 0b01, 1, 1); #undef INSN // Floating-point conditional select void fp_conditional_select(unsigned op31, unsigned type, unsigned op1, unsigned op2, Condition cond, FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { starti; f(op31, 31, 29); f(0b11110, 28, 24); f(type, 23, 22); f(op1, 21, 21); f(op2, 11, 10); f(cond, 15, 12); rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); } #define INSN(NAME, op31, type, op1, op2) \ void NAME(FloatRegister Vd, FloatRegister Vn, \ FloatRegister Vm, Condition cond) { \ fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm); \ } INSN(fcsels, 0b000, 0b00, 0b1, 0b11); INSN(fcseld, 0b000, 0b01, 0b1, 0b11); #undef INSN // Floating-point<->integer conversions void float_int_convert(unsigned op31, unsigned type, unsigned rmode, unsigned opcode, Register Rd, Register Rn) { starti; f(op31, 31, 29); f(0b11110, 28, 24); f(type, 23, 22), f(1, 21), f(rmode, 20, 19); f(opcode, 18, 16), f(0b000000, 15, 10); zrf(Rn, 5), zrf(Rd, 0); } #define INSN(NAME, op31, type, rmode, opcode) \ void NAME(Register Rd, FloatRegister Vn) { \ float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn); \ } INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000); INSN(fcvtzs, 0b100, 0b00, 0b11, 0b000); INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000); INSN(fcvtzd, 0b100, 0b01, 0b11, 0b000); INSN(fmovs, 0b000, 0b00, 0b00, 0b110); INSN(fmovd, 0b100, 0b01, 0b00, 0b110); // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110); #undef INSN #define INSN(NAME, op31, type, rmode, opcode) \ void NAME(FloatRegister Vd, Register Rn) { \ float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn); \ } INSN(fmovs, 0b000, 0b00, 0b00, 0b111); INSN(fmovd, 0b100, 0b01, 0b00, 0b111); INSN(scvtfws, 0b000, 0b00, 0b00, 0b010); INSN(scvtfs, 0b100, 0b00, 0b00, 0b010); INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010); INSN(scvtfd, 0b100, 0b01, 0b00, 0b010); // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111); #undef INSN // Floating-point compare void float_compare(unsigned op31, unsigned type, unsigned op, unsigned op2, FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) { starti; f(op31, 31, 29); f(0b11110, 28, 24); f(type, 23, 22), f(1, 21); f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0); rf(Vn, 5), rf(Vm, 16); } #define INSN(NAME, op31, type, op, op2) \ void NAME(FloatRegister Vn, FloatRegister Vm) { \ float_compare(op31, type, op, op2, Vn, Vm); \ } #define INSN1(NAME, op31, type, op, op2) \ void NAME(FloatRegister Vn, double d) { \ assert_cond(d == 0.0); \ float_compare(op31, type, op, op2, Vn); \ } INSN(fcmps, 0b000, 0b00, 0b00, 0b00000); INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000); // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000); // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000); INSN(fcmpd, 0b000, 0b01, 0b00, 0b00000); INSN1(fcmpd, 0b000, 0b01, 0b00, 0b01000); // INSN(fcmped, 0b000, 0b01, 0b00, 0b10000); // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000); #undef INSN #undef INSN1 // Floating-point Move (immediate) private: unsigned pack(double value); void fmov_imm(FloatRegister Vn, double value, unsigned size) { starti; f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21); f(pack(value), 20, 13), f(0b10000000, 12, 5); rf(Vn, 0); } public: void fmovs(FloatRegister Vn, double value) { if (value) fmov_imm(Vn, value, 0b00); else fmovs(Vn, zr); } void fmovd(FloatRegister Vn, double value) { if (value) fmov_imm(Vn, value, 0b01); else fmovd(Vn, zr); } // Floating-point rounding // type: half-precision = 11 // single = 00 // double = 01 // rmode: A = Away = 100 // I = current = 111 // M = MinusInf = 010 // N = eveN = 000 // P = PlusInf = 001 // X = eXact = 110 // Z = Zero = 011 void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) { starti; f(0b00011110, 31, 24); f(type, 23, 22); f(0b1001, 21, 18); f(rmode, 17, 15); f(0b10000, 14, 10); rf(Rn, 5), rf(Rd, 0); } #define INSN(NAME, type, rmode) \ void NAME(FloatRegister Vd, FloatRegister Vn) { \ float_round(type, rmode, Vd, Vn); \ } public: INSN(frintah, 0b11, 0b100); INSN(frintih, 0b11, 0b111); INSN(frintmh, 0b11, 0b010); INSN(frintnh, 0b11, 0b000); INSN(frintph, 0b11, 0b001); INSN(frintxh, 0b11, 0b110); INSN(frintzh, 0b11, 0b011); INSN(frintas, 0b00, 0b100); INSN(frintis, 0b00, 0b111); INSN(frintms, 0b00, 0b010); INSN(frintns, 0b00, 0b000); INSN(frintps, 0b00, 0b001); INSN(frintxs, 0b00, 0b110); INSN(frintzs, 0b00, 0b011); INSN(frintad, 0b01, 0b100); INSN(frintid, 0b01, 0b111); INSN(frintmd, 0b01, 0b010); INSN(frintnd, 0b01, 0b000); INSN(frintpd, 0b01, 0b001); INSN(frintxd, 0b01, 0b110); INSN(frintzd, 0b01, 0b011); #undef INSN /* SIMD extensions * * We just use FloatRegister in the following. They are exactly the same * as SIMD registers. */ public: enum SIMD_Arrangement { T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q }; enum SIMD_RegVariant { B, H, S, D, Q }; private: static short SIMD_Size_in_bytes[]; public: #define INSN(NAME, op) \ void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) { \ ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \ } \ INSN(ldr, 1); INSN(str, 0); #undef INSN private: void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) { starti; f(0,31), f((int)T & 1, 30); f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12); f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0); } void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int imm, int op1, int op2, int regs) { bool replicate = op2 >> 2 == 3; // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs; guarantee(T < T1Q , "incorrect arrangement"); guarantee(imm == expectedImmediate, "bad offset"); starti; f(0,31), f((int)T & 1, 30); f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12); f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0); } void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, Register Xm, int op1, int op2) { starti; f(0,31), f((int)T & 1, 30); f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12); f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0); } void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) { switch (a.getMode()) { case Address::base_plus_offset: guarantee(a.offset() == 0, "no offset allowed here"); ld_st(Vt, T, a.base(), op1, op2); break; case Address::post: ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs); break; case Address::post_reg: ld_st(Vt, T, a.base(), a.index(), op1, op2); break; default: ShouldNotReachHere(); } } public: #define INSN1(NAME, op1, op2) \ void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) { \ ld_st(Vt, T, a, op1, op2, 1); \ } #define INSN2(NAME, op1, op2) \ void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \ assert(Vt->successor() == Vt2, "Registers must be ordered"); \ ld_st(Vt, T, a, op1, op2, 2); \ } #define INSN3(NAME, op1, op2) \ void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \ SIMD_Arrangement T, const Address &a) { \ assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, \ "Registers must be ordered"); \ ld_st(Vt, T, a, op1, op2, 3); \ } #define INSN4(NAME, op1, op2) \ void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \ FloatRegister Vt4, SIMD_Arrangement T, const Address &a) { \ assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && \ Vt3->successor() == Vt4, "Registers must be ordered"); \ ld_st(Vt, T, a, op1, op2, 4); \ } INSN1(ld1, 0b001100010, 0b0111); INSN2(ld1, 0b001100010, 0b1010); INSN3(ld1, 0b001100010, 0b0110); INSN4(ld1, 0b001100010, 0b0010); INSN2(ld2, 0b001100010, 0b1000); INSN3(ld3, 0b001100010, 0b0100); INSN4(ld4, 0b001100010, 0b0000); INSN1(st1, 0b001100000, 0b0111); INSN2(st1, 0b001100000, 0b1010); INSN3(st1, 0b001100000, 0b0110); INSN4(st1, 0b001100000, 0b0010); INSN2(st2, 0b001100000, 0b1000); INSN3(st3, 0b001100000, 0b0100); INSN4(st4, 0b001100000, 0b0000); INSN1(ld1r, 0b001101010, 0b1100); INSN2(ld2r, 0b001101011, 0b1100); INSN3(ld3r, 0b001101010, 0b1110); INSN4(ld4r, 0b001101011, 0b1110); #undef INSN1 #undef INSN2 #undef INSN3 #undef INSN4 #define INSN(NAME, opc) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ starti; \ assert(T == T8B || T == T16B, "must be T8B or T16B"); \ f(0, 31), f((int)T & 1, 30), f(opc, 29, 21); \ rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0); \ } INSN(eor, 0b101110001); INSN(orr, 0b001110101); INSN(andr, 0b001110001); INSN(bic, 0b001110011); INSN(bif, 0b101110111); INSN(bit, 0b101110101); INSN(bsl, 0b101110011); INSN(orn, 0b001110111); #undef INSN #define INSN(NAME, opc, opc2, acceptT2D) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \ if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement"); \ starti; \ f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \ f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10); \ rf(Vn, 5), rf(Vd, 0); \ } INSN(addv, 0, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D INSN(subv, 1, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D INSN(mulv, 0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S INSN(mlav, 0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S INSN(mlsv, 1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S INSN(sshl, 0, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D INSN(ushl, 1, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D INSN(addpv, 0, 0b101111, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S #undef INSN #define INSN(NAME, opc, opc2, accepted) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \ if (accepted < 3) guarantee(T != T2D, "incorrect arrangement"); \ if (accepted < 2) guarantee(T != T2S, "incorrect arrangement"); \ if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement"); \ starti; \ f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \ f((int)T >> 1, 23, 22), f(opc2, 21, 10); \ rf(Vn, 5), rf(Vd, 0); \ } INSN(absr, 0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D INSN(negr, 1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D INSN(notr, 1, 0b100000010110, 0); // accepted arrangements: T8B, T16B INSN(addv, 0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S INSN(cls, 0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S INSN(clz, 1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S INSN(cnt, 0, 0b100000010110, 0); // accepted arrangements: T8B, T16B INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S #undef INSN #define INSN(NAME, opc) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ starti; \ assert(T == T4S, "arrangement must be T4S"); \ f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23), \ f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0); \ } INSN(fmaxv, 0); INSN(fminv, 1); #undef INSN #define INSN(NAME, op0, cmode0) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) { \ unsigned cmode = cmode0; \ unsigned op = op0; \ starti; \ assert(lsl == 0 || \ ((T == T4H || T == T8H) && lsl == 8) || \ ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\ cmode |= lsl >> 2; \ if (T == T4H || T == T8H) cmode |= 0b1000; \ if (!(T == T4H || T == T8H || T == T2S || T == T4S)) { \ assert(op == 0 && cmode0 == 0, "must be MOVI"); \ cmode = 0b1110; \ if (T == T1D || T == T2D) op = 1; \ } \ f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19); \ f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \ rf(Vd, 0); \ } INSN(movi, 0, 0); INSN(orri, 0, 1); INSN(mvni, 1, 0); INSN(bici, 1, 1); #undef INSN #define INSN(NAME, op1, op2, op3) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ starti; \ assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \ f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23); \ f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0); \ } INSN(fadd, 0, 0, 0b110101); INSN(fdiv, 1, 0, 0b111111); INSN(fmul, 1, 0, 0b110111); INSN(fsub, 0, 1, 0b110101); INSN(fmla, 0, 0, 0b110011); INSN(fmls, 0, 1, 0b110011); INSN(fmax, 0, 0, 0b111101); INSN(fmin, 0, 1, 0b111101); #undef INSN #define INSN(NAME, opc) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ starti; \ assert(T == T4S, "arrangement must be T4S"); \ f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \ } INSN(sha1c, 0b000000); INSN(sha1m, 0b001000); INSN(sha1p, 0b000100); INSN(sha1su0, 0b001100); INSN(sha256h2, 0b010100); INSN(sha256h, 0b010000); INSN(sha256su1, 0b011000); #undef INSN #define INSN(NAME, opc) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ starti; \ assert(T == T4S, "arrangement must be T4S"); \ f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \ } INSN(sha1h, 0b000010); INSN(sha1su1, 0b000110); INSN(sha256su0, 0b001010); #undef INSN #define INSN(NAME, opc) \ void NAME(FloatRegister Vd, FloatRegister Vn) { \ starti; \ f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \ } INSN(aese, 0b0100111000101000010010); INSN(aesd, 0b0100111000101000010110); INSN(aesmc, 0b0100111000101000011010); INSN(aesimc, 0b0100111000101000011110); #undef INSN #define INSN(NAME, op1, op2) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \ starti; \ assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \ assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index"); \ f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23); \ f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16); \ f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10); \ rf(Vn, 5), rf(Vd, 0); \ } // FMLA/FMLS - Vector - Scalar INSN(fmlavs, 0, 0b0001); INSN(fmlsvs, 0, 0b0101); // FMULX - Vector - Scalar INSN(fmulxvs, 1, 0b1001); #undef INSN // Floating-point Reciprocal Estimate void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) { assert(type == D || type == S, "Wrong type for frecpe"); starti; f(0b010111101, 31, 23); f(type == D ? 1 : 0, 22); f(0b100001110110, 21, 10); rf(Vn, 5), rf(Vd, 0); } // (double) {a, b} -> (a + b) void faddpd(FloatRegister Vd, FloatRegister Vn) { starti; f(0b0111111001110000110110, 31, 10); rf(Vn, 5), rf(Vd, 0); } void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) { starti; assert(T != Q, "invalid register variant"); f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15); f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0); } void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) { starti; f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21); f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10); rf(Vn, 5), rf(Rd, 0); } #define INSN(NAME, opc, opc2, isSHR) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \ starti; \ /* The encodings for the immh:immb fields (bits 22:16) in *SHR are \ * 0001 xxx 8B/16B, shift = 16 - UInt(immh:immb) \ * 001x xxx 4H/8H, shift = 32 - UInt(immh:immb) \ * 01xx xxx 2S/4S, shift = 64 - UInt(immh:immb) \ * 1xxx xxx 1D/2D, shift = 128 - UInt(immh:immb) \ * (1D is RESERVED) \ * for SHL shift is calculated as: \ * 0001 xxx 8B/16B, shift = UInt(immh:immb) - 8 \ * 001x xxx 4H/8H, shift = UInt(immh:immb) - 16 \ * 01xx xxx 2S/4S, shift = UInt(immh:immb) - 32 \ * 1xxx xxx 1D/2D, shift = UInt(immh:immb) - 64 \ * (1D is RESERVED) \ */ \ assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value"); \ int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0))); \ int encodedShift = isSHR ? cVal - shift : cVal + shift; \ f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23), \ f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \ } INSN(shl, 0, 0b010101, /* isSHR = */ false); INSN(sshr, 0, 0b000001, /* isSHR = */ true); INSN(ushr, 1, 0b000001, /* isSHR = */ true); #undef INSN private: void _ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { starti; /* The encodings for the immh:immb fields (bits 22:16) are * 0001 xxx 8H, 8B/16b shift = xxx * 001x xxx 4S, 4H/8H shift = xxxx * 01xx xxx 2D, 2S/4S shift = xxxxx * 1xxx xxx RESERVED */ assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement"); assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value"); f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16); f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0); } public: void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement"); _ushll(Vd, Ta, Vn, Tb, shift); } void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement"); _ushll(Vd, Ta, Vn, Tb, shift); } // Move from general purpose register // mov Vd.T[index], Rn void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) { starti; f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16); f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0); } // Move to general purpose register // mov Rd, Vn.T[index] void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) { guarantee(T >= T2S && T < T1Q, "only D and S arrangements are supported"); starti; f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21); f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16); f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0); } private: void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) { starti; assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) || (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier"); int size = (Ta == T1Q) ? 0b11 : 0b00; f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22); f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0); } public: void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) { assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier"); _pmull(Vd, Ta, Vn, Vm, Tb); } void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) { assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier"); _pmull(Vd, Ta, Vn, Vm, Tb); } void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) { starti; int size_b = (int)Tb >> 1; int size_a = (int)Ta >> 1; assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier"); f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22); f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0); } void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs) { starti; assert(T != T1D, "reserved encoding"); f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21); f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0); } void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0) { starti; assert(T != T1D, "reserved encoding"); f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21); f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16); f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0); } // AdvSIMD ZIP/UZP/TRN #define INSN(NAME, opcode) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ guarantee(T != T1D && T != T1Q, "invalid arrangement"); \ starti; \ f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15); \ f(opcode, 14, 12), f(0b10, 11, 10); \ rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); \ f(T & 1, 30), f(T >> 1, 23, 22); \ } INSN(uzp1, 0b001); INSN(trn1, 0b010); INSN(zip1, 0b011); INSN(uzp2, 0b101); INSN(trn2, 0b110); INSN(zip2, 0b111); #undef INSN // CRC32 instructions #define INSN(NAME, c, sf, sz) \ void NAME(Register Rd, Register Rn, Register Rm) { \ starti; \ f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12); \ f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0); \ } INSN(crc32b, 0, 0, 0b00); INSN(crc32h, 0, 0, 0b01); INSN(crc32w, 0, 0, 0b10); INSN(crc32x, 0, 1, 0b11); INSN(crc32cb, 1, 0, 0b00); INSN(crc32ch, 1, 0, 0b01); INSN(crc32cw, 1, 0, 0b10); INSN(crc32cx, 1, 1, 0b11); #undef INSN // Table vector lookup #define INSN(NAME, op) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \ starti; \ assert(T == T8B || T == T16B, "invalid arrangement"); \ assert(0 < registers && registers <= 4, "invalid number of registers"); \ f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \ f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \ } INSN(tbl, 0); INSN(tbx, 1); #undef INSN // AdvSIMD two-reg misc // In this instruction group, the 2 bits in the size field ([23:22]) may be // fixed or determined by the "SIMD_Arrangement T", or both. The additional // parameter "tmask" is a 2-bit mask used to indicate which bits in the size // field are determined by the SIMD_Arrangement. The bit of "tmask" should be // set to 1 if corresponding bit marked as "x" in the ArmARM. #define INSN(NAME, U, size, tmask, opcode) \ void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ starti; \ assert((ASSERTION), MSG); \ f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24); \ f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17); \ f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0); \ } #define MSG "invalid arrangement" #define ASSERTION (T == T2S || T == T4S || T == T2D) INSN(fsqrt, 1, 0b10, 0b01, 0b11111); INSN(fabs, 0, 0b10, 0b01, 0b01111); INSN(fneg, 1, 0b10, 0b01, 0b01111); INSN(frintn, 0, 0b00, 0b01, 0b11000); INSN(frintm, 0, 0b00, 0b01, 0b11001); INSN(frintp, 0, 0b10, 0b01, 0b11000); #undef ASSERTION #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S) INSN(rev64, 0, 0b00, 0b11, 0b00000); #undef ASSERTION #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H) INSN(rev32, 1, 0b00, 0b11, 0b00000); #undef ASSERTION #define ASSERTION (T == T8B || T == T16B) INSN(rev16, 0, 0b00, 0b11, 0b00001); INSN(rbit, 1, 0b01, 0b00, 0b00101); #undef ASSERTION #undef MSG #undef INSN void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index) { starti; assert(T == T8B || T == T16B, "invalid arrangement"); assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value"); f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21); rf(Vm, 16), f(0, 15), f(index, 14, 11); f(0, 10), rf(Vn, 5), rf(Vd, 0); } Assembler(CodeBuffer* code) : AbstractAssembler(code) { } virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) { ShouldNotCallThis(); return RegisterOrConstant(); } // Stack overflow checking virtual void bang_stack_with_offset(int offset); static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm); static bool operand_valid_for_add_sub_immediate(int64_t imm); static bool operand_valid_for_float_immediate(double imm); void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0); void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0); }; inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a, Assembler::Membar_mask_bits b) { return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b)); } Instruction_aarch64::~Instruction_aarch64() { assem->emit(); } #undef starti // Invert a condition inline const Assembler::Condition operator~(const Assembler::Condition cond) { return Assembler::Condition(int(cond) ^ 1); } class BiasedLockingCounters; extern "C" void das(uint64_t start, int len); #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP