/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, 2018, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "code/compiledIC.hpp" #include "memory/resourceArea.hpp" #include "nativeInst_aarch64.hpp" #include "oops/oop.inline.hpp" #include "runtime/handles.hpp" #include "runtime/orderAccess.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "utilities/ostream.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #endif void NativeCall::verify() { assert(NativeCall::is_call_at((address)this), "unexpected code at call site"); } void NativeInstruction::wrote(int offset) { ICache::invalidate_word(addr_at(offset)); } void NativeLoadGot::report_and_fail() const { tty->print_cr("Addr: " INTPTR_FORMAT, p2i(instruction_address())); fatal("not a indirect rip mov to rbx"); } void NativeLoadGot::verify() const { assert(is_adrp_at((address)this), "must be adrp"); } address NativeLoadGot::got_address() const { return MacroAssembler::target_addr_for_insn((address)this); } intptr_t NativeLoadGot::data() const { return *(intptr_t *) got_address(); } address NativePltCall::destination() const { NativeGotJump* jump = nativeGotJump_at(plt_jump()); return *(address*)MacroAssembler::target_addr_for_insn((address)jump); } address NativePltCall::plt_entry() const { return MacroAssembler::target_addr_for_insn((address)this); } address NativePltCall::plt_jump() const { address entry = plt_entry(); // Virtual PLT code has move instruction first if (((NativeGotJump*)entry)->is_GotJump()) { return entry; } else { return nativeLoadGot_at(entry)->next_instruction_address(); } } address NativePltCall::plt_load_got() const { address entry = plt_entry(); if (!((NativeGotJump*)entry)->is_GotJump()) { // Virtual PLT code has move instruction first return entry; } else { // Static PLT code has move instruction second (from c2i stub) return nativeGotJump_at(entry)->next_instruction_address(); } } address NativePltCall::plt_c2i_stub() const { address entry = plt_load_got(); // This method should be called only for static calls which has C2I stub. NativeLoadGot* load = nativeLoadGot_at(entry); return entry; } address NativePltCall::plt_resolve_call() const { NativeGotJump* jump = nativeGotJump_at(plt_jump()); address entry = jump->next_instruction_address(); if (((NativeGotJump*)entry)->is_GotJump()) { return entry; } else { // c2i stub 2 instructions entry = nativeLoadGot_at(entry)->next_instruction_address(); return nativeGotJump_at(entry)->next_instruction_address(); } } void NativePltCall::reset_to_plt_resolve_call() { set_destination_mt_safe(plt_resolve_call()); } void NativePltCall::set_destination_mt_safe(address dest) { // rewriting the value in the GOT, it should always be aligned NativeGotJump* jump = nativeGotJump_at(plt_jump()); address* got = (address *) jump->got_address(); *got = dest; } void NativePltCall::set_stub_to_clean() { NativeLoadGot* method_loader = nativeLoadGot_at(plt_c2i_stub()); NativeGotJump* jump = nativeGotJump_at(method_loader->next_instruction_address()); method_loader->set_data(0); jump->set_jump_destination((address)-1); } void NativePltCall::verify() const { assert(NativeCall::is_call_at((address)this), "unexpected code at call site"); } address NativeGotJump::got_address() const { return MacroAssembler::target_addr_for_insn((address)this); } address NativeGotJump::destination() const { address *got_entry = (address *) got_address(); return *got_entry; } bool NativeGotJump::is_GotJump() const { NativeInstruction *insn = nativeInstruction_at(addr_at(3 * NativeInstruction::instruction_size)); return insn->encoding() == 0xd61f0200; // br x16 } void NativeGotJump::verify() const { assert(is_adrp_at((address)this), "must be adrp"); } address NativeCall::destination() const { address addr = (address)this; address destination = instruction_address() + displacement(); // Do we use a trampoline stub for this call? CodeBlob* cb = CodeCache::find_blob_unsafe(addr); // Else we get assertion if nmethod is zombie. assert(cb && cb->is_nmethod(), "sanity"); nmethod *nm = (nmethod *)cb; if (nm->stub_contains(destination) && is_NativeCallTrampolineStub_at(destination)) { // Yes we do, so get the destination from the trampoline stub. const address trampoline_stub_addr = destination; destination = nativeCallTrampolineStub_at(trampoline_stub_addr)->destination(); } return destination; } // Similar to replace_mt_safe, but just changes the destination. The // important thing is that free-running threads are able to execute this // call instruction at all times. // // Used in the runtime linkage of calls; see class CompiledIC. // // Add parameter assert_lock to switch off assertion // during code generation, where no patching lock is needed. void NativeCall::set_destination_mt_safe(address dest, bool assert_lock) { assert(!assert_lock || (Patching_lock->is_locked() || SafepointSynchronize::is_at_safepoint()) || CompiledICLocker::is_safe(addr_at(0)), "concurrent code patching"); ResourceMark rm; int code_size = NativeInstruction::instruction_size; address addr_call = addr_at(0); bool reachable = Assembler::reachable_from_branch_at(addr_call, dest); assert(NativeCall::is_call_at(addr_call), "unexpected code at call site"); // Patch the constant in the call's trampoline stub. address trampoline_stub_addr = get_trampoline(); if (trampoline_stub_addr != NULL) { assert (! is_NativeCallTrampolineStub_at(dest), "chained trampolines"); nativeCallTrampolineStub_at(trampoline_stub_addr)->set_destination(dest); } // Patch the call. if (reachable) { set_destination(dest); } else { assert (trampoline_stub_addr != NULL, "we need a trampoline"); set_destination(trampoline_stub_addr); } ICache::invalidate_range(addr_call, instruction_size); } address NativeCall::get_trampoline() { address call_addr = addr_at(0); CodeBlob *code = CodeCache::find_blob(call_addr); assert(code != NULL, "Could not find the containing code blob"); address bl_destination = MacroAssembler::pd_call_destination(call_addr); if (code->contains(bl_destination) && is_NativeCallTrampolineStub_at(bl_destination)) return bl_destination; if (code->is_nmethod()) { return trampoline_stub_Relocation::get_trampoline_for(call_addr, (nmethod*)code); } return NULL; } // Inserts a native call instruction at a given pc void NativeCall::insert(address code_pos, address entry) { Unimplemented(); } //------------------------------------------------------------------- void NativeMovConstReg::verify() { if (! (nativeInstruction_at(instruction_address())->is_movz() || is_adrp_at(instruction_address()) || is_ldr_literal_at(instruction_address())) ) { fatal("should be MOVZ or ADRP or LDR (literal)"); } } intptr_t NativeMovConstReg::data() const { // das(uint64_t(instruction_address()),2); address addr = MacroAssembler::target_addr_for_insn(instruction_address()); if (maybe_cpool_ref(instruction_address())) { return *(intptr_t*)addr; } else { return (intptr_t)addr; } } void NativeMovConstReg::set_data(intptr_t x) { if (maybe_cpool_ref(instruction_address())) { address addr = MacroAssembler::target_addr_for_insn(instruction_address()); *(intptr_t*)addr = x; } else { // Store x into the instruction stream. MacroAssembler::pd_patch_instruction(instruction_address(), (address)x); ICache::invalidate_range(instruction_address(), instruction_size); } // Find and replace the oop/metadata corresponding to this // instruction in oops section. CodeBlob* cb = CodeCache::find_blob(instruction_address()); nmethod* nm = cb->as_nmethod_or_null(); if (nm != NULL) { RelocIterator iter(nm, instruction_address(), next_instruction_address()); while (iter.next()) { if (iter.type() == relocInfo::oop_type) { oop* oop_addr = iter.oop_reloc()->oop_addr(); *oop_addr = cast_to_oop(x); break; } else if (iter.type() == relocInfo::metadata_type) { Metadata** metadata_addr = iter.metadata_reloc()->metadata_addr(); *metadata_addr = (Metadata*)x; break; } } } } void NativeMovConstReg::print() { tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT, p2i(instruction_address()), data()); } //------------------------------------------------------------------- int NativeMovRegMem::offset() const { address pc = instruction_address(); unsigned insn = *(unsigned*)pc; if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { address addr = MacroAssembler::target_addr_for_insn(pc); return *addr; } else { return (int)(intptr_t)MacroAssembler::target_addr_for_insn(instruction_address()); } } void NativeMovRegMem::set_offset(int x) { address pc = instruction_address(); unsigned insn = *(unsigned*)pc; if (maybe_cpool_ref(pc)) { address addr = MacroAssembler::target_addr_for_insn(pc); *(int64_t*)addr = x; } else { MacroAssembler::pd_patch_instruction(pc, (address)intptr_t(x)); ICache::invalidate_range(instruction_address(), instruction_size); } } void NativeMovRegMem::verify() { #ifdef ASSERT address dest = MacroAssembler::target_addr_for_insn(instruction_address()); #endif } //-------------------------------------------------------------------------------- void NativeJump::verify() { ; } void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) { } address NativeJump::jump_destination() const { address dest = MacroAssembler::target_addr_for_insn(instruction_address()); // We use jump to self as the unresolved address which the inline // cache code (and relocs) know about // As a special case we also use sequence movptr(r,0); br(r); // i.e. jump to 0 when we need leave space for a wide immediate // load // return -1 if jump to self or to 0 if ((dest == (address)this) || dest == 0) { dest = (address) -1; } return dest; } void NativeJump::set_jump_destination(address dest) { // We use jump to self as the unresolved address which the inline // cache code (and relocs) know about if (dest == (address) -1) dest = instruction_address(); MacroAssembler::pd_patch_instruction(instruction_address(), dest); ICache::invalidate_range(instruction_address(), instruction_size); }; //------------------------------------------------------------------- address NativeGeneralJump::jump_destination() const { NativeMovConstReg* move = nativeMovConstReg_at(instruction_address()); address dest = (address) move->data(); // We use jump to self as the unresolved address which the inline // cache code (and relocs) know about // As a special case we also use jump to 0 when first generating // a general jump // return -1 if jump to self or to 0 if ((dest == (address)this) || dest == 0) { dest = (address) -1; } return dest; } void NativeGeneralJump::set_jump_destination(address dest) { NativeMovConstReg* move = nativeMovConstReg_at(instruction_address()); // We use jump to self as the unresolved address which the inline // cache code (and relocs) know about if (dest == (address) -1) { dest = instruction_address(); } move->set_data((uintptr_t) dest); }; //------------------------------------------------------------------- bool NativeInstruction::is_safepoint_poll() { // a safepoint_poll is implemented in two steps as either // // adrp(reg, polling_page); // ldr(zr, [reg, #offset]); // // or // // mov(reg, polling_page); // ldr(zr, [reg, #offset]); // // or // // ldr(reg, [rthread, #offset]); // ldr(zr, [reg, #offset]); // // however, we cannot rely on the polling page address load always // directly preceding the read from the page. C1 does that but C2 // has to do the load and read as two independent instruction // generation steps. that's because with a single macro sequence the // generic C2 code can only add the oop map before the mov/adrp and // the trap handler expects an oop map to be associated with the // load. with the load scheuled as a prior step the oop map goes // where it is needed. // // so all we can do here is check that marked instruction is a load // word to zr return is_ldrw_to_zr(address(this)); } bool NativeInstruction::is_adrp_at(address instr) { unsigned insn = *(unsigned*)instr; return (Instruction_aarch64::extract(insn, 31, 24) & 0b10011111) == 0b10010000; } bool NativeInstruction::is_ldr_literal_at(address instr) { unsigned insn = *(unsigned*)instr; return (Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000; } bool NativeInstruction::is_ldrw_to_zr(address instr) { unsigned insn = *(unsigned*)instr; return (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && Instruction_aarch64::extract(insn, 4, 0) == 0b11111); } bool NativeInstruction::is_general_jump() { if (is_movz()) { NativeInstruction* inst1 = nativeInstruction_at(addr_at(instruction_size * 1)); if (inst1->is_movk()) { NativeInstruction* inst2 = nativeInstruction_at(addr_at(instruction_size * 2)); if (inst2->is_movk()) { NativeInstruction* inst3 = nativeInstruction_at(addr_at(instruction_size * 3)); if (inst3->is_blr()) { return true; } } } } return false; } bool NativeInstruction::is_movz() { return Instruction_aarch64::extract(int_at(0), 30, 23) == 0b10100101; } bool NativeInstruction::is_movk() { return Instruction_aarch64::extract(int_at(0), 30, 23) == 0b11100101; } bool NativeInstruction::is_sigill_zombie_not_entrant() { return uint_at(0) == 0xd4bbd5a1; // dcps1 #0xdead } void NativeIllegalInstruction::insert(address code_pos) { *(juint*)code_pos = 0xd4bbd5a1; // dcps1 #0xdead } bool NativeInstruction::is_stop() { return uint_at(0) == 0xd4bbd5c1; // dcps1 #0xdeae } //------------------------------------------------------------------- // MT-safe inserting of a jump over a jump or a nop (used by // nmethod::make_not_entrant_or_zombie) void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) { assert(dest == SharedRuntime::get_handle_wrong_method_stub(), "expected fixed destination of patch"); #ifdef ASSERT // This may be the temporary nmethod generated while we're AOT // compiling. Such an nmethod doesn't begin with a NOP but with an ADRP. if (! (CalculateClassFingerprint && UseAOT && is_adrp_at(verified_entry))) { assert(nativeInstruction_at(verified_entry)->is_jump_or_nop() || nativeInstruction_at(verified_entry)->is_sigill_zombie_not_entrant(), "Aarch64 cannot replace non-jump with jump"); } #endif // Patch this nmethod atomically. if (Assembler::reachable_from_branch_at(verified_entry, dest)) { ptrdiff_t disp = dest - verified_entry; guarantee(disp < 1 << 27 && disp > - (1 << 27), "branch overflow"); unsigned int insn = (0b000101 << 26) | ((disp >> 2) & 0x3ffffff); *(unsigned int*)verified_entry = insn; } else { // We use an illegal instruction for marking a method as // not_entrant or zombie. NativeIllegalInstruction::insert(verified_entry); } ICache::invalidate_range(verified_entry, instruction_size); } void NativeGeneralJump::verify() { } void NativeGeneralJump::insert_unconditional(address code_pos, address entry) { NativeGeneralJump* n_jump = (NativeGeneralJump*)code_pos; CodeBuffer cb(code_pos, instruction_size); MacroAssembler a(&cb); a.movptr(rscratch1, (uintptr_t)entry); a.br(rscratch1); ICache::invalidate_range(code_pos, instruction_size); } // MT-safe patching of a long jump instruction. void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) { ShouldNotCallThis(); } address NativeCallTrampolineStub::destination(nmethod *nm) const { return ptr_at(data_offset); } void NativeCallTrampolineStub::set_destination(address new_destination) { set_ptr_at(data_offset, new_destination); OrderAccess::release(); } // Generate a trampoline for a branch to dest. If there's no need for a // trampoline, simply patch the call directly to dest. address NativeCall::trampoline_jump(CodeBuffer &cbuf, address dest) { MacroAssembler a(&cbuf); address stub = NULL; if (a.far_branches() && ! is_NativeCallTrampolineStub_at(instruction_address() + displacement())) { stub = a.emit_trampoline_stub(instruction_address() - cbuf.insts()->start(), dest); } if (stub == NULL) { // If we generated no stub, patch this call directly to dest. // This will happen if we don't need far branches or if there // already was a trampoline. set_destination(dest); } return stub; }