/* * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "asm/assembler.hpp" #include "c1/c1_CodeStubs.hpp" #include "c1/c1_Compilation.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "c1/c1_ValueStack.hpp" #include "ci/ciArrayKlass.hpp" #include "ci/ciInstance.hpp" #include "code/compiledIC.hpp" #include "gc/shared/collectedHeap.hpp" #include "nativeInst_aarch64.hpp" #include "oops/objArrayKlass.hpp" #include "runtime/frame.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "utilities/powerOfTwo.hpp" #include "vmreg_aarch64.inline.hpp" #ifndef PRODUCT #define COMMENT(x) do { __ block_comment(x); } while (0) #else #define COMMENT(x) #endif NEEDS_CLEANUP // remove this definitions ? const Register IC_Klass = rscratch2; // where the IC klass is cached const Register SYNC_header = r0; // synchronization header const Register SHIFT_count = r0; // where count for shift operations must be #define __ _masm-> static void select_different_registers(Register preserve, Register extra, Register &tmp1, Register &tmp2) { if (tmp1 == preserve) { assert_different_registers(tmp1, tmp2, extra); tmp1 = extra; } else if (tmp2 == preserve) { assert_different_registers(tmp1, tmp2, extra); tmp2 = extra; } assert_different_registers(preserve, tmp1, tmp2); } static void select_different_registers(Register preserve, Register extra, Register &tmp1, Register &tmp2, Register &tmp3) { if (tmp1 == preserve) { assert_different_registers(tmp1, tmp2, tmp3, extra); tmp1 = extra; } else if (tmp2 == preserve) { assert_different_registers(tmp1, tmp2, tmp3, extra); tmp2 = extra; } else if (tmp3 == preserve) { assert_different_registers(tmp1, tmp2, tmp3, extra); tmp3 = extra; } assert_different_registers(preserve, tmp1, tmp2, tmp3); } bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } LIR_Opr LIR_Assembler::receiverOpr() { return FrameMap::receiver_opr; } LIR_Opr LIR_Assembler::osrBufferPointer() { return FrameMap::as_pointer_opr(receiverOpr()->as_register()); } //--------------fpu register translations----------------------- address LIR_Assembler::float_constant(float f) { address const_addr = __ float_constant(f); if (const_addr == NULL) { bailout("const section overflow"); return __ code()->consts()->start(); } else { return const_addr; } } address LIR_Assembler::double_constant(double d) { address const_addr = __ double_constant(d); if (const_addr == NULL) { bailout("const section overflow"); return __ code()->consts()->start(); } else { return const_addr; } } address LIR_Assembler::int_constant(jlong n) { address const_addr = __ long_constant(n); if (const_addr == NULL) { bailout("const section overflow"); return __ code()->consts()->start(); } else { return const_addr; } } void LIR_Assembler::breakpoint() { Unimplemented(); } void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } //------------------------------------------- static Register as_reg(LIR_Opr op) { return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); } static jlong as_long(LIR_Opr data) { jlong result; switch (data->type()) { case T_INT: result = (data->as_jint()); break; case T_LONG: result = (data->as_jlong()); break; default: ShouldNotReachHere(); result = 0; // unreachable } return result; } Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { Register base = addr->base()->as_pointer_register(); LIR_Opr opr = addr->index(); if (opr->is_cpu_register()) { Register index; if (opr->is_single_cpu()) index = opr->as_register(); else index = opr->as_register_lo(); assert(addr->disp() == 0, "must be"); switch(opr->type()) { case T_INT: return Address(base, index, Address::sxtw(addr->scale())); case T_LONG: return Address(base, index, Address::lsl(addr->scale())); default: ShouldNotReachHere(); } } else { intptr_t addr_offset = intptr_t(addr->disp()); if (Address::offset_ok_for_immed(addr_offset, addr->scale())) return Address(base, addr_offset, Address::lsl(addr->scale())); else { __ mov(tmp, addr_offset); return Address(base, tmp, Address::lsl(addr->scale())); } } return Address(); } Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { ShouldNotReachHere(); return Address(); } Address LIR_Assembler::as_Address(LIR_Address* addr) { return as_Address(addr, rscratch1); } Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { return as_Address(addr, rscratch1); // Ouch // FIXME: This needs to be much more clever. See x86. } void LIR_Assembler::osr_entry() { offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); BlockBegin* osr_entry = compilation()->hir()->osr_entry(); ValueStack* entry_state = osr_entry->state(); int number_of_locks = entry_state->locks_size(); // we jump here if osr happens with the interpreter // state set up to continue at the beginning of the // loop that triggered osr - in particular, we have // the following registers setup: // // r2: osr buffer // // build frame ciMethod* m = compilation()->method(); __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); // OSR buffer is // // locals[nlocals-1..0] // monitors[0..number_of_locks] // // locals is a direct copy of the interpreter frame so in the osr buffer // so first slot in the local array is the last local from the interpreter // and last slot is local[0] (receiver) from the interpreter // // Similarly with locks. The first lock slot in the osr buffer is the nth lock // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock // in the interpreter frame (the method lock if a sync method) // Initialize monitors in the compiled activation. // r2: pointer to osr buffer // // All other registers are dead at this point and the locals will be // copied into place by code emitted in the IR. Register OSR_buf = osrBufferPointer()->as_pointer_register(); { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); int monitor_offset = BytesPerWord * method()->max_locals() + (2 * BytesPerWord) * (number_of_locks - 1); // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in // the OSR buffer using 2 word entries: first the lock and then // the oop. for (int i = 0; i < number_of_locks; i++) { int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); #ifdef ASSERT // verify the interpreter's monitor has a non-null object { Label L; __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord)); __ cbnz(rscratch1, L); __ stop("locked object is NULL"); __ bind(L); } #endif __ ldr(r19, Address(OSR_buf, slot_offset + 0)); __ str(r19, frame_map()->address_for_monitor_lock(i)); __ ldr(r19, Address(OSR_buf, slot_offset + 1*BytesPerWord)); __ str(r19, frame_map()->address_for_monitor_object(i)); } } } // inline cache check; done before the frame is built. int LIR_Assembler::check_icache() { Register receiver = FrameMap::receiver_opr->as_register(); Register ic_klass = IC_Klass; int start_offset = __ offset(); __ inline_cache_check(receiver, ic_klass); // if icache check fails, then jump to runtime routine // Note: RECEIVER must still contain the receiver! Label dont; __ br(Assembler::EQ, dont); __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); // We align the verified entry point unless the method body // (including its inline cache check) will fit in a single 64-byte // icache line. if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) { // force alignment after the cache check. __ align(CodeEntryAlignment); } __ bind(dont); return start_offset; } void LIR_Assembler::clinit_barrier(ciMethod* method) { assert(VM_Version::supports_fast_class_init_checks(), "sanity"); assert(!method->holder()->is_not_initialized(), "initialization should have been started"); Label L_skip_barrier; __ mov_metadata(rscratch2, method->holder()->constant_encoding()); __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); __ bind(L_skip_barrier); } void LIR_Assembler::jobject2reg(jobject o, Register reg) { if (o == NULL) { __ mov(reg, zr); } else { __ movoop(reg, o, /*immediate*/true); } } void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { address target = NULL; relocInfo::relocType reloc_type = relocInfo::none; switch (patching_id(info)) { case PatchingStub::access_field_id: target = Runtime1::entry_for(Runtime1::access_field_patching_id); reloc_type = relocInfo::section_word_type; break; case PatchingStub::load_klass_id: target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break; case PatchingStub::load_mirror_id: target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break; case PatchingStub::load_appendix_id: target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break; default: ShouldNotReachHere(); } __ far_call(RuntimeAddress(target)); add_call_info_here(info); } void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { deoptimize_trap(info); } // This specifies the rsp decrement needed to build the frame int LIR_Assembler::initial_frame_size_in_bytes() const { // if rounding, must let FrameMap know! // The frame_map records size in slots (32bit word) // subtract two words to account for return address and link return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; } int LIR_Assembler::emit_exception_handler() { // if the last instruction is a call (typically to do a throw which // is coming at the end after block reordering) the return address // must still point into the code area in order to avoid assertion // failures when searching for the corresponding bci => add a nop // (was bug 5/14/1999 - gri) __ nop(); // generate code for exception handler address handler_base = __ start_a_stub(exception_handler_size()); if (handler_base == NULL) { // not enough space left for the handler bailout("exception handler overflow"); return -1; } int offset = code_offset(); // the exception oop and pc are in r0, and r3 // no other registers need to be preserved, so invalidate them __ invalidate_registers(false, true, true, false, true, true); // check that there is really an exception __ verify_not_null_oop(r0); // search an exception handler (r0: exception oop, r3: throwing pc) __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id))); __ should_not_reach_here(); guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); __ end_a_stub(); return offset; } // Emit the code to remove the frame from the stack in the exception // unwind path. int LIR_Assembler::emit_unwind_handler() { #ifndef PRODUCT if (CommentedAssembly) { _masm->block_comment("Unwind handler"); } #endif int offset = code_offset(); // Fetch the exception from TLS and clear out exception related thread state __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); __ bind(_unwind_handler_entry); __ verify_not_null_oop(r0); if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { __ mov(r19, r0); // Preserve the exception } // Preform needed unlocking MonitorExitStub* stub = NULL; if (method()->is_synchronized()) { monitor_address(0, FrameMap::r0_opr); stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); __ unlock_object(r5, r4, r0, *stub->entry()); __ bind(*stub->continuation()); } if (compilation()->env()->dtrace_method_probes()) { __ mov(c_rarg0, rthread); __ mov_metadata(c_rarg1, method()->constant_encoding()); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); } if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { __ mov(r0, r19); // Restore the exception } // remove the activation and dispatch to the unwind handler __ block_comment("remove_frame and dispatch to the unwind handler"); __ remove_frame(initial_frame_size_in_bytes()); __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id))); // Emit the slow path assembly if (stub != NULL) { stub->emit_code(this); } return offset; } int LIR_Assembler::emit_deopt_handler() { // if the last instruction is a call (typically to do a throw which // is coming at the end after block reordering) the return address // must still point into the code area in order to avoid assertion // failures when searching for the corresponding bci => add a nop // (was bug 5/14/1999 - gri) __ nop(); // generate code for exception handler address handler_base = __ start_a_stub(deopt_handler_size()); if (handler_base == NULL) { // not enough space left for the handler bailout("deopt handler overflow"); return -1; } int offset = code_offset(); __ adr(lr, pc()); __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); __ end_a_stub(); return offset; } void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { _masm->code_section()->relocate(adr, relocInfo::poll_type); int pc_offset = code_offset(); flush_debug_info(pc_offset); info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); if (info->exception_handlers() != NULL) { compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); } } void LIR_Assembler::return_op(LIR_Opr result) { assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); // Pop the stack before the safepoint code __ remove_frame(initial_frame_size_in_bytes()); if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { __ reserved_stack_check(); } __ fetch_and_read_polling_page(rscratch1, relocInfo::poll_return_type); __ ret(lr); } int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { guarantee(info != NULL, "Shouldn't be NULL"); __ get_polling_page(rscratch1, relocInfo::poll_type); add_debug_info_for_branch(info); // This isn't just debug info: // it's the oop map __ read_polling_page(rscratch1, relocInfo::poll_type); return __ offset(); } void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { if (from_reg == r31_sp) from_reg = sp; if (to_reg == r31_sp) to_reg = sp; __ mov(to_reg, from_reg); } void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { assert(src->is_constant(), "should not call otherwise"); assert(dest->is_register(), "should not call otherwise"); LIR_Const* c = src->as_constant_ptr(); switch (c->type()) { case T_INT: { assert(patch_code == lir_patch_none, "no patching handled here"); __ movw(dest->as_register(), c->as_jint()); break; } case T_ADDRESS: { assert(patch_code == lir_patch_none, "no patching handled here"); __ mov(dest->as_register(), c->as_jint()); break; } case T_LONG: { assert(patch_code == lir_patch_none, "no patching handled here"); __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); break; } case T_OBJECT: { if (patch_code == lir_patch_none) { jobject2reg(c->as_jobject(), dest->as_register()); } else { jobject2reg_with_patching(dest->as_register(), info); } break; } case T_METADATA: { if (patch_code != lir_patch_none) { klass2reg_with_patching(dest->as_register(), info); } else { __ mov_metadata(dest->as_register(), c->as_metadata()); } break; } case T_FLOAT: { if (__ operand_valid_for_float_immediate(c->as_jfloat())) { __ fmovs(dest->as_float_reg(), (c->as_jfloat())); } else { __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); __ ldrs(dest->as_float_reg(), Address(rscratch1)); } break; } case T_DOUBLE: { if (__ operand_valid_for_float_immediate(c->as_jdouble())) { __ fmovd(dest->as_double_reg(), (c->as_jdouble())); } else { __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); __ ldrd(dest->as_double_reg(), Address(rscratch1)); } break; } default: ShouldNotReachHere(); } } void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { LIR_Const* c = src->as_constant_ptr(); switch (c->type()) { case T_OBJECT: { if (! c->as_jobject()) __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); else { const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL); reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); } } break; case T_ADDRESS: { const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL); reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); } case T_INT: case T_FLOAT: { Register reg = zr; if (c->as_jint_bits() == 0) __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); else { __ movw(rscratch1, c->as_jint_bits()); __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); } } break; case T_LONG: case T_DOUBLE: { Register reg = zr; if (c->as_jlong_bits() == 0) __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes)); else { __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes)); } } break; default: ShouldNotReachHere(); } } void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { assert(src->is_constant(), "should not call otherwise"); LIR_Const* c = src->as_constant_ptr(); LIR_Address* to_addr = dest->as_address_ptr(); void (Assembler::* insn)(Register Rt, const Address &adr); switch (type) { case T_ADDRESS: assert(c->as_jint() == 0, "should be"); insn = &Assembler::str; break; case T_LONG: assert(c->as_jlong() == 0, "should be"); insn = &Assembler::str; break; case T_INT: assert(c->as_jint() == 0, "should be"); insn = &Assembler::strw; break; case T_OBJECT: case T_ARRAY: assert(c->as_jobject() == 0, "should be"); if (UseCompressedOops && !wide) { insn = &Assembler::strw; } else { insn = &Assembler::str; } break; case T_CHAR: case T_SHORT: assert(c->as_jint() == 0, "should be"); insn = &Assembler::strh; break; case T_BOOLEAN: case T_BYTE: assert(c->as_jint() == 0, "should be"); insn = &Assembler::strb; break; default: ShouldNotReachHere(); insn = &Assembler::str; // unreachable } if (info) add_debug_info_for_null_check_here(info); (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); } void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { assert(src->is_register(), "should not call otherwise"); assert(dest->is_register(), "should not call otherwise"); // move between cpu-registers if (dest->is_single_cpu()) { if (src->type() == T_LONG) { // Can do LONG -> OBJECT move_regs(src->as_register_lo(), dest->as_register()); return; } assert(src->is_single_cpu(), "must match"); if (src->type() == T_OBJECT) { __ verify_oop(src->as_register()); } move_regs(src->as_register(), dest->as_register()); } else if (dest->is_double_cpu()) { if (is_reference_type(src->type())) { // Surprising to me but we can see move of a long to t_object __ verify_oop(src->as_register()); move_regs(src->as_register(), dest->as_register_lo()); return; } assert(src->is_double_cpu(), "must match"); Register f_lo = src->as_register_lo(); Register f_hi = src->as_register_hi(); Register t_lo = dest->as_register_lo(); Register t_hi = dest->as_register_hi(); assert(f_hi == f_lo, "must be same"); assert(t_hi == t_lo, "must be same"); move_regs(f_lo, t_lo); } else if (dest->is_single_fpu()) { __ fmovs(dest->as_float_reg(), src->as_float_reg()); } else if (dest->is_double_fpu()) { __ fmovd(dest->as_double_reg(), src->as_double_reg()); } else { ShouldNotReachHere(); } } void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { if (src->is_single_cpu()) { if (is_reference_type(type)) { __ str(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix())); __ verify_oop(src->as_register()); } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { __ str(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix())); } else { __ strw(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix())); } } else if (src->is_double_cpu()) { Address dest_addr_LO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); __ str(src->as_register_lo(), dest_addr_LO); } else if (src->is_single_fpu()) { Address dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); __ strs(src->as_float_reg(), dest_addr); } else if (src->is_double_fpu()) { Address dest_addr = frame_map()->address_for_slot(dest->double_stack_ix()); __ strd(src->as_double_reg(), dest_addr); } else { ShouldNotReachHere(); } } void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) { LIR_Address* to_addr = dest->as_address_ptr(); PatchingStub* patch = NULL; Register compressed_src = rscratch1; if (patch_code != lir_patch_none) { deoptimize_trap(info); return; } if (is_reference_type(type)) { __ verify_oop(src->as_register()); if (UseCompressedOops && !wide) { __ encode_heap_oop(compressed_src, src->as_register()); } else { compressed_src = src->as_register(); } } int null_check_here = code_offset(); switch (type) { case T_FLOAT: { __ strs(src->as_float_reg(), as_Address(to_addr)); break; } case T_DOUBLE: { __ strd(src->as_double_reg(), as_Address(to_addr)); break; } case T_ARRAY: // fall through case T_OBJECT: // fall through if (UseCompressedOops && !wide) { __ strw(compressed_src, as_Address(to_addr, rscratch2)); } else { __ str(compressed_src, as_Address(to_addr)); } break; case T_METADATA: // We get here to store a method pointer to the stack to pass to // a dtrace runtime call. This can't work on 64 bit with // compressed klass ptrs: T_METADATA can be a compressed klass // ptr or a 64 bit method pointer. ShouldNotReachHere(); __ str(src->as_register(), as_Address(to_addr)); break; case T_ADDRESS: __ str(src->as_register(), as_Address(to_addr)); break; case T_INT: __ strw(src->as_register(), as_Address(to_addr)); break; case T_LONG: { __ str(src->as_register_lo(), as_Address_lo(to_addr)); break; } case T_BYTE: // fall through case T_BOOLEAN: { __ strb(src->as_register(), as_Address(to_addr)); break; } case T_CHAR: // fall through case T_SHORT: __ strh(src->as_register(), as_Address(to_addr)); break; default: ShouldNotReachHere(); } if (info != NULL) { add_debug_info_for_null_check(null_check_here, info); } } void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { assert(src->is_stack(), "should not call otherwise"); assert(dest->is_register(), "should not call otherwise"); if (dest->is_single_cpu()) { if (is_reference_type(type)) { __ ldr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); __ verify_oop(dest->as_register()); } else if (type == T_METADATA || type == T_ADDRESS) { __ ldr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); } else { __ ldrw(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); } } else if (dest->is_double_cpu()) { Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); __ ldr(dest->as_register_lo(), src_addr_LO); } else if (dest->is_single_fpu()) { Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); __ ldrs(dest->as_float_reg(), src_addr); } else if (dest->is_double_fpu()) { Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); __ ldrd(dest->as_double_reg(), src_addr); } else { ShouldNotReachHere(); } } void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { address target = NULL; relocInfo::relocType reloc_type = relocInfo::none; switch (patching_id(info)) { case PatchingStub::access_field_id: target = Runtime1::entry_for(Runtime1::access_field_patching_id); reloc_type = relocInfo::section_word_type; break; case PatchingStub::load_klass_id: target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break; case PatchingStub::load_mirror_id: target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break; case PatchingStub::load_appendix_id: target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break; default: ShouldNotReachHere(); } __ far_call(RuntimeAddress(target)); add_call_info_here(info); } void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { LIR_Opr temp; if (type == T_LONG || type == T_DOUBLE) temp = FrameMap::rscratch1_long_opr; else temp = FrameMap::rscratch1_opr; stack2reg(src, temp, src->type()); reg2stack(temp, dest, dest->type(), false); } void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) { LIR_Address* addr = src->as_address_ptr(); LIR_Address* from_addr = src->as_address_ptr(); if (addr->base()->type() == T_OBJECT) { __ verify_oop(addr->base()->as_pointer_register()); } if (patch_code != lir_patch_none) { deoptimize_trap(info); return; } if (info != NULL) { add_debug_info_for_null_check_here(info); } int null_check_here = code_offset(); switch (type) { case T_FLOAT: { __ ldrs(dest->as_float_reg(), as_Address(from_addr)); break; } case T_DOUBLE: { __ ldrd(dest->as_double_reg(), as_Address(from_addr)); break; } case T_ARRAY: // fall through case T_OBJECT: // fall through if (UseCompressedOops && !wide) { __ ldrw(dest->as_register(), as_Address(from_addr)); } else { __ ldr(dest->as_register(), as_Address(from_addr)); } break; case T_METADATA: // We get here to store a method pointer to the stack to pass to // a dtrace runtime call. This can't work on 64 bit with // compressed klass ptrs: T_METADATA can be a compressed klass // ptr or a 64 bit method pointer. ShouldNotReachHere(); __ ldr(dest->as_register(), as_Address(from_addr)); break; case T_ADDRESS: // FIXME: OMG this is a horrible kludge. Any offset from an // address that matches klass_offset_in_bytes() will be loaded // as a word, not a long. if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) { __ ldrw(dest->as_register(), as_Address(from_addr)); } else { __ ldr(dest->as_register(), as_Address(from_addr)); } break; case T_INT: __ ldrw(dest->as_register(), as_Address(from_addr)); break; case T_LONG: { __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); break; } case T_BYTE: __ ldrsb(dest->as_register(), as_Address(from_addr)); break; case T_BOOLEAN: { __ ldrb(dest->as_register(), as_Address(from_addr)); break; } case T_CHAR: __ ldrh(dest->as_register(), as_Address(from_addr)); break; case T_SHORT: __ ldrsh(dest->as_register(), as_Address(from_addr)); break; default: ShouldNotReachHere(); } if (is_reference_type(type)) { if (UseCompressedOops && !wide) { __ decode_heap_oop(dest->as_register()); } if (!UseZGC) { // Load barrier has not yet been applied, so ZGC can't verify the oop here __ verify_oop(dest->as_register()); } } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) { if (UseCompressedClassPointers) { __ decode_klass_not_null(dest->as_register()); } } } int LIR_Assembler::array_element_size(BasicType type) const { int elem_size = type2aelembytes(type); return exact_log2(elem_size); } void LIR_Assembler::emit_op3(LIR_Op3* op) { switch (op->code()) { case lir_idiv: case lir_irem: arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(), op->result_opr(), op->info()); break; case lir_fmad: __ fmaddd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(), op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg()); break; case lir_fmaf: __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(), op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg()); break; default: ShouldNotReachHere(); break; } } void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { #ifdef ASSERT assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); if (op->block() != NULL) _branch_target_blocks.append(op->block()); if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); #endif if (op->cond() == lir_cond_always) { if (op->info() != NULL) add_debug_info_for_branch(op->info()); __ b(*(op->label())); } else { Assembler::Condition acond; if (op->code() == lir_cond_float_branch) { bool is_unordered = (op->ublock() == op->block()); // Assembler::EQ does not permit unordered branches, so we add // another branch here. Likewise, Assembler::NE does not permit // ordered branches. if ((is_unordered && op->cond() == lir_cond_equal) || (!is_unordered && op->cond() == lir_cond_notEqual)) __ br(Assembler::VS, *(op->ublock()->label())); switch(op->cond()) { case lir_cond_equal: acond = Assembler::EQ; break; case lir_cond_notEqual: acond = Assembler::NE; break; case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; default: ShouldNotReachHere(); acond = Assembler::EQ; // unreachable } } else { switch (op->cond()) { case lir_cond_equal: acond = Assembler::EQ; break; case lir_cond_notEqual: acond = Assembler::NE; break; case lir_cond_less: acond = Assembler::LT; break; case lir_cond_lessEqual: acond = Assembler::LE; break; case lir_cond_greaterEqual: acond = Assembler::GE; break; case lir_cond_greater: acond = Assembler::GT; break; case lir_cond_belowEqual: acond = Assembler::LS; break; case lir_cond_aboveEqual: acond = Assembler::HS; break; default: ShouldNotReachHere(); acond = Assembler::EQ; // unreachable } } __ br(acond,*(op->label())); } } void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { LIR_Opr src = op->in_opr(); LIR_Opr dest = op->result_opr(); switch (op->bytecode()) { case Bytecodes::_i2f: { __ scvtfws(dest->as_float_reg(), src->as_register()); break; } case Bytecodes::_i2d: { __ scvtfwd(dest->as_double_reg(), src->as_register()); break; } case Bytecodes::_l2d: { __ scvtfd(dest->as_double_reg(), src->as_register_lo()); break; } case Bytecodes::_l2f: { __ scvtfs(dest->as_float_reg(), src->as_register_lo()); break; } case Bytecodes::_f2d: { __ fcvts(dest->as_double_reg(), src->as_float_reg()); break; } case Bytecodes::_d2f: { __ fcvtd(dest->as_float_reg(), src->as_double_reg()); break; } case Bytecodes::_i2c: { __ ubfx(dest->as_register(), src->as_register(), 0, 16); break; } case Bytecodes::_i2l: { __ sxtw(dest->as_register_lo(), src->as_register()); break; } case Bytecodes::_i2s: { __ sxth(dest->as_register(), src->as_register()); break; } case Bytecodes::_i2b: { __ sxtb(dest->as_register(), src->as_register()); break; } case Bytecodes::_l2i: { _masm->block_comment("FIXME: This could be a no-op"); __ uxtw(dest->as_register(), src->as_register_lo()); break; } case Bytecodes::_d2l: { __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); break; } case Bytecodes::_f2i: { __ fcvtzsw(dest->as_register(), src->as_float_reg()); break; } case Bytecodes::_f2l: { __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); break; } case Bytecodes::_d2i: { __ fcvtzdw(dest->as_register(), src->as_double_reg()); break; } default: ShouldNotReachHere(); } } void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { if (op->init_check()) { __ ldrb(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); __ cmpw(rscratch1, InstanceKlass::fully_initialized); add_debug_info_for_null_check_here(op->stub()->info()); __ br(Assembler::NE, *op->stub()->entry()); } __ allocate_object(op->obj()->as_register(), op->tmp1()->as_register(), op->tmp2()->as_register(), op->header_size(), op->object_size(), op->klass()->as_register(), *op->stub()->entry()); __ bind(*op->stub()->continuation()); } void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { Register len = op->len()->as_register(); __ uxtw(len, len); if (UseSlowPath || (!UseFastNewObjectArray && is_reference_type(op->type())) || (!UseFastNewTypeArray && !is_reference_type(op->type()))) { __ b(*op->stub()->entry()); } else { Register tmp1 = op->tmp1()->as_register(); Register tmp2 = op->tmp2()->as_register(); Register tmp3 = op->tmp3()->as_register(); if (len == tmp1) { tmp1 = tmp3; } else if (len == tmp2) { tmp2 = tmp3; } else if (len == tmp3) { // everything is ok } else { __ mov(tmp3, len); } __ allocate_array(op->obj()->as_register(), len, tmp1, tmp2, arrayOopDesc::header_size(op->type()), array_element_size(op->type()), op->klass()->as_register(), *op->stub()->entry()); } __ bind(*op->stub()->continuation()); } void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data, Register recv, Label* update_done) { for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { Label next_test; // See if the receiver is receiver[n]. __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); __ ldr(rscratch1, Address(rscratch2)); __ cmp(recv, rscratch1); __ br(Assembler::NE, next_test); Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); __ addptr(data_addr, DataLayout::counter_increment); __ b(*update_done); __ bind(next_test); } // Didn't find receiver; find next empty slot and fill it in for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { Label next_test; __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); Address recv_addr(rscratch2); __ ldr(rscratch1, recv_addr); __ cbnz(rscratch1, next_test); __ str(recv, recv_addr); __ mov(rscratch1, DataLayout::counter_increment); __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)))); __ str(rscratch1, Address(rscratch2)); __ b(*update_done); __ bind(next_test); } } void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { // we always need a stub for the failure case. CodeStub* stub = op->stub(); Register obj = op->object()->as_register(); Register k_RInfo = op->tmp1()->as_register(); Register klass_RInfo = op->tmp2()->as_register(); Register dst = op->result_opr()->as_register(); ciKlass* k = op->klass(); Register Rtmp1 = noreg; // check if it needs to be profiled ciMethodData* md; ciProfileData* data; const bool should_profile = op->should_profile(); if (should_profile) { ciMethod* method = op->profiled_method(); assert(method != NULL, "Should have method"); int bci = op->profiled_bci(); md = method->method_data_or_null(); assert(md != NULL, "Sanity"); data = md->bci_to_data(bci); assert(data != NULL, "need data for type check"); assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); } Label profile_cast_success, profile_cast_failure; Label *success_target = should_profile ? &profile_cast_success : success; Label *failure_target = should_profile ? &profile_cast_failure : failure; if (obj == k_RInfo) { k_RInfo = dst; } else if (obj == klass_RInfo) { klass_RInfo = dst; } if (k->is_loaded() && !UseCompressedClassPointers) { select_different_registers(obj, dst, k_RInfo, klass_RInfo); } else { Rtmp1 = op->tmp3()->as_register(); select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); } assert_different_registers(obj, k_RInfo, klass_RInfo); if (should_profile) { Label not_null; __ cbnz(obj, not_null); // Object is null; update MDO and exit Register mdo = klass_RInfo; __ mov_metadata(mdo, md->constant_encoding()); Address data_addr = __ form_address(rscratch2, mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()), 0); __ ldrb(rscratch1, data_addr); __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); __ strb(rscratch1, data_addr); __ b(*obj_is_null); __ bind(not_null); } else { __ cbz(obj, *obj_is_null); } if (!k->is_loaded()) { klass2reg_with_patching(k_RInfo, op->info_for_patch()); } else { __ mov_metadata(k_RInfo, k->constant_encoding()); } __ verify_oop(obj); if (op->fast_check()) { // get object class // not a safepoint as obj null check happens earlier __ load_klass(rscratch1, obj); __ cmp( rscratch1, k_RInfo); __ br(Assembler::NE, *failure_target); // successful cast, fall through to profile or jump } else { // get object class // not a safepoint as obj null check happens earlier __ load_klass(klass_RInfo, obj); if (k->is_loaded()) { // See if we get an immediate positive hit __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); __ cmp(k_RInfo, rscratch1); if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { __ br(Assembler::NE, *failure_target); // successful cast, fall through to profile or jump } else { // See if we get an immediate positive hit __ br(Assembler::EQ, *success_target); // check for self __ cmp(klass_RInfo, k_RInfo); __ br(Assembler::EQ, *success_target); __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); // result is a boolean __ cbzw(klass_RInfo, *failure_target); // successful cast, fall through to profile or jump } } else { // perform the fast part of the checking logic __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); // call out-of-line instance of __ check_klass_subtype_slow_path(...): __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); // result is a boolean __ cbz(k_RInfo, *failure_target); // successful cast, fall through to profile or jump } } if (should_profile) { Register mdo = klass_RInfo, recv = k_RInfo; __ bind(profile_cast_success); __ mov_metadata(mdo, md->constant_encoding()); __ load_klass(recv, obj); Label update_done; type_profile_helper(mdo, md, data, recv, success); __ b(*success); __ bind(profile_cast_failure); __ mov_metadata(mdo, md->constant_encoding()); Address counter_addr = __ form_address(rscratch2, mdo, md->byte_offset_of_slot(data, CounterData::count_offset()), 0); __ ldr(rscratch1, counter_addr); __ sub(rscratch1, rscratch1, DataLayout::counter_increment); __ str(rscratch1, counter_addr); __ b(*failure); } __ b(*success); } void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { const bool should_profile = op->should_profile(); LIR_Code code = op->code(); if (code == lir_store_check) { Register value = op->object()->as_register(); Register array = op->array()->as_register(); Register k_RInfo = op->tmp1()->as_register(); Register klass_RInfo = op->tmp2()->as_register(); Register Rtmp1 = op->tmp3()->as_register(); CodeStub* stub = op->stub(); // check if it needs to be profiled ciMethodData* md; ciProfileData* data; if (should_profile) { ciMethod* method = op->profiled_method(); assert(method != NULL, "Should have method"); int bci = op->profiled_bci(); md = method->method_data_or_null(); assert(md != NULL, "Sanity"); data = md->bci_to_data(bci); assert(data != NULL, "need data for type check"); assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); } Label profile_cast_success, profile_cast_failure, done; Label *success_target = should_profile ? &profile_cast_success : &done; Label *failure_target = should_profile ? &profile_cast_failure : stub->entry(); if (should_profile) { Label not_null; __ cbnz(value, not_null); // Object is null; update MDO and exit Register mdo = klass_RInfo; __ mov_metadata(mdo, md->constant_encoding()); Address data_addr = __ form_address(rscratch2, mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()), 0); __ ldrb(rscratch1, data_addr); __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); __ strb(rscratch1, data_addr); __ b(done); __ bind(not_null); } else { __ cbz(value, done); } add_debug_info_for_null_check_here(op->info_for_exception()); __ load_klass(k_RInfo, array); __ load_klass(klass_RInfo, value); // get instance klass (it's already uncompressed) __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); // perform the fast part of the checking logic __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); // call out-of-line instance of __ check_klass_subtype_slow_path(...): __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); // result is a boolean __ cbzw(k_RInfo, *failure_target); // fall through to the success case if (should_profile) { Register mdo = klass_RInfo, recv = k_RInfo; __ bind(profile_cast_success); __ mov_metadata(mdo, md->constant_encoding()); __ load_klass(recv, value); Label update_done; type_profile_helper(mdo, md, data, recv, &done); __ b(done); __ bind(profile_cast_failure); __ mov_metadata(mdo, md->constant_encoding()); Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); __ lea(rscratch2, counter_addr); __ ldr(rscratch1, Address(rscratch2)); __ sub(rscratch1, rscratch1, DataLayout::counter_increment); __ str(rscratch1, Address(rscratch2)); __ b(*stub->entry()); } __ bind(done); } else if (code == lir_checkcast) { Register obj = op->object()->as_register(); Register dst = op->result_opr()->as_register(); Label success; emit_typecheck_helper(op, &success, op->stub()->entry(), &success); __ bind(success); if (dst != obj) { __ mov(dst, obj); } } else if (code == lir_instanceof) { Register obj = op->object()->as_register(); Register dst = op->result_opr()->as_register(); Label success, failure, done; emit_typecheck_helper(op, &success, &failure, &failure); __ bind(failure); __ mov(dst, zr); __ b(done); __ bind(success); __ mov(dst, 1); __ bind(done); } else { ShouldNotReachHere(); } } void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); __ cset(rscratch1, Assembler::NE); __ membar(__ AnyAny); } void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); __ cset(rscratch1, Assembler::NE); __ membar(__ AnyAny); } void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { assert(VM_Version::supports_cx8(), "wrong machine"); Register addr; if (op->addr()->is_register()) { addr = as_reg(op->addr()); } else { assert(op->addr()->is_address(), "what else?"); LIR_Address* addr_ptr = op->addr()->as_address_ptr(); assert(addr_ptr->disp() == 0, "need 0 disp"); assert(addr_ptr->index() == LIR_OprDesc::illegalOpr(), "need 0 index"); addr = as_reg(addr_ptr->base()); } Register newval = as_reg(op->new_value()); Register cmpval = as_reg(op->cmp_value()); if (op->code() == lir_cas_obj) { if (UseCompressedOops) { Register t1 = op->tmp1()->as_register(); assert(op->tmp1()->is_valid(), "must be"); __ encode_heap_oop(t1, cmpval); cmpval = t1; __ encode_heap_oop(rscratch2, newval); newval = rscratch2; casw(addr, newval, cmpval); } else { casl(addr, newval, cmpval); } } else if (op->code() == lir_cas_int) { casw(addr, newval, cmpval); } else { casl(addr, newval, cmpval); } } void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) { Assembler::Condition acond, ncond; switch (condition) { case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; case lir_cond_belowEqual: case lir_cond_aboveEqual: default: ShouldNotReachHere(); acond = Assembler::EQ; ncond = Assembler::NE; // unreachable } assert(result->is_single_cpu() || result->is_double_cpu(), "expect single register for result"); if (opr1->is_constant() && opr2->is_constant() && opr1->type() == T_INT && opr2->type() == T_INT) { jint val1 = opr1->as_jint(); jint val2 = opr2->as_jint(); if (val1 == 0 && val2 == 1) { __ cset(result->as_register(), ncond); return; } else if (val1 == 1 && val2 == 0) { __ cset(result->as_register(), acond); return; } } if (opr1->is_constant() && opr2->is_constant() && opr1->type() == T_LONG && opr2->type() == T_LONG) { jlong val1 = opr1->as_jlong(); jlong val2 = opr2->as_jlong(); if (val1 == 0 && val2 == 1) { __ cset(result->as_register_lo(), ncond); return; } else if (val1 == 1 && val2 == 0) { __ cset(result->as_register_lo(), acond); return; } } if (opr1->is_stack()) { stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); opr1 = FrameMap::rscratch1_opr; } else if (opr1->is_constant()) { LIR_Opr tmp = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; const2reg(opr1, tmp, lir_patch_none, NULL); opr1 = tmp; } if (opr2->is_stack()) { stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); opr2 = FrameMap::rscratch2_opr; } else if (opr2->is_constant()) { LIR_Opr tmp = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; const2reg(opr2, tmp, lir_patch_none, NULL); opr2 = tmp; } if (result->type() == T_LONG) __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); else __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); } void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); if (left->is_single_cpu()) { Register lreg = left->as_register(); Register dreg = as_reg(dest); if (right->is_single_cpu()) { // cpu register - cpu register assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, "should be"); Register rreg = right->as_register(); switch (code) { case lir_add: __ addw (dest->as_register(), lreg, rreg); break; case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; default: ShouldNotReachHere(); } } else if (right->is_double_cpu()) { Register rreg = right->as_register_lo(); // single_cpu + double_cpu: can happen with obj+long assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); switch (code) { case lir_add: __ add(dreg, lreg, rreg); break; case lir_sub: __ sub(dreg, lreg, rreg); break; default: ShouldNotReachHere(); } } else if (right->is_constant()) { // cpu register - constant jlong c; // FIXME. This is fugly: we really need to factor all this logic. switch(right->type()) { case T_LONG: c = right->as_constant_ptr()->as_jlong(); break; case T_INT: case T_ADDRESS: c = right->as_constant_ptr()->as_jint(); break; default: ShouldNotReachHere(); c = 0; // unreachable break; } assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); if (c == 0 && dreg == lreg) { COMMENT("effective nop elided"); return; } switch(left->type()) { case T_INT: switch (code) { case lir_add: __ addw(dreg, lreg, c); break; case lir_sub: __ subw(dreg, lreg, c); break; default: ShouldNotReachHere(); } break; case T_OBJECT: case T_ADDRESS: switch (code) { case lir_add: __ add(dreg, lreg, c); break; case lir_sub: __ sub(dreg, lreg, c); break; default: ShouldNotReachHere(); } break; default: ShouldNotReachHere(); } } else { ShouldNotReachHere(); } } else if (left->is_double_cpu()) { Register lreg_lo = left->as_register_lo(); if (right->is_double_cpu()) { // cpu register - cpu register Register rreg_lo = right->as_register_lo(); switch (code) { case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; default: ShouldNotReachHere(); } } else if (right->is_constant()) { jlong c = right->as_constant_ptr()->as_jlong(); Register dreg = as_reg(dest); switch (code) { case lir_add: case lir_sub: if (c == 0 && dreg == lreg_lo) { COMMENT("effective nop elided"); return; } code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); break; case lir_div: assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); if (c == 1) { // move lreg_lo to dreg if divisor is 1 __ mov(dreg, lreg_lo); } else { unsigned int shift = exact_log2_long(c); // use rscratch1 as intermediate result register __ asr(rscratch1, lreg_lo, 63); __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); __ asr(dreg, rscratch1, shift); } break; case lir_rem: assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); if (c == 1) { // move 0 to dreg if divisor is 1 __ mov(dreg, zr); } else { // use rscratch1 as intermediate result register __ negs(rscratch1, lreg_lo); __ andr(dreg, lreg_lo, c - 1); __ andr(rscratch1, rscratch1, c - 1); __ csneg(dreg, dreg, rscratch1, Assembler::MI); } break; default: ShouldNotReachHere(); } } else { ShouldNotReachHere(); } } else if (left->is_single_fpu()) { assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); switch (code) { case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; case lir_mul_strictfp: // fall through case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; case lir_div_strictfp: // fall through case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; default: ShouldNotReachHere(); } } else if (left->is_double_fpu()) { if (right->is_double_fpu()) { // fpu register - fpu register switch (code) { case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; case lir_mul_strictfp: // fall through case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; case lir_div_strictfp: // fall through case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; default: ShouldNotReachHere(); } } else { if (right->is_constant()) { ShouldNotReachHere(); } ShouldNotReachHere(); } } else if (left->is_single_stack() || left->is_address()) { assert(left == dest, "left and dest must be equal"); ShouldNotReachHere(); } else { ShouldNotReachHere(); } } void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); } void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) { switch(code) { case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; default : ShouldNotReachHere(); } } void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); Register Rleft = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); if (dst->is_single_cpu()) { Register Rdst = dst->as_register(); if (right->is_constant()) { switch (code) { case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; default: ShouldNotReachHere(); break; } } else { Register Rright = right->is_single_cpu() ? right->as_register() : right->as_register_lo(); switch (code) { case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; default: ShouldNotReachHere(); break; } } } else { Register Rdst = dst->as_register_lo(); if (right->is_constant()) { switch (code) { case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; default: ShouldNotReachHere(); break; } } else { Register Rright = right->is_single_cpu() ? right->as_register() : right->as_register_lo(); switch (code) { case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; default: ShouldNotReachHere(); break; } } } } void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { // opcode check assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); bool is_irem = (code == lir_irem); // operand check assert(left->is_single_cpu(), "left must be register"); assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); assert(result->is_single_cpu(), "result must be register"); Register lreg = left->as_register(); Register dreg = result->as_register(); // power-of-2 constant check and codegen if (right->is_constant()) { int c = right->as_constant_ptr()->as_jint(); assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); if (is_irem) { if (c == 1) { // move 0 to dreg if divisor is 1 __ movw(dreg, zr); } else { // use rscratch1 as intermediate result register __ negsw(rscratch1, lreg); __ andw(dreg, lreg, c - 1); __ andw(rscratch1, rscratch1, c - 1); __ csnegw(dreg, dreg, rscratch1, Assembler::MI); } } else { if (c == 1) { // move lreg to dreg if divisor is 1 __ movw(dreg, lreg); } else { unsigned int shift = exact_log2(c); // use rscratch1 as intermediate result register __ asrw(rscratch1, lreg, 31); __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); __ asrw(dreg, rscratch1, shift); } } } else { Register rreg = right->as_register(); __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); } } void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { if (opr1->is_constant() && opr2->is_single_cpu()) { // tableswitch Register reg = as_reg(opr2); struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { Register reg1 = as_reg(opr1); if (opr2->is_single_cpu()) { // cpu register - cpu register Register reg2 = opr2->as_register(); if (is_reference_type(opr1->type())) { __ cmpoop(reg1, reg2); } else { assert(!is_reference_type(opr2->type()), "cmp int, oop?"); __ cmpw(reg1, reg2); } return; } if (opr2->is_double_cpu()) { // cpu register - cpu register Register reg2 = opr2->as_register_lo(); __ cmp(reg1, reg2); return; } if (opr2->is_constant()) { bool is_32bit = false; // width of register operand jlong imm; switch(opr2->type()) { case T_INT: imm = opr2->as_constant_ptr()->as_jint(); is_32bit = true; break; case T_LONG: imm = opr2->as_constant_ptr()->as_jlong(); break; case T_ADDRESS: imm = opr2->as_constant_ptr()->as_jint(); break; case T_METADATA: imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); break; case T_OBJECT: case T_ARRAY: jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); __ cmpoop(reg1, rscratch1); return; default: ShouldNotReachHere(); imm = 0; // unreachable break; } if (Assembler::operand_valid_for_add_sub_immediate(imm)) { if (is_32bit) __ cmpw(reg1, imm); else __ subs(zr, reg1, imm); return; } else { __ mov(rscratch1, imm); if (is_32bit) __ cmpw(reg1, rscratch1); else __ cmp(reg1, rscratch1); return; } } else ShouldNotReachHere(); } else if (opr1->is_single_fpu()) { FloatRegister reg1 = opr1->as_float_reg(); assert(opr2->is_single_fpu(), "expect single float register"); FloatRegister reg2 = opr2->as_float_reg(); __ fcmps(reg1, reg2); } else if (opr1->is_double_fpu()) { FloatRegister reg1 = opr1->as_double_reg(); assert(opr2->is_double_fpu(), "expect double float register"); FloatRegister reg2 = opr2->as_double_reg(); __ fcmpd(reg1, reg2); } else { ShouldNotReachHere(); } } void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { bool is_unordered_less = (code == lir_ucmp_fd2i); if (left->is_single_fpu()) { __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); } else if (left->is_double_fpu()) { __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); } else { ShouldNotReachHere(); } } else if (code == lir_cmp_l2i) { Label done; __ cmp(left->as_register_lo(), right->as_register_lo()); __ mov(dst->as_register(), (uint64_t)-1L); __ br(Assembler::LT, done); __ csinc(dst->as_register(), zr, zr, Assembler::EQ); __ bind(done); } else { ShouldNotReachHere(); } } void LIR_Assembler::align_call(LIR_Code code) { } void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { address call = __ trampoline_call(Address(op->addr(), rtype)); if (call == NULL) { bailout("trampoline stub overflow"); return; } add_call_info(code_offset(), op->info()); } void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { address call = __ ic_call(op->addr()); if (call == NULL) { bailout("trampoline stub overflow"); return; } add_call_info(code_offset(), op->info()); } /* Currently, vtable-dispatch is only enabled for sparc platforms */ void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) { ShouldNotReachHere(); } void LIR_Assembler::emit_static_call_stub() { address call_pc = __ pc(); address stub = __ start_a_stub(call_stub_size()); if (stub == NULL) { bailout("static call stub overflow"); return; } int start = __ offset(); __ relocate(static_stub_Relocation::spec(call_pc)); __ emit_static_call_stub(); assert(__ offset() - start + CompiledStaticCall::to_trampoline_stub_size() <= call_stub_size(), "stub too big"); __ end_a_stub(); } void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { assert(exceptionOop->as_register() == r0, "must match"); assert(exceptionPC->as_register() == r3, "must match"); // exception object is not added to oop map by LinearScan // (LinearScan assumes that no oops are in fixed registers) info->add_register_oop(exceptionOop); Runtime1::StubID unwind_id; // get current pc information // pc is only needed if the method has an exception handler, the unwind code does not need it. int pc_for_athrow_offset = __ offset(); InternalAddress pc_for_athrow(__ pc()); __ adr(exceptionPC->as_register(), pc_for_athrow); add_call_info(pc_for_athrow_offset, info); // for exception handler __ verify_not_null_oop(r0); // search an exception handler (r0: exception oop, r3: throwing pc) if (compilation()->has_fpu_code()) { unwind_id = Runtime1::handle_exception_id; } else { unwind_id = Runtime1::handle_exception_nofpu_id; } __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); // FIXME: enough room for two byte trap ???? __ nop(); } void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { assert(exceptionOop->as_register() == r0, "must match"); __ b(_unwind_handler_entry); } void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); switch (left->type()) { case T_INT: { switch (code) { case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; default: ShouldNotReachHere(); break; } break; case T_LONG: case T_ADDRESS: case T_OBJECT: switch (code) { case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; default: ShouldNotReachHere(); break; } break; default: ShouldNotReachHere(); break; } } } void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); switch (left->type()) { case T_INT: { switch (code) { case lir_shl: __ lslw (dreg, lreg, count); break; case lir_shr: __ asrw (dreg, lreg, count); break; case lir_ushr: __ lsrw (dreg, lreg, count); break; default: ShouldNotReachHere(); break; } break; case T_LONG: case T_ADDRESS: case T_OBJECT: switch (code) { case lir_shl: __ lsl (dreg, lreg, count); break; case lir_shr: __ asr (dreg, lreg, count); break; case lir_ushr: __ lsr (dreg, lreg, count); break; default: ShouldNotReachHere(); break; } break; default: ShouldNotReachHere(); break; } } } void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); __ str (r, Address(sp, offset_from_rsp_in_bytes)); } void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); __ mov (rscratch1, c); __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); } void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { ShouldNotReachHere(); assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); __ lea(rscratch1, __ constant_oop_address(o)); __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); } // This code replaces a call to arraycopy; no exception may // be thrown in this code, they must be thrown in the System.arraycopy // activation frame; we could save some checks if this would not be the case void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { ciArrayKlass* default_type = op->expected_type(); Register src = op->src()->as_register(); Register dst = op->dst()->as_register(); Register src_pos = op->src_pos()->as_register(); Register dst_pos = op->dst_pos()->as_register(); Register length = op->length()->as_register(); Register tmp = op->tmp()->as_register(); __ resolve(ACCESS_READ, src); __ resolve(ACCESS_WRITE, dst); CodeStub* stub = op->stub(); int flags = op->flags(); BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; if (is_reference_type(basic_type)) basic_type = T_OBJECT; // if we don't know anything, just go through the generic arraycopy if (default_type == NULL // || basic_type == T_OBJECT ) { Label done; assert(src == r1 && src_pos == r2, "mismatch in calling convention"); // Save the arguments in case the generic arraycopy fails and we // have to fall back to the JNI stub __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); __ str(src, Address(sp, 4*BytesPerWord)); address copyfunc_addr = StubRoutines::generic_arraycopy(); assert(copyfunc_addr != NULL, "generic arraycopy stub required"); // The arguments are in java calling convention so we shift them // to C convention assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); __ mov(c_rarg0, j_rarg0); assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); __ mov(c_rarg1, j_rarg1); assert_different_registers(c_rarg2, j_rarg3, j_rarg4); __ mov(c_rarg2, j_rarg2); assert_different_registers(c_rarg3, j_rarg4); __ mov(c_rarg3, j_rarg3); __ mov(c_rarg4, j_rarg4); #ifndef PRODUCT if (PrintC1Statistics) { __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); } #endif __ far_call(RuntimeAddress(copyfunc_addr)); __ cbz(r0, *stub->continuation()); // Reload values from the stack so they are where the stub // expects them. __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); __ ldr(src, Address(sp, 4*BytesPerWord)); // r0 is -1^K where K == partial copied count __ eonw(rscratch1, r0, zr); // adjust length down and src/end pos up by partial copied count __ subw(length, length, rscratch1); __ addw(src_pos, src_pos, rscratch1); __ addw(dst_pos, dst_pos, rscratch1); __ b(*stub->entry()); __ bind(*stub->continuation()); return; } assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); int elem_size = type2aelembytes(basic_type); int shift_amount; int scale = exact_log2(elem_size); Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); // test for NULL if (flags & LIR_OpArrayCopy::src_null_check) { __ cbz(src, *stub->entry()); } if (flags & LIR_OpArrayCopy::dst_null_check) { __ cbz(dst, *stub->entry()); } // If the compiler was not able to prove that exact type of the source or the destination // of the arraycopy is an array type, check at runtime if the source or the destination is // an instance type. if (flags & LIR_OpArrayCopy::type_check) { if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { __ load_klass(tmp, dst); __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); __ cmpw(rscratch1, Klass::_lh_neutral_value); __ br(Assembler::GE, *stub->entry()); } if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { __ load_klass(tmp, src); __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); __ cmpw(rscratch1, Klass::_lh_neutral_value); __ br(Assembler::GE, *stub->entry()); } } // check if negative if (flags & LIR_OpArrayCopy::src_pos_positive_check) { __ cmpw(src_pos, 0); __ br(Assembler::LT, *stub->entry()); } if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { __ cmpw(dst_pos, 0); __ br(Assembler::LT, *stub->entry()); } if (flags & LIR_OpArrayCopy::length_positive_check) { __ cmpw(length, 0); __ br(Assembler::LT, *stub->entry()); } if (flags & LIR_OpArrayCopy::src_range_check) { __ addw(tmp, src_pos, length); __ ldrw(rscratch1, src_length_addr); __ cmpw(tmp, rscratch1); __ br(Assembler::HI, *stub->entry()); } if (flags & LIR_OpArrayCopy::dst_range_check) { __ addw(tmp, dst_pos, length); __ ldrw(rscratch1, dst_length_addr); __ cmpw(tmp, rscratch1); __ br(Assembler::HI, *stub->entry()); } if (flags & LIR_OpArrayCopy::type_check) { // We don't know the array types are compatible if (basic_type != T_OBJECT) { // Simple test for basic type arrays if (UseCompressedClassPointers) { __ ldrw(tmp, src_klass_addr); __ ldrw(rscratch1, dst_klass_addr); __ cmpw(tmp, rscratch1); } else { __ ldr(tmp, src_klass_addr); __ ldr(rscratch1, dst_klass_addr); __ cmp(tmp, rscratch1); } __ br(Assembler::NE, *stub->entry()); } else { // For object arrays, if src is a sub class of dst then we can // safely do the copy. Label cont, slow; #define PUSH(r1, r2) \ stp(r1, r2, __ pre(sp, -2 * wordSize)); #define POP(r1, r2) \ ldp(r1, r2, __ post(sp, 2 * wordSize)); __ PUSH(src, dst); __ load_klass(src, src); __ load_klass(dst, dst); __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL); __ PUSH(src, dst); __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); __ POP(src, dst); __ cbnz(src, cont); __ bind(slow); __ POP(src, dst); address copyfunc_addr = StubRoutines::checkcast_arraycopy(); if (copyfunc_addr != NULL) { // use stub if available // src is not a sub class of dst so we have to do a // per-element check. int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; if ((flags & mask) != mask) { // Check that at least both of them object arrays. assert(flags & mask, "one of the two should be known to be an object array"); if (!(flags & LIR_OpArrayCopy::src_objarray)) { __ load_klass(tmp, src); } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { __ load_klass(tmp, dst); } int lh_offset = in_bytes(Klass::layout_helper_offset()); Address klass_lh_addr(tmp, lh_offset); jint objArray_lh = Klass::array_layout_helper(T_OBJECT); __ ldrw(rscratch1, klass_lh_addr); __ mov(rscratch2, objArray_lh); __ eorw(rscratch1, rscratch1, rscratch2); __ cbnzw(rscratch1, *stub->entry()); } // Spill because stubs can use any register they like and it's // easier to restore just those that we care about. __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); __ str(src, Address(sp, 4*BytesPerWord)); __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); assert_different_registers(c_rarg0, dst, dst_pos, length); __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); assert_different_registers(c_rarg1, dst, length); __ uxtw(c_rarg2, length); assert_different_registers(c_rarg2, dst); __ load_klass(c_rarg4, dst); __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); __ far_call(RuntimeAddress(copyfunc_addr)); #ifndef PRODUCT if (PrintC1Statistics) { Label failed; __ cbnz(r0, failed); __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); __ bind(failed); } #endif __ cbz(r0, *stub->continuation()); #ifndef PRODUCT if (PrintC1Statistics) { __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); } #endif assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); // Restore previously spilled arguments __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); __ ldr(src, Address(sp, 4*BytesPerWord)); // return value is -1^K where K is partial copied count __ eonw(rscratch1, r0, zr); // adjust length down and src/end pos up by partial copied count __ subw(length, length, rscratch1); __ addw(src_pos, src_pos, rscratch1); __ addw(dst_pos, dst_pos, rscratch1); } __ b(*stub->entry()); __ bind(cont); __ POP(src, dst); } } #ifdef ASSERT if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { // Sanity check the known type with the incoming class. For the // primitive case the types must match exactly with src.klass and // dst.klass each exactly matching the default type. For the // object array case, if no type check is needed then either the // dst type is exactly the expected type and the src type is a // subtype which we can't check or src is the same array as dst // but not necessarily exactly of type default_type. Label known_ok, halt; __ mov_metadata(tmp, default_type->constant_encoding()); if (UseCompressedClassPointers) { __ encode_klass_not_null(tmp); } if (basic_type != T_OBJECT) { if (UseCompressedClassPointers) { __ ldrw(rscratch1, dst_klass_addr); __ cmpw(tmp, rscratch1); } else { __ ldr(rscratch1, dst_klass_addr); __ cmp(tmp, rscratch1); } __ br(Assembler::NE, halt); if (UseCompressedClassPointers) { __ ldrw(rscratch1, src_klass_addr); __ cmpw(tmp, rscratch1); } else { __ ldr(rscratch1, src_klass_addr); __ cmp(tmp, rscratch1); } __ br(Assembler::EQ, known_ok); } else { if (UseCompressedClassPointers) { __ ldrw(rscratch1, dst_klass_addr); __ cmpw(tmp, rscratch1); } else { __ ldr(rscratch1, dst_klass_addr); __ cmp(tmp, rscratch1); } __ br(Assembler::EQ, known_ok); __ cmp(src, dst); __ br(Assembler::EQ, known_ok); } __ bind(halt); __ stop("incorrect type information in arraycopy"); __ bind(known_ok); } #endif #ifndef PRODUCT if (PrintC1Statistics) { __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); } #endif __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); assert_different_registers(c_rarg0, dst, dst_pos, length); __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); assert_different_registers(c_rarg1, dst, length); __ uxtw(c_rarg2, length); assert_different_registers(c_rarg2, dst); bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; const char *name; address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); CodeBlob *cb = CodeCache::find_blob(entry); if (cb) { __ far_call(RuntimeAddress(entry)); } else { __ call_VM_leaf(entry, 3); } __ bind(*stub->continuation()); } void LIR_Assembler::emit_lock(LIR_OpLock* op) { Register obj = op->obj_opr()->as_register(); // may not be an oop Register hdr = op->hdr_opr()->as_register(); Register lock = op->lock_opr()->as_register(); if (!UseFastLocking) { __ b(*op->stub()->entry()); } else if (op->code() == lir_lock) { Register scratch = noreg; if (UseBiasedLocking) { scratch = op->scratch_opr()->as_register(); } assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); __ resolve(ACCESS_READ | ACCESS_WRITE, obj); // add debug info for NullPointerException only if one is possible int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry()); if (op->info() != NULL) { add_debug_info_for_null_check(null_check_offset, op->info()); } // done } else if (op->code() == lir_unlock) { assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); __ unlock_object(hdr, obj, lock, *op->stub()->entry()); } else { Unimplemented(); } __ bind(*op->stub()->continuation()); } void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { ciMethod* method = op->profiled_method(); int bci = op->profiled_bci(); ciMethod* callee = op->profiled_callee(); // Update counter for all call types ciMethodData* md = method->method_data_or_null(); assert(md != NULL, "Sanity"); ciProfileData* data = md->bci_to_data(bci); assert(data != NULL && data->is_CounterData(), "need CounterData for calls"); assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); Register mdo = op->mdo()->as_register(); __ mov_metadata(mdo, md->constant_encoding()); Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); // Perform additional virtual call profiling for invokevirtual and // invokeinterface bytecodes if (op->should_profile_receiver_type()) { assert(op->recv()->is_single_cpu(), "recv must be allocated"); Register recv = op->recv()->as_register(); assert_different_registers(mdo, recv); assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); ciKlass* known_klass = op->known_holder(); if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { // We know the type that will be seen at this call site; we can // statically update the MethodData* rather than needing to do // dynamic tests on the receiver type // NOTE: we should probably put a lock around this search to // avoid collisions by concurrent compilations ciVirtualCallData* vc_data = (ciVirtualCallData*) data; uint i; for (i = 0; i < VirtualCallData::row_limit(); i++) { ciKlass* receiver = vc_data->receiver(i); if (known_klass->equals(receiver)) { Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); __ addptr(data_addr, DataLayout::counter_increment); return; } } // Receiver type not found in profile data; select an empty slot // Note that this is less efficient than it should be because it // always does a write to the receiver part of the // VirtualCallData rather than just the first time for (i = 0; i < VirtualCallData::row_limit(); i++) { ciKlass* receiver = vc_data->receiver(i); if (receiver == NULL) { Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); __ mov_metadata(rscratch1, known_klass->constant_encoding()); __ lea(rscratch2, recv_addr); __ str(rscratch1, Address(rscratch2)); Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); __ addptr(data_addr, DataLayout::counter_increment); return; } } } else { __ load_klass(recv, recv); Label update_done; type_profile_helper(mdo, md, data, recv, &update_done); // Receiver did not match any saved receiver and there is no empty row for it. // Increment total counter to indicate polymorphic case. __ addptr(counter_addr, DataLayout::counter_increment); __ bind(update_done); } } else { // Static call __ addptr(counter_addr, DataLayout::counter_increment); } } void LIR_Assembler::emit_delay(LIR_OpDelay*) { Unimplemented(); } void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); } void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { assert(op->crc()->is_single_cpu(), "crc must be register"); assert(op->val()->is_single_cpu(), "byte value must be register"); assert(op->result_opr()->is_single_cpu(), "result must be register"); Register crc = op->crc()->as_register(); Register val = op->val()->as_register(); Register res = op->result_opr()->as_register(); assert_different_registers(val, crc, res); uint64_t offset; __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); if (offset) __ add(res, res, offset); __ mvnw(crc, crc); // ~crc __ update_byte_crc32(crc, val, res); __ mvnw(res, crc); // ~crc } void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { COMMENT("emit_profile_type {"); Register obj = op->obj()->as_register(); Register tmp = op->tmp()->as_pointer_register(); Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); ciKlass* exact_klass = op->exact_klass(); intptr_t current_klass = op->current_klass(); bool not_null = op->not_null(); bool no_conflict = op->no_conflict(); Label update, next, none; bool do_null = !not_null; bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; assert(do_null || do_update, "why are we here?"); assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); assert(mdo_addr.base() != rscratch1, "wrong register"); __ verify_oop(obj); if (tmp != obj) { __ mov(tmp, obj); } if (do_null) { __ cbnz(tmp, update); if (!TypeEntries::was_null_seen(current_klass)) { __ ldr(rscratch2, mdo_addr); __ orr(rscratch2, rscratch2, TypeEntries::null_seen); __ str(rscratch2, mdo_addr); } if (do_update) { #ifndef ASSERT __ b(next); } #else __ b(next); } } else { __ cbnz(tmp, update); __ stop("unexpected null obj"); #endif } __ bind(update); if (do_update) { #ifdef ASSERT if (exact_klass != NULL) { Label ok; __ load_klass(tmp, tmp); __ mov_metadata(rscratch1, exact_klass->constant_encoding()); __ eor(rscratch1, tmp, rscratch1); __ cbz(rscratch1, ok); __ stop("exact klass and actual klass differ"); __ bind(ok); } #endif if (!no_conflict) { if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) { if (exact_klass != NULL) { __ mov_metadata(tmp, exact_klass->constant_encoding()); } else { __ load_klass(tmp, tmp); } __ ldr(rscratch2, mdo_addr); __ eor(tmp, tmp, rscratch2); __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); // klass seen before, nothing to do. The unknown bit may have been // set already but no need to check. __ cbz(rscratch1, next); __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. if (TypeEntries::is_type_none(current_klass)) { __ cbz(rscratch2, none); __ cmp(rscratch2, (u1)TypeEntries::null_seen); __ br(Assembler::EQ, none); // There is a chance that the checks above (re-reading profiling // data from memory) fail if another thread has just set the // profiling to this obj's klass __ dmb(Assembler::ISHLD); __ ldr(rscratch2, mdo_addr); __ eor(tmp, tmp, rscratch2); __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); __ cbz(rscratch1, next); } } else { assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); __ ldr(tmp, mdo_addr); __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. } // different than before. Cannot keep accurate profile. __ ldr(rscratch2, mdo_addr); __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); __ str(rscratch2, mdo_addr); if (TypeEntries::is_type_none(current_klass)) { __ b(next); __ bind(none); // first time here. Set profile type. __ str(tmp, mdo_addr); } } else { // There's a single possible klass at this profile point assert(exact_klass != NULL, "should be"); if (TypeEntries::is_type_none(current_klass)) { __ mov_metadata(tmp, exact_klass->constant_encoding()); __ ldr(rscratch2, mdo_addr); __ eor(tmp, tmp, rscratch2); __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); __ cbz(rscratch1, next); #ifdef ASSERT { Label ok; __ ldr(rscratch1, mdo_addr); __ cbz(rscratch1, ok); __ cmp(rscratch1, (u1)TypeEntries::null_seen); __ br(Assembler::EQ, ok); // may have been set by another thread __ dmb(Assembler::ISHLD); __ mov_metadata(rscratch1, exact_klass->constant_encoding()); __ ldr(rscratch2, mdo_addr); __ eor(rscratch2, rscratch1, rscratch2); __ andr(rscratch2, rscratch2, TypeEntries::type_mask); __ cbz(rscratch2, ok); __ stop("unexpected profiling mismatch"); __ bind(ok); } #endif // first time here. Set profile type. __ ldr(tmp, mdo_addr); } else { assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); __ ldr(tmp, mdo_addr); __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. __ orr(tmp, tmp, TypeEntries::type_unknown); __ str(tmp, mdo_addr); // FIXME: Write barrier needed here? } } __ bind(next); } COMMENT("} emit_profile_type"); } void LIR_Assembler::align_backward_branch_target() { } void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { // tmp must be unused assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); if (left->is_single_cpu()) { assert(dest->is_single_cpu(), "expect single result reg"); __ negw(dest->as_register(), left->as_register()); } else if (left->is_double_cpu()) { assert(dest->is_double_cpu(), "expect double result reg"); __ neg(dest->as_register_lo(), left->as_register_lo()); } else if (left->is_single_fpu()) { assert(dest->is_single_fpu(), "expect single float result reg"); __ fnegs(dest->as_float_reg(), left->as_float_reg()); } else { assert(left->is_double_fpu(), "expect double float operand reg"); assert(dest->is_double_fpu(), "expect double float result reg"); __ fnegd(dest->as_double_reg(), left->as_double_reg()); } } void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { if (patch_code != lir_patch_none) { deoptimize_trap(info); return; } __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr())); } void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { assert(!tmp->is_valid(), "don't need temporary"); CodeBlob *cb = CodeCache::find_blob(dest); if (cb) { __ far_call(RuntimeAddress(dest)); } else { __ mov(rscratch1, RuntimeAddress(dest)); __ blr(rscratch1); } if (info != NULL) { add_call_info_here(info); } __ maybe_isb(); } void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { if (dest->is_address() || src->is_address()) { move_op(src, dest, type, lir_patch_none, info, /*pop_fpu_stack*/false, /*unaligned*/false, /*wide*/false); } else { ShouldNotReachHere(); } } #ifdef ASSERT // emit run-time assertion void LIR_Assembler::emit_assert(LIR_OpAssert* op) { assert(op->code() == lir_assert, "must be"); if (op->in_opr1()->is_valid()) { assert(op->in_opr2()->is_valid(), "both operands must be valid"); comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); } else { assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); assert(op->condition() == lir_cond_always, "no other conditions allowed"); } Label ok; if (op->condition() != lir_cond_always) { Assembler::Condition acond = Assembler::AL; switch (op->condition()) { case lir_cond_equal: acond = Assembler::EQ; break; case lir_cond_notEqual: acond = Assembler::NE; break; case lir_cond_less: acond = Assembler::LT; break; case lir_cond_lessEqual: acond = Assembler::LE; break; case lir_cond_greaterEqual: acond = Assembler::GE; break; case lir_cond_greater: acond = Assembler::GT; break; case lir_cond_belowEqual: acond = Assembler::LS; break; case lir_cond_aboveEqual: acond = Assembler::HS; break; default: ShouldNotReachHere(); } __ br(acond, ok); } if (op->halt()) { const char* str = __ code_string(op->msg()); __ stop(str); } else { breakpoint(); } __ bind(ok); } #endif #ifndef PRODUCT #define COMMENT(x) do { __ block_comment(x); } while (0) #else #define COMMENT(x) #endif void LIR_Assembler::membar() { COMMENT("membar"); __ membar(MacroAssembler::AnyAny); } void LIR_Assembler::membar_acquire() { __ membar(Assembler::LoadLoad|Assembler::LoadStore); } void LIR_Assembler::membar_release() { __ membar(Assembler::LoadStore|Assembler::StoreStore); } void LIR_Assembler::membar_loadload() { __ membar(Assembler::LoadLoad); } void LIR_Assembler::membar_storestore() { __ membar(MacroAssembler::StoreStore); } void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } void LIR_Assembler::on_spin_wait() { Unimplemented(); } void LIR_Assembler::get_thread(LIR_Opr result_reg) { __ mov(result_reg->as_register(), rthread); } void LIR_Assembler::peephole(LIR_List *lir) { #if 0 if (tableswitch_count >= max_tableswitches) return; /* This finite-state automaton recognizes sequences of compare-and- branch instructions. We will turn them into a tableswitch. You could argue that C1 really shouldn't be doing this sort of optimization, but without it the code is really horrible. */ enum { start_s, cmp1_s, beq_s, cmp_s } state; int first_key, last_key = -2147483648; int next_key = 0; int start_insn = -1; int last_insn = -1; Register reg = noreg; LIR_Opr reg_opr; state = start_s; LIR_OpList* inst = lir->instructions_list(); for (int i = 0; i < inst->length(); i++) { LIR_Op* op = inst->at(i); switch (state) { case start_s: first_key = -1; start_insn = i; switch (op->code()) { case lir_cmp: LIR_Opr opr1 = op->as_Op2()->in_opr1(); LIR_Opr opr2 = op->as_Op2()->in_opr2(); if (opr1->is_cpu_register() && opr1->is_single_cpu() && opr2->is_constant() && opr2->type() == T_INT) { reg_opr = opr1; reg = opr1->as_register(); first_key = opr2->as_constant_ptr()->as_jint(); next_key = first_key + 1; state = cmp_s; goto next_state; } break; } break; case cmp_s: switch (op->code()) { case lir_branch: if (op->as_OpBranch()->cond() == lir_cond_equal) { state = beq_s; last_insn = i; goto next_state; } } state = start_s; break; case beq_s: switch (op->code()) { case lir_cmp: { LIR_Opr opr1 = op->as_Op2()->in_opr1(); LIR_Opr opr2 = op->as_Op2()->in_opr2(); if (opr1->is_cpu_register() && opr1->is_single_cpu() && opr1->as_register() == reg && opr2->is_constant() && opr2->type() == T_INT && opr2->as_constant_ptr()->as_jint() == next_key) { last_key = next_key; next_key++; state = cmp_s; goto next_state; } } } last_key = next_key; state = start_s; break; default: assert(false, "impossible state"); } if (state == start_s) { if (first_key < last_key - 5L && reg != noreg) { { // printf("found run register %d starting at insn %d low value %d high value %d\n", // reg->encoding(), // start_insn, first_key, last_key); // for (int i = 0; i < inst->length(); i++) { // inst->at(i)->print(); // tty->print("\n"); // } // tty->print("\n"); } struct tableswitch *sw = &switches[tableswitch_count]; sw->_insn_index = start_insn, sw->_first_key = first_key, sw->_last_key = last_key, sw->_reg = reg; inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); { // Insert the new table of branches int offset = last_insn; for (int n = first_key; n < last_key; n++) { inst->insert_before (last_insn + 1, new LIR_OpBranch(lir_cond_always, T_ILLEGAL, inst->at(offset)->as_OpBranch()->label())); offset -= 2, i++; } } // Delete all the old compare-and-branch instructions for (int n = first_key; n < last_key; n++) { inst->remove_at(start_insn); inst->remove_at(start_insn); } // Insert the tableswitch instruction inst->insert_before(start_insn, new LIR_Op2(lir_cmp, lir_cond_always, LIR_OprFact::intConst(tableswitch_count), reg_opr)); inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); tableswitch_count++; } reg = noreg; last_key = -2147483648; } next_state: ; } #endif } void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { Address addr = as_Address(src->as_address_ptr()); BasicType type = src->type(); bool is_oop = is_reference_type(type); void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); switch(type) { case T_INT: xchg = &MacroAssembler::atomic_xchgalw; add = &MacroAssembler::atomic_addalw; break; case T_LONG: xchg = &MacroAssembler::atomic_xchgal; add = &MacroAssembler::atomic_addal; break; case T_OBJECT: case T_ARRAY: if (UseCompressedOops) { xchg = &MacroAssembler::atomic_xchgalw; add = &MacroAssembler::atomic_addalw; } else { xchg = &MacroAssembler::atomic_xchgal; add = &MacroAssembler::atomic_addal; } break; default: ShouldNotReachHere(); xchg = &MacroAssembler::atomic_xchgal; add = &MacroAssembler::atomic_addal; // unreachable } switch (code) { case lir_xadd: { RegisterOrConstant inc; Register tmp = as_reg(tmp_op); Register dst = as_reg(dest); if (data->is_constant()) { inc = RegisterOrConstant(as_long(data)); assert_different_registers(dst, addr.base(), tmp, rscratch1, rscratch2); } else { inc = RegisterOrConstant(as_reg(data)); assert_different_registers(inc.as_register(), dst, addr.base(), tmp, rscratch1, rscratch2); } __ lea(tmp, addr); (_masm->*add)(dst, inc, tmp); break; } case lir_xchg: { Register tmp = tmp_op->as_register(); Register obj = as_reg(data); Register dst = as_reg(dest); if (is_oop && UseCompressedOops) { __ encode_heap_oop(rscratch2, obj); obj = rscratch2; } assert_different_registers(obj, addr.base(), tmp, rscratch1, dst); __ lea(tmp, addr); (_masm->*xchg)(dst, obj, tmp); if (is_oop && UseCompressedOops) { __ decode_heap_oop(dst); } } break; default: ShouldNotReachHere(); } __ membar(__ AnyAny); } #undef __