1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCacheExtensions.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/interp_masm.hpp"
  30 #include "interpreter/templateInterpreter.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 
  34 #ifndef CC_INTERP
  35 
  36 # define __ _masm->
  37 
  38 TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
  39   _unimplemented_bytecode    = NULL;
  40   _illegal_bytecode_sequence = NULL;
  41   generate_all();
  42 }
  43 
  44 static const BasicType types[Interpreter::number_of_result_handlers] = {
  45   T_BOOLEAN,
  46   T_CHAR   ,
  47   T_BYTE   ,
  48   T_SHORT  ,
  49   T_INT    ,
  50   T_LONG   ,
  51   T_VOID   ,
  52   T_FLOAT  ,
  53   T_DOUBLE ,
  54   T_OBJECT
  55 };
  56 
  57 void TemplateInterpreterGenerator::generate_all() {
  58   // Loop, in case we need several variants of the interpreter entries
  59   do {
  60     if (!CodeCacheExtensions::skip_code_generation()) {
  61       // bypass code generation when useless
  62       { CodeletMark cm(_masm, "slow signature handler");
  63         AbstractInterpreter::_slow_signature_handler = generate_slow_signature_handler();
  64       }
  65 
  66       { CodeletMark cm(_masm, "error exits");
  67         _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
  68         _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
  69       }
  70 
  71 #ifndef PRODUCT
  72       if (TraceBytecodes) {
  73         CodeletMark cm(_masm, "bytecode tracing support");
  74         Interpreter::_trace_code =
  75           EntryPoint(
  76                      generate_trace_code(btos),
  77                      generate_trace_code(ctos),
  78                      generate_trace_code(stos),
  79                      generate_trace_code(atos),
  80                      generate_trace_code(itos),
  81                      generate_trace_code(ltos),
  82                      generate_trace_code(ftos),
  83                      generate_trace_code(dtos),
  84                      generate_trace_code(vtos)
  85                      );
  86       }
  87 #endif // !PRODUCT
  88 
  89       { CodeletMark cm(_masm, "return entry points");
  90         const int index_size = sizeof(u2);
  91         for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
  92           Interpreter::_return_entry[i] =
  93             EntryPoint(
  94                        generate_return_entry_for(itos, i, index_size),
  95                        generate_return_entry_for(itos, i, index_size),
  96                        generate_return_entry_for(itos, i, index_size),
  97                        generate_return_entry_for(atos, i, index_size),
  98                        generate_return_entry_for(itos, i, index_size),
  99                        generate_return_entry_for(ltos, i, index_size),
 100                        generate_return_entry_for(ftos, i, index_size),
 101                        generate_return_entry_for(dtos, i, index_size),
 102                        generate_return_entry_for(vtos, i, index_size)
 103                        );
 104         }
 105       }
 106 
 107       { CodeletMark cm(_masm, "invoke return entry points");
 108         const TosState states[] = {itos, itos, itos, itos, ltos, ftos, dtos, atos, vtos};
 109         const int invoke_length = Bytecodes::length_for(Bytecodes::_invokestatic);
 110         const int invokeinterface_length = Bytecodes::length_for(Bytecodes::_invokeinterface);
 111         const int invokedynamic_length = Bytecodes::length_for(Bytecodes::_invokedynamic);
 112 
 113         for (int i = 0; i < Interpreter::number_of_return_addrs; i++) {
 114           TosState state = states[i];
 115           Interpreter::_invoke_return_entry[i] = generate_return_entry_for(state, invoke_length, sizeof(u2));
 116           Interpreter::_invokeinterface_return_entry[i] = generate_return_entry_for(state, invokeinterface_length, sizeof(u2));
 117           Interpreter::_invokedynamic_return_entry[i] = generate_return_entry_for(state, invokedynamic_length, sizeof(u4));
 118         }
 119       }
 120 
 121       { CodeletMark cm(_masm, "earlyret entry points");
 122         Interpreter::_earlyret_entry =
 123           EntryPoint(
 124                      generate_earlyret_entry_for(btos),
 125                      generate_earlyret_entry_for(ctos),
 126                      generate_earlyret_entry_for(stos),
 127                      generate_earlyret_entry_for(atos),
 128                      generate_earlyret_entry_for(itos),
 129                      generate_earlyret_entry_for(ltos),
 130                      generate_earlyret_entry_for(ftos),
 131                      generate_earlyret_entry_for(dtos),
 132                      generate_earlyret_entry_for(vtos)
 133                      );
 134       }
 135 
 136       { CodeletMark cm(_masm, "deoptimization entry points");
 137         for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
 138           Interpreter::_deopt_entry[i] =
 139             EntryPoint(
 140                        generate_deopt_entry_for(itos, i),
 141                        generate_deopt_entry_for(itos, i),
 142                        generate_deopt_entry_for(itos, i),
 143                        generate_deopt_entry_for(atos, i),
 144                        generate_deopt_entry_for(itos, i),
 145                        generate_deopt_entry_for(ltos, i),
 146                        generate_deopt_entry_for(ftos, i),
 147                        generate_deopt_entry_for(dtos, i),
 148                        generate_deopt_entry_for(vtos, i)
 149                        );
 150         }
 151       }
 152 
 153       { CodeletMark cm(_masm, "result handlers for native calls");
 154         // The various result converter stublets.
 155         int is_generated[Interpreter::number_of_result_handlers];
 156         memset(is_generated, 0, sizeof(is_generated));
 157 
 158         for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
 159           BasicType type = types[i];
 160           if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
 161             Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
 162           }
 163         }
 164       }
 165 
 166       { CodeletMark cm(_masm, "continuation entry points");
 167         Interpreter::_continuation_entry =
 168           EntryPoint(
 169                      generate_continuation_for(btos),
 170                      generate_continuation_for(ctos),
 171                      generate_continuation_for(stos),
 172                      generate_continuation_for(atos),
 173                      generate_continuation_for(itos),
 174                      generate_continuation_for(ltos),
 175                      generate_continuation_for(ftos),
 176                      generate_continuation_for(dtos),
 177                      generate_continuation_for(vtos)
 178                      );
 179       }
 180 
 181       { CodeletMark cm(_masm, "safepoint entry points");
 182         Interpreter::_safept_entry =
 183           EntryPoint(
 184                      generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 185                      generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 186                      generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 187                      generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 188                      generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 189                      generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 190                      generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 191                      generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 192                      generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
 193                      );
 194       }
 195 
 196       { CodeletMark cm(_masm, "exception handling");
 197         // (Note: this is not safepoint safe because thread may return to compiled code)
 198         generate_throw_exception();
 199       }
 200 
 201       { CodeletMark cm(_masm, "throw exception entrypoints");
 202         Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
 203         Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException"                 );
 204         Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException"           , "/ by zero");
 205         Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
 206         Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException"          , NULL       );
 207         Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
 208       }
 209 
 210 
 211 
 212 #define method_entry(kind)                                              \
 213       { CodeletMark cm(_masm, "method entry point (kind = " #kind ")"); \
 214         Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind); \
 215         Interpreter::update_cds_entry_table(Interpreter::kind); \
 216       }
 217 
 218       // all non-native method kinds
 219       method_entry(zerolocals)
 220       method_entry(zerolocals_synchronized)
 221       method_entry(empty)
 222       method_entry(accessor)
 223       method_entry(abstract)
 224       method_entry(java_lang_math_sin  )
 225       method_entry(java_lang_math_cos  )
 226       method_entry(java_lang_math_tan  )
 227       method_entry(java_lang_math_abs  )
 228       method_entry(java_lang_math_sqrt )
 229       method_entry(java_lang_math_log  )
 230       method_entry(java_lang_math_log10)
 231       method_entry(java_lang_math_exp  )
 232       method_entry(java_lang_math_pow  )
 233       method_entry(java_lang_ref_reference_get)
 234 
 235       AbstractInterpreter::initialize_method_handle_entries();
 236 
 237       // all native method kinds (must be one contiguous block)
 238       Interpreter::_native_entry_begin = Interpreter::code()->code_end();
 239       method_entry(native)
 240       method_entry(native_synchronized)
 241       Interpreter::_native_entry_end = Interpreter::code()->code_end();
 242 
 243       if (UseCRC32Intrinsics) {
 244         method_entry(java_util_zip_CRC32_update)
 245         method_entry(java_util_zip_CRC32_updateBytes)
 246         method_entry(java_util_zip_CRC32_updateByteBuffer)
 247       }
 248 
 249       if (UseCRC32CIntrinsics) {
 250         method_entry(java_util_zip_CRC32C_updateBytes)
 251         method_entry(java_util_zip_CRC32C_updateDirectByteBuffer)
 252       }
 253 
 254       method_entry(java_lang_Float_intBitsToFloat);
 255       method_entry(java_lang_Float_floatToRawIntBits);
 256       method_entry(java_lang_Double_longBitsToDouble);
 257       method_entry(java_lang_Double_doubleToRawLongBits);
 258 
 259 #undef method_entry
 260 
 261       // Bytecodes
 262       set_entry_points_for_all_bytes();
 263     }
 264   } while (CodeCacheExtensions::needs_other_interpreter_variant());
 265 
 266   // installation of code in other places in the runtime
 267   // (ExcutableCodeManager calls not needed to copy the entries)
 268   set_safepoints_for_all_bytes();
 269 }
 270 
 271 //------------------------------------------------------------------------------------------------------------------------
 272 
 273 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
 274   address entry = __ pc();
 275   __ stop(msg);
 276   return entry;
 277 }
 278 
 279 
 280 //------------------------------------------------------------------------------------------------------------------------
 281 
 282 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
 283   for (int i = 0; i < DispatchTable::length; i++) {
 284     Bytecodes::Code code = (Bytecodes::Code)i;
 285     if (Bytecodes::is_defined(code)) {
 286       set_entry_points(code);
 287     } else {
 288       set_unimplemented(i);
 289     }
 290   }
 291 }
 292 
 293 
 294 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
 295   for (int i = 0; i < DispatchTable::length; i++) {
 296     Bytecodes::Code code = (Bytecodes::Code)i;
 297     if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
 298   }
 299 }
 300 
 301 
 302 void TemplateInterpreterGenerator::set_unimplemented(int i) {
 303   address e = _unimplemented_bytecode;
 304   EntryPoint entry(e, e, e, e, e, e, e, e, e);
 305   Interpreter::_normal_table.set_entry(i, entry);
 306   Interpreter::_wentry_point[i] = _unimplemented_bytecode;
 307 }
 308 
 309 
 310 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
 311   if (CodeCacheExtensions::skip_template_interpreter_entries(code)) {
 312     return;
 313   }
 314   CodeletMark cm(_masm, Bytecodes::name(code), code);
 315   // initialize entry points
 316   assert(_unimplemented_bytecode    != NULL, "should have been generated before");
 317   assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
 318   address bep = _illegal_bytecode_sequence;
 319   address cep = _illegal_bytecode_sequence;
 320   address sep = _illegal_bytecode_sequence;
 321   address aep = _illegal_bytecode_sequence;
 322   address iep = _illegal_bytecode_sequence;
 323   address lep = _illegal_bytecode_sequence;
 324   address fep = _illegal_bytecode_sequence;
 325   address dep = _illegal_bytecode_sequence;
 326   address vep = _unimplemented_bytecode;
 327   address wep = _unimplemented_bytecode;
 328   // code for short & wide version of bytecode
 329   if (Bytecodes::is_defined(code)) {
 330     Template* t = TemplateTable::template_for(code);
 331     assert(t->is_valid(), "just checking");
 332     set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
 333   }
 334   if (Bytecodes::wide_is_defined(code)) {
 335     Template* t = TemplateTable::template_for_wide(code);
 336     assert(t->is_valid(), "just checking");
 337     set_wide_entry_point(t, wep);
 338   }
 339   // set entry points
 340   EntryPoint entry(bep, cep, sep, aep, iep, lep, fep, dep, vep);
 341   Interpreter::_normal_table.set_entry(code, entry);
 342   Interpreter::_wentry_point[code] = wep;
 343   CodeCacheExtensions::completed_template_interpreter_entries(_masm, code);
 344 }
 345 
 346 
 347 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
 348   assert(t->is_valid(), "template must exist");
 349   assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions");
 350   wep = __ pc(); generate_and_dispatch(t);
 351 }
 352 
 353 
 354 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
 355   assert(t->is_valid(), "template must exist");
 356   switch (t->tos_in()) {
 357     case btos:
 358     case ctos:
 359     case stos:
 360       ShouldNotReachHere();  // btos/ctos/stos should use itos.
 361       break;
 362     case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
 363     case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
 364     case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
 365     case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
 366     case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
 367     case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
 368     default  : ShouldNotReachHere();                                                 break;
 369   }
 370 }
 371 
 372 
 373 //------------------------------------------------------------------------------------------------------------------------
 374 
 375 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
 376   if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
 377 #ifndef PRODUCT
 378   // debugging code
 379   if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
 380   if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
 381   if (TraceBytecodes)                                            trace_bytecode(t);
 382   if (StopInterpreterAt > 0)                                     stop_interpreter_at();
 383   __ verify_FPU(1, t->tos_in());
 384 #endif // !PRODUCT
 385   int step = 0;
 386   if (!t->does_dispatch()) {
 387     step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
 388     if (tos_out == ilgl) tos_out = t->tos_out();
 389     // compute bytecode size
 390     assert(step > 0, "just checkin'");
 391     // setup stuff for dispatching next bytecode
 392     if (ProfileInterpreter && VerifyDataPointer
 393         && MethodData::bytecode_has_profile(t->bytecode())) {
 394       __ verify_method_data_pointer();
 395     }
 396     __ dispatch_prolog(tos_out, step);
 397   }
 398   // generate template
 399   t->generate(_masm);
 400   // advance
 401   if (t->does_dispatch()) {
 402 #ifdef ASSERT
 403     // make sure execution doesn't go beyond this point if code is broken
 404     __ should_not_reach_here();
 405 #endif // ASSERT
 406   } else {
 407     // dispatch to next bytecode
 408     __ dispatch_epilog(tos_out, step);
 409   }
 410 }
 411 
 412 // Generate method entries
 413 address TemplateInterpreterGenerator::generate_method_entry(
 414                                         AbstractInterpreter::MethodKind kind) {
 415   // determine code generation flags
 416   bool native = false;
 417   bool synchronized = false;
 418   address entry_point = NULL;
 419 
 420   switch (kind) {
 421   case Interpreter::zerolocals             :                                          break;
 422   case Interpreter::zerolocals_synchronized:                synchronized = true;      break;
 423   case Interpreter::native                 : native = true;                           break;
 424   case Interpreter::native_synchronized    : native = true; synchronized = true;      break;
 425   case Interpreter::empty                  : break;
 426   case Interpreter::accessor               : break;
 427   case Interpreter::abstract               : entry_point = generate_abstract_entry(); break;
 428 
 429   case Interpreter::java_lang_math_sin     : // fall thru
 430   case Interpreter::java_lang_math_cos     : // fall thru
 431   case Interpreter::java_lang_math_tan     : // fall thru
 432   case Interpreter::java_lang_math_abs     : // fall thru
 433   case Interpreter::java_lang_math_log     : // fall thru
 434   case Interpreter::java_lang_math_log10   : // fall thru
 435   case Interpreter::java_lang_math_sqrt    : // fall thru
 436   case Interpreter::java_lang_math_pow     : // fall thru
 437   case Interpreter::java_lang_math_exp     : entry_point = generate_math_entry(kind);      break;
 438   case Interpreter::java_lang_ref_reference_get
 439                                            : entry_point = generate_Reference_get_entry(); break;
 440   case Interpreter::java_util_zip_CRC32_update
 441                                            : native = true; entry_point = generate_CRC32_update_entry();  break;
 442   case Interpreter::java_util_zip_CRC32_updateBytes
 443                                            : // fall thru
 444   case Interpreter::java_util_zip_CRC32_updateByteBuffer
 445                                            : native = true; entry_point = generate_CRC32_updateBytes_entry(kind); break;
 446   case Interpreter::java_util_zip_CRC32C_updateBytes
 447                                            : // fall thru
 448   case Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer
 449                                            : entry_point = generate_CRC32C_updateBytes_entry(kind); break;
 450 #ifdef IA32
 451   // On x86_32 platforms, a special entry is generated for the following four methods.
 452   // On other platforms the normal entry is used to enter these methods.
 453   case Interpreter::java_lang_Float_intBitsToFloat
 454                                            : native = true; entry_point = generate_Float_intBitsToFloat_entry(); break;
 455   case Interpreter::java_lang_Float_floatToRawIntBits
 456                                            : native = true; entry_point = generate_Float_floatToRawIntBits_entry(); break;
 457   case Interpreter::java_lang_Double_longBitsToDouble
 458                                            : native = true; entry_point = generate_Double_longBitsToDouble_entry(); break;
 459   case Interpreter::java_lang_Double_doubleToRawLongBits
 460                                            : native = true; entry_point = generate_Double_doubleToRawLongBits_entry(); break;
 461 #else
 462   case Interpreter::java_lang_Float_intBitsToFloat:
 463   case Interpreter::java_lang_Float_floatToRawIntBits:
 464   case Interpreter::java_lang_Double_longBitsToDouble:
 465   case Interpreter::java_lang_Double_doubleToRawLongBits:
 466     native = true;
 467     break;
 468 #endif // defined(TARGET_ARCH_x86) && !defined(_LP64)
 469   default:
 470     fatal("unexpected method kind: %d", kind);
 471     break;
 472   }
 473 
 474   if (entry_point) {
 475     return entry_point;
 476   }
 477 
 478   // We expect the normal and native entry points to be generated first so we can reuse them.
 479   if (native) {
 480     entry_point = Interpreter::entry_for_kind(synchronized ? Interpreter::native_synchronized : Interpreter::native);
 481     if (entry_point == NULL) {
 482       entry_point = generate_native_entry(synchronized);
 483     }
 484   } else {
 485     entry_point = Interpreter::entry_for_kind(synchronized ? Interpreter::zerolocals_synchronized : Interpreter::zerolocals);
 486     if (entry_point == NULL) {
 487       entry_point = generate_normal_entry(synchronized);
 488     }
 489   }
 490 
 491   return entry_point;
 492 }
 493 #endif // !CC_INTERP