1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolder.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 #define __ masm->
  45 
  46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  47 
  48 class RegisterSaver {
  49   // Capture info about frame layout
  50 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  51   enum layout {
  52                 fpu_state_off = 0,
  53                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  54                 st0_off, st0H_off,
  55                 st1_off, st1H_off,
  56                 st2_off, st2H_off,
  57                 st3_off, st3H_off,
  58                 st4_off, st4H_off,
  59                 st5_off, st5H_off,
  60                 st6_off, st6H_off,
  61                 st7_off, st7H_off,
  62                 xmm_off,
  63                 DEF_XMM_OFFS(0),
  64                 DEF_XMM_OFFS(1),
  65                 DEF_XMM_OFFS(2),
  66                 DEF_XMM_OFFS(3),
  67                 DEF_XMM_OFFS(4),
  68                 DEF_XMM_OFFS(5),
  69                 DEF_XMM_OFFS(6),
  70                 DEF_XMM_OFFS(7),
  71                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  72                 rdi_off,
  73                 rsi_off,
  74                 ignore_off,  // extra copy of rbp,
  75                 rsp_off,
  76                 rbx_off,
  77                 rdx_off,
  78                 rcx_off,
  79                 rax_off,
  80                 // The frame sender code expects that rbp will be in the "natural" place and
  81                 // will override any oopMap setting for it. We must therefore force the layout
  82                 // so that it agrees with the frame sender code.
  83                 rbp_off,
  84                 return_off,      // slot for return address
  85                 reg_save_size };
  86   enum { FPU_regs_live = flags_off - fpu_state_end };
  87 
  88   public:
  89 
  90   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
  91                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
  92   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
  93 
  94   static int rax_offset() { return rax_off; }
  95   static int rbx_offset() { return rbx_off; }
  96 
  97   // Offsets into the register save area
  98   // Used by deoptimization when it is managing result register
  99   // values on its own
 100 
 101   static int raxOffset(void) { return rax_off; }
 102   static int rdxOffset(void) { return rdx_off; }
 103   static int rbxOffset(void) { return rbx_off; }
 104   static int xmm0Offset(void) { return xmm0_off; }
 105   // This really returns a slot in the fp save area, which one is not important
 106   static int fpResultOffset(void) { return st0_off; }
 107 
 108   // During deoptimization only the result register need to be restored
 109   // all the other values have already been extracted.
 110 
 111   static void restore_result_registers(MacroAssembler* masm);
 112 
 113 };
 114 
 115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 116                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 117   int vect_words = 0;
 118   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 119 #ifdef COMPILER2
 120   if (save_vectors) {
 121     assert(UseAVX > 0, "512bit vectors are supported only with EVEX");
 122     assert(MaxVectorSize == 64, "only 512bit vectors are supported now");
 123     // Save upper half of ZMM/YMM registers :
 124     vect_words = 8 * 16 / wordSize;
 125     additional_frame_words += vect_words;
 126   }
 127 #else
 128   assert(!save_vectors, "vectors are generated only by C2");
 129 #endif
 130   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 131   int frame_words = frame_size_in_bytes / wordSize;
 132   *total_frame_words = frame_words;
 133 
 134   assert(FPUStateSizeInWords == 27, "update stack layout");
 135 
 136   // save registers, fpu state, and flags
 137   // We assume caller has already has return address slot on the stack
 138   // We push epb twice in this sequence because we want the real rbp,
 139   // to be under the return like a normal enter and we want to use pusha
 140   // We push by hand instead of pusing push
 141   __ enter();
 142   __ pusha();
 143   __ pushf();
 144   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 145   __ push_FPU_state();          // Save FPU state & init
 146 
 147   if (verify_fpu) {
 148     // Some stubs may have non standard FPU control word settings so
 149     // only check and reset the value when it required to be the
 150     // standard value.  The safepoint blob in particular can be used
 151     // in methods which are using the 24 bit control word for
 152     // optimized float math.
 153 
 154 #ifdef ASSERT
 155     // Make sure the control word has the expected value
 156     Label ok;
 157     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 158     __ jccb(Assembler::equal, ok);
 159     __ stop("corrupted control word detected");
 160     __ bind(ok);
 161 #endif
 162 
 163     // Reset the control word to guard against exceptions being unmasked
 164     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 165     // into the on stack copy and then reload that to make sure that the
 166     // current and future values are correct.
 167     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 168   }
 169 
 170   __ frstor(Address(rsp, 0));
 171   if (!verify_fpu) {
 172     // Set the control word so that exceptions are masked for the
 173     // following code.
 174     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 175   }
 176 
 177   int off = st0_off;
 178   int delta = st1_off - off;
 179 
 180   // Save the FPU registers in de-opt-able form
 181   for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
 182     __ fstp_d(Address(rsp, off*wordSize));
 183     off += delta;
 184   }
 185 
 186   off = xmm0_off;
 187   delta = xmm1_off - off;
 188   if(UseSSE == 1) {           // Save the XMM state
 189     for (int n = 0; n < num_xmm_regs; n++) {
 190       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 191       off += delta;
 192     }
 193   } else if(UseSSE >= 2) {
 194     // Save whole 128bit (16 bytes) XMM regiters
 195     for (int n = 0; n < num_xmm_regs; n++) {
 196       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 197       off += delta;
 198     }
 199   }
 200 
 201   if (save_vectors) {
 202     assert(vect_words*wordSize == 128, "");
 203     __ subptr(rsp, 128); // Save upper half of YMM registes
 204     for (int n = 0; n < num_xmm_regs; n++) {
 205       __ vextractf128h(Address(rsp, n*16), as_XMMRegister(n));
 206     }
 207     if (UseAVX > 2) {
 208       __ subptr(rsp, 256); // Save upper half of ZMM registes
 209       for (int n = 0; n < num_xmm_regs; n++) {
 210         __ vextractf64x4h(Address(rsp, n*32), as_XMMRegister(n), 1);
 211       }
 212     }
 213   }
 214 
 215   // Set an oopmap for the call site.  This oopmap will map all
 216   // oop-registers and debug-info registers as callee-saved.  This
 217   // will allow deoptimization at this safepoint to find all possible
 218   // debug-info recordings, as well as let GC find all oops.
 219 
 220   OopMapSet *oop_maps = new OopMapSet();
 221   OopMap* map =  new OopMap( frame_words, 0 );
 222 
 223 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 224 #define NEXTREG(x) (x)->as_VMReg()->next()
 225 
 226   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 227   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 228   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 229   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 230   // rbp, location is known implicitly, no oopMap
 231   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 233   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 234   off = st0_off;
 235   delta = st1_off - off;
 236   for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
 237     FloatRegister freg_name = as_FloatRegister(n);
 238     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 239     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 240     off += delta;
 241   }
 242   off = xmm0_off;
 243   delta = xmm1_off - off;
 244   for (int n = 0; n < num_xmm_regs; n++) {
 245     XMMRegister xmm_name = as_XMMRegister(n);
 246     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 247     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 248     off += delta;
 249   }
 250 #undef NEXTREG
 251 #undef STACK_OFFSET
 252 
 253   return map;
 254 }
 255 
 256 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 257   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 258   // Recover XMM & FPU state
 259   int additional_frame_bytes = 0;
 260 #ifdef COMPILER2
 261   if (restore_vectors) {
 262     assert(UseAVX > 0, "512bit vectors are supported only with EVEX");
 263     assert(MaxVectorSize == 64, "only 512bit vectors are supported now");
 264     additional_frame_bytes = 128;
 265   }
 266 #else
 267   assert(!restore_vectors, "vectors are generated only by C2");
 268 #endif
 269 
 270   if (restore_vectors) {
 271     assert(additional_frame_bytes == 128, "");
 272     if (UseAVX > 2) {
 273       // Restore upper half of ZMM registers.
 274       for (int n = 0; n < num_xmm_regs; n++) {
 275         __ vinsertf64x4h(as_XMMRegister(n), Address(rsp, n*32), 1);
 276       }
 277       __ addptr(rsp, additional_frame_bytes*2); // Save upper half of ZMM registes
 278     }
 279     // Restore upper half of YMM registes.
 280     for (int n = 0; n < num_xmm_regs; n++) {
 281       __ vinsertf128h(as_XMMRegister(n), Address(rsp, n*16));
 282     }
 283     __ addptr(rsp, additional_frame_bytes); // Save upper half of YMM registes
 284   }
 285 
 286   int off = xmm0_off;
 287   int delta = xmm1_off - off;
 288 
 289   if (UseSSE == 1) {
 290     for (int n = 0; n < num_xmm_regs; n++) {
 291       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 292       off += delta;
 293     }
 294   } else if (UseSSE >= 2) {
 295     // additional_frame_bytes only populated for the restore_vector case, else it is 0
 296     for (int n = 0; n < num_xmm_regs; n++) {
 297       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 298       off += delta;
 299     }
 300   }
 301 
 302   __ pop_FPU_state();
 303   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 304 
 305   __ popf();
 306   __ popa();
 307   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 308   __ pop(rbp);
 309 
 310 }
 311 
 312 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 313 
 314   // Just restore result register. Only used by deoptimization. By
 315   // now any callee save register that needs to be restore to a c2
 316   // caller of the deoptee has been extracted into the vframeArray
 317   // and will be stuffed into the c2i adapter we create for later
 318   // restoration so only result registers need to be restored here.
 319   //
 320 
 321   __ frstor(Address(rsp, 0));      // Restore fpu state
 322 
 323   // Recover XMM & FPU state
 324   if( UseSSE == 1 ) {
 325     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 326   } else if( UseSSE >= 2 ) {
 327     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 328   }
 329   __ movptr(rax, Address(rsp, rax_off*wordSize));
 330   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 331   // Pop all of the register save are off the stack except the return address
 332   __ addptr(rsp, return_off * wordSize);
 333 }
 334 
 335 // Is vector's size (in bytes) bigger than a size saved by default?
 336 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 337 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 338 bool SharedRuntime::is_wide_vector(int size) {
 339   return size > 16;
 340 }
 341 
 342 size_t SharedRuntime::trampoline_size() {
 343   return 16;
 344 }
 345 
 346 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 347   __ jump(RuntimeAddress(destination));
 348 }
 349 
 350 // The java_calling_convention describes stack locations as ideal slots on
 351 // a frame with no abi restrictions. Since we must observe abi restrictions
 352 // (like the placement of the register window) the slots must be biased by
 353 // the following value.
 354 static int reg2offset_in(VMReg r) {
 355   // Account for saved rbp, and return address
 356   // This should really be in_preserve_stack_slots
 357   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 358 }
 359 
 360 static int reg2offset_out(VMReg r) {
 361   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 362 }
 363 
 364 // ---------------------------------------------------------------------------
 365 // Read the array of BasicTypes from a signature, and compute where the
 366 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 367 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 368 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 369 // as framesizes are fixed.
 370 // VMRegImpl::stack0 refers to the first slot 0(sp).
 371 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 372 // up to RegisterImpl::number_of_registers) are the 32-bit
 373 // integer registers.
 374 
 375 // Pass first two oop/int args in registers ECX and EDX.
 376 // Pass first two float/double args in registers XMM0 and XMM1.
 377 // Doubles have precedence, so if you pass a mix of floats and doubles
 378 // the doubles will grab the registers before the floats will.
 379 
 380 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 381 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 382 // units regardless of build. Of course for i486 there is no 64 bit build
 383 
 384 
 385 // ---------------------------------------------------------------------------
 386 // The compiled Java calling convention.
 387 // Pass first two oop/int args in registers ECX and EDX.
 388 // Pass first two float/double args in registers XMM0 and XMM1.
 389 // Doubles have precedence, so if you pass a mix of floats and doubles
 390 // the doubles will grab the registers before the floats will.
 391 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 392                                            VMRegPair *regs,
 393                                            int total_args_passed,
 394                                            int is_outgoing) {
 395   uint    stack = 0;          // Starting stack position for args on stack
 396 
 397 
 398   // Pass first two oop/int args in registers ECX and EDX.
 399   uint reg_arg0 = 9999;
 400   uint reg_arg1 = 9999;
 401 
 402   // Pass first two float/double args in registers XMM0 and XMM1.
 403   // Doubles have precedence, so if you pass a mix of floats and doubles
 404   // the doubles will grab the registers before the floats will.
 405   // CNC - TURNED OFF FOR non-SSE.
 406   //       On Intel we have to round all doubles (and most floats) at
 407   //       call sites by storing to the stack in any case.
 408   // UseSSE=0 ==> Don't Use ==> 9999+0
 409   // UseSSE=1 ==> Floats only ==> 9999+1
 410   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 411   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 412   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 413   uint freg_arg0 = 9999+fargs;
 414   uint freg_arg1 = 9999+fargs;
 415 
 416   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 417   int i;
 418   for( i = 0; i < total_args_passed; i++) {
 419     if( sig_bt[i] == T_DOUBLE ) {
 420       // first 2 doubles go in registers
 421       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 422       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 423       else // Else double is passed low on the stack to be aligned.
 424         stack += 2;
 425     } else if( sig_bt[i] == T_LONG ) {
 426       stack += 2;
 427     }
 428   }
 429   int dstack = 0;             // Separate counter for placing doubles
 430 
 431   // Now pick where all else goes.
 432   for( i = 0; i < total_args_passed; i++) {
 433     // From the type and the argument number (count) compute the location
 434     switch( sig_bt[i] ) {
 435     case T_SHORT:
 436     case T_CHAR:
 437     case T_BYTE:
 438     case T_BOOLEAN:
 439     case T_INT:
 440     case T_ARRAY:
 441     case T_OBJECT:
 442     case T_ADDRESS:
 443       if( reg_arg0 == 9999 )  {
 444         reg_arg0 = i;
 445         regs[i].set1(rcx->as_VMReg());
 446       } else if( reg_arg1 == 9999 )  {
 447         reg_arg1 = i;
 448         regs[i].set1(rdx->as_VMReg());
 449       } else {
 450         regs[i].set1(VMRegImpl::stack2reg(stack++));
 451       }
 452       break;
 453     case T_FLOAT:
 454       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 455         freg_arg0 = i;
 456         regs[i].set1(xmm0->as_VMReg());
 457       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 458         freg_arg1 = i;
 459         regs[i].set1(xmm1->as_VMReg());
 460       } else {
 461         regs[i].set1(VMRegImpl::stack2reg(stack++));
 462       }
 463       break;
 464     case T_LONG:
 465       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 466       regs[i].set2(VMRegImpl::stack2reg(dstack));
 467       dstack += 2;
 468       break;
 469     case T_DOUBLE:
 470       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 471       if( freg_arg0 == (uint)i ) {
 472         regs[i].set2(xmm0->as_VMReg());
 473       } else if( freg_arg1 == (uint)i ) {
 474         regs[i].set2(xmm1->as_VMReg());
 475       } else {
 476         regs[i].set2(VMRegImpl::stack2reg(dstack));
 477         dstack += 2;
 478       }
 479       break;
 480     case T_VOID: regs[i].set_bad(); break;
 481       break;
 482     default:
 483       ShouldNotReachHere();
 484       break;
 485     }
 486   }
 487 
 488   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 489   return round_to(stack, 2);
 490 }
 491 
 492 // Patch the callers callsite with entry to compiled code if it exists.
 493 static void patch_callers_callsite(MacroAssembler *masm) {
 494   Label L;
 495   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 496   __ jcc(Assembler::equal, L);
 497   // Schedule the branch target address early.
 498   // Call into the VM to patch the caller, then jump to compiled callee
 499   // rax, isn't live so capture return address while we easily can
 500   __ movptr(rax, Address(rsp, 0));
 501   __ pusha();
 502   __ pushf();
 503 
 504   if (UseSSE == 1) {
 505     __ subptr(rsp, 2*wordSize);
 506     __ movflt(Address(rsp, 0), xmm0);
 507     __ movflt(Address(rsp, wordSize), xmm1);
 508   }
 509   if (UseSSE >= 2) {
 510     __ subptr(rsp, 4*wordSize);
 511     __ movdbl(Address(rsp, 0), xmm0);
 512     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 513   }
 514 #ifdef COMPILER2
 515   // C2 may leave the stack dirty if not in SSE2+ mode
 516   if (UseSSE >= 2) {
 517     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 518   } else {
 519     __ empty_FPU_stack();
 520   }
 521 #endif /* COMPILER2 */
 522 
 523   // VM needs caller's callsite
 524   __ push(rax);
 525   // VM needs target method
 526   __ push(rbx);
 527   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 528   __ addptr(rsp, 2*wordSize);
 529 
 530   if (UseSSE == 1) {
 531     __ movflt(xmm0, Address(rsp, 0));
 532     __ movflt(xmm1, Address(rsp, wordSize));
 533     __ addptr(rsp, 2*wordSize);
 534   }
 535   if (UseSSE >= 2) {
 536     __ movdbl(xmm0, Address(rsp, 0));
 537     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 538     __ addptr(rsp, 4*wordSize);
 539   }
 540 
 541   __ popf();
 542   __ popa();
 543   __ bind(L);
 544 }
 545 
 546 
 547 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 548   int next_off = st_off - Interpreter::stackElementSize;
 549   __ movdbl(Address(rsp, next_off), r);
 550 }
 551 
 552 static void gen_c2i_adapter(MacroAssembler *masm,
 553                             int total_args_passed,
 554                             int comp_args_on_stack,
 555                             const BasicType *sig_bt,
 556                             const VMRegPair *regs,
 557                             Label& skip_fixup) {
 558   // Before we get into the guts of the C2I adapter, see if we should be here
 559   // at all.  We've come from compiled code and are attempting to jump to the
 560   // interpreter, which means the caller made a static call to get here
 561   // (vcalls always get a compiled target if there is one).  Check for a
 562   // compiled target.  If there is one, we need to patch the caller's call.
 563   patch_callers_callsite(masm);
 564 
 565   __ bind(skip_fixup);
 566 
 567 #ifdef COMPILER2
 568   // C2 may leave the stack dirty if not in SSE2+ mode
 569   if (UseSSE >= 2) {
 570     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 571   } else {
 572     __ empty_FPU_stack();
 573   }
 574 #endif /* COMPILER2 */
 575 
 576   // Since all args are passed on the stack, total_args_passed * interpreter_
 577   // stack_element_size  is the
 578   // space we need.
 579   int extraspace = total_args_passed * Interpreter::stackElementSize;
 580 
 581   // Get return address
 582   __ pop(rax);
 583 
 584   // set senderSP value
 585   __ movptr(rsi, rsp);
 586 
 587   __ subptr(rsp, extraspace);
 588 
 589   // Now write the args into the outgoing interpreter space
 590   for (int i = 0; i < total_args_passed; i++) {
 591     if (sig_bt[i] == T_VOID) {
 592       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 593       continue;
 594     }
 595 
 596     // st_off points to lowest address on stack.
 597     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 598     int next_off = st_off - Interpreter::stackElementSize;
 599 
 600     // Say 4 args:
 601     // i   st_off
 602     // 0   12 T_LONG
 603     // 1    8 T_VOID
 604     // 2    4 T_OBJECT
 605     // 3    0 T_BOOL
 606     VMReg r_1 = regs[i].first();
 607     VMReg r_2 = regs[i].second();
 608     if (!r_1->is_valid()) {
 609       assert(!r_2->is_valid(), "");
 610       continue;
 611     }
 612 
 613     if (r_1->is_stack()) {
 614       // memory to memory use fpu stack top
 615       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 616 
 617       if (!r_2->is_valid()) {
 618         __ movl(rdi, Address(rsp, ld_off));
 619         __ movptr(Address(rsp, st_off), rdi);
 620       } else {
 621 
 622         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 623         // st_off == MSW, st_off-wordSize == LSW
 624 
 625         __ movptr(rdi, Address(rsp, ld_off));
 626         __ movptr(Address(rsp, next_off), rdi);
 627 #ifndef _LP64
 628         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 629         __ movptr(Address(rsp, st_off), rdi);
 630 #else
 631 #ifdef ASSERT
 632         // Overwrite the unused slot with known junk
 633         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 634         __ movptr(Address(rsp, st_off), rax);
 635 #endif /* ASSERT */
 636 #endif // _LP64
 637       }
 638     } else if (r_1->is_Register()) {
 639       Register r = r_1->as_Register();
 640       if (!r_2->is_valid()) {
 641         __ movl(Address(rsp, st_off), r);
 642       } else {
 643         // long/double in gpr
 644         NOT_LP64(ShouldNotReachHere());
 645         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 646         // T_DOUBLE and T_LONG use two slots in the interpreter
 647         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 648           // long/double in gpr
 649 #ifdef ASSERT
 650           // Overwrite the unused slot with known junk
 651           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 652           __ movptr(Address(rsp, st_off), rax);
 653 #endif /* ASSERT */
 654           __ movptr(Address(rsp, next_off), r);
 655         } else {
 656           __ movptr(Address(rsp, st_off), r);
 657         }
 658       }
 659     } else {
 660       assert(r_1->is_XMMRegister(), "");
 661       if (!r_2->is_valid()) {
 662         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 663       } else {
 664         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 665         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 666       }
 667     }
 668   }
 669 
 670   // Schedule the branch target address early.
 671   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 672   // And repush original return address
 673   __ push(rax);
 674   __ jmp(rcx);
 675 }
 676 
 677 
 678 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 679   int next_val_off = ld_off - Interpreter::stackElementSize;
 680   __ movdbl(r, Address(saved_sp, next_val_off));
 681 }
 682 
 683 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 684                         address code_start, address code_end,
 685                         Label& L_ok) {
 686   Label L_fail;
 687   __ lea(temp_reg, ExternalAddress(code_start));
 688   __ cmpptr(pc_reg, temp_reg);
 689   __ jcc(Assembler::belowEqual, L_fail);
 690   __ lea(temp_reg, ExternalAddress(code_end));
 691   __ cmpptr(pc_reg, temp_reg);
 692   __ jcc(Assembler::below, L_ok);
 693   __ bind(L_fail);
 694 }
 695 
 696 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 697                                     int total_args_passed,
 698                                     int comp_args_on_stack,
 699                                     const BasicType *sig_bt,
 700                                     const VMRegPair *regs) {
 701   // Note: rsi contains the senderSP on entry. We must preserve it since
 702   // we may do a i2c -> c2i transition if we lose a race where compiled
 703   // code goes non-entrant while we get args ready.
 704 
 705   // Adapters can be frameless because they do not require the caller
 706   // to perform additional cleanup work, such as correcting the stack pointer.
 707   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 708   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 709   // even if a callee has modified the stack pointer.
 710   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 711   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 712   // up via the senderSP register).
 713   // In other words, if *either* the caller or callee is interpreted, we can
 714   // get the stack pointer repaired after a call.
 715   // This is why c2i and i2c adapters cannot be indefinitely composed.
 716   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 717   // both caller and callee would be compiled methods, and neither would
 718   // clean up the stack pointer changes performed by the two adapters.
 719   // If this happens, control eventually transfers back to the compiled
 720   // caller, but with an uncorrected stack, causing delayed havoc.
 721 
 722   // Pick up the return address
 723   __ movptr(rax, Address(rsp, 0));
 724 
 725   if (VerifyAdapterCalls &&
 726       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 727     // So, let's test for cascading c2i/i2c adapters right now.
 728     //  assert(Interpreter::contains($return_addr) ||
 729     //         StubRoutines::contains($return_addr),
 730     //         "i2c adapter must return to an interpreter frame");
 731     __ block_comment("verify_i2c { ");
 732     Label L_ok;
 733     if (Interpreter::code() != NULL)
 734       range_check(masm, rax, rdi,
 735                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 736                   L_ok);
 737     if (StubRoutines::code1() != NULL)
 738       range_check(masm, rax, rdi,
 739                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 740                   L_ok);
 741     if (StubRoutines::code2() != NULL)
 742       range_check(masm, rax, rdi,
 743                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 744                   L_ok);
 745     const char* msg = "i2c adapter must return to an interpreter frame";
 746     __ block_comment(msg);
 747     __ stop(msg);
 748     __ bind(L_ok);
 749     __ block_comment("} verify_i2ce ");
 750   }
 751 
 752   // Must preserve original SP for loading incoming arguments because
 753   // we need to align the outgoing SP for compiled code.
 754   __ movptr(rdi, rsp);
 755 
 756   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 757   // in registers, we will occasionally have no stack args.
 758   int comp_words_on_stack = 0;
 759   if (comp_args_on_stack) {
 760     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 761     // registers are below.  By subtracting stack0, we either get a negative
 762     // number (all values in registers) or the maximum stack slot accessed.
 763     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 764     // Convert 4-byte stack slots to words.
 765     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 766     // Round up to miminum stack alignment, in wordSize
 767     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 768     __ subptr(rsp, comp_words_on_stack * wordSize);
 769   }
 770 
 771   // Align the outgoing SP
 772   __ andptr(rsp, -(StackAlignmentInBytes));
 773 
 774   // push the return address on the stack (note that pushing, rather
 775   // than storing it, yields the correct frame alignment for the callee)
 776   __ push(rax);
 777 
 778   // Put saved SP in another register
 779   const Register saved_sp = rax;
 780   __ movptr(saved_sp, rdi);
 781 
 782 
 783   // Will jump to the compiled code just as if compiled code was doing it.
 784   // Pre-load the register-jump target early, to schedule it better.
 785   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 786 
 787   // Now generate the shuffle code.  Pick up all register args and move the
 788   // rest through the floating point stack top.
 789   for (int i = 0; i < total_args_passed; i++) {
 790     if (sig_bt[i] == T_VOID) {
 791       // Longs and doubles are passed in native word order, but misaligned
 792       // in the 32-bit build.
 793       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 794       continue;
 795     }
 796 
 797     // Pick up 0, 1 or 2 words from SP+offset.
 798 
 799     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 800             "scrambled load targets?");
 801     // Load in argument order going down.
 802     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 803     // Point to interpreter value (vs. tag)
 804     int next_off = ld_off - Interpreter::stackElementSize;
 805     //
 806     //
 807     //
 808     VMReg r_1 = regs[i].first();
 809     VMReg r_2 = regs[i].second();
 810     if (!r_1->is_valid()) {
 811       assert(!r_2->is_valid(), "");
 812       continue;
 813     }
 814     if (r_1->is_stack()) {
 815       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 816       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 817 
 818       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 819       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 820       // we be generated.
 821       if (!r_2->is_valid()) {
 822         // __ fld_s(Address(saved_sp, ld_off));
 823         // __ fstp_s(Address(rsp, st_off));
 824         __ movl(rsi, Address(saved_sp, ld_off));
 825         __ movptr(Address(rsp, st_off), rsi);
 826       } else {
 827         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 828         // are accessed as negative so LSW is at LOW address
 829 
 830         // ld_off is MSW so get LSW
 831         // st_off is LSW (i.e. reg.first())
 832         // __ fld_d(Address(saved_sp, next_off));
 833         // __ fstp_d(Address(rsp, st_off));
 834         //
 835         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 836         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 837         // So we must adjust where to pick up the data to match the interpreter.
 838         //
 839         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 840         // are accessed as negative so LSW is at LOW address
 841 
 842         // ld_off is MSW so get LSW
 843         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 844                            next_off : ld_off;
 845         __ movptr(rsi, Address(saved_sp, offset));
 846         __ movptr(Address(rsp, st_off), rsi);
 847 #ifndef _LP64
 848         __ movptr(rsi, Address(saved_sp, ld_off));
 849         __ movptr(Address(rsp, st_off + wordSize), rsi);
 850 #endif // _LP64
 851       }
 852     } else if (r_1->is_Register()) {  // Register argument
 853       Register r = r_1->as_Register();
 854       assert(r != rax, "must be different");
 855       if (r_2->is_valid()) {
 856         //
 857         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 858         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 859         // So we must adjust where to pick up the data to match the interpreter.
 860 
 861         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 862                            next_off : ld_off;
 863 
 864         // this can be a misaligned move
 865         __ movptr(r, Address(saved_sp, offset));
 866 #ifndef _LP64
 867         assert(r_2->as_Register() != rax, "need another temporary register");
 868         // Remember r_1 is low address (and LSB on x86)
 869         // So r_2 gets loaded from high address regardless of the platform
 870         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 871 #endif // _LP64
 872       } else {
 873         __ movl(r, Address(saved_sp, ld_off));
 874       }
 875     } else {
 876       assert(r_1->is_XMMRegister(), "");
 877       if (!r_2->is_valid()) {
 878         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 879       } else {
 880         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 881       }
 882     }
 883   }
 884 
 885   // 6243940 We might end up in handle_wrong_method if
 886   // the callee is deoptimized as we race thru here. If that
 887   // happens we don't want to take a safepoint because the
 888   // caller frame will look interpreted and arguments are now
 889   // "compiled" so it is much better to make this transition
 890   // invisible to the stack walking code. Unfortunately if
 891   // we try and find the callee by normal means a safepoint
 892   // is possible. So we stash the desired callee in the thread
 893   // and the vm will find there should this case occur.
 894 
 895   __ get_thread(rax);
 896   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 897 
 898   // move Method* to rax, in case we end up in an c2i adapter.
 899   // the c2i adapters expect Method* in rax, (c2) because c2's
 900   // resolve stubs return the result (the method) in rax,.
 901   // I'd love to fix this.
 902   __ mov(rax, rbx);
 903 
 904   __ jmp(rdi);
 905 }
 906 
 907 // ---------------------------------------------------------------
 908 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 909                                                             int total_args_passed,
 910                                                             int comp_args_on_stack,
 911                                                             const BasicType *sig_bt,
 912                                                             const VMRegPair *regs,
 913                                                             AdapterFingerPrint* fingerprint) {
 914   address i2c_entry = __ pc();
 915 
 916   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 917 
 918   // -------------------------------------------------------------------------
 919   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 920   // to the interpreter.  The args start out packed in the compiled layout.  They
 921   // need to be unpacked into the interpreter layout.  This will almost always
 922   // require some stack space.  We grow the current (compiled) stack, then repack
 923   // the args.  We  finally end in a jump to the generic interpreter entry point.
 924   // On exit from the interpreter, the interpreter will restore our SP (lest the
 925   // compiled code, which relys solely on SP and not EBP, get sick).
 926 
 927   address c2i_unverified_entry = __ pc();
 928   Label skip_fixup;
 929 
 930   Register holder = rax;
 931   Register receiver = rcx;
 932   Register temp = rbx;
 933 
 934   {
 935 
 936     Label missed;
 937     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 938     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 939     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
 940     __ jcc(Assembler::notEqual, missed);
 941     // Method might have been compiled since the call site was patched to
 942     // interpreted if that is the case treat it as a miss so we can get
 943     // the call site corrected.
 944     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 945     __ jcc(Assembler::equal, skip_fixup);
 946 
 947     __ bind(missed);
 948     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 949   }
 950 
 951   address c2i_entry = __ pc();
 952 
 953   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 954 
 955   __ flush();
 956   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 957 }
 958 
 959 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 960                                          VMRegPair *regs,
 961                                          VMRegPair *regs2,
 962                                          int total_args_passed) {
 963   assert(regs2 == NULL, "not needed on x86");
 964 // We return the amount of VMRegImpl stack slots we need to reserve for all
 965 // the arguments NOT counting out_preserve_stack_slots.
 966 
 967   uint    stack = 0;        // All arguments on stack
 968 
 969   for( int i = 0; i < total_args_passed; i++) {
 970     // From the type and the argument number (count) compute the location
 971     switch( sig_bt[i] ) {
 972     case T_BOOLEAN:
 973     case T_CHAR:
 974     case T_FLOAT:
 975     case T_BYTE:
 976     case T_SHORT:
 977     case T_INT:
 978     case T_OBJECT:
 979     case T_ARRAY:
 980     case T_ADDRESS:
 981     case T_METADATA:
 982       regs[i].set1(VMRegImpl::stack2reg(stack++));
 983       break;
 984     case T_LONG:
 985     case T_DOUBLE: // The stack numbering is reversed from Java
 986       // Since C arguments do not get reversed, the ordering for
 987       // doubles on the stack must be opposite the Java convention
 988       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 989       regs[i].set2(VMRegImpl::stack2reg(stack));
 990       stack += 2;
 991       break;
 992     case T_VOID: regs[i].set_bad(); break;
 993     default:
 994       ShouldNotReachHere();
 995       break;
 996     }
 997   }
 998   return stack;
 999 }
1000 
1001 // A simple move of integer like type
1002 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1003   if (src.first()->is_stack()) {
1004     if (dst.first()->is_stack()) {
1005       // stack to stack
1006       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1007       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1008       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1009       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1010     } else {
1011       // stack to reg
1012       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1013     }
1014   } else if (dst.first()->is_stack()) {
1015     // reg to stack
1016     // no need to sign extend on 64bit
1017     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1018   } else {
1019     if (dst.first() != src.first()) {
1020       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1021     }
1022   }
1023 }
1024 
1025 // An oop arg. Must pass a handle not the oop itself
1026 static void object_move(MacroAssembler* masm,
1027                         OopMap* map,
1028                         int oop_handle_offset,
1029                         int framesize_in_slots,
1030                         VMRegPair src,
1031                         VMRegPair dst,
1032                         bool is_receiver,
1033                         int* receiver_offset) {
1034 
1035   // Because of the calling conventions we know that src can be a
1036   // register or a stack location. dst can only be a stack location.
1037 
1038   assert(dst.first()->is_stack(), "must be stack");
1039   // must pass a handle. First figure out the location we use as a handle
1040 
1041   if (src.first()->is_stack()) {
1042     // Oop is already on the stack as an argument
1043     Register rHandle = rax;
1044     Label nil;
1045     __ xorptr(rHandle, rHandle);
1046     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1047     __ jcc(Assembler::equal, nil);
1048     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1049     __ bind(nil);
1050     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1051 
1052     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1053     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1054     if (is_receiver) {
1055       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1056     }
1057   } else {
1058     // Oop is in an a register we must store it to the space we reserve
1059     // on the stack for oop_handles
1060     const Register rOop = src.first()->as_Register();
1061     const Register rHandle = rax;
1062     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1063     int offset = oop_slot*VMRegImpl::stack_slot_size;
1064     Label skip;
1065     __ movptr(Address(rsp, offset), rOop);
1066     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1067     __ xorptr(rHandle, rHandle);
1068     __ cmpptr(rOop, (int32_t)NULL_WORD);
1069     __ jcc(Assembler::equal, skip);
1070     __ lea(rHandle, Address(rsp, offset));
1071     __ bind(skip);
1072     // Store the handle parameter
1073     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1074     if (is_receiver) {
1075       *receiver_offset = offset;
1076     }
1077   }
1078 }
1079 
1080 // A float arg may have to do float reg int reg conversion
1081 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1082   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1083 
1084   // Because of the calling convention we know that src is either a stack location
1085   // or an xmm register. dst can only be a stack location.
1086 
1087   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1088 
1089   if (src.first()->is_stack()) {
1090     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1091     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1092   } else {
1093     // reg to stack
1094     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1095   }
1096 }
1097 
1098 // A long move
1099 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1100 
1101   // The only legal possibility for a long_move VMRegPair is:
1102   // 1: two stack slots (possibly unaligned)
1103   // as neither the java  or C calling convention will use registers
1104   // for longs.
1105 
1106   if (src.first()->is_stack() && dst.first()->is_stack()) {
1107     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1108     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1109     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1110     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1111     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1112   } else {
1113     ShouldNotReachHere();
1114   }
1115 }
1116 
1117 // A double move
1118 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1119 
1120   // The only legal possibilities for a double_move VMRegPair are:
1121   // The painful thing here is that like long_move a VMRegPair might be
1122 
1123   // Because of the calling convention we know that src is either
1124   //   1: a single physical register (xmm registers only)
1125   //   2: two stack slots (possibly unaligned)
1126   // dst can only be a pair of stack slots.
1127 
1128   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1129 
1130   if (src.first()->is_stack()) {
1131     // source is all stack
1132     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1133     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1134     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1135     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1136   } else {
1137     // reg to stack
1138     // No worries about stack alignment
1139     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1140   }
1141 }
1142 
1143 
1144 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1145   // We always ignore the frame_slots arg and just use the space just below frame pointer
1146   // which by this time is free to use
1147   switch (ret_type) {
1148   case T_FLOAT:
1149     __ fstp_s(Address(rbp, -wordSize));
1150     break;
1151   case T_DOUBLE:
1152     __ fstp_d(Address(rbp, -2*wordSize));
1153     break;
1154   case T_VOID:  break;
1155   case T_LONG:
1156     __ movptr(Address(rbp, -wordSize), rax);
1157     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1158     break;
1159   default: {
1160     __ movptr(Address(rbp, -wordSize), rax);
1161     }
1162   }
1163 }
1164 
1165 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1166   // We always ignore the frame_slots arg and just use the space just below frame pointer
1167   // which by this time is free to use
1168   switch (ret_type) {
1169   case T_FLOAT:
1170     __ fld_s(Address(rbp, -wordSize));
1171     break;
1172   case T_DOUBLE:
1173     __ fld_d(Address(rbp, -2*wordSize));
1174     break;
1175   case T_LONG:
1176     __ movptr(rax, Address(rbp, -wordSize));
1177     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1178     break;
1179   case T_VOID:  break;
1180   default: {
1181     __ movptr(rax, Address(rbp, -wordSize));
1182     }
1183   }
1184 }
1185 
1186 
1187 static void save_or_restore_arguments(MacroAssembler* masm,
1188                                       const int stack_slots,
1189                                       const int total_in_args,
1190                                       const int arg_save_area,
1191                                       OopMap* map,
1192                                       VMRegPair* in_regs,
1193                                       BasicType* in_sig_bt) {
1194   // if map is non-NULL then the code should store the values,
1195   // otherwise it should load them.
1196   int handle_index = 0;
1197   // Save down double word first
1198   for ( int i = 0; i < total_in_args; i++) {
1199     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1200       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1201       int offset = slot * VMRegImpl::stack_slot_size;
1202       handle_index += 2;
1203       assert(handle_index <= stack_slots, "overflow");
1204       if (map != NULL) {
1205         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1206       } else {
1207         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1208       }
1209     }
1210     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
1211       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1212       int offset = slot * VMRegImpl::stack_slot_size;
1213       handle_index += 2;
1214       assert(handle_index <= stack_slots, "overflow");
1215       if (map != NULL) {
1216         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
1217         if (in_regs[i].second()->is_Register()) {
1218           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
1219         }
1220       } else {
1221         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
1222         if (in_regs[i].second()->is_Register()) {
1223           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
1224         }
1225       }
1226     }
1227   }
1228   // Save or restore single word registers
1229   for ( int i = 0; i < total_in_args; i++) {
1230     if (in_regs[i].first()->is_Register()) {
1231       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1232       int offset = slot * VMRegImpl::stack_slot_size;
1233       assert(handle_index <= stack_slots, "overflow");
1234       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1235         map->set_oop(VMRegImpl::stack2reg(slot));;
1236       }
1237 
1238       // Value is in an input register pass we must flush it to the stack
1239       const Register reg = in_regs[i].first()->as_Register();
1240       switch (in_sig_bt[i]) {
1241         case T_ARRAY:
1242           if (map != NULL) {
1243             __ movptr(Address(rsp, offset), reg);
1244           } else {
1245             __ movptr(reg, Address(rsp, offset));
1246           }
1247           break;
1248         case T_BOOLEAN:
1249         case T_CHAR:
1250         case T_BYTE:
1251         case T_SHORT:
1252         case T_INT:
1253           if (map != NULL) {
1254             __ movl(Address(rsp, offset), reg);
1255           } else {
1256             __ movl(reg, Address(rsp, offset));
1257           }
1258           break;
1259         case T_OBJECT:
1260         default: ShouldNotReachHere();
1261       }
1262     } else if (in_regs[i].first()->is_XMMRegister()) {
1263       if (in_sig_bt[i] == T_FLOAT) {
1264         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1265         int offset = slot * VMRegImpl::stack_slot_size;
1266         assert(handle_index <= stack_slots, "overflow");
1267         if (map != NULL) {
1268           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1269         } else {
1270           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1271         }
1272       }
1273     } else if (in_regs[i].first()->is_stack()) {
1274       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1275         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1276         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1277       }
1278     }
1279   }
1280 }
1281 
1282 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1283 // keeps a new JNI critical region from starting until a GC has been
1284 // forced.  Save down any oops in registers and describe them in an
1285 // OopMap.
1286 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1287                                                Register thread,
1288                                                int stack_slots,
1289                                                int total_c_args,
1290                                                int total_in_args,
1291                                                int arg_save_area,
1292                                                OopMapSet* oop_maps,
1293                                                VMRegPair* in_regs,
1294                                                BasicType* in_sig_bt) {
1295   __ block_comment("check GCLocker::needs_gc");
1296   Label cont;
1297   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1298   __ jcc(Assembler::equal, cont);
1299 
1300   // Save down any incoming oops and call into the runtime to halt for a GC
1301 
1302   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1303 
1304   save_or_restore_arguments(masm, stack_slots, total_in_args,
1305                             arg_save_area, map, in_regs, in_sig_bt);
1306 
1307   address the_pc = __ pc();
1308   oop_maps->add_gc_map( __ offset(), map);
1309   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
1310 
1311   __ block_comment("block_for_jni_critical");
1312   __ push(thread);
1313   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1314   __ increment(rsp, wordSize);
1315 
1316   __ get_thread(thread);
1317   __ reset_last_Java_frame(thread, false, true);
1318 
1319   save_or_restore_arguments(masm, stack_slots, total_in_args,
1320                             arg_save_area, NULL, in_regs, in_sig_bt);
1321 
1322   __ bind(cont);
1323 #ifdef ASSERT
1324   if (StressCriticalJNINatives) {
1325     // Stress register saving
1326     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1327     save_or_restore_arguments(masm, stack_slots, total_in_args,
1328                               arg_save_area, map, in_regs, in_sig_bt);
1329     // Destroy argument registers
1330     for (int i = 0; i < total_in_args - 1; i++) {
1331       if (in_regs[i].first()->is_Register()) {
1332         const Register reg = in_regs[i].first()->as_Register();
1333         __ xorptr(reg, reg);
1334       } else if (in_regs[i].first()->is_XMMRegister()) {
1335         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1336       } else if (in_regs[i].first()->is_FloatRegister()) {
1337         ShouldNotReachHere();
1338       } else if (in_regs[i].first()->is_stack()) {
1339         // Nothing to do
1340       } else {
1341         ShouldNotReachHere();
1342       }
1343       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1344         i++;
1345       }
1346     }
1347 
1348     save_or_restore_arguments(masm, stack_slots, total_in_args,
1349                               arg_save_area, NULL, in_regs, in_sig_bt);
1350   }
1351 #endif
1352 }
1353 
1354 // Unpack an array argument into a pointer to the body and the length
1355 // if the array is non-null, otherwise pass 0 for both.
1356 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1357   Register tmp_reg = rax;
1358   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1359          "possible collision");
1360   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1361          "possible collision");
1362 
1363   // Pass the length, ptr pair
1364   Label is_null, done;
1365   VMRegPair tmp(tmp_reg->as_VMReg());
1366   if (reg.first()->is_stack()) {
1367     // Load the arg up from the stack
1368     simple_move32(masm, reg, tmp);
1369     reg = tmp;
1370   }
1371   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1372   __ jccb(Assembler::equal, is_null);
1373   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1374   simple_move32(masm, tmp, body_arg);
1375   // load the length relative to the body.
1376   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1377                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1378   simple_move32(masm, tmp, length_arg);
1379   __ jmpb(done);
1380   __ bind(is_null);
1381   // Pass zeros
1382   __ xorptr(tmp_reg, tmp_reg);
1383   simple_move32(masm, tmp, body_arg);
1384   simple_move32(masm, tmp, length_arg);
1385   __ bind(done);
1386 }
1387 
1388 static void verify_oop_args(MacroAssembler* masm,
1389                             methodHandle method,
1390                             const BasicType* sig_bt,
1391                             const VMRegPair* regs) {
1392   Register temp_reg = rbx;  // not part of any compiled calling seq
1393   if (VerifyOops) {
1394     for (int i = 0; i < method->size_of_parameters(); i++) {
1395       if (sig_bt[i] == T_OBJECT ||
1396           sig_bt[i] == T_ARRAY) {
1397         VMReg r = regs[i].first();
1398         assert(r->is_valid(), "bad oop arg");
1399         if (r->is_stack()) {
1400           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1401           __ verify_oop(temp_reg);
1402         } else {
1403           __ verify_oop(r->as_Register());
1404         }
1405       }
1406     }
1407   }
1408 }
1409 
1410 static void gen_special_dispatch(MacroAssembler* masm,
1411                                  methodHandle method,
1412                                  const BasicType* sig_bt,
1413                                  const VMRegPair* regs) {
1414   verify_oop_args(masm, method, sig_bt, regs);
1415   vmIntrinsics::ID iid = method->intrinsic_id();
1416 
1417   // Now write the args into the outgoing interpreter space
1418   bool     has_receiver   = false;
1419   Register receiver_reg   = noreg;
1420   int      member_arg_pos = -1;
1421   Register member_reg     = noreg;
1422   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1423   if (ref_kind != 0) {
1424     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1425     member_reg = rbx;  // known to be free at this point
1426     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1427   } else if (iid == vmIntrinsics::_invokeBasic) {
1428     has_receiver = true;
1429   } else {
1430     fatal("unexpected intrinsic id %d", iid);
1431   }
1432 
1433   if (member_reg != noreg) {
1434     // Load the member_arg into register, if necessary.
1435     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1436     VMReg r = regs[member_arg_pos].first();
1437     if (r->is_stack()) {
1438       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1439     } else {
1440       // no data motion is needed
1441       member_reg = r->as_Register();
1442     }
1443   }
1444 
1445   if (has_receiver) {
1446     // Make sure the receiver is loaded into a register.
1447     assert(method->size_of_parameters() > 0, "oob");
1448     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1449     VMReg r = regs[0].first();
1450     assert(r->is_valid(), "bad receiver arg");
1451     if (r->is_stack()) {
1452       // Porting note:  This assumes that compiled calling conventions always
1453       // pass the receiver oop in a register.  If this is not true on some
1454       // platform, pick a temp and load the receiver from stack.
1455       fatal("receiver always in a register");
1456       receiver_reg = rcx;  // known to be free at this point
1457       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1458     } else {
1459       // no data motion is needed
1460       receiver_reg = r->as_Register();
1461     }
1462   }
1463 
1464   // Figure out which address we are really jumping to:
1465   MethodHandles::generate_method_handle_dispatch(masm, iid,
1466                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1467 }
1468 
1469 // ---------------------------------------------------------------------------
1470 // Generate a native wrapper for a given method.  The method takes arguments
1471 // in the Java compiled code convention, marshals them to the native
1472 // convention (handlizes oops, etc), transitions to native, makes the call,
1473 // returns to java state (possibly blocking), unhandlizes any result and
1474 // returns.
1475 //
1476 // Critical native functions are a shorthand for the use of
1477 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1478 // functions.  The wrapper is expected to unpack the arguments before
1479 // passing them to the callee and perform checks before and after the
1480 // native call to ensure that they GCLocker
1481 // lock_critical/unlock_critical semantics are followed.  Some other
1482 // parts of JNI setup are skipped like the tear down of the JNI handle
1483 // block and the check for pending exceptions it's impossible for them
1484 // to be thrown.
1485 //
1486 // They are roughly structured like this:
1487 //    if (GCLocker::needs_gc())
1488 //      SharedRuntime::block_for_jni_critical();
1489 //    tranistion to thread_in_native
1490 //    unpack arrray arguments and call native entry point
1491 //    check for safepoint in progress
1492 //    check if any thread suspend flags are set
1493 //      call into JVM and possible unlock the JNI critical
1494 //      if a GC was suppressed while in the critical native.
1495 //    transition back to thread_in_Java
1496 //    return to caller
1497 //
1498 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1499                                                 const methodHandle& method,
1500                                                 int compile_id,
1501                                                 BasicType* in_sig_bt,
1502                                                 VMRegPair* in_regs,
1503                                                 BasicType ret_type) {
1504   if (method->is_method_handle_intrinsic()) {
1505     vmIntrinsics::ID iid = method->intrinsic_id();
1506     intptr_t start = (intptr_t)__ pc();
1507     int vep_offset = ((intptr_t)__ pc()) - start;
1508     gen_special_dispatch(masm,
1509                          method,
1510                          in_sig_bt,
1511                          in_regs);
1512     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1513     __ flush();
1514     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1515     return nmethod::new_native_nmethod(method,
1516                                        compile_id,
1517                                        masm->code(),
1518                                        vep_offset,
1519                                        frame_complete,
1520                                        stack_slots / VMRegImpl::slots_per_word,
1521                                        in_ByteSize(-1),
1522                                        in_ByteSize(-1),
1523                                        (OopMapSet*)NULL);
1524   }
1525   bool is_critical_native = true;
1526   address native_func = method->critical_native_function();
1527   if (native_func == NULL) {
1528     native_func = method->native_function();
1529     is_critical_native = false;
1530   }
1531   assert(native_func != NULL, "must have function");
1532 
1533   // An OopMap for lock (and class if static)
1534   OopMapSet *oop_maps = new OopMapSet();
1535 
1536   // We have received a description of where all the java arg are located
1537   // on entry to the wrapper. We need to convert these args to where
1538   // the jni function will expect them. To figure out where they go
1539   // we convert the java signature to a C signature by inserting
1540   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1541 
1542   const int total_in_args = method->size_of_parameters();
1543   int total_c_args = total_in_args;
1544   if (!is_critical_native) {
1545     total_c_args += 1;
1546     if (method->is_static()) {
1547       total_c_args++;
1548     }
1549   } else {
1550     for (int i = 0; i < total_in_args; i++) {
1551       if (in_sig_bt[i] == T_ARRAY) {
1552         total_c_args++;
1553       }
1554     }
1555   }
1556 
1557   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1558   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1559   BasicType* in_elem_bt = NULL;
1560 
1561   int argc = 0;
1562   if (!is_critical_native) {
1563     out_sig_bt[argc++] = T_ADDRESS;
1564     if (method->is_static()) {
1565       out_sig_bt[argc++] = T_OBJECT;
1566     }
1567 
1568     for (int i = 0; i < total_in_args ; i++ ) {
1569       out_sig_bt[argc++] = in_sig_bt[i];
1570     }
1571   } else {
1572     Thread* THREAD = Thread::current();
1573     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1574     SignatureStream ss(method->signature());
1575     for (int i = 0; i < total_in_args ; i++ ) {
1576       if (in_sig_bt[i] == T_ARRAY) {
1577         // Arrays are passed as int, elem* pair
1578         out_sig_bt[argc++] = T_INT;
1579         out_sig_bt[argc++] = T_ADDRESS;
1580         Symbol* atype = ss.as_symbol(CHECK_NULL);
1581         const char* at = atype->as_C_string();
1582         if (strlen(at) == 2) {
1583           assert(at[0] == '[', "must be");
1584           switch (at[1]) {
1585             case 'B': in_elem_bt[i]  = T_BYTE; break;
1586             case 'C': in_elem_bt[i]  = T_CHAR; break;
1587             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1588             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1589             case 'I': in_elem_bt[i]  = T_INT; break;
1590             case 'J': in_elem_bt[i]  = T_LONG; break;
1591             case 'S': in_elem_bt[i]  = T_SHORT; break;
1592             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1593             default: ShouldNotReachHere();
1594           }
1595         }
1596       } else {
1597         out_sig_bt[argc++] = in_sig_bt[i];
1598         in_elem_bt[i] = T_VOID;
1599       }
1600       if (in_sig_bt[i] != T_VOID) {
1601         assert(in_sig_bt[i] == ss.type(), "must match");
1602         ss.next();
1603       }
1604     }
1605   }
1606 
1607   // Now figure out where the args must be stored and how much stack space
1608   // they require.
1609   int out_arg_slots;
1610   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1611 
1612   // Compute framesize for the wrapper.  We need to handlize all oops in
1613   // registers a max of 2 on x86.
1614 
1615   // Calculate the total number of stack slots we will need.
1616 
1617   // First count the abi requirement plus all of the outgoing args
1618   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1619 
1620   // Now the space for the inbound oop handle area
1621   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1622   if (is_critical_native) {
1623     // Critical natives may have to call out so they need a save area
1624     // for register arguments.
1625     int double_slots = 0;
1626     int single_slots = 0;
1627     for ( int i = 0; i < total_in_args; i++) {
1628       if (in_regs[i].first()->is_Register()) {
1629         const Register reg = in_regs[i].first()->as_Register();
1630         switch (in_sig_bt[i]) {
1631           case T_ARRAY:  // critical array (uses 2 slots on LP64)
1632           case T_BOOLEAN:
1633           case T_BYTE:
1634           case T_SHORT:
1635           case T_CHAR:
1636           case T_INT:  single_slots++; break;
1637           case T_LONG: double_slots++; break;
1638           default:  ShouldNotReachHere();
1639         }
1640       } else if (in_regs[i].first()->is_XMMRegister()) {
1641         switch (in_sig_bt[i]) {
1642           case T_FLOAT:  single_slots++; break;
1643           case T_DOUBLE: double_slots++; break;
1644           default:  ShouldNotReachHere();
1645         }
1646       } else if (in_regs[i].first()->is_FloatRegister()) {
1647         ShouldNotReachHere();
1648       }
1649     }
1650     total_save_slots = double_slots * 2 + single_slots;
1651     // align the save area
1652     if (double_slots != 0) {
1653       stack_slots = round_to(stack_slots, 2);
1654     }
1655   }
1656 
1657   int oop_handle_offset = stack_slots;
1658   stack_slots += total_save_slots;
1659 
1660   // Now any space we need for handlizing a klass if static method
1661 
1662   int klass_slot_offset = 0;
1663   int klass_offset = -1;
1664   int lock_slot_offset = 0;
1665   bool is_static = false;
1666 
1667   if (method->is_static()) {
1668     klass_slot_offset = stack_slots;
1669     stack_slots += VMRegImpl::slots_per_word;
1670     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1671     is_static = true;
1672   }
1673 
1674   // Plus a lock if needed
1675 
1676   if (method->is_synchronized()) {
1677     lock_slot_offset = stack_slots;
1678     stack_slots += VMRegImpl::slots_per_word;
1679   }
1680 
1681   // Now a place (+2) to save return values or temp during shuffling
1682   // + 2 for return address (which we own) and saved rbp,
1683   stack_slots += 4;
1684 
1685   // Ok The space we have allocated will look like:
1686   //
1687   //
1688   // FP-> |                     |
1689   //      |---------------------|
1690   //      | 2 slots for moves   |
1691   //      |---------------------|
1692   //      | lock box (if sync)  |
1693   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1694   //      | klass (if static)   |
1695   //      |---------------------| <- klass_slot_offset
1696   //      | oopHandle area      |
1697   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1698   //      | outbound memory     |
1699   //      | based arguments     |
1700   //      |                     |
1701   //      |---------------------|
1702   //      |                     |
1703   // SP-> | out_preserved_slots |
1704   //
1705   //
1706   // ****************************************************************************
1707   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1708   // arguments off of the stack after the jni call. Before the call we can use
1709   // instructions that are SP relative. After the jni call we switch to FP
1710   // relative instructions instead of re-adjusting the stack on windows.
1711   // ****************************************************************************
1712 
1713 
1714   // Now compute actual number of stack words we need rounding to make
1715   // stack properly aligned.
1716   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1717 
1718   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1719 
1720   intptr_t start = (intptr_t)__ pc();
1721 
1722   // First thing make an ic check to see if we should even be here
1723 
1724   // We are free to use all registers as temps without saving them and
1725   // restoring them except rbp. rbp is the only callee save register
1726   // as far as the interpreter and the compiler(s) are concerned.
1727 
1728 
1729   const Register ic_reg = rax;
1730   const Register receiver = rcx;
1731   Label hit;
1732   Label exception_pending;
1733 
1734   __ verify_oop(receiver);
1735   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1736   __ jcc(Assembler::equal, hit);
1737 
1738   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1739 
1740   // verified entry must be aligned for code patching.
1741   // and the first 5 bytes must be in the same cache line
1742   // if we align at 8 then we will be sure 5 bytes are in the same line
1743   __ align(8);
1744 
1745   __ bind(hit);
1746 
1747   int vep_offset = ((intptr_t)__ pc()) - start;
1748 
1749 #ifdef COMPILER1
1750   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1751     // Object.hashCode can pull the hashCode from the header word
1752     // instead of doing a full VM transition once it's been computed.
1753     // Since hashCode is usually polymorphic at call sites we can't do
1754     // this optimization at the call site without a lot of work.
1755     Label slowCase;
1756     Register receiver = rcx;
1757     Register result = rax;
1758     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
1759 
1760     // check if locked
1761     __ testptr(result, markOopDesc::unlocked_value);
1762     __ jcc (Assembler::zero, slowCase);
1763 
1764     if (UseBiasedLocking) {
1765       // Check if biased and fall through to runtime if so
1766       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
1767       __ jcc (Assembler::notZero, slowCase);
1768     }
1769 
1770     // get hash
1771     __ andptr(result, markOopDesc::hash_mask_in_place);
1772     // test if hashCode exists
1773     __ jcc  (Assembler::zero, slowCase);
1774     __ shrptr(result, markOopDesc::hash_shift);
1775     __ ret(0);
1776     __ bind (slowCase);
1777   }
1778 #endif // COMPILER1
1779 
1780   // The instruction at the verified entry point must be 5 bytes or longer
1781   // because it can be patched on the fly by make_non_entrant. The stack bang
1782   // instruction fits that requirement.
1783 
1784   // Generate stack overflow check
1785 
1786   if (UseStackBanging) {
1787     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
1788   } else {
1789     // need a 5 byte instruction to allow MT safe patching to non-entrant
1790     __ fat_nop();
1791   }
1792 
1793   // Generate a new frame for the wrapper.
1794   __ enter();
1795   // -2 because return address is already present and so is saved rbp
1796   __ subptr(rsp, stack_size - 2*wordSize);
1797 
1798   // Frame is now completed as far as size and linkage.
1799   int frame_complete = ((intptr_t)__ pc()) - start;
1800 
1801   if (UseRTMLocking) {
1802     // Abort RTM transaction before calling JNI
1803     // because critical section will be large and will be
1804     // aborted anyway. Also nmethod could be deoptimized.
1805     __ xabort(0);
1806   }
1807 
1808   // Calculate the difference between rsp and rbp,. We need to know it
1809   // after the native call because on windows Java Natives will pop
1810   // the arguments and it is painful to do rsp relative addressing
1811   // in a platform independent way. So after the call we switch to
1812   // rbp, relative addressing.
1813 
1814   int fp_adjustment = stack_size - 2*wordSize;
1815 
1816 #ifdef COMPILER2
1817   // C2 may leave the stack dirty if not in SSE2+ mode
1818   if (UseSSE >= 2) {
1819     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1820   } else {
1821     __ empty_FPU_stack();
1822   }
1823 #endif /* COMPILER2 */
1824 
1825   // Compute the rbp, offset for any slots used after the jni call
1826 
1827   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1828 
1829   // We use rdi as a thread pointer because it is callee save and
1830   // if we load it once it is usable thru the entire wrapper
1831   const Register thread = rdi;
1832 
1833   // We use rsi as the oop handle for the receiver/klass
1834   // It is callee save so it survives the call to native
1835 
1836   const Register oop_handle_reg = rsi;
1837 
1838   __ get_thread(thread);
1839 
1840   if (is_critical_native) {
1841     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
1842                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1843   }
1844 
1845   //
1846   // We immediately shuffle the arguments so that any vm call we have to
1847   // make from here on out (sync slow path, jvmti, etc.) we will have
1848   // captured the oops from our caller and have a valid oopMap for
1849   // them.
1850 
1851   // -----------------
1852   // The Grand Shuffle
1853   //
1854   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1855   // and, if static, the class mirror instead of a receiver.  This pretty much
1856   // guarantees that register layout will not match (and x86 doesn't use reg
1857   // parms though amd does).  Since the native abi doesn't use register args
1858   // and the java conventions does we don't have to worry about collisions.
1859   // All of our moved are reg->stack or stack->stack.
1860   // We ignore the extra arguments during the shuffle and handle them at the
1861   // last moment. The shuffle is described by the two calling convention
1862   // vectors we have in our possession. We simply walk the java vector to
1863   // get the source locations and the c vector to get the destinations.
1864 
1865   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
1866 
1867   // Record rsp-based slot for receiver on stack for non-static methods
1868   int receiver_offset = -1;
1869 
1870   // This is a trick. We double the stack slots so we can claim
1871   // the oops in the caller's frame. Since we are sure to have
1872   // more args than the caller doubling is enough to make
1873   // sure we can capture all the incoming oop args from the
1874   // caller.
1875   //
1876   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1877 
1878   // Mark location of rbp,
1879   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1880 
1881   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1882   // Are free to temporaries if we have to do  stack to steck moves.
1883   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1884 
1885   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1886     switch (in_sig_bt[i]) {
1887       case T_ARRAY:
1888         if (is_critical_native) {
1889           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1890           c_arg++;
1891           break;
1892         }
1893       case T_OBJECT:
1894         assert(!is_critical_native, "no oop arguments");
1895         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1896                     ((i == 0) && (!is_static)),
1897                     &receiver_offset);
1898         break;
1899       case T_VOID:
1900         break;
1901 
1902       case T_FLOAT:
1903         float_move(masm, in_regs[i], out_regs[c_arg]);
1904           break;
1905 
1906       case T_DOUBLE:
1907         assert( i + 1 < total_in_args &&
1908                 in_sig_bt[i + 1] == T_VOID &&
1909                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1910         double_move(masm, in_regs[i], out_regs[c_arg]);
1911         break;
1912 
1913       case T_LONG :
1914         long_move(masm, in_regs[i], out_regs[c_arg]);
1915         break;
1916 
1917       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1918 
1919       default:
1920         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1921     }
1922   }
1923 
1924   // Pre-load a static method's oop into rsi.  Used both by locking code and
1925   // the normal JNI call code.
1926   if (method->is_static() && !is_critical_native) {
1927 
1928     //  load opp into a register
1929     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1930 
1931     // Now handlize the static class mirror it's known not-null.
1932     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1933     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1934 
1935     // Now get the handle
1936     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1937     // store the klass handle as second argument
1938     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1939   }
1940 
1941   // Change state to native (we save the return address in the thread, since it might not
1942   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1943   // points into the right code segment. It does not have to be the correct return pc.
1944   // We use the same pc/oopMap repeatedly when we call out
1945 
1946   intptr_t the_pc = (intptr_t) __ pc();
1947   oop_maps->add_gc_map(the_pc - start, map);
1948 
1949   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1950 
1951 
1952   // We have all of the arguments setup at this point. We must not touch any register
1953   // argument registers at this point (what if we save/restore them there are no oop?
1954 
1955   {
1956     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1957     __ mov_metadata(rax, method());
1958     __ call_VM_leaf(
1959          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1960          thread, rax);
1961   }
1962 
1963   // RedefineClasses() tracing support for obsolete method entry
1964   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1965     __ mov_metadata(rax, method());
1966     __ call_VM_leaf(
1967          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1968          thread, rax);
1969   }
1970 
1971   // These are register definitions we need for locking/unlocking
1972   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1973   const Register obj_reg  = rcx;  // Will contain the oop
1974   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1975 
1976   Label slow_path_lock;
1977   Label lock_done;
1978 
1979   // Lock a synchronized method
1980   if (method->is_synchronized()) {
1981     assert(!is_critical_native, "unhandled");
1982 
1983 
1984     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1985 
1986     // Get the handle (the 2nd argument)
1987     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1988 
1989     // Get address of the box
1990 
1991     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1992 
1993     // Load the oop from the handle
1994     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1995 
1996     if (UseBiasedLocking) {
1997       // Note that oop_handle_reg is trashed during this call
1998       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
1999     }
2000 
2001     // Load immediate 1 into swap_reg %rax,
2002     __ movptr(swap_reg, 1);
2003 
2004     // Load (object->mark() | 1) into swap_reg %rax,
2005     __ orptr(swap_reg, Address(obj_reg, 0));
2006 
2007     // Save (object->mark() | 1) into BasicLock's displaced header
2008     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2009 
2010     if (os::is_MP()) {
2011       __ lock();
2012     }
2013 
2014     // src -> dest iff dest == rax, else rax, <- dest
2015     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
2016     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2017     __ jcc(Assembler::equal, lock_done);
2018 
2019     // Test if the oopMark is an obvious stack pointer, i.e.,
2020     //  1) (mark & 3) == 0, and
2021     //  2) rsp <= mark < mark + os::pagesize()
2022     // These 3 tests can be done by evaluating the following
2023     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2024     // assuming both stack pointer and pagesize have their
2025     // least significant 2 bits clear.
2026     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
2027 
2028     __ subptr(swap_reg, rsp);
2029     __ andptr(swap_reg, 3 - os::vm_page_size());
2030 
2031     // Save the test result, for recursive case, the result is zero
2032     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2033     __ jcc(Assembler::notEqual, slow_path_lock);
2034     // Slow path will re-enter here
2035     __ bind(lock_done);
2036 
2037     if (UseBiasedLocking) {
2038       // Re-fetch oop_handle_reg as we trashed it above
2039       __ movptr(oop_handle_reg, Address(rsp, wordSize));
2040     }
2041   }
2042 
2043 
2044   // Finally just about ready to make the JNI call
2045 
2046 
2047   // get JNIEnv* which is first argument to native
2048   if (!is_critical_native) {
2049     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
2050     __ movptr(Address(rsp, 0), rdx);
2051   }
2052 
2053   // Now set thread in native
2054   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
2055 
2056   __ call(RuntimeAddress(native_func));
2057 
2058   // Verify or restore cpu control state after JNI call
2059   __ restore_cpu_control_state_after_jni();
2060 
2061   // WARNING - on Windows Java Natives use pascal calling convention and pop the
2062   // arguments off of the stack. We could just re-adjust the stack pointer here
2063   // and continue to do SP relative addressing but we instead switch to FP
2064   // relative addressing.
2065 
2066   // Unpack native results.
2067   switch (ret_type) {
2068   case T_BOOLEAN: __ c2bool(rax);            break;
2069   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
2070   case T_BYTE   : __ sign_extend_byte (rax); break;
2071   case T_SHORT  : __ sign_extend_short(rax); break;
2072   case T_INT    : /* nothing to do */        break;
2073   case T_DOUBLE :
2074   case T_FLOAT  :
2075     // Result is in st0 we'll save as needed
2076     break;
2077   case T_ARRAY:                 // Really a handle
2078   case T_OBJECT:                // Really a handle
2079       break; // can't de-handlize until after safepoint check
2080   case T_VOID: break;
2081   case T_LONG: break;
2082   default       : ShouldNotReachHere();
2083   }
2084 
2085   // Switch thread to "native transition" state before reading the synchronization state.
2086   // This additional state is necessary because reading and testing the synchronization
2087   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2088   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2089   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2090   //     Thread A is resumed to finish this native method, but doesn't block here since it
2091   //     didn't see any synchronization is progress, and escapes.
2092   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2093 
2094   if(os::is_MP()) {
2095     if (UseMembar) {
2096       // Force this write out before the read below
2097       __ membar(Assembler::Membar_mask_bits(
2098            Assembler::LoadLoad | Assembler::LoadStore |
2099            Assembler::StoreLoad | Assembler::StoreStore));
2100     } else {
2101       // Write serialization page so VM thread can do a pseudo remote membar.
2102       // We use the current thread pointer to calculate a thread specific
2103       // offset to write to within the page. This minimizes bus traffic
2104       // due to cache line collision.
2105       __ serialize_memory(thread, rcx);
2106     }
2107   }
2108 
2109   if (AlwaysRestoreFPU) {
2110     // Make sure the control word is correct.
2111     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2112   }
2113 
2114   Label after_transition;
2115 
2116   // check for safepoint operation in progress and/or pending suspend requests
2117   { Label Continue;
2118 
2119     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2120              SafepointSynchronize::_not_synchronized);
2121 
2122     Label L;
2123     __ jcc(Assembler::notEqual, L);
2124     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
2125     __ jcc(Assembler::equal, Continue);
2126     __ bind(L);
2127 
2128     // Don't use call_VM as it will see a possible pending exception and forward it
2129     // and never return here preventing us from clearing _last_native_pc down below.
2130     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2131     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2132     // by hand.
2133     //
2134     save_native_result(masm, ret_type, stack_slots);
2135     __ push(thread);
2136     if (!is_critical_native) {
2137       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2138                                               JavaThread::check_special_condition_for_native_trans)));
2139     } else {
2140       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2141                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
2142     }
2143     __ increment(rsp, wordSize);
2144     // Restore any method result value
2145     restore_native_result(masm, ret_type, stack_slots);
2146 
2147     if (is_critical_native) {
2148       // The call above performed the transition to thread_in_Java so
2149       // skip the transition logic below.
2150       __ jmpb(after_transition);
2151     }
2152 
2153     __ bind(Continue);
2154   }
2155 
2156   // change thread state
2157   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
2158   __ bind(after_transition);
2159 
2160   Label reguard;
2161   Label reguard_done;
2162   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2163   __ jcc(Assembler::equal, reguard);
2164 
2165   // slow path reguard  re-enters here
2166   __ bind(reguard_done);
2167 
2168   // Handle possible exception (will unlock if necessary)
2169 
2170   // native result if any is live
2171 
2172   // Unlock
2173   Label slow_path_unlock;
2174   Label unlock_done;
2175   if (method->is_synchronized()) {
2176 
2177     Label done;
2178 
2179     // Get locked oop from the handle we passed to jni
2180     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2181 
2182     if (UseBiasedLocking) {
2183       __ biased_locking_exit(obj_reg, rbx, done);
2184     }
2185 
2186     // Simple recursive lock?
2187 
2188     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
2189     __ jcc(Assembler::equal, done);
2190 
2191     // Must save rax, if if it is live now because cmpxchg must use it
2192     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2193       save_native_result(masm, ret_type, stack_slots);
2194     }
2195 
2196     //  get old displaced header
2197     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
2198 
2199     // get address of the stack lock
2200     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2201 
2202     // Atomic swap old header if oop still contains the stack lock
2203     if (os::is_MP()) {
2204     __ lock();
2205     }
2206 
2207     // src -> dest iff dest == rax, else rax, <- dest
2208     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
2209     __ cmpxchgptr(rbx, Address(obj_reg, 0));
2210     __ jcc(Assembler::notEqual, slow_path_unlock);
2211 
2212     // slow path re-enters here
2213     __ bind(unlock_done);
2214     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2215       restore_native_result(masm, ret_type, stack_slots);
2216     }
2217 
2218     __ bind(done);
2219 
2220   }
2221 
2222   {
2223     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2224     // Tell dtrace about this method exit
2225     save_native_result(masm, ret_type, stack_slots);
2226     __ mov_metadata(rax, method());
2227     __ call_VM_leaf(
2228          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2229          thread, rax);
2230     restore_native_result(masm, ret_type, stack_slots);
2231   }
2232 
2233   // We can finally stop using that last_Java_frame we setup ages ago
2234 
2235   __ reset_last_Java_frame(thread, false, true);
2236 
2237   // Unpack oop result
2238   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2239       Label L;
2240       __ cmpptr(rax, (int32_t)NULL_WORD);
2241       __ jcc(Assembler::equal, L);
2242       __ movptr(rax, Address(rax, 0));
2243       __ bind(L);
2244       __ verify_oop(rax);
2245   }
2246 
2247   if (!is_critical_native) {
2248     // reset handle block
2249     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
2250     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
2251 
2252     // Any exception pending?
2253     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2254     __ jcc(Assembler::notEqual, exception_pending);
2255   }
2256 
2257   // no exception, we're almost done
2258 
2259   // check that only result value is on FPU stack
2260   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
2261 
2262   // Fixup floating pointer results so that result looks like a return from a compiled method
2263   if (ret_type == T_FLOAT) {
2264     if (UseSSE >= 1) {
2265       // Pop st0 and store as float and reload into xmm register
2266       __ fstp_s(Address(rbp, -4));
2267       __ movflt(xmm0, Address(rbp, -4));
2268     }
2269   } else if (ret_type == T_DOUBLE) {
2270     if (UseSSE >= 2) {
2271       // Pop st0 and store as double and reload into xmm register
2272       __ fstp_d(Address(rbp, -8));
2273       __ movdbl(xmm0, Address(rbp, -8));
2274     }
2275   }
2276 
2277   // Return
2278 
2279   __ leave();
2280   __ ret(0);
2281 
2282   // Unexpected paths are out of line and go here
2283 
2284   // Slow path locking & unlocking
2285   if (method->is_synchronized()) {
2286 
2287     // BEGIN Slow path lock
2288 
2289     __ bind(slow_path_lock);
2290 
2291     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2292     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2293     __ push(thread);
2294     __ push(lock_reg);
2295     __ push(obj_reg);
2296     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
2297     __ addptr(rsp, 3*wordSize);
2298 
2299 #ifdef ASSERT
2300     { Label L;
2301     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2302     __ jcc(Assembler::equal, L);
2303     __ stop("no pending exception allowed on exit from monitorenter");
2304     __ bind(L);
2305     }
2306 #endif
2307     __ jmp(lock_done);
2308 
2309     // END Slow path lock
2310 
2311     // BEGIN Slow path unlock
2312     __ bind(slow_path_unlock);
2313 
2314     // Slow path unlock
2315 
2316     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2317       save_native_result(masm, ret_type, stack_slots);
2318     }
2319     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2320 
2321     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2322     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2323 
2324 
2325     // should be a peal
2326     // +wordSize because of the push above
2327     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2328     __ push(thread);
2329     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2330     __ push(rax);
2331 
2332     __ push(obj_reg);
2333     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2334     __ addptr(rsp, 3*wordSize);
2335 #ifdef ASSERT
2336     {
2337       Label L;
2338       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2339       __ jcc(Assembler::equal, L);
2340       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2341       __ bind(L);
2342     }
2343 #endif /* ASSERT */
2344 
2345     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2346 
2347     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2348       restore_native_result(masm, ret_type, stack_slots);
2349     }
2350     __ jmp(unlock_done);
2351     // END Slow path unlock
2352 
2353   }
2354 
2355   // SLOW PATH Reguard the stack if needed
2356 
2357   __ bind(reguard);
2358   save_native_result(masm, ret_type, stack_slots);
2359   {
2360     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2361   }
2362   restore_native_result(masm, ret_type, stack_slots);
2363   __ jmp(reguard_done);
2364 
2365 
2366   // BEGIN EXCEPTION PROCESSING
2367 
2368   if (!is_critical_native) {
2369     // Forward  the exception
2370     __ bind(exception_pending);
2371 
2372     // remove possible return value from FPU register stack
2373     __ empty_FPU_stack();
2374 
2375     // pop our frame
2376     __ leave();
2377     // and forward the exception
2378     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2379   }
2380 
2381   __ flush();
2382 
2383   nmethod *nm = nmethod::new_native_nmethod(method,
2384                                             compile_id,
2385                                             masm->code(),
2386                                             vep_offset,
2387                                             frame_complete,
2388                                             stack_slots / VMRegImpl::slots_per_word,
2389                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2390                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2391                                             oop_maps);
2392 
2393   if (is_critical_native) {
2394     nm->set_lazy_critical_native(true);
2395   }
2396 
2397   return nm;
2398 
2399 }
2400 
2401 // this function returns the adjust size (in number of words) to a c2i adapter
2402 // activation for use during deoptimization
2403 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2404   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2405 }
2406 
2407 
2408 uint SharedRuntime::out_preserve_stack_slots() {
2409   return 0;
2410 }
2411 
2412 //------------------------------generate_deopt_blob----------------------------
2413 void SharedRuntime::generate_deopt_blob() {
2414   // allocate space for the code
2415   ResourceMark rm;
2416   // setup code generation tools
2417   // note: the buffer code size must account for StackShadowPages=50
2418   CodeBuffer   buffer("deopt_blob", 1536, 1024);
2419   MacroAssembler* masm = new MacroAssembler(&buffer);
2420   int frame_size_in_words;
2421   OopMap* map = NULL;
2422   // Account for the extra args we place on the stack
2423   // by the time we call fetch_unroll_info
2424   const int additional_words = 2; // deopt kind, thread
2425 
2426   OopMapSet *oop_maps = new OopMapSet();
2427 
2428   // -------------
2429   // This code enters when returning to a de-optimized nmethod.  A return
2430   // address has been pushed on the the stack, and return values are in
2431   // registers.
2432   // If we are doing a normal deopt then we were called from the patched
2433   // nmethod from the point we returned to the nmethod. So the return
2434   // address on the stack is wrong by NativeCall::instruction_size
2435   // We will adjust the value to it looks like we have the original return
2436   // address on the stack (like when we eagerly deoptimized).
2437   // In the case of an exception pending with deoptimized then we enter
2438   // with a return address on the stack that points after the call we patched
2439   // into the exception handler. We have the following register state:
2440   //    rax,: exception
2441   //    rbx,: exception handler
2442   //    rdx: throwing pc
2443   // So in this case we simply jam rdx into the useless return address and
2444   // the stack looks just like we want.
2445   //
2446   // At this point we need to de-opt.  We save the argument return
2447   // registers.  We call the first C routine, fetch_unroll_info().  This
2448   // routine captures the return values and returns a structure which
2449   // describes the current frame size and the sizes of all replacement frames.
2450   // The current frame is compiled code and may contain many inlined
2451   // functions, each with their own JVM state.  We pop the current frame, then
2452   // push all the new frames.  Then we call the C routine unpack_frames() to
2453   // populate these frames.  Finally unpack_frames() returns us the new target
2454   // address.  Notice that callee-save registers are BLOWN here; they have
2455   // already been captured in the vframeArray at the time the return PC was
2456   // patched.
2457   address start = __ pc();
2458   Label cont;
2459 
2460   // Prolog for non exception case!
2461 
2462   // Save everything in sight.
2463 
2464   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2465   // Normal deoptimization
2466   __ push(Deoptimization::Unpack_deopt);
2467   __ jmp(cont);
2468 
2469   int reexecute_offset = __ pc() - start;
2470 
2471   // Reexecute case
2472   // return address is the pc describes what bci to do re-execute at
2473 
2474   // No need to update map as each call to save_live_registers will produce identical oopmap
2475   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2476 
2477   __ push(Deoptimization::Unpack_reexecute);
2478   __ jmp(cont);
2479 
2480   int exception_offset = __ pc() - start;
2481 
2482   // Prolog for exception case
2483 
2484   // all registers are dead at this entry point, except for rax, and
2485   // rdx which contain the exception oop and exception pc
2486   // respectively.  Set them in TLS and fall thru to the
2487   // unpack_with_exception_in_tls entry point.
2488 
2489   __ get_thread(rdi);
2490   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2491   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2492 
2493   int exception_in_tls_offset = __ pc() - start;
2494 
2495   // new implementation because exception oop is now passed in JavaThread
2496 
2497   // Prolog for exception case
2498   // All registers must be preserved because they might be used by LinearScan
2499   // Exceptiop oop and throwing PC are passed in JavaThread
2500   // tos: stack at point of call to method that threw the exception (i.e. only
2501   // args are on the stack, no return address)
2502 
2503   // make room on stack for the return address
2504   // It will be patched later with the throwing pc. The correct value is not
2505   // available now because loading it from memory would destroy registers.
2506   __ push(0);
2507 
2508   // Save everything in sight.
2509 
2510   // No need to update map as each call to save_live_registers will produce identical oopmap
2511   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2512 
2513   // Now it is safe to overwrite any register
2514 
2515   // store the correct deoptimization type
2516   __ push(Deoptimization::Unpack_exception);
2517 
2518   // load throwing pc from JavaThread and patch it as the return address
2519   // of the current frame. Then clear the field in JavaThread
2520   __ get_thread(rdi);
2521   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2522   __ movptr(Address(rbp, wordSize), rdx);
2523   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2524 
2525 #ifdef ASSERT
2526   // verify that there is really an exception oop in JavaThread
2527   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2528   __ verify_oop(rax);
2529 
2530   // verify that there is no pending exception
2531   Label no_pending_exception;
2532   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2533   __ testptr(rax, rax);
2534   __ jcc(Assembler::zero, no_pending_exception);
2535   __ stop("must not have pending exception here");
2536   __ bind(no_pending_exception);
2537 #endif
2538 
2539   __ bind(cont);
2540 
2541   // Compiled code leaves the floating point stack dirty, empty it.
2542   __ empty_FPU_stack();
2543 
2544 
2545   // Call C code.  Need thread and this frame, but NOT official VM entry
2546   // crud.  We cannot block on this call, no GC can happen.
2547   __ get_thread(rcx);
2548   __ push(rcx);
2549   // fetch_unroll_info needs to call last_java_frame()
2550   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2551 
2552   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2553 
2554   // Need to have an oopmap that tells fetch_unroll_info where to
2555   // find any register it might need.
2556 
2557   oop_maps->add_gc_map( __ pc()-start, map);
2558 
2559   // Discard args to fetch_unroll_info
2560   __ pop(rcx);
2561   __ pop(rcx);
2562 
2563   __ get_thread(rcx);
2564   __ reset_last_Java_frame(rcx, false, false);
2565 
2566   // Load UnrollBlock into EDI
2567   __ mov(rdi, rax);
2568 
2569   // Move the unpack kind to a safe place in the UnrollBlock because
2570   // we are very short of registers
2571 
2572   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2573   // retrieve the deopt kind from the UnrollBlock.
2574   __ movl(rax, unpack_kind);
2575 
2576    Label noException;
2577   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2578   __ jcc(Assembler::notEqual, noException);
2579   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2580   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2581   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2582   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2583 
2584   __ verify_oop(rax);
2585 
2586   // Overwrite the result registers with the exception results.
2587   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2588   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2589 
2590   __ bind(noException);
2591 
2592   // Stack is back to only having register save data on the stack.
2593   // Now restore the result registers. Everything else is either dead or captured
2594   // in the vframeArray.
2595 
2596   RegisterSaver::restore_result_registers(masm);
2597 
2598   // Non standard control word may be leaked out through a safepoint blob, and we can
2599   // deopt at a poll point with the non standard control word. However, we should make
2600   // sure the control word is correct after restore_result_registers.
2601   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2602 
2603   // All of the register save area has been popped of the stack. Only the
2604   // return address remains.
2605 
2606   // Pop all the frames we must move/replace.
2607   //
2608   // Frame picture (youngest to oldest)
2609   // 1: self-frame (no frame link)
2610   // 2: deopting frame  (no frame link)
2611   // 3: caller of deopting frame (could be compiled/interpreted).
2612   //
2613   // Note: by leaving the return address of self-frame on the stack
2614   // and using the size of frame 2 to adjust the stack
2615   // when we are done the return to frame 3 will still be on the stack.
2616 
2617   // Pop deoptimized frame
2618   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2619 
2620   // sp should be pointing at the return address to the caller (3)
2621 
2622   // Pick up the initial fp we should save
2623   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2624   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2625 
2626 #ifdef ASSERT
2627   // Compilers generate code that bang the stack by as much as the
2628   // interpreter would need. So this stack banging should never
2629   // trigger a fault. Verify that it does not on non product builds.
2630   if (UseStackBanging) {
2631     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2632     __ bang_stack_size(rbx, rcx);
2633   }
2634 #endif
2635 
2636   // Load array of frame pcs into ECX
2637   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2638 
2639   __ pop(rsi); // trash the old pc
2640 
2641   // Load array of frame sizes into ESI
2642   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2643 
2644   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2645 
2646   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2647   __ movl(counter, rbx);
2648 
2649   // Now adjust the caller's stack to make up for the extra locals
2650   // but record the original sp so that we can save it in the skeletal interpreter
2651   // frame and the stack walking of interpreter_sender will get the unextended sp
2652   // value and not the "real" sp value.
2653 
2654   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2655   __ movptr(sp_temp, rsp);
2656   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2657   __ subptr(rsp, rbx);
2658 
2659   // Push interpreter frames in a loop
2660   Label loop;
2661   __ bind(loop);
2662   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2663   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2664   __ pushptr(Address(rcx, 0));          // save return address
2665   __ enter();                           // save old & set new rbp,
2666   __ subptr(rsp, rbx);                  // Prolog!
2667   __ movptr(rbx, sp_temp);              // sender's sp
2668   // This value is corrected by layout_activation_impl
2669   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2670   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2671   __ movptr(sp_temp, rsp);              // pass to next frame
2672   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2673   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2674   __ decrementl(counter);             // decrement counter
2675   __ jcc(Assembler::notZero, loop);
2676   __ pushptr(Address(rcx, 0));          // save final return address
2677 
2678   // Re-push self-frame
2679   __ enter();                           // save old & set new rbp,
2680 
2681   //  Return address and rbp, are in place
2682   // We'll push additional args later. Just allocate a full sized
2683   // register save area
2684   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2685 
2686   // Restore frame locals after moving the frame
2687   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2688   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2689   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2690   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2691   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2692 
2693   // Set up the args to unpack_frame
2694 
2695   __ pushl(unpack_kind);                     // get the unpack_kind value
2696   __ get_thread(rcx);
2697   __ push(rcx);
2698 
2699   // set last_Java_sp, last_Java_fp
2700   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2701 
2702   // Call C code.  Need thread but NOT official VM entry
2703   // crud.  We cannot block on this call, no GC can happen.  Call should
2704   // restore return values to their stack-slots with the new SP.
2705   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2706   // Set an oopmap for the call site
2707   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2708 
2709   // rax, contains the return result type
2710   __ push(rax);
2711 
2712   __ get_thread(rcx);
2713   __ reset_last_Java_frame(rcx, false, false);
2714 
2715   // Collect return values
2716   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2717   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2718 
2719   // Clear floating point stack before returning to interpreter
2720   __ empty_FPU_stack();
2721 
2722   // Check if we should push the float or double return value.
2723   Label results_done, yes_double_value;
2724   __ cmpl(Address(rsp, 0), T_DOUBLE);
2725   __ jcc (Assembler::zero, yes_double_value);
2726   __ cmpl(Address(rsp, 0), T_FLOAT);
2727   __ jcc (Assembler::notZero, results_done);
2728 
2729   // return float value as expected by interpreter
2730   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2731   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2732   __ jmp(results_done);
2733 
2734   // return double value as expected by interpreter
2735   __ bind(yes_double_value);
2736   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2737   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2738 
2739   __ bind(results_done);
2740 
2741   // Pop self-frame.
2742   __ leave();                              // Epilog!
2743 
2744   // Jump to interpreter
2745   __ ret(0);
2746 
2747   // -------------
2748   // make sure all code is generated
2749   masm->flush();
2750 
2751   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2752   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2753 }
2754 
2755 
2756 #ifdef COMPILER2
2757 //------------------------------generate_uncommon_trap_blob--------------------
2758 void SharedRuntime::generate_uncommon_trap_blob() {
2759   // allocate space for the code
2760   ResourceMark rm;
2761   // setup code generation tools
2762   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2763   MacroAssembler* masm = new MacroAssembler(&buffer);
2764 
2765   enum frame_layout {
2766     arg0_off,      // thread                     sp + 0 // Arg location for
2767     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2768     arg2_off,      // exec_mode                  sp + 2
2769     // The frame sender code expects that rbp will be in the "natural" place and
2770     // will override any oopMap setting for it. We must therefore force the layout
2771     // so that it agrees with the frame sender code.
2772     rbp_off,       // callee saved register      sp + 3
2773     return_off,    // slot for return address    sp + 4
2774     framesize
2775   };
2776 
2777   address start = __ pc();
2778 
2779   if (UseRTMLocking) {
2780     // Abort RTM transaction before possible nmethod deoptimization.
2781     __ xabort(0);
2782   }
2783 
2784   // Push self-frame.
2785   __ subptr(rsp, return_off*wordSize);     // Epilog!
2786 
2787   // rbp, is an implicitly saved callee saved register (i.e. the calling
2788   // convention will save restore it in prolog/epilog) Other than that
2789   // there are no callee save registers no that adapter frames are gone.
2790   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2791 
2792   // Clear the floating point exception stack
2793   __ empty_FPU_stack();
2794 
2795   // set last_Java_sp
2796   __ get_thread(rdx);
2797   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2798 
2799   // Call C code.  Need thread but NOT official VM entry
2800   // crud.  We cannot block on this call, no GC can happen.  Call should
2801   // capture callee-saved registers as well as return values.
2802   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2803   // argument already in ECX
2804   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2805   __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2806   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2807 
2808   // Set an oopmap for the call site
2809   OopMapSet *oop_maps = new OopMapSet();
2810   OopMap* map =  new OopMap( framesize, 0 );
2811   // No oopMap for rbp, it is known implicitly
2812 
2813   oop_maps->add_gc_map( __ pc()-start, map);
2814 
2815   __ get_thread(rcx);
2816 
2817   __ reset_last_Java_frame(rcx, false, false);
2818 
2819   // Load UnrollBlock into EDI
2820   __ movptr(rdi, rax);
2821 
2822 #ifdef ASSERT
2823   { Label L;
2824     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
2825             (int32_t)Deoptimization::Unpack_uncommon_trap);
2826     __ jcc(Assembler::equal, L);
2827     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
2828     __ bind(L);
2829   }
2830 #endif
2831 
2832   // Pop all the frames we must move/replace.
2833   //
2834   // Frame picture (youngest to oldest)
2835   // 1: self-frame (no frame link)
2836   // 2: deopting frame  (no frame link)
2837   // 3: caller of deopting frame (could be compiled/interpreted).
2838 
2839   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2840   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2841 
2842   // Pop deoptimized frame
2843   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2844   __ addptr(rsp, rcx);
2845 
2846   // sp should be pointing at the return address to the caller (3)
2847 
2848   // Pick up the initial fp we should save
2849   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2850   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2851 
2852 #ifdef ASSERT
2853   // Compilers generate code that bang the stack by as much as the
2854   // interpreter would need. So this stack banging should never
2855   // trigger a fault. Verify that it does not on non product builds.
2856   if (UseStackBanging) {
2857     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2858     __ bang_stack_size(rbx, rcx);
2859   }
2860 #endif
2861 
2862   // Load array of frame pcs into ECX
2863   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2864 
2865   __ pop(rsi); // trash the pc
2866 
2867   // Load array of frame sizes into ESI
2868   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2869 
2870   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2871 
2872   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2873   __ movl(counter, rbx);
2874 
2875   // Now adjust the caller's stack to make up for the extra locals
2876   // but record the original sp so that we can save it in the skeletal interpreter
2877   // frame and the stack walking of interpreter_sender will get the unextended sp
2878   // value and not the "real" sp value.
2879 
2880   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2881   __ movptr(sp_temp, rsp);
2882   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2883   __ subptr(rsp, rbx);
2884 
2885   // Push interpreter frames in a loop
2886   Label loop;
2887   __ bind(loop);
2888   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2889   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2890   __ pushptr(Address(rcx, 0));          // save return address
2891   __ enter();                           // save old & set new rbp,
2892   __ subptr(rsp, rbx);                  // Prolog!
2893   __ movptr(rbx, sp_temp);              // sender's sp
2894   // This value is corrected by layout_activation_impl
2895   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2896   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2897   __ movptr(sp_temp, rsp);              // pass to next frame
2898   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2899   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2900   __ decrementl(counter);             // decrement counter
2901   __ jcc(Assembler::notZero, loop);
2902   __ pushptr(Address(rcx, 0));            // save final return address
2903 
2904   // Re-push self-frame
2905   __ enter();                           // save old & set new rbp,
2906   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2907 
2908 
2909   // set last_Java_sp, last_Java_fp
2910   __ get_thread(rdi);
2911   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2912 
2913   // Call C code.  Need thread but NOT official VM entry
2914   // crud.  We cannot block on this call, no GC can happen.  Call should
2915   // restore return values to their stack-slots with the new SP.
2916   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2917   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2918   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2919   // Set an oopmap for the call site
2920   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2921 
2922   __ get_thread(rdi);
2923   __ reset_last_Java_frame(rdi, true, false);
2924 
2925   // Pop self-frame.
2926   __ leave();     // Epilog!
2927 
2928   // Jump to interpreter
2929   __ ret(0);
2930 
2931   // -------------
2932   // make sure all code is generated
2933   masm->flush();
2934 
2935    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2936 }
2937 #endif // COMPILER2
2938 
2939 //------------------------------generate_handler_blob------
2940 //
2941 // Generate a special Compile2Runtime blob that saves all registers,
2942 // setup oopmap, and calls safepoint code to stop the compiled code for
2943 // a safepoint.
2944 //
2945 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2946 
2947   // Account for thread arg in our frame
2948   const int additional_words = 1;
2949   int frame_size_in_words;
2950 
2951   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2952 
2953   ResourceMark rm;
2954   OopMapSet *oop_maps = new OopMapSet();
2955   OopMap* map;
2956 
2957   // allocate space for the code
2958   // setup code generation tools
2959   CodeBuffer   buffer("handler_blob", 1024, 512);
2960   MacroAssembler* masm = new MacroAssembler(&buffer);
2961 
2962   const Register java_thread = rdi; // callee-saved for VC++
2963   address start   = __ pc();
2964   address call_pc = NULL;
2965   bool cause_return = (poll_type == POLL_AT_RETURN);
2966   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2967 
2968   if (UseRTMLocking) {
2969     // Abort RTM transaction before calling runtime
2970     // because critical section will be large and will be
2971     // aborted anyway. Also nmethod could be deoptimized.
2972     __ xabort(0);
2973   }
2974 
2975   // If cause_return is true we are at a poll_return and there is
2976   // the return address on the stack to the caller on the nmethod
2977   // that is safepoint. We can leave this return on the stack and
2978   // effectively complete the return and safepoint in the caller.
2979   // Otherwise we push space for a return address that the safepoint
2980   // handler will install later to make the stack walking sensible.
2981   if (!cause_return)
2982     __ push(rbx);  // Make room for return address (or push it again)
2983 
2984   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2985 
2986   // The following is basically a call_VM. However, we need the precise
2987   // address of the call in order to generate an oopmap. Hence, we do all the
2988   // work ourselves.
2989 
2990   // Push thread argument and setup last_Java_sp
2991   __ get_thread(java_thread);
2992   __ push(java_thread);
2993   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
2994 
2995   // if this was not a poll_return then we need to correct the return address now.
2996   if (!cause_return) {
2997     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2998     __ movptr(Address(rbp, wordSize), rax);
2999   }
3000 
3001   // do the call
3002   __ call(RuntimeAddress(call_ptr));
3003 
3004   // Set an oopmap for the call site.  This oopmap will map all
3005   // oop-registers and debug-info registers as callee-saved.  This
3006   // will allow deoptimization at this safepoint to find all possible
3007   // debug-info recordings, as well as let GC find all oops.
3008 
3009   oop_maps->add_gc_map( __ pc() - start, map);
3010 
3011   // Discard arg
3012   __ pop(rcx);
3013 
3014   Label noException;
3015 
3016   // Clear last_Java_sp again
3017   __ get_thread(java_thread);
3018   __ reset_last_Java_frame(java_thread, false, false);
3019 
3020   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3021   __ jcc(Assembler::equal, noException);
3022 
3023   // Exception pending
3024   RegisterSaver::restore_live_registers(masm, save_vectors);
3025 
3026   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3027 
3028   __ bind(noException);
3029 
3030   // Normal exit, register restoring and exit
3031   RegisterSaver::restore_live_registers(masm, save_vectors);
3032 
3033   __ ret(0);
3034 
3035   // make sure all code is generated
3036   masm->flush();
3037 
3038   // Fill-out other meta info
3039   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3040 }
3041 
3042 //
3043 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3044 //
3045 // Generate a stub that calls into vm to find out the proper destination
3046 // of a java call. All the argument registers are live at this point
3047 // but since this is generic code we don't know what they are and the caller
3048 // must do any gc of the args.
3049 //
3050 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3051   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3052 
3053   // allocate space for the code
3054   ResourceMark rm;
3055 
3056   CodeBuffer buffer(name, 1000, 512);
3057   MacroAssembler* masm                = new MacroAssembler(&buffer);
3058 
3059   int frame_size_words;
3060   enum frame_layout {
3061                 thread_off,
3062                 extra_words };
3063 
3064   OopMapSet *oop_maps = new OopMapSet();
3065   OopMap* map = NULL;
3066 
3067   int start = __ offset();
3068 
3069   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
3070 
3071   int frame_complete = __ offset();
3072 
3073   const Register thread = rdi;
3074   __ get_thread(rdi);
3075 
3076   __ push(thread);
3077   __ set_last_Java_frame(thread, noreg, rbp, NULL);
3078 
3079   __ call(RuntimeAddress(destination));
3080 
3081 
3082   // Set an oopmap for the call site.
3083   // We need this not only for callee-saved registers, but also for volatile
3084   // registers that the compiler might be keeping live across a safepoint.
3085 
3086   oop_maps->add_gc_map( __ offset() - start, map);
3087 
3088   // rax, contains the address we are going to jump to assuming no exception got installed
3089 
3090   __ addptr(rsp, wordSize);
3091 
3092   // clear last_Java_sp
3093   __ reset_last_Java_frame(thread, true, false);
3094   // check for pending exceptions
3095   Label pending;
3096   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3097   __ jcc(Assembler::notEqual, pending);
3098 
3099   // get the returned Method*
3100   __ get_vm_result_2(rbx, thread);
3101   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
3102 
3103   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
3104 
3105   RegisterSaver::restore_live_registers(masm);
3106 
3107   // We are back the the original state on entry and ready to go.
3108 
3109   __ jmp(rax);
3110 
3111   // Pending exception after the safepoint
3112 
3113   __ bind(pending);
3114 
3115   RegisterSaver::restore_live_registers(masm);
3116 
3117   // exception pending => remove activation and forward to exception handler
3118 
3119   __ get_thread(thread);
3120   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3121   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3122   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3123 
3124   // -------------
3125   // make sure all code is generated
3126   masm->flush();
3127 
3128   // return the  blob
3129   // frame_size_words or bytes??
3130   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3131 }